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ABSTRACT: Understanding the roles of land surface conditions and atmospheric circulation on continental daily tempera-
ture variance is key to improving predictions of temperature extremes. Evaporative resistance (rs, hereafter), a function of the
land cover type, reflects the ease with which water can be evaporated or transpired and is a strong control on land–atmosphere
interactions. This study explores the effects of rs perturbations on summer daily temperature variance using the Simple Land
Interface Model (SLIM) by mimicking, for rs only, a global land cover conversion from forest to crop/grassland. Decreasing rs
causes a global cooling. The cooling is larger in wetter areas and weaker in drier areas, and primarily results from perturbations
in shortwave radiation (SW) and latent heat flux (LH). Decreasing rs enhances cloud cover due to greater land surface evapora-
tion and thus reduces incoming SW over most land areas. When rs decreases, wetter areas experience strong evaporative cool-
ing, while drier areas become more moisture-limited and thus experience less cooling. Thermal advection further shapes the
temperature response by damping the combined impacts of SW and LH. Temperature variance increases in drier areas and de-
creases in wetter areas as rs decreases. The temperature variance changes can be largely explained from changes in the com-
bined variance of SW and LH, including an important contribution of changes in the covariance of SW and LH. In contrast, the
effects of changes in thermal advection variance mainly affect the Northern Hemisphere midlatitudes.

SIGNIFICANCE STATEMENT: This study aims to better understand processes governing daily near-surface air tem-
perature variance over land. We use an idealized modeling framework to explore the effects of land surface evaporative re-
sistance (a parameter that controls how hard it is to evaporate water from the surface) on summer daily temperature
variance. We find that a uniform decrease of evaporative resistance across the global land surface causes changes in the tem-
perature variance that can be predicted from changes in the combined variance of shortwave radiation and latent heat flux.
The variance of horizontal advection is important in altering the temperature variance in the Northern Hemisphere midlati-
tudes. Our findings shed light on predicting the characteristics of temperature variability as a function of surface conditions.

KEYWORDS: Atmosphere-land interaction; Climate variability; Evapotranspiration; Soil moisture;
Surface temperature; Land surface model

1. Introduction

Near-surface air temperature (hereafter temperature) over
land has a direct impact on our everyday lives. Temperature
extremes (such as heatwaves and cold spells) affect human
mortality (Singh et al. 2019), agricultural yields (Vogel et al.
2019), and wildfires (Hulley et al. 2020; Ruffault et al. 2020).
Greenhouse gas forcing increases mean temperatures and
may also affect temperature variability (Katz and Brown
1992) in both warm (Baldwin et al. 2019; Chan et al. 2020;
Kotz et al. 2021; Schär et al. 2004) and cold (Schneider et al.
2015; Screen 2014) seasons. Changes in temperature vari-
ability in a warming climate can further modify the odds and
intensity of extreme temperature events (Fischer and Knutti

2015; Seneviratne et al. 2012). For example, an increase in
temperature variance leads to an increased probability of hot
extremes, in addition to the mean warming. However, deter-
mining likely changes in the moments of temperature at daily
to synoptic time scales has been challenging, as temperature
variability can be affected by perturbations in both land sur-
face properties (Seneviratne et al. 2010) and atmospheric cir-
culation (Branstator and Teng 2017; Wallace et al. 1995). This
is particularly true of summer heat extremes (Cowan et al.
2017; Quesada et al. 2012; Rasmijn et al. 2018). Therefore, an
accurate understanding of the separate contribution of the “land
surface driven” and the “atmospheric driven” portion of temper-
ature variability, and the interaction between the two drivers, is
key to improve our understanding of how the occurrence and in-
tensity of temperature extremes will evolve in the future (Schär
et al. 2004). The main physical factors that govern temperature
variability over land at daily time scales include fluctuations in in-
cident radiation, land surface conditions, horizontal thermal ad-
vection, and adiabatic compression and expansion due to vertical
motion of air parcels. In this study, we explore the physical driv-
ers that control changes in the summertime continental tempera-
ture variance in response to land surface perturbations.
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Incoming radiation is a major driver of summer tempera-
ture variability (Lorenz et al. 2012; Schwingshackl et al. 2018).
Schwingshackl et al. (2018) found that the incident shortwave
radiation and downwelling longwave radiation could explain
about 70% of summertime monthly temperature variance on
interannual time scales. By constructing a diagnostic model,
Vargas Zeppetello et al. (2020) identified the variance of
shortwave radiation as a crucial factor in determining the
summer temperature variance at monthly time scales. Incom-
ing shortwave radiation anomalies during summer are gov-
erned by aerosol effects (Lohmann and Feichter 2005) and
cloud cover (Lenderink et al. 2007; Pfahl and Wernli 2012;
Vargas Zeppetello et al. 2019a). Cloudiness is often associated
with anomalous atmospheric circulation patterns (Andrade et al.
2012). For example, persistent anticyclones can induce clear-sky
conditions, increase incoming shortwave radiation, and trigger
hot summer extremes (Meehl and Tebaldi 2004; Pfahl and
Wernli 2012). Variations in downwelling longwave radiation are
associated with cloud cover (Stephens and Webster 1981) and
water vapor (Compo and Sardeshmukh 2009); however, the
causal direction between the downwelling longwave and
near-surface temperature can be complicated by the strong
coupling between the two (Vargas Zeppetello et al. 2019b).

Due to the strong land–atmosphere coupling1 during sum-
mer, land surface conditions can alter near-surface climate
through energy and water fluxes (Dirmeyer 2003). In particu-
lar, soil moisture can affect temperature variance by modify-
ing the partitioning of the surface turbulent energy fluxes
(Delworth and Manabe 1989). Soil thermal inertia also plays
a major role on the day-to-day variability of near-surface air
temperature in water-limited regions (Cheruy et al. 2017).
Based on the dependence of evapotranspiration on soil mois-
ture amount, land–atmosphere coupling can be categorized
into three evaporative regimes (Seneviratne et al. 2010). A
dry regime is where the soil moisture amount is below the
wilting point under which it is difficult for the plants to extract
water from the soil. A water-limited regime is where the
evapotranspiration is strongly constrained by the soil moisture
availability: more soil moisture leads to larger evaporative
fraction. An energy-limited regime is where evapotranspira-
tion is largely controlled by atmospheric processes, such as
incoming radiation, boundary layer wind speed, and tempera-
ture, instead of soil moisture availability. Among the three
evaporative regimes, it is the water-limited regime in which
soil moisture exerts a strong control on temperature variabil-
ity by affecting the partitioning between latent and sensible
heat fluxes (Seneviratne et al. 2010). Both observational anal-
ysis (Hirschi et al. 2011) and model simulations (Jaeger and
Seneviratne 2011) have demonstrated impacts of soil moisture
amount on temperature extremes. Comparison of regional cli-
mate simulations between coupled and prescribed soil mois-
ture reveals an amplified spatial and temporal extent of

several European heat wave events when land–atmosphere
coupling is active (Fischer et al. 2007a). Spring precipitation
and soil moisture deficits were suggested to contribute to the
development of the 2003 European summer heatwave (Fischer
et al. 2007b). The depletion of soil moisture within the summer
season and the increased sensitivity of evaporation to soil mois-
ture perturbations is suggested to contribute to the model
predicted increase in summer temperature variability over
the Northern Hemisphere midlatitudes under climate change
(Chan et al. 2020; Fischer and Schär 2009; Seneviratne et al.
2006). Besides the variance, many studies have discussed im-
pacts of land–atmosphere interaction on the mean climate as
well. For example, land-use and land-cover change could
affect near-surface air temperatures (Luyssaert et al. 2014;
de Noblet-Ducoudré et al. 2012; Pitman et al. 2009), and land
management has been proposed as a mitigation strategy for
future warming (Canadell and Raupach 2008). Findell et al.
(2007) found that simulated changes in surface albedo, rough-
ness, and evaporative resistance resulting from a conversion
from forest to grassland could cause surface warming in per-
turbed regions through changes in the surface radiative and
turbulent fluxes and through atmospheric feedbacks. Changes
in land surface conditions can also impact remote regions
through cloud feedbacks and atmospheric teleconnections
(Devaraju et al. 2018; Kooperman et al. 2018; Laguë and
Swann 2016; Swann et al. 2012).

Unlike the winter season when the horizontal temperature
advection (guided by the location of the westerlies and storm
tracks) accounts for the occurrence of warm and cold temper-
ature extremes (Garfinkel and Harnik 2017), temperature ad-
vection is not generally thought to be a dominant control on
summer temperature variance due to the weaker equator-to-
pole temperature gradient. Holmes et al. (2016) found that
the role of thermal advection in future changes in summer
temperature variability is small and mostly confined to Europe
and coastal areas. However, Linz et al. argued that temperature
advection can play an essential role in summer temperature
variability, although they concluded this based on highly ideal-
ized modeling frameworks. Linz et al. (2018) invoked a link
between thermal advection and summer temperature variance
in the Southern Hemisphere through an advection–diffusion
model, while Linz et al. (2020) argued that thermal advection
dominates the midlatitude temperature variance response to
increasing carbon dioxide in an aquaplanet world. Further,
Tamarin-Brodsky et al. (2020) suggested a purely dynamical
mechanism exists that shapes the changes in temperature vari-
ability, evidenced by the coherent changes in the moments in
the lower atmospheric temperature (850 hPa) and near-surface
air temperature in climate models.

Despite the above-mentioned advances, a quantitative un-
derstanding of contributions of land conditions, atmospheric
processes, and the feedback between the two in modulating
daily summertime temperature variability is lacking. Even
less clear is if and how the underlying physical processes gov-
erning the temperature distribution would change in a chang-
ing climate. Though we cannot fully address these gaps in the
current paper, our work is motivated and guided by these
overarching questions. In this study, we focus on understanding

1 Here, “coupling” refers to the degree one variable controls an-
other, and “land–atmosphere coupling” refers to the land surface
condition control on the near-surface atmosphere through surface
energy and water fluxes.

