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Abstract

Essays on Irrigation

by

John Ashton Loeser

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Jeremy Magruder, Chair

In the first chapter, I estimate an elasticity of irrigation adoption to its gross returns
in rural India. Many approaches to estimating this elasticity fail when agents select
into adopting irrigation on heterogeneous gross returns and costs. I develop a novel
approach to correct for selection using two instrumental variable estimators that can
be implemented with aggregate data on gross revenue and adoption of irrigation. I use
climate and soil characteristics as an instrument for gross returns to irrigation, and
hydrogeology as an instrument for irrigation to correct for selection. I estimate that
a 1% increase in the gross returns to irrigation causes a 0.7% increase in adoption of
irrigation. I use this elasticity to infer changes in profits from changes in adoption of
irrigation caused by shocks to its profitability, and to conduct counterfactuals. First,
groundwater depletion from 2000-2010 in northwestern India permanently reduced eco-
nomic surplus by 1.2% of gross agricultural revenue. Second, I evaluate a policy that
optimally reduces relative subsidies for groundwater irrigation in districts with large
negative pumping externalities, while holding total subsidies fixed. Under the policy,
depletion caused by subsidies decreases by 16%, but farmer surplus increases by only
0.07% of gross agricultural revenue.

In the second chapter, co-authored with Maria Jones, Florence Kondylis, and Jeremy
Magruder, we examine the returns to newly-constructed hillside irrigation schemes in
Rwanda using a very granular spatial regression discontinuity design. We find that
irrigation enables dry season horticultural production which is associated with large
increases in labor and input usage and boosts on-farm yields and cash profits by 70%.
At the same time, irrigation use remains limited after 4 years. We leverage the spatial
discontinuity in access to irrigation to develop a test for separation failures based on
farmer behavior on other plots and conclude that separation failures restrain technology
adoption. Unlike existing separation tests, our test allows us to distinguish the role of
labor constraints from credit and insurance constraints; we find robust evidence that
labor constraints limit adoption.
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In the third chapter, I develop a new approach to quantify the welfare gains from
risky technologies for intertemporal substitution, ranging from agricultural technologies
to financial products. Traditionally, these welfare gains are measured either by the
technology’s effect on a welfare proxy or by estimating a structural model. Using
a welfare proxy may be suboptimal due to noise in measurement and the challenge
of converting estimated effects into a money metric, while structural approaches may
require strong functional form assumptions and depend on unexpected moments of the
data. In contrast, despite some drawbacks, Marshallian consumer surplus is frequently
used as a metric for the welfare gains from access to a new product in a static setting,
and with sufficient variation in prices may be relatively easy to precisely estimate. I
show that under a broad class of models of dynamic optimization which nest Deaton
(1991), Marshallian consumer surplus is a reasonable welfare metric for access to an
intertemporal substitution technology. I demonstrate how to calculate it, and apply the
approach to three experiments which randomly varied either interest rates or prices:
I compare the consumer surplus from grants of index insurance in Ghana to their
actuarially fair value, I calculate the surplus to households from access to a leading
MFI in Mexico, and I bound the foregone consumer surplus due to inattention to the
Savers’ Credit among households in the United States. In all cases, the calculation is
straightforward, transparent, and can be represented graphically as a “welfare triangle”.
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Chapter 1

The treatment effect elasticity of
demand: Estimating the welfare
losses from groundwater depletion
in India

1.1 Introduction

A common parameter of interest in economics is the elasticity of adoption of a binary
treatment to its treatment effect. In the classic Roy (1951) model, workers’ relative
potential wages across sectors determine their sectoral choice. Similarly, the effect of
the skill premium on high school graduates’ decisions to attend college is an important
input to models of directed technical change (Acemoglu, 1998), as is the effect of firms’
potential profits on entry decisions to many models in industrial organization and trade
(Melitz, 2003). An estimate of this elasticity is useful both for counterfactuals, such as
agents’ responses to a tax, or for welfare analysis, such as inferring lost surplus from
behavioral responses to a shock.

Selection complicates consistent estimation of this elasticity when economic agents
select into treatment on both idiosyncratic treatment effects and perceived costs of
adopting treatment. Existing approaches to estimating this elasticity require assuming
selection on observables (as noted by Heckman (1979)), imposing strong parametric
assumptions (Heckman, 1979), or access to sufficiently high powered instruments to
estimate a control variable nonparametrically (Ahn & Powell, 1993; Das et al., 2003;
Eisenhauer et al., 2015). This contrasts starkly with estimating treatment effects, where
linear instrumental variables estimates a local average treatment effect in the presence of
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selection on unobservables and without imposing any parametric assumptions (Imbens
& Angrist, 1994).

In this paper, I focus on the elasticity of irrigation adoption to its gross returns in India.
Irrigation is of first order importance in Indian agriculture. From 1960 to 2010, during
India’s Green Revolution, the irrigated share of agricultural land grew from 18% to
54%; over 60% of this growth came from the expansion of tubewells for groundwater
extraction. This extraction is not benign; Rodell et al. (2009) find extraction caused
water tables in northwest India to fall 3.3m from 2000-2010, or 0.21 standard deviations
of depth to water table across districts. Falling water tables, by increasing the costs of
groundwater irrigation, have been shown to increase poverty (Sekhri, 2014), decrease
land values (Jacoby, 2017), and cause outmigration and decrease area under irriga-
tion (Fishman et al., 2017). This has important implications for economic efficiency:
groundwater extraction is a classic example of “tragedy of the commons”, as farmers
do not internalize the increase in pumping costs their extraction causes for neighboring
farmers through declining water tables (Jacoby, 2017).

Despite potentially large externalities from groundwater extraction, formulating opti-
mal policy responses to declining water tables in India is difficult for two reasons. First,
the elasticity of irrigation to many counterfactual policies is unknown. Second, empiri-
cal estimates of the impacts per unit decline in water tables on agricultural profits are
not available, as agricultural profits in developing countries are notoriously difficult to
measure reliably.1 An estimate of the elasticity of groundwater irrigation for agricul-
ture to its gross returns would solve both of these challenges. For the first, responses of
irrigation to a policy are proportional to the elasticity of irrigation to its gross returns
times the effect of the policy on relative profits under irrigation. For the second, effects
of declining water tables on adoption of irrigation are proportional to their effects on
farmer profits times the elasticity of irrigation to its gross returns.

I estimate an elasticity of irrigation adoption to its gross returns. To do so, I first
build a generalized Roy model where farmers adopt irrigation if their gross returns
to irrigation are greater than their costs of irrigation; this allows for selection into
irrigation on unobservable heterogeneity in gross returns, and I make no parametric
assumptions about the joint distribution of gross returns and costs. Under this model,
I show that a linear instrumental variable estimator using an instrument for gross
revenue under irrigation estimates the sum of weighted averages of gross returns to
irrigation (a “local average treatment effect”) and inverse semielasticities of demand for
irrigation (a “local average surplus effect”). This builds on formulas for instrumental

1Challenges in the measurement of agricultural profits in developing countries are discussed at
length in Foster & Rosenzweig (2010) and Karlan et al. (2014a), among others. To list two, first,
absent administrative data, long household surveys are required to capture the full set of inputs
used in smallholder agriculture. Second, smallholder agriculture intensively uses non-marketed inputs
(primarily household labor) which are difficult to value.
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variables bias from Angrist et al. (1996); here, the “bias” is the estimand of interest, a
local average surplus effect. Existing results imply the local average treatment effect,
and therefore the local average surplus effect, is identified with a continuous instrument
for irrigation (Heckman & Vytlacil, 2005) or bounded with a discrete instrument for
irrigation (Mogstad et al., 2017).2 Under stronger assumptions, which still allow sorting
on unobserved heterogeneity in both gross returns and costs, I show weighted linear
instrumental variables with an instrument for irrigation is a consistent estimator of this
local average treatment effect; the weights adjust the compliers to the instrument for
irrigation to match the compliers to the instrument for gross revenue under irrigation
on observables.3

The generalized Roy model I use to study selection into irrigation on its gross returns
builds on a long literature surveyed in Heckman & Vytlacil (2007a,b); these models have
been used to study sectoral choice and wage premia (Roy (1951)), education and skill
premia (Willis & Rosen, 1979), and, closest to my setting, hybrid maize seed and its
gross returns (Suri, 2011). I build most closely on Eisenhauer et al. (2015), who establish
nonparametric identification of agents’ willingness to pay for treatment (irrigation) from
an instrument for treatment and an instrument for treatment effects (gross returns to
irrigation). I instead assume the existence of an instrument for potential outcome under
treatment (gross revenue under irrigation), and establish nonparametric identification of
the inverse semielasticity of adoption of treatment to the treatment effect under weaker
conditions. These weaker conditions are the union of the assumptions of the standard
local average treatment effect framework (Imbens & Angrist, 1994) and the assumptions
needed for point identification of economic surplus from a change in costs when potential
outcomes are independent of treatment conditional on observables (Willig, 1978; Small
& Rosen, 1981).

I estimate that a 1% increase in the gross returns to irrigation causes a 0.7% increase in
the irrigated share of agricultural land. I estimate this elasticity using climate and soil
characteristics as an instrument for gross revenue under irrigation, and using hydroge-
ology as an instrument for irrigation. I use this elasticity to infer changes in profits
from changes in adoption of irrigation caused by shocks to profitability of irrigation.
Fishman et al. (2017) estimate the effect of declining water tables on adoption of irri-

2An extra monotonicity assumption is needed; the marginal farmers induced to adopt irrigation
by the instrument for irrigation and the instrument for gross revenue under irrigation are assumed to
be the same conditional on the propensity score and observables; I discuss this assumption in Section
??. For point identification, conditions on the conditional support of the propensity score are needed
as well.

3This approach generalizes assumptions made in Angrist & Fernandez-Val (2010) under which
linear instrumental variable estimators can be reweighted on observables to recover the same local
average treatment effect. In doing so it contributes to a number of recent papers which enables
comparison of compliers to different instruments under monotonicity by estimating marginal treatment
effects (Kowalski, 2016; Arnold et al., 2018; Mountjoy, 2018)) or bounding local average treatment
effects (Mogstad et al., 2017).
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gation; with their estimate, my estimate of this elasticity implies that that the 3.3m
decline in depth to groundwater observed in northwest India from 2000-2010 decreased
economic surplus by 1.2% of gross revenue per hectare. These losses are large; for com-
parison, Government of India (2018) anticipate losses in India due to climate change of
1.8%/decade over the next century. I compare my estimate to a simple physics based
back-of-the-envelope that considers losses only from farmers’ increased electricity costs;
my estimate is six times as large as that back of the envelope, consistent with farmers’
cost share of electricity in irrigation.

I incorporate my estimate of the economic costs of declining water tables into a model of
optimal taxation of electricity for groundwater irrigation, following Allcott et al. (2014).
A social planner chooses subsidies for electricity use, trading off the value of subsidies as
a transfer to farmers with their deadweight loss and the negative externalities generated
from induced marginal extraction. These externalities vary across districts, as water
tables fall more rapidly in thinner aquifers, and these falls are experienced by more
farmers when a larger share of land is irrigated. I calibrate the model using data on
groundwater extraction and aquifer characteristics for districts in Rajasthan, the state
in northwest India most known for falling water tables. I find the observed electricity
subsidy in Rajasthan is responsible for a 1.5 meter fall in water tables, 46% of the
observed rate of decline in northwest India. However, this subsidy increases farmer
surplus by 5.9% of gross agricultural revenue, and on the margin implies the social
planner is paying 1.56 Rs for 1.00 Rs in surplus transferred to farmers, not far from
a similar shadow cost in the US from Hendren (2016). Externalities are important:
of the 1.56 Rs, 0.31 Rs are lost to deadweight loss, while 0.25 Rs are lost to negative
externalities from induced marginal extraction.

I consider a counterfactual where the social planner optimally varies subsidies across
districts, relatively decreasing subsidies in high externality districts, while holding fixed
total subsidy payments. This alternate policy reduces the effect of subsidies on water
table declines by 16%, but it increases farmer surplus by only 0.07% of gross agricul-
tural revenue. This increase in surplus is small in magnitude relative to the reallocation
of surplus from subsidies from farmers in districts with high externalities to farmers in
districts with low externalities, consistent with political economy motives for electricity
subsidies (Dubash, 2007). However, the magnitude of surplus gains, and more gener-
ally the magnitude of externalities, are much larger under smaller calibrations of the
discount rate: while transfers and deadweight loss are static, falls in the water table
are permanent in the districts I consider, implying the social planner must trade off
transfers to farmers today with lost profits for farmers in future decades.

In providing these estimates, I build on a deep literature on the economics of irrigation.
Most directly, I contribute to existing results of the impacts of surface water irrigation
(Duflo & Pande, 2007) and declining water tables (Sekhri, 2014; Fishman et al., 2017)
on welfare proxies in India, and hedonic estimates of the value of access to groundwater
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in India (Jacoby, 2017) and in the US (Schlenker et al., 2007). In contrast, I estimate
sufficient parameters for many optimal policy calculations: the economic losses from a 1
meter decline in the water table, and the elasticity of demand for irrigation to its gross
returns. In this sense, I build on estimates of the elasticity of groundwater extraction to
electricity subsidies (Badiani & Jessoe, 2017) and output subsidies for water intensive
crops (Chatterjee et al., 2017). I use this estimated elasticity to build on the optimal
control literature, summarized in Koundouri (2004a), and applied in India by Sayre &
Taraz (2018); a large body of work has used complicated, calibrated dynamic models of
management of aquifers to characterize optimal policy.4 Contributing to this literature,
I take a sufficient statistics approach, building a simple public economic model following
Chetty (2009) and Allcott et al. (2014): empirical estimates of elasticities are used where
possible, and calibrated parameters enter transparently into counterfactuals.

The rest of the paper is organized as follows. Section 1.2 describes the data used and
the context. Section 1.3 presents the model, including results on identification and
estimation. Section 1.4 describes the empirical strategy I use. Section 1.5 presents
the main results, including the impacts of groundwater depletion on rural surplus,
and Section 1.6 discusses their robustness. Section 1.7 considers optimal subsidies for
electricity for groundwater irrigation, building on results from Section 1.5. Section 1.8
concludes.

1.2 Data and context

1.2.1 Context

India’s Green Revolution, starting in the 1960’s, was a time of rapid growth in agri-
cultural productivity, driven by increased adoption of new high yielding varieties of
seeds, fertilizers, pesticides, and irrigation (Evenson & Gollin, 2003). Irrigation was a
particularly important component: large investments were made in the expansion of
surface water irrigation, with over 2,400 large dams constructed from 1971-1999 (Duflo
& Pande, 2007), but the majority of growth of irrigation was ground water irrigation
(Gandhi & Bhamoriya, 2011). The irrigated share of agricultural land in India expanded
from 18% to 54% from 1960 to 2008, while the share of agricultural land irrigated using
tubewells grew from 0% to 22%, accounting for 63% of the overall growth in irrigation.
Reduced form evidence suggests that access to groundwater has large impacts on social
welfare (Sekhri, 2014; Fishman et al., 2017; Jacoby, 2017) and is an important driver of

4Results from these models can be sensitive to the calibration: Gisser & Sanchez (1980) famously
find small gains from optimal policy relative to laissez faire, but Koundouri (2004b) argue their findings
are driven by their steep calibrated marginal benefit curves, while Brozović et al. (2010) argue they
are driven by the characteristics of the aquifer they study.
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adoption of modern agricultural technologies (Sekhri, 2014). This evidence suggests a
large share of agricultural productivity growth during the Green Revolution may have
been caused by access to groundwater.

Groundwater is stored in underground aquifers, which are underground layers of perme-
able rock or other materials that hold water. The meters below ground level at which
groundwater is available is often referred to as the depth to water table, and varies both
across aquifers and within aquifer. For agriculture in India, as in much of the world,
this groundwater is typically extracted using tubewells. In a tubewell, a narrow pipe,
typically PVC or stainless steel, is bored into the ground, fitted with a strainer cap,
and installed with a pump used to pump the water to the surface. Drilling tubewells is
costly: according to the 2007 Minor Irrigation Census, the fixed cost of infrastructure
for groundwater irrigation in the average district was 26,600 Rs/ha, just over 1 year of
agricultural revenue per hectare. This cost varies substantially across districts, with a
coefficient of variation of 0.55. This variation is partially driven by the accessibility of
groundwater. At greater depths to water table, wells must be drilled deeper, which is
more costly (Jacoby, 2017). Additionally, at these lower depths, more expensive and
more powerful pumps are required (Sekhri, 2014). Moreover, different types of soils can
store different quantities of water, and vary in their permeability. These hydrogeologi-
cal characteristics affect the rate at which groundwater resources can be extracted that
balances natural rates of recharge (“potential aquifer yield” or “safe yield”), the rate
at which the water table falls per unit of water extracted (“specific yield”), and the
number of wells required per unit of water extracted (Fishman et al., 2017).

Although some of this variation in accessibility of groundwater is driven by exoge-
nous hydrogeological characteristics of the districts, human activity can impact this
accessibility. In many districts, ancient groundwater resources are trapped in confined
aquifers; these resources are exhaustible. Rodell et al. (2009) use satellite data to show
declining water tables in northwestern India, while Suhag (2016) show that the Indian
Central Groundwater Board’s calculations based on hydrology models imply overex-
ploitation of groundwater resources in the same region. Appendix Figure A.1 shows
that this overexploitation (high withdrawals of groundwater as a percentage of natural
rates of recharge) is most prevalent in states that experienced the largest increases in
agricultural productivity during the Green Revolution, highlighting the link between
agricultural productivity and groundwater extraction. In many places, declining wa-
ter tables are believed to have significantly increased costs of groundwater extraction
(Fishman et al., 2017; Jacoby, 2017). On the other hand, rainwater capture and sur-
face water irrigation have the potential to replenish groundwater reserves and reduce
dependency on groundwater (Sekhri, 2013).

This decline has been accelerated by implicit subsidies for groundwater irrigation. Most
significantly, most states in India do not have volumetric pricing of electricity, but in-
stead charge pump capacity fees. These fees partially substitute for volumetric pric-
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ing, since many farmers pump groundwater whenever electricity is available during the
growing seasons. However, the levels of fees correspond to large subsidies for electricity,
ranging from 52% to 100% subsidies (Fishman et al., 2016). Badiani & Jessoe (2017)
use panel variation in these subsidies to estimate an elasticity of water use to the price
of electricity of -0.18, suggesting these subsidies contribute meaningfully to declining
water tables. However, they point out that this inelastic demand for electricity sug-
gests limited deadweight loss from the subsidies. Since a commonly stated motivation
for subsidies is as a transfer to farmers (Dubash, 2007), a social planner who places a
high value on marginal consumption by farmers, potentially due to a lack of availability
of other policy instruments for making such transfers, might find it optimal to trade
off a small deadweight loss to increase transfers to farmers. Moreover, subsidies may
correct for the presence of market power in water markets, which might cause socially
suboptimal rates of groundwater extraction (Gine & Jacoby, 2016).

In addition to traditional concerns of inefficiency due to subsidies or other wedges,
rates of groundwater extraction may be higher than is socially optimal due to negative
externalities in pumping groundwater. As farmers extract groundwater, water is drawn
from nearby parts of the aquifer, decreasing the water table for neighboring farmers
(Theis, 1935), and increasing their costs of extracting groundwater. In the presence of
such externalities, farmers will not internalize the increased costs their pumping causes
to other farmers. Jacoby (2017) suggests externalities may be particularly important
in confined aquifers in India; wells are frequently tightly clustered, and interference
between wells is a concern, especially during the dry season.

An estimate of the magnitude of this externality is necessary to determine an optimal
tax, or subsidy, for groundwater irrigation. To calculate this externality, one can de-
compose it into two terms. First, increased pumping of groundwater causes a decline
in the water table. The impact of increased pumping on the water table varies signif-
icantly across aquifers: pumping one cubic meter of water causes the water table to
decline by as much as 20,000 cubic meters in thin, confined aquifers, and by as little as
5 cubic meters in thick, unconfined aquifers (Gisser & Sanchez, 1980; Brozović et al.,
2010).

Second, these declines in the water table cause decreases in the profitability of irrigated
agriculture, as the cost of groundwater extraction increases. These increases in costs
are an externality: they are almost completely experienced by farmers other than the
farmer extracting the unit of water. Estimating this increase in costs is hard: costs are
notoriously hard to observe in agricultural data (Foster & Rosenzweig, 2010; Karlan
et al., 2014a), and as a result empirical estimates of the economic costs of declining water
tables are unavailable. In India, past work has estimated impacts of declining water
tables on welfare proxies, including poverty headcount (Sekhri, 2014) and outmigration
(Fishman et al., 2017). However, calculating the externality requires an estimate of
the economic damages from a unit decline in water tables. Existing approaches to
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estimating this have focused largely on the United States, and have typically used
hedonic regressions (see Koundouri (2004a) for a review); these approaches may not be
feasible in developing country settings such as India, where the assumption of frictionless
land markets and full information is less likely to hold.5

1.2.2 Data

I merge data from multiple sources on agriculture in India. Since district boundaries in
India have changed multiple times over the past century, all analysis is done using 1961
state and district boundaries. Descriptive statistics for all variables used in analysis are
presented in Table 1.1.

Primary agricultural outcomes come from two sources. First, I merge together the
World Bank India Agriculture and Climate Data Set, which contains data from 1956-1987,
with the ICRISAT Village Dynamics in South Asia Macro-Meso Database, which con-
tains data from 1966-2011. I refer to this merged dataset as “Ag ’56-’11”.6 The merged
dataset contains annual district level data on crop specific land allocations (rainfed
and irrigated), prices, and yields. I use this to construct an imbalanced panel of 222
districts in 11 states from 1956-2011 of agricultural revenue per hectare and irrigated
share of agricultural land. While more districts are observed in this data set, I restrict
to districts which appear in all primary data sets used for analysis to maintain compa-
rability across specifications.7 For much of the analysis, I restrict to the most recent 5
year cross section in this data set.

I supplement this with the 2012 Agricultural National Sample Survey, which included
questions on household level land allocations and agricultural production by crop, cru-
cially both on irrigated and rainfed land; I refer to these observations as plots. The
data also contain household level expenditures on agricultural inputs by category. I
refer to this dataset as “NSS ’12”. 35,200 households were surveyed, and the survey is
intended to be representative at the district level. The sampling of villages from which

5Many studies have also used contingent valuation approaches, which can be severely biased. A
noteable alternative approach is taken by Hagerty (2018), who studies water markets in the United
States. However, they estimate the willingness to pay for one unit of water, which is different from the
economic costs of a one unit decline in water tables. One notable exception is Jacoby (2017), who ap-
plies a hedonic regression in India to estimate the economic value of having a borewell using exogenous
drilling failures as an instrument. Since the presence of a functioning borewell is easily observable, the
assumptions underpinning a hedonic regression are likely to hold. However, this estimate cannot be
converted into an estimate of the economic costs of a one unit decline in water tables without strong
assumptions.

6The former dataset has been used by many papers analyzing agriculture in India, including Duflo
& Pande (2007) and Sekhri (2014) studying irrigation, while the latter dataset has been used by
Allen & Atkin (2015) among others.

7Most notably, this restriction drops Chhattisgarh, Jharkhand, and West Bengal.
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surveyed households were selected was stratified on share of village land irrigated; be-
cause this stratification is correlated with treatment (irrigation), I use survey weights
in all analysis with this data. Moreover, to maintain comparability with Ag ’56-’11, I
weight plots by area, I restrict to crops observed in Ag ’56-’11, and I reweight districts
so each district receives the same weight. Both revenue per hectare and input expen-
ditures per hectare are noisily measured at high quantiles; I winsorize them at 100,000
Rs/ha (95th percentile for revenue per hectare, 99th percentile for input expenditures
per hectare).

For data on irrigation technologies, I use the 2007 Minor Irrigation Census. This survey
censuses minor irrigation schemes (culturable command area less than 2000 hectares),
which account for 65% of irrigated area and almost all groundwater irrigation. I refer
to this dataset as “Irr ’07”. In this, I observe district level counts of minor irrigation
schemes by type (dugwell, shallow tubewell, deep tubewell, surface flow scheme, surface
lift scheme), hectares of potential created and used for surface water and ground water
schemes, and counts of ground and surface water schemes by cost.8

I use potential aquifer yield as my instrument for costs of irrigation, a measure of the
sustainable rate of extraction of groundwater from a typical tubewell. I constructed
this measure by georeferencing a hydrogeological map of India from the Central Ground
Water Board (CGWB) which categorizes all land by potential aquifer yield and aquifer
type. The measure ranges from 0 L/s to 40 L/s.9 In all analysis I divide by 40 to
normalize this measure to range from 0 to 1, and I plot variation in this measure across
districts in Panel (a) of Figure 1.1.

I use a measure of log relative potential irrigated crop yield as my instrument for po-
tential gross revenue under irrigation. For data on potential crop yield, I use the FAO
GAEZ database; this source is discussed at length in Costinot et al. (2016). Among
other products, it includes constructed measures of potential yields under 5 input sce-
narios (low rainfed, intermediate rainfed/irrigated, high rainfed/irrigated) based on
climate and soil characteristics. I construct potential rainfed crop yield as the weighted
average of potential crop yields under the intermediate rainfed scenario. I construct
relative potential irrigated crop yield as the ratio of the weighted average of potential

8I observe 5 categories, corresponding to [0 Rs., 10,000 Rs.), [10,000 Rs., 50,000 Rs.), [50,000 Rs.,
100,000 Rs.), [100,000 Rs., 1,000,000 Rs.), [1,000,000 Rs., ∞). I code each of these as 10,000 Rs.,
50,000 Rs., 100,000 Rs., 300,000 Rs., and 1,000,000 Rs. Alternative codings do not affect significance
of any results nor magnitudes of any results in logs, but magnitudes in levels are sensitive to the coding
of the [100,000 Rs., 1,000,000 Rs.) category. Estimates of the pseudo treatment effect elasticity of
demand are unaffected.

9All land is cateogorized as unconsolidated formations (>40 L/s, 25-40 L/s, 10-25 L/s, <10 L/s),
consolidated/semi-consolidated formations (1-25 L/s, 1-10 L/s, 1-5 L/s), and hilly areas (1 L/s), which
I code as 40, 25, 10, 1, 25, 10, 1, and 1 L/s, respectively. This measure is strongly correlated with the
measure of aquifer depth used by Sekhri (2014), and the measure of whether groundwater formations
are unconsolidated or consolidated used by D’Agostino (2017).
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crop yields under the intermediate irrigated scenario to potential rainfed crop yield.10

I plot variation in log relative potential irrigated crop yield across districts in Panel
(b) of Figure 1.1.11 This measure is likely to be correlated with gross revenue under
rainfed agriculture; I therefore control for log potential rainfed crop yield in all primary
specifications. I discuss the construction of relative potential irrigated crop yield and
potential rainfed crop yield in more detail in Appendix A.1.

I make use of some supplementary datasets. I use data from the Indian Central Ground-
water Board’s network of monitoring tubewells on seasonal depth to water table from
1995 to 2017; I refer to this dataset as “Well ’95-’17”. Data on the groundwater share
of irrigation by district in 2001 is from the FAO Global Map of Irrigation Areas. Data
sources of all calibrated parameters for counterfactual exercises in Section 1.5.4 and
Section 1.7 are cited in Table 1.7.

1.3 Model

I consider a model of profit maximizing farmers deciding whether to irrigate their land.
Following Suri (2011), I use a generalized Roy model to model the selection decision:
although only farmers’ gross revenue conditional on their adoption decision is observed,
farmers decide to irrigate if their gross revenue under irrigation minus gross revenue
under rainfed agriculture (gross returns to irrigation) is greater than their relative costs
of irrigating. Past work has established nonparametric identification of parameters of
these models from panel data (Suri, 2011), instruments for costs (Heckman & Vytlacil,
2005), instruments for treatment effects (Adão (2016); in this context, treatment effects
are the gross returns to irrigation), and instruments for both costs and treatment effects
(Das et al., 2003; Eisenhauer et al., 2015).

In Section 1.3.1, I consider a simple econometric model to motivate the more general
framework. In Section 1.3.2, I setup a generalized Roy model building on the work
cited above. I assume the presence of a conventional cost instrument, but I also impose
a novel exclusion restriction on an outcome instrument: I assume the outcome instru-

10The weights used are state-by-state shares of land allocated to different crops. To identify effects
from variation in potential crop yield, and not variation in weights, I control for state fixed effects in
all analysis. Other work has used the difference in yields under different scenarios as an instrument
for returns to technology adoption (Bustos et al., 2016).

11The measure is almost identical if I use the high input scenarios; in India, for almost all crops,
potential yields under the high input scenario are closely approximated by a crop specific multiple of
potential yields under the intermediate and low input scenarios. Regressing potential yields from the
rainfed high input scenario on the rainfed intermediate input scenario yields R2 ranging from 0.87
to 1, while regressing potential yields from the irrigated intermediate input scenario on the rainfed
intermediate input scenario yields R2 ranging from 0.04 and 0.06 on the low end (for water intensive
sugarcane and rice) to 0.90 and 1 on the high end (for drought resilient sorghum and pearl millet).
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ment does not affect gross revenue under rainfed agriculture (potential outcome under
control). In Section 1.3.3, I define the marginal treatment effect (following Heckman &
Vytlacil (2005)), and two novel parameters, the marginal surplus effect and the treat-
ment effect elasticity of demand. The marginal surplus effect builds onWillig (1978) and
Small & Rosen (1981): it is the inverse semielasticity of demand for irrigation, which
equals the effect on profits caused by shifts to profitability of irrigation, as inferred by
changes in adoption of irrigation. The treatment effect elasticity of demand captures
the percentage increase in adoption of irrigation caused by a 1% increase in treatment
on the treated (the effect of irrigation on gross revenue for inframarginal irrigators); it
is inversely proportional to the marginal surplus effect and unitless, which facilitates
interpretation and comparison across studies. In Section 1.3.4, I establish nonpara-
metric identification of the marginal surplus effect. I show that the treatment effect
elasticity of demand is not nonparametrically identified without strong assumptions on
the instruments, but a pseudo treatment effect elasticity of demand, that serves as a
reasonable approximation in many contexts, is. In Section 1.3.5, I discuss estimation of
the marginal surplus effect. I show that linear instrumental variables using the outcome
instrument estimates the sum of a local average treatment effect (a weighted average
of marginal treatment effects) and a local average surplus effect (a weighted average
of marginal surplus effects), and that these weights are nonparametrically identified.
I compare the linear instrumental variables approach to a control function approach,
and show that with the novel exclusion restriction the control function approach is
overidentified.

1.3.1 A simplified econometric model

Consider the following econometric model

Yi = β0 + β1Di + β2DiWi + εi

Di = γ0 + γ1Zi + γ2Wi + ηi

where Yi is an observed outcome for agent i and Di is the agent’s endogenous adoption
of a binary treatment. I make the independence assumption that (Zi,Wi) ⊥ (εi, ηi). Zi

shifts agents decisions to adopt treatment. Wi shifts agents decisions to adopt treatment
through its effect on treatment effects; β1 + β2w is the treatment effect for agents with
Wi = w. The estimand of interest is γ2

β2
, or the effect of a unit increase in treatment

effects on adoption of treatment. An implicit exclusion restriction has been made here,
that Wi does not affect outcomes for agents who do not adopt treatment.

I consider estimation of β2 by linear instrumental variables, using Zi and Wi as instru-
ments for Di and DiWi. This yields the following IV estimand for β2, the effect of an
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increase in Wi on treatment effects.

β̂2 =

Cov(Yi,Wi)
Cov(Di,Wi)

− Cov(Yi,Zi)
Cov(Di,Zi)

Cov(DiWi,Wi)
Cov(Di,Wi)

− Cov(DiWi,Zi)
Cov(Di,Zi)

This estimator is the ratio of two terms. The denominator is nonzero when there is
a first stage for the IV estimator (Wi and Zi are correlated with DiWi relative to
Di differentially). The numerator is the difference between two linear IV estimators.
The first of these estimators, but not the second, violates the exclusion restriction
for instrumental variables in the more general correlated random coefficients model
Yi = β0 + β1iDi + εi.12

What is this difference between IV estimators under this model? For expositional
purposes, I assume that Zi and Wi are each binary, that they are independent, and
that they are each 0 (1) with probability 1

2
(1
2
).13

Cov(Yi,Wi)

Cov(Di,Wi)
− Cov(Yi, Zi)

Cov(Di, Zi)
=

β2E[Di]

γ2

The difference between the two linear IV estimators is β2, the change in treatment
effects, times E[Di], average adoption, divided by γ2, the change in adoption. This is
an inverse semielasticity of adoption to the treatment effect. The first IV estimator,
Cov(Yi,Wi)
Cov(Di,Wi)

, is the sum of two terms: β1 + β2E[Wi], the local average treatment effect for
agents induced to adopt treatment by Wi or Zi, and an inverse semielasticity β2E[Di]

γ2
,

the direct effect of Wi on outcomes per unit change in adoption of treatment.

The result is that the difference between two linear IV estimators, the first using an
“instrument” for potential outcome under treatment, and the second using an instru-
ment for treatment, estimates an inverse semielasticity of adoption of treatment to the
treatment effect when the distribution of the “instrument” for potential outcome under
treatment has no skew. However, it is not clear what this approach estimates when non-
linearities or more flexible patterns of selection are permitted. With this motivation, I
now ask if a similar approach can be used to estimate an inverse semielasticity of adop-
tion in a generalized Roy model, where agents select into treatment on heterogeneous

12Note that this estimator I propose of β2 is different from the natural estimator in the interacted
model Yi = β0+β1Di+β2DiWi+β3Wi+εi, using Zi and ZiWi as instruments for Di and DiWi. When
Wi is binary, one can show this β̂2 = Cov(Yi,Zi|Wi=1)

Cov(Di,Zi|Wi=1) −
Cov(Yi,Zi|Wi=0)
Cov(Di,Zi|Wi=0) (Hull, 2018). Under the more

general econometric model presented in Section 1.3.2, even local versions of this estimator, and the
one I propose under the exclusion restriction β3 = 0, estimate different parameters. Loosely speaking,
the estimator in the interacted model estimates the effect of Wi on the local average treatment effect,
while the estimator in the model I propose estimates the effect of Wi on treatment on the treated.

13The latter two are without loss of generality as long as (Zi,Wi) = (z, w) with positive probability
for all (z, w) ∈ {0, 1}2, as this can be achieved by reweighting. A more general model that relaxes
many of these assumptions is developed in Section ??.
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treatment effects and costs of adoption.14

1.3.2 Environment

Farmers (“agents”) decide whether to adopt irrigation (“treatment”) to maximize their
profits (“surplus”), which is their gross revenue (“outcome”) net of any costs, broadly
defined. Let Y1i be the gross revenue farmer i receives when they irrigate (“potential
outcome under treatment”), and Y0i be the gross revenue farmer i receives when they
engage in rainfed agriculture (“potential outcome under control”). Let C1i be farmer
i’s relative costs of adopting irrigation (“costs of adoption”). Let Di be an indicator
for farmer i’s decision to irrigate (“treatment indicator”). Farmers maximize profits,
πi = Di(Y1i − C1i) + (1 − Di)Y0i (“surplus”). I assume the researcher observes Yi =
DiY1i + (1 −Di)Y0i, farmer i’s gross revenue (“outcome”), and Di, farmer i’s decision
to irrigate (“adoption decision”), but does not observe profits, costs, or counterfactual
revenue.

The surplus maximization assumption implies

Di = 1{Y1i − C1i − Y0i > 0} (1.1)

Equation 1.1 is equivalent to the generalized Roy modeling framework discussed in
Heckman & Vytlacil (2007a,b). Agents adopt treatment if their treatment effect (Y1i −
Y0i) is greater than their costs of adoption (C1i).

Next, I assume the presence of instruments z and w. z is a conventional instrument, in
that it shifts agents’ costs of adoption, C1i, without affecting their potential outcomes,
Y1i and Y0i. I refer to it as the “cost instrument”. However, w is a nonstandard
instrument: it shifts agents’ potential outcome under treatment, Y1i, without shifting
their costs of adoption, C1i, or their potential outcome under control, Y0i. I refer to it
as the “outcome instrument”. Additional assumptions are explained below.

Assumption 1.

Y1i(w) = VγiγW (w) + V1i

C1i(z) = VγiγZ(z) + VCi

Y0i = V0i

14Wooldridge (2015) proposes control function approaches that allow for selection on unobservable
treatment effect heterogeneity and that allow for multiple endogenous regressors. However, what linear
estimators with multiple endogenous regressors estimate when the structural model is misspecified
may not be useful (Kirkeboen et al., 2016; Hull, 2018; Mountjoy, 2018), while linear instrumental
variables with a single endogenous regressor retains a LATE interpretation without any assumptions
on functional forms (Heckman & Vytlacil, 2005). I ask if this robustness can be extended to linear
instrumental variables with Wi.
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Assumption 2. γW and γZ are each monotonic in their arguments, and Vγi > 0
∀i. The distribution of Vi ≡ −V1i+VCi+V0i

Vγi
is continuous and has a strictly increasing

cumulative distribution function FV and smooth density fV .

