
Uncertainties in agricultural water
supply under climate change: Aidoghmoush
basin, Iran
&1 Saba Jafari MSc

MSc graduate, Department of Irrigation & Reclamation Engineering,
Faculty of Agricultural Engineering & Technology, College of
Agriculture & Natural Resources, University of Tehran, Karaj, Iran

&2 Omid Bozorg-Haddad PhD
Distinguished Professor, Department of Irrigation & Reclamation
Engineering, Faculty of Agricultural Engineering & Technology,
College of Agriculture & Natural Resources, University of Tehran, Karaj,
Iran (Orcid:0000-0001-6607-9581) (corresponding author:
obhaddad@ut.ac.ir)

&3 Parisa-Sadat Ashofteh PhD
Assistant Professor, Department of Civil Engineering,
University of Qom, Qom, Iran

&4 Hugo A. Loáiciga PhD
Professor, Department of Geography, University of California,
Santa Barbara, CA, USA

1 2 3 4

The planning of future supplies of agricultural water is beset by uncertainties stemming from inaccuracies in general
circulation models, assumed greenhouse gases emissions scenarios (GHGESs), imperfect models employed for
estimating reservoir inflows and approximate methods for estimating agricultural water demand. The uncertainty of
providing agricultural water under climate change was assessed, relying on simulations involving baseline (1971–2000)
and future periods (2040–2069 and 2070–2099). Climatic variables were simulated using six atmosphere–ocean general
circulation models (AOGCMs) driven by GHGESs A2 and B2 in the Aidoghmoush basin, Iran. Projection of reservoir
inflow was performed using the IHACRES model and artificial neural network (ANNs). Agricultural water demand was
calculated using the FAO–Penman–Monteith and Hargreaves-Samani (HS) methods. Eight modelling scenarios were
considered based on combinations of AOGCMs, GHGESs, reservoir inflow and agricultural water demand projections.
Reservoir operation rules were calculated with a particle swarm optimisation algorithm. The results show that
agricultural water demand will increase in future periods compared with the baseline period. The operation rule
derived from the combination of the HS and ANN models (under GHGES A2) showed the best performance in
2040–2069 by achieving the highest reliability (93%) of water supply. The operation rule derived from the
combination of HS and ANN models (under GHGES B2) achieved the highest reliability (95%) of water supply in
2070–2099. The results provide adjusted reservoir operation rules under uncertainty caused by climate change and
related impacts on water resources management.

Notation
AC area under crop cultivation
Di volume of agricultural water demand

during period i
ETCi crop evapotranspiration in month i
ET0 reference evapotranspiration
ET0i reference evapotranspiration in month i
ea actual vapour pressure
es saturation vapour pressure
es− ea saturation vapour pressure deficit
G soil heat flux density
IRi net irrigation requirement in month i
i operation period
KCi crop coefficient during month i

Max Di=1
n maximum demand volume during

operation periods
N number of atmosphere–ocean general circulation

models (AOGCMs)
n number of operation periods
Peff i effective precipitation in month i
Pi projected time series of precipitation

for month i
Pobs,i time series precipitation observed in month i of

baseline period
R correlation coefficient
Ra solar radiation at top of atmosphere for

a given latitude in terms of equivalent
evaporation
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Ri volume of water release from reservoir
during period i

Rn net radiation at crop surface
T mean daily air temperature at 2 m height
Tave average daily air temperature
Ti projected time series of temperature for month i
Tobs observed temperature
Tobs,i time series of temperature observed in month i

of baseline period
T̄GCM;base;i,
P̄GCM;base;i

30-year temperature and precipitation averages,
respectively, simulated with the six AOGCMs
during the baseline period for month i

T̄GCM;fut;i,
P̄GCM;fut;i

30-year temperature and precipitation averages,
respectively, simulated with general circulation
models in future periods for month i

TR difference between maximum and minimum
daily air temperature

U2 wind speed at 2 m height
Vi volume of water demand in month i
WPi,j weight assigned to simulation of precipitation

with model j for month i
WTi,j weight assigned to simulation of temperature

with model j for month i
γ psychrometric constant
Δ slope of vapour pressure curve
ΔPi precipitation ratio
ΔPi,j difference between long-term average monthly

precipitation simulated with the jth AOGCM in
the baseline period and the average long-term
monthly precipitation observed in month i

ΔTi temperature difference
ΔTi,j difference between long-term average monthly

temperature simulated with the jth AOGCM in the
baseline period and the long-term average
monthly temperature observed in month i

1. Introduction
Agricultural water use exceeds all other water uses in many
semi-arid regions. The future supply of agricultural water may
be imperilled by climate change (Baede et al., 2001; Pachauri
and Reisinger, 2007), by economic growth and concomitant
agricultural water use and by the complexities of water storage
and distribution systems (Ashofteh, 2015; Ashofteh et al.,
2017; Farhangi, 2010).