J OURNAL OF CL IMATE VOLUME 361654

Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 04/14/23 11:29 PM UTC



the basic effects of one land surface property, the land surface
evaporative resistance (rs, hereafter), on the first two moments
(mean and variance) of summer temperature over land. We fo-
cus on the rs control on summer temperature distributions be-
cause it effectively alters the land–atmosphere coupling and soil
moisture amount by controlling evaporative efficiency. Further,
although the rs perturbations that we investigate in this study
are considerably larger and more idealized than predicted
changes under climate change and more global than anything
that happens in reality, understanding of the physical pathways
that mediate the rs control on summer temperature distributions
increases our basic understanding of how changes in land sur-
face properties affect near-surface temperature. Our approach
of focusing on the effects of a single land surface property is
analogous to other simplified modeling frameworks that are
used to better understand the climate response to perturbations
(Jeevanjee et al. 2017). We utilize the Simple Land Interface
Model (SLIM; Laguë et al. 2019) to explore how decreases in rs
modify the temperature variance over land and identify the un-
derlying physical processes involved. Unlike complex land sur-
face models such as the Community Land Model version
(CLM; Lawrence et al. 2019) where most land surface properties
are emergent and result from the simulated representation of
complex biogeophysical processes, SLIM offers a greater degree
of control allowing us to separate the effects of individual land
surface properties. In particular, we want to turn a single, impor-
tant knob (e.g., rs) and examine its effects on the partitioning of
surface turbulent heat fluxes to understand its impacts on tem-
perature variability. We cannot achieve this in a complex land
surface model like CLM because vegetation cover changes in
CLM result in simultaneous changes in more than one land sur-
face property; thus, the resulting temperature response will be a
function of changes in many different processes. Our work aims
for a process-level understanding made possible by a simplified
model like SLIM, which allows us to perturb each land surface
property separately. Laguë et al. (2019) have demonstrated the
utility of SLIM to aid in understanding of the impacts of land
surface properties on the climatological terrestrial surface en-
ergy budget and global climate. Our work is distinct from previ-
ous studies on the climatic effects of rs perturbations in SLIM
(Kim et al. 2020; Laguë et al. 2019, 2021) because the focus of
these earlier studies is on the response of mean climate (as op-
posed to the temperature variance) to the rs perturbations.

We note that our modeling framework also differs from the
Global Land–Atmosphere Coupling Experiment (GLACE)
project (Guo et al. 2006; Koster et al. 2006). The GLACE-
CMIP5 protocol (Seneviratne et al. 2013) was designed to as-
sess the effects of changes in the variability of soil moisture
without changing the seasonal cycle of soil moisture climatol-
ogy. The impacts of soil moisture–atmosphere coupling on tem-
perature variability in GLACE is determined by comparing
the simulated temperature variability between a prescribed soil
moisture simulation and an interactive soil moisture simulation.
The two-way coupling between soil moisture and the atmo-
sphere is disabled in the prescribed soil moisture experiment
by overriding soil moisture with the climatological seasonal
cycle at each time step. In contrast, we allow for realistic inter-
actions between the land surface and the atmosphere, thereby

rs perturbations in our simulations change the soil moisture,
evaporation, and precipitation in a physically consistent man-
ner that conserves the balance of liquid water. This avoids
some of the challenges in the GLACE experimental design
such as a lack of water conservation and an associated unrealis-
tic precipitation response in some regions (Berg et al. 2014).

The remainder of this paper is organized as follows. After
describing the data, methods, andmodel experiments in section 2,
we will first discuss changes in the summer mean state and
changes in the land–atmosphere coupling as evaporative resis-
tance decreases in section 3. We then focus on the responses of
summer daily temperature variance to decreases in rs in section 4.
We will demonstrate that changes in the temperature variance in
the context of our simulations can be largely understood
through a surface energy balance perspective, while contribu-
tions from changes in the thermal advection are concentrated
over the extratropical land areas. We discuss the similarity and
differences between our diagnostic framework and previous
studies in section 5 before providing a summary in section 6.

2. Data, model, and experiments

a. Data

We use the 1979–2019 daily latent heat flux, sensible heat
flux, and 2-m air temperature from the fifth generation of the
ECMWF atmospheric reanalysis dataset (ERA5) (Hersbach
et al. 2020) to validate the fidelity of SLIM simulated climate
and temperature variability (see the appendix). We used the
bilinear interpolation to interpolate the ERA5 variables from
0.258 3 0.258 resolution to the 0.98 3 1.258 grid of the Commu-
nity Earth SystemModel 2 (CESM2) resolution prior to analysis.
While the surface fluxes from ERA5 are primarily model gener-
ated, it is found that the overestimation of the surface latent heat
flux has been improved in ERA5 compared to its predecessor
ERA-Interim (Martens et al. 2020). The monthly actual evapo-
ration and potential evaporation from the Global Land Evapora-
tion Amsterdam Model (GLEAM) v3.5a dataset (spanning
1980–2020) (Martens et al. 2017; Miralles et al. 2011) are also
used as an alternative observation-based estimate of the spatial
distribution of evaporative fraction.

b. Model and experiments

SLIM bears strong resemblance to early land surface
models (Bonan 1996; Manabe 1969; Milly and Shmakin 2002).
It is coupled to CESM2 (Danabasoglu et al. 2020) and can be
run within the CESM framework in place of the Community
Land Model version 5 (CLM5) (Lawrence et al. 2019). A
complete documentation of SLIM has been provided by
Laguë et al. (2019). In a nutshell, SLIM solves a linearized
bulk surface energy budget. It uses a bucket model for hydrol-
ogy and a simple snow model for wintertime land-albedo feed-
backs. SLIM reads in user-defined land surface properties (such
as soil properties and vegetation cover related surface parame-
ters, etc.; see more in the following paragraph and the online
supplemental material) as prescribed boundary conditions. We
use 10 ensemble members of CESM2 (Danabasoglu et al. 2020)
that were contributed to phase 6 of the Coupled Model
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Intercomparison Project (CMIP6) Atmospheric Model Inter-
comparison Project (AMIP) (Community Earth System Model
developers and affiliates 2019) to derive surface property inputs
for SLIM.2 The CESM2 AMIP simulations span from 1950 to
2014 and are run with prescribed sea surface temperatures
(SSTs) and sea ice, and forced with observed historical forcing
(Danabasoglu et al. 2020). The land component of the AMIP
runs is CLM5 (Lawrence et al. 2019) and the atmospheric com-
ponent is the Community Atmospheric Model version 6
(CAM6; Bogenschutz et al. 2018). We used the 1991 to 2010 cli-
matology (averaged across the 10 ensemble members) to gener-
ate SLIM inputs.

To provide relatively realistic land surface conditions, we allow
spatial variation of several surface properties that vary with soil
type and vegetation, such as soil thermal conductivity and heat
capacity, snow masking depth, and soil water bucket depth. This
approach differs from Laguë et al. (2019) where all land surface
properties are prescribed uniformly. Note that the prescribed soil
water bucket depth denotes the maximum water each grid cell
can hold (see the online supplemental material for details), and
our simulated soil moisture refers to the amount of soil water in
the bucket hydrologymodel used in SLIM.Unlike the real-world
situation where the land surface conditions vary with season, we
kept all the land surface properties fixed throughout the year in
our simulations. However, despite the simplification, the SLIM
simulated summer climatology and variability are comparable to
the comprehensive land surface model (e.g., CLM5) and reanaly-
sis datasets [see Laguë et al. (2019) and also our appendix]. Fu-
ture work merits incorporating the seasonality of land surface
conditions in this modeling framework. We summarize the deri-
vation of each land surface property in the supplemental
material, and code for the forcing file generation can be found in
the data availability statement at the end of this article.

We run SLIM at 1.98 3 2.58 resolution with the CESM2
component set F2000climo, in which SLIM is coupled with
CAM6, and SSTs and sea ice that are representative of the
year 2000 are prescribed. We conduct three simulations where
the global evaporative resistance is uniformly prescribed at
20, 150, 1000 s m21; these runs are called rs20, rs150, and
rs1000. These values roughly correspond to the evaporative
resistance that is representative for wheat, corn, and Jack pine,
respectively [based on Fig. 17.10 in Bonan (2016)]. Note that
though albedo, surface roughness, and aerodynamic resistance
also vary with the land cover type in the real world (Lee et al.
2011; Pitman 2003), the only difference in the land surface
boundary condition across our simulations is the prescribed
magnitude of the evaporative resistance. Each simulation is in-
tegrated for 45 years; we use the last 40 years for analysis.

c. Evaporation in SLIM

We begin by briefly introducing the controlling factors of
the latent heat flux in SLIM, which are of direct relevance to
our study. SLIM simulates the land surface hydrology using a

bucket model, where the water holding capacity is prescribed
(Laguë et al. 2019). Latent heat flux (LH) in SLIM can be af-
fected by several factors:

LH 5 rairLy(qs 2 qref)b/raw, (1)

where rair is the density of air, Ly is the latent heat of vapori-
zation, qs is the surface humidity, and qref is the atmospheric
humidity at reference height. Equation (1) suggests that be-
sides the near-surface humidity gradient, two other factors
control evaporation in the model. One is the aerodynamic re-
sistance for moisture (raw; raw 5 rs 1 rah) which combines
both the aerodynamic resistance for heat (rah) and the pre-
scribed bulk evaporative resistance (rs), with rs being the pa-
rameter that we perturb in our simulations. The other is a
time-varying b factor that measures the fullness of the water
bucket. The implementation of the b factor was motivated by
empirical observations (Budyko 1961) and has been used in
early land surface models (Manabe 1969; Milly and Shmakin
2002). The b factor parameterization is kept the same across
our simulations. Note that b is equal to 1 when the bucket is
more than 75% full; when the bucket is less than 75% full,
b ranges between 0 and 1 (the emptier the bucket, the lower
the b) and introduces additional resistance to capture the in-
creased difficulty in evaporating water from increasingly dry
soils. Thus, we expect competing effects on evaporation from
the prescribed rs and the water bucket emptiness b in a low
rs scenario: a decrease in rs enhances evaporation efficiency
and thus reduces soil water in the bucket; when the bucket
fullness becomes less than 75%, b decreases and introduces
an additional resistance to the evaporation. While acknowl-
edging that the parameterization of LH is a simplification of
the reality, the competing effects between rs and the b fac-
tor do exist in regions where vegetation features lower
evaporative resistance. For example, Teuling et al. (2010)
show that compared to forests, grasslands initially transpire
more water when there is high net radiation at the surface.
As a result, soils in grasslands dry more quickly, which can ul-
timately limit further evaporation.