Assumption 1 implicitly makes a number of assumptions. First, w and z each satisfy ex-
clusion restrictions. Only Y1i is structurally a function of w, and only C1i is structurally
a function of z. These exclusion restrictions are strong assumptions, and I discuss pos-
sible violations in my empirical context in Section 1.6. That only Y1i is structurally a
function of w is a novel exclusion restriction in generalized Roy models.15 It is most
similar to Eisenhauer et al. (2015), who assume there is a regressor excluded from just
C1i, while I assume w is excluded from C1i and Y0i. That z is excluded from Y1i and Y0i

is the standard exclusion restriction made to estimate a local average treatment effect.

Second, (z, w) are weakly separable from unobserved heterogeneity, through the index
(γW (w)−γZ(z)). Combined with Assumption ??, this implies monotonicity in an index
of (z, w). It also implies the more general weak separability assumption made in Willig
(1978), Small & Rosen (1981), and Bhattacharya (2017), who assume weak separability
of price and product quality to estimate welfare impacts of changes to product quality on
consumers. Crucially, this assumption guarantees that z and w enter choices and surplus
symmetrically, so impacts on choices are strictly increasing in impacts on potential
surplus under treatment. However, although weak separability only requires that (z, w)
enter jointly through a flexible index, the more restrictive functional form I use is the
most general that satisfies weak separability, the exclusion restrictions, the monotonicity
assumptions, and the additive generalized Roy structure.16 Despite the restrictiveness of
these assumptions, variability in Vγi flexibly captures, for example, that more productive
farmers might be more responsive to shifts in the instruments, something that similar
work does not allow.17

Assumption 2 makes all remaining technical assumptions. The assumptions on mono-
tonicity of γZ and γW are standard for instrumental variables, and reasonable in my
context.18 That the distribution of Vi is continuous and strictly increasing is a standard
technical assumption.

15It is not novel in one-sided selection models, such as studying labor market participation, which
two-sided models nest with a normalization of Y0i = 0 (no earnings for non-participants). In these
models, w is a wage shifter, Di is the labor market participation decision, and z is an instrument for
participation.

16The proof is in Appendix A.2.1.
17Specifically, Eisenhauer et al. (2015) and Adão (2016) require their instruments (z, w) are addi-

tively separable from unobserved heterogeneity, which implies that their instrument w has a homoge-
neous effect across agents conditional on observables. However, approaches in Das et al. (2003) and
Eisenhauer et al. (2015) are straightforward to generalize to this environment.

18Specifically, in my context, I assume that potential revenue under irrigation is strictly increasing
in potential irrigated crop yields, and that costs of irrigating are strictly decreasing in potential aquifer
yield.
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Additionally, define
Ui = FV (Vi)

Ui is distributed Uniform[0,1], and orders agents from highest to lowest propensity
to adopt treatment. Note that Equation 1.1, combined with Assumption ?? and the
definition of Vi in Assumption 2, can now be rewritten as Di = 1{Ui < FV (γW (w) −
γZ(z))}. Therefore, the share of agents who adopt treatment E[Di(z, w)] = FV (γW (w)−
γZ(z)).

Lastly, let Zi and Wi be agent i’s realized value of the instruments z and w. I make an
independence assumption that will be sufficient for identification.

Assumption 3.
(Zi,Wi) ⊥ (V0i, VCi, V1i, Vγi)

1.3.3 Marginal surplus effects and marginal treatment effects

Within this structure, it is now possible to define the marginal treatment effect and the
marginal surplus effect.

MTE(u;w) = E[Y1i(w)− Y0i|Ui = u] (1.2)

MSE(u) = u

fV (F
−1
V (u))

E[Vγi|Ui < u] (1.3)

The definition of the marginal treatment effect in Equation 1.2 is standard and follows
Heckman & Vytlacil (2005). The definition of the marginal surplus effect in Equation
1.3 is novel. To interpret this, note that the ratio u

fV (F−1
V (u))

is just a Mills ratio for the
random variable Vi, evaluated at v = F−1

V (u). The numerator, u, is the share of agents
adopting treatment. The denominator, fV (F−1

V (u)), is the density of agents on the
margin, which is similar to an elasticity: when the density of marginal agents is large,
small increases in potential surplus under treatment cause large movements of agents
into treatment. The third term reflects the extent to which inframarginal adopters of
treatment are relatively more affected by shifts to z and w than compliers.

Following this intuition, we can arrive at a key result.

dE[Yi(z, w)]/dz

dE[Di(z, w)]/dz
= MTE(E[Di(z, w)];w) (1.4)

dE[πi(z, w)]/dz

dE[Di(z, w)]/dz
=

dE[πi(z, w)]/dw

dE[Di(z, w)]/dw
= MSE(E[Di(z, w)]) (1.5)

Equation 1.4 gives the standard result on marginal treatment effects: the marginal
treatment effect is the change in average outcomes per unit change in adoption of
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treatment caused by a shift to z. Equation 1.5 gives a new result on the marginal
surplus effect: the marginal surplus effect is the change in average surplus per unit
change in adoption of treatment caused by a shift to z or w.19

Additionally, following Heckman & Vytlacil (2007a,b), it follows from Equation 1.4 that
one can define impacts on outcomes of policies that shift z in terms of MTE and E[Di]
alone. Similarly, it follows from Equation 1.5 that one can define impacts on surplus of
policies that shift z or w in terms of MSE and E[Di] alone.

E[Yi(z
′, w)]− E[Yi(z, w)]

E[Di(z′, w)]− E[Di(z, w)]
=

∫ E[Di(z
′,w)]

E[Di(z,w)]
MTE(u;w)du

E[Di(z′, w)]− E[Di(z, w)]︸ ︷︷ ︸
policy relevant treatment effect

(1.6)

E[πi(z
′, w′)]− E[πi(z, w)]

E[Di(z′, w′)]− E[Di(z, w)]
=

∫ E[Di(z
′,w′)]

E[Di(z,w)]
MSE(u)du

E[Di(z′, w′)]− E[Di(z, w)]︸ ︷︷ ︸
policy relevant surplus effect

(1.7)

Equation 1.6 is the standard result from Heckman & Vytlacil (2007a,b) that the impact
of a broad class of policies on average outcomes is equal to the product of a policy
relevant treatment effect and the impact of the policy on adoption of treatment, where
the policy relevant treatment effect is a weighted average of marginal treatment effects.
Equation 1.7 is a new result that shows that the impact of a broad class of policies
on average surplus is equal to the product of a policy relevant surplus effect and the
impact of the policy on adoption of treatment, where the policy relevant surplus effect
is a weighted average of marginal surplus effects.

Lastly, to interpret Equation 1.5, it is helpful to draw a comparison to consumer theory.
There, a classic result is that the marginal surplus effect is price divided by the price
elasticity of demand (Willig, 1978; Small & Rosen, 1981). Alternatively, one could
phrase this as the price elasticity of demand is equal to the price divided by the marginal
surplus effect. An equivalent result holds here. I define

TOT(u;w) = E[Y1i(w)− Y0i|Ui < u] (1.8)

ε∗(u;w) =
TOT(u;w)
MSE(u)

(1.9)

Equation 1.8 gives the standard definition of treatment on the treated. Note that it has
the standard interpretation, that TOT(E[Di(z, w)];w) = E[Y1i(w)− Y0i|Di(z, w) = 1].
Given the analogy in consumer theory, one might hope that ε∗(u;w), as defined in
Equation 1.9, is the treatment effect elasticity of demand. Equation 1.10 shows this

19The derivations of Equation 1.4 and Equation 1.5 is in Appendix A.2.1.
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result below.

TOT(E[Di(z, w)];w)

E[Di(z, w)]

dE[Di(z, w)]/dw

∂TOT(E[Di(z, w)];w)/∂w
= ε∗(E[Di(z, w)];w) (1.10)

Equation 1.10, combined with Equation 1.9, shows that the marginal surplus effect can
be interpreted as the ratio of treatment on the treated to the treatment effect elasticity
of demand for treatment.20

1.3.4 Identification

The identification of marginal surplus effects and marginal treatment effects follows
from classic results on local instrumental variables from Heckman & Vytlacil (1999,
2005). I now assume that (Zi,Wi) have a smooth density that is strictly positive
at (z, w). Independence of the instruments and standard results on nonparametric
identification imply the expectations E[Yi(z, w)] and E[Di(z, w)] and their derivatives
with respect to z and w are identified (Matzkin, 2007).21 As in Heckman & Vytlacil
(2005), Equation 1.4 therefore establishes identification of marginal treatment effects
from local instrumental variables using the cost instrument.

For identification of marginal surplus effects, the key result is what local instrumental
variables using the outcome instrument estimates.

dE[Yi(z, w)]/dw

dE[Di(z, w)]/dw
= MTE(E[Di(z, w)];w) +MSE(E[Di(z, w)]) (1.11)

Local instrumental variables using the outcome instrument estimates the marginal
treatment effect plus the marginal surplus effect.22 This is the local version of the
result for the linear model in Section 1.3.1.

Identification of marginal surplus effects follows simply from subtracting Equation 1.4
from Equation 1.11.

MSE(E[Di(z, w)]) =
dE[Yi(z, w)]/dw

dE[Di(z, w)]/dw
− dE[Yi(z, w)]/dz

dE[Di(z, w)]/dz
(1.12)

The intuition for this result is visible in Figure 1.2. Both the cost instrument z and the
outcome instrument w affect agent adoption decisions and surplus through a common
index, because of the weak separability assumption. Whether surplus under treatment

20The derivation of Equation 1.10 is in Appendix A.2.1.
21Formally, E[Yi(z, w)] = E[Yi|Zi = z,Wi = w] and E[Di(z, w)] = E[Di|Zi = z,Wi = w].
22The derivation of Equation 1.11 is in Appendix A.2.1.
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increases from Y1i−C1i to Y ∗
1i−C1i (shock to w, as in Panel (a)) or to Y1i−C∗

1i (shock to
z, as in Panel (b)), the effect on choices is a sufficient statistic for the effect on surplus;
the marginal surplus effect is well defined. However, their effects on outcomes differ. In
Panel (b), we can see that the cost instrument increases outcomes proportional to the
marginal treatment effect: potential outcomes are unaffected by the cost instrument,
but the induced increase in adoption E[Di] causes agents’ outcomes to increase by their
treatment effect. However, in Panel (a), we can see that the outcome instrument has
two effects on outcomes. The first effect is proportional to the marginal treatment effect:
adoption E[Di] increases because surplus under treatment increases, and this increase in
adoption E[Di] causes agents’ outcomes to increase by their treatment effect. However,
the second effect is proportional to the marginal surplus effect. This is the direct effect
on outcomes caused by the increase in Y1i; the increase in Y1i and the increase in Y1i−C1i

are the same (because of the exclusion restriction), so this increase is exactly the same
as the effect of the outcome instrument on surplus.

Note, however, that unlike marginal surplus effects and marginal treatment effects,
treatment on the treated and the treatment effect elasticity of demand are not identified
without either parametric assumptions or an identification at infinity argument. This
contrasts with the standard consumer theory setting, where typically a price elasticity
of demand is estimated, and marginal surplus effects can be calculated using that price
elasticity. To allow comparison of results with price elasticities, I instead define the
pseudo treatment effect elasticity of demand to be

ε(u;w) =
MTE(u;w)
MSE(u)

(1.13)

which, following the results above, is also identified. It is biased relative to the treatment
effect elasticity of demand: ε∗(u;w) = TOT(u;w)

MTE(u;w)
ε(u;w), so the pseudo treatment effect

elasticity of demand, which requires less restrictive assumptions for identification, will
be too small (large) when treatment on the treated is large (small) relative to the
marginal treatment effect.23

23Despite this, the pseudo treatment effect elasticity of demand is still useful. In some cases, instead
of observing the outcome Yi, the researcher might observe the outcome Yi times an unknown constant
(in agriculture, this could be yields measured using satellite data, as in Burke & Lobell (2017)) or costs
DiC1i times an unknown constant (in my context, this is fixed infrastructure costs for irrigation). In
both cases, the pseudo treatment effect elasticity of demand can still be consistently estimated. In
my context, this permits an overidentification test. In other cases, one might estimate the pseudo
treatment effect elasticity of demand in one context, and extrapolate to another where the marginal
treatment effect is known but an instrument to estimate the marginal surplus effect is unobserved.
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1.3.5 Estimation

For estimation, I now assume that a set of observable characteristics of each agent, Xi,
are also observed. All assumptions above are now made conditional on Xi = x, and all
results above now hold conditional on Xi = x. No additional assumptions are made
except where explicitly stated.

Instrumental variables

The nonparametric identification results suggest the application of local instrumental
variable estimators. In practice, as discussed in Carneiro et al. (2011) and Eisenhauer
et al. (2015), local instrumental variable estimators are difficult to implement in practice
while conditioning on (Zi,Wi, Xi) jointly. Frequently, their implementation relies on
strong restrictions on how (Wi, Xi) can enter outcome equations. However, as Imbens
& Angrist (1994) and Heckman & Vytlacil (2005) show, linear instrumental variables
using a conventional instrument, such as Zi, makes no such assumptions: instead, it
only requires the researcher to estimate the expectation of Zi conditional on all variables
which are not excluded from outcome equations (in this case, (Wi, Xi)). Then, linear
instrumental variables estimates a local average treatment effect, or a weighted average
of marginal treatment effects. Flexibly controlling for observables in linear instrumental
variables is well understood (for example, see Chernozhukov et al. (2016)), and does not
require any assumptions on how non-excluded observables enter outcome equations, in
contrast to how local instrumental variable methods are often implemented (Carneiro
et al., 2011).

Just as linear instrumental variables with Zi estimates a local average treatment effect,
linear instrumental variables with Wi estimates the sum of a local average treatment
effect and a local average surplus effect, where a local average surplus effect is a weighted
average of marginal surplus effects. Formally,

βIV
Z ≡ Cov(Yi, Zi − E[Zi|Wi, Xi])

Cov(Di, Zi − E[Zi|Wi, Xi])
= LATEZ (1.14)

LATEZ =

∫
MTE(u;w, x)ωZ(u;w, x)dudwdx (1.15)

βIV
W ≡ Cov(Yi,Wi − E[Wi|Zi, Xi])

Cov(Di,Wi − E[Wi|Zi, Xi])
= LATEW + LASEW (1.16)

LATEW =

∫
MTE(u;w, x)ωW (u;w, x)dudwdx (1.17)

LASEW =

∫
MSE(u;x)ωW (u;w, x)dudwdx (1.18)
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Equation 1.14 and Equation 1.15 are the result from Heckman & Vytlacil (2005): linear
instrumental variables using the cost instrument estimates a local average treatment
effect, which is a weighted average of marginal treatment effects. As Heckman & Vytlacil
(2005) show, these weights ωZ are nonparametrically identified, positive, and integrate
to 1. The new result is Equation 1.16: linear instrumental variables using the outcome
instrument estimates a local average treatment effect plus a local average surplus effect.
The local average surplus effect is a weighted average of marginal surplus effects. I show
in Appendix A.2.2 that the LATEW and LASEW weights, ωW , are nonparametrically
identified, positive, and integrate to 1. This extends the result on the linear model
from Section 1.3.1 to a generalized Roy model with nonlinearities and selection on
heterogeneous treatment effects.

InterpoLATE-ing

There are multiple approaches in the literature to estimation of LATEW . First, non-
parametric bounds on LATEW using LATEZ are derived in Mogstad et al. (2017), by
considering the largest and smallest possible values of LATEW consistent with marginal
treatment effects that would result in estimating LATEZ . Second, if variation in treat-
ment effects is explained by observables, Angrist & Fernandez-Val (2010) show weighted
linear instrumental variables with the cost instrument can estimate LATEW . Third, one
could instead estimate marginal treatment effects directly using the cost instrument,
and recover an estimate of LATEW from the marginal treatment effects and an estimate
of the LATEW weights. Alternatively, Brinch et al. (2017) propose an approach to re-
covering marginal treatment effects from estimates of local average treatment effects,
by imposing restrictions on outcome equations and flexibly modeling the distribution
of unobservable heterogeneity.

I build on Angrist & Fernandez-Val (2010), and assume that variation in local average
treatment effects is explained by observables. Specifically, I partition Xi = (X̃i, Si),
and assume that local average treatment effects conditional on Si are homogeneous
estimated using Wi or Zi. Formally, define

LATE(·)|s =

∫
MTE(u;w, (x̃, s))ω(·)(u;w, (x̃, s))dudwdx̃∫

ω(·)(u;w, (x̃, s))dudwdx̃

to be the conditional local average treatment effect.24 I assume

Assumption 5a. LATEZ|s = LATEW |s ∀s ∈ Supp(Si)

Although this is a strong assumption, I show in Appendix A.2.1 that this still poten-
24In my empirical context, Si are a vector of state dummies; across state geographic heterogeneity

and policies are likely to explain a significant share of treatment effect heterogeneity.
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tially allows for arbitrary linear marginal treatment effects. This allows for “essential
heterogeneity” (Heckman et al., 2006), substantially weakening the assumption made in
Angrist & Fernandez-Val (2010), who assume these conditional local average treatment
effects are also equal to a conditional average treatment effect. The difference is while
their goal is to estimate the average treatment effect and other population moments,
my goal is to estimate LATEW , which requires a much weaker assumption.25

From the definition of the conditional local average treatment effect, it is clear that
LATEW is a weighted average of LATEW |s, and therefore LATEZ|s. It therefore fol-
lows that LATEW can be estimated by weighted linear instrumental variables using
Zi. Letting ω(·)(s) ≡

∫
ω(·)(u;w, (x̃, s))dudwdx̃, this yields the following estimator of

LASEW .26

βIV
W − βWIV

Z = LASEW (1.19)

βWIV
Z ≡ Cov ((ωW (Si)/ωZ(Si))Yi, Zi − E[Zi|Wi, Xi])

Cov ((ωW (Si)/ωZ(Si))Di, Zi − E[Zi|Wi, Xi])
(1.20)

The difference between weighted linear instrumental variable estimators is a consistent
estimator of LASEW . Intuitively, the weights make the z compliers resemble the w
compliers on the observable Si.

Additionally, the ratio of the local average treatment effect to the local average surplus
effect estimated using weighted instrumental variables estimates a weighted average of
pseudo treatment effect elasticities of demand.

βWIV
Z

βIV
W − βWIV

Z

=

∫
ε(u;w, x)

(
ωW (u;w, x)MSE(u;x)∫

ωW (u;w, x)MSE(u;x)dudwdx

)
dudwdx (1.21)

This result follows straightforwardly from βWIV
Z = LATEW , and substituting the defini-

tion ε(u;w, x) = MTE(u;w,x)
MSE(u;x)

. The weights ωW (u;w,x)MSE(u;x)∫
ωW (u;w,x)MSE(u;x)dudwdx

are nonparametrically
identified, positive, and integrate to 1.

This estimator of a local average surplus effect may be underpowered, if there are many
w compliers but very few z compliers for some Si, but there is balance for other Si. In
Appendix A.2.2, I propose feasible reweighted instrumental variable estimators using
both z and w to minimize the variance of the resulting estimator of a local average
surplus effect; I refer to these estimators as βWIV

W and βWIV
Z . Additionally, estimating

ω(·), even under Assumption 5a, requires estimating the effect of w and z on adoption
25Note that this is still much stronger than assumptions made by Brinch et al. (2017) and Mogstad

et al. (2017). However, the estimator I propose is much simpler to implement. Additionally, in Section
1.5.2, I estimate a parametric version of the model from Section 1.3.2 that does not impose this
assumption, and estimates of this model suggest bias from violations of this assumption is small in my
context.

26The proof of Equation 1.19 is in Appendix A.2.1.
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conditional on Si = s, something I am underpowered for in my setting. Given this
constraint, I calculate these weights under the assumption that the first stages for w
and z (the derivatives of the propensity score conditional on Si = s with respect to w
and z) are constant across Si = s. However, the estimator is still consistent (although
no longer efficient) if the first stage for w is a constant multiple of the first stage for z
across Si = s.

ExtrapoLASE-ing

Just as with a local average treatment effect, a single estimate of a local average surplus
effect need not be policy relevant. I propose an approach similar to Brinch et al.
(2017), who use estimates of outcomes for always takers, compliers, and never takers
to recover the marginal treatment effect with a discrete instrument under parametric
assumptions. Instead, I recover the marginal surplus effect from estimates of local
average surplus effects. Recall that the local average surplus effect is a weighted average
of marginal surplus effects, and the weights ωW are identified. Furthermore, recall
that MSE(u;x) = u

fV (F−1
V (u;x);x)

E[Vγi|Ui < u,Xi = x]. Given this, with parametric
restrictions on MSE(u;x), implied by restrictions on the joint distribution of (Vγi , Vi)
conditional on Xi = x, one can identify MSE(u;x) from local average surplus effects
and the weights they place on different marginal surplus effects.

In particular, I assume the marginal surplus effect is linear. Unlike a marginal treatment
effect, for many distributions a marginal surplus effect will have a 0 intercept, and
therefore a single parameter (the slope) is sufficient to characterize a linear marginal
surplus effect.27,28 A linear marginal surplus effect is therefore identified from a single
estimate of a local average surplus effect, and the weights ωW . Formally, I assume

Assumption 5b. MSE(u) = ku

Note that this assumption is neither necessary nor sufficient for linear marginal treat-
ment effects conditional on Xi = x, and allows for flexible nonlinearities in the effects
of the cost and outcome instruments on costs and potential outcome under treatment,
respectively, conditional on Xi = x. Under this assumption, estimation of the marginal
surplus effect from an estimate of the local average surplus effect is straightforward.

k =
LASEW∫

uωW (u;w, x)dudwdx
(1.22)

27Specifically, bounded Vγi and the distribution of Vi not having fat tails are sufficient for the
marginal surplus effect to have a 0 intercept; this is a standard property of a Mills ratio.

28One parametrization that yields a linear marginal surplus effect is Vi ∼ Uniform[a, a+ k]|Xi = x,
and Vγi = 1 ∀i.
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In general, estimation of ωW (u;w, x) can be hard, even though it is nonparametrically
identified. I simplify the problem by estimating ωW (u;w, x) under the assumption that
E[Di(z, w;x)] is linear.

Parametric control function (“Heckit”)

Past work has developed control function approaches that could be used to estimate a
marginal surplus effect, including parametric (Heckman, 1979), semiparametric (Ahn
& Powell, 1993), and nonparametric approaches (Das et al., 2003). In fact, the natural
estimator of the marginal surplus effect building on the estimator of Das et al. (2003)
is asymptotically equivalent to a local instrumental variables estimator suggested by
Equation 1.12. However, the control function estimator is overidentified; this is be-
cause it requires observations of E[Yi|Di,Wi, Zi, Xi] and E[Di|Wi, Zi, Xi], while the
instrumental variable approach I propose only requires observations of E[Yi|Wi, Zi, Xi]
and E[Di|Wi, Zi, Xi]. Specifically, the exclusion restriction that Y0i is not a function of
w is more easily testable with more disaggregated data.

As an alternative to the instrumental variable approach to estimating a marginal surplus
effect presented previously, I consider a two step parametric control function approach
using a standard Heckman selection correction. As in Björklund & Moffitt (1987), I
assume idiosyncratic variation in (Y1i, C1i, Y0i) is jointly normally distributed. Although
the normality assumption appears restrictive, Kline & Walters (2017) show that in
many cases, parametric control function approaches exactly or closely match the same
moments as linear IV estimators, and thus produce identical or similar estimates of
local average treatment effects.

Assumption 5c. Y1i

C1i

Y0i

 ∼ N

 (gW + c0)Wi +X ′
iµ1

gZZi +X ′
iµC

c0Wi +X ′
iµ0


,

 Σ11 Σ1c Σ10

Σ1c Σcc Σc0

Σ10 Σc0 Σcc


Details of the estimation are in Appendix Section A.2.3. From the estimated model,
it is straightforward to calculate the marginal surplus effect; this calculation under
normality is similar to the expression for the treatment effect elasticity of demand
under normality in French & Taber (2011).

MSE(u;x) = σV u

φ(Φ−1(u))
(1.23)

where σV = Var(Vi), φ is the normal density function, and Φ is the normal cumulative
distribution function.
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This parametric control function approach is a useful benchmark for the instrumental
variable approach I propose. It also allows enables two additional tests of the instru-
mental variable approach. First, it allows me to test the exclusion restriction that Y0i

is not a function of w. Second, it allows me to test the performance of the weighted in-
strumental variable estimator. Specifically, I follow Andrews et al. (2018) and calculate
the informativeness of the weighted (and unweighted) instrumental variable estimators
of LASEW and LATEZ for the control function estimators of LASEW and LATEZ ,
respectively.

1.4 Empirical strategy

1.4.1 Notation and context specific concerns

Following Section 1.3.5 and the end of Section 1.3.5, but adapting to my empirical
context, I consider observations of (Yins, Dins, Zns,Wns, (Xns, Ss)) for each plot i, located
in district n in state s. Yins is plot i’s realized gross revenue. Dins is an indicator for
whether plot i is irrigated. Zns is plot i’s value of the cost instrument, its potential
aquifer yield. Wns is plot i’s value of the outcome instrument, its log relative potential
irrigated crop yield. Xns is a vector of controls for plot i, which in my main specifications
is log potential rainfed crop yield. Ss is a vector of state dummies.

The instruments, (Zns,Wns), and controls (Xns, Ss), are constant within district. All
analysis reports robust standard errors clustered at the district level.

In regressions using district level data, I observe area weighted average outcomes for
the district. I use Yns for average gross revenue per hectare, and Dns for share of land
irrigated at the district level. That Yns and Dns might vary across districts with the
same values of the instruments, even though we can treat Yns and Dns as population
averages within district, is consistent with the distribution of unobservables varying
across districts. The independence assumption therefore implies that instruments are
assigned across districts independent of this distribution.

In analysis using data from NSS ’12, I observe plot level data.29 Yins is now gross
revenue per hectare for plot i, and Dins is a dummy for irrigated. The sampling in the
Agricultural NSS was stratified on village level irrigation status, which is endogenous; as
a result, I use survey weights to recover unbiased estimates. To maintain comparability
with regressions using district level data, I also weight by plot size, and normalize

29To be more precise, observations are at the level of household-by-crop-by-irrigation adoption,
which one can think of as aggregated across plots, proportional to area, on which households grow the
same crop and make the same irrigation adoption decision.
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weights such that the sum of weights in each district is 1.

In analysis using Irr ’07, I use the negative of average fixed costs of irrigation infras-
tructure per agricultural hectare as an outcome. This provides a useful check on results
from other datasets, as I discuss in Section 1.4.2.

1.4.2 Instrumental variables

My objective is to construct 2SLS estimators of the form in Equation 1.14 and 1.16.
With a large number of clusters, one could estimate the conditional expectations of Zns

andWns nonparametrically. With the 222 districts I observe, I instead take a parametric
approach and assume E[Zns|Wns, Xns, Ss] and E[Wns|Zns, Xns, Ss] are linear conditional
on Ss. With this, I estimate by OLS

Yins = βRF
Z Zns + δ1sWns + δ2sXns + α1s + ε1,ins (1.24)

Dins = βFS
Z Zns + δ3sWns + δ4sXns + α2s + ε2,ins (1.25)

Yins = βRF
W Wns + δ5sZns + δ6sXns + α3s + ε3,ins (1.26)

Dins = βFS
W Wns + δ7sZns + δ8sXns + α4s + ε4,ins (1.27)

Note that coefficients on controls are allowed to vary by state s in all specifications.
Let βIV

Z = βRF
Z /βFS

Z , and βIV
W = βRF

W /βFS
W . I use βIV

W − βIV
Z as an estimate of a local

average surplus effect, and βIV
Z /(βIV

W −βIV
Z ) as an estimate of a pseudo treatment effect

elasticity of demand.

These estimators may be inconsistent if LATEW 6= LATEZ . I therefore also implement
the weighted instrumental variable estimator constructed in 1.3.5; this estimator will
be consistent for a local average surplus effect and a pseudo treatment effect elasticity
of demand under Assumption 5a.

To validate the approach, I also use the negative of average fixed costs of irrigation
infrastructure per agricultural hectare as an outcome. This is consistent with the mod-
eling framework; as Björklund & Moffitt (1987) and Eisenhauer et al. (2015) note, there
is a duality between costs and benefits in the generalized Roy model; the difference is
only which is treated as observable. To expand briefly, we are using −qDiC1i as the
outcome instead of Yi, and Y1i − (1− q)C1i − Y0i as costs instead of C1i, where q is the
share of fixed costs in costs of irrigation times the discount rate (to convert infrastruc-
ture costs, which is a stock, into a flow); I assume q is constant. Instruments are now
switched: Wi becomes the cost instrument, and Zi becomes the outcome instrument.
Estimated marginal treatment effects are −q times marginal treatment effects, since
Y1i − Y0i = C1i for marginal agents. Estimated marginal surplus effects are q times
marginal surplus effects, since responses to increased surplus from decreased costs of
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irrigation and increased surplus from increased gross revenue under irrigation are the
same. Therefore, the estimated pseudo treatment effect elasticity of demand (the ratio
of the local average treatment effect to the local average surplus effect) when using
negative fixed costs as an outcome should be the negative of the estimate using gross
revenue as an outcome.30

1.4.3 Control function

To estimate the control function approach, I use NSS ’12, in which I observe plot level
data. This is crucial because this approach relies on observing average outcomes condi-
tional both on the values of the instruments and on adoption of treatment, something
the instrumental variables approach does not need. To separate differences in results
coming from different methods and different data sets, I first estimate a local average
surplus effect using linear instrumental variables in NSS ’12. I follow Section 1.3.5 in
estimating the control function approach. Controls include state fixed effects and their
interaction with log potential rainfed crop yield, but the cost instrument z and out-
come instrument w are not interacted with state fixed effects. Additional details of the
approach are in Appendix A.2.3.

1.5 Results

1.5.1 Instrumental variables

Table 1.2 presents unweighted instrumental variable regressions in Ag ‘07-’11. Columns
1 and 2 show a strong first stage with the cost instrument and the outcome instrument,
with t-statistics of 5.0 and 4.2, respectively. The instrumental variable coefficient in
Column 6, which uses the cost instrument, is a local average treatment effect. Marginal
irrigators increase their agricultural revenue by 22,600 Rs/ha when they adopt irriga-
tion. For ease of interpretation, the same specification with log revenue per hectare
as the outcome gives a coefficient of 0.95. This is similar to Duflo & Pande (2007),
who estimate an elasticity of production with respect to dam induced irrigation of 0.61,

30Note that imposing C0i = 0 is no longer a normalization in order for these interpretations of
results using fixed costs as an outcome to be valid. This creates two problems. First, it creates the
potential for exclusion restriction violations due to Zi affecting costs of rainfed agriculture. This is
not a concern in my context, since Zi affects the costs of extracting groundwater. Second, it affects
the interpretation of q. Assumptions that would imply q is constant are very strong, and likely require
all costs of irrigation to involve drilling for and pumping groundwater, ruling out irrigation reducing
growing season labor costs for rice cultivation, for example. I therefore interpret these results as
suggestive robustness.
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which they note is in the lower range of existing estimates. The instrumental vari-
able coefficient in Column 7, which uses the outcome instrument, is the sum of a local
average treatment effect and a local average surplus effect.

Table 1.3 presents instrumental variable and weighted instrumental variable estimates
used to recover a local average surplus effect and pseudo treatment effect elasticity of
demand; for compactness, each cell corresponds to a single regression. Columns cor-
respond to a single set of estimates, while rows correspond to estimators. Column 1
presents the same results as are in Table 1.2. Row 5 of Column 1 is the difference
between the IV estimator using the outcome instrument and the IV estimator using the
cost instrument, which estimates a local average surplus effect if the two local average
treatment effects (for cost instrument compliers and outcome instrument compliers)
are the same. The estimated local average surplus effect is 31,700 Rs/ha. To facil-
itate interpretation, an estimate of the pseudo treatment effect elasticity of demand
is presented in row 6: the resulting point estimate is 0.72, although it is imprecisely
estimated.

Column 2 presents results with the weighted instrumental variable estimator, which
corrects for potential bias from differences in shares of cost instrument and outcome
instrument compliers in different states. The estimated local average surplus effect with
this estimator, 49,800 Rs/ha, is larger (although not statistically significantly so), and
the estimated pseudo treatment effect elasticity of demand is similar.

Columns 3 and 4 present results with negative infrastructure costs as the outcome using
unweighted and weighted instrumental variables, respectively; as described in Section
1.4.2, the roles of the instruments are now switched. The local average treatment effect
estimates imply marginal irrigation infrastructure costs of 59,100-86,900 Rs/ha. Un-
like estimates with agricultural productivity as an outcome, these instrumental variable
estimates are economically significantly different from OLS estimates, consistent with
unobservable heterogeneity in costs of irrigation driving selection.31 Although inter-
preting the local average surplus effect estimates is difficult, following the reasoning
in Section 1.4.2, pseudo treatment effect elasticity of demand estimates should be the
negative of estimates using agricultural productivity as an outcome. Estimates of this
elasticity using infrastructure costs are statistically and economically indistinguishable
from estimates using agricultural productivity, but are much more precisely estimated.
The estimates imply a 1% increase in the gross returns to irrigation causes a 0.7%
increase in adoption of irrigation, times a bias term equal to the ratio of gross returns
for average irrigators to gross returns for marginal irrigators.

31The difference is not statistically significant (for the Hausman test, p = 0.12 for unweighted IV
and p = 0.13 for weighted IV), so I interpret this difference as potentially suggestive of selection on
unobservable heterogeneity in costs of irrigation.
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1.5.2 Control function

Before estimating key model parameters using a two step control function approach,
I first compare instrumental variable estimates of the local average surplus effect in
NSS ’12, on which the control function approach is implemented, to the estimates
from Ag ’07-’11. The estimate of the local average surplus effect in Column 1 on
Table 1.4 is similar, but noisier; I interpret this to mean direct comparisons of control
function estimates using NSS ’12 to instrumental variable estimates using Ag ’07-’11
are reasonable, although they should still be made with caution.

I present the estimated coefficients from the control function approach in Table 1.5.
A few things to note. First, the estimated effect of the outcome instrument on po-
tential revenue under rainfed agriculture, c0, is not significantly different from 0, so
the overidentification test fails to reject. Second, the estimated standard deviation of
idiosyncratic profitability of irrigation of 25,800 Rs/ha, σV , is large: as reference, the ob-
served standard deviation of agricultural revenue per hectare is 26,100 Rs/ha, although
these two measures need not be similar. Third, the selection terms are imprecisely esti-
mated, although there is potentially suggestive evidence that there is selection on costs,
consistent with the differences between instrumental variables and OLS estimators with
fixed costs as the outcome in Section 1.5.1.

To compare the control function approach to the instrumental variable approach, Col-
umn 3 of Table 1.4 shows estimates of LATEZ , LATEW , and LASEW from the control
function approach, along with bias from violations of the exclusion restriction.32 The
local average surplus effect, 54,300 Rs/ha, is larger than estimates from either instru-
mental variable method and is more precisely estimated. The estimated bias from
differences between local average treatment effects is small, at -3,300 Rs/ha. The es-
timated bias from violations of the exclusion restriction is also small, at 4,600 Rs/ha.
These biases happen to offset, and the total bias in the instrumental variable estimator
of the local average surplus effect is just 1,200 Rs/ha.

However, just because the control function estimates imply the linear IV estimator has
a small bias in this case does not mean it is a good estimator of a local average surplus
effect. To judge this, I follow Andrews et al. (2018) and calculate the informativeness of
the IV and WIV estimators of LATEZ and LASEW for the equivalent control function
estimates. This does not capture bias, which is small in this context but need not
be in others, but does capture the extent to which structural estimates of LATEZ

and LASEW are explained by IV estimators. Kline & Walters (2017) note that in
many cases, IV and structural estimates of LATEZ are numerically equivalent, which
would yield an informativeness of 1; I therefore use the informativeness of IV estimates
of LATEZ for structural estimates of LATEZ as a benchmark. Table ?? shows these

32I discuss the construction of these in Section A.2.3.
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measures. The IV and weighted IV estimators of LATEZ both have high informativeness
of structural estimates (0.51 and 0.46, respectively). The IV estimator of LASEW has
a low informativeness of the structural estimator (0.12). However, the WIV estimator
of LASEW has an informativeness of the structural estimate that is similar to that of
IV estimates of LATEZ for structural estimates of LATEZ (0.50). I interpret this as
evidence that the instrumental variable approach is, at the least, a useful complement
to traditional structural approaches one could use to estimate marginal surplus effects,
as the two approaches should yield similar results.