This paper presents a methodology for extracting adjusted
reservoir operation rules under uncertainty caused due to
climate change. Future climate change impacts are difficult to
predict with accuracy, especially at regional scales (of the order
of 104–105 km2). For this reason, it is noteworthy that this
paper presents a methodology for evaluating a range of
probable climate change effects on reservoir operation rules to
assist water users in developing adaptive strategies. Previous

works pertinent to the contents of this paper are briefly
reviewed next.

Minville et al. (2008) projected the impact of climate change
on the hydrology of the Chute-du-Diable watershed in Quebec,
Canada. The use of ten equally weighted climate projections
from a combination of five general circulation models (GCMs)
and two greenhouse gas emissions scenarios (GHGESs)
provided an uncertainty envelope of future hydrologic
variables. Their results indicated a 1–14°C increase in seasonal
temperature and a change in seasonal precipitation of −9% to
+55%. Abbaspour et al. (2009) employed a hydrologic model
of Iran to study the impact of future climate on the country’s
water resources. The hydrologic model was created with the
soil and water assessment tool. Climate scenarios for
2010–2040 and 2070–2100 were generated with the Canadian
global coupled model (CGCM3.1) for GHGESs A1B, B1 and
A2, which were downscaled for 37 climate stations across the
country. Li et al. (2010) examined the potential impacts of
future climate change on streamflow and reservoir operation
performance in North American basins. GHGESs A2 and B2
were applied to project daily precipitation and temperature
with the CGCM2 model for dynamic reservoir modelling
based on basin hydrology. The results demonstrated that future
climate variation and change may bring more high peak
streamflow occurrences. More abundant water resources and
current reservoir operation rules could provide a high reliability
for drought protection and flood control (Asgari et al., 2016;
Soltanjalili et al., 2011). Warren and Holman (2012) evaluated
the effects of climate change on the water resources of the city
of Birmingham, UK. Baseline and future climate projections
were generated with the UK Climate Projections 2009 and a
daily soil water balance model was applied. The results showed
that climate change will decrease the reliability of the system.
Fallah-Mehdipour et al. (2014) analysed different artificial
intelligence tools for modelling water recourses and extracted
their governing rules. Ashofteh et al. (2015) assessed the risk of
increasing water demand for irrigated crops in an irrigation
network located downstream of Aidoghmoush dam in East
Azerbaijan, Iran, due to climate change for the period
2026–2039. The Bayesian method was implemented to assess
the uncertainty of atmosphere–ocean general circulation
models (AOGCMs) and the FAO–Penman–Monteith (FPM)
method was applied to calculate future evapotranspiration.
Their results showed that changing crop patterns could be one
of the strategies for adapting to climate change in the region.
Jahandideh-Tehrani et al. (2015) studied the effects of climate
change on the performance of hydropower reservoirs and
demonstrated the benefits of using optimisation modelling to
adapt to the effects of climate change. Masood and Takeuchi
(2016) reported on the effects of climate change and its
consequences on the future management of water resources in
the Magna basin, Bangladesh. The impacts of climate change
were assessed with the high-resolution MRI-AGCM3.2S
and the GHGES A1B in a baseline period (1979–2003),
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the near-future (2015–2039) and the far-future (2075–2099).
Their results showed that (a) the projected maximum incre-
ment of mean annual precipitation (runoff) would be +23%
(+34%) and +31% (+39%) in the near-future and the far-
future periods, respectively and (b) the projected increment of
the median value of monthly discharges at the basin outlet
would be significantly high in the wet season (May–July),
ranging from 38–44% and 25–104% in the near-future and the
far-future periods, respectively. Xing-Guo et al. (2017) assessed
the impacts of climate change on agricultural water demand in
the North China plain. The GCMs projected that, by the
2050s, the increased crop water demand and elevated
evapotranspiration resulting from global warming would
reduce water resources surplus by about 4–24% and signifi-
cantly increase the irrigation water demand during growth
periods.

Previous studies have projected the impacts of climate change
on water resources, agricultural water demand and reservoir
operation performance. Some of the studies have accounted for
uncertainties in their projections. In this work, the effects of
climate change on agricultural water demand were projected
and reservoir operation policies to cope with such effects
were developed. The projections provided in this paper are
innovative as, compared with previous studies, a more general
set of uncertainties was considered. Specifically, uncertainties
in GHGESs, AOGCMs, water demand and simulation models
for water resources were considered. These uncertainties were
applied to the projection of climate change impacts and
reservoir operation in the Aidoghmoush basin in East
Azerbaijan province, Iran.

2. Methods
This section introduces the study area and the future climate
scenarios and the models and methods for estimating reservoir
inflow and agricultural demand. The reservoir operation rules
corresponding to the different modelling scenarios are explained.
A flowchart of the methodology is shown in Figure 1.

