
UC Berkeley
UC Berkeley Previously Published Works

Title
Computing With Residue Numbers in High-Dimensional 
Representation.

Permalink
https://escholarship.org/uc/item/0k08p180

Journal
Neural Computation, 37(1)

Authors
Kymn, Christopher
Kleyko, Denis
Frady, E
et al.

Publication Date
2024-12-12

DOI
10.1162/neco_a_01723
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0k08p180
https://escholarship.org/uc/item/0k08p180#author
https://escholarship.org
http://www.cdlib.org/


ARTICLE Communicated by Tony Plate

Computing With Residue Numbers in High-Dimensional
Representation

Christopher J. Kymn
cjkymn@berkeley.edu
Redwood Center for Theoretical Neuroscience, University of California,
Berkeley, CA 94720, U.S.A.

Denis Kleyko
denis.kleyko@oru.se
Centre for Applied Autonomous Sensor Systems, Orebro University,
Orebro SE-701 82, Sweden, and Intelligent Systems Lab, Research
Institutes of Sweden, 164 40 Kista, Sweden

E. Paxon Frady
e.paxon.frady@intel.com
Neuromorphic Computing Lab, Intel, Santa Clara, CA 95054, U.S.A.

Connor Bybee
bybee@berkeley.edu
Pentti Kanerva
pkanerva@csli.stanford.edu
Redwood Center for Theoretical Neuroscience, University of California,
Berkeley, CA 94720, U.S.A.

Friedrich T. Sommer
fsommer@berkeley.edu
Redwood Center for Theoretical Neuroscience, University of California,
Berkeley, CA 94720, U.S.A., and Neuromorphic Computing Lab, Intel,
Santa Clara, CA 95054, U.S.A.

Bruno A. Olshausen
baolshausen@berkeley.edu
Redwood Center for Theoretical Neuroscience, University of California,
Berkeley, CA 94720, U.S.A.

We introduce residue hyperdimensional computing, a computing frame-
work that unifies residue number systems with an algebra defined over
random, high-dimensional vectors. We show how residue numbers can

Christopher Kymn and Bruno Olshausen are the corresponding authors.

Neural Computation 37, 1–37 (2025)
https://doi.org/10.1162/neco_a_01723

© 2024 Massachusetts Institute of Technology

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
https://doi.org/10.1162/neco_a_01723


2 C. Kymn et al.

be represented as high-dimensional vectors in a manner that allows al-
gebraic operations to be performed with component-wise, parallelizable
operations on the vector elements. The resulting framework, when com-
bined with an efficient method for factorizing high-dimensional vectors,
can represent and operate on numerical values over a large dynamic range
using resources that scale only logarithmically with the range, a vast im-
provement over previous methods. It also exhibits impressive robust-
ness to noise. We demonstrate the potential for this framework to solve
computationally difficult problems in visual perception and combinato-
rial optimization, showing improvement over baseline methods. More
broadly, the framework provides a possible account for the computa-
tional operations of grid cells in the brain, and it suggests new machine
learning architectures for representing and manipulating numerical data.

1 Introduction

The problem of representing and computing on high-dimensional represen-
tations of numerical values—such as position, velocity, and color—is cen-
tral to both machine learning and computational neuroscience. In machine
learning, vector representations of numbers are useful for defining posi-
tion or function encodings in neural networks (Sitzmann et al., 2020; Tancik
et al., 2020; Vaswani et al., 2017), improving robustness to adversarial exam-
ples (Buckman et al., 2018), and generating efficient classifiers (Diao et al.,
2021). In neuroscience, experimentalists seek to understand how popula-
tions of neurons in the brain represent and transform perceptual or cogni-
tive variables, and so numerous theorists have constructed models for how
these variables could be encoded in and decoded from high-dimensional
vector encodings (Bordelon & Pehlevan, 2022; Kriegeskorte et al., 2008;
Pouget et al., 2000).

A particularly salient example of high-dimensional representation in
neuroscience is the grid cell encoding of spatial position in the medial en-
torhinal cortex (Hafting et al., 2005). Grid cells have multiple peaks in their
firing rates that correlate with spatial positions arranged in a hexagonal lat-
tice. While such a coding scheme may seem somewhat perplexing at first
glance, its usefulness becomes apparent from how it functions as a popu-
lation code. In comparison to a population of neurons with traditional uni-
modal encoding functions whose coding resolution increases linearly with
the number of neurons, a grid cell population possesses a coding resolution
that grows exponentially in the number of neurons (Mathis et al., 2012). In
particular, Fiete and colleagues have emphasized that this advantage of grid
cell encoding uses properties of residue numbers (see section 2.2; Fiete et al.,
2008).

Inspired by this observation, we propose a comprehensive algebraic
framework for distributed neural computation based on residue number



Computing With Residue Numbers in High-Dimensional Representation 3

Table 1: Existing High-Dimensional Vector-Based Schemes for Encoding Num-
bers (First Five Rows) in Comparison to Our Proposed Framework (Last Row).

Efficient Robust
Encoding Scheme Algebra Expressivity Decoding to Noise

One-hot × × � ×
Thermometer (Penz, 1987), appendix A.1 × × � ∼
Float (Goltsev, 1996), appendix A.2 × × � ∼
Gaussian population codes

(Pouget et al., 2000)
Scatter (Smith & Stanford, 1990), × × × �

appendix A.3
Fractional power encoding ∼ � × �

(Plate, 1994), section 2.1
Residue hyperdimensional computing � � � �

systems. Our novel framework builds on an existing algebraic framework
for computing with high-dimensional random vectors, originally called
holographic reduced representation (Plate, 1994) and now commonly re-
ferred to, synonymously, as vector symbolic architectures (VSA; Gayler,
2003) or hyperdimensional computing (Kanerva, 2009). We call our new
framework residue hyperdimensional computing (RHC) and demonstrate
that it inherits the computational advantages of both standard residue num-
ber systems and hyperdimensional computing. This enables fault-tolerant
computations that can efficiently represent numbers and search over a large
dynamic range with greatly reduced memory requirements. Furthermore,
as we shall see, the new framework provides a useful formalism for under-
standing computations in grid cells.

To summarize, we list the four key coding properties we achieve with
RHC: (1) algebraic structure: simple operations on vectors perform addi-
tion and multiplication on encoded values; (2) expressivity: feasible encod-
ing range scales better than linearly with dimension; (3) efficient decoding:
required resources to decode scale logarithmically with encoding range,
and (4) robustness to noise. Although a number of previously proposed
models achieve some of these properties (see Table 1), RHC is the first, to
our knowledge, to achieve all four of these desiderata, as we shall now
show.

2 Results

We first define the key concepts on which the RHC framework is based
(section 2.1) and then describe the framework fully in section 2.2. We then
demonstrate its favorable encoding, decoding, and robustness properties
(section 2.3), as well as how it can be extended to multiple dimensions



4 C. Kymn et al.

(section 2.4) and subinteger encodings (section 2.5). Of particular note, we
construct a 2D hexagonal residue encoding system, analogous to grid cell
coordinates, that provides higher spatial resolution than square lattices. Fi-
nally, we describe how the framework can be applied to problems in visual
scene analysis and combinatorial optimization (section 3).

2.1 Preliminary Definitions.

Definition 1. A residue number system (Garner, 1959) encodes an integer x ∈ Z

by its value modulus {m1, m2, . . . , mK}, where the mk are the moduli of the system.
For example, relative to moduli {3, 5, 7}, x = 20 would be encoded by the residue
[2, 0, 6]—that is, [20 mod 3, 20 mod 5, 20 mod 7]. The Chinese remainder the-
orem states that if the moduli are pairwise co-prime, then for any x such that
0 ≤ x < M := ∏

k mk, the integer is uniquely encoded by its residue (Goldreich
et al., 1999). From here on, we will assume that the pairwise co-prime condition is
fulfilled.

Definition 2. Fractional power encoding (FPE; Plate, 1994) defines a random-
ized mapping from an integer x to a high-dimensional vector z(x). Let D be the
dimension of the vector, with D typically in the range 102 ≤ D ≤ 104. The encod-
ing scheme has two steps. First, draw a random base vector, z, defined as follows,

z = [exp(iφ1), exp(iφ2), . . . , exp(iφD)], (2.1)

where each element eiφ j is a complex number with unit magnitude (a phasor), and
each φ j is a random sample from a specified probability distribution. Second, define
a function from x to CD via component-wise exponentiation of the base vector,

z(x) = zx = [exp(iφ1x), exp(iφ2x), . . . , exp(iφDx)]. (2.2)

Definition 3. A kernel, K(x1, x2), is a function χ × χ → R that measures the
similarity between two objects in a set χ (e.g., vectors in Rn). Notably, FPE imple-
ments kernel approximation (Plate, 2003), which is widely used in machine learn-
ing (Rahimi & Recht, 2007). More specifically, we can induce a kernel based on the
inner products of FPEs,

K(x1, x2) = 1
D

R{z(x1)T z(x2)}, (2.3)

where z(x2) is the complex conjugate of z(x2). This defines a translation-invariant
kernel K(�x) (where �x = x1 − x2), which converges to a particular K∗(�x) as
D → ∞, where the shape of the kernel is determined by the probability distribution
used to draw z (Frady et al., 2021, 2022).



Computing With Residue Numbers in High-Dimensional Representation 5

2.2 Residue Hyperdimensional Computing. We now introduce how
FPE can implement a residue number system. As a first step, we explain
how FPE can implement congruence (representing a remainder, modulo m).