d. Methods

In the following, we use SLIM to refer to the land–atmosphere
coupled simulations using SLIM coupled with CAM6.We focus
on austral [December–February (DJF)] and boreal [June–August
(JJA)] summer. We show results from JJA in the Northern
Hemisphere, and DJF in the Southern Hemisphere in the same
panels, and we use a gray horizontal line in our map view fig-
ures to indicate the equator. We obtain the summer daily
anomalies [denoted with the prime symbol (′)] by removing the
annual cycle of the daily climatology. We use the Fourier trans-
form harmonics instead of the empirical annual cycle calculated
from daily climatology to represent the seasonal cycle because
it gives a smoother estimate. Since more harmonics are needed
for capturing an accurate annual cycle of surface energy fluxes,
we use the first 10 harmonics of the daily climatology of each
variable to represent their respective annual cycles (see Fig. S4
in the online supplemental material). For ease of presentation,
we focus on the comparison between rs20 and rs1000, while

2 Note that all 10 ensemble members can be accessed from
NCAR’s Cheyenne campaign storage (see the data availability
statement).
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rs150 is used to validate SLIM’s performance in the appendix.
When assessing changes in the mean state, we use the two-sided
Student’s t test to test the null hypothesis that the sample means
are from the same population; the associated degrees of free-
dom is 38, as we treat each summer seasonal mean as indepen-
dent. When evaluating the variance change, we use the F test
(von Storch and Zwiers 1999) to test the null hypothesis that
the sample variances are from the same population. Unless
stated otherwise, hatched areas in the figures presented indicate
regions where changes are not significant after accounting for
multiple hypothesis testing by controlling for a false discovery
rate of 0.1 (Wilks 2016).

3. Changes in the mean state and
land–atmosphere coupling

Before assessing the temperature variance response to the
rs perturbation, we first discuss changes in the summer clima-
tology of land surface hydrology (section 3a), temperature,
and surface energy fluxes (section 3b), as well as the soil mois-
ture–atmosphere coupling strength (section 3c).

a. Land surface hydrology

Figures 1a–c show the SLIM simulated summertime soil
moisture climatology for rs20, rs1000, and their difference
(i.e., rs20 2 rs1000). The red contour in Figs. 1a and 1b de-
notes the soil moisture isoline of 100 kg m22 in each simula-
tion. We highlight the location where the summer climatology
of soil moisture amount is equal to 100 kg m22 to show that
the spatial extent of relatively dry areas (i.e., for visualization
purposes, locations with soil moisture less than 100 kg m22)
has expanded in rs20. As rs decreases, soil moisture decreases
over all land areas except for part of the Amazon (Fig. 1c).
The magnitude of the soil moisture reduction is not spatially uni-
form, because decreasing rs is less effective at changing soil mois-
ture in regions where the background soil moisture is already
very limited, such as the Sahara and the Arabian Peninsula. The
reduction of soil moisture in the Northern Hemisphere high lati-
tudes is also small, because of the enhanced precipitation in
those areas (Figs. 1f,g), as discussed below.

We examine changes in the summer precipitation, evapora-
tion, and spring soil moisture anomalies to further understand
changes in summer soil moisture. Runoff is also important for
the hydrology budget; however, the difference in the runoff
between rs20 and rs1000 is negligible and thus not shown here.
The minimal change in runoff might be related to the usage of
a bucket model for hydrology in SLIM, where runoff only oc-
curs when the amount of soil water exceeds the prescribed
bucket depth (Laguë et al. 2019). Despite the globally uni-
form rs perturbation, changes in the evaporation exhibit a
strong geographical dependence: wetter regions experience
enhanced evaporation while evaporation reduces in relatively
dry regions (Fig. 1e). While decreases in rs might be expected
to increase evaporation everywhere, we see that this behavior
is only observed in wet regions. In dry regions, decreases in
mean state soil moisture brought on by lower rs exert a bigger
driver of evaporation than our prescribed changes in rs (see
section 2c on effects of the b factor, i.e., the additional

resistance brought by the bucket’s emptiness level in dry
areas). Associated with the large changes in evaporation, we
also see a general increase in precipitation, such that precipita-
tion minus evaporation (P 2 E) is positive over much of the
Northern Hemisphere continental area (Fig. 1g). The increase
in the soil moisture in the Amazon is related to the large in-
crease in precipitation and the resulting positive P 2 E (Figs.
1g,h). We note that changes in soil moisture do not closely fol-
low changes in P 2 E during summer. This is because we re-
duced rs all year round, such that soil drying is already
pronounced during spring (Fig. 1d; also see Fig. S5 for the an-
nual cycle of soil moisture). Therefore, changes in the soil mois-
ture and P 2 E from earlier seasons (e.g., Figs. 1d,h) also
contribute to the summer soil moisture response.

b. Near-surface air temperature and surface energy flux

Decreases in rs cool the 2-m air temperature (T2m) over
almost all land regions (Fig. 2a). The cooling magnitude is
most substantial in wet regions where evaporation increases
the most and is smaller in relatively dry regions. Changes in
surface temperature (Ts) (Fig. 2b) are almost identical to
changes in T2m though with a slightly larger magnitude. We
employ the surface energy balance to discuss why decreasing
rs cools T2m and why the cooling magnitude differs between
relatively dry and wet regions. Our discussion here is diagnos-
tic and the following interpretation is based on the equilib-
rium state when temperature and the surface energy budget
have reached a new balance.

The surface energy balance can be written as

SWn_ 1 LWd_ 5 LWu↑ 1 LH↑ 1 SH↑ 1 G_, (2)

where the arrows indicate the defined direction of each energy
flux term, SWn_ denotes net shortwave radiation at the surface,
LWd_ denotes downwelling longwave radiation, LWu↑ denotes
upwelling longwave radiation, LH↑ is latent heat flux, SH↑ is
sensible heat flux, and G_ denotes ground heat flux. We drop
the arrows in the following for simplicity. As the surface albedo
is prescribed across our simulations,3 SWn and the incoming
shortwave radiation behave in a consistent fashion, and only
SWn is shown. In the following, we discuss how changes in the
surface energy fluxes affect the temperature response by first
presenting responses in the surface radiative fluxes and then dis-
cussing responses in the surface turbulent heat fluxes.

Overall, changes in SWn primarily occur in the Northern
Hemisphere (Fig. 2c). Decreasing rs results in an evident de-
crease of SWn in the northern high latitudes and several low-
latitude land areas such as Southeast Asia and the Amazon.
The western United States, central Asia, and central Africa
receive more shortwave radiation in the low rs case. Changes
in SWn are primarily due to changes in cloud cover4 because

3 There are a few exceptions in the Arctic area where the summer-
time snow cover difference between rs20 and rs1000 has led to slight
changes of surface albedo across the simulations.

4 Changes in the column water vapor could also affect the atmo-
spheric transfer of shortwave radiation, but its effects are small
compared to changes in cloudiness.
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surface albedo is fixed across our simulations. We present
changes in the cloud fraction at different altitude levels in
Figs. 3a and 3c. Decreases in rs increase low cloud fraction,
particularly at northern high latitudes, which is consistent
with previous findings (Kim et al. 2020; Laguë et al. 2019).

Middle cloud and high cloud also increase in the Northern
Hemisphere high latitudes but decrease in drier land areas.
We calculate the surface cloud radiative forcing (CF) by sub-
tracting the clear-sky from the full-sky net surface radiative
fluxes, and the net CF (Fig. 3f) is the sum of the shortwave

FIG. 1. The climatology of land surface hydrology. Summer climatology of soil water (kg m22) in (a) rs20 and
(b) rs1000, and the fractional changes [DF 5 (rs20 2 rs1000)/rs1000] in the soil water climatology in (c) summer and
(d) spring. Also shown are changes (D 5 rs202 rs1000) of (e) summer evaporation, (f) summer precipitation, (g) summer
P2 E, and (h) spring P2 E. Red contours in (a) and (b) denote the soil moisture isoline of 100 kg m22 in each simulation.
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FIG. 2. The rs20 2 rs1000 difference in summer climatology of temperature and surface energy fluxes. (a) T2m,
(b) Ts, (c) net shortwave radiation (SWn; positive downward), (d) downwelling longwave radiation (LWd; positive
downward), (e) upwelling longwave radiation (LWu; positive upward), (f) net radiation minus ground heat flux (Rn 2 G;
positive downward), (g) sensible heat flux (SH), and (h) latent heat flux (LH). Units: K for temperature, and W m22 for
energy fluxes.
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cloud radiative forcing (CFSW) (Fig. 3d) and the longwave
cloud radiative forcing (CFLW) (Fig. 3e). Note that Figs. 3d–f
reflect changes in surface radiative forcing caused by changes
in cloud fraction at all levels. Negative CF suggest a surface
cooling effects due to cloud change (less energy into the sur-
face), and positive CF suggests a surface warming effects
(more energy into the surface). In agreement with changes in
SWn, Fig. 3d further suggests that the global decrease in rs can
affect surface temperature through alterations in the short-
wave cloud radiative forcing. These results agree with previ-
ous findings that changes in the vegetation cover, which
would alter evaporation, can also alter the cloud cover and
thus perturb surface shortwave forcing (Laguë and Swann
2016). Changes in the downwelling longwave (LWd) and up-
welling longwave (LWu) are shown in Figs. 2d and 2e.
Changes in LWu reflect changes in surface temperature given
that the longwave emissions from the surface are directly re-
lated to the surface temperature (Figs. 2a,b). LWd and near-
surface air temperature are also strongly coupled together
such that LWd can reflect changes in the temperature of the
lower atmosphere (Vargas Zeppetello et al. 2019b). Figure 2d
shows that increases in LWd only occur in the northern high
latitudes and part of the southern United States and western
Africa. The decrease of LWd over the other land areas is
likely due to the cooling of near-surface air. The net longwave