2.1 The study area
The study area was Aidoghmoush basin, located in East
Azerbaijan province, Iran. The basin has an area of 1802 km2,
within 46°52′E and 47°45′E longitude and 36°43′N and 37°26′N
latitude. The 80-km long Aidoghmoush River originates in the
Gorgerd mountains and flows to the Ghezel-Ozan River. The
average discharge of the Aidoghmoush River is almost
170� 106 m3 annually (Ashofteh et al., 2015). The geographic
location of the Aidoghmoush reservoir is shown in Figure 2.

The study’s region climate is semi-arid with an average annual
temperature of 11.6°C and average annual precipitation of
336.3 mm. In this study, the period 1971–2000 was used as
a baseline, with the average temperature and precipitation
of this period serving for projecting the climatic variables in two
future periods (2040–2069 and 2070–2099). The average annual
water demand for agriculture in the basin is 11.61� 106 m3.
The crops cultivated in the area are wheat, barley, alfalfa,
soybeans, forage corn, maize, potatoes and walnuts.

2.2 Modelling scenarios
Eight modelling scenarios (MS1–MS8) were generated for
the first future period (2040–2069 (2050s)) and the second
future period (2070–2099 (2080s)). As shown in Table 1, these

GHGES, A2 and B2

AOGCMs

Climatic scenarios for temperature and
precipitation

Estimate reservoir
inflow with IHACRES

Estimate water requirement
(HS equation)

Estimate water requirement
(FPM equation)

Calculate reservoir operating rules with 
the PSO algorithm

Analysis of results

Estimate reservoir
inflow with ANN

Figure 1. Flowchart of methodology
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scenarios correspond to different combinations of GHGESs
(A2 and B2), two methods of estimating agricultural
demand (i.e. the FPM method and the Hargreaves–Samani
(HS) method), two models to project reservoir inflow
(i.e. Identification of unit hydrographs and component flows
from rainfall, evaporation and streamflow (IHACRES) or
artificial neural network (ANN)).

2.3 Uncertainties
The uncertainties considered in this study were the uncertainty
associated with AOGCMs, the uncertainty of GHGESs, the

uncertainty of water demand estimation and the uncertainty of
water resources simulation models. These uncertainties are
explained next.

2.3.1 AOGCMs
wThe uncertainties associated with six AOGCMs are illustrated
with the average monthly precipitation and temperature
projected by six AOGCMs for the baseline and future periods
extracted from the Intergovernmental Panel for Climate
Change (IPCC) website according to the third assessment
report of the IPCC (IPCC, 2001). The AOGCMs applied in
this study were HadCM3, CGCM2, CCSR-NIES, ECHAM4,
GFDL-R30 and CSIRO-MK2. Therefore, six of the seven
GCMs included in the IPCC third assessment report (IPCC,
2001) were evaluated in this study. The NCAR-DOE PCM
model was not included here due to its unsuccessful perform-
ance in simulating rainfall and temperature parameters during
the baseline period. Monthly precipitation and temperature
were calculated with the AOGCMs to construct the monthly
average temperature difference (ΔTi) and the precipitation ratio
(ΔPi) (Loáiciga et al., 2000; Wilby and Harris, 2006) as follows.

1: ΔTi ¼ T̄GCM;fut;i � T̄GCM;base;i

2: ΔPi ¼ P̄GCM;fut;i

P̄GCM;base;i

In Equations 1 and 2, which 1≤ i<12 denotes the index
for the 12 months of the year, T̄GCM;fut;i and P̄GCM;fut;i are,
respectively, the 30-year temperature and precipitation averages
simulated with the GCMs in the future periods for month i
and T̄GCM;base;i and P̄GCM;base;i are, respectively, the 30-year
temperature and precipitation averages simulated with the six
AOGCMs during the baseline period for each month i. The
temperature difference in Equation 1 was added to the historic
temperature in the baseline period to create the future
projected temperature. The precipitation ratio in Equation 2
was multiplied by the historic precipitation in the baseline
period to create the future projected precipitation, as described
below.

The weight of each AOGCM model was obtained based
on the mean observed temperature–precipitation approach
according to Equations 3 and 4 (Ashofteh et al., 2014)

3: WTi;j ¼ ð1=ΔTi;jÞPN
j¼1 ð1=ΔTi;jÞ

4: WPi;j ¼ ð1=ΔPi;jÞPN
j¼1 ð1=ΔPi;jÞ

0 20 km

N

Scale

0 20 km

Scale

36°17´

47°32´

Ardabil

Rasht

Zanjan

Kola

Figure 2. Geographic location of Aidoghmoush reservoir

Table 1. Modelling scenarios used for both future time periods
(2040–2069 and 2070–2099)

Modelling scenario Estimation method GHGES

MS1 ANN–FPM method A2
MS2 ANN-Hargreaves A2
MS3 IHACRES–FPM method A2
MS4 IHACRES-Hargreaves A2
MS5 ANN–FPM method B2
MS6 ANN-Hargreaves B2
MS7 IHACRES–FPM method B2
MS8 IHACRES-Hargreaves B2
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in which WTi,j is the weight assigned to simulation of
temperature with model j for the ith month, WPi,j is the weight
assigned to the simulation of precipitation with model j for the
ith month, N is the number of AOGCMs, ΔTi,j is the difference
between the long-term average monthly temperature simulated
with the jth AOGCM in the baseline period and the long-term
average monthly temperature observed in the ith month, and
ΔPi,j is the difference between the long-term average monthly
precipitation simulated with the jth AOGCM in the baseline
period and the average long-term monthly precipitation
observed in the ith month.