Definition 4. Fractional power encoding, modulo m: Let m be a positive integer,
and let zm ∈ CD denote a random vector sampled according to definition 2, in which
the support for the probability distribution of the random phases is the mth roots of
unity. Then congruent values (i.e., equivalent modulo m) are mapped to the same
vector,

zm(x + m) = [exp(iφ1(x + m)), . . . , exp(iφD(x + m))]

= [exp(iφ1x) · exp(iφ1m), . . . , exp(iφDx) · exp(iφDm)]

= [exp(iφ1(x)), . . . , exp(iφD(x))]

= zm(x),

because exp(iφ jm) = exp(2π · i · k) for some integer k and exp(2π · i · k) = 1 for
any integer k. Put another way, zm(x) is a representation (in the abstract algebraic
sense) of the additive group of integers modulo m. We emphasize that this result
does not depend on the dimension D and that D and m are chosen independent of
the other.

In particular, we focus on the case when all of the mth roots of unity are
equally probable. Then the kernel induced by zm(�x) is 1 if �x = 0 (mod
m), and ≈ 0 otherwise, as shown in Figure 1a. This is highly useful, because
it implies that distinct integers behave as quasi-orthogonal vectors, just like
symbols in hyperdimensional computing. Unlike symbols, however, we can
perform algebraic manipulations transforming one integer into another.

Definition 5. Residue hyperdimensional computing: Let zm1 , zm2 , . . ., zmK denote
FPE vectors with moduli m1, m2, . . . , mK, respectively. Let 	 denote component-
wise multiplication (also known as Hadamard product). Then we encode an integer
x by combining our modulo representations via the Hadamard product:

z(x) =
K⊙

k=1

zmk (x). (2.4)

The above encoding represents the remainder of x, because each zmk rep-
resents its value modulo mk. The code is fully distributed, as every element
of the vector z contains information about each encoding vector zmk (x). By
contrast, typical implementations of residue number systems compartmen-
talize information about individual moduli (Omondi & Premkumar, 2007).

The kernel induced by z(�x) is 1 if �x = 0 (mod
∏

k mk = M) and ≈ 0 for
other integer intervals �x (see Figure 1b). This means that the kernel maps



6 C. Kymn et al.

Figure 1: Residue hyperdimensional computing defines a kernel separating dif-
ferent remainder values, and it enables algebraic operations. (a) For fractional
power encoding, modulo m = 5, inner products between vectors reflect the sim-
ilarity of points with the same remainder value and are quasi-orthogonal else-
where. The light blue curve shows the kernel shape when �x is a real-valued
scalar; integers occur approximately at zero crossings. A further derivation is
provided in appendix B. (b) The kernel induced by an RHC vector (green) is the
product kernel of the moduli used to form it (orange and blue stem plots show,
for comparison, the kernel for m = 3 and m = 5 sampled at integer values of
�x). (c) Demonstration of addition and multiplication. Blue and orange show
encodings of 2 and 3, respectively. Teal shows the decoded value of 2 + 3 (i.e.,
5); purple shows decoded value of 2 × 3 (i.e., 6).

different remainders of our residue number system to quasi-orthogonal
directions in high-dimensional vector space and enables computing in su-
perposition over these variables. Examples of possible applications enabled
by such a scheme are presented in section 3.

The hallmark of a residue number system is carry-free arithmetic; that
is, addition, subtraction, and multiplication can be performed component-
wise on the remainders. This enables residue number systems to be highly
parallel, avoiding carryover operations required in binary number systems.
RHC implements arithmetic with component-wise operations, thus inher-
iting the premier computational property of residue number systems.

Addition is defined as the Hadamard product between vectors, that is,
z(x1 + x2) = z(x1) 	 z(x2) (see section 5.1.1). This follows from the fact that
component-wise multiplication of phasors corresponds to phase addition
and the fact that component-wise multiplication is commutative. Subtrac-
tion is defined by addition of the additive inverse.

Next, we define a second binding operation that implements multi-
plication, denoted as �: z(x1 · x2) = z(x1) � z(x2). Just as variable addition
is implemented by element-wise multiplication, variable multiplication is
implemented by another element-wise operation, this one involving expo-
nentiation (see section 5.1.2). We show how this definition for integer mul-
tiplication can be generalized to multiplication for vector encodings z(x1)



Computing With Residue Numbers in High-Dimensional Representation 7

and z(x2) without invoking the costly step of first decoding the integers
back from the vectors.

Here, it is crucial that our encoding function is restricted to integers
as its domain because multiplication is commutative and integer powers
commute (that is, (cx1 )x2 = cx1x2 = (cx2 )x1 for c ∈ C and integers x1, x2). In
general, this property does not hold for noninteger values. For example,
(−12)0.5 = 10.5 = ±1 (two possible square roots), but (−10.5)2 = (±i)2 = −1
(only one possible solution). This example illustrates that exponentiation
by even a rational power can lead to multiple solutions, which can lead to
noncommutativity.

Division is not well defined for residue number systems, because inte-
gers are not closed under division. Still, when a modulus mk is prime, multi-
plications by nonzero integers are invertible, because each nonzero integer
has a unique multiplicative inverse with respect to mk.

The existence of two distinct binding operators for addition and mul-
tiplication is a new contribution to hyperdimensional computing. Pre-
vious formulations supported only addition or only multiplication via
addition after taking logarithmic transformations (Kleyko, Bybee, et al.,
2022). Consequently, we can now formulate a fully distributed residue num-
ber system that inherits the benefits of computing with high-dimensional
vectors.

Comparing integer values is more difficult for a residue number system
than for binary systems, in which one can directly compare values of higher-
order bits. Even so, there are multiple good algorithms for performing this
comparison (Omondi & Premkumar, 2007), which we can implement with
the addition and multiplication operations of RHC (see appendix C). Value
comparisons of integers are difficult for high-dimensional distributed rep-
resentations in general, and we show that our algorithm implements com-
parisons more efficiently than baseline methods.

2.3 A Resonator Network Enables Efficient Decoding of Residue
Numbers. Given the vector representation of a residue number, z(x), how
do we decode it to recover its value, x? One method for decoding commonly
used in hyperdimensional computing is codebook decoding (Kleyko, By-
bee, et al., 2023), which involves taking the inner product of z(x) with a set
of M codebook vectors with known values of x. However, this procedure
requires O(M ∗ D) storage and M inner product evaluations.

Fortunately, we can improve the situation by utilizing the fact that
residue numbers break the dynamic range of a variable into a set of vari-
ables, each with lower overall dynamic range. For example, a variable
with a dynamic range of 105, when represented modulo [3, 5, 7], requires
a set of codebook vectors of only size 3 + 5 + 7 = 15. This in turn reduces
both the memory and computation resources for decoding by a factor
of 105/15 = 7. To make this work, though, requires that we invert equa-
tion 2.4—that is, we must factorize z(x) into the set of constituent vectors



8 C. Kymn et al.

Figure 2: The resonator network can efficiently recover moduli of different
numbers. (a) The resonator network outperforms codebook decoding by over
an order of magnitude when the effective range is within resonator network
capacity. (b) Demonstration of resonator network capacity. For a fixed vector
dimension, accuracy remains high up to a given range, before gradually falling
off. (c) Scaling of resonator network capacity, C, as a function of dimension, D, is
well described by a quadratic fit (orange dashed line; see the linear fit in the blue
dash-dotted line). Quadratic fit coefficients are (1.3 × 10−1)D2 + (2.4 × 101)D −
3.7 × 103, and linear fit coefficients are (7.6 × 102)D − 7.6 × 105. (d) Resonator
network performance is slightly worse for a higher number of moduli, K, but
(e) an advantage of more moduli is a much higher effective range given encod-
ing resources. (f) The capacity of the resonator network remains high even in
the presence of large amounts of phase noise.

{zm1 (x), zm2 (x), . . . , zmK (x)} representing x modulo mk, from which x can be
easily recovered. For this, we can use a resonator network (Frady et al.,
2020; Kent et al., 2020), a recently discovered method for efficiently factor-
izing vectors in hyperdimensional computing. Figure 2a shows that for a
range of M values, the resonator network can recover vectors over an or-
der of magnitude faster than standard codebook decoding. Two param-
eters that contribute to this are the vector dimension (D) and number of
moduli (K).

To evaluate the dependence of resonator decoding on vector dimension,
we fix the number of moduli (K = 2) and calculate the empirical accuracy
(see Figure 2b) of the resonator network on the effective range M. We find
that for a fixed D, the accuracy remains almost perfect up to a certain range
of M, after which accuracy rapidly decays. To evaluate scaling with D,



Computing With Residue Numbers in High-Dimensional Representation 9

we define the capacity C of a dimension to be the largest M up to which
empirical accuracy is at least 95%. We find that the scaling of C(D) is well fit
with a quadratic polynomial (see Figure 2c), consistent with previous scal-
ing laws studied for a resonator network with two states per component
(Kent et al., 2020). Further tests with higher dimensions would help con-
firm quadratic scaling, but even the linear scaling has high slope (and note
that C(4096) > 2 × 106).

To evaluate dependence on the number of moduli, we fix D = 1024 and
vary K. We find that resonator network capacity decreases as K increases
(see Figure 2d), also consistent with prior work (Kent et al., 2020). Still, we
emphasize that resonator networks with higher K have two advantages: de-
creased computation per decoding (see Figure 2a), and decreased memory
requirements. The resonator network requires only

∑
k mk = b codebook

vectors, rather than
∏

k mk = M. This means that increasing K can increase
the effective range by several orders of magnitude given a fixed codebook
budget (see Figure 2e). Remarkably, the maximal M for a given b is given by
Landau’s function g(b), which scales as g(b) = e(1+o(1))

√
b ln b (Landau, 1903).

This implies an exponential scaling between storage required and effective
range if we proffer sufficient K to achieve it.