cloud radiative forcing (Fig. 3e) is closely related to changes
in the cloud cover at higher altitudes: a warming effect re-
sults from the cooler outgoing longwave emission caused
by increased middle to high cloud cover, and vice versa
(Figs. 3a,b). Figure 3e shows evident positive longwave
cloud radiative forcing over the northern high latitudes,
suggesting that it is the increase in the middle and high
cloud fraction (Figs. 3a,b) that dominate the long wave
warming effect over those areas. On the other hand, in-
creases of low cloud fraction might have contributed to the
longwave radiative cooling over southwestern North America,
central Africa, and central Asia (Figs. 3c,e). The net radia-
tive effect of changes in cloud cover is to cool most land
areas and to warm central Asia, the western United States,
and central Africa (Fig. 3f). Figure 2f presents D(Rn 2 G);
the spatial pattern of D(Rn 2 G) is nearly identical to that of
DRn as the change in the ground heat flux is small (not
shown). The disparity between changes in the sign of DT2m

(Fig. 2a) and D(Rn 2 G) (Fig. 2f) in wet regions primarily
arises from changes in the partitioning of surface turbulent
heat fluxes. For example, there is a cooling response over
the Northern Hemisphere subtropical land areas and the
Southern Hemisphere despite the positive net radiation
anomalies (Figs. 2a,f). This is consistent with an increase in
the partitioning toward latent heat fluxes (Fig. 2h) in these

FIG. 3. (a)–(c) The rs202 rs1000 difference in summer cloud fraction (unitless) and (d)–(f) cloud radiative forcing (Wm22).
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regions. In contrast, the cooling in dry lands is likely due to
advection, discussed further below in section 3c.

Taken together, we argue that the combined effects of the
shortwave radiation and latent heat flux appear to dominate
the spatial distribution of the cooling magnitude (Figs. 4a,b).
Compared to other surface energy fluxes, shortwave radiation
and latent heat flux are more closely affected by rs perturba-
tions. In particular, changes in rs can directly alter latent heat
flux (through changes in evaporation) and indirectly alter
shortwave radiation (through changes in the cloudiness
caused in part by changing moisture availability). We thus
view changes in (SWn 2 LH) as surface energy forcing that
controls the temperature response. In contrast, we view
changes in other surface energy fluxes as the response to
changes in LH and SWn since they depend on temperature it-
self. However, comparison of Figs. 4a and 4b makes it clear
that D(SWn 2 LH) is not the only factor that determines
DT2m: while the spatial patterns are similar (the centered pat-
tern correlation between the two maps is 0.74), the mean
value is not, with DT2m showing a global cooling while
D(SWn 2 LH) tends to be positive in drier regions. To under-
stand why, we next explore effects of changes in horizontal
temperature advection on DT2m.

c. Role of horizontal thermal advection

Changes in rs could indirectly affect T2m and its variability
by altering temperature advection, and we investigate this
possibility here. We calculate daily horizontal temperature
advection using 2u · =T, where u denotes daily horizontal

winds, T denotes daily air temperature at the vertical level of
interest, and = denotes the horizontal gradient operator.
Throughout this study, we only present horizontal thermal ad-
vection along the lowest hybrid-sigma level of the atmo-
spheric model (around 50-m height) (denoted as advTBOT,
where TBOT denotes air temperature at that level). Thermal
advection at 850 hPa yields similar results (not shown). The
opposite sign of D(SWn 2 LH) (Fig. 4b) and DadvTBOT
(Fig. 4c) over the majority of land regions suggest that
changes in the horizontal thermal advection can dampen
the effects of D(SWn 2 LH). In particular, cold temperature
advection anomalies coincide with the enhanced D(SWn 2 LH),
thus dampening the surface warming and eventually lead
to small cooling signals. These changes in the horizontal
temperature advection primarily arise from changes in the
horizontal temperature gradients, which are due to the non-
uniform (SWn 2 LH) and temperature response to decreases
in rs (Figs. 4a,b). Changes in the meridional temperature gra-
dient are particularly pronounced and mainly occur in the
northern mid- to high latitudes (Fig. S6a; see also Fig. 4a).
In contrast, changes in the zonal temperature gradient are
relatively small and are mostly confined to coastal and ele-
vated regions, as well as areas that experienced nonuni-
form cooling responses along the zonal direction such as
Siberia (Fig. S6b). Note that one can attempt to convert
temperature advection into energy flux units (W m22) by
making some assumptions. This is very likely not quantita-
tively accurate and dependent on the assumptions being
made, but it can at least give an indication that the magnitude

FIG. 4. (a) DT2m [the same as Fig. 2a; we keep it here for visual comparison with (b) and (c)], (b) D(SWn 2 LH), and
(c) DadvTBOT (changes in the horizontal thermal advection at the model’s bottom level).
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of the influence of changes in advection is not negligible
(Fig. S7).

d. Changes in the land–atmosphere coupling

We now explore how the land–atmosphere coupling re-
sponds to decreases in rs. We examine changes in the correla-
tion between summer daily anomalies of temperature and
latent heat flux r(LH′,T′

2m), a measure of the soil moisture–
temperature coupling strength (Lorenz et al. 2012; Seneviratne
et al. 2006). Conceptually, the land surface in an energy-
limited regime is primarily controlled by the atmosphere
through radiation, thus positive r(LH′,T′

2m) usually implies
an atmospheric controlled (energy-limited) regime. In con-
trast, negative r(LH′,T′

2m) often occurs in a soil-moisture
controlled (water-limited) regime where a lack of soil mois-
ture and evaporative cooling can amplify temperature anom-
alies (Schwingshackl et al. 2018; Zscheischler et al. 2015). In
rs20, T′

2m and LH′ are positively correlated in wet land areas
such as the tropics and the high-latitude continental regions
of the Northern Hemisphere, and negatively correlated in
arid and transitional regions such as the southern United
States, Australia, and interior Asia (Fig. 5a). In rs1000, how-
ever, r(LH′,T′

2m) is positive nearly worldwide, although the
positive correlation coefficients are small in arid and transi-
tional areas, and the transitional Sahel region still shows a
negative correlation (Fig. 5b). These results suggest that de-
creases in rs reduce soil moisture amount in midlatitude land
areas and lead these regions into a water-limited regime. In
contrast, the tropical and high-latitude wet areas still stay in

an energy-limited regime in the low rs scenario, though the mag-
nitude of r(LH′,T′

2m) decreases. Although the soil moisture–
atmosphere interaction is present across our simulations, our
high rs case behaves somewhat analogously to the pre-
scribed soil moisture simulation from the GLACE project,
in which Berg et al. (2015) found that r(LH′,T′

2m) is globally
positive because atmospheric evaporative demands (such as
net radiation and temperature) rather than soil moisture
availability drive the evapotranspiration and temperature
variability when the soil moisture–atmosphere interaction is
disabled. The primary reason that our high rs case resembles
Berg et al. (2015) is that large rs makes it difficult for the land
surface to evaporate water when there is available radiative en-
ergy at the surface, leading the soil moisture to remain ample;
thus near-surface air temperature is less constrained by soil
moisture availability.

We further demonstrate changes in the land surface evapo-
rative regimes by examining the relationship between the
summer mean evaporative fraction (EF) and soil moisture.
EF is defined as the fraction of available energy partitioned
toward latent heat fluxes: EF5 LH/(Rn 2 G)5 LH/(LH1 SH).
Figure 6 presents the summer climatology of EF versus soil
moisture from all grid points over land between 608S and
608N. Blue markers show results from rs20, orange markers
show rs1000, and each marker indicates one grid point. Due to
lower evaporative resistance, enhanced evaporative efficiency
leads to higher EF in rs20. The EF–soil moisture scatters distri-
bution resembles the Budyko curve (Budyko 1961) and the
conceptual framework proposed by Seneviratne et al. (2010).

FIG. 5. Correlation between summer daily anomalies of latent heat flux (LH') and T2m, denoted as r(LH′,T′
2m) , in

(a) rs20, (b) rs1000, and (c) rs20 minus rs1000. Hatching in (a) and (b) indicates grid boxes that are not significant by
applying a false discovery rate of 0.1 to p values calculated from a Student’s t test. When estimating the degrees of
freedom used for the p values calculation at each grid point in (a) and (b), we followed Eq. (3.4.2) of Bretherton
(2014) by accounting for the lag-1 autocorrelation of summer daily LH′ and T′

2m.
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Across spatial grid points, in drier areas (water-limited re-
gime), EF increases substantially at locations where the soil
moisture is higher. In contrast, for wetter areas (energy-
limited regime), EF is less sensitive to spatial variations in the
soil moisture amount. Due to the low complexity of the bucket
scheme for the hydrology, the dry regime (i.e., EF becomes
zero where soil moisture is still available but is below the wilt-
ing point) does not exist in our simulations. The averaged EF
values across soil moisture bins (denoted in the thick blue and
red lines in Fig. 6) indicate a steeper EF–soil moisture slope in
rs20: EF exhibits a larger increase with increases in soil mois-
ture across different regions, especially in water-limited areas.
Based on the transition from a steep slope to a relatively flat
slope, we use the vertical dashed lines in Fig. 6 as an estimated
soil moisture threshold5 for separating the water-limited and
energy-limited regimes in each simulation. It suggests that the
transition between an energy-limited and a water-limited regime

happens at a higher soil moisture threshold in rs20. Lower rs
makes it easier for the land surface to evaporate, therefore drier
regions require a relatively high level of soil moisture to reach
the condition when EF does not spatially vary with soil moisture;
likewise, it is easier for a wetter region to transit into a water-
limited regime in rs20.