Data including time series of monthly temperature and
precipitation (ΔTi) and (ΔPi) and monthly weights of each
model per were input to the SimLab model to generate 100
random samples of temperature and precipitation projections
for the ith month by means of Monte Carlo simulation.
Equations 5 and 6 were applied to calculate the time series of
future temperature and precipitation, respectively

5: Ti ¼ Tobs;i þ ΔTi

6: Pi ¼ Pobs;i � ΔPi

in which Tobs,i and Pobs,i are the time series of temperature and
precipitation observed in month i of the baseline period,
respectively, and Ti and Pi are the projected time series of
temperature and precipitation for month i, respectively
(Ashofteh, 2015).

2.3.2 GHGESs
The IPCC GHGESs were constructed to explore future
developments in the global environment with reference to the
emissions of greenhouse gases (GHGs) that contain various
driving processes of climate change, including population
growth and socioeconomic development. The IPCC defines
scenarios labelled A1, A2, B1 and B2, describing the relations
between the forces driving GHGs and their evolution during
the twenty first century and globally. This work relied on
GHGESs A2 and B2 applied to the six AOGCMs. GHGESs
A2 and B2 were introduced in the IPCC third assessment
report (IPCC, 2001). GHGES A2 postulates the highest emis-
sion of GHGs, thus constituting the most pessimistic scenario.
In contrast, GHGES B2 envisions relatively low GHGs emis-
sions and is the most optimistic scenario in this respect. The
two GHGES selected for this study provide a wide range of
expected impacts of climate change.

2.3.3 Simulation of rainfall–runoff
The IHACRES model has accurate predictive skill while
requiring fewer input data than other hydrologic models; it
also has simple logic and algorithmic simplicity to calculate
runoff. For these reasons, it was chosen as one of the

rainfall–runoff models in this study. The other runoff-
predicting method applied was an ANN model, which predicts
peak reservoir inflows (streamflow) in snow-fed basins such as
the Aidoghmoush more accurately than IHACRES. The
IHACRES and ANN models were used to make projections of
reservoir inflow.

& The IHACRES model was introduced by Jakeman and
Hornberger (1993). It is a lumped-simulation model that
predicts runoff for given climatic inputs (Besaw et al.,
2010). IHACRES comprises a non-linear loss module and
a linear unit hydrograph module, which, respectively,
calculate losses of precipitation and convert effective
precipitation into runoff (Croke et al., 2005; McIntyre and
Al-Qurashi, 2009).

& The ANN model used in this study operates on
temperature and precipitation data. It divides the data into
two sets, one for training (calibration) and one for testing
(of predictive accuracy). Representative patterns must be
present in the entire dataset to improve predictive learning.
The ANN structure features three layers, each with
separate functions – the input layer for the distribution of
data in the network, the middle (hidden) layer for
information processing and the output layer, which
performs information processing and output display
(Bani-Habib et al., 2010). The ANN input data for this
study were observed temperature, precipitation and runoff,
and future temperature and precipitation. The ANN
predicted runoff data in the future periods (runoff
projections).

2.3.4 Calculation of irrigation requirements and
estimation of water demand downstream of
the reservoir

The reference evapotranspiration (ET0) is often used to
calculate the (actual) evapotranspiration of crops under actual
soil moisture conditions. The American Society of Civil
Engineers (ASCE) defined evapotranspiration (synonymously
with consumptive use) as the quantity of water transpired by
plants during growth or retained in plant tissue, plus the
moisture evaporated from the surface of the soil and the
vegetation (Jensen, 1974). The Food and Agricultural
Organization (FAO) defined ET0 as the evapotranspiration rate
from a surface covered with a hypothetical grass with specific
characteristics, not short of soil water (FAO, 1998). Later,
ASCE defined ET0 as the evapotranspiration rate from a
uniform surface of dense, actively growing vegetation having a
specified height and surface resistance, not short of soil water,
and representing an expanse of at least 100 m of the same
or similar vegetation (Allen et al., 2005). The ‘hypothetical
grass with specific characteristics’ of the FAO (FAO, 1998)
corresponds to ASCE’s ‘uniform surface of dense, actively
growing, vegetation having specified height and surface
resistance’ (Allen et al., 2005). Both definitions of ET0 are
synonymous for the purpose of estimating the
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evapotranspiration by an actively growing crop uniformly and
densely covering land not short of soil water. The reference
evapotranspiration defined by FAO (1998) and ASCE (Allen
et al., 2005) must not be confused with the potential evapo-
transpiration (PET), originally defined by Thornthwaite
(1948), who introduced PET for climate classification and
defined it as the amount of water that would transpire and
evaporate under ideal conditions of soil moisture and veg-
etation. Penman (1956) adapted Thornthwaite’s definition of
PET to agricultural meteorology by defining it as the amount
of water transpired in unit time by a short green crop, comple-
tely shading the ground or of uniform height and never short
of water.