Finally, we evaluate the robustness of resonator network decoding to
noise. We draw phase noise from a von Mises distribution with mean 0 and
concentration κ ; higher κ indicates less noise. In Figure 2f, we observe that
performance degrades gradually as a function of noise, yet capacity remains
remarkably high even at high noise levels.

2.4 Generalization to Multiple Dimensions.

2.4.1 Cartesian Representations of Zn. Next, we generalize RHC from
scalars to multidimensional variables, showing that the core operations
and principles still apply. Let x ∈ Zn be a low-dimensional vector. Let
x1, x2, . . . , xn denote the components of x. To encode x with a single high-
dimensional vector z ∈ VD (D >> n), we form the encoding z(x) by tak-
ing the Hadamard product of the distributed representations of individual
components,

z(x) = z1(x1) 	 z2(x2) 	 . . . 	 zn(xn), (2.5)

where each zi is a random vector as generated for the residue representation
of a single number in equation 2.4. (Each zi is created from binding multi-
ple vectors for each of the moduli, distinct for each dimension i.) Since the
binding operation is commutative, we can rearrange our terms to show that
the following useful properties hold:

1. The Hadamard product (	) performs vector addition: z(x) 	 z(x′) =
z(x + x′).



10 C. Kymn et al.

2. The multiplicative binding operation (�) performs component-wise
multiplication of x and x′: z(x) � z(x′) = z(x 	 x′).

3. The kernel induced by z is the product of the kernels of the individual
components: Kz(�x) = ∏n

i=1 Kzi (�xi), where �x = x − x′.

While properties 1 and 3 are general properties of FPE, property 2 is once
again unique to RHC. In addition, the savings in decoding resources and
computation required (see Figure 2) also scale in higher dimensions, as used
in section 3.

2.4.2 Triangular Coordinate Systems. When working in a multi-
dimensional space, there are multiple alternatives to a Cartesian coordinate
system. For example, grid cells in medial entorhinal cortex encode spatial
location with a triangular coordinate system; research in theoretical neuro-
science suggests that this is because such a tiling of space has the highest
resolution (Fisher information) in 2D space (Mathis et al., 2015). Here
we show that residue hyperdimensional computing can also implement
triangular coordinate systems and that such a hexagonal lattice retains
coding advantages over square lattices. Of particular note, we formulate a
simple and efficient RHC encoding of 2D space into nonnegative triangular
coordinates.

To encode a two-dimensional position into a three-coordinate frame re-
quires two steps. First, we project the 2D vector x into a 3D vector y with
unit vectors whose angles each differ by 2π

3 (see section 5.3). This coordi-
nate representation is known as the “Mercedes-Benz” frame in R2; it is well
studied in signal processing (Malozemov & Pevnyi, 2009) and has attracted
recent interest in hyperdimensional computing (Dumont & Eliasmith, 2020;
Frady et al., 2021; Komer, 2020). For our purposes, this step is necessary but
not sufficient, because simple projection results in a redundant representa-
tion of space (i.e., the encoding into y would contain a 1D null-space). This
redundancy can be removed by enforcing nonnegativity in y. Therefore, the
second step encodes y as above (see section 2.4.1), but with the additional
constraint that z([1, 1, 1]) = z([0, 0, 0]), ensuring that every state with neg-
ative coordinates has an equivalent representation to one with nonnegative
coordinates. It turns out that this constraint is easily enforced by ensuring
that the phases encoding the three coordinates sum to zero (see section 5.3).
This constraint also reflects the fact that equal movement in every direction
cancels out, and thus it enforces that different paths to the same 2D posi-
tion result in the same high-dimensional encoding. The kernels induced by
vectors of individual moduli (see Figures 3b and 3d) and by the residue vec-
tor (see Figure 3f) exhibit the six-fold symmetry characteristic of hexagonal
lattices and grid cells (Hafting et al., 2005).

We can therefore represent the triangular coordinate system with a
Voronoi tesselation (see Figure 3e) in which different regions of space are
mapped to their nearest integer-valued 3D coordinate. A hexagonal system



Computing With Residue Numbers in High-Dimensional Representation 11

Figure 3: Definition of a residue number system in nonnegative hexagonal co-
ordinates. (a, c) Discrete phase distributions chosen for a 3D coordinate system
of a 2D space with moduli 3 and 5, respectively. In addition to requiring that
phases are drawn from the mth roots of unity, we enforce that φ1 + φ2 + φ3 =
0 (mod 2π ). (b, d) The respective kernels generated by these phase distribu-
tions. (e) An example of the Voronoi tesselation of different states composed of
a hexagonal coordinate system with modulus 5. Each color corresponds to a dif-
ferent state representation in the vector space of the three integer coefficients of
the Mercedes-Benz frame (depicted by black arrows). (f) The kernel induced by
a hexagonal residue HD vector (period of 3 · 5 = 15). (g) Compared to square en-
codings of space, hexagonal encodings approximately triple the effective range
of encodable states with only a 50% increase in required storage space. (h) The
Shannon entropy of the hexagonal code is higher than that of the square code
with the same modulus, reflecting the benefit of hexagonal packing.

with modulus m has 3m2 − 3m + 1 distinct states and requires 3m codebook
vectors, whereas a square lattice has m2 distinct states and requires 2m code-
book vectors (see Figure 3g). Thus, the hexagonal system achieves better
spatial resolution (it is a higher-entropy code with regard to space) than a
square lattice (see Figure 3h) for the same number of resources.

2.5 Extensions to Subinteger Decoding Resolution. In previous sec-
tions, we worked exclusively with integer states and residue number
systems implementing them. Intriguingly, however, we can extend our
definition of FPE to rational numbers (see section 5.4.1), and the resonator
network converges to FPE encodings of nonintegers, even when codebooks
contain only encodings of integers (see Figures 4a and 4b). Strictly speaking,
such extensions beyond integers are not residue number systems, because



12 C. Kymn et al.

Figure 4: The resonator network enables retrieval of fractional (subinteger) val-
ues. (a) Example of the resonator network converging for z(x), x = 40.4. (b) Inner
product values decoded by the resonator network are predicted by fractional
offsets from a Dirac comb convolved with a sinc function. (c) Subinteger encod-
ing accuracy under a low noise regime for an RHC vector (r denotes number
of subinteger partitions). (d) Bits per vector for different fractional decodings.
Panels e and f are the same as panels c and d, respectively, but under higher
noise conditions.

in these cases, multiplication is not well defined (see also the discussion
following definition 5). However, the definition of additive binding can be
extended to rational numbers (see section 5), and such extensions toward
subinteger resolution have been considered in theoretical analyses of grid
cells (e.g., in Fiete et al., 2008, and Srinivasan & Fiete, 2011). We show that
the resonator network dynamics achieve this subinteger resolution.

An efficient procedure for decoding with subinteger precision is sug-
gested by Figure 4b. The inner products between codebook states and the
final resonator network state are well described by evaluations of a Dirac
comb convolved with a sinc function (see appendix B). For integer encod-
ings, this function would evaluate to 1 for the nearest integer state and 0 for
all other integer encodings. For noninteger rational numbers, however, the
nearest integer state(s) still have the highest inner product, and the devia-
tion of this inner product from 1 indicates the offset from an integer value.
Similarly, features near the peak have a nonzero yet predictably small in-
ner product. Therefore, we can find the subinteger offset that best matches
the resonator network state in order to decode the subinteger value (see
section 5.4.2).

Phase noise is the limiting factor in decoding subinteger states. To quan-
tify this more rigorously, we evaluate a resonator network with varying ef-
fective ranges M under different noise regimes (κ = 16 and 1, respectively).



Computing With Residue Numbers in High-Dimensional Representation 13

We then split each unit interval into r partitions, so that there are M · r dis-
tinct numbers represented. Figures 4c and 4e show the accuracy of decoding
for a different number of partitions with κ = 16 and κ = 1, respectively. To
account for accuracy and the number of different states distinguished, we
also report the bits per vector metric (Frady et al., 2018) in Figures 4d and 4f.
This metric validates that with lower noise, we can more reliably decode a
higher number of states.

3 Applications

3.1 Efficient Disentangling of Object Shape and Pose from Images.
Here, we study the disentangling problem in vision—that is, the task of re-
covering the underlying components of a scene given only the image pixel
values. Such problems abound in visual perception; examples include in-
ferring structure-from-motion or separating spectral reflectance properties
from shading due to 3D shape and lighting. How brains disentangle these
factors of variation in general is unknown, and it is computationally chal-
lenging due to the combinatorial explosion in how factors combine to create
any given scene (Olshausen, 2014).

Here, we demonstrate how RHC can efficiently tackle the combinatorial
complexity inherent in visual perception by considering a simple case of
images containing three factors of variation: object shape, horizontal po-
sition, and vertical position. Let O, H,V be finite sets listing the possible
vectors for each factor. The goal is to infer the Oa ∈ O, Hb ∈ H,Vc ∈ V pro-
vided an image, I. In this setup, the search space is |O| · |H| · |V|, and in our
example (see Figure 5), |O| = 10 and |H| = |V| = 105, giving a search space
of ∼ 105.

We solve this problem in two stages. First, we form a latent, feature-
based representation of the image via convolutional sparse coding (see
section 5.5). This step mirrors the neural representation in primary visual
cortex, which is hypothesized to describe image content in terms of a small
number of active image features (Olshausen & Field, 1996). We observe that
this step is useful as it helps to decorrelate image patterns, thus achieving
higher accuracy and faster convergence for the resonator network (Kymn
et al., 2024).

Second, we encode the latent feature representation into a high-
dimensional vector that can be subsequently factorized into its components
(Oa, Hb, Vc) via a resonator network. This is accomplished, following Ren-
ner et al. (2024), by superimposing the residue number encodings of the
position of each image feature into a single scene vector, s (see section 5.5,
equation 5.5). The resulting vector, s, can be expressed equivalently as a
product of vectors representing object shape and position, and thus the
problem of disentangling these factors essentially amounts to a vector fac-
torization problem.