Taken together, a global decrease in rs can shift the land
area toward a more water-limited regime where temperature
variability is more constrained by soil moisture availability. It
is worth noting that the LH parameterization in SLIM is a
simplification of reality, and the nonlinearity (i.e., the compet-
ing effects between rs and b) built into the LH parameteriza-
tion is important for us to understand changes in the land–
atmosphere coupling in our simulations. On the one hand, the
soil moisture amount becomes much lower in rs20. On the
other hand, small rs itself implies stronger land–atmosphere
coupling (i.e., a greater soil moisture control on evaporation)
if soil moisture amount is identical between the high and low
rs cases. Further, the (admittedly large) perturbation in rs
could not only cause a shift in the land surface evaporative re-
gimes but could also lead to a fundamental change in the
structure of the relationship between soil moisture and EF
(e.g., the EF-soil moisture slope) (Fig. 6). The narrative of
future model projection studies usually emphasizes shifting
from an energy-limited regime to a water-limited regime in
some regions under global warming. For example, Seneviratne
et al. (2006) found that increasing greenhouse gas concentrations
makes central and eastern Europe a new transitional zone and
consequently leads the area to experience enhanced temperature
variability due to a stronger land–atmosphere coupling. Though
we expect the effects of changes in rs to be of second order com-
pared to changes in the hydrological cycle under a changing cli-
mate, our finding suggests that future work investigating climatic
forcing on land surface regimes should look beyond the regime
shift by clarifying the potential changes in the steepness of the
slope between EF and soil moisture.

4. Changes in the temperature variance Var(T′
2m)

We now discuss the response of temperature variance to
decreases in rs, and the physical processes that cause the
changes in the temperature variance. We find that decreasing
rs leads to an increase in Var(T′

2m) in drier areas such as the
midlatitudes and a decrease in Var(T′

2m) in wetter areas such
as the tropical and northern high latitudes (Fig. 7a). In the fol-
lowing, we will first seek to understand Var(T′

2m) changes
through a surface energy budget perspective (section 4a). We
will demonstrate that changes in the temperature variance
can be largely explained by changes in the combined variance
of SW and LH. We will then explore the effects of changes in
the thermal advection variance, which appear to amplify
changes in the temperature variance in the northern mid- to
high latitudes (section 4b). We employ a multiple linear re-
gression approach in section 4c to further discuss the relative
importance of changes in the combined variance of SW and
LH versus changes in the thermal advection variance on
changes in the temperature variance. We end with a recap
(section 4d) of lessons learned from this section.

FIG. 6. Scatterplot of evaporative fraction (y axis) vs soil mois-
ture (x axis). Results shown are summer climatology of land grid
points in 608S–608N. Blue dot markers denote results from rs20,
and orange triangle markers denote results from rs1000. The blue
and red thick lines denote averaged evaporative fraction across
grid points within each soil moisture bin (here, the binned average
was implemented using the Python package scipy.stats.binned_statistic,
with the number of equal-width bins set to 30). Vertical dashed lines
indicate soil moisture thresholds separating water-limited regime
(to the left of the dashed line) and energy-limited regime (to the
right of the dashed line). These thresholds are obtained based on
when the evaporative fraction–soil moisture slope becomes nearly
zero. The blue dashed line at 200 kg m22 is for rs20, and the red
dashed line at 100 kg m22 is for rs1000.

5 Note that the dashed line is a visual aid to roughly separate rel-
atively wet and dry grid cells. The soil moisture threshold for sepa-
rating water-limited and energy-limited areas might differ from
the current study if the model used a different bucket fullness
threshold that affects b.

K O NG E T A L . 166315 MARCH 2023

Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 04/14/23 11:29 PM UTC



a. Linking changes of Var(T′
2m) to changes in shortwave

and latent heat fluxes

Motivated by our earlier findings that changes in rs can di-
rectly alter latent heat flux and indirectly alter incoming short-
wave radiation through changes in cloudiness (section 3), we
hypothesize that changes in the combined variance of short-
wave and latent heat fluxes control the changes in the daily
summer temperature variance as rs decreases in the context of
our simulations. Perturbations in the surface energy fluxes are
directly linked to the surface (instead of near-surface) temper-
ature, and previous studies suggest there could be discernible
differences between responses of the 2-m air temperature and
surface temperature to land surface perturbations at short
time scales. For example, an observational study based in the
southern Great Plains showed that compared to surface tem-
perature, the response of 2-m temperature to changes in soil
moisture is evidently weaker (Panwar et al. 2019). Despite
this caveat, the near identical variance of near-surface air
temperature and surface temperature in our simulations (see

Fig. S8) suggest that it is a sound assumption to view near-surface
and surface temperature as exchangeable in this context.

We rewrite the surface energy balance [Eq. (2)] in anomaly
terms as

SW′
n_ 2 LH′↑ 5 LW′

n↑ 1 SH′↑ 1 G′_, (3)

where on the left-hand side (LHS) we have grouped SW′
n and

LH′ that have been clearly perturbed by the imposed rs
changes, and we thus view these two terms as forcing of
changes in temperature variability in the context of our rs per-
turbation simulations. We view the terms on the right-hand
side (RHS) as the response to the forcing. We assume that
LW′

n, SH
′, and G′ are all proportional to surface temperature

in a quasi-linear fashion. Although the variation of ground
heat flux could be complicated by landscape and the soil ther-
mal properties (Purdy et al. 2016), an empirical linear relation-
ship between the surface temperature and ground heat flux has
been used to understand the global terrestrial surface energy
budget (Mu et al. 2011). The sensible heat flux is proportional

FIG. 7. The fractional changes [DF 5 (rs202 rs1000)/rs1000] in (a) the temperature variance and (b) combined variance
of shortwave radiation and latent heat fluxes. Warm colors indicate an increase of variance, cold colors indicate a decrease
of variance, and the black contour in (a) and (b) indicates the zero line of DFVar(T′

2m) (c) The joint PDF (%) of
DFVar(T′

2m) in (a) against DFVar(SW′
n 2 LH′) in (b) of all land grid points in 608S–908N excluding Greenland, in which

the Pearson correlation coefficient is shown in the upper right corner.
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to the difference between the surface temperature and the near-
surface air temperature: SH 5 rairCp(Ts 2 Ta)/rah, where rair
is the density of air (kg m23), Cp is the specific heat constant
(J kg21 K21), Ta is the near-surface air temperature (K) (in
CESM, atmospheric temperature at the lowest model level
is used to represent Ta; Collins et al. 2004), and rah is the aero-
dynamic resistance (s m21). Therefore, it is reasonable to expect
a linear relationship between SH and Ts if rairCp/rah does not
vary substantially and Ta is proportional to Ts by a factor that
does not vary substantially. LWu is approximated as a linear
function of surface temperature via implicit linearization of the
Plank feedback, and LWd is assumed to vary linearly with tem-
perature due to the close coupling between LW′

d and the near-
surface temperature. In agreement with these assumptions,
changes in the variability of the longwave, sensible heat, and
ground heat flux (see Fig. S9) indeed resemble the pattern of
the temperature variability change, suggesting that variations of
surface temperature are closely related to the variations of the
energy flux terms on the RHS of Eq. (3).

If our proposed framework of viewing changes in
Var(SW′

n 2 LH′) as the forcing and viewing changes in
Var(T′

2m) as the response is valid, we should expect that regions
experiencing enhanced Var(SW′

n 2 LH′) to exhibit an increase
in Var(T′

2m) and that regions with reduced Var(SW′
n 2 LH′)

show a decrease in Var(T′
2m). Here, we use the fractional differ-

ence [denoted as DF; DF 5 (rs202 rs1000)/rs1000] instead of the
actual difference (D 5 rs20 2 rs1000) to test the causal linkage
between changes in Var(SW′

n 2 LH′) and changes in Var(T′
2m)

on a global scale. Our motivation for using the fractional
difference is as follows. We assume Var(T′

2m) is linked to
Var(SW′

n 2 LH′) as Var(SW′
n 2 LH′);aVar(T′

2m), where a

can be understood as a measure of the sensitivity of
Var(T′

2m) against Var(SW′
n 2 LH′) at each grid point. We

present Var(SW′
n 2 LH′), Var(T′

2m), and a from each simula-
tion in Fig. 8. As expected, a varies spatially due to the spatial
heterogeneity in a number of processes linking surface fluxes
to temperature (Figs. 8c,f). Therefore, comparing changes in
Var(SW′

n 2 LH′) and Var(T′
2m) across a global scale using the

FIG. 8. (top) The combined variance of shortwave and latent heat flux Var(SW′
n 2 LH′) in (a) rs20 and (d) rs1000.

(middle) Temperature variance Var(T′
2m) in (b) rs20 and (e) rs1000. (bottom) Ratio of Var(SW′

n 2 LH′) to Var(T′
2m)

in (c) rs20 and (f) rs1000.
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actual difference will be complicated by the fact that the
sensitivity of Var(T′

2m) against Var(SW′
n 2 LH′) varies spa-

tially. Note that despite the significant responses of both
Var(SW′

n 2 LH′) and Var(T′
2m) to decreasing rs, a exhibits

a strong resemblance between the two simulations (the centered
pattern correlation between Figs. 8c and 8f is 0.85). Our speculation
is that this is likely because a primarily depends on the soil type
and soil thermal properties at the land surface, and these
surface properties are prescribed and kept the same between
the two simulations. We thus assume that the spatial varia-
tion in the sensitivity of Var(T′

2m) against Var(SW′
n 2 LH′) is

exchangeable between rs20 and rs1000, and we can write out
the comparison between the fractional difference of Var(T′

2m)
and Var(SW′

n 2 LH′) at each grid point as follows: DFVar(T′
2m)/

[DFVar(SW′
n 2 LH′)];{DVar(T′

2m)/[DVar(SW′
n 2 LH′)]}3 a.