In this study, estimations of the reference evapotranspiration
(ET0) and the evapotranspiration of crops were made using the
FPM and HS methods. Previous studies have shown that the
accuracy of the FPM method in calculating ET0 is closer
to the values measured by lysimeters than other methods, and
the FAO has proposed this equation as the standard method
of calculating ET0. Due to its high accuracy, the FPM
was adopted in this study for estimating the irrigation require-
ment. In this study, the climatic parameters simulated in
future periods were rainfall and temperature. Therefore, high-
precision models with the least number of input parameters
should be used to estimate evapotranspiration. The HS
method has shown suitable accuracy in predicting reference
evapotranspiration. It requires only surface air temperature
and solar radiation at the top of the atmosphere to calculate
the irrigation water requirement.

2.3.4.1 The FPM method
The FPM method is commonly employed to estimate reference
evapotranspiration (Allen et al., 1998, 2005). For a short crop

7: ET0 ¼ ½0:408ΔðRn � GÞ� þ fγ½900=ðT þ 273Þ�U2ðes � eaÞg
Δþ γð1þ 0:34U2Þ

in which ET0 is measured in mm/day, Rn is the net radiation at
the crop surface ((MJ/m2)/day), G is the soil heat flux density
((MJ/m2)/day), T is the mean daily air temperature at 2 m
height (°C), U2 is the wind speed at 2 m height (m/s), es is the
saturation vapour pressure (kPa), ea is the actual vapour
pressure (kPa), es− ea is the saturation vapour pressure deficit
(Pa), Δis the slope of the vapour pressure curve (kPa/°C) and
γ is the psychrometric constant (kPa/°C).

2.3.4.2 The HS method
The HS method is a temperature- and radiation-based
empirical formula that has been applied to calculate ET0. The
formula is (Hargreaves and Samani, 1985)

8: ET0 ¼ 0:0023RaðTave þ 17:8Þ
ffiffiffiffiffiffiffi
TR

p

in which TR is the difference between the maximum and
minimum daily air temperature (°C), Tave is the average daily
air temperature in (°C), Ra is the solar radiation at the top of
the atmosphere for a given latitude in terms of equivalent
evaporation (mm/day) and ET0 is the reference evapotranspira-
tion in (mm/day). The daily ET0 values are added to calculate
the monthly ET0.

2.3.4.3 Calculating crop water use
Crop evapotranspiration (ETC) is estimated by multiplying
the reference evapotranspiration by a crop coefficient (KC)
(Doorenbos and Pruitt, 1984)

9: ETCi ¼ KCi � ET0i

where ETCi is the crop evapotranspiration in month i, ET0i is
the reference evapotranspiration in month i and KCi is the crop
coefficient during month i.

The effective precipitation that generates runoff was calculated
with the Soil Conservation Service and applying Cropwat
software (Smith, 1992) as

10: Peff i ¼ Pi=125� ð125� 0:2PiÞ Pi � 250 mm

11: Peff i ¼ 125þ 0:1Pi Pi . 250 mm

in which Peff i is the effective precipitation (mm) in month i
and Pi is the precipitation in month i.

The monthly irrigation requirement was calculated using

12: IRi ¼ ETCi � Peff i IRi � 0

in which IRi is the net irrigation requirement (mm) in month i.
In some cases it may be appropriate to divide the IRi

calculated using Equation 12 by the water-application
efficiency (a fractional number) and adding to the result the
amount of water lost during conveyance to the cropland.
Equation 12 assumes a water-application efficiency of 1 and no
conveyance losses.

The volume of water used by a crop when there is no shortage
of soil water was calculated from

13: Vi ¼ AC � IRi

where AC is the area under cultivation of a crop and Vi is the
volume of water demand in month i.
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2.4 Optimisation and application of the particle
swarm optimisation (PSO) algorithm

The PSO algorithm (introduced by Kennedy and Eberhart
(1995)) was employed to optimise reservoir operation. PSO is
inspired by the social behaviour of animals, fishes or birds that
exhibit communal and associative life. The PSO algorithm
starts with the generation of random populations of tentative
solutions, or particles, each of which is made up of a set of
values for the decision variables. The value of the objective
function is calculated for each particle at any position of
the solution space. After this calculation, the direction of
movement of any particle is determined based on its current
position, the best position it has previously occupied and the
positions and characteristics of one or more other particles
in the population. Evaluation of the objective function of
particles and determination of improved positions is carried
out in every iteration for all particles in all populations.
The populations of particles are improved from one iteration
to the next until a convergence criterion is reached. The best
particle upon convergence represents the optimal solution to
the problem being solved.

