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ABSTRACT 

UCRL-18802 

The theory of nuclear magnetic resonance in perturbed angular cor-

relations is extended to include the effects of two rotating magnetic fields, 

and their superposition to give an oscillatory field. If both radiations are 

parallel to the static field, the counter-rotating field gives a second order 

shift of the resonance (Bloch-Siegert effect). For other directions, there is 

a first order change in the line shape which depends on the azimuthal orien-

tation of the counters. 
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I. INTRODUCTION 

The time honored technique of magnetic resonance has recently found 

new applications to excited states of radioactive nuclei. l If the usual com-

bination of static and periodic fields are applied" the resonance can be de-

tected through a change in the angular distribution of the decay products. 

The theoretical line shapes of resonances produced by a single rotating field 

2 
have already been analyzed. We will consider the line shapes caused by a 

superposition of two rotating fields, and especially by a single oscillatory 

field. 3 

Although some of the customary formulas still apply, the resonances 

observed in an angular distribution are qualitatively different from the usual 

magnetic resonances. In the latter case, the line shape is given by the tran-

while the former depends as well on 

interference terms among the transition amplitudes. In the standard notation 

of angular correlation theory, the directional distribution is expressed in 

ql~ 
terms of the transition amplitudes through the parameters G£ £' defined as 

1 2 

By inverting this definition we can relate the transition probabilities to 

these parameters, 
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(2) 

This shows that the parameters alone suffice to determine the tran-, 

sition probabilities (as well as the angular distribution for both counters 

parallel to the axis). 
ql~ 

The idea of a resonance in G 2- 2- is a generalization 
1 2 

of a resonance in the transition probability, and the basic formulas must be 

rederived. 

4 
To do so, we must solve the Schrodinger equation 

i ~t </J( t) 

in the form 5 

and insert A into Eq.( 1) to evaluate the time dependent parameters 

(4) 

G(t2 ,tl ). For resonance experiments we are interested in the parameters G 

00 

_ ~fdt e -t/-r: 
-r: 0 
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averaged over the mean lifetime ~ of the excited state. The IT depend 

on the frequency and phase of the applied rf fields. We can take a further 

average over the phase 6 = mtl , 

(6 ) 

When we refer to a line shape we will always understand the frequency to be 

constant, and the magnetic field to vary. 

This program can be carried out exactly for a single rotating field 2 

using rotating coordinates. The transformation A is a sequence of 

rotations, and the parameters G can be expressed in terms of the matrices 

d
2 

which represent these rotations. We want to use instead the magnetic field 

h(t) (S) 

with strengths hO » hl ,h2 . There is no loss in generality in choosing the 

two fields to rotate in opposite directions at the same frequency ill, since 

two fields rotating at different frequencies illl , ill2 can be brought to this 

.. form by choosing a frame rotating at frequency (ml -+w2 )/2. It saves a lot of 

complication to begin in this frame. 
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We will not attempt an exact solution of the problem. It leads to 

coupled differential equations similar to the Mathieu equation. The difficulty 

in finding an exact solution can be understood physically by recognizing that 

while the single rotating field Eq. (7) gives only one resonance (at hO = ill), 

the double rotating field Eq. (S) gives more than just two resonances 

(at hO = ill, -ill); it also gives a transfinite number of multiple quantum 

resonances. What we want is not a line shape theory for all of these, but 

only the corrections to the fundamental resonance at hO~ ill. The principal 

difficulty in deriving this approximation is to include the effects of 

"secular perturbations" which grow with time like hlt and to discard only 

terms like (hl/hO)' We will show that this can be done, to sufficient accuracy, 

by a sequence of rotations. 6 The results do not depend explicitly on the 

spin I, but only on the magnetic moment. More systematic methods would be 

necessary to extend our results to higher accuracy.7 

II. MAIN DERIVATION 

Consider transforming the Hamiltonian H - I·h(t) by a sequence of --
rotations. Each rotation changes the direction of 1, but leaves the form 

of the Hamiltonian unchanged. We can specify the Hamiltonian conveniently by 

giving the effective magnetic field in each frame. We begin with the field of 

Eq. (S), which clearly has terms which resonate at hO~ ill. Our problem is 

to find a sequence ,of transformations ~ ---~ ~1'~2'~3 ... and 

h ---~ hl,h2,h3 . ~', which finally remove such secular terms. 