Therefore, using the fractional difference helps to put changes
in Var(T′

2m) and changes in Var(SW′
n 2 LH′) at different loca-

tions on the same footing by removing the spatial variation in
the sensitivity of Var(T′

2m) to Var(SW′
n 2 LH′) and allows

us to assess the linkage between changes in Var(T′
2m) and

changes in Var(SW′
n 2 LH′) across the global land area in

a more quantitative manner. It is interesting to note that
Var(SW′

n 2 LH′) and Var(T′
2m) do not closely align with each

other within each separate simulation (Figs. 8a,b,d,e), which is
likely due to the spatial variation in a.

As expected, the spatial maps of DFVar(SW′
n 2 LH′) and

DFVar(T′
2m) closely resemble each other (Figs. 7a,b): both

show a reduced variability in the tropics and the northern
high latitudes and an enhanced variability in the extratropical
land areas in the low rs case. The joint probability density
function (PDF) of DFVar(T′

2m) versus DFVar(SW′
n 2 LH′)

using land grid points between 608S and 908N excluding Green-
land from Figs. 7a and 7b further suggests that DFVar(T′

2m)
vary with DFVar(SW′

n 2 LH′) in a quasi-linear fashion, with a
spatial-cross correlation of 0.77 (Fig. 7c).

We now expand the combined variance of the LHS of
Eq. (3) as

Var(SW′
n 2 LH′) 5 Var(SW′

n) 1 Var(LH′) 2 2

3 Cov(SW′
n, LH

′) (4)

and discuss changes in the variability of shortwave and latent
heat flux, as well as changes in their covariance, and how
these changes contribute to the changes in their combined
variance (Fig. 9). Changes in Var(SW′

n) are most pronounced
in the Northern Hemisphere, while the Southern Hemisphere
shows minimal difference between the two simulations (Fig. 9a).
Changes in Var(SW′

n) are primarily controlled by perturbations
in the variability of cloud cover, which is closely coupled with
the vertical distribution of temperature and moisture, and the
atmospheric boundary layer structure (Klein 1997; Norris
1998). Indeed, Var(SW′

n) under clear sky is nearly identical
between the high and low rs cases (Fig. S9a), indicating that
changes in the cloudiness are the root cause of the shortwave
variability change. Variations in low clouds are most effective
in affecting the shortwave radiation as low clouds are almost
opaque to the shortwave. Like changes in Var(SW′

n), changes
in the variability of the low cloud cover are especially pro-
nounced in the Northern Hemisphere mid-to-high latitudes,
where the low cloud cover exhibits reduced variability in the
polar region and enhanced variability in the midlatitudes (see
Fig. S10b). These changes in the low cloud cover variability

FIG. 9. Changes (rs20 2 rs1000) in (a) variance of shortwave radiation, (b) variance of latent heat flux, (c) covari-
ance of shortwave radiation and latent heat flux, and (d) combined variance of shortwave radiation and latent heat
flux. Note that (d) is the same as Fig. 7b except that Fig. 7b shows the fractional change of variance.
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can be linked to the low cloud cover in the mean state, which
presents a cloudier condition in the high latitudes and is less
cloudy in the mid latitudes. Since the low cloud cover in-
creases everywhere when rs decreases (Fig. 3c), its variance in
regions where it is already very cloudy is reduced because the
cloud fraction cannot become greater than one and the in-
creased cloud fraction means that less cloudy days are less
likely. In less cloudy regions, however, increasing cloud frac-
tion increases the variance because the probability of having
cloudier days in those areas increases. Var(LH′) increases in
most land areas in rs20 (Fig. 9b) due to the enhanced evapora-
tion efficiency (Fig. 6). Regions that experienced an increase
in summer mean latent heat flux exhibit an enhancement of
Var(LH′). It is worth noting that although the latent heat
flux enhancement peaks in the tropics, the magnitude of the
Var(LH′) enhancement is largest over extratropical land
areas. In contrast, there is a slight decrease in Var(LH′) over
regions that experienced a reduction of latent heat in the sum-
mer mean state (Fig. 2h), such as the west to central United
States, North Africa, and interior Asia. Soil moisture in these
regions becomes critically low in rs20 and limits further evapo-
ration and reduces Var(LH′). Though being a relatively wet
area, the magnitude of the Var(LH′) changes in the Northern
Hemisphere high latitudes is small, which is likely due to the
reduced shortwave variance in the region (cf. Figs. 9a,b).
Compared to rs1000, the covariance of shortwave and latent
heat flux increases in wetter areas and decreases in drier areas
in rs20 (Fig. 9c). Assuming the same magnitude of positive
shortwave anomalies in both scenarios, more positive evapo-
ration anomalies can occur over wet land surface in the low rs
case due to the low resistance to evaporation. In contrast, less
evaporation would occur over dry land surface in the low rs case
because of the limited soil moisture availability. Interestingly,
the joint PDF between DVar(T′

2m) and DVar(SW′
n 2 LH′)

(Fig. 7c) suggests that an enhancement of Var(T′
2m) could occur

even when DVar(SW′
n 2 LH′) is negative or zero, suggesting

that other factors may contribute to changes in temperature vari-
ance in some regions.

b. Changes in the variance of thermal advection

We now explore the effects of horizontal thermal advection
on the variation of near-surface air temperature. We obtain daily
anomalies of thermal advection by removing the seasonal cycle
(i.e., the first 10 harmonics of the daily climatology) of 2u · =T,
that is,6 2(u · =T)′ 5 (2u · =T)2 (2u · =T), where ( · ) de-
notes climatology, and (·)′ denotes an anomaly. In the following,
we denote daily anomalies of thermal advection at the lowest at-
mospheric model level as advTBOT′. Analysis using the 850-hPa
thermal advection gives similar results (not shown).

The strong resemblance between changes in the thermal
advection variance (Fig. 10a) and changes in temperature

variance (Fig. 7a) in the northern mid- to high latitudes sug-
gests that besides the combined variance of shortwave radia-
tion and latent heat flux, thermal advection may also play
a role in shaping the extratropical temperature variance
response to decreasing rs. However, the overall correspon-
dence between changes in the temperature variance and
thermal advection variance is less clear-cut than changes in
Var(SW′

n 2 LH′). The spatial cross-correlation coefficient be-
tween the fractional change of variance is 0.43 for DFVar(T′

2m)
and DFVar(advTBOT′), smaller than the correlation
between DFVar(T′

2m) and DFVar(SW′
n 2 LH′) (section 4a

and Fig. 7c), which is 0.77. The latitudinal correlation between
the fractional changes of variance (Fig. 10b) further demon-
strates a stronger connection between DFVar(SW′

n 2 LH′)
and DFVar(T′

2m) across all latitudes. In contrast, the effects of
DFVar(advTBOT′) are most pronounced in the northern mid-
to high latitudes but are weaker in austral summer and the
tropics.

c. Reconstruction of temperature variability using
multiple linear regression (MLR)

To quantify the relative importance of (SW′
n 2 LH′) and

advTBOT′ in the magnitude of changes in Var(T′
2m), we con-

struct a multiple linear regression (MLR) model for T′
2m, at

each grid point, as follows:

T′
2m 5 b0 1 b1(SW′

n 2 LH′) 1 b2(advTBOT′) 1 e, (5)

where b0 denotes the intercept, b1 and b2 denote the regres-
sion coefficients, and E denotes the residual. To solely focus
on the effects of changes in the variance of (SW′

n 2 LH′) and
advTBOT′, we assume that there is no change in b0, b1, and b2
between the two simulations. That is, rs20 and rs1000 share the
same MLR model. To this end, we construct the MLR model
using T′

2m, (SW′
n 2 LH′), and advTBOT′ that are concatenated

from rs20 and rs1000 together.
Based on the proposed MLR model, we reconstruct the

T′
2m variance explained by (SW′

n 2 LH′) and advTBOT′ in
each simulation [denoted as Var(T′

2m)MLR] as follows:

Var(T′
2m)MLR 5 b21Var(SW′

n 2 LH′) 1 b22Var(advTBOT′)
1 2b1b2Cov(SW′

n 2 LH′, advTBOT′), (6)

where we use Var(SW′
n 2 LH′), Var(advTBOT′), and

Cov(SW′
n 2 LH′, advTBOT′) from each separate simulation

to calculate Var(T′
2m)MLR in rs20 and rs1000, while the regres-

sion coefficients b1 and b2 (Fig. 11) stay the same. Spatial pat-
terns of Var(T′

2m)MLR (Figs. S11a,e) closely resemble the
actual T′

2m variance in each simulation (Figs. 8b,e). As ex-
pected, the magnitude of Var(T′

2m)MLR (Figs. S11a,e) is
smaller than the actual T′

2m variance. This is likely due to the
regression dilution bias (Hutcheon et al. 2010) as well as the
fact that we are only considering effects of (SW′

n 2 LH′) and
advTBOT′. Most of the MLR reconstructed T′

2m variance
comes from b21Var(SW′

n 2 LH′), with the contribution from
b22Var(advTBOT′) being secondary and concentrating over
extratropical land area (Fig. S11). We further explore contri-
butions of each process from the RHS of Eq. (6) to changes

6 Some authors (e.g., Holmes et al. 2016) have directly used2u′ · T
to represent thermal advection anomalies, thereby assuming that ad-
vection across climatological temperature gradients by the anomalous
wind dominates changes in the advection. Results based on this calcu-
lation approach are consistent with those reported here.
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(D 5 rs20 2 rs1000) in the MLR reconstructed T′
2m variance

(Figs. 12a–d). It suggests that changes in Var(T′
2m)MLR (Fig. 12d)

are primarily due to changes in T′
2m variance reconstructed

from Var(SW′
n 2 LH′) and the regression coefficients b1

(Fig. 12a). In contrast, changes in T′
2m variance recon-

structed from Var(advTBOT′) and the regression coeffi-
cients b2 are only pronounced in northern mid- to high
latitudes (Fig. 12b). Note that accounting for changes in
Var(advTBOT′) resolves some of the mismatches between
changes in Var(T′

2m) and changes in Var(SW′
n 2 LH′) such

as that over southeastern Canada, where Var(SW′
n 2 LH′)

decreases while Var(T′
2m) increases. Figures 12d–f further

demonstrate that changes in T′
2m variance reconstructed

from the MLR model captured the actual changes in T′
2m

variance reasonably well, with the joint PDF between
DVar(T′

2m)MLR and DVar(T′
2m) land grid points in 608S–908N

(excluding Greenland) exhibits a strong linear relationship
(the Pearson correlation coefficient is 0.8).