14 C. Kymn et al.

Figure 5: Residue hyperdimensional computing enables efficient disentangling
of images. (a) Processing pipeline: an image is first represented in terms of its
local shape features via convolutional sparse coding, then converted to a high-
dimensional vector z by superimposing the residue number encodings of the
positions of each feature in the image, which is finally factorized into object
identity and position via a resonator network. (b) Simulations of the resonator
network on visual scenes without the residue number encoding (Standard) and
with the residue number encoding (Residue). (c) With a residue number system,
the resonator network requires less memory overhead (40 versus 220 codebook
vectors) and less total computation to converge to the correct solution (792.4
versus 2085.6 average codebook evaluations). Error bars show the 25th and 75th
percentiles of the number of evaluations.

The standard way to factorize the scene vector (e.g., as in Renner et al.,
2024) would be to use three codebooks corresponding to shape, horizon-
tal position and vertical position, for a total of 10 + 105 ∗ 2 = 220 codebook
vectors. By contrast, a residue number system with moduli {3, 5, 7} uses
seven factors but only 10 + (3 + 5 + 7) ∗ 2 = 40 vectors. Example runs of
both problem setups are shown in Figure 5b.

Figure 5c demonstrates the two main advantages of the residue resonator
compared to the standard resonator baseline: a reduction in both mem-
ory requirements (as just described) and the required number of iterations.
Whereas the standard resonator takes over approximately 2,000 codebook
evaluations on average in our simulations, the residue resonator averages
only approximately 800 codebook evaluations. (Both dramatically improve
over the brute force search, which requires 110,250 codebook evaluations.)



Computing With Residue Numbers in High-Dimensional Representation 15

The key lesson is that a residue number encoding of position leads to a large
multiplicative decrease in the number of computations required to factorize
the contents of a scene.

3.2 Generating Exact Solutions to the Subset Sum Problem. Here we
apply RHC to the subset sum problem. Formally, the problem asks if a mul-
tiset of integers, S, contains a subset S∗ that sums to a target integer T. A
further demand is to return S∗ if it exists. When all integers are positive, the
subset-sum problem is NP-complete (Kleinberg & Tardos, 2006). It is a use-
ful case to consider because there are well-known polynomial-time reduc-
tions from other NP-complete problems (e.g., 3-SAT) to subset sum (Karp,
1972).

To find solutions to the subset sum problem, we encode T as a vector,
z(T ), and use |S| factors. Each factor, Fk, has a codebook of two items: an
identity vector z(0) and z(Sk)—reflecting the binary decision to include that
item in the sum or not. Figure 6a demonstrates the resonator network suc-
cessfully finding the solution when T = 21 and |S| = 6.

In order to use a residue number system, we need to choose M so that
M >

∑
s∈S s. This means that we need �log M
 bits per vector component.

This is an improvement from previous work using resonator networks to
solve factorization problems (Kleyko, Bybee, et al., 2022), which requires
floating-point precision to perform semi-prime factorization.

To understand the scaling capacity of the residue number system, we
evaluate the performance of the resonator network as the set size increases.
We observe that the resonator network finds exact solutions to the subset
sum problem for large sets and that performance improves with higher
vector dimension (see Figure 6b). Figure 6c illustrates that the success prob-
ability after up to 10 trials matches what is expected from 10 indepen-
dent runs of the 1-trial accuracy. This finding suggests that the resonator
network constitutes a “Las Vegas” algorithm (Babai, 1979), in which each
run has a success probability p, p is independent across runs, and so the
algorithm requires 1/p iterations on average. Accuracy also depends on the
integer range searched over, even for the same set size (see Figure 6d), per-
haps because larger integer ranges reduce the probability of multiple sub-
sets matching the target.

Finally, we compare our subset sum algorithm to brute force search and
an exponential-time algorithm that solves the decision problem. The aver-
age number of iterations required by the resonator network to find a solu-
tion is drastically less than the exponentially increasing cost of a brute force
search (see Figure 6e) and also improves with higher dimension. We find
that on a CPU, the resonator network has faster clock time than the expo-
nential time algorithm for |S| > 28 (see Figure 6f and section 5.6); most of
the computing time is spent on generating the vector representations rather
than the resonator network dynamics itself. More significant, whereas the
baseline algorithm required O(2|S|) memory to keep candidate subsets in



16 C. Kymn et al.

Figure 6: The resonator network, with residue hyperdimensional computing,
enables successful searches for solutions to the subset sum problem. (a) Demon-
stration of the resonator network on the subset sum problem, with S = {18,

4, 5, 10, 2, 23}. The resonator network converges to the correct solution after a
few iterations. (b) Performance of the resonator network on randomly selected
subset sum problems with a fixed set size. (c) The probability of success scales
as expected with independent trials on each start. (d) Success of the resonator
network on the subset sum problem depends on the range of items indexed in
the subset sum problem (larger ranges are harder to factorize). (e) Performance
of the resonator network in terms of the expected number of iterations com-
pared to chance. The expected number of iterations for the resonator network
scales favorably compared to brute force search and improves with higher en-
coding dimension. (f) Comparison of average compute time of the resonator
network versus an exact algorithm. The initialization cost of setting up the res-
onator network is higher; even so, for large set sizes, the resonator network is
faster.

memory, the resonator network only requires O(D · |S|) memory, since it
never needs to explicitly represent every subset. We emphasize that the
CPU implementation of the resonator network is primarily intended as a
proof of concept and that further performance gains would likely result
from implementing the resonator network on emerging computing plat-
forms, as in Langenegger et al. (2023) and Renner et al. (2024).



Computing With Residue Numbers in High-Dimensional Representation 17

4 Discussion

Our study provides a definition of residue number systems within the
framework of hyperdimensional computing. The new framework inherits
the benefits of both systems: the carry-free arithmetic and Chinese remain-
der theoretic guarantees from residue number systems, along with the ro-
bustness and computing-in-superposition properties of hyperdimensional
computing (Kleyko, Davies, et al., 2022). The framework provides a favor-
able way to encode, transform, and decode variables that is robust to noise.
Taken together, these properties make residue hyperdimensional comput-
ing an appealing framework for efficiently solving difficult computational
problems, especially those involving combinatorial optimization. It also has
implications for modeling population codes in the brain, in particular grid
cells.

Prior work in computational neuroscience (Fiete et al., 2008; Srinivasan
& Fiete, 2011) has emphasized that residue number systems endow grid
cells with useful computational properties, including high spatial resolu-
tion, modular updates, and error correction. We demonstrate that residue
hyperdimensional computing successfully achieves each of these coding
properties (see sections 2.2 and 2.3) in a working neural implementation.
Reciprocally, our algebraic framework makes two contributions to compu-
tational neuroscience. First, we show how to extend a residue number sys-
tem to a self-consistent, nonnegative hexagonal coordinate system. Second,
we provide a new algorithm for collectively coupling spatial position to grid
cell modules via the resonator network. The core prediction our framework
makes for systems neuroscience is that each grid cell module corresponds
to a factor estimate in the resonator network. More specifically, each mod-
ule implements a toroidal attractor network, and multiplicative couplings
with hippocampus and other grid cell modules enable error correction. This
prediction is consistent with both recent experimental analysis supporting
the existence of continuous attractor networks in single grid cell modules
(Gardner et al., 2022) and with recent theories of joint attractor dynamics in
hippocampus and medial entorhinal cortex (Agmon & Burak, 2020). Note,
however, that while the 2D kernel of our model reflects the periodic, hexag-
onal structure of grid cell response fields, the individual elements of the
vector representations are phasors that have “band-like” receptive fields in
2D (Krupic et al., 2012), and so reconciling this mismatch will be an impor-
tant goal of future research.

Here, we used vectors of complex numbers and algebraic operations to
formulate the neural representations. These operations are not easily real-
ized in perceptron-like neurons operating over weighted sums of their in-
puts. However, there are various alternative mechanistic theories of how
such operations could be represented through more biologically realis-
tic spiking neurons—for instance, complex phasors can be represented



18 C. Kymn et al.

through a spike-timing code (Frady & Sommer, 2019). It is a question,
then, how the mechanisms we have proposed are implemented by neu-
ral populations. Mechanisms such as dendritic nonlinearities could be a
potential implementation of the required multiplicative operations in our
model.

Our work also draws heavily from prior results from vector symbolic
architectures and hyperdimensional computing. Originally developed as a
framework in cognitive science for structured symbolic reasoning with dis-
tributed representations, our work helps extend this approach to numeric,
nonsymbolic, tasks. The heart of the number encoding, fractional power en-
coding, was introduced by Tony Plate (1992) and further developed in Plate
(1995). Though vector operations with modular arithmetic have been previ-
ously used (Frady et al., 2021, 2022; Komer, 2020; Snaider & Franklin, 2014;
Yu et al., 2022), this study is the first instance leveraging a residue num-
ber system with more than the trivial first modulus. The results shown in
Figure 2 demonstrate that having multiple moduli is necessary to achieve
efficient scaling laws.

The framework also has implications for how neural populations can
solve difficult optimization problems, such as disentangling visual scenes.
Recent work has emphasized the promise of hyperdimensional comput-
ing as an abstraction for neuromorphic computing (Frady & Sommer, 2019;
Kleyko, Davies, et al., 2022; Renner et al., 2024). Residue hyperdimen-
sional computing substantially reduces the storage and average number of
operations needed for solving decoding problems and combinatorial op-
timization, contributing a simple yet powerful improvement. In addition,
the phasor representations suggested by our framework directly map onto
Q-state phasor networks (Noest, 1988), suggesting promising implementa-
tions in spiking neural networks (Bybee & Sommer, 2022) and strategies
for solving combinatorial optimization problems (Wang & Roychowdhury,
2019).