The first idea is to transform the field hl to rest, and the 

field h2 to frequency 2ill. This succeeds in removing resonant terms, 
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leaving only a small off-resonant field. If we were to neglect this field 

. "th" we would obtaln the usual zero order approximation which predicts a single 

resonance at hO = m. A more accurate solution, which includes all of the 

first order effects of h2 (and some of the second order), is given by the 

following transformation. 

First transform the counter-rotating field to rest, 

+imtI 
cfJ

l 
e z cfJ 

Next rotate the static part of this field into the z-direction 

h2(t) = hl(coSe cos2mt, -sin2mt, sine cos2mt) 

+ (0,0,1) vf(ho+m)2+ h~ 

The angle e is defined by 

tan e 

(10) 

(n) 

and remains small throughout the resonance region. The effective field in 

this frame still has a resonance, but at a slightly displaced value of hO' 
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To eliminate the resonant contributions, we once again rotate about 

the new z-direction at frequency 2(1), 

(12 ) 

+ (h 2S/2 0 J(h
O

+ (1))2+ h2
2 

_0,,,) 1 cos " <=W 

and again bring the static part into the z-direction 

ii31 
e y 7/J 

3 

b4(t) = hl (-sin
2
S/2 cosi3 cos4mt -sinS sini3 cos2(1)t, -sin

2
S/2 sin4mt, 

_sin
2
S/2 sini3 cos4mt + sinS cosi3 cos2mt) 

+ (0,0,.\1) 

The static field is now 

(14 ) 

which is of order hl near the resonance region. The angle is defined by 

tan i3 
hl cos2S/2 cosS 
hO - (1)(2cosS -1) 



which passes rapidly through TI/2 
h2 

only small fields of order hl(~) 
o 

near 

and 

-S-

the resonance. The field ~4 

h2 2 
hl(~) at frequencies 2m 

o 

UCRL-1SS02 

contains 

and 

.4m, which are far off resonance. We will obtain a useful approximation by 

neglecting the effect of these time dependent fields, keeping only the static 

field D. This keeps the full dependence on hl and all the first order terms 

in h2 . 

The perturbation matrix in the frame 4 is approximately 

+w(t
2 

-t )1 
1 z 

e 

or transforming back to the original frame, 

(16) 

A -
-iB1 +2imt21

z 
-ij31 +W(t

2 
-t)1 +ij31 -2imt

l
1

z eYe eYe 1 Z eYe 

e 
+iB1 

Y 
(17) 

Since this involves only pure rotations, it leads to a relatively simple 

expression for G. Making repeated use of the transformation of a tensor 

under rotations 

(lS) 

p 
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the transformation Eq. (7) gives 

e i (J)(qlt l -~t2) L 
P1P2 

For the time averaged parameters G we find 

-ql~ 
5 

-2i6(Pl - P2 ) 
e 

e i(ql -~)6 L 
d£ (e) d£ (e) G£ £ (6,-r) 2: 

1 2 £1£2 P1 ql P2~ 
P1P2 

d£ (f5) d£ (f5) 

L 
rPl rP2 

1 + i (~ -2P2 )m-r -irD-r 
r 

Averaging the rf phase 6 reduces the number of summations by one 

=ql~ 
(-r) 5 L d£ (e) d £ (e) 5 G £ £ -

-Q2' 2P1 -2P2 1 2 £1£2 Pl ql P2~ ql 
P1P2 

d£ (f5) d£ (f5) 

L 
rP

1 
. rP2 

1 + i ( ~-2P2 )m-r -irD-r 
r 

UCRL-18802 

(19 ) 

(20) 

(21) 
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This can be further simplified by passing to the limit ~ ---> 00 

Lim 
~~oo 

if ql,2 = 2Pl,2 are even, and zero otherwise. 