The objective function of the reservoir operation problem for
irrigation water supply is given by

14: Minimise the OF ¼
Xn
i¼1

Di � Ri

Max Dn
i¼1

� �2

in which OF is the objective function quantifying the relative
water deficit during the operation periods (monthly periods), i
is the index for the operation period, n is the number of
operation periods, Di is the volume of agricultural water
demand during period i, Max Di=1

n is the maximum demand
volume during the operation periods and Ri is the volume of

water release (the decision variables) from the reservoir during
period i.

3. Results and discussion

3.1 Performance of the AOGCMs in the simulation
of climate variables in the period 1971–2000

The values of long-term average climate variables simulated
with the AOGCMs were compared with the values of long-
term average observed variables at the representative station
within the basin over the baseline period (1971–2000).
The comparison was based on performance criteria expressed
by the correlation coefficient (R), root mean square error
(RMSE) and the mean absolute error (MAE). As shown in
Table 2, the HadCM3 model provided the best performance in
simulating climatic variables under GHGESs A2 and B2.
Specifically, HadCM3 simulated precipitation and temperature
with R values of 99.6% and 91% (under GHGES A2) and
99.5% and 87% (under GHGES B2), respectively.

3.2 Time series of temperature and precipitation
in future periods

Figures 3(a) and 3(b) shows that the projected average long-
term monthly temperature in the second future period under
GHGES A2 was higher than the projected average temperature
in the first future period. The long-term average monthly
temperature in the future periods was also predicted to be
higher than the temperature in the baseline (observational)
period. Furthermore, Figures 3(c) and 3(d) show that the same
patterns applied to GHGES B2 in most of the months. It is
also evident from Figure 3 that the long-term average monthly
temperature in future periods under scenario A2 will be
higher than the long-term average monthly temperature under
scenario B2.

Table 2. Performance of AOGCMs in simulating temperature and precipitation by comparison with observed variables under GHGESs A2
and B2

Model

Temperature Precipitation

R: % RMSE: °C MAE: °C R: % RMSE: mm MAE: mm

GHGES A2
HadCM3 99.6 1.18 1.00 91 8.66 6.78
CCSR-NIES 99.6 7.89 7.84 67 19.12 14.31
CSIRO-MK2 99.1 1.34 1.25 77 14.61 10.96
CGCM2 97.9 2.50 1.94 77 52.63 36.13
GFDL-R30 99.4 3.74 3.14 97 12.30 10.66
ECHAM4 98.9 2.37 1.72 90 20.21 16.75

GHGES B2
HadCM3 99.5 1.21 0.99 87 10.04 7.64
CCSR-NIES 99.5 7.90 7.85 69 19.03 14.19
CSIRO-MK2 99.2 1.30 1.21 80 13.87 10.19
CGCM2 98.1 2.46 1.89 75 52.96 35.89
GFDL-R30 99.5 3.72 3.10 96 10.05 8.58
ECHAM4 98.9 2.37 1.72 90 20.21 16.75
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3.3 Simulation of reservoir inflow

3.3.1 IHACRES model
The time series of average monthly reservoir inflows in the two
future periods (2040–2069 and 2070–2070) under GHGESs A2

and B2 projected with the IHACRES model are presented in
Figure 4. Figure 4 The figure shows that, under both
GHGESs (A2 and B2), the reservoir inflow in future periods
will be significantly less than the observed inflow in the base-
line period. Furthermore, the inflow in the second future
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Figure 3. Comparison of the projected long-term average monthly precipitation and temperature in (a) the first future period
(2040–2069) and (b) the second future period (2070–2099) with the monthly average precipitation and temperature observed in the
baseline period (1971–2000) under GHGES A2. Comparison of the projected long-term average monthly precipitation and temperature in
(c) the first future period (2040–2069) and (d) the second future period (2070–2099) compared with the monthly average precipitation
and temperature observed in the baseline period (1971–2000) under GHGES B2
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Figure 5. Comparison of observed average monthly reservoir inflow with long-term average monthly reservoir inflow simulated with ANN
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period will be smaller than that of the first future period, so
that the sum of the average long-term monthly runoff in the
first and second future period under GHGES A2 would be
decreased by 29% and 46.61%, respectively, and under
GHGES B2 would be decreased by 31% and 45.56%
compared with the baseline period. These projections suggest
future declining reservoir inflows.

3.3.2 ANN model runoff projections
Figure 5 shows the average monthly reservoir inflows projected
with the ANN model in the two future periods under
GHGESs A2 and B2. It is evident that April, May, and June
runoff projected by the ANN model under GHGESs A2 and
B2 is less than the observed runoff in the baseline period. The
sum of average monthly runoff under A2 in the future periods
would increase by 74.15% and under B2 it would increase by
49.12% compared with the inflow observed in the baseline
period. In the second future period, reservoir inflow will
increase by 41.6% and 33.27% under A2 and B2 compared
with the baseline period, respectively.