The performance of our framework on the subset sum problem suggests
a new route for solving optimization problems with distributed represen-
tations and unconventional hardware. The subset sum problem is a par-
ticularly good fit for our framework because it is easily implemented by
the Hadamard product operation on high-dimensional vectors. Since other
hard problems, such as 3-SAT, can be efficiently mapped to subset sum, our
results potentially point the way to a new class of parallel algorithms for
efficiently solving NP-hard problems.

Finally, we hope that our work facilitates new connections between ex-
isting applications of residue number systems and hyperdimensional com-
puting. Residue number systems have attracted strong interest in their own
right for their useful theoretical properties and efficient realizations of fault-
tolerant computer hardware (Mohan, 2016; Omondi & Premkumar, 2007)
and error-correcting codes (Goldreich et al., 1999) useful in communication
systems. Additionally, residue number systems have useful applications in



Computing With Residue Numbers in High-Dimensional Representation 19

fields such as signal processing and fully homomorphic encryption. The
rich theoretical foundations of residue number systems could suggest new
routes to improve the error-correction capabilities of existing hyperdimen-
sional computing algorithms (Kim, 2018); conversely, residue hyperdimen-
sional computing could enable development of new applications using ro-
bust distributed codes and ability to compute-in-superposition.

5 Methods

5.1 Definitions of Algebraic Operations.

5.1.1 Definition of Additive Binding Operation. We implement addition
within RHC by using the Hadamard product operation (component-wise
multiplication, 	): z(x1 + x2) = z(x1) 	 z(x2). The Hadamard product cor-
rectly implements addition because it is commutative. This can be seen as
follows:

z(x1) 	 z(x2) = ( ⊙
k

zmi (x1)
) 	 ( ⊙

k

zmi (x2)
)

=
⊙

k

(zmi (x1) 	 zmi (x2))

=
⊙

k

zmi (x1 + x2)

= z(x1 + x2).

5.1.2 Definition of Multiplicative Binding Operation. To implement a sec-
ond binding operation (�), such that z(x1 · x2) = z(x1) � z(x2), every compo-
nent of the vector z(x1) must be multiplied by x2. If we had the value of x2

explicitly, then we could directly implement z(x1 · x2) by component-wise
exponentiation of z(x1) by x2. However, decoding incurs additional com-
putational costs, and we show here that multiplications can be computed
without this intermediate step.

We require a few simplifying assumptions to define our multiplication
operation. First, we assume that we have access to the individual base vec-
tors for each modulus (e.g., zm1 (x1)). If we do not, then we can use the res-
onator network to recover them. The key observation is that if x is an integer,
then each component of zmk (x) is itself a mkth root of unity. More specifically,
it equals exp(2π ir j/mk), for some integer r j = (mk/2π )φ jx (mod mk).

Therefore, we define an operation, f , that can multiply two discrete
phases when they are both drawn from the mkth roots of unity:

f
(

exp
(

i
2π

mk
r
)

, exp
(

i
2π

mk
s)

))
= exp

(
i
2π

mk
rs

)
.



20 C. Kymn et al.

When f is applied to two vectors of the same dimension, the multiplica-
tion is applied component-wise. Supposing that r = (mk/2π )φx1 and s =
(mk/2π )φx2, we obtain rs = (mk/2π )φ2x1x2, which is off from our desired re-
sult by a multiplicative factor of φ. This motivates a final step of cancelling
out the extra factor.

Because each phase φ is drawn from the mkth roots of unity, it can be writ-
ten as 2πu/mk, where u ∈ Z (mod mk). When mk is prime, then any nonzero
integer u has a unique modular multiplicative inverse v ∈ Z (mod mk), such
that u × v = 1 (mod mk). For example, the modular multiplicative inverse of
3 (mod 5) is 2. We therefore assume that whenever multiplicative binding is
used, the multiplicative inverse exists. The simplest way to guarantee this in
practice is by choosing every modulus mk to be prime. This assumption al-
lows us to define an “anti-base” vector, ymk , whose components are defined
by the modular multiplicative inverses of zmk . That is, if the jth component
of zmk is exp(2π iu/mk), then the jth component of ymk is exp(2π iv/mk).

These assumptions motivate the following definition of the multiplica-
tive operation, which we show successfully performs the multiplication of
the arguments along with necessary cancellations:

z(x1) � z(x2) = f ( f (zm1 (x1), zm1 (x2)), ym1 ) 	 . . . 	 f ( f (zmK (x1), zmK (x2)), ymK )

=
⊙

k

[exp(iφk,1x1φk,1x2φ
−1
k,1 ), . . . , exp(iφk,Dx1φk,1x2φ

−1
k,D)]

=
⊙

k

[exp(iφk,1x1x2), . . . , exp(iφk,Dx1x2)]

= z(x1 × x2).

We implement f by taking the angle of the phasor exp(2π is/mk), multi-
plying the angle by mk/(2π ) and exponentiating exp(2π ir/mk) by the result.
We compute modular multiplicative inverses via the built-in pow function
in Python. However, we note that both functions can also be implemented
by lookup tables, and precomputing all input-output pairs may be optimal
when many computations are reused and lookups are inexpensive.

5.2 Decoding Methods. In the context of high-dimensional distributed
representations, the decoding problem is to recover a variable x from a dis-
tributed representation z(x). In all of our decoding experiments, x is either
an integer or rational number. A survey of decoding methods, applied to
symbolic hyperdimensional computing models, can be found in Kleyko,
Bybee, et al. (2023).

5.2.1 Codebook Decoding. Codebook decoding estimates x by taking in-
ner products between z(x) and a precomputed set of reference vectors:
x̂ = arg maxxk

〈z(x), z(xk)〉.



Computing With Residue Numbers in High-Dimensional Representation 21

5.2.2 Resonator Network Details. The resonator network (Frady et al.,
2020; Kent et al., 2020) is an algorithm for factoring an input vector, z,
into the primitives {z1, z2, . . . , zK} that compose it via Hadamard prod-
uct binding: z = z1 	 z2 	 . . . 	 zK. Each z j is specified to come from
a set of candidate vectors concatenated in a codebook matrix, Z j ∈
CD×m j , where each D-dimensional column vector represents a particu-
lar value (mod mj). In other words, the matrix consists of the column
vectors of [zm j (0), zm j (1), . . . , zm j (mj − 1)], with each vector defined by
definition 5.

The resonator network functions as a dynamical system with the follow-
ing update equations,

ẑ j(t + 1) = g
(

Z jZ†
j

(
z 	

∏
i �= j

ẑ∗
i (t)

))
, (5.1)

where Z†
j is the Hermitian conjugate operator applied to Z j, ∗ denotes the

complex conjugate of the vector zi, and g is a nonlinearity, preserving phase
and normalizing the amplitudes of each complex-valued component to
1. The two matrix multiplications, carried out by Z†

j and Z j, respectively,
can be thought of as a cleanup memory, projecting estimates into the low-
dimensional subspace spanned by the column vectors of Z j. In all exper-
iments, we use an asynchronous update rule in which at each time step,
only one factor estimate is updated, and every set of time steps, each vec-
tor is updated once. The algorithm runs either until convergence or until
a maximum number of iterations has been reached. We consider the res-
onator network to have converged when the normalized cosine similarity
between two successive states exceeds a threshold, α (for all experiments,
α = 0.95).

5.2.3 Evaluation of Resonator Network Decoding Accuracy, Capacity, and Ro-
bustness to Noise. We evaluate resonator network accuracy as a function
of vector dimension (D), effective range (M), number of moduli (K), and
noise level (dependent on κ). We add noise only in experiments shown in
Figure 2f, and K = 2 unless stated otherwise. D = 1024 in Figure 2d, and
D = 512 in Figure 2f. To compute data points for curves that are a func-
tion of M, we generate a list of ascending primes and select K consecutive
primes as moduli. The effective range, M, is the product of these moduli.
We continue experiments for a fixed D and increasingly large M until em-
pirical accuracy falls below a given threshold (0.95 for Figures 2a and 2c,
and 0.05 otherwise). To report the required number of comparisons for Fig-
ure 2a, we normalize the average number of inner product iterations by
the accuracy and visualize curves only in the high-accuracy regime (above
95%).



22 C. Kymn et al.

5.3 Triangular Residue Encodings. To project a 2D vector x to a 3D tri-
angular coordinate y, we multiply it by a matrix 	, which is the Mercedes-
Benz frame in 2D:

	 =

⎡
⎢⎣

−1/
√

3 −1/3

1/
√

3 −1/3

0 2/3

⎤
⎥⎦ .

The resulting vector y = 	 x is encoded as a high-dimensional vector us-
ing the generalization to multiple dimensions specified in equation 2.5. As
an additional constraint, we require that z([1, 1, 1]) = z([0, 0, 0]). This con-
dition implements the self-cancellation property (i.e., that moving equally
along the three equiangular directions cancels out). It also converts possible
negative values arising from the projection step to an equivalent nonneg-
ative coordinate encoding. Somewhat fortuitously, this constraint is natu-
rally enforced in RHC by ensuring that for each component of z, the three
phases corresponding to the three directions sum to 0 (mod 2π). This is
achieved by constraining the joint probability distribution over triplets of
phases so that this requirement is met (see Figures 3a and 3c).

5.4 Decoding with Subinteger Precision.

5.4.1 Extension of Encoding Scheme to Rational Numbers. For a rational
number q ∈ Q, we define zm(q) based on fractional power encoding, mod-
ulo m, as

zm(q) = [exp(iφ1q), exp(iφ2q), . . . , exp(iφDq)]. (5.2)

We then form our representation of the remainders (modulo mk) via the
same process described in equation 2.4. If q is an integer, then this proce-
dure matches that of definition 4. But in general, zm(q) �= (zm)q. This is sig-
nificant because while we can still evaluate similarity via inner products
and perform addition operations, multiplication operations are no longer
well defined.