1.5.3 MSE

Estimated marginal surplus effects and local average surplus effects for the instrumental
variable estimator (in Ag ’07-’11), the weighted instrumental variable estimator (in Ag
’07-’11), and the control function estimator (in NSS ’12) are presented in Figure 1.3.
The instrumental variable estimates of marginal surplus effects are constructed from
the local average surplus effect estimates as described in Section 1.3.5. The control
function estimate of the local average surplus effect is constructed from the marginal
surplus effect estimate as described in Section 1.3.5. First, note that although the
weighted IV local average surplus effect is 57% larger than the IV estimate, the weighted
IV marginal surplus effect is only 30% larger. This is because the weighted IV local
average surplus effect places more weight on larger margins of adoption, where marginal
surplus effects will typically be larger (and are by assumption with the functional forms
I use). Second, the control function estimate of the marginal surplus effect is larger than
the IV estimate, but it is close to the WIV estimate over empirically relevant margins
of adoption. As a result, for counterfactual exercises, I pick the “median” of the three
estimates and use the WIV estimate of the marginal surplus effect. Third, note that
distributional assumptions can have a large impact on estimates of the marginal surplus
effect when extrapolating outside of frequently observed margins of adoption.

1.5.4 Groundwater depletion and rural surplus

With an estimate of the marginal surplus effect, we can calculate the effects of declining
water tables on surplus. To do so, with the marginal surplus effect it is sufficient to
have an estimate of the impact of declining water tables on adoption of irrigation. Let
b be the depth to water table in meters. I calibrate dE[Di]/db = −.0024/m based on
estimates from Fishman et al. (2017), which I assume to be constant.33 This yields

dE[πi]

db
= MSE(E[Di])

dE[Di]

db
33This, and all other calibrated parameters used in counterfactual exercises, are in Table 1.7.
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I use this approach to calculate the impact of declining water tables on economic surplus,
and report estimates in Table 1.8. Column 1 reports estimates of the impact of a 1m
decline in water tables on economic surplus in Rs/ha. The WIV marginal surplus effect
implies a 1m decline in water tables reduces surplus per irrigated hectare by 172 Rs,
or 0.7% of agricultural productivity per hectare in India in 2009. Across monitoring
wells in India, one standard deviation of depth to water table is 15.4m, implying a one
standard deviation increase in depth to water table would cause a loss of surplus per
irrigated hectare equal to 10.8% of 2009 Indian agricultural productivity per hectare.

To assess the plausibility of this estimate, I do an alternative calculation. Instead, I ask
how much farmers’ private electricity costs of pumping groundwater would increase if
depth to water table fell by 1m; an appeal to the envelope theorem suggests this is a
direct loss of surplus for farmers. I then scale this up by the inverse share of electricity
costs in costs of declining water tables; I consider values of 3 and 6 for this.34 The IV
and weighted IV estimates of the marginal surplus effect are 4.3 and 5.5 times larger
than the increase in farmers’ private electricity costs of pumping groundwater from a
1m decline in water tables, respectively. I interpret this as validation of that these
estimates are reasonable to use for the remaining counterfactuals.

Next, I use the estimated marginal surplus effects, or local average surplus effects, to
calculate the lost surplus from declining water tables in Haryana, Punjab, and Ra-
jasthan, from 2000-2010, as estimated by Rodell et al. (2009). My preferred estimate,
using the WIV marginal surplus effect, finds lost surplus of 365 Rs/ha, or 1.16% of
agricultural productivity per hectare in northwest India. Other estimates range from
251 to 430 Rs/ha, while back of the envelope calculations scaling increased electricity
costs are 197 and 395 Rs/ha.

1.6 Robustness

I present an analysis of robustness of the estimated local average surplus effect here.
Sections 1.6.1, 1.6.2, and 1.6.3 discuss the exclusion restrictions that the outcome in-

34I calculate this share in two ways. For the first approach, I begin by noting that, on the margin,
costs of adopting irrigation should equal benefits. I therefore use the IV LATE for the cost instrument
on agricultural productivity as a measure of the costs of adopting irrigation. Next, I assume that the
share of electricity costs in costs of declining water tables equals one minus the share of irrigation
infrastructure in costs of adopting irrigation. Lastly, I use the IV LATE on fixed costs as a measure
of fixed costs of adopting irrigation. To convert this to a flow, I multiply by 0.2, a common interest
rate on credit in India (Hussam et al., 2017). This calculation yields an electricity cost share of 0.5.
Alternatively, I assume that only fixed costs and electricity costs increase when water tables decline,
and I assume they do so in proportion to their aggregate shares. I calculate the share of fixed costs
using the approach above, and I calibrate electricity expenditures per irrigated hectare at 1,470 Rs/ha.
This calculation yields an electricity cost share of 0.12. These yield a range of 2 to 8.
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strument does not affect costs, that the outcome instrument does not affect potential
revenue under rainfed agriculture, and that the cost instrument does not affect potential
revenue, respectively. Section 1.6.4 discusses potential violations of the weak separabil-
ity assumption. Section 1.6.5 discusses endogenous attrition, or that the instruments
may increase gross cultivated area.

1.6.1 Wn 6⇒ C1i

The outcome instrument Wn might affect costs of agriculture if farmers reoptimize in
response to increases in potential revenue under irrigation, and increase expenditures
on inputs conditional on irrigating. If this is the case, direct effects on potential revenue
driven by Wn may be the sum of increases in surplus and increases in costs; any such
increases in costs are an exclusion restriction violation. To test this, in Column 4 of
Table 1.4, I use household level data on agricultural input expenditures from NSS ’12 as
the outcome, and I compare instrumental variable estimates using the cost instrument
Zn and the outcome instrument Wn of the effect of irrigation Dn. Additionally, the cost
instrument Zn should have a direct effect on input expenditures related to pumping
groundwater, so I exclude these.35 This is a standard overidentification test: both Zn

and Wn should be valid instruments for the effect of irrigation on agricultural inputs
excluding direct expenditures on irrigation if farmers do not reoptimize. Row 5 shows
I fail to reject this overidentification test, and the estimate is a precise 0.

Alternatively, the outcome instrument may affect direct costs of irrigating through
falling water tables. The outcome instrument should cause increases in extraction of
groundwater, which would cause water tables to fall, which in turn will increase costs of
irrigation. I test for this in Table 1.9. In Columns 6 and 7 of the first subtable, I fail to
reject the null of no depletion caused by increases in irrigation caused by Wn. However,
the coefficients are not small: they suggest a fully irrigated district has water tables
that are 18m deeper than a district with no irrigation (1.2 standard deviations of depth
to water table across monitoring wells), and depletion is 2m/year faster. However,
this will not meaningfully bias my estimates: multiplying 18m by the 172 Rs/ha cost
increase caused by a 1m fall in water tables, this implies that costs increased by 3,110
Rs/ha, which is less than 10% of my estimates of the local average surplus effect.

35Specifically, I drop the categories ”Diesel”, ”Electricity”, and ”Irrigation”. While one might be
tempted to use these categories to construct a measure of agricultural profits, they crucially do not
include depreciation of irrigation infrastructure.
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1.6.2 Wn 6⇒ Y0i

The outcome instrument Wn might affect potential revenue under rainfed agriculture;
it is constructed using FAO GAEZ data on predicted relative yields under irrigated
agriculture. This is negatively correlated with predicted yields under rainfed agricul-
ture, as places with high returns to irrigation typically have low yields under rainfed
agriculture. I address this in two ways. First, I consider including more or less flexible
controls for FAO GAEZ potential rainfed crop yield. All primary specifications include
controls for state fixed effects interacted with potential rainfed crop yield, I compare
this baseline specification to specifications with alternative controls in Table 1.10. First,
Column 2 shows a specification with no controls. The estimated local average surplus
effect is biased downward, as relative potential irrigated yields are negatively correlated
with rainfed yields. Columns 3, 4, 5, and 6 include progressively more flexible controls,
with controls in my preferred specification (in Column 1) falling between Column 4
and Column 5. Estimates of the local average surplus effect range from 39,600 Rs/ha
to 56,900 Rs/ha, compared to 31,700 Rs/ha with unweighted instrumental variables,
although the precision begins to decrease as more controls are added.

Alternatively, the effect of the outcome instrument on rainfed yields is identified. Flexi-
ble models which allow for this in Ag ’07-’11 are underpowered, but the control function
approach I implement in NSS ’12 is sufficiently powered to test this under more para-
metric restrictions. I implement this overidentification test in Row 2 of Table 1.5; I fail
to reject the outcome instrument has no effect on rainfed yields, and the 0 is small and
precise. I assess the magnitude of bias from exclusion restriction violations in Table 1.4,
Column 3: the bias in instrumental variables from violations of the exclusion restriction
is estimated to be 4,600 Rs/ha, less than 10% of the control function estimate of the
local average surplus effect.

1.6.3 Zn 6⇒ (Y0i, Y1i)

The cost instrument Zn decreases costs of groundwater irrigation by enabling lower
cost tubewell irrigation. In India, prior to the Green Revolution, almost no agricultural
land was irrigated using tubewells, so the cost instrument should have no effect on
irrigation or agricultural revenue before the start of the Green Revolution. I estimate
a difference in difference specification in Table 1.11, comparing coefficients on the cost
instrument Zn, the outcome instrument Wn, and the rainfed yield control logRF yieldn,
along with their interactions with a post Green Revolution start dummy.36 To facilitate
comparison across years, I use log agricultural productivity instead of its level. The cost
instrument has no significant effects on irrigation or agricultural productivity before the
Green Revolution, when tubewells are not available as a technology. In contrast, the

36I follow Sekhri (2014) and define 1966 to be the start of the Green Revolution.
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outcome instrument increases revenue even before the Green Revolution, as other forms
of irrigation were already available as a technology. However, the outcome instrument
has limited effects on adoption of irrigation: increases in the returns to irrigation have
a small effect on adoption of irrigation when there is large variation in the costs of
irrigation, as was the case before the expansion of tubewell irrigation.

Alternatively, the cost instrument Zn might affect potential revenue directly if farmers
reoptimize in response to decreases in costs of irrigation, and increase expenditures
on inputs conditional on irrigating. To some extent, Column 4 of Table 1.4 should
alleviate those concerns, as effects of the cost instrument on input expenditures are
small. However, I explicitly excluded any expenditures specific to irrigation, as the
cost instrument should have direct negative effects on these. Additionally, that the
magnitudes of the LATE estimates in Columns 1 and 2 of Table 1.3 are reasonable
should alleviate concerns of large bias, but given the limited precision with which they
are estimated, this is also insufficient. To construct a test for reoptimization, I argue
that if falling costs of irrigation cause farmers to reoptimize, we should see shifting of
crop choice under irrigation towards water intensive crops; this appears as a violation
of monotonicity, where the instrument decreases area irrigated under crops with low
water intensity. I test for this in Table 1.12. Because I test for effects on every crop in
the data, I adjust inference for multiple hypothesis testing; after this adjustment, no
monotonicity violations are detected. Decreases in costs of irrigation cause shifts away
from rainfed rice, maize, and wheat, and into irrigated rice.

1.6.4 Weak separability

In general, monotonicity with multiple instruments is a much stronger assumption than
monotonicity with a single instrument. This is equally true here: through the lens of
the model, it requires farmers can only differ in their responsiveness to the instruments
through Vγi. This is violated if some farmers’ surplus under irrigation is relatively more
responsive to the cost instrument. I consider likely violations of this in this section.

The clearest violation of monotonicity is the presence of surface water. Farmers with
access to surface water will not have their costs of irrigation respond to the cost in-
strument, since they will irrigate using surface water even if their costs of pumping
groundwater fall. However, these farmers will still respond to the outcome instrument,
since their revenue under irrigation will still shift up. Let Surfacei be a dummy for ac-
cess to surface water. To see how this violates monotonicity, one can write this modified

33



model as

Y1i(w) = VγiγW (w) + V1i

C1i(z) = (1− Surfacei)VγiγZ(z) + VCi

Y0i = V0i

I take two approaches to handling this. First, I drop states where more than one third
of irrigation is surface water, and present results in Column 2 of Table 1.13. States with
large shares of surface water may bias up estimation of a local average surplus effect, if
the outcome instrument increases revenues in those states but does not affect adoption
of irrigation. The estimated local average surplus effect restricted to states with low
shares of surface water is in fact slightly larger, suggesting such bias is not large in this
context.

Second, I take a more model driven approach. I make the additional assumption that
Surfacei ⊥ (Wi, Zi, V1i, VCi, V0i, Vγi)|Xi, or that access to surface water for irrigation is
exogenous conditional on the controls Xi. Additionally, I assume that everyone with
access to surface water irrigates. This latter assumption I test: I show in Columns 1
and 2 of Table 1.9 that the outcome instrument (in the first subtable) and the cost in-
strument (in the second subtable) cause significant increases in groundwater irrigation,
but not surface water irrigation. Under these assumptions, all results on estimation
still hold, but when conducting counterfactuals using the local average surplus effect
that affect only groundwater, it must be scaled down by the share of groundwater in
irrigation. When I applied the local average surplus effect to estimation of the welfare
losses from falling water tables in Section 1.5.4, the estimate of the effect of falling water
tables on groundwater irrigation I use was from communities without access to surface
water irrigation. On the other hand, when I use the local average surplus effect to re-
cover an estimate of the elasticity of irrigation to the price of electricity, I must account
for having estimated the local average surplus effect nationally, where the groundwater
share of irrigation is 0.66.

1.6.5 Attrition

An addition concern is attrition: when costs of irrigation fall, some farmers will shift
from rainfed agriculture to irrigated agriculture, but land that was fallow will also
become irrigated, and farmers may begin to multiple crop. This constitutes endogenous
selection into the sample. To account for this, I allow land to shift from either rainfed
agriculture or fallow into irrigated agriculture in response to the instruments. Instead
of looking at the share of agricultural land that is irrigated, I look at the share of
district land that is irrigated. However, I do not observe the reservation rent on fallow
land, or the gross revenue under rainfed agriculture that land would need to yield in
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order to be cultivated. However, an extended model implies that selection out of fallow
should be the same in response to the outcome instrument and the cost instrument,
so I test robustness of the results to imputation of a range of reservation rents; I use
both 0 Rs/ha and 20,000 Rs/ha (just under the average revenue per hectare on rainfed
plots in NSS ’12). The results of this exercise are in Columns 3 and 4 of Table 1.13.
The estimated local average surplus effect is smaller, but not significantly different, and
does not depend on the choice of reservation rent.

1.7 Optimal policy

In Section 1.5.4, I calculated the lost surplus per hectare from a one meter decline in the
water table. I now apply this estimate to optimal policy for groundwater subsidies. As
discussed in Section 1.2.1, irrigation is implicitly subsidized in India through subsidies
for electricity for pumping groundwater. Although there is not volumetric electricity
pricing, pump capacity fees implicitly price electricity at an average of one third of
marginal cost (Fishman et al., 2016; Badiani & Jessoe, 2017). Following Allcott et al.
(2014), I consider a policy maker maximizing social surplus in choosing how to set
pump capacity fees. Despite deadweight loss, subsidies may be optimal because the
policy maker has a preference for redistribution, and is willing to spend λ > 1 Rs to
transfer 1 Rs to farmers, a stated motive behind electricity subsidies (Dubash, 2007).37

However, the impacts of marginal pumping induced by the subsidy on depth to water
table of other farmers are not internalized by farmers increasing their pumping. This
negative externality, and the deadweight loss from the subsidies, must be traded off by
the social planner against the value of the subsidies as a transfer.

In Section 1.7.1, I model the planner’s problem, and in Section 1.7.2, I discuss calibra-
tion of key parameters, including the marginal surplus effect. In Section 1.7.3, I use
the model to calculate the gains from decentralizing the setting of pump capacity fees
in Rajasthan. Rajasthan is in northwestern India, where I estimated the lost surplus
from declining water tables in Section 1.5.4, and relative to other states in the region
has greater heterogeneity of aquifer characteristics, and therefore in the magnitude of
the negative externality. I quantify potential gains from reducing relative subsidies in
districts with large negative pumping externalities.

37Whether the policy maker is justified in acting as if λ > 1 is a question beyond the scope of this
paper, but for electricity subsidies λ > 1 may be efficient if other transfers to farmers create greater
deadweight loss (Hendren, 2014) or have high leakage (Niehaus & Sukhtankar, 2013).
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1.7.1 Planner’s problem

I model groundwater irrigation closely following Shah et al. (1995). In period t, farm-
ers have access to an available stock of groundwater, St, from which they can pump
groundwater for irrigation. If farmer i irrigates (Dit = 1), they receive revenue Y1i(ait)
and incur costs C1i(ait;St), where ait is quantity of water farmer i would extract to
maximize surplus conditional on irrigating in period t. If farmer i does not irrigate,
they receive revenue Y0i. Costs C1i(ait;St) include fixed costs ki(St), linear electricity
costs mi(St)ptait, where pt is the price per kWh in period t, and other linear variable
costs ci(St)ait. Farmers are atomistic, in that farmers do not internalize any impact
their extraction ait has on the available stock of groundwater St. Farmers maximize
surplus πi by solving

πi =

∫ T

0

e−rt max
ait,Dit

DitY1i(ait)−Dit ((ci(St) +mi(St)pt)ait + ki(St))︸ ︷︷ ︸
C1i(ait;St)

+(1−Dit)Y0i

 dt (1.28)

I make a few additional realistic assumptions on electricity use and groundwater extrac-
tion. I model the evolution of the stock of groundwater simply; it falls by one unit per
unit of extraction, so Ṡt = At ≡

∫
Ditaitdi. To extract a unit of water, the electricity

required mi(St) = (hi+b(St))m, where hi+b(St) is the depth to groundwater for farmer
i. The electricity requirement per unit of water per meter of depth to groundwater,
m, is simply the energy required to lift one unit of water by one meter divided by the
pump efficiency. The global component of depth to groundwater, b(St) = St/αL, where
α is the specific yield of the aquifer (the fall in the water table per unit of ground-
water extracted), and L is the area of the aquifer in hectares; as a result, when one
meter hectare of groundwater is extracted, farmers experience an increase in depth to
groundwater of 1/αL meters.

The social planner chooses pt, the price of electricity charged to farmers, to maximize
social surplus. Social surplus is total farmer surplus times λ plus profits from the
electricity sector. Total agricultural electricity use in period t is Mt ≡

∫
Ditmi(St)aitdi,

and the cost of producing a unit of electricity is ct. The social planner solves

max
p

V (p) ≡ λ

∫
πidi+

∫
e−rt(pt − ct)Mtdt (1.29)

I make three additional simplifications. First, I ignore rebound effects, where increases
in the price of electricity today, by reducing extraction of groundwater, increase the
available stock of groundwater, which reduces future costs of extraction and in turn
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increases future extraction. I further assume that current extraction is a good approx-
imation of future extraction. In fact, extraction is growing (Rodell et al., 2018). These
two simplifications have offsetting effects: rebound implies externalities are smaller than
I estimate, while growing extraction implies externalities are larger than I estimate. I
anticipate that these biases are small, as my calibrated elasticity is low (which reduces
the bias from ignoring rebound) and my calibrated discount rate is high (which reduces
the bias from ignoring rebound and growth in extraction). Third, I assume that cur-
rent costs of electricity generation and electricity subsidies are a good approximation of
future costs and subsidies. This is difficult to know, but I consider it a natural starting
point for analysis.

I consider the social planner’s first order condition for social surplus maximization with
respect to the period 0 price of electricity. When writing the social planner’s first order
condition, I normalize by total electricity use M0, and multiply by -1; this normalized
first order condition can be interpreted as changes in social welfare per rupee of surplus
transferred to farmers. I follow the public economics literature and express this first
order condition in terms of reduced form sufficient statistics (Chetty, 2009). I define
εM,p to be the elasticity of electricity use to the price of electricity, and εA,p to be the
elasticity of groundwater extraction to the price of electricity.

− 1

M0

dV (p)

dp0
= λ− 1︸ ︷︷ ︸

Transfer value

− εM,p
p0 − c0

p0︸ ︷︷ ︸
DWL

− λ

r
εA,p

(L/αL)

Farmer cost of 1m fall in water table/ha︷ ︸︸ ︷
(∂E[Di0]/∂b0)MSE(E[Di0])

p0M0/A0︸ ︷︷ ︸
Pumping externality (farmer)

− 1

r
εA,p

(L/αL)

Utility cost of 1m fall in water table/ha︷ ︸︸ ︷
(p0 − c0)(mA0/L)

p0M0/A0︸ ︷︷ ︸
Pumping externality (utility)

(1.30)

I consider each term in Equation 1.30. The first term, λ − 1, is the value the social
planner places on shifting one rupee from public funds to farmers. The second term,
−εM,p

p0−c0
p0

, is the standard deadweight loss term. It is the elasticity of electricity use
to the price of electricity times a term that captures the distortion from subsidies.

The third term, λ
r
εA,p

(L/αL)(∂E[Di0]/∂b0)MSE(E[Di0])
p0M0/A0

, is the pumping externality experienced
by farmers per Rs of transfer. It is scaled by λ, because changes in farmer surplus,
whether from transfers or increased pumping costs from externalities, are valued the
same by the social planner. It is scaled by 1

r
, because while transfers are experienced

immediately, and deadweight loss is based on the farmer’s static optimization, the
externality from a unit fall in the water table is experienced indefinitely by all farmers.
It is scaled by εA,p because the externality caused per rupee of transfer is proportional
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to the extraction caused per rupee of transfer. The remainder
(L/αL)

∂E[Di0]

∂b0
MSE(E[Di0])

p0M0/A0

captures the distortion. The numerator is the externality per unit of water extracted,
and equals the fall in water table experienced by farmers per unit of water extracted
L/αL times the lost farmer surplus per unit fall in the water table ∂E[Di0]

∂b0
MSE(E[Di0]).

The denominator is the electricity cost per unit of water extracted, p0M0/A0. The full

term 1
r
εA,p

(L/αL)
∂E[Di0]

∂b0
MSE(E[Di0])

p0M0/A0
, is the externality ratio, or the Rs of externality created

per Rs of surplus transferred to farmers.

The fourth term, 1
r
εA,p

(L/αL)(p0−c0)(mA0/L)
p0M0/A0

, is the pumping externality experienced by the
utility per Rs of transfer. The utility experiences the externality because of the wedge
between the price farmers pay for electricity and the marginal cost of generation. It is
scaled by 1

r
, εA,p, and inversely proportional to p0M0/A0 for the same reasons the pump-

ing externality experienced by farmers is. The numerator, (L/αL)(p0 − c0)(mA0/L), is
lost profits experienced by the utility per unit of water extracted caused by the increase
in electricity required to pump groundwater caused by falls in the water table. The
wedge p0 − c0 is the future difference between the price of electricity and the marginal
cost of generation, as the increased electricity use caused by the externality occurs
indefinitely.

1.7.2 Calibration

I discuss a few key aspects of the calibration. Note that all parameters used in the
calibration are in Table 1.7.

First, I take two approaches to calibrating εA,p and εM,p. In both cases, I assume
electricity use for extracting groundwater is a constant proportion of extraction, so
εA,p = εM,p. This need not hold in the model above, in the presence of heterogeneity in
responsiveness to the price of electricity that is correlated with idiosyncratic depth to
groundwater hi. For the first approach, I use an estimate from Badiani & Jessoe (2017),
εA,p = −0.18. For the second approach, I use my preferred estimate of a local average
surplus effect to calculate this elasticity; the inverse of a local average surplus effect
is a semielasticity of irrigation to its gross returns. I calculate εA,p = −0.045.38 This
estimate is likely to be biased downwards, since it ignores intensive margin responses
of extraction to changes in the subsidy. I therefore interpret it as a lower bound, and I
show estimates using both εA,p = −0.18 and εA,p = −0.045.

Second, the numerator of the externality ratio, (L/αL)(∂E[Di0]/∂b0)MSE(E[Di0]) can
38Specifically, I approximate εA,p ≈ p0M0/E[Di0]L

0.66LASE , where 0.66 is the groundwater share of irrigated
land. I use LASE = 49,800 Rs/ha, and electricity expenditures per irrigated hectare by farmers of
p0M0/E[Di0]L = 1,470 Rs/ha.
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be decomposed into the product of three terms. The first, 1/α, is the inverse specific
yield of the aquifer, or the total fall in the water table per unit of water extracted.
The second, LE[Di0]/L is the share of the aquifer that is irrigated; this captures the
fraction of a fall in the water table experienced by farmers. These first two terms
will vary across aquifers, which may fall within district or cross district boundaries.
For this exercise I assume each district is a single, contiguous aquifer; however, with
more granular data, this exercise is straightforward at the aquifer level. The third,
(∂E[Di0]/∂b0)(MSE(E[Di0])/E[Di0]), is the lost surplus per irrigated hectare per unit
fall in the depth to groundwater. My preferred estimate of this is 172 Rs/ha/m in Table
??, which I use for this exercise.

Third, calculating m, the electricity needed to pump one unit of groundwater one
meter, is a simple physics problem which depends only on the depth to water table and
the efficiency of extraction. Shah (2009) suggests 40% is a reasonable efficiency in the
Indian context. Further, I assume thatM0 = A0b0m, or that electricity use for irrigation
is groundwater extraction times depth to groundwater times the electricity needed to
pump one unit of groundwater one meter.39 This calculation yields total agricultural
electricity use that is 36% of reported electricity use. I assume this difference is driven
by depth to water table in farmers’ wells being significantly deeper than the depths to
water table in India’s monitoring wells. I scale up my estimates of electricity use M0

by a constant proportion across districts to match this total.

Fourth, a key decision is which parameters I allow to vary across districts. In this
exercise, I focus on heterogeneity in optimal subsidies that stems from variation in
the magnitude of the pumping externality. I therefore allow the key parameters which
determine the pumping externality to vary: the average specific yield, the depth to water
table, and the irrigated share of land. The externality ratio is inversely proportional,
inversely proportional, and proportional to each of these parameters, respectively. I
do a variance decomposition of the log externality ratio across districts: 11% of the
variation is attributed to specific yield, 52% is attributed to irrigated share of land, and
37% is attributed to depth to water table.40

Fifth, for counterfactuals, a necessary decision is to determine which parameters are
permitted to respond endogenously to changes in the policy, and which are not. The
only parameters I allow to vary in response to changes in p are A0, the total extraction
of groundwater in the current period, and E[Di], the irrigated share of the aquifer. For
both, I use εA,p as the relevant elasticity. As mentioned previously, I ignore rebound;
equivalently stated, I do not allow farmers to respond to changes in depth to water

39Depth to groundwater is measured using the median depth to groundwater by district across
monitoring tubewells in Well ’95-’17

40The externality experienced by the utility varies with the extraction of groundwater per irrigated
hectare by district, which I also allow to vary. Setting this to the average extraction across districts
does not meaningfully change any results, so I do not emphasize it.
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table bt, but I do calculate the changes in rates of depletion implied by the changes
in A0. Additionally, I undertake the analysis as if the policy change were permanent;
future decreases in E[Di] caused by increases in electricity prices reduce negative exter-
nalities, and future increases in pt − ct caused by increases in electricity prices reduce
the negative externality on the utility. Both of these effects reduce the magnitude of
optimal variation in subsidies relative to ignoring these responses. In sum, this rep-
resents a compromise between a full numerical simulation of the model, as would be
standard in the optimal control literature, and the simpler sufficient statistics approach
I undertake, and I leave I comparison of my approach to a full numerical simulation to
future work.

Sixth, for aggregating across districts, it is necessary to know district specific levels of
extraction A0 at baseline subsidy levels; I collect this data from district groundwater
brochures from the Central Ground Water Board, which estimate groundwater with-
drawals in each district in an idiosyncratic year ranging from 2004 to 2011, with a
modal year of 2008.

Seventh, I make two sample restrictions for districts for the counterfactual exercise.
First, I only use districts for which depth to water table, district irrigated land share,
and average aquifer specific yield are available; this brings me from 24 districts in
the main analysis to 22. Second, I drop districts where more than 7% of irrigation
uses surface water. In districts with high levels of surface water irrigation, optimal
policy requires a different set of considerations: surface water irrigation has positive
externalities, as it causes recharge of groundwater, and surface water and groundwater
irrigation may be substitutes. This reduces the set of districts from 22 to 14.

1.7.3 Results

Figure 1.4 presents the optimal district specific electricity taxes in Rajasthan. To
calculate optimal taxes, I first calibrate the social planners willingness to pay to increase
farmer surplus by 1 unit, λ, under the assumption current policy is optimal subject to
the constraint that there is a single subsidy at the state level, which yields λ = 1.56.
Note that this λ is just the inverse marginal value of public funds; as a reference, this
is similar to the inverse marginal value of public funds for SNAP, a public assistance
program in the United States, as calculated in Hendren (2016).

Panel (a) presents the optimal tax by district. The optimal tax is relatively low in
districts in northwestern Rajasthan, which tend to have lower land shares of irrigation,
cultivating bajra instead of more water intensive wheat and maize, lower depths to water
table, and higher specific yields, and therefore relatively small pumping externalities.
Panel (b) presents the externality ratio and deadweight loss in each district as a function
of the electricity tax. First, note that negative externalities are almost triple deadweight

40



loss in the highest externality district, but close to 0 in other districts. Second, current
subsidy levels reduce farmer surplus on the margin in the district with the largest
pumping externalities, as the marginal pumping induced by current levels of subsidies
in that district reduces farmer surplus by more than their value as a transfer.

Table 1.14 presents results for total subsidies, deadweight loss, farmer surplus, and
groundwater depletion, all relative to a no subsidy policy, under three scenarios. Col-
umn 1 presents the status quo. Total subsidies equal 6.6% of agricultural production,
but deadweight loss from the subsidies is 0.65% of agricultural production, despite the
high subsidy level. This follows from the low estimate of the price elasticity of electricity
demand in agriculture I use from Badiani & Jessoe (2017). Externalities experienced
by the utility are small relative to externalities experienced by farmers, as despite the
high subsidies, electricity for pumping groundwater is a low share of costs of falling
water tables. Negative pumping externalities induced by subsidies are meaningful, at
0.45% of agricultural production, but smaller than deadweight loss; however, this masks
substantial heterogeneity. Additionally, subsidies were responsible for declines in water
tables of 1.51m from 2000-2010, 46% of the observed decline in northwestern India.

Column 2 of Table 1.14 presents a scenario where the social planner chooses district
specific subsidies to maximize social welfare under the same λ that implies the policy
in Column 1 is the optimal state level policy, while holding total subsidies fixed. This
policy involves increasing subsidies in districts with small pumping externalities, while
decreasing subsidies in districts with large pumping externalities. First, note that this
policy increases deadweight loss: this follows from the constant elasticity assumption,
which implies a constant subsidy across locations minimizes deadweight loss holding
fixed total subsidy payments. However, the increased deadweight loss is smaller than
the decrease in negative pumping externalities. Negative externalities relative to the
no subsidy policy fall by 25%, the total distortion relative to no subsidy falls by 7%,
and the effect of subsidies on depth to groundwater decreases by 16%. However, total
farmer surplus increases by only 0.07% of agricultural production.

Columns 4 and 6 present equivalent exercises, but using a lower calibrated elasticity
(0.045) and a lower calibrated discount rate (0.08), respectively. Focusing on Column 4,
the lower elasticity implies the inefficiency from subsidies is small: the λ which implies
current policy is the optimal state level policy is 1.12. As a result, potential gains
from spatially explicit policy are small. This highlights the importance of having a
more precise estimate of this elasticity. Focusing on Column 6, the lower discount rate
magnifies externalities, which in turn increases the potential gains from spatially explicit
policy from 0.07% of agricultural production to 0.29% of agricultural production. It also
implies that subsidies are very inefficient as transfers due to large negative externalities.

In this exercise, although “optimal” district specific subsidies increase total surplus, for
high calibrations of the discount rate they do reduce farmer surplus in high externality
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districts, as relatively inefficient subsidies are reduced in those districts. As a result,
this “optimal” policy may not be politically feasible. However, alternative more feasible
policies can replicate the proposed optimal electricity tariff, while generating potentially
larger gains. First, Badiani & Jessoe (2017) and Fishman et al. (2017) find that re-
sponses to changes in the cost of groundwater extraction tend to be on the extensive
margin (in reduced area under irrigation) and not intensive margin (through reduced
pumping). As a result, impacts of changing electricity tariffs can be replicated through
other policies that change incentives to irrigate.41 Additionally, Chatterjee et al. (2017)
document that output subsidies for water intensive crops create incentives to increase
groundwater extraction. Therefore, policies which reduce input subsidies complemen-
tary to irrigation or output subsidies for water intensive crops while increasing subsidies
for inputs complementary to rainfed agriculture could increase the efficiency of farmer
subsidies, especially in districts with large pumping externalities.

1.8 Conclusion

This analysis suggests that groundwater depletion in India from 2000-2010 permanently
reduced economic surplus by 1.2% of gross agricultural revenue. This is similar to an-
ticipated losses in India due to climate change of 1.8%/decade under the 4◦C warming
scenario (Government of India (2018)), and is especially concerning given accelerating
rates of depletion (Jacoby (2017)). Policy solutions without economic tradeoffs may
not be easy to come by: without reducing total electricity subsidies, the spatially ex-
plicit subsides I study can only increase surplus by a magnitude equal to losses from
less than 1 year of groundwater depletion. Moreover, this policy reduces farmer surplus
in districts with large externalities, and therefore may be politically infeasible. How-
ever, understanding the magnitudes of these externalities and the losses from depletion
enables quantifying the potential efficiency gains from investments in surface water
irrigation, or subsidies for inputs complementary to rainfed agriculture.

To undertake this analysis, I have expanded on tools from the program evaluation liter-
ature and microeconomic theory to define the marginal surplus effect. While marginal
treatment effects capture the impact of policies or shocks which increase adoption of
some treatment (such as college attendance) on observable outcomes, marginal surplus
effects capture the direct impact of these policies or shocks on the economic surplus
of inframarginal adopters. This is an important metric for policy across a range of
contexts, such as health and safety regulations for workers, environmental regulations
for firms, or, in this study, groundwater depletion in agriculture.