3.4 Estimation of irrigation requirement and
water demand

A regression equation between temperature and ET0 in the
baseline period was developed (Ashofteh et al., 2015) and
employed to project ET0 in future periods. This was necessary
because of a lack of data for calculating ET0, such as relative
humidity, net radiation (Rn), wind speed at 2 m height (U2)
and so on in the future periods.

Figure 6 shows the ET0 calculated with Equation 7 (the FPM
method) and Equation 8 (the HS method). The correlation
coefficients of the regression between the ET0 and observed
temperature (Tobs) for the FPM and HS method were
determined to be 94.02% and 92.29%, respectively, which are
acceptable. Subsequently, projected temperatures in the two
future periods were input to the developed regression to project
the future ET0.

Table 3 lists four combinations of GHGESs A2 and B2 and
the FPM and HS equations employed to project agricultural
water demand. Figures 7(a)–7(d) show the calculated average
monthly water demands in the baseline and future periods.
Figure 7(a) shows that the increase in water demand in future
periods would be largest in June, July, August and September
compared with the baseline period base for case 1 (FPM

method and GHGES A2). This case suggests a significant
future increase in water demand in the summer. Compared
with the baseline period, the increases for the first and second
future periods would be 20.3% and 39.6%, respectively.
Figure 7(b) shows that the peak increase in agricultural water
demand for case 2 (FPM method and GHGES B2) for the
future period would be in September, not in August as
projected under case 1. Compared with the baseline period, the
increases in water demand under case 2 in the first and second
future periods would be 18.1% and 35.8%, respectively.
Figure 7(c) shows that, compared with the baseline period, the
increases in water demand in the first and second future
periods would be 19% and 36.7%, respectively, under case 3
(HS method and GHGES A2). This case shows lower percen-
tage increases in water demand compared with case 1.
Figure 7(d) shows the projections for case 4 (HS method and
GHGES B2): the increase in water demand would decline
compared with case 3, to 16.6% for the first future period and
32.7% for the second future period.
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Figure 7. Average long-term monthly water demand in the
baseline and future periods for different cases for calculating
water demand (see Table 3): (a) case 1; (b) case 2; (c) case 3; (d)
case 4

Table 3. Cases for calculation of agricultural water demand

GHGES used for estimating
ET0 in future period

ET0 formula for
baseline period

Case 1 A2 FPM method
Case 2 B2 FPM method
Case 3 A2 HS method
Case 4 B2 HS method
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3.5 Optimisation and performance criteria
Optimised reservoir operation to meet future agricultural water
demand was calculated using the PSO model. Optimised
reservoir operation was calculated independently for the eight
modelling scenarios listed in Table 1 for the two future periods.
Figure 8 shows the results of average monthly reservoir water
release calculated for MS1, MS2, MS3 and MS4 (corresponding
to GHGES A2) in the first future period (2040–2069). The
figure shows that in the first future period and under GHGES
A2, the ANN model performed better than IHACRES in
projecting monthly reservoir inflows. The modelling scenarios
using the HS method showed slightly better performance than
those employing the FPM method. It is concluded that MS2
would meet 92.68% of the future water demand and this
scenario showed the best performance. MS1 is the second best
performing scenario, meeting 91.19% of the water demand. MS4
would meet 51.42% of the water demand. MS3 is the worst
performing scenario, meeting only 49.65% of the water demand.

Figure 9 shows the monthly reservoir water releases
corresponding to MS5, MS6, MS7 and MS8 (corresponding to
GHGES B2) in the first future period (2040–2069). Figure 9
shows similar trends to those in Figure 8, except that the peak
water release to meet increasing demand shifts from July to
August. The best performing scenario is MS6, meeting 88.36%
of the future water demand. MS5, MS8 and MS7 would meet
86.46%, 52.65% and 48.29% of the water demand, respectively.

Figure 10 shows the average monthly reservoir water releases
for MS1, MS2, MS3 and MS4 in the second future period
under GHGES A2. It is evident from the figure that the water
demand in the second future period would be lower than in
the first future period. The peak water release occurs in July,
when there is peak water demand. MS2 in the second future
period showed the best performance in meeting water demand,
with an average monthly water deficit of 38.88� 106 m3. MS1,
MS4 and MS3 in the second future period have average
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Figure 9. Long-term average monthly volume of water release
and water demand for (a) MS5; (b) MS6; (c) MS7 and (d) MS8
(see Table 1) in the first future period and GHGES B2
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Figure 8. Long-term average monthly volume of water release
and water demand for (a) MS1; (b) MS2; (c) MS3 and (d) MS4
(see Table 1) in the first future period and GHGES A2
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monthly water deficits of 43.72� 106 m3, 10.66� 106 m3 and
107.27� 106 m3, respectively. The supply of demanded water
improves with decreasing water deficit.