5.4.2 Subinteger Decoding with the Resonator Network. Subinteger decod-
ing with the resonator network proceeds in three steps. First, we let the
resonator update its factor estimates until convergence to a fixed point. We
emphasize that subinteger encodings are also fixed points of the resonator,
even when the codebooks of the resonator contain only integers (see sec-
tion 2.5). Second, we find the nearest integer codebook for each moduli,
and generate the nearest codebooks for the fractional values within range 1
of that decoded integer (r in total). Third, we use codebook decoding over
these vectors encoding fractional values to return our result.



Computing With Residue Numbers in High-Dimensional Representation 23

5.4.3 Evaluation of Subinteger Decoding with Noise. We fix D = 512, and
let κ = {16.0, 1.0}. We run the resonator network until a maximum number
of iterations or convergence and evaluate if both the nearest integer and
nearest fractional state are correct. If so, we regard the solution as correct,
reporting accuracy and bits per vector.

5.4.4 Measuring Bits per Vector. To measure the total amount of informa-
tion decoded, we account for the accuracy of decoding and the number of
states distinguished. The amount of information decoded for a single num-
ber (denoted as Inum) is calculated using the corresponding accuracy (a) and
size (P) of the total search space as

Inum(a, P) = a log2(Pa) + (1 − a) log2

(
P

P − 1
(1 − a)

)
. (5.3)

For a detailed derivation of this equation, refer to section 2.2.3 of Frady et al.
(2018). According to this metric, the amount of decoded information is 0
when the accuracy is at chance (1/P).

5.5 Visual Scene Factorization Experiments. Convolutional sparse
coding learns a dictionary of basis functions, {φ j(x, y)} and infers a set of
sparse latent representations, {Aj(x, y)}, for each image, I(x, y), by minimiz-
ing the following energy function, E,

E = 1
2
||I −

n∑
j=1

φ j ∗ Aj||22 + λ

n∑
j=1

||Aj||1, (5.4)

where ∗ denotes convolution and λ is a hyperparameter weighting the
trade-off between reconstruction error and sparsity. We use the SPORCO
implementation of convolutional sparse coding introduced by Wohlberg
(2017) to learn the {φ j(x, y)} for an ensemble of MNIST digits and to infer
the sparse representation A for each image I.

A useful feature of convolutional sparse coding is its equivariance to 2D
translation; that is, 2D translation in the image domain results in 2D trans-
lation of the sparse representations, {Aj(x, y)}. We can thus convert the set
of sparse feature maps {Aj(x, y)} to a high-dimensional vector as follows:

s =
∑
j,x,y

h(x) 	 v(y) 	 d j · Aj(x, y). (5.5)

Here, h(x) and v(y) denote the RHC encodings of horizontal (x) and
vertical (y) position. d j is a random vector generated i.i.d. that represents
the identity of each basis function φ j. By expectation, most values of each



24 C. Kymn et al.

Aj(x, y) will be zero because the energy function for sparse coding penal-
izes nonzero coefficients. Thus, the scene vector, s, can be seen as a sparse
superposition of position encodings of features (φi) contained in the image.

Now we can separately define the vector encoding of each object i to be
recognized as

O(i) =
∑
j,x,y

h(x) 	 v(y) 	 d j · o(i)
j (x, y), (5.6)

where o(i)(x, y) is the sparse representation of the image of object i within
a canonical reference frame. If we were to place object i at position (x′, y′)
within an image, the resulting scene vector computed according to equa-
tion 5.5 will be given as

s = h(x′) 	 v(y′) 	 O(i). (5.7)

Therefore, our scene analysis problem amounts to one of factorizing s into
its constituent vectors h(x′), v(y′), and O(i).

We can factorize s using a resonator network with three codebooks,
O, H, and V. Each element O(i) ∈ O consists of an encoding of each object
as above, and H and V contain RHC encodings of horizontal and vertical
position.

For our object examples, we use 10 images from the MNIST data set.
Sparse coding dictionary elements are optimized over a subset of the
MNIST data set. After inferring a sparse code for each image, we encode it
as a high-dimensional vector (D = 10,000). We use a residue number system
with bases {3, 5, 7} for both horizontal and vertical dimension and then ei-
ther enumerate all 105 codebooks for a single factor (Standard) or use three
factors with 3, 5, and 7 codebooks, respectively (Residue). In either case, we
ran the resonator network until convergence to a vector matching the scene
representation (including reinitialization, if it did not converge after a fixed
number of iterations or became stuck in a local minima) and record the av-
erage number of iterations multiplied by the average number of codebook
evaluations (which is smaller for the residue encoding).

5.6 Subset Sum Experiments. We use a residue number system with
3 moduli, {m − 1, m, m + 1}, where m is an even positive integer, ensuring
that our moduli are co-prime. To generate random subset sum problems, we
first define a maximum sum range to be M/2. For Figures 6b and 6c, m =
200, M ≈ 2003. Then we draw random variables from a uniform distribution
(scaled between 0 and half of the maximum sum over the largest set size
tested). We then select a random subset of the set (all subsets are equally
likely) and compute the sum. This sum forms the input to the resonator
network, and we treat its solution as correct if it converged to the same



Computing With Residue Numbers in High-Dimensional Representation 25

sum. If the resonator network returns the wrong output, we restart it from
a different random initialization, up to a maximum number of trials. We
vary both the vector dimension (D) and set size (|S|), reporting accuracy
after multiple simulations. For Figure 6d, D = 400.

To compare the number of evaluations relative to brute force (see Fig-
ure 6e), we record the average number of evaluations on each set size. We
divide the number of inner product comparisons required for brute force
evaluation by the number of comparisons per resonator network iteration.
Further, we normalize the number of resonator iterations by the accuracy
to ensure a fair comparison. In comparing our algorithm to a solver, we
implement an exact subset-sum algorithm as a baseline (Nanda, 2005). We
let m = 1000, D = {10,000, 20,000}, and draw integers uniformly from the
range [0,5000].

Appendix: Supplemental Material

A.1 A Brief Survey of Distributed Coding Schemes. In order to pro-
cess vector representations of numbers, such as in machine learning set-
tings (e.g., Kleyko, Osipov, et al., 2018; Kleyko, Rachkovskij, et al., 2023;
Rachkovskij, 2007; Rahimi et al., 2019; Räsänen & Saarinen, 2016; and
Schindler & Rahimi, 2021), previous work combined hyperdimensional
computing with different kinds of locality-preserving encodings for rep-
resenting numeric data with vectors. The requirement to be locality pre-
serving is that inner products between vectors encode similarity of the un-
derlying data. Here we briefly review some locality-preserving encoding
schemes that have been used in the past (see also Kleyko, Rachkovskij, et al.,
2022), assessing their kernel properties.

A.1.1 The Thermometer Code. The thermometer code (Buckman et al.,
2018; Kleyko, Kheffache et al., 2020; Penz, 1987; Rachkovskij et al., 2005)
is a simple and structured way to form a locality-preserving encoding for
a range of discrete levels s, s ∈ [0, D]. The first code z(0) consists of all −1s.
For other levels, the components of z(s) are determined as

zi(s) =
{

+1, i ≤ s

−1, otherwise
(A.1)

Thus, the last code z(D) consists of all +1s, and, in total, the thermometer
code can represent D + 1 levels. Figure 7 shows how cosine similarity ap-
pears for several different levels when D = 50. Thermometer codes produce
a translation-invariant kernel that is triangular and has a width of 2D + 1
levels. It is a nonlocal kernel, in the sense that there are no two points in
the encoding range that have a similarity of zero. In practice, thermometer



26 C. Kymn et al.

Figure 7: Similarity kernel of the thermometer code shown for several levels; D
was set to 50.

codes are used commonly when applying hyperdimensional computing to
classification problems.

A.2 The Float Code. The float code, also known as the sliding code,
(Goltsev, 1996; Rachkovskij et al., 2005) addresses the issue of the ther-
mometer code—that is, that the similarity decay is not local. This is done
by using w consecutive +1 components (“float”) where the size of w regu-
lates similarity characteristics of the code. For the binary case, the similarity
kernel of the float code is the triangular kernel of width 2w + 1 levels. To
encode the lowest value z(0), the first w components of the vector are set to
+1s while the rest of the components are 0s. In general, the components of
z(s) are determined as

zi(s) =
{

+1, s ≤ i < s + w

0, otherwise.
(A.2)

Figure 8 depicts how similarity (inner product normalized by w) decays
for several levels in the float code for D = 60, w = 10. The float code also
produces a triangular kernel, but in contrast to the thermometer code, it
allows controlling the width of the triangular kernel. The number of levels
it could encode is still limited and equals n − w + 1.

A.3 The Scatter Code. Scatter codes (Kleyko, Rahimi, et al., 2018;
Rachkovskij et al., 2005; Smith & Stanford, 1990) are another alternative to
form a locality-preserving encoding where similarity decays nonlinearly. In
scatter codes, the code for the first level z(0) is chosen randomly while each
subsequent code is obtained from the previous one by randomly swapping
its components with some probability p:



Computing With Residue Numbers in High-Dimensional Representation 27

Figure 8: Similarity kernel of the float code shown for several levels; D was set
to 60 while w was set to 10.

Figure 9: Similarity kernel of a scatter code; D was set to 1000, p was 0.05. The
values of similarities were averaged over 50 random initializations of the code.

zi(s) =
{

−zi(s − 1), ri ≤ p

zi(s − 1), otherwise
(A.3)

where ri is a random value for the i-th component of z(s) chosen from the
uniform distribution. Note that potentially there is no limitation on how
many levels can be created with the scatter codes.