41Note that implementation of volumetric pricing could have a very different set of impacts on elec-
tricity use, especially with respect to efficiency, than the changes to electricity pricing as implemented
through pump capacity fees that I consider.
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Figure 1.1: Cost and benefit shifters

(a) Potential aquifer yield Zn (b) log rel. potential irrigated crop yield Wn

Notes: Variation in the cost instrument Zn (potential aquifer yield, Panel (a)) and the outcome instru-
ment Wn (log relative potential irrigated crop yield, Panel (b)) across districts in India is presented
here. Colors correspond to quintiles of their respective distributions. District boundaries are in black,
and state boundaries are in white.
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Figure 1.2: Model comparative statics
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(a) Increased outcome under treatment
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(b) Decreased costs of treatment

Notes: Panel (a) shows the effects of shifting w, the instrument for potential outcome under treatment
(which shifts potential outcome under treatment Y1i to Y ∗

1i), while Panel (b) shows the effects of shifting
z, the instrument for costs of adopting treatment (which shifts costs C1i to C∗

1i). Changes in the share
of agents adopting treatment, from E[Di] to E[D∗

i ], are displayed. Changes in average surplus E[πi]
or changes in average outcomes E[Yi] are shaded. Marginal treatment effects are in purple, and are
equal to the change in average outcomes per unit change in adoption of treatment caused by shifts to
z. Marginal surplus effects are in pink, and are equal to the change in average surplus per unit change
in adoption of treatment caused by shifts to either z or w. The change in average surplus caused by
both z and w is proportional to the marginal surplus effect. However, the change in average outcomes
caused by z is proportional to the marginal treatment effect, while the change in average outcomes
caused by w is proportional to the marginal surplus effect plus the marginal treatment effect.
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Figure 1.3: Marginal surplus effect estimates

Notes: Solid lines present estimates of marginal surplus effects (the change in average surplus per
unit change in adoption caused by shifts to either costs or outcomes under treatment), while dashed
lines present estimates of local average surplus effects (a weighted average of marginal surplus effects).
Dashed lines for IV and Weighted IV estimators are the estimates of local average surplus effects used
to construct marginal surplus effects, following Section 1.3.5. The control function estimate of the local
average surplus effect is constructed by replacing outcomes and treatment in the IV regression using
w with control function estimates of predicted changes in surplus and changes in propensity scores.
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Figure 1.4: Optimal electricity taxes in Rajasthan

(a) Optimal tax, by district (b) Externality ratios and DWL, by district

Notes: This figure presents the results of the optimal policy exercise. In Panel (a), I plot the optimal
electricity tax by district in Rajasthan, dropping districts with missing data or high levels of surface
water irrigation. In Panel (b) I plot farmer externality ratios (the negative externality on farmers
created by induced marginal groundwater extraction per unit of transfer to farmers, which varies across
districts) and deadweight loss (DWL) as a function of the electricity tax. The optimal electricity tax
solves

λ− 1 = (DWL) + λ(Farmer externality ratio) + (Utility externality ratio)

λ is the willingness to pay of the social planner to increase farmer surplus by 1 unit. I use λ = 1.56 for
values reported in this figure, which implies current subsidies are optimal if the planner is constrained
to a single state level subsidy. I assume a constant elasticity of demand for electricity and water to the
price of electricity. Both deadweight loss and externality ratios vary with the tax as electricity use and
groundwater extraction respond. Farmer externality ratios by district are plotted in Panel (b). These
externality ratios drive variation across districts in the optimal tax, and are the product of the inverse
specific yield, inverse depth to water table, and the share of aquifer irrigated. The vertical dotted
line in Panel (b) is the observed tax in Rajasthan (Fishman et al., 2016), while the horizontal dotted
line is at 1: as discussed in Section 1.7.1, when the farmer externality ratio is above 1, any subsidy
decreases farmer surplus, while when the farmer externality ratio is below 1, any subsidy increases
farmer surplus (although subsidies are still costly to the social planner, due to increased net fiscal
outlays, deadweight loss, and negative externalities on utilities). A tick is added to the bottom of the
graph for the optimal tax in each district.
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Table 1.1: Descriptive statistics

Mean SD Min Max # of obs. # of clu.
Ag ’07-’11
Yn Agricultural productivity (’000 Rs/ha) 24.9 15.1 1.3 125.0 884 222
Dn Share irrigated 0.550 0.273 0.017 1.000 884 222
Zn Potential aquifer yield (40 L/s) 0.336 0.349 0.025 1.000 884 222
Wn log relative potential irrigated crop yield 0.533 0.254 0.098 2.050 884 222
Xn log potential rainfed crop yield (log t/ha) 0.690 0.503 -2.234 1.285 884 222
Share rice 0.268 0.265 0.000 0.977 884 222
Share wheat 0.211 0.190 0.000 0.631 884 222

NSS ’12
Yi Agricultural productivity (’000 Rs/ha) 36.6 26.1 0.0 100.0 33,778 222
Yi|Di = 1 Irrigated plots 44.9 26.3 0.0 100.0 23,957 220
Yi|Di = 0 Rainfed plots 22.0 18.3 0.0 100.0 9,821 189

Area (ha) 1.778 2.540 0.001 40.823 33,778 222
Di Irrigated 0.637 0.000 1.000 33,778 222
Agricultural inputs net irrigation (’000 Rs/ha) 15.4 15.5 0.0 100.0 26,280 222
Any bank loan 0.310 0.000 1.000 26,280 222

Irr ’07
Infrastructure costs/irrigated ha (’000 Rs/ha) 26.6 14.5 3.4 85.1 222 222
Groundwater share of irrigation 0.658 0.257 0.022 1.000 222 222
Deep tubewells/irrigated ha 0.025 0.057 0.000 0.616 222 222
Shallow tubewells/irrigated ha 0.130 0.213 0.000 1.821 222 222
Dugwells/irrigated ha 0.251 0.401 0.000 2.961 222 222

Well ’95-’17
Depth to water table (mbgl) 14.3 15.4 -1.1 534.0 123,199 203

Notes: Descriptive statistics on the primary datasets are presented here. Units are in parentheses,
and standard deviations are omitted for binary variables. Observations in Ag ’07-’11 are district-
year, observations in NSS ’12 are household-plot (for agricultural productivity, area, and irrigated)
or household (for agricultural inputs and any bank loan), observations in Irr ’07 are district, and
observations in Well ’95-’17 are well-season. Clusters are districts. To maintain comparability to Ag
’07-’11 and Irr ’07, statistics for the NSS ’12 are calculated weighting using sampling weights times
plot area, with weights scaled so each district receives identical weight. Similarly, statistics for Well
’95-’17 are weighted so each district-year receives identical weight. All subsequent analysis maintains
these weights.

47



Table 1.2: Instrumental variables estimates

Share irrigated Agricultural productivity (’000 Rs/ha)

First stage
(
βFS
(·)

)
Reduced form

(
βRF
(·)

)
OLS IV

(
βIV
(·) =

βRF
(·)

βFS
(·)

)
(1) (2) (3) (4) (5) (6) (7)

Zn (cost instrument) 0.278*** 6.3
(0.056) (4.1)

Wn (outcome instrument) 0.791*** 42.9***
(0.188) (10.2)

Dn (share irrigated) 23.9*** 22.6* 54.3***
(2.8) (13.1) (14.5)

Instrument (IV only) - - - - - Zn Wn

State FE X X X X X X X
State FE × Xn X X X X X X X
State FE × Zn - X - X - - X
State FE × Wn X - X - - X -
# of observations 884 884 884 884 884 884 884
# of clusters 222 222 222 222 222 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level are in
parentheses. Regression table contains instrumental variable estimates from Ag ’07-’11 using potential
aquifer flow Zn and log relative potential irrigated crop yield Wn as instruments. In each case, the
effect of share irrigated on agricultural productivity per hectare is instrumented for. Controls in all
specifications include state fixed effects and state fixed effects interacted with log potential rainfed crop
yield Xn. The estimated local average surplus effect is the coefficient on share irrigated in Column
7 minus the coefficient on share irrigated in Column 6; estimates of local average surplus effects and
pseudo treatment effect elasticities of demand are presented in Table 1.3.
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Table 1.3: Local average surplus effect estimates

Agricultural productivity (−) Infrastructure costs
Ag ’07-’11 Irr ’07

IV WIV IV WIV
(1) (2) (3) (4)

Zn

βFS
Z (first stage) 0.278*** 0.245*** 0.574*** 0.575***

(0.056) (0.073) (0.217) (0.221)
βIV
Z =

βRF
Z

βFS
Z

= LATEZ 22.6* 32.9** -59.1** -86.9*
(13.1) (15.7) (25.5) (47.4)

State FE × Wn X X X X
Wn

βFS
W (first stage) 0.791*** 0.654*** 0.275*** 0.258***

(0.188) (0.216) (0.068) (0.095)
βIV
W =

βRF
W

βFS
W

= LASEW + LATEW 54.3*** 82.7*** 28.3 32.6
(14.5) (28.5) (18.2) (24.3)

State FE × Zn X X X X
Surplus effects

βIV
W − βIV

Z ≈ LASEW 31.7* 49.8 87.4*** 119.6**
(17.9) (30.8) (33.7) (55.9)

βIV
Z

βIV
W −βIV

Z
≈ Treatment effect

elasticity of demand 0.715 0.660 -0.676*** -0.727***
(0.733) (0.607) (0.156) (0.172)

State FE X X X X
State FE × Xn X X X X
LASE: p-value [pairs bootstrap-c p-value] 0.077 [0.136] 0.106 [0.144] 0.010 [0.052] 0.033 [0.072]
(Zn,Wn) = (Aquifer yieldn, Irr. crop yieldn) X X - -
(Zn,Wn) = (Irr. crop yieldn,Aquifer yieldn) - - X X
# of observations 884 884 222 222
# of clusters 222 222 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level are
in parentheses, and each cell reports a coefficient from a separate regression. Estimates from Columns
1 and 2 are directly comparable, while the relative interpretation of estimates from Columns 3 and
4 is discussed in Section 1.4.2 and 1.5.1. Rows 1 and 3 report first stage coefficients with irrigated
share of agricultural land Dn as the dependent variable. Rows 2 and 4 report instrumental variable
estimates with gross revenue (for Columns 1 and 2) or negative fixed costs of irrigation infrastructure
(for Columns 3 and 4) as the dependent variable (’000 Rs/ha). Row 5 reports estimates of the local
average surplus effect, and Row 6 reports estimates of a pseudo treatment effect elasticity of demand.
Estimators in Columns 2 and 4 are weighted to balance the share of compliers in each state across βIV

Z

and βIV
W as discussed in Section 1.3.5. All specifications include as controls state fixed effects and state

fixed effects interacted with log potential rainfed crop yield Xn. The instrument Zn is potential aquifer
yield in Columns 1 and 2 and log relative potential irrigated crop yield in Columns 3 and 4, and the
instrument Wn is log relative potential irrigated crop yield in Columns 1 and 2 and potential aquifer
yield in Column 3 and 4. Pairs bootstrap-c p-values for estimates of local average surplus effects are
calculated following Young (2018).
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Table 1.4: LASE robustness, NSS

Agricultural productivity Agricultural inputs
Ag ’07-’11 NSS ’12

IV IV IV (CF predictions) IV
(1) (2) (3) (4)

Zn

βFS
Z 0.278*** 0.289*** 0.257 0.375***

(0.056) (0.073) (0.056) (0.078)
βIV
Z 22.6* 37.5*** 13.4 12.0*

(13.1) (13.9) (13.5) ( 6.6)
State FE × Wn X X X X

Wn

βFS
W 0.791*** 0.834*** 0.881 0.852***

(0.188) (0.226) (0.218) (0.214)
βIV
W 54.3*** 67.9*** 10.1 + 54.3 + 4.6 8.6

(14.5) (23.9) (10.7)︸ ︷︷ ︸
LATEW

+ (20.0)︸ ︷︷ ︸
LASEW

+(19.3)︸ ︷︷ ︸
biasW

( 7.3)

State FE × Zn X X X X
Surplus effects

βIV
W − βIV

Z 31.7* 30.4 55.5 -3.3
(17.9) (26.3) (19.7) ( 9.7)

State FE X X X X
State FE × Xn X X X X
# of observations 884 33,778 33,778 26,280
# of clusters 222 222 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level are
in parentheses, and each cell reports a coefficient from a separate regression. Rows 1 and 3 report first
stage coefficients with irrigated share of agricultural land Dn as the dependent variable. Rows 2 and
4 report instrumental variable estimates with gross revenue (for columns 1, 2, and 3) or expenditures
on agricultural inputs net of irrigation (for column 4) as the dependent variable (’000 Rs/ha). Row 5
reports estimates of the local average surplus effect. Estimators in Columns 2, 3, and 4 are weighted
using sample weights times plot area, with weights scaled so each district receives identical weight.
Column 3 uses control function predicted outcomes and propensity scores as outcomes in the reduced
form and first stage, respectively. This allows decomposition of βIV

W into a LATE, a LASE, and bias
from violations of the exclusion restriction Wn 6⇒ Y0i, which is identified using the control function
approach. All specifications include as controls state fixed effects and state fixed effects interacted with
log potential rainfed crop yield Xn. The instrument Zn is potential aquifer yield, and the instrument
Wn is log relative potential irrigated crop yield.
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Table 1.5: Control function estimates

gC -34.1 (13.6)**
c0 4.0 (17.0)
gY 78.6 (27.5)***
σV 25.8 ( 9.5)***

Cov(−V1i,Vi−E[Vi|Xi])

σ2
V

0.21 (0.44)
Cov(V0i,Vi−E[Vi|Xi])

σ2
V

0.11 (0.24)
Cov(VCi,Vi−E[Vi|Xi])

σ2
V

0.68 (0.46)
# of observations 33778

# of clusters 222

Notes: Robust standard errors clustered at the district level are used to construct 95% confidence
intervals in square brackets. Parameters are estimated by a two step control function approach as
detailed in Section 1.3.5 and A.2.3, and standard errors are adjusted for the two step procedure. gC is
the effect of the cost instrument ZCn (potential aquifer yield) on cost per hectare of irrigation, gY and
c0 are the effects of the outcome instrument ZY n (log relative potential irrigated crop yield) on relative
revenue per hectare from irrigation and revenue per hectare from rainfed agriculture, respectively. σV

is the standard deviation of idiosyncratic relative profitability of irrigated agriculture. The three
covariance terms decompose the variance of idiosyncratic relative profitability of irrigated agriculture
into components from idiosyncratic revenue from irrigated agriculture, idiosyncratic revenue from
rainfed agriculture, and idiosyncratic costs of irrigated agriculture, respectively.
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Table 1.6: Informativeness of IV estimators for CF predicted LATE and LASE

Descriptive Statistic Estimate of interest Informativeness
(IV estimator) (CF prediction)
βIV
Z LATEZ 0.506

βIV
W − βIV

Z LASEW 0.118
βWIV
Z LATEWIV

Z 0.455
βWIV
W − βWIV

Z LASEWIV
W 0.504

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. The informativeness of 4 IV estimators for their
target parameters estimated using a control function approach are presented here. Informativeness
is calculated following Andrews et al. (2018), who note that it can be interpreted as the R2 from
the population regression of the target parameter on the corresponding IV estimator in their joint
asymptotic distribution. IV estimators βIV

Z and βIV
W use Z (potential aquifer flow) and W (log relative

potential irrigated crop yield) as instruments, respectively, for the effect of D (irrigation) on Y (gross
revenue per hectare). CF predictions replace Y and D with their predictions using a two step control
function approach following Kline & Walters (2017). LATE comparisons control for state FE, W (Z),
and state FE interacted with X for β(·)

Z (β(·)
W ), and LASE comparisons control for state FE, state FE

interacted with W (Z), and state FE interacted with X for β(·)
Z (β(·)

W ). WIV estimators use weights to
balance compliers on state FE, with weights constructed as described in Section 1.3.5. Cluster robust
variance covariance matrices are estimated clustered at the district level.
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Table 1.8: Lost surplus from groundwater depletion

1m decline 3.3m decline, NW India
Rs/irrigated ha Rs/ha [% of productivity/ha]

(1) (2)
IV

LASE 251 [0.80%]
MSE 132 282 [0.90%]

Weighted IV
LASE 394 [1.26%]
MSE 172 365 [1.16%]

Control Function
LASE 430 [1.37%]

Back of envelope
3x Electricity costs 93 197 [0.63%]
6x Electricity costs 186 395 [1.26%]

Notes: This table presents estimates of the lost surplus from groundwater depletion using estimates of
local average surplus effects and marginal surplus effects from Section 1.5.1 and 1.5.3, and calibrated
parameters from Table 1.7. Column 1 presents the impact of a 1m decline in the water table on costs
per irrigated hectare. Column 1 IV and WIV estimates are calculated using the estimated marginal
surplus effect, and the calibrated effect of a 1m decline in water tables on adoption of irrigation.
Column 1 back of the envelope approaches calculate the increased electricity costs farmers would have
to pay to pump groundwater one additional meter, exclusively using calibrated parameters from Table
1.7. Column 2 presents the impact of a 3.3m decline in water tables in Northwestern India (Haryana,
Punjab, and Rajasthan), the estimate of 2000’s water table declines from Rodell et al. (2009).
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Table 1.10: LASE robustness, controls

Agricultural productivity (Yn)
Ag ’07-’11

IV IV IV IV IV IV
(1) (2) (3) (4) (5) (6)

Zn

βFS
Z 0.278*** 0.465*** 0.229*** 0.239*** 0.310*** 0.394***

(0.056) (0.035) (0.053) (0.058) (0.060) (0.072)
βIV
Z 22.6* 22.3*** 26.3** 17.7 34.8*** 36.1***

(13.1) ( 4.6) (12.4) (15.1) (11.3) (10.0)
Wn X - X X X X
State FE × Wn X - - - X X
State FE × XnWn - - - - - X
State FE × W 2

n - - - - - X
Wn

βFS
W 0.791*** 0.302*** 0.522*** 0.756*** 0.502** 0.400*

(0.188) (0.101) (0.187) (0.187) (0.220) (0.222)
βIV
W 54.3*** 26.3*** 83.2*** 57.4*** 76.6** 84.3*

(14.5) ( 8.6) (27.1) (15.5) (33.7) (45.4)
Zn X - X X X X
State FE × Zn X - - - X X
State FE × XnZn - - - - - X
State FE × Z2

n - - - - - X
Surplus effects

βIV
W − βIV

Z 31.7* 4.0 56.9** 39.6* 41.9 48.2
(17.9) ( 9.6) (28.3) (20.6) (35.1) (47.0)

Xn X - X X X X
State FE X - X X X X
State FE × Xn X - - X X X
State FE × X2

n - - - - X X
# of observations 884 884 884 884 884 884
# of clusters 222 222 222 222 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level are
in parentheses, and each cell reports a coefficient from a separate regression. Rows 1 and 3 report first
stage coefficients with irrigated share of agricultural land Dn as the dependent variable. Rows 2 and
4 report instrumental variable estimates with gross revenue as the dependent variable (’000 Rs/ha).
The control Xn is log potential rainfed crop yield, the instrument Zn is potential aquifer yield, and
the instrument Wn is log relative potential irrigated crop yield.
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Table 1.11: Placebo before Green Revolution

Dnt (share irrigated) log Ynt (log agricultural productivity)
(1) (2)

Zn 0.050 0.028
(0.063) (0.103)

1{t > 1966}Zn 0.116*** 0.120*
(0.042) (0.067)

Wn 0.182 0.755*
(0.144) (0.411)

1{t > 1966}Wn 0.335*** 0.781***
(0.114) (0.240)

logRF yieldn 0.144* 1.150***
(0.085) (0.260)

1{t > 1966} logRF yieldn 0.193*** 0.200
(0.074) (0.154)

State-by-year FE X X
# of observations 11,799 11,799
# of clusters 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level
are in parentheses. Zn is potential aquifer yield, Wn is log relative potential irrigated crop yield, and
RF yieldn is log potential rainfed crop yield. Outcomes are from Ag ’56-’11.
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Table 1.13: LASE robustness, surface water and endogenous cultivation

Agricultural productivity (Yn) YnLn/Ln (YnLn + 20(Ln − Ln))/Ln

Ag ’07-’11
IV IV IV IV
(1) (2) (3) (4)

Zn

βFS
Z 0.278*** 0.279*** 0.456*** 0.456***

(0.056) (0.054) (0.075) (0.075)
βIV
Z 22.6* 15.1 34.5*** 17.2***

(13.1) (12.9) ( 5.6) ( 5.7)
State FE × Wn X X X X

Wn

βFS
W 0.791*** 0.777*** 0.559** 0.559**

(0.188) (0.227) (0.241) (0.241)
βIV
W 54.3*** 64.3*** 55.9*** 39.5**

(14.5) (19.3) (17.5) (18.4)
State FE × Zn X X X X

Surplus effects
βIV
W − βIV

Z 31.7* 49.2** 21.4 22.4
(17.9) (20.7) (17.4) (18.0)

State FE X X X X
State FE × Xn X X X X
GJ, HA+PJ, MH, RJ, UP - X - -
Endog. DnLn/Ln - - X X
# of observations 884 447 884 884
# of clusters 222 133 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level are
in parentheses, and each cell reports a coefficient from a separate regression. Rows 1 and 3 report first
stage coefficients with irrigated share of agricultural land Dn as the dependent variable. Rows 2 and
4 report instrumental variable estimates with gross revenue as the dependent variable (’000 Rs/ha).
The control Xn is log potential rainfed crop yield, the instrument Zn is potential aquifer yield, and
the instrument Wn is log relative potential irrigated crop yield. Column 2 restricts observations to
districts in the five 1961 states with the smallest shares of surface water irrigation. Columns 3 and 4
use share of district land irrigated, instead of share of district agricultural land irrigated, as treatment
Dn. Columns 3 and 4 use agricultural production plus a reservation rent for uncultivated land (0
in Column 7 and 20,000 Rs/ha in Column 8) per hectare of district land as the outcome, instead of
agricultural revenue per cultivated hectare.
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Chapter 2

Irrigation in Rwanda: Farmers’
Responses to a Massive Expansion
of the Production Possibility
Frontier

2.1 Introduction

Agricultural productivity growth in sub-Saharan Africa has lagged severely compared
to the rest of the world. Diagnostically, a key difference between farmers in sub-Saharan
Africa and elsewhere in the world is a low use of modern inputs (World Bank, 2007).
One explanation for relatively low growth in productivity is that farmers’ productive
decisions are constrained, preventing farmers from realizing the production possibility
frontier (Udry, 1996a). A large and recent literature has used field experiments to
examine the effects of relaxing some of these constraints on technology adoption, with
particular focuses on credit (Giné & Yang, 2009; Carter et al., 2013; Beaman et al., 2014;
Karlan et al., 2014b; Crépon et al., 2015; Tarozzi et al., 2015), risk (Cai et al., 2015; Cole
et al., 2013; Emerick et al., 2016; Karlan et al., 2014b), and information (BenYishay &
Mobarak, 2014; Beaman et al., 2018; Conley & Udry, 2010; Kondylis et al., 2017; Cole
& Fernando, 2016). These studies have produced robust evidence that experimentally
generating slack in either credit, risk, or information constraints leads to higher levels
of technology adoption and often improved yields. Yet, these gains typically accrue to
a minority of farmers, which suggests that none of these constraints can unilaterally
explain the agricultural productivity gap. Two competing hypotheses may explain these
results. First, the candidate new technologies available to farmers in these studies may
have fundamentally low returns. For example, it has been proposed that the returns
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to modern input use may be lower in the African context due to, among other reasons,
counterfeit inputs (Bold et al., 2017) and soil depletion (Barrett & Bevis, 2015). If slack
is generated experimentally in various constraints in environments where the potential
returns from technology adoption are heterogeneous and/or modest on average, it may
explain these adoption results. Alternatively, farmers may be subject to a variety of
heterogeneous and competing constraints, including failures in land and labor markets
where the recent experimental evidence base has made less progress.1 In such a world,
generating slack in one constraint only advances productive potential up until the next
constraint binds. Thus, while the evidence base on constraints to technology adoption
has matured substantively in recent years, there remains much we do not understand
about low agricultural productivity and the low use of modern inputs in Africa.

An additional difference between agricultural productivity growth in sub-Saharan Africa
and the rest of the world is the presence of irrigation. As of 2015, only 3.3% of arable
land in Africa was irrigated, compared to 50.5% and 63.2% in South and East Asia,
respectively (FAO, 2019). Irrigation fundamentally changes the production possibility
frontier in several ways: it adds additional agricultural seasons; reduces the risk of poor
rainfall realizations, and allows cultivation of high value crops which require water use
and water control. From a technology adoption perspective, we can thus view irrigation
as not only a directly productive technology with its own adoption decision, but also one
which is complementary to a variety of other technological adoption decisions both due
to technical complementarities and to a reduction in risk. The empirical evidence base,
largely from India, suggests that irrigation greatly increases agricultural productivity
and farmer welfare (Duflo & Pande, 2007; Dillon, 2011; Sekhri, 2014; ?). Irrigation
expanded rapidly in South Asia over the past half century, which together with these
positive results suggests that it is likely to be an important driver of the productivity
growth experienced by that region.

At the same time, we know much less about how the gains to irrigation are mediated
by farmer constraints, which may meaningfully influence whether we should expect
irrigation to be similarly productive in SSA. This gap is due to two factors. First, cross-
sectional comparisons are challenged by an extraordinarily limited evidence base on
irrigation in SSA itself.2 Second, the aggregate nature of plausibly exogeneous variation

1It has been well documented that weak property rights constrain productive investments, both
theoretically and empirically (Besley, 1995; Goldstein & Udry, 2008; Besley & Ghatak, 2010). Con-
sistent with this, a growing body of work has found that programs to establish secure property rights,
through land titling or demarcation, can encourage productive investments (Deininger & Feder, 2009;
Goldstein et al., 2018), including in Rwanda (Ali et al., 2014). However, quasi-experimental work in
the United States has found evidence that agricultural land market may fail even in settings with well
established property rights (Bleakley & Ferrie, 2014).

2This is likely attributable to the shortage of irrigation schemes in SSA. A literature review con-
ducted in March 2019 identified only one study using quantitative methods to examine the effects of
irrigation in SSA (Dillon, 2011); that study uses PSM techniques to examine the returns to irrigation
in Mali
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in irrigation access (for example, slope characteristics of river basins (Duflo & Pande,
2007) or aquifer characteristics (Sekhri, 2014)) has limited our ability to separate the
direct effects of irrigation access from general equilibrium effects induced by this access.
A consequence of this distinction is that we have learned little about how constraints
to farmer production influence the returns to irrigation. If constraints like credit, risk,
information, or factor market failures limit adoption of productive technologies in SSA,
then they may also both limit irrigation use and the returns to irrigation which could
be realized with large-scale adoption of complementary technologies.

In this paper, we study the impacts of irrigation and constraints to irrigation adoption
in Rwanda. Our study takes two steps. First, we establish that irrigation is profitable.
We leverage the technical characteristics of several new gravity-fed hillside irrigation
schemes to estimate the reduced form impacts of irrigation on production decisions and
profits. Specifically, these schemes share some features in common: a main canal was
constructed along a contour of the hillside according to engineering specifications, and
plots below this canal receive water access while plots above this canal do not. We
collected 4 years of data on 3,000 plots in very close proximity to this canal to allow
estimates of the impacts of irrigation on plot and farm-level outcomes using a very
granular spatial regression discontinuity design.

Once we have identified the productive potential of irrigation in this context, we exploit
our granular spatial discontinuity in access to irrigation to test for whether factor market
failures constrain adoption of irrigation in Rwanda. We extend the model in Benjamin
(1992) to show that absent market failures, access to irrigation on one plot should
not change input decisions on other plots. In practice, we examine how farmers who
have plots that receive access to irrigation change input decisions on their other plots,
compared to farmers with plots close to the boundary who do not receive access to
irrigation. The plot-specific nature of the irrigation shock allows us to examine how an
increase in input demand on one plot affects productivity on other plots.

We find the following. Two to four years after the construction of irrigation, our treat-
ment on the treated (TOT) estimates suggest that irrigated plots are 70% more pro-
ductive than plots within a few meters which do not receive access. This increase
in production is entirely attributable to a change in cultivation practices during the
dry season: farmers substitute away from bananas, a low productivity perennial, and
towards cultivating horticulture. While rainy season inputs and yields from different
cropping choices are comparable in magnitude, dry season horticulture represents a
large increase in input demands and a large increase in output relative to banana culti-
vation or to leaving the plot fallow in the dry season. Given that the dry season is only
3 months long, we find that irrigation allows a 70% increase in yields and cash profits,
achieved in only 1/4 of the year. The effect on economic profits - cash profits net of
household labor costs - depends on the shadow wage faced by household workers, who
provide a large majority of the labor to these farms. Household labor is notoriously
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difficult to value in rural settings. In the two extremes, if we value this labor at zero we
can therefore interpret the cash profit estimate as a 70% increase in economic profits;
conversely if we value it at the market wage the net effect on economic profits is close
to zero because irrigation causes a substantial increase in labor demand.

Despite this large change in productive potential, adoption is only partial. Two to
four years after the system was brought online, dry season horticultural cultivation has
been roughly constant at about 25% of available plots. At this level of adoption, the
sustainability of the system is in doubt: even the large gains in revenues to adopters are
unable to generate enough surplus to pay for routine maintenance costs with only 25% of
farmers benefiting. To understand why adoption may be so low, we turn to the literature
on separation in agricultural households which identifies the presence of frictions in rural
factor markets (Singh et al., 1986; Benjamin, 1992; Udry, 1996b; LaFave & Thomas,
2016; Dillon & Barrett, 2017). In particular, we note that profitability depends crucially
on the shadow wage, which itself suggests that frictions in agricultural labor markets
have the potential to constrain adoption of dry season horticulture.3

We leverage the plausibly exogenous variation in our data to not only generate a new test
for the presence of factor market failures but also to document directly the implications
of these factor market failures for technology adoption, production, and ultimately the
economic viability of these irrigation schemes. More specifically, irrigation represents a
large increase in the production possibility frontier for farmers that is tied to a particular
plot and not fungible across the household’s plots. That increase is associated with a
large increase in labor and input demands, as well as a potential change in the risk profile
of cultivation. Intuitively, if a constraint on inputs or labor binds for these farmers,
then when the demand for that input increases on irrigated plots, it should induce a
budget allocation away from other plots. To formalize this intuition, we extend the
agricultural household model presented in Benjamin (1992) to decision-making when
farmers have access to multiple plots. The model suggests that an increase in labor and
input demands on a newly-irrigated plot may constrain adoption of irrigation on other
plots due to failures in insurance, labor, or input markets.

We then test this model using data on farmers’ other plots. More specifically, we test
whether farmers who have a plot just inside the irrigated area reduce input use on
their other plots compared to farmers who have plots just outside the irrigated area.
We find robust evidence that farmers change their input use and crop choice on other
plots. That is, farmers inside the irrigated area sharply reduce their labor allocations,
reduce purchased inputs, and cultivate bananas rather than horticulture on other plots,
producing lower revenues. Together, these two findings suggest a clear inefficiency and
failure in separation: efficient farming on a plot should be independent of a farmer’s

3Labor constraints have been much less extensively studied in the recent RCT-based literature on
technology adoption, in part due to challenges in designing interventions which would generate slack
in these constraints.
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practices on his other plots. We conclude that separation failures lower the profitability
of the irrigation system.

Using our model, we generate tests to examine whether our findings can be explained
solely by risk preferences or may be attributable to farmer constraints. We demon-
strate that a household with two additional members experiences a 62-86% smaller
negative adoption effect than an average size household. A common concern (also sug-
gested by the model) is that larger households may be wealthier which may also lead
to differential input use choices. In this context, however, a one standard deviation
wealthier household who receives access to irrigation experiences a 40-80% larger neg-
ative adoption effect than an average wealth household, which is also consistent with
the agricultural household model. These two trends together indicate that constraints
in the labor market fundamentally reduce the potential for irrigation in Rwanda.

This paper is organized as follows. Section 2.2 describes the context we study and
our sources of data. Section 2.3 presents our estimates of the impacts of irrigation in
Rwanda. Section 2.4 presents our model of adoption of irrigation in the presence of sep-
aration failures, and we implement tests of separation failures and binding constraints
suggested by the model in Section 2.5. Section 2.6 concludes.

2.2 Data and context

2.2.1 Irrigation in Rwanda

We study 3 hillside irrigation schemes, located in Karongi and Nyazna districts of
Rwanda, that were constructed by the government in 2014; a timeline of construction
and our surveys is presented in Figure 2.1. Rainfed irrigation in and around these
sites is seasonal, with three potential seasons per year. During the main rainy season
(“Rainy 1”; September - January), rainfall is sufficient for production in most years.
In the second rainy season (“Rainy 2”; February - May), rainfall is sufficient in an
average year but insufficient in dry years. In the dry season (“Dry”; June - August),
rainfall is insufficient for agricultural production for seasonal crops. Absent irrigation,
agricultural production in these sites consists of a mix of staples (primarily maize and
beans) which are cultivated seasonally and primarily consumed by the cultivator, as
well as perennial bananas which are sold commercially.4 Absent irrigation, therefore,
most farmers adopt either a rotation of staples, fallowing land in the dry season, or
cultivate bananas.

4Staple rotations also include smaller amounts of sorghum and tubers, while there is also some
cultivation of the perennial cassava, along with other minor crops. In our data, maize, beans, or
bananas are the main crop for 85% of observations excluding horticulture.
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Irrigation in these schemes is expected to increase yields by reducing risk in the second
rainy season and enabling cultivation in the short dry season. As the dry season is rela-
tively short, cultivating the primary seasonal crops is not possible, even with irrigation,
for households that cultivate during the two rainy seasons. Instead, cultivating shorter
cycle horticulture during the dry season becomes a possibility with the availability of
irrigation. Horticulture production (most commonly eggplant, cabbage, carrots, toma-
toes, and onions) can be sold at local markets where it is both consumed locally and
traded for consumption in Kigali.5 As horticultural production is relatively uncommon
during the dry season in Rwanda due to limited availability of irrigation, finding buyers
for these crops is relatively easy during this time. Absent irrigation, horticulture is not
unfamiliar but uncommon around these areas; at baseline 3.2% of plots outside of the
command area are planted with at least some horticulture, primarily during the rainy
seasons.

In this context, the three schemes we study were constructed by the government from
2009 - 2014, with water beginning to follow to some parts of the schemes in 2014 Dry
and becoming fully operational by 2015 Rainy 1 (August 2014 - January 2015). The
schemes in our study share some common features; a picture from one of the schemes is
presented in Figure 2.2. In each site, land was terraced in preparation for the irrigation
works (as hillside irrigation would be unfeasible on non-terraced land). Construction
and rehabilitation of terraces in these sites began in 2009 - 2010. The schemes are all
gravity fed, and use surface water as the source.6 From these water sources, a main
canal (visible in Figure 2.2) was constructed along a contour of the hillside; engineering
specifications required the canal to be sufficiently steep so as to allow water to flow,
but sufficiently gradual to control the speed of the flow, preventing manipulation of the
path of the canal. Underground pipes run down the terraces from the canal every 200
meters. Farmers draw water from valves on these pipes located on every third terrace,
from which flexible hoses and dug furrows enable irrigation on all plots below the canal.
The “command area” for these schemes, the land that receives access to irrigation, is
the plots which are below the canal and located within 100 meters of one of these valves.

In all sites, sufficient water is available to enable irrigation year-round. To the extent
that there is heterogeneity in plot-level water pressure, the plots nearest to the canal
face the lowest pressure.7 The primary cost to farmers of irrigating a plot in this
context is their labor associated with the actual irrigation, including maintaining the
dug furrows and using the hoses to apply water from the valves to their plots. At the
time of the study, there are no fees associated with the use of irrigation water8

5Kigali is less than a 3 hour drive from these markets, facilitating trade.
6In two sites, a river provides the water source, while in the third site, a dammed lake is the source.
7The lower pressure on these plots is attributable to the design of the pipes, which fill up with water

before valves are opened; this means that pressure on the highest valves can fall when lower valves are
opened. In practice, schedules of water usage are agreed upon to prevent this from happening.

8The government does have an objective of developing the financial self-sufficiency of the schemes.
To do so, land taxes are intended to be applied to the plots in the command area, which (as land taxes)
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We exploit a spatial discontinuity in irrigation coverage to estimate the impacts of
irrigation. Because the main canals must conform to prescribed slopes, relative to
a distant and, originally, inaccessible water source, the geologic accident of altitude
relative to this source determines which plots will and will not receive access to irrigation
water. Hence, before construction, plots just above the canal should be similar to plots
just below the canal, and importantly, should be managed by similar farmers. Following
construction, however, the plots just below the canal fall inside the command area
and have access to irrigation, while the terraces just above the canal fall outside the
command area and do not.

2.2.2 Data

Aerial sampling

Spatial discontinuity designs require a high density of observations near the boundary
for statistical power. In our context, this required constructing a sample which featured
a high density of plots very near the command area boundary. We used point-based
sampling to over-sample plots cultivated just inside and just outside the command area.
In practice, we constructed this aerial sample of plots by dropping a uniform grid of
points across the site at 2-meter resolution, and then sampling points within the grid.
After each point was sampled, we excluded any points within 10m of that that point (to
keep from selecting multiple points too close together). In two of the three sites, there
is a viable boundary of cultivable land both just inside and just outside the command
area. In these sites, to guarantee a high density of observations near the canal, we
over sampled points that were within 50m of command area boundary, both inside the
command area and outside the command area.9

Enumerators were then given GPS devices with the locations of the points, and sent to
each point, with a key informant (often the village leader). For each point, they were
asked to identify if the point was on cultivable land (this was to discard forest, swamps,

should not influence cultivation decisions. These taxes are intended to be small in magnitude compared
to potential farmer yields as they are meant to fund only ongoing operations and maintenance costs
rather than full cost recovery; the highest fees across the sites were 77,000 RwF/ha/year, while our dry
season ToT estimates presented in Section 2.3 are 397,000 - 411,000 RwF/ha. The first attempts to
collect these taxes were made in 2017 Rainy 1. The survey team engaged in an experiment, described
in work in progress, to test whether these taxes were a barrier to use of the irrigation system by
randomizing subsidies across farmers at up to 100%; we failed to find any evidence that the taxes
changed farming practices (results available from authors). This is perhaps unsurprising as, based on
the original schedule, tax compliance was very low, with less than 20% of taxes collected from farmers
who did not receive full subsidies from the research team.

9In both sites, we additionally sampled some points further from the canal inside the command
area (at a lower rate). We use these points along with data from the third site primarily to examine
experimental treatments described below.
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thick bushes, bodies of water, or other terrain which would make cultivation impossible).
When a point fell on cultivable land, they recorded the name of the cultivator of the
plot, their contact information, as well as a sufficiently detailed description of the plot.
In the rest of this paper, we refer to all plots thus identified as sample plots. Our main
household sample was built from this aerial sampling procedure: the data from this
listing was used to construct a roster of all the unique names of cultivators, eliminating
duplicate names. Finally, for each household, one of the points that fell on their plots
was randomly selected to be that household’s sample plot.