Figure 11 shows the average monthly reservoir water releases
corresponding to MS5, MS6, MS7 and MS8 in the second
future period under GHGES B2. MS6 is the best performing
scenario with an average monthly water deficit of 7.50�
106 m3. The average monthly water deficits of MS5, MS8 and
MS7 were found to be 8.08� 106 m3, 92.20� 106 m3 and
96.9� 106 m3, respectively.

The performance criteria for the eight modelling scenarios
in the first and second future periods are compared in
Tables 4 and 5, respectively. System performance was investi-
gated by the performance criteria of reliability, resiliency and
vulnerability. These measures explain how likely a system is to
succeed in supplying water demand (reliability), how quickly

it would recover from failure (resiliency) and how severe the
consequences of failure may be (vulnerability). Table 4 shows
that MS2 had the highest reliability (93.16%), the highest
resiliency (38.41%) and the lowest vulnerability (6.82%), thus
producing the best performance of the modelling scenarios
insofar as future water supply is concerned. Table 5 shows that
MS5 and MS6 respectively had reliabilities of 95.73% and
95.95%, resiliencies of 45.95% and 44.9%, and vulnerabilities
of 4.27% and 4.5%; therefore, for the second future period,
MS5 and MS6 exhibited the best performance in terms of
future water supply.

Table 6 lists the calculated coefficients of variation (CoVs) for
reservoir water deficits. The CoV is defined as the ratio of the
standard deviation (σ) to the mean (μ) of reservoir water
deficit. MS3 had the largest CoVs and thus the lowest
uncertainty, whereas MS2 had the smallest CoVs and thus the
lowest uncertainty.

40

50

30

20

10

Jan Feb Mar

Release 
Demand

Apr May
(a)

Jun Jul Aug Sep Oct Nov Dec
0

Re
le

as
e 

an
d 

w
at

er
 

de
m

an
d:

 1
06 

m
3

Re
le

as
e 

an
d 

w
at

er
 

de
m

an
d:

 1
06 

m
3

Re
le

as
e 

an
d 

w
at

er
 

de
m

an
d:

 1
06 

m
3

Re
le

as
e 

an
d 

w
at

er
 

de
m

an
d:

 1
06 

m
3

40

50

30

20

10

Jan Feb Mar

Release 
Demand

Apr May
(b)

Jun Jul Aug Sep Oct Nov Dec
0

40

50

30

20

10

Jan Feb Mar

Release 
Demand

Apr May

(c)
Jun Jul Aug Sep Oct Nov Dec

0

40

50

30

20

10

Jan Feb Mar

Release 
Demand

Apr May

(d)
Jun Jul Aug Sep Oct Nov Dec

0

Figure 11. Long-term average monthly volume of water release
and water demand for (a) MS5; (b) MS6; (c) MS7 (d) and MS8
(see Table 1) in the second future period and GHGES B2
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Figure 10. Long-term average monthly volume of water release
and water demand for (a) MS1; (b) MS2; (c) MS3 and (d) MS4
(see Table 1) in the second future period and GHGES A2
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4. Conclusions
This work evaluated the uncertainties of AOGCMs, GHGESs,
models of estimation of reservoir inflow and methods for estimat-
ing future agricultural water demand in the Aidoghmoush basin
located in northwestern Iran. The baseline period was taken as
1971–2000 and climate variables in two future periods
(2040–2069 and 2070–2099) were simulated with six AOGCMs
(under GHGESs A2 and B2). Projections of air temperature and
precipitation for the future periods under both A2 and B2 were
obtained and the average monthly temperature in the two future
periods was found to increase relative to the baseline period. The
average monthly temperature in future periods under A2 would
be higher than the average monthly temperature under B2.

Estimates of future agricultural water demand with the FPM
and HS methods revealed that the agricultural water demand
would rise in future periods compared with the baseline
period. It is noteworthy that water demand for agriculture

depends on the area under cultivation and the irrigation
requirement. The irrigation requirement depends directly and
indirectly on climatic parameters. The projected water demand
is therefore hydro-climatologic in nature.

Optimisation of reservoir operation with the PSO algorithm
indicated that, in the first future period (2040–2069), the
reservoir operation rule associated with the HS method and the
ANN model (under GHGES A2) had the highest reliability
(93.18%) and the lowest vulnerability (6.82%), and thus exhib-
ited the best performance in supplying future agricultural water.
In the second future period (2070–2099), reservoir operation
corresponding to the HS method and the ANN model (under
GHGES B2) showed the highest reliability (95.95%) and the
lowest vulnerability (4.5%), thus producing the best reservoir
operation rule in the second future period. MS2 had the lowest
uncertainty and MS3 exhibited the highest uncertainty.

This study assessed the probable effects of climate change
uncertainty on the effectiveness of reservoir operation policies
for supplying future agricultural water use. Therefore,
considering a general set of uncertainties in climate change
studies as was done in this work can pave the way for the
optimal use of available water.
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