Our MLR analysis support our earlier interpretation that
changes in Var(T′

2m) can be primarily explained by changes
in Var(SW′

n 2 LH′) across a global scale, while changes in
Var(advTBOT′) mainly affect the northern mid- to high lati-
tudes. Still, we should note the caveat of our assumption that
rs20 and rs1000 share the same regression coefficients, because
there are several areas in the northern extratropical land area
where the regression coefficients exhibit evident differences
between rs20 and rs1000 (not shown). Understanding changes
in the regression coefficients of T′

2m onto its physical drivers
could be important for accurately predicting the magnitude of
responses in T′

2m variance to land surface forcing. However, it
is beyond the scope of our current study, and we leave that
exploration for future investigations.

FIG. 10. (a) Changes (D 5 rs20 2 rs1000) in the variance of thermal advection (K2 day22)
at the lowest atmospheric model level. (b) Latitudinal correlations across the fractional change
[DF5 (rs202 rs1000)/rs1000] of variances, between DFVar(T′

2m) and DFVar(SW′
n 2 LH′) in pink,

and between DFVar(T′
2m) and DFVar(advTBOT') in blue. Correlations were calculated from land

grid points across longitude at each latitude between 608S and 908N, excluding Greenland.
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d. Recap

We provide an overview of this section’s main message in
Fig. 13. Figures 13a–d compare rs20 and rs1000 simulated dis-
tribution of T′

2m, SW
′
n 2 LH′, and advTBOT′ (similar results

are found for advT850′; not shown) over several representa-
tive locations spanning different latitudes that either experi-
enced an increase or a decrease of temperature variance. The
U.S. Midwest (Fig. 13a) and Australia (Fig. 13b) points are
typical extratropical land areas from boreal summer and
austral summer, respectively. Both locations experience an in-
crease in temperature variance when rs decreases, as demon-
strated by the wider range of T′

2m simulated in rs20. The
increase of Var(T′

2m) in the U.S. Midwest can be attributed to
an increase in both Var(SW′

n 2 LH′) and Var(advTBOT′). In
contrast, the increase of Var(T′

2m) in Australia is mainly due
to the enhanced Var(SW′

n 2 LH′). The decrease in Var(T′
2m)

in rs20 at the Amazon point, which is representative of the
tropical land areas, is due to decreases in Var(SW′

n 2 LH′) in
the region (Fig. 13c). For Siberia, which is representative of
northern high latitudes, both decreases in Var(SW′

n 2 LH′)
and Var(advTBOT′) contribute to decreases in Var(T′

2m)
(Fig. 13d).

Taken together, the response of summer continental tem-
perature variance to the rs perturbations in our simulations

can be explained to first order by changes in the combined
variance of shortwave and latent heat fluxes. We think this
is a valid framework because, compared to other surface en-
ergy fluxes, shortwave radiation and latent heat flux are more
directly influenced by the rs perturbations. Therefore, by
viewing DFVar(SW′

n 2 LH′) as the forcing of the surface en-
ergy budget and by viewing DFVar(T′

2m) as the response, we
find a largely coherent change between the two quantities
(Figs. 13e,f). It is worth noting that the spatial pattern of
DFVar(T′

2m) resembles the spatial patterns of summer soil
moisture climatology (see Fig. 1) and changes in the covari-
ance between SW′

n and LH′ (see Fig. 9c). Reducing rs leads
climatologically drier areas to become more water-limited,
which reduces Cov(SW′

n,LH
′), thus weakening the damping

effect of evaporative cooling and enhancing Var(T′
2m). In con-

trast, climatologically wetter areas experience an increase of
Cov(SW′

n, LH
′), and thus a decrease in Var(T′

2m). Further
analysis suggests that changes in the horizontal thermal ad-
vection variance also act to shape the temperature variance
response, especially in the northern mid- to high latitudes
(Fig. 13g). Note that neither DFVar(SW′

n 2 LH′) nor
DFVar(advTBOT′) provides a satisfactory explanation for
DFVar(T′

2m) in some regions, such as the southwestern United
States. Such discrepancies suggest that other possible drivers
(such as downwelling longwave radiation and vertical motion)
of temperature variance change should be taken into account
when assessing the effects of land surface perturbations on lo-
cal scales. Further, changes in the sensitivity of T′

2m to
(SW′

n 2 LH′) and advTBOT′ could be important in under-
standing the magnitude of changes in Var(T′

2m) in some
regions.

5. Discussion

Our diagnostic framework of using the combined variance
of shortwave and latent heat flux to understand changes in
summer temperature variance bears similarities with previous
studies (Gregory and Mitchell 1995; Vargas Zeppetello et al.
2020). Gregory and Mitchell (1995) examined changes of sum-
mer daily surface temperature variance over Europe in the
equilibrium climate with a doubled atmospheric concentra-
tion of carbon dioxide. They found that in a warming climate,
changes in the temperature variance are closely related to
changes in the ratio of latent heat flux to the sum of land sur-
face turbulent heat and net longwave fluxes [l, hereafter;
l 5 LH ↑ /(LH ↑ 1 SH ↑ 1 LWn ↑)5 LH ↑ /(SW_1G_)]. That
is, daily temperature variance increases when l decreases, and
temperature variance decreases when l increases. The magni-
tude of l reflects the background soil moisture availability,
which, as discussed above, can affect the temperature vari-
ance by modulating the portion of net radiation used for
evaporation. For example, when soil moisture is ample, a
larger portion of net radiative energy anomalies is associ-
ated with altered evaporation of water from the land surface
and thus a smaller portion warms up the land surface, result-
ing in reduced temperature variability. We examined the
summer climatology of l in both simulations and found that

FIG. 11. Regression coefficients derived from the MLR model:
(a) b1 [K (Wm22)21] and (b) b2 [K (K s21)21].
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regions with more ample background soil moisture indeed
present a larger evaporative cooling ratio (see Fig. S12).
In agreement with Gregory and Mitchell (1995), we found
an overall negative relationship between changes in tem-
perature variance and changes in l: the correlation coeffi-
cient of these values over land grid points between 608S and
908N excluding Greenland is 20.5. The fact that changes
in Var(SW′

n 2 LH′) yield a stronger magnitude of correla-
tion (r 5 0.77; see section 4a) with changes in temperature
variance suggests that our approach is more accurate in un-
derstanding the response of summer daily temperature vari-
ance to the rs perturbations, likely because we explicitly
consider how changes in the variances of the energy budget

terms would be expected to link to changes in temperature
variance.

A similar framework was developed by Vargas Zeppetello
et al. (2020). Based on the surface energy and water budget,
they found that summer monthly temperature variance in the
mean state can be modeled as a linear response to combined
variance of shortwave radiation and precipitation anomalies.
Vargas Zeppetello and Battisti (2020) further employed that
framework to explore the sensitivity of summer monthly tem-
perature variance to surface warming due to increasing car-
bon dioxide. Our framework is distinct in that we view the
latent heat flux (in response to perturbations in the land sur-
face properties) rather than precipitation as a forcing variable,

FIG. 12. Changes (D 5 rs20 2 rs1000) in the multiple linear regression (MLR) reconstructed Var(T′
2m) Shown are

DVar(T′
2m) due to (a) changes in b21Var(SW′

n 2 LH′), (b) changes in b22Var(advTBOT′), and (c) changes in
2b1b2 Cov(SW′

n 2 LH′, advTBOT′) (d) Total MLR reconstructed DVar(T′
2m) from the sum of (a) to (c), and

(e) DVar(T′
2m) directly calculated from T′

2m in each simulation. (f) The joint PDF (%) of DVar(T′
2m)MLR in (d) against

DVar(T′
2m) in (e) of all land grid points between 608S and 908N (excluding Greenland), with the Pearson correlation

coefficient shown in the upper right corner.
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and that we focus on the variance of daily temperature anom-
alies. Further, although DVar(T′

2m) can be understood from
DVar(SW′

n 2 LH′) in response to the globally uniform rs per-
turbations, we did not find a close correspondence between
Var(SW′

n 2 LH′) and Var(T′
2m) in the mean state in our simula-

tions. Still, it is interesting to note that though Vargas Zeppetello
and Battisti (2020) focused on the temperature variance response
to the greenhouse gas forcing while our work focuses on the

effects of land surface forcing, their results agree with our finding
if we view precipitation as a stand-in for LH.