Survey

Our baseline survey survey was implemented in May 2015 and includes detailed agri-
cultural production data (season-by-season) for seasons 2014 Dry through 2015 Rainy
2, that is, spanning the year from June 2014 - May 2015; the dates of this survey
and follow up surveys, along with the agricultural seasons they cover, are presented
in Figure 2.1. As mentioned above, this is not a “true” baseline as some farmers had
already gained access to irrigation in 2014 Dry. However, relatively small parts of the
site had access to irrigation at this point; in Section 2.3.2 we highlight that 2014 Dry
adoption of irrigation is less than 25% of adoption in subsequent dry seasons, and in
Section 2.3.1 we show balance across the command area boundary in household and plot
characteristics. Production and input data are collected plot-by-plot; in the baseline
we conducted this production data for up to four plots, although subsequent surveys
maintain a panel of two plots. Each of these plots was also mapped using GPS devices
during the baseline; we use this data to construct the area of plots and their locations.
The two plots on which panel data is collected represent the primary data for analysis;
they include the sample plot (described above) and the farmer’s next most important
plot (defined at baseline; we refer to this as the “most important plot”). We also col-
lected data on household characteristics, labor force behavior, and a short consumption
and food security module. In analysis, we will focus on the sample plots to learn about
the effects of the irrigation itself, and the most important plot to learn about how the
presence of the irrigation impacts household productive decisions more broadly.

Work in progress: Construction of key agricultural variables.

Three follow up household surveys were conducted in May - June 2017, November -
December 2017, and November 2018 - February 2019. In each survey, we asked for up to
a year of recall data on agricultural production; based on the timing of our surveys we
therefore have production for all agricultural seasons from June 2014 through August
2018, with the exception of 2015 Dry (June - August 2015) and 2016 Rainy 1 (September
2015 - February 2016).

The sample for the follow up surveys consists of all the baseline respondents. To build a
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panel of households and plots, we interviewed households from the baseline and recorded
information on all their baseline plots. Whenever a household’s sample plot or most
important plot was sold or rented out to another household, or a household stopped
renting in that plot if it was not the owner, we ran a “tracking survey”. Specifically,
we tracked and interviewed the new household responsible for cultivation decisions on
that plot to record information about cultivation and production, along with household
characteristics when the new household was not already in our baseline sample.

2.2.3 Stylized facts

To motivate our analysis of the impacts of hillside irrigation, we first introduce some
stylized facts about irrigation in this context. Table 2.1 presents summary statistics for
agricultural production from our four years of data, pooled across seasons.

Stylized Fact 1. Irrigation in Rwanda is primarily used to cultivate horticulture in
the dry season.

Farmers in our data rarely irrigate their plots in the wet season, and almost never use
irrigation when cultivating staples or bananas (only 2% of plots cultivated with staples
or bananas use irrigation in our data). In contrast, 92% of farmers who cultivate
horticulture in the dry season use irrigation. This stylized fact makes agronomic sense
as the rainfall in rainy seasons in this part of Rwanda is usually sufficient for either
staple or horticultural production (and in wet years may be harmfully excessive for
horticulture). Additionally, as staples do not have a sufficiently short cycle to permit
cultivation during the relatively short dry season (while horticulture does), it is not
feasible to use irrigation to cultivate staples during the dry season.

Stylized Fact 2. Horticultural production is more input intensive than staple cultiva-
tion, which in turn is (much) more input intensive than banana cultivation.

The mean horticultural plot uses about 460 days/ha of household labor, 60 days/ha
of hired labor, and 46,000 RwF/ha of inputs, regardless of the season in which it is
planted.10 This contrasts to staple plots (300 days/ha of household labor, 40 days/ha of
hired labor, 20,000 - 40,000 RwF/ha of inputs), and bananas (100 days/ha of household
labor, 10 days/ha of hired labor, 3,000 RwF/ha of inputs).

Stylized Fact 3. Horticultural production produces much higher cash profits than other
forms of agriculture.

Horticultural production produces much higher cash profits (defined as yields net of
expenditures on inputs and hired labor) than other forms of agricultural production in

10For reference, in the study period, the exchange rate was approximately 800 RwF = 1 USD
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and around these sites. Plots planted to horticulture yield about 500,000 RwF/ha in
cash profits, in both rainy and dry seasons. This contrasts with about 250,000 RwF/ha
of cash profits producing either staples or bananas.

Stylized Fact 4. Household labor is the primary input to production of any crop, and
the economic profitability of horticulture depends critically on the shadow wage.

A large existing literature examines separation failures in labor markets faced by agri-
cultural households (e.g., Benjamin (1992); LaFave & Thomas (2016)). If households
are constrained in the quantity of labor they are able to sell on the labor market, they
may work within the household at a marginal product of labor well below the market
wage. Here, we see that if we value household labor allocated to horticulture at mar-
ket wages, then cultivating horticulture appears less profitable than cultivating bananas
(though both appear more profitable than cultivating staples).11 As a result, ultimately
the economic profitability of horticulture relative to bananas will depend critically on
the constraints on household labor supply decisions.

2.3 Impacts of irrigation

2.3.1 Empirical strategy

For our benchmark approach, we estimate the plot level effects of access to irrigation
using a regression discontinuity, comparing sample plots that are just inside of the
command areas of the hillside irrigation schemes we study to sample plots that are just
outside of the command areas. Specifically, we pool our data across time periods and
estimate

y1ist = β0 + β1CA1is + β2Dist1is + β3Dist1is ∗ CA1is + αst +X ′
1isγ + ε1ist (2.1)

Where ykist is outcome y for plot k of household i located in site s in season t, CAkis

is an indicator for that plot being in the command area, Distkis is the distance of
that plot from the command area boundary (positive for plots within the command
area, negative for plots outside the command area), Xkis is a vector of controls that
includes log area, and αst are site-by-season fixed effects. We use k = 1 to indicate
the household’s sample plot, as opposed to the household’s most important plot, and
we restrict this and subsequent analysis to using sample plots within 50 meters of the
discontinuity, consistent with our sampling strategy.

11Both horticulture and bananas are also primarily commercial crops, unlike staples. Farmers may
place higher value on staples if consumer prices are higher than producer prices (Key et al., 2000),
or if there is price risk in production and consumption, both of which may contribute to cultivation
decisions as well.
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This approach is an example of a boundary spatial discontinuity design; as such it has
the large advantage of being able to represent outcomes graphically. However, boundary
designs need not represent spatially proximate comparisons if the density of observations
within the bandwidth used for the analysis is not constant along the boundary. In other
words, the identification assumption underlying a boundary spatial discontinuity design
is limDistkist↑0E[εkist|Xkist] = limDistkist↓0E[εkist|Xkist]. This suggests that unobservable
variation is constant among observations that are similar in being close to the boundary.
However, this is somewhat distinct from assuming that unobservable variation is similar
among nearby plots. That assumption would suggest that lim||k−k′||→0E[εkist|Xkist] =
E[εk′i′st|Xk′i′st] if ||k−k′|| represents the distance between plot k and plot k′. When plots
are not similarly dense along the length of the boundary, there is no guarantee that these
two assumptions are equivalent (see Keele & Titiunik (2015); Cattaneo et al. (2018) for
a discussion of how boundary designs map into conventional RDD frameworks).

In our context, this is indeed a concern. The depth of the cultivable area on either
side of the main canal depends on characteristics of the hillside and terracing decisions.
Hence, it is not the case that plots are identically distributed on either side of the
canal. To establish robustness to this assumption, we present a second set of results
using spatial fixed effects (SFE; see Goldstein & Udry (2008); Conley & Udry (2010);
Magruder (2012, 2013)). In practice, we define a set Nkist to be the group of five closest
plots to plot k observed in season t, including the plot itself. Then, for any variable
zkist, define zkist = (1/|Nkist|)

∑
k′∈Nkist

zk′i′st. The SFE specification then estimates

y1ist − y1ist = β1(CA1is − CA1is) + (V1is − V 1is)
′γ + (ε1ist − ε1ist) (2.2)

where Vkis includes all controls from Equation 2.1, except the subsumed site-by-season
fixed effects. The SFE design is consistent under the assumption that E[ε1ist − ε1ist]
is uncorrelated with CA1is − CA1is and the differenced V ’s, that is, that differences
in unobservable characteristics among nearby plots are uncorrelated with explanatory
variables.12

Our sampling strategy yields the following plot proximity: restricting to the sample
plots in our main sample for regression discontinuity analysis, 49% of plots have 3 plots
(self inclusive) within 50 meters, and 87% have 3 plots within 100m; 60% of plots have
all 5 plots (self inclusive) within 100m, while 83% have all 5 plots within 150m. As
reference, Conley & Udry (2010) use 500m as the bandwidth for their estimator, while
Goldstein & Udry (2008) use 250m as the bandwidth; we therefore anticipate that
underlying land characteristics are likely to be quite similar between each plot and its
comparison plots.

12This approach is similar to pairwise matching across the boundary (e.g., Dube et al. (2010)) and
boundary designs with segment fixed effects (e.g., Dell (2010)).
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Balance

We now use specifications (2.1) and (2.2) to examine whether the plots in our sample
and the households who cultivate them are comparable at baseline.13

First, and crucially, Table 2.2 indicates that our sample plots are balanced in terms of
ownership and rentals, and that the vast majority of sample plot owners on both sides
of the canal owned the land over 5 years, or prior the start of the irrigation construction.
There is, however, some imbalance on plot size; log area (measured in hundredths of
hectares) is larger inside the command area than outside the command area. This
imbalance is somewhat weaker in the SFE specification than in the RDD specification,
such that the omnibus test fails to reject the null of balance for the SFE specification
(although we reject for the RDD specification). However, we note that this imbalance
would bias us against finding the effects we see in Section 2.3.2 on horticulture, input
use, labor use, and yields, as all of these variables are much larger in smaller plots in
both the command area and outside the command area. We do control for log area in
all specifications that follow, but note that all our results are robust to its exclusion.

Following the ownership results, Table 2.3 examines the characteristics of households
whose sample plots are just inside or just outside the command area. First, note that
specifications that do not restrict to the discontinuity sample perform poorly here; we
find significant imbalance on half of our variables, and the omnibus test rejects the
null of balance. However, we observe balance for both RDD and SFE specifications;
households with sample plots just inside the command area appear similar to households
with sample plots just outside the command area. There are some marginally significant
differences in whether the household head has completed primary schooling or not,
though we note that 1 out of 10 variables significant at the 10% level is what one would
expect due to chance.

Lastly, in Section 2.5.1, we consider the characteristics of households’ most important
plots; we show that these appear similarly balanced.

2.3.2 Estimating the effects of irrigation

Adoption Dynamics

Figure 2.3 presents the share of plots irrigated by season for sample plots just inside
the command area and sample plots outside the command area. First, as the irrigation
sites were already partially online in our baseline, we already observe some increased
adoption of irrigation in the command area in 2014 Dry: sample plots in the command

13Note that when testing for balance, we do not include the controls X1is.
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area are approximately 5pp more likely to be irrigated than sample plots outside the
command area. Second, starting with 2015, adoption of irrigation does not appear to
trend, but exhibits meaningful seasonality. Differences remain around 3pp-6pp in the
rainy seasons, and 18pp-25pp in the dry seasons.

Given the limited changes in adoption dynamics after 2014 and the stark differences in
adoption across dry and rainy seasons, for the remainder of our analysis we estimate
(2.1) and (2.2) pooling across our three years of follow up surveys, splitting our results
across dry and rainy seasons.

Impacts of irrigation

We first estimate the impact of access to irrigation on cultivation decisions. For par-
simony, we present graphical evidence of the regression discontinuity only for the dry
seasons (16C, 17C, and 18C).14 In each of these regression discontinuity figures, dis-
tance to the canal in meters is represented on the x-axis, with a positive sign indicating
that the plot is on the command area side of the boundary. Figure 2.4 examines culti-
vation and irrigation decisions on sample plots. We observe a large increase in the use
of irrigation across the boundary, confirming that the command area increased access
to irrigation. However, we do not observe any meaningful increase in cultivation in the
dry season.

We consider this result in regression form in Table 2.4. Columns 1 and 4 present
the sample means and standard deviations of the outcome on plots just outside the
command area in the regression discontinuity sample, as well as sample sizes used in
regressions. Columns 2, 3, 5, and 6 present results from RDD and SFE specifications
estimating (2.1) and (2.2). Columns 1, 2, and 3 present results in the dry season,
while Columns 4, 5, and 6 present results in the rainy season. We confirm this pattern:
command area plots are no more likely to be cultivated during the dry season than
plots outside the command area. This result is surprising, given the anticipated role of
irrigation in enabling horticulture cultivation in the dry season. Less surprisingly, we
do not observe robust differences in cultivation inside relative to outside the command
area during the rainy season.

Figure 2.5 explains this discrepancy. While farmers are similarly likely to cultivate
land on either side of the canal, their crop choice in the dry season changes sharply.
Outside the command area, most farmers who cultivate in the dry season are cultivating
bananas. Inside the command area, most farmers who cultivate in the dry season are
cultivating horticulture. Additionally, note that comparing Figure 2.4 with Figure 2.5,
it is apparent that the decision to irrigate in the dry season in the command area

14Rainy season differences are always smaller and generally not visually noteworthy; we focus most
of our discussion on the dry season results.
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occurs in very similar proportions to the decision to cultivate horticulture. This is
consistent with our data on dry season horticulture and irrigation use in Table 2.1,
and is confirmed by our regression results. We estimate that dry season horticulture
cultivation increases by 12.8-15.3pp relative to a base of 6.1% outside the command area,
while dry season banana cultivation is reduced by 13.6-13.9pp relative to a 24.6% base
outside the command area. We do not see robust effects on horticulture cultivation
during the rainy season. In contrast, the decline in banana cultivation is of similar
magnitude across seasons (15.8-17.0pp relative to a 27.3% base outside the command
area in the rainy season), in line with the fact that bananas are a perennial crop.

We now examine the labor and input allocations and productive outcomes of farmers
on their sample plots. Figure 2.6 shows that yields increase sharply at the boundary in
the dry season. It also indicates a discrete jump in total expenditures (expenditures on
inputs plus hired labor), though the magnitude of this increase is small relative to the
increase in yields. Tables 2.5 and 2.6 put numbers on these increases: dry season yields
increase by 62,500-71,000 RwF/ha, and as horticultural crops are relatively commercial,
a 1 RwF/ha increase in yields corresponds to a 0.78-0.80 RwF/ha increase in sales. Total
dry season expenditures increase much more modestly, by 5,400-8,600 RwF/ha, with
62-74% of this increase coming from inputs (rather than hired labor). In contrast, in
the rainy seasons, we fail to reject that there is no effect on any input allocations or
productive outcomes.

Figure 2.7 demonstrates that in addition to monetized inputs, household labor also
increases sharply for plots in the command area. Table 2.5 shows that household labor
increases by 67-78 days/ha in the dry season. This is an order of magnitude larger
than any increase in hired labor. The magnitude of this effect of access to irrigation
on labor suggests that the economic profitability of irrigation depends critically on
the shadow wage. Figure 2.8 demonstrates that dry season “cash profits”, defined as
yields net of input and hired labor expenditures, increases sharply at the boundary.
This measure of profits implicitly assumes a shadow wage of 0 RwF/day, which may be
inaccurate. Alternatively, valuing household labor at the market wage of 800 RwF/day,
we observe no increase in profits in the command area. Table 2.6 confirms that in the
dry season, cash profits increase by 55,000-68,000 RwF/ha, a 77-95% increase over dry
season cash profits outside the command area. In contrast, because of the large increase
in household labor use, there are no significant increases in profits valuing household
labor at the market wage.

Taken together, these results together suggest that irrigation leads to a large change in
production practices for a minority of farmers. Those farmers cultivate horticulture in
the dry season and a mix of horticulture, staples, and fallowing in the rainy seasons;
they earn substantially higher cash profits in the dry season but similar cash profits in
the other seasons; and they invest more in inputs and much more in household labor
in the dry seasons. We also learn that the shadow wage, and therefore labor market
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failures, is likely to be important for the decision to cultivate horticulture. Building
on this last result, in the next section we adapt the model from Benjamin (1992) to
develop tests for the role of market failures in adoption of irrigation.

2.4 Testing for binding constraint

2.4.1 Model

Farmers have 2 plots, indexed by k: k = 1 indicates the sample plot, while k =
2 indicates the most important plot. On each plot k, they have access to a simple
production technology σAkFk(Mk, Lk) where Ak is plot productivity, Mk is the inputs
applied to plot k and Lk is the labor applied to plot k. The common production
shock σ is a random variable such that σ ∼ Ψ(σ), E[σ] = 1. While this specification
assumes a single production function on each plot, we can think of Fk(Mk, Lk) as
the envelope of production functions from cultivating different fractions of bananas and
horticulture on the dry season; thus we will think of cultivating bananas as optimizing at
a low input intensity. Utilizing subscripts to indicate partial derivatives and subsuming
arguments we assume FkM > 0, FkL > 0, FkML > 0, FkMM < 0, FkLL < 0.15 Farmers
have a budget of M̄ which, if not utilized for inputs, can be invested in a risk-free asset
which appreciates at rate r. In this context, farmers maximize expected utility over
consumption and leisure l, considering their budget constraint and a labor constraint
L which is allocated to labor on each plot, leisure, and up to LO units of off farm labor
LO. Finally, we model irrigation access as an increase in A1. In each case, we develop
the necessary assumptions to imply the results above: that this increase in A1 generates
an increase in demand for inputs and labor on plot A1.

Farmers maximize expected utility

max
M1,M2,L1,L2,l,LO

E[u(c, l)]

15Among these, FkML > 0 is the most controversial. Existing evidence on FkML in developing
country agriculture is mixed (see Heisey & Norton (2007) for discussion). In our context, we expect
FkML > 0 primarily because Fk(·, ·) encompasses the transition from bananas to horticulture, which
should be associated with increased input demands according to Stylized Fact 2.
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subject to the constraints enumerated above

σA1F (M1, L1) + σA2F (M2, L2) + wLO + r(M −M1 −M2) = c

M1 +M2 ≤ M

L1 + L2 + l + LO = L

LO ≤ LO

In this framework, there are three crucial constraints farmers face that cause deviations
from expected profit maximization. The first is that farmers have no access to insurance;
this simplification captures the fact that access to income smoothing technologies has
been shown to shift farmers towards riskier investments. The second is that farmers
input use is constrained from above; this implies that constrained farmers underuse
inputs relative to the optimum. This is consistent with evidence that providing farmers
with improved access to credit leads to increased investment, and with the low input
use we observe in our data. The third is that farmers off farm labor allocations are
constrained from above; this implies that constrained farmers overuse on farm labor
relative to the optimum when labor is priced at the market wage. We make this choice
for two reasons. First, this is consistent with work in rural India finding that market
wages are above the efficient wage due to nominal wage rigidities Kaur (2014), which
Breza et al. (2018) suggests are consistent with social norms on wage setting. Potentially
consistent with rigidities, we do not observe wages changing over time in our data, and
potentially consistent with norms, 67% of our observed wages are either 700, 800, or
1000 RwF/person-day. Second, this is consistent with our stylized facts, which suggest
that horticulture is less likely to be a profitable investment when labor is valued at the
market wage; although this may explain why many farmers do not adopt horticulture,
it is difficult to reconcile with the moderate adoption that we do observe.

After substituting in the constraints which bind with equality, we derive the following
first order conditions16

(Mk)
(
1 + cov(σ,uc)

E[uc]

)
AkFkM = (1 + λM)r (2.3)

(Lk)
(
1 + cov(σ,uc)

E[uc]

)
AkFkL = (1− λL)w (2.4)

(`) E[u`]
E[uc]

= (1− λL)w (2.5)

Intuitively, the first order conditions for inputs and labor include three parts. First,
each contains the marginal product of the factor, AkFkM and AkFkL respectively, on
the left hand side, and the market price of the factor, r and w respectively, on the
right hand side. The second piece, 1+ cov(σ,uc)

E[uc]
, is the ratio of the marginal utility from

agricultural production to the marginal utility from certain consumption. This ratio
scales down the marginal product of the factor. It is less than 1 because agricultural

16The derivation is in Appendix B.2.
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production is uncertain, and higher in periods in which marginal utility is lower, so
cov(σ, u1) < 0. With perfect insurance, cov(σ, u1) = 0, and this piece disappears.
Without it, however, farmers will underinvest in both inputs and labor relative to the
perfect insurance optimum. Third, there are the Lagrange multipliers associated with
the input constraint λM and with the labor constraint λL, which scale the associated
factor prices up and down, respectively.

When these constraints do not bind, and with perfect insurance, we have the familiar
result that marginal products equal marginal prices. However, if any of these constraints
do not bind, then separation fails: farmer characteristics which are related to λL, λM ,
or cov(σ, u1) will be correlated with inefficient input allocation on all plots (inefficiently
low in the case of inputs and inefficiently high in the case of labor).

2.4.2 A test for separation failures

In this context, we consider a new test of separation: the effect of a change in access to
irrigation on the sample plot on production decisions on the most important plot. Much
of the literature that tests for separation, building on Benjamin (1992), has focused on
tests built around the assumption that household characteristics should not affect the
household’s optimal production decisions under perfect markets. We instead leverage
the assumption that access to irrigation on the sample plot (the “sample plot shock”)
should not affect the optimal production decisions on the household’s most important
plot.

Following our model, we show how these market failures in insurance, labor, or input
markets generate a separation failure between production decisions on the sample plot
and production decisions on the most important plot. First, we derive the classic
separation result from Singh et al. (1986) in our framework when there are no market
imperfections.

Proposition 1. If no constraints bind, separation holds and input and labor use on the
most important plot does not respond to the sample plot shock.

Showing this result is straightforward: with perfect markets for inputs, labor, and
insurance, cov(σ,uc)

E[uc]
= 0, λL = 0, and λM = 0, respectively. The first order conditions

then simplify to

(Mk) AkFkM = r

(Lk) AkFkL = w

(`) E[u`]
E[uc]

= w

The household’s labor and input allocations on plot 2 depend only on plot 2 productivity
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A2, the price of inputs r, and the wage w, and not on access to irrigation on plot 1
(A1).

In contrast to the case with perfect markets, in the presence of market failures, the
sample plot shock can affect the households allocations on its most important plot.
Roughly speaking, the sample plot shock increases the household’s agricultural produc-
tion, and increases its labor and input demands on the sample plot. When markets fail,
this reduces the value the household places on agricultural production, and increases its
opportunity costs of labor and inputs, and the household reduces its labor and input
allocations on its most important plot. The following propositions typically require
additional assumptions on the shape of the utility function or on the distribution of σ;
we flag those in the text below each proposition.

Proposition 2. If input, labor, or insurance constraints bind, then input and labor use
are reduced on the most important plot in response to the sample plot shock.17

The logic case-by-case is as follows. First, if input constraints bind, then the increase
in inputs on the sample plot caused by access to irrigation must be associated with a
reduction in inputs on the most important plot. As inputs and labor are complements,
this causes labor allocations on the most important plot to fall as well. Second, if
labor constraints bind, then the increase in labor on the sample plot caused by access
to irrigation must be associated with a reduction in the sum of leisure and labor on
the most important plot. Under standard restrictions on the household’s on farm
labor supply, this must be associated with a reduction in labor on the most important
plot.18 As inputs and labor are complements, this causes input allocations on the most
important plot to fall as well. Third, absent insurance, then the increase in agricultural
production caused by access to insurance reduces the marginal utility from agricultural
production relative to the marginal utility from consumption.19 In turn, this causes
labor and input allocations to the most important plot to fall.

Although this produces a test of separation, this does not allow us to test for which
sets of constraints might generate separation failures. This is because the presence
of any set of constraints that generate separation failures yields the same prediction:
the sample plot shock should cause input and labor allocations on the most important
plot to fall. In particular, the intuition that observing changes in input allocations,
labor allocations, or cropping decisions on the most important plot might suggest the
presence of input constraints, labor constraints, or insurance constraints, respectively,

17See proof in Appendix B.2.
18Specifically, we assume that leisure demand is increasing in consumption; this assumption is not

necessary but is sufficient.
19This does not generically hold; however, restrictions on the distribution of σ are sufficient to imply

that marginal utility from agricultural production relative to the marginal utility from consumption
is falling in agricultural production. Details are in Appendix B.2.
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fails, because inputs, labor, and horticulture are all complements in the production
function.

2.4.3 Separating constraints

To shed some light on which constraints generate separation failures, we leverage the
fact that our model offers predictions about how households with different character-
istics should differentially respond to the sample plot shock. Roughly speaking, de-
pending on which constraint binds, changes in different household characteristics may
slacken or tighten the binding constraint. We focus on two important household charac-
teristics in our model: we use household size to shift L, the household’s total available
labor, and wealth to shift M , the household’s exogenous income available for input
expenditures. We present these predictions below.

Proposition 3. If input constraints or insurance constraints bind, then the input and
labor allocations on the most important plot of larger households (wealthier households)
should be less (less) responsive to the sample plot shock.20

Under insurance constraints, both wealth and household size enter the model symmetri-
cally by increasing consumption; therefore, in all cases, wealthier and larger households
will respond similarly to the sample plot shock. When risk aversion is decreasing suffi-
ciently quickly in consumption, then the allocations of wealthier and larger households
will be closer to those maximizing expected profits, and therefore allocations on the
most important plot will be less responsive to the sample plot shock.

Under input constraints, wealthier households are less likely to see the constraint bind.
As the allocations on the most important plot of unconstrained households do not
respond to the sample plot shock, wealthier households should be less responsive. Now,
note that in this model, farmers cannot use labor income to purchase additional inputs.
In a more general model with borrowing, they may be able to; in that case, both
wealthier households and larger households are less likely to see the constraint bind, and
therefore will both be less responsive to the sample plot shock on their most important
plots.21

Proposition 4. If labor constraints bind, then the relative responsiveness of input and
labor allocations on the most important plot of larger households (wealthier households)
to the sample plot shock cannot be signed without further assumptions. If larger house-
holds and poorer households have more elastic on farm labor supply schedules, and if

20See proof in Appendix B.2.
21If all households are input constrained, then the effect of the sample plot shock on input allocations

on the most important plot depends on characteristics of the production function. Note that in this
case, larger households will still exhibit a response in the same direction as wealthier households as
both effects enter only through the wealth channel.
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on farm labor supply exhibits sufficient curvature, then the input and labor allocations
on the most important plot of larger households (wealthier households) should be less
(more) responsive to the sample plot shock.22

When labor constraints bind, the household responds to the sample plot shock by al-
locating additional labor to the sample plot, but they may withdraw that labor from
either the most important plot or from leisure. Whether wealthier or larger households
withdraw relatively more labor from the most important plot depends on the higher
order derivatives of the utility and production functions; in general, these differential
responses can not be signed.23 Additionally, one key difference from the insurance case
and input case is that household size and wealth no longer enter the model symmet-
rically. In one sense, household size and wealth instead enter the model as opposing
forces: wealthier households allocate less labor to their plots, as they value leisure rel-
atively more than consumption, while larger households allocate more labor to their
plots.

We focus on one particular case that builds on this intuition, presented in Figure 2.9.
When on farm labor supply exhibits sufficient curvature, then changes in responsiveness
to the sample plot shock of allocations on the most important plot are dominated by
changes in the elasticity of on farm labor supply; suppose this to be the case, and further
suppose that the elasticity of on farm labor supply is decreasing in the shadow wage.
As we can think of household size as shifting out on farm labor supply (by increasing
L), and wealth as shifting in on farm labor supply (by increasing the marginal utility
of leisure relative to the marginal utility of consumption), then larger households are
located on a more elastic portion of their on farm labor supply schedule, while wealthier
households are located on a less elastic portion of their on farm labor supply schedule.24

As a result, larger households will be less responsive to the sample plot shock, as they
will primarily draw labor on the sample plot from leisure, while wealthier households
will be more responsive to the sample plot shock, as they will primarily draw labor on
the sample plot from the most important plot.

These predictions of the model, summarised in Table 2.7, generate a test that allows
us to reject the absence of labor constraints. In particular, note that while insurance
constraints or input constraints can rationalize the allocations of wealthier households to
their most important plot as less responsive to the sample plot shock, only the presence
of labor constraints can rationalize them as more responsive to the sample plot shock.
Additionally, note that the model would struggle to rationalize larger households as
more responsive to the sample plot shock, although it is possible to do so in the presence

22See proof in Appendix B.2.
23Of course, the potential for ambiguous responses is heightened further if other forms of labor

constraints, for example on hiring labor, are also considered.
24This relationship between household size, wealth, and on farm labor supply elasticity has been

posited as far back as Lewis (1954), and is discussed in depth in Sen (1966).
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of labor constraints. In sum, we would interpret observing larger households as (weakly)
less responsive and richer households as less responsive to the sample plot shock as most
consistent with the presence of either input or insurance constraints, observing larger
households as less responsive and richer households as evidence for the presence of labor
constraints, and observing larger households as more responsive as inconsistent with
our model.

2.5 Separation failures and adoption of irrigation

2.5.1 Empirical strategy

Our benchmark specification to test for separation failures mirrors our benchmark spec-
ification to estimating the impacts of irrigation. We still make use of the regression
discontinutity across the command area boundary, but outcomes are now on the house-
hold’s most important plot (plot 2) instead of the sample plot (plot 1).

y2ist = β0 + β1CA1is + β2Dist1is + β3CA1is ∗Dist1is
+β4CA2is +X ′

1isγ1 +X ′
2isγ2 + αst + ε2ist (2.6)

This specification also includes controls CA2is, an indicator for whether the most im-
portant plot is in the command area, and X2is, the log area of the most important plot.
We report β1, the effect of the sample plot shock on outcomes on the most important
plot. In other specifications, we also consider heterogeneity with respect to the location
of the most important plot, and include CA1is ∗CA2is to test for this. In these specifi-
cations, we also report this difference in differences coefficient. For both this coefficient
and β1, in line with the model predictions in Table 2.7, we interpret negative coefficients
on labor, inputs, irrigation use, and horticulture, as evidence of separation failures.

Our benchmark specification to test for which constraints drive the separation failures
is similar, but also includes the interaction of households characteristics with the sample
plot shock.

y2ist = β0 + β1CA1is +W ′
iβ2 + CA1is ∗W ′

iβ3 + β4Dist1is + β5CA1is ∗Dist1is
+β6CA2is +X ′

1isγ1 +X ′
2isγ2 + αst + ε2ist (2.7)

where Wi is a vector of household characteristics, which includes household size and
an asset index in our primary specifications. We focus on β3: the heterogeneity, with
respect to household characteristics, of the impacts of the sample plot shock on out-
comes on the most important plot. The signs on β3 give our main test of which market
failures cause separation failures; Table 2.7 presents which signs map to which market
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failures.

In all cases, we also report coefficients from SFE specifications. These specifications
include the same controls, except the subsumed site-by-season fixed effects, and are
described in detail in Section 2.3.1.

Balance

We now use specification (2.6) to examine whether the most important plots in our
sample are comparable for households whose sample plot is just inside or just outside
the command area.25 Balance tests for most important plots are reported in Table
2.8. First, note that specifications that do not restrict to the discontinuity sample
perform particularly poorly here. Most notably, most important plots are more likely
to be located in the command area when sample plots are also located in the command
area, as households’ plots tend to be located near each other. Second, note that our
benchmark RDD specification and SFE specification both correct for this imbalance.
Although we have a p-value of less than 0.1 for one variable (an indicator for terracing),
the omnibus test fails to reject the null of balance.

2.5.2 Results

A test for separation failures

First, the graphical intuition behind the test for separation failures is captured in Fig-
ures 2.10. In this figure, irrigation use on the sample plot and the most important
plot is plotted against the distance of sample plot to the command area boundary. As
presented in Figure 2.4, irrigation use on the sample plot is 17pp higher for sample plots
just inside the command area compared to sample plots just outside the command area.
However, we now see that on most important plots, irrigation use is 5pp lower when
the sample plot is just inside the command area relative to when the sample plot is
just outside the command area. This result represents a separation failure; as discussed
in Section 2.4.2, the technology on the sample plot does not directly affect optimal
allocations on the most important plot.

Note that this result is distinct from many other tests of separation failures, as it implies
that in our context, the separation failure generates inefficiencies: we observe techno-
logically identical most important plots, distinct only through the managing household
and the technology of their sample plot, receiving different allocations of inputs. This

25Note that when testing for balance, as previously we do not include the controls
(X ′

1is, X
′
2is,CA2is).

82



contrasts with tests that consider differences in on farm labor allocations or land cul-
tivated across households of different sizes, either statically or dynamically, or leverag-
ing between or within household variation (e.g., Benjamin (1992); LaFave & Thomas
(2016); Dillon & Barrett (2017); Dillon et al. (2019)); in particular, their tests provide
evidence that at least one market has failed, which is known to be insufficient to show
inefficiency. Alternatively, another literature has used production function estimates
to infer marginal products of labor, land, and inputs from their allocations (Jacoby,
1993; Skoufias, 1994; Restuccia & Santaeulalia-Llopis, 2017); although heterogeneity
in these marginal products is sufficient for the existence of market failures, these tests
are typically not robust to the presence of unobserved heterogeneity across plots or to
measurement error (Gollin & Udry, 2019).

We present results on separation failures from our benchmark specification in Tables
2.9, 2.10, 2.11, and 2.12. For interpretation, coefficients for sample plots are presented
in Columns 1 and 2, and the mean outcome on the most important plot for sample plots
just outside the command area is presented in Column 3. Columns 4 and 5 present our
benchmark estimates of the effect of the sample plot shock on outcomes on the most
important plot.

We discuss some key findings. First, irrigation use falls by 4.0-4.7pp on most important
plots; this magnitude represents 39-45% of average irrigation use, and 26% of the com-
mand area effect on irrigation use.26 In addition to being consistent with Figure 2.10,
and with the presence of separation failures, the magnitude of this estimate is impor-
tant, as it represents a within households negative spillover of the command area; we
discuss how this affects our interpretation of our main reduced form estimates in Sec-
tion 2.3 in the following paragraphs. Second, we observe similar decreases for horticul-
ture (3.5-4.9pp), household labor (41.5-43.2 person-days/ha), and inputs (5,600-6,400
RwF/ha). However, although they are less robust, we observe increases in bananas
(3.8-8.9pp); as these are a less labor and input intensive crop, this is consistent with
our interpretation of the production function as the envelope of production functions
across crop choices.

Next, we expect the results above to be driven primarily by most important plots
located in the command area for most outcomes, as there is limited irrigation, and
therefore input use or horticulture during the dry season, on plots that cannot be
irrigated. Consistent with this, in Columns 6 and 7, we find our results on irrigation,
horticulture, and inputs are all driven by plots located in the command area. When the
most important plot is located in the command area, the 15-18pp increase in irrigation

26Although the p-value on this result is .120-.129, this specification loses power by considering
irrigation use on most important plots outside the command area, which are almost never irrigated.
As discussed in the next paragraph, specifications which include the interaction of the sample plot
command area indicator with a most important plot command area indicator are more precise for
irrigation use as an outcome.
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use on sample plots in the command area coincides with a 10-12pp decrease in irrigation
use on the most important plot; these relative magnitudes suggest that separation
failures cause few households to be able to use irrigation on more than one plot in the
command area.

As discussed in Section 2.3, the direct effects of the command area appear driven by
enabling the transition to dry season horticultural cultivation and substitution away
from lower value banana cultivation. However, the model in Section 2.4 is agnostic
about whether decreases in labor and input allocations on the most important plot are
driven by extensive margin responses (i.e., decreases in horticulture) or intensive margin
responses (i.e., decreases in labor and input allocations conditional on crop choice). To
test this, in Table 2.13 we present results of the sample plot shock on labor and input use
on sample plots and most important plots, controlling for crop fixed effects.27 Columns
5 and 6 confirm that the effects we document in Section 2.3 are driven by the shift to
dry season horticulture, as effects on sample plots disappear controlling for crop choice.
However, Columns 3 and 4 suggest that much of the effect of the sample plot shock on
labor and input use on most important plots is driven by intensive margin responses,
as coefficients on household labor and inputs fall by only 18%-41%. Combined with
our results on irrigation use and horticulture, this suggests that both intensive and
extensive margin responses on most important plots are important in response to the
sample plot shock.

These results on separation failures imply the existence of a within household negative
spillover, as they show that having one additional plot in the command area causes a
household to substitute away from their other plots, reducing their use of irrigation,
labor, and input allocations on those plots. This implies we cannot interpret our reduced
form estimates of the impacts of irrigation as the effect of building hillside irrigation
schemes, or even as the effect of adding one additional plot to the irrigation scheme on
adoption of irrigation. However, we can interpret them as the causal effect of access
to irrigation on the sample plot on production on the sample plot. Additionally, our
estimates on separation failures provide evidence on the negative spillover generated
by separation failures: in particular, we know the impact of moving one plot into the
command area on the household’s likelihood of irrigating a second command area plot.