Figure 9 shows how the cosine similarity looks for several different lev-
els formed with the scatter code. Interestingly, the kernels are bell shaped
with the exact shape depending on the parameter settings. To better de-
termine which standard kernel will correspond to this similarity, we have
empirically fitted three kernels: exponentiated triangular,



28 C. Kymn et al.

K(s1, s2) = (1 − γ |s2 − s1|)α; (A.4)

squared exponential,

K(s1, s2) = e− (s2−s1 )2

2l2 ; (A.5)

and rational quadratic,

K(s1, s2) =
(

1 + (s2 − s1)2

2αl2

)−α

. (A.6)

The parameters of the kernels were chosen using the mean squared error as
the fit criterion.

B.1 Kernel Properties of Residue Hyperdimensional Computing

To show that fractional power encoding (modulo m) results in approxima-
tion of a particular periodic kernel with period m, we observe that our prob-
ability distribution can be written as a Dirac comb function pointwise mul-
tiplied by a rect function. This fact becomes useful when we see that our
kernel approximates a Fourier integral. Letting x = x1 − x2, we take the fol-
lowing steps to show convergence in the infinite-dimensional limit:

K∗
m(x1, x2) = lim

D→∞
1
D

D∑
d=1

eiφdx1 eiφdx2

= lim
D→∞

1
D

D∑
d=1

eiφd (x1−x2 )

=
∫

eiφ(x1−x2 ) p(φ)dφ

= F−1[p(φ)](x)

= F−1

[(
1
m

(∑
s∈Z

δ

(
ω − 2π

m
s
))

·
(

rect
( ω

2π

))]
(x)

=
[∑

s∈Z
δ(x − ms)

]
� sinc(x)

=
∑
s∈Z

sinc(x − ms).

Thus, our kernel is a “sinc comb” function: a sum of sinc functions spaced
with a period of m. This result is particularly notable because sinc evaluates



Computing With Residue Numbers in High-Dimensional Representation 29

to 0 for integers that are not a multiple of m and means that distinct integers
(and remainders) are orthogonal in the high-dimensional space.

To simplify the equation even further, we can derive a sum-less expres-
sion for an infinite number of sinc functions. We need to consider two cases:
(1) x = ms for some s ∈ Z and (2) x �= ms for all s ∈ Z.

Case 1 is straightforward. Without loss of generality, let x be the value
for which x − ms = 0. Then we have:

Km(x) =
∑
s∈Z

sinc(x − ms)

= 1 +
∑
n∈N

sinc(−mn) + sinc(mn)

= 1 (since sinc evaluates to 0 for non-zero integers).

For case 2, without loss of generality, let 0 < |x| ≤ m/2. The answer differs
subtly depending on whether m is even or odd. Let us derive the even case
first:

Km(x) =
∑
s∈Z

sinc(x − ms)

=
∑
s∈Z

sin(π (x + ms))
π (x + ms)

= 1
π

∑
s∈Z

sin(πx)
x + ms

= sin(πx)
π

∑
s∈Z

1
x + ms

= sin(πx)
πm

∑
s∈Z

1
x
m + s

= sin(πx)
πm

πcot
(πx

m

)

= 1
m

sin(πx)cot
(πx

m

)
,

where the infinite sum is replaced due to an identity via the Herglotz trick:
πcot(πx) = ∑

s∈Z
1

x+s . We can also use a second Herglotz identity—that
πcsc(πx) = ∑

n∈N
(−1)n

x+n —to solve for the odd case:

Km(x) =
∑
s∈Z

sinc(x − ms)



30 C. Kymn et al.

Figure 10: The analytic kernel expected by dashed lines matches the approxi-
mate kernel generated by a random vector of sufficiently high dimension (D =
50,000). (a) Match for an odd modulus (m = 5). (b) Match for an even modulus
(m = 6).

=
∑
s∈Z

sin(π (x − ms))
π (x − ms)

= sin(πx)
π

∑
s∈Z

(−1)n

x − ms

= sin(πx)
π

∑
s∈Z

(−1)n

x + ms

= sin(πx)
πm

∑
s∈Z

(−1)n

x
m + s

= 1
m

sin(πx)csc
(πx

m

)
.

We confirm our result by comparing our analytic values for both cases to
the kernel induced by a high-dimensional vector (see Figure 10). In the limit
of m → ∞, both kernels converge to the sinc function: K(x) = sin(πx)

πx .

C.1 Improved Efficiency of Integer Comparison

Finally, we demonstrate how a RNS makes integer comparison within hy-
perdimensional computing more efficient. In general, it is not possible
within hyperdimensional computing to determine which vector encodes a
larger number unless one decodes their values to compare them efficiently.
Here we demonstrate that RHC significantly reduces the number of com-
parisons, and for this reason it is more efficient.

Suppose a vector encodes one of M discrete values. A simple baseline
method for computing which vector is larger is to decode the values for
each via codebook decoding (see section 5.2.1) and then compare the corre-
sponding values. However, this method scales poorly with the range of M,
requiring M comparisons per vector.



Computing With Residue Numbers in High-Dimensional Representation 31

Instead, we propose a method using a residue number system, where
we assume that M = ∏K

k=1 mk, and the mk are co-prime. For simplicity, we
also assume that the possible integer values lie within the interval [0, M −
1]. We can then use the sum-of-quotients technique (Dimauro et al., 1993),
which remarkably requires only up to m1 + mK + ∑K

m=1 mk comparisons per
vector when mK is carefully chosen (as described in the next paragraph).
This is a meaningful savings in overhead: if the moduli are 99, 100, 101, and
29,999, then M ≈ 3 × 1010, whereas our implementation requires ≈ 6 × 104

comparisons.
For completeness, we introduce the necessary algorithmic steps in this

section.
As a preliminary step, we first select moduli m1, . . . , mk−1, and let M̃ =∏K−1

k=1 mk. Then choose the final modulus, mK, to equal
∑K−1

k=1
M̃
mk

. The result-
ing mk can be shown to be co-prime relative to other moduli, providing a
total range of M = M̃ · mK.

Now suppose that we have factorized representations {z1(a), z2(a), . . . ,
zK(a)} and {z1(b), z2(b), . . . , zK(b)} for two integers, a and b, in the range
[0, M], respectively. The algorithm involves the following steps (for sim-
plicity, we describe them for a, but the steps are identical for b).

First, for all moduli except the last, compute zk(�a/mK�) and zk(�b/mK�).
This can be computed entirely with the two binding operations as follows:

zk(�a/mK�) = (zk(a) 	 zk(−mK )) � zk(ξk) (C.1)

where ξk is the modular multiplicative inverse of mK with respect to mk.
Second, convert these residue values from a base mk representation to a

base mK representation. This step can be efficiently performed with code-
book lookup because the codebooks are small, requiring

∑K−1
k=1 mk com-

parisons. Then we have representations: zK(�a/mK�), . . . , zK(�a/mK�). For
shorthand we call these ζk(a), . . . , ζK−1(a), respectively.

Third, we define a new number representation for a and b as follows:

v(a) = 	K−1
i=1 (zK(sk) � ζk(a)) (C.2)

The resulting vector v(a) corresponds to one of mK integers in the range
[0, mK − 1]. It is then tractable to use codebook decoding to determine
which value is larger. We’ll use the term χ (z) to denote the integer de-
coded from z with codebook decoding. The following steps resolve the
comparison:

1. Compare χ (v(a)) and χ (v(b)). If χ (v(a)) > χ (v(b)), conclude a > b. If
χ (v(a)) < χ (v(b)), conclude a < b. If the two values are equal, pro-
ceed to step (ii).



32 C. Kymn et al.

2. Compare χ (z1(�a/mK�)) and χ (z1(�b/mK�). Conclude that a > b if
χ (zk(�a/mK�)) > χ (zk(�b/mK�), and that a < b if χ (zk(�a/mK�)) <

χ (zk(�b/mK�). If the two values are equal, proceed to step 3.
3. Compare the values of χ (zK(a)) and χ (zK(b)). If χ (zK(a)) > χ (zK(b)),

conclude a > b. If χ (zK(a)) < χ (zK(b)), conclude a < b. Otherwise
conclude a = b.

The proof of correctness can be found in Dimauro et al. (1993); the algo-
rithm proposed here can be thought of as an implementation using RHC.
Both additive and multiplicative binding are necessary to implement the
approach, demonstrating the value of having both.

Acknowledgments

We thank Anthony Thomas, Eric Weiss, Joshua Cynamon, Amir Khosrow-
shahi, and Madison Cotteret for insightful discussions and feedback. The
work of C.J.K. was supported by the Department of Defense through the
National Defense Science and Engineering Graduate Fellowship Program.
The work of D.K., C.B., F.T.S., and B.A.O. was supported in part by Intel’s
THWAI program. The work of C.J.K., C.B., P.K., and B.A.O. was supported
by the Center for the Co-Design of Cognitive Systems, one of seven centers
in JUMP 2.0, a Semiconductor Research Corporation program sponsored
by DARPA. D.K. has received funding from the European Union’s Hori-
zon 2020 research and innovation program under the Marie Sklodowska-
Curie grant agreement 839179. The work of F.T.S. was supported in part
by NIH under grant R01-EB026955 and in part by NSF under grant
IIS-118991.

Code Availability

Code is available at https://github.com/cjkymn/residuehdcomputing.

References

Agmon, H., & Burak, Y. (2020). A theory of joint attractor dynamics in the hippocam-
pus and the entorhinal cortex accounts for artificial remapping and grid cell field-
to-field variability. In Proceedings of the eLife, 9, e56894.