(22 ) 

The three Eqs. (20)-(22) give our main results, expressed in terms of 

d
2 

functions and the parameters e, ~, D. It is easily seen that as h2 ---> 0, 

these formulas approach the exact results for a rotating field.' For h2 

finite, they give a useful approximation to the parameters G in the vicinity 

,of h ~ (1). 
o 

We will not try to show the results in graphical form because 

the changes are quite small, but will only try to discuss the results 

analytically. 

III. DISCUSSION 

1. In order to recognize some familiar results, consider first the 

coefficient From Eq. (22) we find 

Lim 
~ ~oo 

The factor p£(cose) is nearly unity over the resonance line, with value 

p /cose) 1-
£(£ + 1) 

16 ( j) (24) 
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and with slope of order The factor P2(cos~) gives a 2-fold 

splitting of the resonance line, but at a field slightly shifted by the de-

pendence of cos~ on h2 . The line center is at cos~ = 0, or 

m(2cose -1) - m- (25) 

To order there is no change in the line shape, but only this shift. 

Our method is not sufficiently accurate to treat the higher order changes in 

shape, but taken literally Eq. (23) predicts a third. order decrease in the 

separation of the minima and a third order asymmetry of the line. 

The line shift in Eq. (25) is called the Block-Siegert shift, and is 

a well known effect. Our derivation shows that this is the dominant effect of 

the counter-rotating field for resonance experiments measuring the transition 

probabilities, and for angular correlation experiments with radiations par-

allel to hO. 

2. For other values of ql'~ f 0, some of the parameters G have 

stronger dependence on h2 . We will consider only the results contained in 

Eq. (22). The dependence on h2 is mainly contained in the small angle 

e ~ (h
2
/2h

O
). For e = 0 (rotating field approximation) only the terms 

are non-zero. As we slowly increase the counter rotating field h2 , 

there are some terms which grow linearly with others that 

grow quadratically 
22 04 40 

(G 22 , G22 , G22 ), etc. If only the first order terms 

are desired then we need only compute 00 
GH , 

02 20 
GH , GH 

and we can use 

hl [ ] 1/2 tan ~ -
hO - m 

n - (hO- m)2 + h~ 
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The result will be to give a cos 2¢ azimuthal dependence of the line shape, 

proportional to h2 . In the rotating field approximation the line shape is 

independent of ¢ after averaging over the phase ~, but the effect of the 

counter-rotating field is to give some dependence on the orientation of the 

counters relative to the plane of the rf field. 

This effect can be understood in elementary terms by remembering that 

the angular distribution is sensitive to any change in direction of the spin, 

whereas the usual magnetic resonance can only observe changes in the energy 

( . th onent of the sn;n) The first order terms are J..e. e z comp ~~ . 

due to a rotation of the spin about the z axis through a small angle of 

order e ~(h2/2ho)' We have not been able to think of any practical use of 

this effect, except perhaps as a means of directly measuring the strength of 

the rf field; this can also be done by observing the splitting of the peaks 

in GOO 
H for the parallel configuration. 

3. For a single rotating field, and in our approximation to two rotating 

fields, G has only diagonal terms £1 = £2' This can be traced to the 

perturbation matrix A being expressible as a sequence of pure rotations. 

This is an exact property of the single rotating field, but only approximately 

true for two rotating fields. Since we have emphasized the importance of 

"Off-diagonal" terms £1 f £2 in testing symmetries,8 it is of interest 

to discover just how small these terms are We have shown that the off-

d iagona 1 terms are 0 ford er ( h!~~) , wb i c~ is mucb too sma 11 to be of in­

terest in PAC symmetry tests. 
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