To quantify the degree to which separation failures affect our reduced form estimates
of impacts of the command area, we ask what would happen to adoption of irrigation
if all households with two or more plots in the command area only had one plot in the
command area. To do so, we conduct a simple exercise where we increase adoption

27As crop fixed effects are a “bad control” (Angrist & Pischke, 2008), which introduces selection
bias, we interpret these results as suggestive. However, we anticipate that selection conditional on
crop choice should bias us towards finding no intensive margin effect on most important plots, as the
particularly constrained households switching out of horticulture in response to the sample plot shock
are likely to be the households who used less labor and inputs.
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of irrigation, on all command area plots held by households with multiple command
area plots, by our point estimate for the effect of the sample plot shock on irrigation
use on most important plots in the command area. This exercise suggests that adop-
tion would be 21-24% higher with perfect insurance and if inputs to production flowed
frictionlessly between househoulds. We interpret this estimate to be conservative for
two reasons. First, we treat households with 3 or more command area plots the same
as households with 2 command area plots; we do so because our research design has
little to say about the impacts of two sample plot shocks as opposed to one sample plot
shock on allocations to other plots. Second, this simple exercise abstracts from poten-
tial decreases in production driven by reduced labor and input allocations conditional
on adopting irrigation; our specification with crop fixed effects provides suggestive evi-
dence that accounting for these responses would decrease an estimate of counterfactual
productivity without separation failures.

Separating constraints

We now provide evidence on the source of the separation failure by estimating heteroge-
neous impacts, with respect to household size and wealth, of the sample plot shock on
outcomes on the most important plot. Recall that for this analysis, the key predictions
of the model were 1) if only insurance or input constraints bind, wealthier households
and larger households should be less responsive, and 2) if only labor constraints bind,
differential responsiveness of wealthier and larger households is ambiguous, but un-
der reasonable assumptions wealthier households should be more responsive and larger
households should be less responsive. Note that this test does not allow us to reject
a null that a particular constraint exists; any pattern of differential responses is con-
sistent with all constraints binding. However, if we observe that either wealthier or
larger households are more responsive, we can reject the null of no labor constraints.
Additionally, we would interpret observing wealthier households to be more responsive
and larger households to be less responsive as the strongest evidence of the presence of
labor constraints from this test.

We present the results of this test in Tables 2.14 and 2.15. First, larger households
are less responsive to the sample plot shock across every outcome. A household with
2 additional members, approximately one standard deviation of household size, is less
responsive to the sample plot shock on its most important plot by 70-80% for irrigation
use, 62-86% for horticulture, 54-58% for household labor, and 18-36% for inputs, with
all but the input coefficient statistically significant and robust across specifications.28

In contrast, wealthier households are more responsive to the sample shock across these
same outcomes. A household with a one standard deviation higher asset index is more

28These percentages, and the remainder of percentages in this paragraph, are expressed relative to
the average estimated sample plot shock.
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responsive to the sample plot shock on its most important plot by 40-80% for irrigation
use, 40-63% for horticulture, 35-58% for household labor, and 42-100% for input use;
however, these results are less robust, as statistical significance drops for all outcomes
except inputs in the RDD specification. In effect, these results suggest that our esti-
mates of separation failures are driven by the behavior of small, rich households, while
large, poor households do not change their allocations on their most important plot in
response to the sample plot shock. As discussed in Section 2.4.3, these results are very
difficult to reconcile with a model that does not feature labor market failures.

In sum, these results provide strong evidence for the existence of labor market fail-
ures that generate separation failures, which in turn cause inefficiently low adoption of
irrigation.

Additional evidence on input and information constraints

Work in progress: Minikit RCT results.

2.6 Conclusion

Work in progress: Irrigation in Africa.

Work in progress: Separation failures and technology adoption.
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Figure 2.1: Timeline

Notes: A timeline of events on the 3 hillside irrigation schemes we study is presented in this figure.
Black lines are used to indicate when (or the period during which) events took place, while pink lines
are used to indicate survey recall periods.
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Figure 2.2: Hillside irrigation scheme

Notes: A photograph of Karongi 12, one of the hillside irrigation schemes in this study, is presented
in this figure.
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Figure 2.3: Adoption dynamics

Notes: Average adoption of irrigation by season on sample plots in the main discontinuity sample,
inside and outside the command area, is presented in this figure. Averages outside the command area
are in black, while averages inside the command area and 95% confidence intervals for the difference
are in pink. Robust standard errors are clustered at the nearest water user group level.
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Figure 2.4: RDD: Irrigation

Notes: A visual regression discontinuity analysis for cultivation and irrigation, both on sample plots
in the main discontinuity sample during the dry season, is presented in this figure. Distance to
the boundary is reported in meters, with positive distance corresponding to sample plots inside the
command area. Points are binned average outcomes, and vertical lines through those points are 95%
confidence intervals on the mean. Predicted outcomes from regressions of outcomes on distance to
the command area boundary, a command area dummy, and their interaction are presented with 95%
confidence intervals on the prediction. Robust standard errors are clustered at the nearest water user
group level.

90



Figure 2.5: RDD: Crop choice

Notes: A visual regression discontinuity analysis for cultivation, banana cultivation, and horticulture
cultivation, all on sample plots in the main discontinuity sample during the dry season, is presented
in this figure. Distance to the boundary is reported in meters, with positive distance corresponding
to sample plots inside the command area. Points are binned average outcomes, and vertical lines
through those points are 95% confidence intervals on the mean. Predicted outcomes from regressions
of outcomes on distance to the command area boundary, a command area dummy, and their interaction
are presented with 95% confidence intervals on the prediction. Robust standard errors are clustered
at the nearest water user group level.
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Figure 2.6: RDD: Yield

Notes: A visual regression discontinuity analysis for yields and expenditures, both on sample plots
in the main discontinuity sample during the dry season, is presented in this figure. Distance to
the boundary is reported in meters, with positive distance corresponding to sample plots inside the
command area. Points are binned average outcomes, and vertical lines through those points are 95%
confidence intervals on the mean. Predicted outcomes from regressions of outcomes on distance to
the command area boundary, a command area dummy, and their interaction are presented with 95%
confidence intervals on the prediction. Robust standard errors are clustered at the nearest water user
group level.
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Figure 2.7: RDD: Labor

Notes: A visual regression discontinuity analysis for household labor and hired labor, both on sample
plots in the main discontinuity sample during the dry season, is presented in this figure. Distance to
the boundary is reported in meters, with positive distance corresponding to sample plots inside the
command area. Points are binned average outcomes, and vertical lines through those points are 95%
confidence intervals on the mean. Predicted outcomes from regressions of outcomes on distance to
the command area boundary, a command area dummy, and their interaction are presented with 95%
confidence intervals on the prediction. Robust standard errors are clustered at the nearest water user
group level.
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Figure 2.8: RDD: Profits

Notes: A visual regression discontinuity analysis for profits, on sample plots in the main discontinuity
sample during the dry season, is presented in this figure. Distance to the boundary is reported in
meters, with positive distance corresponding to sample plots inside the command area. Points are
binned average outcomes, and vertical lines through those points are 95% confidence intervals on the
mean. Predicted outcomes from regressions of outcomes on distance to the command area boundary,
a command area dummy, and their interaction are presented with 95% confidence intervals on the
prediction. Robust standard errors are clustered at the nearest water user group level.
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Figure 2.9: Differential responses under labor constraints

Shadow wage

On-farm labor

L2 L1 + L2 L′
1 + L2 L

′ − LO − lL− LO − l

dL2/dA1dL2/dA1

Notes: Households’ labor allocations under a binding off farm labor constraint are presented in this
figure. Lk and l are the household’s labor allocation on plot k and choice of leisure, respectively, as a
function of the shadow wage, with the argument suppressed. L1 +L2 is total household on farm labor
demand; if the household’s sample plot (k = 1) is in the command area (“sample plot shock”), on farm
labor demand shifts out to L′

1+L2. L−LO− l is household on farm labor supply; for large households,
on farm labor supply is shifted out to L

′ −LO − l. The shadow wage is determined by the intersection
of on farm labor demand and on farm labor supply, and labor allocations on the most important plot
are L2 evaluated at this shadow wage. In this figure, larger households are on a more elastic portion of
their on farm labor supply schedule; as a result, the sample plot shock causes a smaller increase in the
shadow wage, and in turn a smaller decrease in labor allocations on the most important plot (smaller
in magnitude dL2/dA1).
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Figure 2.10: RDD: Most important plot, irrigation

Notes: A visual regression discontinuity analysis for irrigation on sample plots and associated most
important plots during the dry season, for sample plots in the main discontinuity sample, is presented
in this figure. Distance to the boundary is reported in meters, with positive distance corresponding
to sample plots inside the command area. Points are binned average outcomes, and vertical lines
through those points are 95% confidence intervals on the mean. Predicted outcomes from regressions
of outcomes on distance to the command area boundary, a command area dummy, and their interaction
are presented with 95% confidence intervals on the prediction. Robust standard errors are clustered
at the nearest water user group level.
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Table 2.1: Summary statistics on agricultural production

Staples Horticulture
All Maize Beans Bananas All Rainy Dry
(1) (2) (3) (4) (5) (6) (7)

Yield 316 336 301 255 588 580 596
Hired labor (days) 39 39 40 11 61 62 60
HH labor (days) 304 307 291 104 465 451 478
Inputs 19 38 17 3 46 46 46
Profits
Shadow wage = 0 RwF/day 269 269 254 243 496 486 506
Shadow wage = 800 RwF/day 26 23 21 160 124 125 124

Sales share 0.15 0.19 0.13 0.51 0.60 0.57 0.63
Irrigated 0.02 0.02 0.02 0.02 0.58 0.22 0.92
Rainy 0.99 1.00 1.00 0.49 0.48 1.00 0.00
log area 1.93 1.98 1.93 2.42 1.72 1.62 1.81
Share of obs. 0.68 0.10 0.45 0.17 0.12 0.06 0.06

Notes: Sample averages of outcomes by crop per agricultural season are presented in this table. Yield,
inputs, and profits are reported in units of ’000 RwF/ha, labor variables are reported in units of
person-days/ha, and log area is in units of log hundredths of a hectare. All other variables are shares
or indicators. For reference, the median wage in our data is 800 RwF/person-day.
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Table 2.2: Balance: Sample plots

Coef. (SE) [p]

Full
Sample RDD SFE

(1) (2) (3) (4)
log area 2.090 0.045 0.425 0.252

(1.179) (0.077) (0.121) (0.147)
969 [0.554] [0.000] [0.087]

Own plot 0.894 -0.012 0.004 -0.036
(0.309) (0.020) (0.032) (0.042)
969 [0.535] [0.907] [0.391]

Owned plot >5 years 0.880 0.045 0.019 -0.008
(0.326) (0.019) (0.037) (0.035)
686 [0.020] [0.613] [0.817]

Rented out to farmer 0.032 0.027 -0.003 0.005
(0.177) (0.012) (0.023) (0.030)
969 [0.022] [0.884] [0.864]

Omnibus F-stat [p] 2.6 3.2 1.1
[0.109] [0.074] [0.307]

Notes: Balance for sample plot characteristics is presented in this table. Column 1 presents, for sample
plots in the main discontinuity sample that are outside the command area, the mean of the dependent
variable, the standard deviation of the dependent variable in parentheses, and the total number of
observations. Columns 2 through 4 present regression coefficients on a command area indicator, with
robust standard errors clustered at the nearest water user group level in parentheses, and p-values
in brackets. The final row of each column presents the Omnibus F-stat for the null of balance on all
outcomes, with the p-value for the associated test in brackets. Column 2 compares outcomes inside and
outside the command area in the full sample. Column 3 uses the regression discontinuity specification
in Equation (2.1), omitting controls X1is. Column 4 uses the spatial fixed effects specification in
Equation (2.2), omitting controls X1is. Robust standard errors are clustered at the level of the nearest
water user group.
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Table 2.3: Balance: Households

Coef. (SE) [p]

Full
Sample RDD SFE

(1) (2) (3) (4)
HHH female 0.221 0.041 0.045 0.037

(0.416) (0.025) (0.046) (0.058)
969 [0.094] [0.326] [0.522]

HHH age 47.5 0.5 2.1 0.3
(14.5) (0.8) (1.4) (1.8)
967 [0.497] [0.127] [0.871]

HHH completed primary 0.287 0.069 0.128 0.129
(0.453) (0.025) (0.047) (0.061)
966 [0.005] [0.006] [0.034]

HHH worked off farm 0.410 0.023 -0.039 0.004
(0.493) (0.027) (0.051) (0.063)
969 [0.392] [0.441] [0.945]

# of plots 5.19 0.61 0.20 0.51
(3.38) (0.18) (0.36) (0.47)
969 [0.001] [0.582] [0.280]

# of HH members 4.89 0.17 -0.00 0.07
(2.16) (0.11) (0.21) (0.28)
969 [0.104] [0.985] [0.787]

# who worked off farm 0.77 0.10 0.01 0.11
(0.85) (0.05) (0.08) (0.11)
969 [0.039] [0.909] [0.326]

Housing expenditures 49.2 -2.3 -5.6 -15.7
(127.3) (6.9) (14.9) (18.8)
962 [0.739] [0.707] [0.406]

Asset index -0.04 0.11 0.15 0.07
(0.99) (0.05) (0.12) (0.15)
967 [0.034] [0.203] [0.633]

Omnibus F-stat [p] 3.6 1.8 1.3
[0.059] [0.185] [0.260]

Notes: Balance for household characteristics is presented in this table. Column 1 presents, for house-
holds managing sample plots in the main discontinuity sample that are outside the command area,
the mean of the dependent variable, the standard deviation of the dependent variable in parenthe-
ses, and the total number of observations. Columns 2 through 4 present regression coefficients on a
command area indicator, with robust standard errors clustered at the nearest water user group level
in parentheses, and p-values in brackets. The final row of each column presents the Omnibus F-stat
for the null of balance on all outcomes, with the p-value for the associated test in brackets. Column
2 compares outcomes inside and outside the command area in the full sample. Column 3 uses the
regression discontinuity specification in Equation (2.1), omitting controls X1is. Column 4 uses the
spatial fixed effects specification in Equation (2.2), omitting controls X1is.
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Table 2.4: Sample plots

Dry season Rainy seasons
Coef. (SE) [p] Coef. (SE) [p]

Dep. var. RDD∗ SFE∗ Dep. var. RDD∗ SFE∗

(1) (2) (3) (4) (5) (6)
Cultivated 0.387 -0.009 0.031 0.814 -0.102 -0.056

(0.487) (0.041) (0.046) (0.389) (0.031) (0.041)
2,442 [0.822] [0.507] 4,080 [0.001] [0.175]

Irrigated 0.056 0.152 0.179 0.015 0.035 0.066
(0.230) (0.023) (0.030) (0.121) (0.009) (0.014)
2,442 [0.000] [0.000] 4,080 [0.000] [0.000]

Horticulture 0.061 0.128 0.153 0.072 0.015 0.060
(0.240) (0.023) (0.028) (0.258) (0.018) (0.021)
2,441 [0.000] [0.000] 4,079 [0.396] [0.005]

Banana 0.246 -0.136 -0.139 0.273 -0.158 -0.170
(0.431) (0.037) (0.040) (0.446) (0.039) (0.043)
2,441 [0.000] [0.000] 4,079 [0.000] [0.000]

Notes: Regression analysis is presented in this table. Columns 1 through 3 restrict to observations
during the dry season, while columns 4 through 6 restrict to observations during the rainy season.
Columns 1 and 4 present, for sample plots in the main discontinuity sample that are outside the
command area, the mean of the dependent variable, the standard deviation of the dependent variable in
parentheses, and the total number of observations. Columns 2, 3, 5, and 6 present regression coefficients
on a command area indicator, with robust standard errors clustered at the nearest water user group
level in parentheses, and p-values in brackets. Columns 2 and 5 use the regression discontinuity
specification in Equation (2.1), omitting controls X1is. Columns 3 and 6 use the spatial fixed effects
specification in Equation (2.2), omitting controls X1is.

100



Table 2.5: Sample plots

Dry season Rainy seasons
Coef. (SE) [p] Coef. (SE) [p]

Dep. var. RDD∗ SFE∗ Dep. var. RDD∗ SFE∗

(1) (2) (3) (4) (5) (6)
HH labor/ha 55.8 67.1 78.0 219.3 -1.3 -1.1

(197.0) (17.5) (23.4) (320.2) (25.4) (28.9)
2,438 [0.000] [0.001] 4,072 [0.958] [0.969]

Inputs/ha 2.3 5.3 4.0 15.4 -0.6 1.4
(16.3) (1.4) (1.6) (40.0) (2.8) (3.2)
2,442 [0.000] [0.014] 4,080 [0.821] [0.651]

Hired labor exp./ha 3.6 3.3 1.4 14.9 2.8 0.7
(25.6) (2.1) (2.8) (45.7) (3.3) (4.3)
2,442 [0.126] [0.635] 4,080 [0.387] [0.869]

Notes: Regression analysis is presented in this table. Columns 1 through 3 restrict to observations
during the dry season, while columns 4 through 6 restrict to observations during the rainy season.
Columns 1 and 4 present, for sample plots in the main discontinuity sample that are outside the
command area, the mean of the dependent variable, the standard deviation of the dependent variable in
parentheses, and the total number of observations. Columns 2, 3, 5, and 6 present regression coefficients
on a command area indicator, with robust standard errors clustered at the nearest water user group
level in parentheses, and p-values in brackets. Columns 2 and 5 use the regression discontinuity
specification in Equation (2.1), omitting controls X1is. Columns 3 and 6 use the spatial fixed effects
specification in Equation (2.2), omitting controls X1is.
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Table 2.6: Sample plots

Dry season Rainy seasons
Coef. (SE) [p] Coef. (SE) [p]

Dep. var. RDD∗ SFE∗ Dep. var. RDD∗ SFE∗

(1) (2) (3) (4) (5) (6)
Yield 76.8 62.5 71.0 257.1 -27.7 -20.4

(260.6) (22.9) (30.5) (445.2) (31.6) (38.1)
2,317 [0.007] [0.020] 3,942 [0.381] [0.593]

Sales/ha 47.8 48.7 56.9 78.0 -11.6 19.5
(174.5) (14.5) (21.1) (218.2) (18.1) (23.2)
2,442 [0.001] [0.007] 4,080 [0.523] [0.400]

Profits/ha
Shadow wage = 0 71.0 54.9 67.5 227.0 -28.7 -21.0

(246.8) (20.9) (28.0) (421.4) (29.4) (36.0)
2,317 [0.009] [0.016] 3,942 [0.329] [0.560]

Shadow wage = 800 31.1 4.6 18.3 52.7 -25.5 -18.6
(217.0) (17.0) (24.8) (351.9) (25.8) (34.3)
2,315 [0.788] [0.462] 3,935 [0.323] [0.587]

Notes: Regression analysis is presented in this table. Columns 1 through 3 restrict to observations
during the dry season, while columns 4 through 6 restrict to observations during the rainy season.
Columns 1 and 4 present, for sample plots in the main discontinuity sample that are outside the
command area, the mean of the dependent variable, the standard deviation of the dependent variable in
parentheses, and the total number of observations. Columns 2, 3, 5, and 6 present regression coefficients
on a command area indicator, with robust standard errors clustered at the nearest water user group
level in parentheses, and p-values in brackets. Columns 2 and 5 use the regression discontinuity
specification in Equation (2.1), omitting controls X1is. Columns 3 and 6 use the spatial fixed effects
specification in Equation (2.2), omitting controls X1is.
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Table 2.7: Model predictions

dL2

dA1

d

dL

dL2

dA1

d

dM

dL2

dA1

No constraints 0 0 0

Constraints
Insurance − + +
Inputs − 0/+ +
Labor − +∗ −∗

Notes: Predicted signs from the model for key comparative statics of interest are presented in this table.
Predictions in the no constraints case correspond to Proposition 1. Predictions on dL2

dA1
correspond to

Proposition 2. Predictions on d
dL

dL2

dA1
and d

dM
dL2

dA1
when insurance or input constraints bind correspond

to Proposition 3, and when labor constraints bind correspond to Proposition 4. * is used to indicate
predictions that hold when additional assumptions are made.
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Table 2.8: Balance: Most important plot

Coef. (SE) [p]

Full
Sample RDD SFE

(1) (2) (3) (4)
log area 2.225 -0.108 0.094 0.027

(1.041) (0.068) (0.128) (0.164)
784 [0.114] [0.460] [0.869]

Own plot 0.875 0.025 0.040 0.008
(0.331) (0.019) (0.033) (0.037)
784 [0.174] [0.226] [0.823]

Owned plot >5 years 0.960 0.005 0.012 0.023
(0.197) (0.014) (0.024) (0.024)
585 [0.728] [0.617] [0.344]

Rented out to farmer 0.033 0.013 -0.026 -0.025
(0.179) (0.010) (0.022) (0.024)
784 [0.224] [0.249] [0.290]

Command area 0.399 0.187 -0.053 -0.090
(0.491) (0.032) (0.058) (0.069)
784 [0.000] [0.360] [0.191]

Terraced 0.626 0.017 -0.099 -0.111
(0.485) (0.028) (0.053) (0.063)
784 [0.539] [0.063] [0.077]

Rented out to investor 0.081 0.035 -0.042 -0.041
(0.273) (0.018) (0.040) (0.042)
784 [0.054] [0.292] [0.323]

Omnibus F-stat [p] 5.6 1.3 0.9
[0.019] [0.265] [0.336]

Notes: Balance for most important plot characteristics is presented in this table. Column 1 presents,
for most important plots for which the associated sample plot is in the main discontinuity sample
and located outside the command area, the mean of the dependent variable, the standard deviation
of the dependent variable in parentheses, and the total number of observations. Columns 2 through
4 present regression coefficients on a command area indicator, with robust standard errors clustered
at the nearest water user group level in parentheses, and p-values in brackets. The final row of each
column presents the Omnibus F-stat for the null of balance on all outcomes, with the p-value for the
associated test in brackets. Column 2 compares outcomes inside and outside the command area in
the full sample. Column 3 uses the regression discontinuity specification in Equation (2.6), omitting
controls (CA2is, X

′
1is, X

′
2is); Column 4 uses a similar spatial fixed effects specification, omitting controls

(CA2is, X
′
1is, X

′
2is).
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Table 2.9: Most important plot

Sample plot MIP

Coef. (SE) [p] Coef. (SE) [p]

RDD∗ SFE∗ Dep. Var. RDD∗ SFE∗ RDD∗ SFE∗

(1) (2) (3) (4) (5) (6) (7)
Cultivated

CA -0.009 0.031 0.356 0.040 -0.032 0.082 0.013
(0.041) (0.046) (0.479) (0.041) (0.048) (0.044) (0.054)
[0.822] [0.507] 2,123 [0.333] [0.515] [0.063] [0.815]

CA * MIP in CA -0.102 -0.099
(0.054) (0.060)
[0.057] [0.100]

Joint F-stat [p] 2.5 1.5
[0.084] [0.220]

Irrigated

CA 0.152 0.179 0.104 -0.040 -0.047 0.003 0.008
(0.023) (0.030) (0.306) (0.026) (0.031) (0.020) (0.029)
[0.000] [0.000] 2,123 [0.120] [0.129] [0.872] [0.788]

CA * MIP in CA -0.103 -0.123
(0.036) (0.041)
[0.004] [0.003]

Joint F-stat [p] 4.3 4.5
[0.015] [0.012]

Notes: Regression analysis is presented in this table. Columns 1 and 2 use outcomes on the sample plot
(and replicate the analysis in Table 2.4), while Columns 3 through 7 use outcomes on the associated
most important plot. All columns restrict to observations during the dry season. Column 3 presents,
for the most important plot associated with sample plots in the main discontinuity sample that are
outside the command area, the mean of the dependent variable, the standard deviation of the dependent
variable in parentheses, and the total number of observations. For Columns 1, 2, and 3 through 7, Rows
“CA” present coefficients on a command area indicator for the sample plot, while Rows “CA * MIP
in CA” present coefficients on the interaction of a command area indicator for the sample plot with a
command area indicator for the most important plot; robust standard errors clustered at the nearest
water user group level are in parentheses, and p-values are in brackets. Column 4 uses the regression
discontinuity specification in Equation 2.6; Column 5 uses a similar spatial fixed effects specification.
Column 6 uses the regression discontinuity specification in Equation 2.7, where the interacted Wi is
a command area indicator for the most important plot; Column 7 uses a similar spatial fixed effects
specification.
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Table 2.10: Most important plot

Sample plot MIP

Coef. (SE) [p] Coef. (SE) [p]

RDD∗ SFE∗ Dep. Var. RDD∗ SFE∗ RDD∗ SFE∗

(1) (2) (3) (4) (5) (6) (7)
Horticulture

CA 0.128 0.153 0.100 -0.035 -0.049 -0.000 -0.005
(0.023) (0.028) (0.300) (0.024) (0.029) (0.018) (0.024)
[0.000] [0.000] 2,123 [0.147] [0.091] [0.982] [0.837]

CA * MIP in CA -0.082 -0.098
(0.036) (0.042)
[0.024] [0.021]

Joint F-stat [p] 2.6 2.9
[0.079] [0.057]

Banana

CA -0.136 -0.139 0.199 0.089 0.038 0.094 0.041
(0.037) (0.040) (0.399) (0.034) (0.041) (0.042) (0.054)
[0.000] [0.000] 2,123 [0.008] [0.351] [0.027] [0.442]

CA * MIP in CA -0.013 -0.006
(0.042) (0.052)
[0.764] [0.902]

Joint F-stat [p] 3.7 0.5
[0.027] [0.636]

Notes: Regression analysis is presented in this table. Columns 1 and 2 use outcomes on the sample plot
(and replicate the analysis in Table 2.4), while Columns 3 through 7 use outcomes on the associated
most important plot. All columns restrict to observations during the dry season. Column 3 presents,
for the most important plot associated with sample plots in the main discontinuity sample that are
outside the command area, the mean of the dependent variable, the standard deviation of the dependent
variable in parentheses, and the total number of observations. For Columns 1, 2, and 3 through 7, Rows
“CA” present coefficients on a command area indicator for the sample plot, while Rows “CA * MIP
in CA” present coefficients on the interaction of a command area indicator for the sample plot with a
command area indicator for the most important plot; robust standard errors clustered at the nearest
water user group level are in parentheses, and p-values are in brackets. Column 4 uses the regression
discontinuity specification in Equation 2.6; Column 5 uses a similar spatial fixed effects specification.
Column 6 uses the regression discontinuity specification in Equation 2.7, where the interacted Wi is
a command area indicator for the most important plot; Column 7 uses a similar spatial fixed effects
specification.
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Table 2.11: Most important plot

Sample plot MIP

Coef. (SE) [p] Coef. (SE) [p]

RDD∗ SFE∗ Dep. Var. RDD∗ SFE∗ RDD∗ SFE∗

(1) (2) (3) (4) (5) (6) (7)
HH labor/ha

CA 67.1 78.0 66.6 -41.5 -43.2 -18.0 -18.2
(17.5) (23.4) (219.6) (21.2) (23.6) (15.4) (19.0)
[0.000] [0.001] 2,120 [0.050] [0.067] [0.241] [0.338]

CA * MIP in CA -55.7 -55.8
(25.0) (30.7)
[0.026] [0.070]

Joint F-stat [p] 2.6 2.1
[0.073] [0.126]

Inputs/ha

CA 5.3 4.0 5.4 -6.4 -5.6 -3.6 -2.7
(1.4) (1.6) (28.3) (2.8) (3.0) (1.9) (2.4)
[0.000] [0.014] 2,123 [0.023] [0.064] [0.061] [0.259]

CA * MIP in CA -6.7 -6.5
(3.2) (3.3)
[0.040] [0.047]

Joint F-stat [p] 2.8 2.3
[0.065] [0.099]

Notes: Regression analysis is presented in this table. Columns 1 and 2 use outcomes on the sample plot
(and replicate the analysis in Table 2.5), while Columns 3 through 7 use outcomes on the associated
most important plot. All columns restrict to observations during the dry season. Column 3 presents,
for the most important plot associated with sample plots in the main discontinuity sample that are
outside the command area, the mean of the dependent variable, the standard deviation of the dependent
variable in parentheses, and the total number of observations. For Columns 1, 2, and 3 through 7, Rows
“CA” present coefficients on a command area indicator for the sample plot, while Rows “CA * MIP
in CA” present coefficients on the interaction of a command area indicator for the sample plot with a
command area indicator for the most important plot; robust standard errors clustered at the nearest
water user group level are in parentheses, and p-values are in brackets. Column 4 uses the regression
discontinuity specification in Equation 2.6; Column 5 uses a similar spatial fixed effects specification.
Column 6 uses the regression discontinuity specification in Equation 2.7, where the interacted Wi is
a command area indicator for the most important plot; Column 7 uses a similar spatial fixed effects
specification.
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Table 2.12: Most important plot

Sample plot MIP

Coef. (SE) [p] Coef. (SE) [p]

RDD∗ SFE∗ Dep. Var. RDD∗ SFE∗ RDD∗ SFE∗

(1) (2) (3) (4) (5) (6) (7)
Hired labor exp./ha

CA 3.3 1.4 3.8 -1.8 0.2 0.0 2.0
(2.1) (2.8) (24.7) (2.2) (2.5) (2.2) (2.6)
[0.126] [0.635] 2,123 [0.420] [0.935] [0.997] [0.451]

CA * MIP in CA -4.2 -4.0
(2.6) (3.4)
[0.109] [0.246]

Joint F-stat [p] 1.4 0.7
[0.254] [0.487]

Notes: Regression analysis is presented in this table. Columns 1 and 2 use outcomes on the sample plot
(and replicate the analysis in Table 2.5), while Columns 3 through 7 use outcomes on the associated
most important plot. All columns restrict to observations during the dry season. Column 3 presents,
for the most important plot associated with sample plots in the main discontinuity sample that are
outside the command area, the mean of the dependent variable, the standard deviation of the dependent
variable in parentheses, and the total number of observations. For Columns 1, 2, and 3 through 7, Rows
“CA” present coefficients on a command area indicator for the sample plot, while Rows “CA * MIP
in CA” present coefficients on the interaction of a command area indicator for the sample plot with a
command area indicator for the most important plot; robust standard errors clustered at the nearest
water user group level are in parentheses, and p-values are in brackets. Column 4 uses the regression
discontinuity specification in Equation 2.6; Column 5 uses a similar spatial fixed effects specification.
Column 6 uses the regression discontinuity specification in Equation 2.7, where the interacted Wi is
a command area indicator for the most important plot; Column 7 uses a similar spatial fixed effects
specification.

108



Table 2.13: Intensive margin effects

MIP (Crop FE) Sample plot (Crop FE)
Coef. (SE) [p] Coef. (SE) [p]

Dep. var. RDD∗ SFE∗ Dep. var. RDD∗ SFE∗

(1) (2) (3) (4) (5) (6)
HH labor/ha 66.6 -34.0 -25.7 55.8 2.7 1.2

(219.6) (14.8) (17.7) (197.0) (15.0) (20.2)
2,120 [0.022] [0.146] 2,438 [0.859] [0.952]

Inputs/ha 5.4 -4.9 -3.3 2.3 -0.1 -2.2
(28.3) (2.2) (2.4) (16.3) (1.1) (1.6)
2,123 [0.022] [0.160] 2,442 [0.923] [0.157]

Hired labor exp./ha 3.8 -1.3 1.1 3.6 -0.1 -2.2
(24.7) (2.0) (2.3) (25.6) (1.9) (2.8)
2,123 [0.508] [0.628] 2,442 [0.967] [0.432]

Notes: Regression analysis is presented in this table. Columns 1 through 3 use outcomes on the most
important plot, while Columns 4 through 6 use outcomes on the sample plot. Columns 1 and 4 present,
for sample plots (or associated sample plots) in the main discontinuity sample that are outside the
command area, the mean of the dependent variable, the standard deviation of the dependent variable in
parentheses, and the total number of observations. Columns 2, 3, 5, and 6 present regression coefficients
on a command area indicator for the sample plot (or associated sample plot), with robust standard
errors clustered at the nearest water user group level in parentheses, and p-values in brackets. Column
2 uses the regression discontinuity specification in Equation (2.2), with crop fixed effects included as
controls; Column 3 uses a similar spatial fixed effects specification, with crop fixed effects included as
controls. Column 5 uses the regression discontinuity specification in Equation (2.1), with crop fixed
effects included as controls; Column 6 uses the similar spatial fixed effects specification in Equation
(2.2), with crop fixed effects included as controls.
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Table 2.14: Heterogeneity with respect to household size and wealth

Coef. (SE) [p]

RDD∗ SFE∗

(1) (2)
Cultivated

CA -0.093 -0.225
(0.087) (0.096)
[0.287] [0.019]

CA * # of HH members 0.026 0.040
(0.013) (0.015)
[0.051] [0.007]

CA * Asset index -0.018 -0.052
(0.027) (0.032)
[0.501] [0.107]

Joint F-stat [p] 2.1 2.8
[0.100] [0.043]

Irrigated

CA -0.109 -0.135
(0.047) (0.050)
[0.022] [0.008]

CA * # of HH members 0.014 0.019
(0.007) (0.009)
[0.051] [0.031]

CA * Asset index -0.016 -0.037
(0.015) (0.019)
[0.310] [0.048]

Joint F-stat [p] 1.8 2.8
[0.151] [0.043]

Coef. (SE) [p]

RDD∗ SFE∗

(1) (2)
Horticulture

CA -0.108 -0.120
(0.045) (0.049)
[0.015] [0.015]

CA * # of HH members 0.015 0.015
(0.007) (0.008)
[0.034] [0.077]

CA * Asset index -0.014 -0.031
(0.016) (0.019)
[0.382] [0.117]

Joint F-stat [p] 2.0 2.3
[0.120] [0.081]

Banana

CA 0.036 -0.130
(0.067) (0.075)
[0.594] [0.082]

CA * # of HH members 0.010 0.033
(0.011) (0.013)
[0.365] [0.008]

CA * Asset index -0.009 -0.022
(0.023) (0.026)
[0.688] [0.385]

Joint F-stat [p] 2.8 2.7
[0.041] [0.048]

Notes: Regression analysis is presented in this table. All columns use outcomes on most important
plots. Rows “CA” present coefficients on a command area indicator for the sample plot, while Rows
“CA * W” present coefficients on the interaction of a command area indicator for the sample plot with
a household characteristic W; robust standard errors clustered at the nearest water user group level
are in parentheses, and p-values are in brackets. The Row “Joint F-stat [p]” presents F-statistics for
the null that all 3 coefficients are 0, with the p-value for the associated test in brackets. Column 1
uses the regression discontinuity specification in Equation 2.7; Column 2 uses a similar spatial fixed
effects specification.
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Table 2.15: Heterogeneity with respect to household size and wealth

Coef. (SE) [p]

RDD∗ SFE∗

(1) (2)
HH labor/ha

CA -96.3 -101.6
(37.6) (36.0)
[0.011] [0.005]

CA * # of HH members 11.2 12.5
( 4.7) ( 4.6)
[0.016] [0.007]

CA * Asset index -14.6 -25.1
(10.5) (12.5)
[0.164] [0.046]

Joint F-stat [p] 2.3 3.1
[0.083] [0.027]

Coef. (SE) [p]

RDD∗ SFE∗

(1) (2)
Inputs/ha

CA -9.2 -9.1
(4.4) (4.6)
[0.034] [0.045]

CA * # of HH members 0.6 0.9
(0.5) (0.7)
[0.244] [0.199]

CA * Asset index -2.7 -5.6
(1.6) (1.9)
[0.090] [0.003]

Joint F-stat [p] 2.0 3.2
[0.109] [0.025]

Hired labor exp./ha

CA -5.1 -2.5
(3.7) (3.0)
[0.169] [0.404]

CA * # of HH members 0.6 0.6
(0.5) (0.4)
[0.192] [0.181]

CA * Asset index 0.2 -1.3
(1.4) (1.3)
[0.887] [0.307]

Joint F-stat [p] 0.7 0.8
[0.527] [0.505]

Notes: Regression analysis is presented in this table. All columns use outcomes on most important
plots. Rows “CA” present coefficients on a command area indicator for the sample plot, while Rows
“CA * W” present coefficients on the interaction of a command area indicator for the sample plot with
a household characteristic W; robust standard errors clustered at the nearest water user group level
are in parentheses, and p-values are in brackets. The Row “Joint F-stat [p]” presents F-statistics for
the null that all 3 coefficients are 0, with the p-value for the associated test in brackets. Column 1
uses the regression discontinuity specification in Equation 2.7; Column 2 uses a similar spatial fixed
effects specification.
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Chapter 3

Marshallian consumer surplus from
intertemporal substitution:
Applications to savings, credit, and
index insurance

3.1 Introduction

The envelope theorem is commonly applied in economics to derive Roy’s identity. In a
static model, the change in utility from a marginal price change of a good, normalized
by the marginal utility of income, is the quantity consumed of the good. Marshallian
consumer surplus, the welfare trapezoid yielded by the integral of quantity consumed
over the price change, provides a useful summary metric of the effect on consumer
welfare of the price change. In a dynamic model with uncertainty, constructing a single
measure of the consumer surplus from a permanent price change is more challenging,
since it depends on the household’s discount factors in addition to its quantity consumed
for each period-state. As a result, a common simplification is to instead calculate the
average per-period consumer surplus, effectively assuming a static context.