6. Summary

This work explores the responses of summer daily conti-
nental temperature variance to perturbations in the land sur-
face evaporative resistance (rs), and discusses the underlying

FIG. 13. Overview of responses of continental daily temperature variance to perturbations in the land surface evaporative resistance. The
distribution of T′

2m, SW
′
n 2 LH′, and advTBOT' at several case sites [denoted by green markers in (e)–(g)] are shown for (a) the U.S. Mid-

west (458N, 2678E), (b) Australia (248S, 1308E), (c) the Amazon (68S, 2958E), and (d) Siberia (658N, 1508E). The blue and red marker lines
denote results from rs20 to rs1000, respectively. (e)–(g) Fractional changes [DF 5 (rs20 2 rs1000)/rs1000] of Var(T′

2m), Var(SW′
n 2 LH′),

and Var(advTBOT'), respectively. Land areas where the variance change is not significant after accounting for a false discovery rate of 0.1
are masked in white.
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mechanisms that drive the temperature variance change. We
employ an idealized land surface model SLIM (Laguë et al.
2019) coupled to an atmospheric circulation model CAM6
within the CESM2 framework. We focused on two idealized
scenarios, where rs over the global land area is prescribed to
20 s m21 (rs20) and 1000 s m21 (rs1000), respectively. We first
examined changes in the summer hydrology and surface cli-
mate when rs decreases. Although soil moisture decreases ev-
erywhere in the low rs case, changes in evaporation show an
opposite sign between wetter areas and drier areas. Unlike
wetter areas where decreasing rs enhances evaporation, latent
heat flux decreases in drier areas in the low rs case, because
soil moisture becomes critically low in drier areas and limits
evaporation. Decreases in rs lead to a global scale cooling in
both surface and near-surface temperature, with the cooling
magnitude being relatively small in drier areas such as the
western United States, the Sahara Desert, central Asia, and
southern Australia. We find that changes in the near-surface
temperature can be largely understood from changes in sur-
face energy fluxes. Decreasing rs causes a global scale increase
of low cloud cover and regional changes in both middle and
high cloud cover, which collectively affect surface temperature
due to both shortwave and longwave cloud radiative forcing.
Changes in the surface turbulent heat fluxes, especially the evap-
orative cooling, also affect surface temperature. Overall, we find
a close spatial correspondence between changes in the surface
temperature and the combined effects of shortwave radiation and
latent heat flux (i.e., SWn 2 LH): regions where D(SWn 2 LH)
is negative experienced significant cooling, while the cooling is
largely dampened in regions where D(SWn 2 LH) is positive.
Near-surface horizontal thermal advection appears to affect the
summer mean state response as well. In particular, changes in
thermal advection act to oppose the effects of D(SWn 2 LH)
and leads to cooling in regions where D(SWn 2 LH) is positive.
Discussion of a correlation metric r(LH′,T′

2m) that captures soil
moisture–atmosphere coupling strength suggests that tempera-
ture anomalies are strongly constrained by soil moisture avail-
ability in the low rs case, while temperature variation in high rs
case may be affected more by atmospheric processes.

Decreasing rs leads the summer temperature variance to
increase in most extratropical land areas and decrease in
the tropical and the northern high-latitude regions. We first
sought to understand changes in the temperature variance
through a surface energy balance framework. Given that
changes in rs can alter shortwave radiation (through changes
in cloudiness) and evaporation (through changes in evaporation
efficiency and soil moisture amount), we explored whether
changes in temperature variance can be explained by changes
in the combined variance of shortwave and latent heat fluxes.
Our analysis suggests that changes in Var(SW′

n 2 LH′) can in-
deed qualitatively explain changes in Var(T′

2m) over land, and
the spatial cross correlation between the fractional changes in
Var(SW′

n 2 LH′) and Var(T′
2m) is 0.77. We further explored

changes in the variance of horizontal thermal advection. Our re-
sults show a strong resemblance between changes in the variabil-
ity of thermal advection and changes in temperature variance in
the northern mid- to high latitudes. Correlations across land grid
points along each latitude further indicate that changes in the

advection variance amplified changes in the temperature vari-
ance in the Northern Hemisphere extratropical regions.

Several caveats of our work are worth mentioning. First,
evaporation efficiency in the real world is affected by various
factors, such as rooting depth, canopy water holding capacity,
photosynthesis, and stomatal conductance. Unlike the more
realistic land models in which different fluxes of canopy evapo-
ration of intercepted water, transpiration, and soil evaporation
are considered, SLIM aggregates these water fluxes into one
bulk, canopy-level resistance. Second, land–atmosphere cou-
pling has been shown to be model dependent (Koster et al.
2006; Seneviratne et al. 2010), and previous studies suggest
models usually overestimate summer temperature variability
compared to observations (Merrifield and Xie 2016; Mueller
and Seneviratne 2014). Further, the ocean–atmosphere cou-
pling, which is not considered in our current study, is sug-
gested to be important in continental temperature variability
(Davin and de Noblet-Ducoudré 2010). Finally, the precipita-
tion response, which was a component of understanding the
land surface hydrology changes (section 3a), could depend on
the atmospheric model used in this study.

Our simulation with reduced evaporative resistance mimics
a scenario with a worldwide cropping intensification. Mueller
et al. (2016) suggest that cropping intensification in the Mid-
west can dampen summer heat extremes through enhanced
evaporative cooling. One interesting result from their work is
that the dampening effect of cropping intensification differs
drastically between irrigated and rain-fed regions. Because
soil moisture is always ample in irrigated regions, cropping
intensification dampens hot extremes during both drought
and nondrought years. Hot extremes in rain-fed regions, how-
ever, only experience evident dampening during nondrought
years. In a similar vein, we find that the background soil moisture
amount is critical in determining the response of temperature
variance to perturbations in rs. A competing effect between en-
hanced evaporation efficiency and reduced soil moisture amount
emerges in regions with relatively limited soil moisture.

Finally, we note that the relative contributions of surface
energy fluxes and thermal advection could differ between the
low and high rs cases. How the effects of different physical
drivers on temperature variance and extremes evolve in a
changing climate is still an open question. Wehrli et al. (2019)
assessed contributions of different physical drivers to recent
major heat waves in Europe and found that atmospheric cir-
culation can be equally important as that of soil moisture to
some heat wave anomalies. Our latitudinal correlation (Fig. 10b)
and multiple linear regression analysis (Fig. 12b) also indicate
that changes in the variance of thermal advection might have
played an equally important role in driving changes in the tem-
perature variance in northern extratropical land areas. Of partic-
ular interest for a future direction is to obtain a complete picture
of the spatial distribution of the relative importance of land con-
ditions and atmospheric circulations, and how they evolve in a
changing climate.
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Data availability statement. Scripts for creating the land
surface forcing files and for setting up the SLIM simulations
are available at https://github.com/wenwenkong/kong_etal_
2022_jcli_t2m. The source code of SLIM is available at https://
github.com/marysa/SimpleLand/. Detailed information of the
CESM2 AMIP simulations can be found at https://data.ucar.
edu/en/dataset/f-e21-fhist_bgc-f09_f09_mg17-cmip6-amip-
001-cmip6-cesm2-amip-hindcast-1950-2014-with-interactiv3.
The CESM2 AMIP simulations can be accessed from the Earth
System Grid website at https://www.earthsystemgrid.org/dataset/
ucar.cgd.cesm2.output.html or from NCAR’s Cheyenne cam-
paign storage in this path: /glade/campaign/collections/cmip/
CMIP6/timeseries-cmip6/. The ERA5 dataset can be accessed
from the European Centre for Medium-Range Weather

FIG. A1. Summertime climatology of (left) evaporative fraction (unitless) and (right) 2-m air temperature (K).
(a) Evaporative fraction calculated from the GLEAM v3.5a dataset (1980–2020). Also shown are results
from (b),(e) ERA5 (1979–2019), (c),(f) a CESM2-AMIP historical simulation (1950–2014), and (d),(g) SLIM
run rs150.
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Forecasts (ECMWF), Copernicus Climate Change Service
(C3S) at Climate Data Store (https://cds.climate.copernicus.
eu/). The GLEAM v3.5a dataset can be downloaded from
https://www.gleam.eu.

APPENDIX

Comparing SLIM to ERA5, GLEAM, and CESM2

Here we briefly discuss the representation of the climatology
and variability of SLIM coupled with CAM6 at 1.98 3 2.58 in
simulating the climatology and variability of summertime conti-
nental temperature. We use rs150 to assess SLIM’s perfor-
mance as the prescribed rs in this simulation is neither too low
(compared to rs20) nor too high (compared to rs1000). Overall,
our SLIM simulated EF and T2m climatology agree well with
the ERA5 dataset (Fig. A1). The spatial pattern of the SLIM
and CAM6 simulated EF also largely agree with the GLEAM
v3.5a dataset (Fig. A1a). However, both SLIM and CESM2 un-
derestimate the EF and overestimate T2m, which is not surpris-
ing as climate models are known to suffer from warm biases in
T2m over midlatitude continents, especially in the U.S. Great
Plains (Cheruy et al. 2014; Ma et al. 2014). Laguë et al. (2019)
also noted the T2m warm bias in SLIM. It is suggested that the

EF underestimate is the dominant source of the warm tempera-
ture bias, and that the warm bias is more significant in Atmo-
spheric Model Intercomparison Project (AMIP)-type simulations
than those in the ocean–atmosphere coupled simulations (Ma
et al. 2018). Compared to ERA5, both CESM2 and SLIM overes-
timate the temperature variability, especially in the northern mid-
to high latitudes (Fig. A2), which has also been documented in
previous studies (Merrifield and Xie 2016; Mueller and Senevir-
atne 2014). Sippel et al. (2017) suggest that some climate mod-
els overestimate summertime temperature variability because
they fall too frequently into water-limited regimes. The land–
atmosphere coupling strength indeed differs between ERA5
and model simulations (Figs. A2d–f). In particular, the tempera-
ture variance over the central United States being larger in
CESM2 and SLIM likely results from the stronger land–atmo-
sphere coupling in these models. Other factors that are not ex-
plored here (such as shortwave variability and atmospheric
circulation) may also contribute to the temperature variance
difference. Despite these biases compared to the ERA5
reanalysis dataset, the resemblance of the SLIM simulation
compared to CESM2 suggests that although the land surface
processes are highly simplified in SLIM, the model (prescribed
with the land surface conditions used in our work) can still simu-
late reasonable surface climate and temperature variability.

FIG. A2. Summertime variance of daily 2-m air temperature anomalies in (a) ERA-5, (b) CESM2, and (c) SLIM
run rs150, and the correlation between latent heat flux anomalies and temperature anomalies r(LH′,T′

2m) in
(d) ERA-5, (e) CESM2, and (f) SLIM run rs150.
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