I argue that Marshallian consumer surplus is a similarly good metric for per-period
consumer surplus from a price change to risky assets in a dynamic model as it is for
consumer goods in a static model. I do so using a model which nests approaches from
Deaton (1991) and Carroll (2012), who focus on a special class of the risky assets I
study to understand saving and borrowing behavior. To gain tractability in this setting,
I avoid calculating the household’s discount factors for each period-state, or trying to
sum welfare gains across potentially unobserved period-states. Instead, I collapse each
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time period into a static setting, admitting the result that consumer demand for the
risky asset in each period is a sufficient statistic for the welfare effects of a change in
the price of the asset. As a result, the intuition is the same as in the static model: on
the margin, neoclassical households must be indifferent to small changes in quantity
purchased of the asset, so the first order effect of the price change on welfare dominates.
Unfortunately, this approach cannot recover exact consumer surplus: Blackorby et al.
(1984) prove that this holds in general in a dynamic model, even with standard consumer
goods, and Hausman & Newey (2016) demonstrate a non-identification result for exact
consumer surplus even in a static setting with exogenous variation in budget constraints.
However, Marshallian consumer surplus has the advantage of being straightforward and
transparent to calculate while preserving much of the ease of interpretation of exact
measures. Additionally, this framework suggests that dynamic elasticities of the demand
curve to a permanent unexpected price change conditional on a set of shocks are the key
moments to match if one is interested in estimating a structural model of borrowing,
saving, and investment, with the objective of measuring the welfare gains from access
to a particular technology.

I demonstrate how to calculate the consumer surplus1 from price changes to a risky
asset using this approach by reanalyzing results from 3 papers studying experimental
and quasi-experimental variation in prices. In each setting, the key step is to model
the intertemporal substitution technology as a risky asset, either purchased (for savings
or index insurance) or sold (for credit) by the household; after this, the model based
approach can be applied directly. In the first of the 3 papers, Karlan et al. (2014a)
randomize prices of index insurance in Ghana to estimate market demand, and addi-
tionally compare the effects on households of grants of index insurance to cash grants
of the actuarially fair value of the index insurance. If one is concerned exclusively with
welfare, one could make this comparison simply by comparing the consumer surplus
from index insurance to the actuarially fair value of the grants of index insurance. I
demonstrate that on average, households value the index insurance 55% as much as the
cash grants; since index insurance pays out after cultivation, while the cash grants pay
out before, this is potentially consistent with a high marginal product of investment
during cultivation. In the second, Karlan & Zinman (2013) randomize the interest rates
on loans from Compartamos, a leading microfinance institution in Mexico. Combining
their estimated effects with additional assumptions specific to their context, I produce
an estimate of the consumer surplus from access to Compartamos bank of $1 per month
per capita in each municipality where Compartamos operates. This effect is econom-
ically meaningful, but too small to be detectable using the welfare proxy approaches

1For convenience, for the remainder of the paper I use consumer surplus to refer to Marshallian
consumer surplus, except when explictly noted. However, note that in contrast to compensating or
equivalent variation - which, following Hausman (1981), are measures of exact consumer surplus -
Marshallian consumer surplus may not be uniquely defined when multiple prices change, and does
not represent the exact consumer surplus of the price change unless the marginal utility of income is
constant. I discuss how these points relate to my proposed measure in Section 3.2.3.
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that have been used in the literature on the welfare impacts of microcredit. In the
third, Duflo et al. (2006) randomize incentives for retirement savings in the United
States, and compare the elasticity of the response to quasi-experimental variation in
incentives to save from the Savers’ Credit. By comparing the two estimated demand
curves, I lower bound the lost consumer surplus from inattention to the Savers’ Credit,
which I estimate to be more than 50% of the total surplus available if savers were not
inattentive.

This paper contributes primarily to the literature that measures the welfare gains from
new technologies from intertemporal substitution. In this literature it is closest to
Einav et al. (2010), who estimate consumer and producer surplus in insurance markets
estimating response of demand and claims to variation in prices.2 The key contribution
of this paper is to extend their approach to a setting where concerns of intertemporal
substitution, and not just heterogeneity and uncertainty, are first order. In contrast to
their work, the literature has primarily relied on a mix of reduced form approaches re-
lying on proxies for welfare (Kaboski & Townsend (2012), Bryan et al. (2014), Banerjee
et al. (2015), Breza & Kinnan (2017)) and structural approaches (Kaboski & Townsend
(2011), Bryan et al. (2014), Breza & Kinnan (2017)); I argue that a flexible sufficient
statistics approach is a valuable complement to the existing literature.3 Consistent
with this, even among studies employing reduced form approaches, many make the
point that estimating consumer demand is important for understanding the welfare
gains from the technology (Dupas et al. (2016), Karlan & Zinman (2013)), an intuition
which I formalize.

The remainder of the paper is organized as follows. Section 3.2 introduces the model,
demonstrates how a few simple extensions can add important flexibility and realism,
and builds a feasible welfare measure. Section 3.3 presents each of the 3 empirical
applications, with each subsection describing the reanalysis applied to each paper, and
presenting consumer surplus graphically and numerically. Section 3.4 concludes.

2Other similar contributions include Einav & Finkelstein (2011) and Chetty & Finkelstein (2012).
3Many existing papers have applied sufficient statistics approaches to measure the welfare gains

from an intertemporal substitution technology. To cite a few examples, Chetty (2008) estimates optimal
unemployment insurance, Annan (2017) estimates the welfare effects of a policy restricting the sale of
auto insurance on credit, and Auclert (2017) estimates heterogeneous effects of changes in asset prices
through shocks to interest rates on household wealth. See Chetty (2009) for a review of this literature.
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3.2 Model

3.2.1 Setup

The setup closely follows Deaton (1991) and Carroll (2012). Each period, consumers
solve

V (x, ht, ρ) = max
bt

u(x− ρbt, st) + δEst [V (y(st+1) + f(bt, st+1), ht+1, ρ)|st] (3.1)

subject to the constraint
bt ∈ [bt(ht), bt(ht)] (3.2)

x is the consumer’s cash on hand at the start of period t. u is the household’s utility
index; it may depend on the realized state st as in Dean & Sautmann (2014), which
evolves following a Markov process.4 bt is the household’s choice variable, the number
of units of the risky asset they purchase at price ρ. ht is the full history of states and
asset purchase decisions before period t. [bt(ht), bt(ht)] is a closed interval of the real
line which constrains choices of bt. That it depends on ht enables certain forms of
dynamic incentives, a key feature of many credit products. y(st+1) is an income shock,
and f is a risky concave production technology. When u(x − ρbt, st) ≡ u(x − ρbt),
ft+1(bt, st+1) = bt, and st has no serial dependence, this model reduces to the Deaton
(1991) buffer stock savings model, with ρ as the inverse interest rate factor.

The comparative static of interest is a permanent shock to ρ on welfare, normalized by
the marginal utility of income. Let b∗t be the solution to the household optimization
problem in period t. For convenience here, I write Vt ≡ V (x, ht, ρ), and ut ≡ u(x −
ρb∗t , st); Vt+1(st+1) and ut+1(st+1) are defined analogously. Let γ(st+1) ≡

δu′
t+1(st+1)

u′
t

be
the intertemporal marginal rate of substitution associated with st+1. Then

dVt/dρ

dVt/dx
=

∂Vt/∂ρ

∂Vt/∂x
= −b∗t︸︷︷︸

“static” gains

+Est [γ(st+1)]︸ ︷︷ ︸
discount factor

Est

[
γ(st+1)

Est [γ(st+1)]︸ ︷︷ ︸
weight

∂Vt+1(st+1)/∂ρ

∂Vt+1(st+1)/∂x︸ ︷︷ ︸
“future” gains

]

(3.3)
The first step, that the total derivatives equal the partial derivatives, is just the envelope
theorem, and the second step involves evaluating each derivative. We can break the
expression up into four components.

First, the “static” gains is the standard expression one recovers in a static model,
4Modeling state as following a Markov process, combined with the dependence of u, y, and f

on st+1, means that this infinite time horizon approach strictly generalizes discrete time horizon
approaches; one simply fixes u = y = f = 0 by allowing state to collapse to a degenerate distribution
for all t > T .
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quantity purchased of the risky asset. However, the gains are not static in the sense
that there is no guarantee of which period-states’ contemporaneous utility changes
in value. In particular, this means that this expression holds only in expectation; a
household with a price elasticity of demand for the risky asset above 1 will see its
welfare fall in response to a price decrease, for example, if it encounters an st+1 such
that f(b, st+1) = 0.

Second, the discount factor used is the expected intertemporal marginal rate of substi-
tution. To facilitate intuition, if f(b, s) = b and households are unconstrained in their
choice of b, then the first order condition implies that the discount factor equals ρ; it will
be lower (higher) if their choice of bt is constrained from below (above). The household
discounts the weighted expectation of future gains, where the weights are proportional
to each period-state’s intertemporal marginal rate of substitution; gains are weighted
more heavily in periods in which households are relatively poorer. The “future” gains
are recursively defined; they will again contain the four terms in the above expression.

Next, consider a discrete change in prices from ρ0 to ρ1. When ρ0 = ∞ and ρ1 = ρ, this
represents the introduction of the technology. Let CS ≡

∫ ρ1
ρ0

dVt/dρ
dVt/dx

dρ be the consumer
surplus of the price change. As is the case in a static model, this is strictly in between the
compensating variation and the equivalent variation of the price change, and therefore
represents a useful metric for the consumer welfare effects of the price change when the
marginal utility of income does not change too much as ρ changes. One can show that
there exist γ∗(st+1), where γ∗(st+1) ∈ ConvexHull({γ(st+1)|ρ ∈ [ρ1, ρ0]}), such that

CS =

∫ ρ0

ρ1

b∗tdρ+ Est [γ
∗(st+1)]Est

[
γ∗(st+1)

Est [γ
∗(st+1)]

∫ ρ1

ρ0

∂Vt+1(st+1)/∂ρ

∂Vt+1(st+1)/∂x
dρ

]
(3.4)

The first term is now the standard welfare trapezoid we get in the static case, and the
second term is the discounted weighted average of consumer surplus in future period-
states.

3.2.2 Extensions

The model can be extended in a number of key ways. First, to see how the model can
not be extended, note that the key assumption underlying the envelope theorem trick
is that the only channel through which ρ entered the household’s decision is through
its budget constraint. In many realistic settings, this is violated to a minor degree. For
example, when borrowing is constrained, in practice the constraint is frequently defined
in terms of ρbt, not in terms of bt. In this case, there is an additional effect through
the change in the constraint; however, this is likely to be second order. However, it can
also be violated severely, such as in contexts where moral hazard is directly affected by
ρ (as Karlan & Zinman (2009) find in South Africa).
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First, a menu of technologies can be permitted. The increases in the quantity of the risky
asset bt may substitute or complement other risky assets available to the household.
More generally, a more flexible income process can be implemented, where the next
period’s income can depend flexibly on the full history of past purchases and sales of
the full menu of risky assets and a multidimensional random shock; among other things,
this flexibly allows for investments to pay out stochastically over the course of multiple
periods. Additionally, any non-convexities in these technologies are permitted.

Second, heterogeneity across households is permitted; in this case, aggregate consumer
surplus is the sum of consumer surplus across households.5 This adds realism, and
with a continuum of households it potentially generates smooth aggregate demand
for bt despite household non-convexities, which can simplify estimation. To cite one
example, Kaboski & Townsend (2011) study demand for credit in rural Thailand with a
generalization of the buffer stock savings model. Additionally they allow for households
to make discrete investments; however, with a continuum of households, despite this
nonconvexity their model still results in smooth aggregate demand for credit. In fact,
their model is fully nested within this framework, with the exception of how they allow
default. Despite this, their model is likely well approximated within this framework,
since certain forms of default are allowed in this framework through the dependence of
f , bt, and bt on ht.

Third, this approach allows for certain forms of general equilibrium effects. If mar-
kets are perfectly competitive, then an application of the first welfare theorem allows
converting the general equilibrium problem to a planner’s problem, after which the en-
velope theorem can once again be applied. As an example, Wright & Williams (1984)
calculate the welfare effects of the introduction of competitive storage in a closed econ-
omy with competitive output markets. In this framework, the joint distribution by
period-state of γ and demand for storage as a function of the cost of storage is suffi-
cient to calculate the surplus from the introduction of the technology. However, a cost
of using the approach in general equilibrium is that an increase in consumer surplus
for a single household does not necessarily correspond to an increase in utility for that
household; a share of that surplus may be passed on to other households through price
effects, to cite one possibility.

3.2.3 A feasible measure

From Equation 3.4, we can see that aggregate consumer surplus will depend on the joint
distribution, for each period-state, of marginal utility of consumption and demand

5Moreover, with complete insurance across households, γ(st+1) will be equal across households,
a point made by Ligon et al. (2002) among others; this would permit summing within period-state
before summing across period-states.
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for the risky asset as a function of the price of the risky asset. Without imposing
additional structure on the problem, this is infeasible; however, this statement holds
more generally for the estimation of consumer surplus even for traditional consumer
goods. In particular, note that estimates of consumer surplus for consumer goods
using static models, using either exact or Marshallian approaches, will be biased when
consumption of those goods is correlated with the marginal utility of consumption
within household. Despite this, what I will call flow or per-period consumer surplus
is still a potentially useful metric of the welfare effects of the price change, and a well
estimated structural model potentially allows the decomposition of differences between
structural estimates of exact consumer surplus and reduced form estimates of flow
Marshallian consumer surplus into a discount factor, correlation between the marginal
utility of consumption and consumption of the good within household, and income
effects of the price change on consumption of the good. In this sense, estimates of flow
Marshallian consumer surplus complement, as opposed to substitute, other approaches
used to estimate the welfare gains from a new consumer good.

I argue similarly for the use of flow consumer surplus6 as a metric for the welfare effects
of the price change for a risky asset, which I define to be

CSt+k ≡
∫ ρ0

ρ1

b∗t+kdρ (3.5)

which is feasible to estimate. In particular, demand for the risky asset in period t + k
is sufficient for CSt+k, which can be estimated from exogenous permanent shocks to ρ
in period t.

As discussed above, this measure is imperfect relative to traditional Marshallian con-
sumer surplus from Equation 3.4 in two senses. First, we are discarding Est [γ

∗(st+1)],
which may vary across households. However, we can potentially bound this term; to
give one simple example, if households are never constrained, and f(bt, st+1) = bt, then
we know from the first order condition that Est [γ

∗(st+1)] ∈ [ρ1, ρ0].7 Second, we are dis-
carding the weights γ∗(st+1)

Est [γ
∗(st+1)]

. To understand the impact of this, consider the Deaton
(1991) saving model. In this model, γ∗(st+1)

Est [γ
∗(st+1)]

will be highest in periods where the
households receives a negative income shock, and as a result saves less. Because of
this,

∫ ρ1
ρ0

∂Vt+1(st+1)/∂ρ
∂Vt+1(st+1)/∂x

dρ will be lower in periods where γ∗(st+1)
Est [γ

∗(st+1)]
is high, which will

bias this approach’s measurement upwards. In contrast, with a credit technology, the
measures from this approach will be biased downwards. Third, if shocks are correlated
across households, or if households have biased beliefs, then effectively the realized
distribution of states may be different from the anticipated distribution of states. As

6Hereafter, I will use consumer surplus to refer to flow Marshallian consumer surplus for conve-
nience, which I contrast with traditional consumer surplus measures.

7A similar argument can be made to bound Est [γ
∗(st+1)] for constrained households, either from

above or from below. Other investments made by the household can potentially refine these bounds.
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a result, households may happen to save into periods in which their marginal utility
from consumption is high, or borrow from periods in which their marginal utility from
consumption is low. In that sense, we should interpret this measure as anticipated
consumer surplus from the perspective of period t+ k.8

3.3 Empirical applications

To make concrete the applications of this approach, I reanalyze results from 3 experi-
ments on savings, credit, and insurance which randomly vary prices or interest rates.
The first is Karlan et al. (2014a) (hereafter KOOU), who compare the effects of index
insurance and cash grants on agricultural investment in Ghana, and randomly vary
the prices of index insurance to estimate demand. I compare the consumer surplus
of grants of index insurance to cash grants equal to the actuarially fair value of the
index insurance. The second is Karlan & Zinman (2013) (hereafter KZ), who study the
long run effects of a change in microfinance interest rates by Compartamos, a Mexican
MFI. I use their experiment to estimate the consumer surplus from Compartamos, and
I compare this estimate to estimates from the literature measuring the welfare impacts
of microfinance using RCTs. The third is Duflo et al. (2006) (hereafter DGLOS), who
study retirement savings in the United States, and demonstrate that households re-
spond much less to the Savers’ Credit, effectively a subsidy for retirement savings, than
to more salient but equivalent deposit matching treatments. I use their estimates to
lower bound the foregone consumer surplus due to inattention to the Savers’ Credit.

3.3.1 Index insurance: KOOU

Empirical strategy

KOOU study and compare the effects of index insurance and cash grants on farmer
investment decisions and welfare. To do so, they conduct two sets of experiments. In
the first, they randomly assign either grants of index insurance or cash grants equal
to the actuarially fair value of the index insurance to households. In the second, they
randomly vary the prices of index insurance to estimate demand. In particular, I
focus on two price experiments that they run in the second year of the study. In the
first, a random subset of households from what they call Sample Frames 1 and 2 were
randomly offered the opportunity to buy an index insurance product at 12% or 50% of

8A similar caveat may be made for behavioral households. In all these scenarios, as is typical
in models with internalities, the bias in the measure will be driven by the gap between anticipated
Est [γ

∗(st+1)] and the true expectation of the realized distribution of γ∗(st+1), along with the price
elasticity of demand for the risky asset.
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the actuarially fair price, with prices randomized across communities. In the second,
in what they call Sample Frame 3, similar in characteristics but not drawn from the
same population as Sample Frame 2, communities were offered index insurance with
prices randomized across communities to 100% or 150% of the actuarially fair price.
Although 150% is above actuarially fair price, it was chosen to reflect the market price
typically offered for index insurance.

To proceed, I make the assumption that the demand for the index insurance product is
the same in both experiments. This is not necessarily the case, since the products and
the communities are not identical; however, with a functional form assumption on de-
mand this is testable, and I impose linearity. Additionally, I bound quantity demanded
of index insurance from above, since households were prohibited from purchasing index
insurance that covers more than their total landholdings. Finally, with the full demand
curve estimated, I compare the actuarially fair value of the insurance grants to the
consumer surplus of insurance grants.

To simplify comparison, prices of actuarially fair insurance are normalized to 1, so
quantities at actuarially fair prices are expenditures, and quantities are normalized to
be per household.9 Having heterogeneity in the product across households is not a
problem, since this is flexibly modeled by variation in f . However, the assumption that
demand is the same in the lower price experiment (with Sample Frame 1 and 2) and in
the higher price experiment (with Sample Frame 3) is nontrivial, but is used primarily
for extending the demand curve estimated using Sample Frame 3 to lower prices.

Results

Figure 3.1 plots the fitted demand from the price experiment. A formal statistical test
rejects a linear fit,10 however the degree to which this assumption could potentially bias
the exercise is easy to see from the figure. The consumer surplus from grants of index
insurance is A + B (4.4 GHC/acre), while grants of value equal to the actuarially fair
price of the index insurance is B + C (8 GHC/acre). Roughly, on average, households
would be indifferent between receiving 4.4 GHC/acre and receiving the grants of index
insurance that pays out 8 GHC/acre on average after shocks are realized, despite the
fact that the index insurance is more likely to pay out when households have experienced
a negative shock. This is potentially consistent with the fact that the index insurance

9Across the households from the price experiments I focus on, the actuarially fair price of the index
insurance varied from 7.65 GHC/acre to 9.5 GHC/acre, and prices in the experiment were set based
on that. I work through this exercise as if all of them were priced at 8 GHC/acre, but the results of the
exercise do not meaningfully change with alternative approaches to calculating prices and quantities
to enable comparison across households that received products priced slightly differently.

10The estimated slopes and intercepts from the two price experiments are statistically significantly
different.
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does not pay out until after cultivation is already completed, while households purchase
the index insurance product before cultivation, a period during which households likely
have a high marginal product of capital unless they have access to low interest credit
(Casaburi & Willis (2016)).

3.3.2 Microcredit: KZ

Empirical strategy

KZ study the effects of a decrease in interest rates by Compartamos on demand for
microcredit in Mexico. 132 branches were randomly assigned to tiered monthly pricing
of either 3.0%/3.5%/4.0% or 3.5%/4.0%/4.5% interest. In all cases, this was a decrease
from the 4.0%/4.5%/5.0% interest offered at baseline, which was comparable to the
terms offered by competitors. The experiment lasted 29 months, and was perceived
by households to be a permanent change, allowing estimates of demand from 1 to 29
months out from the shock. Loan terms were 4 months, monthly interest payments
are calculated based on the initial loan amount, and 15% VAT is charged on top of
each month’s loan payment.11 Letting bt represent a single week’s payment, then in the
model ρbt(1+ (1.15)16r) = 16bt; the income the household receives for selling the risky
asset (the sequence of future payments to Compartamos) times 1 + the share of this
income paid as interest equals the total payments. As a result, the relevant ρ = 16

1+18.4r
,

or 10.31, 9.73, 9.22, and 8.75 for 3.0%, 3.5%, 4.0%, and 4.5% respectively. Comparing
the ratios in equivalent tiers in the treatment and control group, the intervention can
be thought of approximately as a 5.5% increase in ρ.

Note that in this case, an important aspect of the model is that f is allowed to depend
on ht+1 and not just st+1; past borrowing and realizations of state can influence future
interest rates. However, this assumes away many forms of moral hazard, in particular
interest rates cannot affect repayment probabilities except through selection. This is
potentially reasonable for Compartamos clients, for whom default rates are about 1%.
I also ignore an additional requirement that the household leaves 10% of its initial
loan balance in a savings account with Compartamos. The initial loan balance is
ρbt, so this means the future sequence of payments depends partially on ρ (since the
household receives 0.1ρbt after 16 weeks of payments). However, this introduces a
negligible amount of bias into this approach. Additionally, KZ note that, anecdotally,
this requirement is not vigorously enforced.

To estimate consumer surplus, of the price change, I use KZ results on the effects of
the reduced interest rates on loan amount. I normalize prices to 1 in the high interest

11Additionally, households must deposit 10% of the initial loan balance with Compartamos, which
is released after the 4 months.
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rate group, so loan amounts are quantities, while loan amounts divided by ρ in the low
interest group (1.055) are quantities in that group. Following their Table 3, monthly
demand curves are plotted separately for each year. As a result, the demand curve
can be interpreted as average monthly demand per branch, and one can multiply by
132 to get total demand for Compartamos if a particular price prevailed at all of the
experimental branches.

Finally, to estimate total consumer surplus of Compartamos, I assume that demand is
linear until ρ = 0.95, roughly the prevailing market price at other MFIs, beyond which
point it falls to 0. This would be consistent with the patterns of demand for credit
found by Karlan & Zinman (2008), who find that price elasticities spike above market
rates. As a test of linearity, I compare the predicted borrowing at ρ = 0.95 to borrowing
before the experiment, at which point ρ = 0.95 for Compartamos loans.

Results

Figure 3.2 graphs demand curves for credit from Compartamos, which increase over
each of the 3 years of the experiment, with quantities normalized such that prices (in
USD) are 1 in the high interest rate arm. First, note that the linear model appears
to perform well, with predicted borrowing at the market interest rate roughly constant
and equal to the baseline level of borrowing (the red dot), when Compartamos had
ρ = 0.95. Calculating monthly consumer surplus of Compartamos loans in each year of
the experiment simply requires calculating the area of the trapezoid (A for year 1, A+B
for year 2, and A+B+C for year 3) and multiplying by 132 (the number of experimental
branches).12 This yields a monthly consumer surplus of 5.3 million USD, 6.3 million
USD, and 7.5 million USD in year 1, 2, and 3, respectively. This is approximately 9%
of the volume of loans disbursed at low interest rates (which is easy to see from Figure
3.2).13 Alternatively phrased, on average, clients would have been indifferent between
receiving 9% less balance today, but making the same payments, and not taking out the
loan at all. This is about 30 USD/loan, or about 1 USD/capita/month in the branch’s
municipality.

Although this estimate is small, it is potentially meaningful. A typical borrower’s
household from their sample earns about 300 USD/month, so 30 USD surplus from a 4
month loan represents 2.5% of a typical household’s income over that period. As an al-
ternative to this approach, Angelucci et al. (2015) use a randomized rollout of branches

12Note that this is under the counterfactual that Compartamos offered the lower interest rate to all
consumers. I consider this the relevant counterfactual since following the experiment, Compartamos
rolled this lower interest rate out to all its branches.

13Note that this is driven to a large degree by the assumption that demand is perfectly elastic at
above market interest rates, and relaxing this assumption would increase this percentage; therefore,
one could alternatively interpret this result as a lower bound.
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of Compartamos to estimate welfare effects of microcredit. Consistent with much of the
microfinance literature, they fail to find significant effects on consumption. However,
their standard error on the effect on food expenditures, to choose one commonly used
category, is 3 USD/household/month. Due to moderate take up of microcredit, it is
challenging to sufficiently power a cluster RCT to estimate the welfare impacts of micro-
credit, even aggregating across multiple RCTs.14 In contrast, the standard error on the
consumer surplus estimate (1 USD/capita/month) is closer to 0.2 USD/capita/month,
since demand can be estimated much more precisely with sufficient variation in prices.

3.3.3 Savings: DGLOS

Empirical strategy

DGLOS study the effects of inattention to the Savers’ Credit, a subsidy for retirement
savings in the United States, on household savings. First, they use quasi-experimental
variation in eligibility for the Savers’ Credit to document small responses to what is
effectively a 100% match for retirement savings.15 In contrast, in an experiment with
H&R Block in which households were randomly assigned to receive either 0%, 20%, or
50% matches for retirement savings, they document much more elastic responses to the
more salient experimental matches. Although this dynamic setting is ostensibly more
complicated than static settings in which inattention is studied, such as Chetty et al.
(2009), this framework permits using the same tools from behavioral public finance to
analyze both settings. To produce the policy relevant demand curves, I fit linear (with
respect to ρ) demand curves to their estimates of the effects of matches and the Savers’
Credit. I make the assumption that the elasticity to matched contributions estimated
from the experiment is bias free, and use this to construct a bias free demand curve
for retirement savings deposits, which I contrast with the demand curve affected by
consumer bias estimated using quasi-experimental variation from the Savers’ Credit.
With the two demand curves, we can calculate the potential consumer surplus under
the unbiased demand curve, and put a lower bound on the potential foregone surplus
caused by inattention to the Savers’ Credit.

14See Meager (2015) for a metaanalysis of 7 RCTs evaluating the effects of microcredit. Simi-
larly, 95% intervals for their posterior distributions of the average effect of microcredit on monthly
consumption cover 0 to 25 USD/household/month.

15DGLOS also study households that receive effective 25% and 12.5% matches; I drop them from
this analysis because the estimated slope of demand using these households is significantly less precise.
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Results

The estimated demand curves, along with the average deposits conditional on ρ used
to estimate the demand curve, are plotted in Figure 3.3.16 The shaded area A, 20
USD/year/household, is a lower bound on the foregone consumer surplus caused by
inattention to the Savers’ Credit per year per household. In comparison, the total area
under the demand curve estimated using the match experiment is 37 USD/year/house-
hold; at least 53% of this potential consumer surplus is foregone due to inattention to
the Savers’ Credit.

Although 20 USD/year seems small for the United States, this comes with 3 caveats.
First, this eligible sample is a relatively poor sample of households, with annual incomes
less than 30,000 USD. Second, a relatively small percentage of sample households save,
even with a match; in the experimental (quasi-experimental) sample, 2.5% (2.1%) saved
without a match, while 14.0% (3.3%) saved with a 50% match (100% match). Since
this surplus is 0 for households that would not have saved even if they were attentive
to the Savers’ Credit, one could calculate a conditional consumer surplus by scaling 20
USD/year/household up by the inverse of share of households that would have saved if
they were attentive to the Savers’ Credit if that share was observable. Third, households
retirement savings may be suboptimal due to present bias or other behavioral biases.
As a result, changes in savings induced by price changes may have first order welfare
effects that this approach does not take into account.

3.4 Conclusion

This paper argues that demand for intertemporal substitution technologies is almost
sufficient for the exact consumer surplus from a price change to the technology under
a broad class of neoclassical models. This suggests that tools traditionally used in the
analysis of static demand for consumer goods may also be used to understand demand
for savings and credit.

A few key insights from this approach to understanding demand for intertemporal sub-
stitution technologies are particularly important. First, structural exercises estimating
the welfare gains from an intertemporal substitution technology should plot demand
as a function of a permanent price shock, as in Figure 3.2. The welfare effects of the
technology estimated from the structural exercise will be similar to the area under this
demand curve, so this provides both a convenient visualization of their estimates and

16Average deposits were higher for the experimental sample in the year of the experiment; I divide
experimental deposits by a constant multiple to recover these points. This approach is consistent with
the assumption that the experiment recovers the bias-free elasticity.
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an overidentification test based on the reasonableness of the elasticity. Second, RCTs
of these technologies can bound neoclassical welfare gains from data on take-up alone,
and can potentially produce relatively tight bounds with reasonable assumptions on
the shape of demand. Additionally, these demand based bounds will often be signif-
icantly more precise than what is feasible from estimates based on welfare proxies.
Third, large deviations between estimated consumer surplus from this approach and
money metric equivalents to reduced form effects on welfare proxies (such as business
profits or consumption) are unlikely to be explained by neoclassical models. As an
example, this insight is helpful to understand the result from Bryan et al. (2014), that
implausible levels of risk aversion are needed to rationalize the large responses to small
incentives to migrate and the large effects of migration on consumption. This is because
the consumer surplus from the subsidies is small (since the subsidies are small), but
the average effect on a money metric welfare proxy is large, something that can only
be rationalized with a small discount factor, which they rule out since households are
observed to save, or a large degree of curvature in utility. Finally, and importantly,
Marshallian consumer surplus approaches admit simple graphical illustrations of wel-
fare. Dynamic models often require complicated numerical approaches to estimation,
but these graphical representations facilitate transparency of how welfare estimates are
constructed and accessibility of results to more general audiences.
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Figure 3.1: Index insurance consumer surplus
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Figure 3.2: Monthly consumer surplus from Compartamos loans
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Figure 3.3: Biased and debiased retirement savings demand
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Appendix A

The treatment effect elasticity of
demand: Estimating the welfare
losses from groundwater depletion
in India

A.1 Data appendix

A.1.1 Construction of Wns

I construct two variables using potential crop yield: log relative potential irrigated crop
yield, and log potential rainfed crop yield. Define AI

nsc and AR
nsc to be the FAO GAEZ

potential crop yield in district n in state s for crop c under the intermediate irrigated
and rainfed scenarios, respectively, which I calculate by averaging the values across
FAO GAEZ 5 arc-minute cells to the district level. Let Lnsct be the land allocated to
crop c in district n in state s in year t, observed in Ag ’56-’11. Let Lsc =

∑
n,t Lnsct be

the total area, across all years in Ag ’56-’11, allocated to crop c in state s. I define

Wns ≡ log

∑
c Lsc min{AI

nsc, 10A
R
nsc}∑

c LscAR
nsc

logRF yieldns ≡ log

∑
c LscA

R
nsc∑

c Lsc

where Wns is the log relative potential irrigated crop yield, and RF yieldns is the log
potential rainfed crop yield. A few notes on the construction. First, the weights Lsc are
constant within state; this ensures that variation in Wn is caused by variation across
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districts in the potential yield increase from irrigation, and not variation across dis-
tricts in weights. Since these weights vary across states, I control flexibly for state in
all analysis. It is important to allow the weights to vary across states; there is large
variation across states in crop choice. Second, applying min{AI

nsc, 10A
R
nsc} is similar to

winsorizing Wns at log 10 for each crop. This is almost exclusively necessary for a few
desert districts in Rajasthan and Gujarat; dropping these districts does not meaning-
fully change results, and the weighted instrumental variables estimator already places
very little weight on these districts. However, not implementing this winsorization puts
very high weight on these districts in estimation of the coefficient on Wns, since these
districts’ predicted rainfed yield is close to 0. Since these districts are very dependent
on irrigation and have relatively high yields, this increases the first stage and reduced
form coefficients on Wns. Third, controlling for logRF yieldns and a state fixed effect,
the coefficient on Wns would be the same if instead Wns = log

∑
c Lsc min{AI

nsc,10A
R
nsc}∑

c Lsc
, or

log potential irrigated crop yield.

A.2 Model appendix

A.2.1 Proofs and derivations appendix

Proof of generality of functional form.. Under weak separability of unobserved
heterogeneity, and imposing the exclusion restrictions, agent surplus under treatment
Y1i(w)− C1i(z) = U(h(w, z), Ṽi), following Bhattacharya (2017) in defining weak sepa-
rability. Taking derivatives with respect to w and z yields

∂Y1i

∂w
=

∂U(h(z, w); Ṽi)

∂h

∂h(z, w)

∂w
∂C1i

∂z
=

∂U(h(z, w); Ṽi)

∂h

∂h(z, w)

∂z
∂2Y1i

∂w∂z
=

∂2U(h(z, w); Ṽi)

∂h2

∂h(z, w)

∂w

∂h(z, w)

∂z
+

∂U(h(z, w); Ṽi)

∂h

∂2h(z, w)

∂w∂z

A few restrictions appear here. First, ∂2Y1i

∂w∂z
= 0 (exclusion restriction). Second, ∂h(z,w)

∂z
>

0 and ∂h(z,w)
∂w

> 0 (monotonicity). Third, ∂U(h(z,w);Ṽi)
∂h

> 0 (monotonicity). Therefore,
excluding edge cases, ∂2U(h(z,w);Ṽi)

∂h2 = 0 and ∂2h(z,w)
∂w∂z

= 0. The latter implies h(z, w) =

hW (w) + hZ(z) + Vhi. The former implies ∂U(h(z,w);Ṽi)
∂h

= Vγi for some constant which is
a function of Ṽi. Making these substitutions implies

Y1i(w)− C1i(z) = Vγi(hW (w) + hZ(z) + Vhi) + ṽi
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which is equivalent to

Y1i(w) = VγiγW (w) + V1i

C1i(z) = VγiγZ(z) + VCi

Derivation of Equation 1.4 and 1.5.. Calculating each derivative,

dE[Yi(z, w)]

dz
= fV (F

−1
V (E[Di(z, w)]))

dγZ(z)

dz
E[Y1i(w)− Y0i|Ui = E[Di(z, w)]]

dE[πi(z, w)]

dz
= −E[Di(z, w)]E[Vγi|Ui < E[Di(z, w)]]

dγZ(z)

dz
dE[πi(z, w)]

dw
= −E[Di(z, w)]E[Vγi|Ui < E[Di(z, w)]]

dγW (w)

dw
dE[Di(z, w)]

dz
= fV (F

−1
V (E[Di(z, w)]))

dγZ(z)

dz
dE[Di(z, w)]

dw
= fV (F

−1
V (E[Di(z, w)]))

dγW (w)

dw

Some algebra then yields the desired result.

Derivation of Equation 1.10. Calculating the derivative of TOT(u;w) yields

dTOT(u;w)
dw

= E[Vγi|Ui < u]
dγW (w)

dw

Some algebra, and results from the proof of Equation 1.4 and 1.5, yields the desired
result.

Derivation of Equation 1.11.. Calculating each derivative,

dE[Yi(z, w)]

dw
= fV (F

−1
V (E[Di(z, w)]))

dγW (w)

dw
E[Y1i(w)− Y0i|Ui = E[Di(z, w)]]+

E[Di(z, w)]E[Vγi|Ui < E[Di(z, w)]]
dγW (w)

dw

Some algebra, and results from the proof of Equation 1.4 and 1.5, yields the desired
result.

Proof of Equation 1.19.. It suffices to show that βWIV
Z + LASEW = βIV

W . Let
Z⊥

i ≡ Zi − E[Zi|Wi, Xi], and W⊥
i ≡ Wi − E[Wi|Zi, Xi]. Note that

βWIV
Z =

∑
s

E[YiZ
⊥
i |Si = s]

E[DiZ⊥
i |Si = s]

E[1{Si = s}(ωW (Si)/ωZ(Si))DiZ
⊥
i ]

E[(ωW (Si)/ωZ(Si))DiZ⊥
i ]
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I then proceed in two steps. First, I show that

E[1{Si = s}(ωW (Si)/ωZ(Si))DiZ
⊥
i ]

E[(ωW (Si)/ωZ(Si))DiZ⊥
i ]

=
E[1{Si = s}DiW

⊥
i ]

E[DiW⊥
i ]

Second, I consider conditions under which Assumption 5a holds. Written in terms of
the natural estimators of LATEZ|s and LATEW |s + LASEW |s, with LASEW |s defined
similarly,

E[YiZ
⊥
i |Si = s]

E[DiZ⊥
i |Si = s]

=
E[YiW

⊥
i |Si = s]

E[DiW⊥
i |Si = s]

− LASEW |s

Substituting each of these expressions into the original equation yields

βWIV
Z + LASEW =

∑
s

E[YiW
⊥
i |Si = s]

E[DiW⊥
i |Si = s]

E[1{Si = s}DiW
⊥
i ]

E[DiW⊥
i ]

= βIV
W

which completes the proof.

For the first step, I use the result that ωW (s) =
E[1{Si=s}DiW

⊥
i ]

E[DiW⊥
i ]

and ωZ(s) =
E[1{Si=s}DiZ

⊥
i ]

E[DiZ⊥
i ]

,
which can be shown by rewriting the IV estimator as a weighted average of IV estima-
tors conditional on Si = s. Substituting these expressions in immediately completes
the first step.

For the second step, I impose some additional assumptions. First, Z⊥
i ⊥ (Wi, X̃i)

and W⊥
i ⊥ (Zi, X̃i) conditional on Si = s. These are strong assumptions, but can be

achieved by reweighting. Second, I assume marginal treatment effects and the propen-
sity score are linear conditional on Si = s. Third, I assume E[(Z⊥

i )
3|Si = s] = 0 and

E[(W⊥
i )3|Si = s] = 0. Again, these are strong assumptions, but can be achieved by

reweighting.

I then proceed using

E[YiZ
⊥
i |Si = s]

E[DiZ⊥
i |Si = s]

=
E[(E[Yi|Z⊥

i ,Wi, Xi]− E[Yi|Zi = E[Zi|Wi, Xi],Wi, Xi])Z
⊥
i |Si = s]

E[(E[Di|Z⊥
i ,Wi, Xi]− E[Di|Zi = E[Zi|Wi, Xi],Wi, Xi])Z⊥

i |Si = s]

This requires a few steps. I focus on the numerator; the approach is the same for the de-
nominator. First, I project Yi onto Z⊥

i , yieldingE[YiZ
⊥
i |Si = s] = E[E[Yi|Z⊥

i , Si]Z
⊥
i |Si =

s]. Second, I apply the law of iterated expectations. Since Z⊥
i ⊥ (Wi, X̃i) conditional

on Si = s, E[E[Yi|Z⊥
i , Si]Z

⊥
i |Si = s] = E[E[Yi|Z⊥

i ,Wi, Xi]Z
⊥
i |Si = s]. Lastly, using

Z⊥
i ⊥ (Wi, X̃i), and E[Z⊥

i |Si = s] = 0, we complete the equality.

Next, I substitute these differences with integrals over marginal treatment effects and
the propensity score. Here, I use the linearization of both. Let MTE(u;w, x̃, s) =
m1su+m2sw + x̃′m3s and E[Di(z, w; x̃, s)] = d1sz + d2sw + x̃′d3s. Then, some calculus
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yields

E[YiZ
⊥
i |Si = s]

E[DiZ⊥
i |Si = s]

=
E[d1s(Z

⊥
i )

2(m1sE[Di|Wi, Xi] +m2sWi + X̃ ′
im3s) +

1
2
d1sm1s(Z

⊥
i )

3|Si = s]

E[d1s(Z⊥
i )

2|Si = s]

Two simplifications can be made here. First, I use E[(Z⊥
i )

3|Si = s] = 0. Second, I use
Z⊥

i ⊥ (Wi, X̃i). Together, these yield

E[YiZ
⊥
i |Si = s]

E[DiZ⊥
i |Si = s]

= m1sE[Di|Si = s] +m2sE[Wi|Si = s] + E[X̃ ′
i|Si = s]m3s

A symmetric proof shows the same result holds for E[YiW
⊥
i |Si=s]

E[DiW⊥
i |Si=s]

− LASEW |s, which
completes the proof.

A.2.2 Weights

LATE and LASE weights

I start with the result from Heckman & Vytlacil (2005) on OLS.

Cov(Q, T − E[T |X])

Var(T − E[T |X])
=

∫ ∫
∂E[Q|T = t,X = x]

∂t
ω(t, x)dtdx

ω(t, x) =
Pr[T > t,X = x]E[T − E[T |X]|T > t,X = x]∫ ∫

Pr[T > t′, X = x′]E[T − E[T |X]|T > t′, X = x]dt′dx′

The first expression shows that the coefficient on T , controlling for X, estimates a
weighted average of derivatives of the conditional expectation function of Q given T = t
and X = x with respect to t. The second expression shows that the weights ω(t, x) are
the partial expectation, conditional on X = x, of T − E[T |X] given T > t, times the
probability that X = x. Note this partial expectation approaches 0 at the edges of the
conditional support of T conditional on X = x, which is consistent with our intuition
that OLS estimates should not depend on derivatives of the conditional expectation
function outside the support of the covariates. Additionally, it is helpful to note that∫

ω(t, x)dt =
Pr[X = x]Var(T |X = x)∫
Pr[X = x′]Var(T |X = x′)dx′

The weights placed on each x depend on the probability X = x and the conditional
variance of T given X = x.
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Still following Heckman & Vytlacil (2005), we can now apply this to the IV estimator
βIV
Z = Cov(Yi,Zi−E[Zi|Wi,Xi])

Cov(Di,Zi−E[Zi|Wi,Xi])
= LATEZ . For the definition of these weights, it will be

useful to define the propensity score P (z, w;x) = E[Di|Zi = z,Wi = w,Xi = x]. Note
that just identified linear instrumental variables is just a ratio of OLS estimators, so
we can simply apply the formula above. Additionally, we make the substitution that
∂E[Yi(z,w;x)]

∂z
= ∂P (z,w;x)

∂z
MTE(P (z, w;x);w, x). Applying these results yields

LATEZ =

∫
MTE(u;w, x)ωZ(u;w, x)dudwdx

ωZ(u;w, x) = (Pr[P (Zi,Wi;Xi) > u,Wi = w,Xi = x]·
E[Zi − E[Zi|Wi, Xi]|P (Zi,Wi;Xi) > u,Wi = w,Xi = x]) /(∫ ∫ ∫

Pr[P (Zi,Wi;Xi) > u′,Wi = w′, Xi = x′]·

E[Zi − E[Zi|Wi, Xi]|P (Zi,Wi;Xi) > u′,Wi = w′, Xi = x′]du′dw′dx′
)

Once again, the weights on MTE are in terms of partial expectation functions; weight
is placed on latent propensities to adopt u within the support of the propensity score
P (Zi,Wi;Xi). Again, for interpretation it is helpful to integrate over u to estimate the
weight placed on observations with (Wi, Xi) = (w, x). When the propensity score is
linear in z conditional on (Wi, Xi), one can show∫

ωZ(u;w, x)du =
Var(P (Zi,Wi;Xi)|Wi = w,Xi = x)Pr[Wi = w,Xi = x]∫ ∫

Var(P (Zi,Wi;Xi)|Wi = w′, Xi = x′)Pr[Wi = w′, Xi = x′]dw′dx′

The most weight is placed on values of (Wi, Xi) which have the highest conditional
variance of the propensity score and which are observed the most frequently.

Finally, we can apply this to instrumental variables using Wi as an instrument, βIV
W =

Cov(Yi,Wi−E[Wi|Zi,Xi])
Cov(Di,Wi−E[Wi|Zi,Xi])

= LASEW +LATEW . Once again, we represent this as the ratio of
OLS estimators, and we apply the result above for OLS. Here, we make use of the fact
that ∂E[Yi(z,w;x)]

∂w
= ∂P (z,w;x)

∂w
(MSE(P (z, w;x);x)+MTE(P (z, w;x);w, x)). It will also be

necessary to define implicitly define Ž(u;w, x) by u = P (Ž(u;w, x), w;x); Ž inverts the
propensity score to recover the value of z that will set the propensity score equal to u
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given (Wi, Xi) = (w, x). Then,

LATEW =

∫
MTE(u;w, x)ωW (u;w, x)dudwdx

LASEW =

∫
MSE(u;x)ωW (u;w, x)dudwdx

ωW (u;w, x) =

(
∂P (Ž(u;w, x), w;x)/∂w
∂P (Ž(u;w, x), w;x)/∂z

·

Pr[Wi > w,P (Zi,Wi;Xi) = u,Xi = x]·

E[Wi − E[Wi|Zi, Xi]|Wi > w,P (Zi,Wi;Xi) = u,Xi = x]

)
/(∫ ∫ ∫

∂P (Ž(u′;w′, x′), w′;x′)/∂w

∂P (Ž(u′;w′, x′), w′;x′)/∂z
·

Pr[Wi > w′, P (Zi,Wi;Xi) = u′, Xi = x′]·

E[Wi − E[Wi|Zi, Xi]|Wi > w′, P (Zi,Wi;Xi) = u′, Xi = x′]du′dw′dx′
)

Although these expressions appear more complicated, integrating over u and w, once
again we can interpret them roughly as variances of the propensity score conditional
on the controls Zi and Xi; this is exact when the propensity score is linear in z and w
conditional on Xi = x.

Finally, these expressions are all functions of P (z, w;x) and the joint distribution of
(Zi,Wi, Xi), all of which are nonparametrically identified, so the weights are nonpara-
metrically identified. In practice, estimation of the weights may involve placing para-
metric restrictions on P (z, w;x).

Efficient reweighting

Define
βWIV
Z (wZ) =

Cov(wZ(Si)Yi, Zi − E[Zi|Wi, (Xi, Si)])

Cov(wZ(Si)Di, Zi − E[Zi|Wi, (Xi, Si)])

and βWIV
W (wW ) analagously. Let ωW (s) =

∫
ωW (u;w, (x, s))dudwdx and ωZ(s) =∫

ωZ(u;w, (x, s))dudwdx. Given this, for βWIV
W (wW ) and βWIV

Z (wZ) to place the same
weight on compliers with Si = s, it must be the case that

wZ(s)ωZ(s) = wW (s)ωW (s)
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Efficient weights solve

w = argmin
m

Var
[
β̂WIV
W (wW )− β̂WIV

Z (wZ)
]

s.t. wZ(s)ωZ(s) = wW (s)ωW (s)

I assume the propensity score is linear in (z, w). Under this assumption, ωW and ωZ

simplify to

ωW (s) =
Var(Wi − E[Wi|Zi, (Xi, Si)]|Si = s)Pr[Si = s]

Var(Wi − E[Wi|Zi, (Xi, Si)])

ωZ(s) =
Var(Zi − E[Zi|Wi, (Xi, Si)]|Si = s)Pr[Si = s]

Var(Zi − E[Zi|Wi, (Xi, Si)])

Define gZ ≡ Cov(Di,Zi−E[Zi|Wi,Xi])
Var(Zi−E[Zi|Wi,Xi])

and gW ≡ Cov(Di,Wi−E[Wi|Zi,Xi])
Var(Wi−E[Wi|Zi,Xi])

; that gZ and gW are
constants follows from the assumption that the propensity score is linear in (z, w).
Suppose further that the structural errors in the outcome equation are homoskedastic.
Then the optimal weights satisfy

wZ(s) =
g2WVar(Wi − E[Wi|Zi, (Xi, Si)])ωW (s)

g2ZVar(Zi − E[Zi|Wi, (Xi, Si)])ωZ(s) + g2WVar(Wi − E[Wi|Zi, (Xi, Si)])ωW (s)

wW (s) =
g2ZVar(Zi − E[Zi|Wi, (Xi, Si)])ωZ(s)

g2ZVar(Zi − E[Zi|Wi, (Xi, Si)])ωZ(s) + g2WVar(Wi − E[Wi|Zi, (Xi, Si)])ωW (s)

To interpret this expression, note that the realized equivalent of g2ZVar(Zi|Wi,(Xi,Si))

g2W Var(Wi|Zi,(Xi,Si))
is

just the ratio of the first stage F-stats. As one F-stat grows arbitrarily large relative
to the other, the weights essentially reweight observations in the regression with the
larger F-stat so that the weights on observables in that regression are the same as the
weights on observables in the unweighted regression with the smaller F-stat.

A.2.3 Control function

The control function approach is predicated on the normality assumption Y1i

C1i

Y0i

 ∼ N

 (gW + c0)Wi +X ′
iµ1

gZZi +X ′
iµC

c0Wi +X ′
iµ0


,

 Σ11 Σ1c Σ10

Σ1c Σcc Σc0

Σ10 Σc0 Σcc
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Under this model,

E[Di(z, w;x)] = Φ

(
−x′µV + gWw − gZz

σV

)
where Φ is the normal CDF, µV = −µ1+µC+µ0,1 and σ2

V = Var[Vi|Xi]. I estimate this
with a first step probit; conventionally, σV would not be identified. However, as noted
by Björklund & Moffitt (1987), the generalized Roy structure allows it to be identified
here, since we can estimate the direct effect of w on treatment effects. I do this in the
second step, using the identity

E [Ydi|Di = d, Zi = z,Wi = w,Xi = x] = X ′
iµd + cdw + bdλd(E[Di(z, w;x)])

where c0 = 0, c1 − c0 = gW , b0 = Cov(V0i,Vi|Xi)
σV

, b1 = −Cov(V1i,Vi|Xi)
σV

, λ0(u) = φ(Φ−1(u))
1−u

,
and λ1(u) =

φ(Φ−1(u))
u

. I estimate this conditional expectation function by OLS. Note
the exclusion restriction that Zi does not directly enter the conditional expectation
function for Ydi. Although this is not required to estimate the model under normality,
without this exclusion restriction identification depends strongly on functional form
assumptions.

In Table 1.4 and Table 1.6, I construct control function estimates of local average
treatment effects and local average surplus effects. Let Z⊥

i = Zi − E[Zi|Wi, Xi] For a
local average treatment effect, I use

E[YiZ
⊥
i ]

E[DiZ⊥
i ]

=
E[(Yi − E[Yi|Zi = E[Zi|Wi, Xi],Wi, Xi])Z

⊥
i ]

E[(Di − E[Di|Zi = E[Zi|Wi, Xi],Wi, Xi])Z⊥
i ]

=
E[(E[Yi|Zi,Wi, Xi]− E[Yi|Zi = E[Zi|Wi, Xi],Wi, Xi])Z

⊥
i ]

E[(Di − E[Di|Zi = E[Zi|Wi, Xi],Wi, Xi])Z⊥
i ]

=
E
[∫ E[Di|Zi,Wi,Xi]

E[Di|Zi=E[Zi|Wi,Xi],Wi,Xi]
MTE(u;Wi, Xi)duZ

⊥
i

]
E[(Di − E[Di|Zi = E[Zi|Wi, Xi],Wi, Xi])Z⊥

i ]

Focusing on the numerator in each expression. The first step follows from E[E[Yi|Zi =
E[Zi|Wi, Xi],Wi, Xi]Z

⊥
i ] = 0, which follows from an application of the law of iter-

ated expectations conditioning on (Wi, Xi). The second step follows from E[YiZ
⊥
i ] =

E[E[Yi|Zi,Wi, Xi]Z
⊥
i ]. This again follows from an application of the law of iterated ex-

pectations conditioning on (Zi,Wi, Xi). The third step is just the fundamental theorem
of calculus, and that the marginal treatment effect equals the derivative of the condi-
tional expectation of Yi with respect to z. I therefore use the plug-in estimator of this
as my control function estimate of the local average treatment effect. Nearly identical
calculations hold for the local average surplus effect, and bias from exclusion restriction
violations. Standard errors are calculated using the delta method, and derivatives with

1This implies E[Vi|Xi] = X ′
iµV .
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respect to control function parameters are estimated numerically.

A.3 Figures
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Figure A.1: Productivity growth and groundwater withdrawals

Notes: This figure plots, for each state, the lower bound estimate of its groundwater withdrawals as a
share of recharge rate, as reported in Rodell et al. (2009), against its normalized decadal agricultural
productivity growth, calculated in a regression of log agricultural productivity on state fixed effects
interacted with year dummies, relative to Andhra Pradesh (AP). The purple line is the line of best fit,
with a slope of 2.5 and R2 = 0.63.
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Appendix B

Irrigation in Rwanda: Farmers’
Responses to a Massive Expansion
of the Production Possibility
Frontier

B.1 Sampling

Work in progress: Sampling appendix.

B.2 Model appendix

Derivation of first order conditions. Substitute for LO using the household labor
constraint, L1 +L2 + `+LO = L, and substitute for c in the household’s maximization
problem. This leaves two constraints, M1+M2 ≤ M , and L−L1−L2−` ≤ LO; call the
multipliers on these constraints λ̃M and λ̃L, respectively. Taking first order conditions
yields

(Mk) E[ucσ]AkFkM − E[uc]r = λ̃M

(Lk) E[ucσ]AkFkL − E[uc]w = −λ̃L

(`) E[u`]− E[uc]w = −λ̃L
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To ease interpretation, normalize λM ≡ λ̃M/rE[uc] and λL ≡ λ̃L/wE[uc], and substitute
cov(σ, uc) = E[ucσ]− E[uc]E[σ] = E[ucσ]− E[uc]. This yields

(Mk)
(
1 + cov(σ,uc)

E[uc]

)
AkFkM = (1 + λM)r

(Lk)
(
1 + cov(σ,uc)

E[uc]

)
AkFkL = (1− λL)w

(`) E[u`]
E[uc]

= (1− λL)w

No constraints. When no constraints bind, as discussed the first order conditions
simplify to

(Mk) AkFkM = r

(Lk) AkFkL = w

(`) u`

uc
= w

Note that the first order conditions for M2 and L2 are functions only of (M2, L2), and
exogenous (A2, r, w). Therefore, dM2

dA1
= dL2

dA1
= 0.

Insurance market failure. Consider the case when insurance markets fail. To ab-
stract fully from labor supply, we temporarily remove leisure from the model. To further
simplify, we drop other inputs from the production function; when the production func-
tion is homogeneous in labor and other inputs, this is without loss of generality. Let
γ(c) = E[uc(c)]

E[σuc(c)]
; γ > 1 is the ratio of the marginal utility from consumption to the

marginal utility from agricultural production. This yields the first order conditions

(L1) A1F1L(L1)− γ(σA1F1(L1) + σA2F2(L2) + w(L− L1 − L2) + rM)w = 0

(L2) A2F2L(L2)− γ(σA1F1(L1) + σA2F2(L2) + w(L− L1 − L2) + rM)w = 0

The central intuition for this case can be captured from just the first order condi-
tions: L and M enter symmetrically into the model, so larger households should re-
spond similarly to richer households. If absolute risk aversion decreases sufficiently
quickly (e.g. with CRRA preferences), then for sufficiently high levels of consumption
E[σuc] = E[σ]E[uc] = E[uc] ⇒ γ = 1. Therefore, sufficiently wealthy or sufficiently
large households should not respond to the sample plot shock. Below, we will maintain
the assumption that preferences exhibit decreasing absolute risk aversion.

Some additional comments for the the derivations. The substitution that AkFkL = γw
will be used frequently to simplify. Additionally, we use γc to represent the derivative of
γ with respect to consumption (so γc =

partial
partialc

γ(c)), and γF to represent the derivative
of γ with respect to agricultural production (so ∂

∂F
γ(σF )). We define γFc and γFF

analagously. Additionally, the substitution 1
AkFkLL

= ∂Lk

∂w∗ , the partial derivative of
labor demand on plot k with respect to the uncertainty adjusted wage γw, is useful

152



for interpretation. It is assumed that ∂Lk

∂w∗ < 0, so labor demand is downward sloping.
Finally, two multipliers frequently emerge in the math. The first, MN = 1−γw ∂L1

∂w∗
γw

A1F1
,

is a production multiplier: it captures when A1 increases, how much does more does
F1 increase due to increased labor allocations to plot 1, holding fixed risk adjusted
wages. The second, MD = 1− γFwγw

∂(L1+L2)
∂w∗ , is a risk multiplier: its inverse captures

when agricultural production is increased, how much less does agricultural production
increase due to reduced labor allocations caused by risk aversion. Note that MN > 1,
and we will present conditions below sufficient for γF > 0, which implies MD > 1.

Stack the left hand sides of the first order conditions into the vector FOCI . De-
fine the Jacobian JI ≡ D(L1,L2)FOCI . Applying the implicit function theorem yields
D(A1)(L1, L2)

′ = −J−1
I D(A1)FOCI and D(L)(L1, L2)

′ = −J−1
I D(L)FOCI . Some algebra

yields

JI =

(
A1F1LL − γFwγw −γFwγw

−γFwγw A2F2LL − γFwγw

)
J−1
I =

∂L1

∂w∗
∂L2

∂w∗

MD

(
A2F2LL − γFwγw γFwγw

γFwγw A1F1LL − γFwγw

)
D(A1)FOCI =

(
γw

A1

− γFw
A1F1

A1

,−γFw
A1F1

A1

)′

D(L)FOCI =
(
−γcw

2,−γcw
2
)′

D(A1)(L1, L2)
′ = −

∂L1

∂w∗
∂L2

∂w∗

MD

 γw

A1
∂L2
∂w∗

−
(

γFw(γw)2

A1
− γFwA1F1

A1
∂L2
∂w∗

)
γFw(γw)2

A1
− γFwA1F1

A1
∂L1
∂w∗


D(L)(L1, L2)

′ =
γcw

2

MD

(
∂L1

∂w∗
∂L2

∂w∗

)
Some additional simplification will be useful for dL2

dA1
; note that

dL2

dA1

=

(
γFwA1F1

A1

)
∂L2

∂w∗
MN

MD

Under conditions assumed, a sufficient condition for dL2

dA1
< 0 is that γF > 0: that is, an

exogenous increase in agricultural production would increase the household’s marginal
utility of consumption relative to marginal utility from agricultural production. That
this should hold seems intuitive, but it need not hold in general: increases in agricul-
tural production, by increasing consumption, may move households to a less risk averse
portion of their utility function, and in turn increase marginal utility from agricultural
production relative to marginal utility of consumption. Some assumptions on the dis-
tribution of σ rule this out: we follow Karlan et al. (2014b) and, for some k > 1, assume
σ = k with probability 1

k
(“the good state”) and σ = 0 with probability k−1

k
(“the bad
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state”); i.e., there is a crop failure with probability k−1
k
.

Under this assumption, some additional simplification and signing is possible. Define
R = −E[uc

ucc
uc

]

E[uc]
to be the household’s average risk aversion, Rk = −E[ucc

uc
|σ = k] to be

the household’s risk aversion in the good state, and Rkc = −E[uccc

uc
|σ = k]+R2

k to be the
derivative of the household’s risk aversion in the good state. Note that by assumption,
Rkc < 0 and Rk < R. From this, it follows that

γc =
E[ucc]

E[σuc]
− E[σucc]E[uc]

E[σuc]2
= γ(Rk −R) < 0

γF =
E[σucc]

E[σuc]
− E[σ2ucc]E[uc]

E[σuc]2
= (k − 1)

E[uc|σ = 0]

E[uc|σ = k]
Rk = (kγ − 1)Rk > 0

γFc =

(
(kγ − 1)

Rkc

Rk

+ kγ(Rk −R)

)
< 0

γFF = (k2γ − 1)Rkc + k(kγ − 1)R2
k = kγFRk

(
−Rkc

Rk

+Rk

)
> 0

Since, γF > 0, it follows that dL2

dA1
< 0, so households substitute labor away from their

other plots in response to the sample plot shock.

These results are almost sufficient to sign our cross partial of interest. Note that

1
w

d2L2

dLdA1

dL2

dA1

=
1
w

dγF
dL

γF
+

1
w

dF1

dL

F1

+
1
w

d(∂L2/∂w∗)

dL

(∂L2/∂w∗)
+

1
w

dMN

dL

MN

−
1
w

dMD

dL

MD
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The following substitutions are now useful

1
w

dγF
dL

γF
=

γFc

γF
+

(
1

w

dF

dL

)
γFF

γF
1

w

dF

dL
≡ 1

w

d(A1F1 + A2F2)

dL
=

γw

w

(
dL1

dL
+

dL2

dL

)
=

MD − 1

MD

(
− γc
γF

)
γFc

γF
=

Rkc

Rk

+
kγ

kγ − 1

γc
γ

1
w

dF1

dL

F1

=
MN − 1

MD

(
−γc

γ

)
1
w

d(∂Lk/∂w
∗)

dL

(∂Lk/∂w∗)
=

γcw
∂Lk

∂w∗

MD

(
−FkLLL

FkLL

)
1
w

dMN

dL

MN

=
MN − 1

MN

(
2
γc
γ

+
1
w

d(∂L1/∂w∗)

dL

(∂L1/∂w∗)

)
1
w

dMD

dL

MD

=
MD − 1

MD

(
γFc

γF
+

γc
γ

+
1
w

d(∂(L1+L2)/∂w∗)

dL

(∂(L1 + L2)/∂w∗)

)

Making these substitutions, and rearranging terms, yields

1
w

d2L2

dLdA1

dL2

dA1

=
1

MD

Rkc

Rk

+
MD − 1

MD

((
− γc
γF

)
γFF

γF
+

kγ

kγ − 1

γc
γ

)
+(

kγ

kγ − 1

1

MD

+ 2
MN − 1

MN

−
(
1 +

kγ

kγ − 1

)
MD − 1

MD

− MN − 1

MNMD

)
γc
γ
+

MN − 1

MN

1
w

d(∂L1/∂w∗)

dL

(∂L1/∂w∗)
+

1
w

d(∂L2/∂w∗)

dL

(∂L2/∂w∗)
− MD − 1

MD

1
w

d(∂(L1+L2)/∂w∗)

dL

(∂(L1 + L2)/∂w∗)

To sign this derivative, I now make the assumption that FkLLL ≈ 0. Essentially, this
is making as assumption about the relative magnitudes of channels through which the
effect of increasing L, through reduced risk aversion, affects the responsiveness of the
household to the sample plot shock. In particular, it assumes that changes in the labor
demand elasticity caused by increased labor allocations do not dominate the direct
effects of reduced risk aversion. This simplifies this expression to

1
w

d2L2

dLdA1

dL2

dA1

=
1

MD

Rkc

Rk

+
MD − 1

MD

((
− γc
γF

)
γFF

γF
+

kγ

kγ − 1

γc
γ

)
+(

kγ

kγ − 1

1

MD

+ 2
MN − 1

MN

−
(
1 +

kγ

kγ − 1

)
MD − 1

MD

− MN − 1

MNMD

)
γc
γ
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We now sign each term individually. First, 1
MD

Rkc

Rk
< 0, as we assumed decreas-

ing absolute risk aversion. For the second term, note that
(
− γc

γF

)
γFF

γF
+ kγ

kγ−1
γc
γ

=(
− γc

γF

)(
γFF

γF
− kγ

kγ−1
γF
γ

)
. Therefore,

sign
[
MD − 1

MD

((
− γc
γF

)
γFF

γF
+

kγ

kγ − 1

γc
γ

)]
= sign

[
γFF

γF
− kγ

kγ − 1

γF
γ

]
Substituting yields

γFF

γF
− kγ

kγ − 1

γF
γ

=
k2 − 1

kγ2

Rkc

Rk

+ kRk − kRk =
k2 − 1

kγ2

Rkc

Rk

< 0

Therefore, MD−1
MD

((
− γc

γF

)
γFF

γF
+ kγ

kγ−1
γc
γ

)
< 0.

For the third term, note that

kγ

kγ − 1

1

MD

+ 2
MN − 1

MN

−
(
1 +

kγ

kγ − 1

)
MD − 1

MD

− MN − 1

MNMD

=
2(MN −MD) +

1
kγ−1

MN(2−MD) + 1

MNMD

This third term is positive when MD is sufficiently small. Explained alternatively, MD

sufficiently small means that an exogenous increase in agricultural production cannot
cause households to decrease their labor allocations by too much; i.e., households cannot
be too risk averse.1 When this holds, then(

kγ

kγ − 1

1

MD

+ 2
MN − 1

MN

−
(
1 +

kγ

kγ − 1

)
MD − 1

MD

− MN − 1

MNMD

)
γc
γ

< 0

Since each term is negative, we have that
1
w

d2L2
dLdA1
dL2
dA1

< 0. As dL2

dA1
< 0, we have d2L2

dLdA1
> 0.

Since wL and rM enter the household’s problem symmetrically, then d2L2

dMdA1
> 0.

Input constraint. When only the input constraint binds, the first order conditions
simplify to

(Mk) AkFkM = (1 + λM)r

(Lk) AkFkL = w

(`) E[u`]
E[uc]

= w

1Note that this condition is sufficient, but not necessary, to sign this term and also to sign
1
w

d2L2
dLdA1
dL2
dA1

.
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Note that the choice of leisure does not enter into the first order conditions for Mk or
Lk. Substituting M2 = M −M1 yields the following system of equations

A1F1M(M1, L1)− (1 + λM)r = 0

A1F1L(M1, L1)− w = 0

A2F2M(M −M1, L2)− (1 + λM)r = 0

A2F2L(M −M1, L2)− w = 0

Stack the left hand sides into the vector FOCM . Define the Jacobian JM ≡ D(M1,L1,λM ,L2)FOCM .
Applying the implicit function theorem yieldsD(A1)(M1, L1, λM , L2)

′ = −J−1
M D(A1)FOCM .

Some algebra yields

JM =


A1F1MM A1F1ML −r 0
A1F1ML A1F1LL 0 0

−A2F2MM 0 −r A2F2ML

−A2F2ML 0 0 A2F2LL


D(A1)FOCM = (F1M , F1L, 0, 0)

′

dM2

dA1

= kMA2F2LLA1(F1LF1ML − F1MF1LL)

dL2

dA1

= −kMA2F2MLA1(F1LF1ML − F1MF1LL)

where kM is positive.2 As F2LL < 0, sign
(

dM2

dA1

)
= −sign (F1LF1ML − F1MF1LL). This is

negative whenever productivity growth on plot 1 would cause optimal input allocations,
holding fixed the shadow price of inputs, to increase on plot 1. Similarly, sign

(
dL2

dA1

)
=

sign(F2LM)sign
(

dM2

dA1

)
. The labor response and input response on the second plot have

the same sign whenver labor and inputs are complements on the second plot.

Labor constraint. When only the labor constraint binds, the first order conditions
simplify to

(Mk) AkFkM = r

(Lk) AkFkL = (1− λL)w

(`) u`

uc
= (1− λL)w

2kM = − 1
(A1F1LL)A2

2(F2MMF2LL−F 2
2ML)+(A2F2LL)A2

1(F1MMF1LL−F 2
1ML)

. We make standard assump-
tions required for unconstrained optimization; second order conditions for unconstrained optimization
imply kM is positive.

157



Substituting ` = L− LO − L1 − L2 and LO = LO, and some rearranging yields

A1F1M (M1, L1)− r = 0

A1F1L(M1, L1)− (1 + λL)w = 0

A2F2M (M2, L2)− r = 0

A2F2L(M2, L2)− (1 + λL)w = 0

u`

 ∑
k∈{1,2}

AkFk(Mk, Lk) + r(M −M1 −M2) + wLO, L− LO − L1 − L2

−

(1 + λL)wuc

 ∑
k∈{1,2}

AkFk(Mk, Lk) + r(M −M1 −M2) + wLO, L− LO − L1 − L2

 = 0

Stack the left hand sides into the vector FOCL.

Additionally, it will be convenient to define the following derivatives of on farm labor
demand on plot k, LDk, with respect to the shadow wage w∗ and productivity Ak, on
farm input demand on plot k, MDk, with respect to productivity Ak, and on farm labor
supply, LS, with respect to the shadow wage w∗ and consumption (through shifts to
wealth) c. Let

LDkw∗ =
AkFkMM

A2
k(FkMMFkLL − F 2

kML)

LDkAk
=

AkFkMFkML − AkFkLFkMM

A2
k(FkMMFkLL − F 2

kML)

MDkAk
=

AkFkLFkML − AkFkMFkLL

A2
k(FkMMFkLL − F 2

kML)

LSw∗ = − uc

u`` − (1 + λL)wuc`

LSc = −uc` − (1 + λL)wucc

u`` − (1 + λL)wuc`

We make standard assumptions required for unconstrained optimization; these imply
LDkw∗ is negative (labor demand decreasing in shadow wage), and LSw∗ is positive
(labor supply increasing in shadow wage). We further assume LDkAk

and MDkAk
are

positive (labor demand and input demand are increasing in productivity); an additional
sufficient assumption for this is that F is homogeneous. We further assume LSc is
negative (labor supply is decreasing in wealth); an additional sufficient assumption for
this is that u is additively separable in c and `.
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Next, define the Jacobian JL ≡ D(M1,L1,M2,L2,λL)FOCL. Some algebra yields

JL =


A1F1MM A1F1ML 0 0 0
A1F1ML A1F1LL 0 0 −w

0 0 A2F2MM A2F2ML 0
0 0 A2F2ML A2F2LL −w

dFOCL,`

dM1

dFOCL,`

dL1

dFOCL,`

dM2

dFOCL,`

dL2
−wuc


dFOCL,`

dM1

= A1F1M(uc` − (1 + λL)wucc)

dFOCL,`

dL1

= A1F1L(uc` − (1 + λL)wucc)− (u`` − (1 + λL)wuc`)

dFOCL,`

dM2

= A2F2M(uc` − (1 + λL)wucc)

dFOCL,`

dL2

= A2F2L(uc` − (1 + λL)wucc)− (u`` − (1 + λL)wuc`)

Applying the implicit function theorem yieldsD(A1)(M1, L1,M2, L2, λL)
′ = −J−1

L D(A1)FOCL.
Some further algebra, and substitution, yields

D(A1)FOCL = (F1M , F1L, 0, 0, (uc` − (1 + λL)wucc)F1)
′

dL2

dA1

= LD2w∗
LD1A1 − LSc(F1MMD1A1 + F1LLD1A1 + F1)

LSw∗ − (LD1w∗ + LD2w∗)− LSc(LD1A1 + LD2A2)

dL2

dL
= LD2w∗

1

LSw∗ − (LD1w∗ + LD2w∗)− LSc(LD1A1 + LD2A2)

dL2

dM
= LD2w∗

rLSc

LSw∗ − (LD1w∗ + LD2w∗)− LSc(LD1A1 + LD2A2)

dL2

dA1
< 0; for interpretation, note that this expression is the derivative of labor demand on

plot 2 with respect to the shadow wage, times the effect of the shock to A1 on the shadow
wage. The numerator of the latter is the effect the shock on negative residual labor
supply through direct effects (LD1A1) and wealth effects, including through adjustments
of labor and inputs (−LSc(F1MMD1A1+F1LLD1A1+F1)). The denominator of the latter
is the derivative of residual labor supply with respect to the shadow wage, adjusted for
wealth effects (LSw∗ − (LD1w∗ + LD2w∗)− LSc(LD1A1 + LD2A2)).

The signs of d2L2

dLdA1
and d2L2

dMdA1
are ambiguous. However, unlike the cases of input market

failures or insurance market failures, here these second derivatives may have opposite
signs. To see one example of this, consider a case where on farm labor and input
demands are approximately linear in the shadow wage and productivity, and on farm
labor supply is approximately linear in consumption, but exhibits meaningful curva-
ture with respect to the shadow wage. In this case, sign( d2L2

dLdA1
) = sign

(
d
dL
LSw∗

)
and

sign( d2L2

dLdA1
) = sign

(
d

dM
LSw∗

)
. To focus on one case, larger households are less respon-
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sive to the A1 shock ( d2L2

dLdA1
> 0) if and only if they are on a more elastic portion of their

labor supply curve ( d
dL
LSw∗ > 0). That larger households, with more labor available

for agriculture, or poorer households, who likely have fewer productive opportunities
outside agriculture, would be on a more elastic portion of their labor supply curve is
consistent with proposed models of household labor supply dating back to Lewis (1954).
This motivates the prediction we focus on: that larger households should be less re-
sponsive to the A1 shock, and richer households should be more responsive to the A1

shock.
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