Babai, L. (1979). Monte-Carlo algorithms in graph isomorphism testing. Technical report,
DMS 79-10, Université de Montréal.

Bordelon, B., & Pehlevan, C. (2022). Population codes enable learning from few ex-
amples by shaping inductive bias. eLife, 11, e78606. 10.7554/eLife.78606

Buckman, J., Roy, A., Raffel, C., & Goodfellow, I. (2018). Thermometer encoding: One
hot way to resist adversarial examples. In Proceedings of the International Conference
on Learning Representations (pp. 1–22).

https://github.com/cjkymn/residuehdcomputing
https://doi.org/10.7554/eLife.78606


Computing With Residue Numbers in High-Dimensional Representation 33

Bybee, C., & Sommer, F. (2022). Optimal oscillator memory networks. In Proceedings
of the Neuro-Inspired Computational Elements Conference (pp. 81–83).

Diao, C., Kleyko, D., Rabaey, J. M., & Olshausen, B. A. (2021). Generalized learn-
ing vector quantization for classification in randomized neural networks and hy-
perdimensional computing. In Proceedings of the International Joint Conference on
Neural Networks (pp. 1–9).

Dimauro, G., Impedovo, S., & Pirlo, G. (1993). A new technique for fast number com-
parison in the residue number system. IEEE Transactions on Computers, 42(5), 608–
612. 10.1109/12.223680

Dumont, N. S.-Y., & Eliasmith, C. (2020). Accurate representation for spatial cogni-
tion using grid cells. In Proceedings of the Annual Meeting of the Cognitive Science
Society (pp. 2367–2373).

Fiete, I. R., Burak, Y., & Brookings, T. (2008). What grid cells convey about rat
location. Journal of Neuroscience, 28(27), 6858–6871. 10.1523/JNEUROSCI.5684
-07.2008

Frady, E. P., Kent, S. J., Olshausen, B. A., & Sommer, F. T. (2020). Resonator net-
works, 1: An efficient solution for factoring high-dimensional, distributed rep-
resentations of data structures. Neural Computation, 32(12), 2311–2331. 10.1162/
neco_a_01331

Frady, E. P., Kleyko, D., Kymn, C. J., Olshausen, B. A., & Sommer, F. T. (2021). Com-
puting on functions using randomized vector representations. arXiv:2109.03429.

Frady, E. P., Kleyko, D., Kymn, C. J., Olshausen, B. A., & Sommer, F. T. (2022).
Computing on functions using randomized vector representations (in brief).
In Proceedings of the Neuro-Inspired Computational Elements Conference (pp. 115–
122).

Frady, E. P., Kleyko, D., & Sommer, F. T. (2018). A theory of sequence indexing and
working memory in recurrent neural networks. Neural Computation, 30(6), 1449–
1513. ACM. 10.1162/neco_a_01084

Frady, E. P., & Sommer, F. T. (2019). Robust computation with rhythmic spike pat-
terns. Proceedings of the National Academy of Sciences, 116(36), 18050–8059. 10.1073/
pnas.1902653116

Gardner, R. J., Hermansen, E., Pachitariu, M., Burak, Y., Baas, N. A., Dunn, B. A., . . .
Moser, E. I. (2022). Toroidal topology of population activity in grid cells. Nature,
602(7895), 123–128. 10.1038/s41586-021-04268-7

Garner, H. L. (1959). The residue number system. In Proceedings of the Western Joint
Computer Conference (pp. 46–153).

Gayler, R. W. (2003). Vector symbolic architectures answer Jackendoff’s challenges
for cognitive neuroscience. In Proceedings of the Joint International Conference on
Cognitive Science (pp. 133–138).

Goldreich, O., Ron, D., & Sudan, M. (1999). Chinese remaindering with errors. In
Proceedings of the 31st Annual ACM Symposium on Theory of Computing (pp. 225–
234).

Goltsev, A. D. (1996). An assembly neural network for texture segmentation. Neural
Networks, 4(9), 643–653. 10.1016/0893-6080(95)00136-0

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser, E. I. (2005). Microstructure
of a spatial map in the entorhinal cortex. Nature, 436(7052), 801–806. 10.1038/
nature03721

https://doi.org/10.1109/12.223680
https://doi.org/10.1523/JNEUROSCI.5684-07.2008
https://doi.org/10.1162/neco_a_01331
https://doi.org/10.1162/neco_a_01084
https://doi.org/10.1073/pnas.1902653116
https://doi.org/10.1038/s41586-021-04268-7
https://doi.org/10.1016/0893-6080(95)00136-0
https://doi.org/10.1038/nature03721


34 C. Kymn et al.

Kanerva, P. (2009). Hyperdimensional computing: An introduction to computing
in distributed representation with high-dimensional random vectors. Cognitive
Computation, 1, 139–159. 10.1007/s12559-009-9009-8

Karp, R. (1972). Chapter reducibility among combinatorial problems. In R. E. Miller
& J. W. Thatcher (Eds.), Complexity of computer computations. Plenum Press.

Kent, S. J., Frady, E. P., Sommer, F. T., & Olshausen, B. A. (2020). Resonator net-
works, 2: Factorization performance and capacity compared to optimization-
based methods. Neural Computation, 32(12), 2332–2388. 10.1162/neco_a_01329

Kim, H.-S. (2018). HDM: Hyper-dimensional modulation for robust low-power com-
munications. In Proceedings of the 2018 IEEE International Conference on Communi-
cations (pp. 1–6).

Kleinberg, J., & Tardos, E. (2006). Algorithm design. Pearson Education India.
Kleyko, D., Bybee, C., Huang, P.-C., Kymn, C. J., Olshausen, B. A., Frady,

E. P., & Sommer, F. T. (2023). Efficient decoding of compositional structure in
holistic representations. Neural Computation, 35(7), 1159–1186. 10.1162/neco_a
_01590

Kleyko, D., Bybee, C., Kymn, C. J., Olshausen, B. A., Khosrowshahi, A., Nikonov,
D. E., . . . Frady, E. P. (2022). Integer factorization with compositional distributed
representations. In Proceedings of the Neuro-Inspired Computational Elements Con-
ference (pp. 73–80).

Kleyko, D., Davies, M., Frady, E. P., Kanerva, P., Kent, S. J., Olshausen, B. A., . . .
Sommer, F. (2022). Vector symbolic architectures as a computing framework
for emerging hardware. Proceedings of the IEEE, 110(10), 1538–1571. 10.1109/
JPROC.2022.3209104

Kleyko, D., Kheffache, M., Frady, E. P., Wiklund, U., & Osipov, E. (2020). Density
encoding enables resource-efficient randomly connected neural networks. IEEE
Transactions on Neural Networks and Learning Systems, 32(8), 3777–3783. 10.1109/
TNNLS.2020.3015971

Kleyko, D., Osipov, E., Papakonstantinou, N., & Vyatkin, V. (2018). Hyperdimen-
sional computing in industrial systems: The use-case of distributed fault iso-
lation in a power plant. IEEE Access, 6, 30766–30777. 10.1109/ACCESS.2018
.2840128

Kleyko, D., Rachkovskij, D. A., Osipov, E., & Rahimi, A. (2022). A survey on hyperdi-
mensional computing aka vector symbolic architectures, Part I: Models and data
transformations. ACM Computing Surveys, 55(6), 1–40.

Kleyko, D., Rachkovskij, D. A., Osipov, E., & Rahimi, A. (2023). A survey on hyper-
dimensional computing aka vector symbolic architectures, Part II: Applications,
cognitive models, and challenges. ACM Computing Surveys, 55(9), 1–52.

Kleyko, D., Rahimi, A., Rachkovskij, D. A., Osipov, E., & Rabaey, J. M. (2018). Classi-
fication and recall with binary hyperdimensional computing: Trade-offs in choice
of density and mapping characteristics. IEEE Transactions on Neural Networks and
Learning Systems, 29(12), 5880–5898. 10.1109/TNNLS.2018.2814400

Komer, B. (2020). Biologically inspired spatial representation. PhD diss., University of
Waterloo.

Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity
analysis: Connecting the branches of systems neuroscience. Frontiers in Systems
Neuroscience, 2, 4. 10.3389/neuro.01.016.2008

https://doi.org/10.1007/s12559-009-9009-8
https://doi.org/10.1162/neco_a_01329
https://doi.org/10.1162/neco_a_01590
https://doi.org/10.1109/JPROC.2022.3209104
https://doi.org/10.1109/TNNLS.2020.3015971
https://doi.org/10.1109/ACCESS.2018.2840128
https://doi.org/10.1109/TNNLS.2018.2814400
https://doi.org/10.3389/neuro.01.016.2008


Computing With Residue Numbers in High-Dimensional Representation 35

Krupic, J., Burgess, N., & O’Keefe, J. (2012). Neural representations of location
composed of spatially periodic bands. Science, 337(6096), 853–857. 10.1126/
science.1222403

Kymn, C. J., Mazelet, S., Ng, A., Kleyko, D., & Olshausen, B. A. (2024). Compositional
factorization of visual scenes with convolutional sparse coding and resonator
networks. In Proceedings of the 2024 Neuro-Inspired Computational Elements Con-
ference (pp. 1–9).

Landau, E. (1903). Über die maximalordnung der permutationen gegebenen grades.
Archiv der Math. und Phys, 3, 92–103.

Langenegger, J., Karunaratne, G., Hersche, M., Benini, L., Sebastian, A., & Rahimi, A.
(2023). In-memory factorization of holographic perceptual representations. Na-
ture Nanotechnology, 18(5), 479–485. 10.1038/s41565-023-01357-8

Malozemov, V. N., & Pevnyi, A. B. (2009). Equiangular tight frames. Journal of Math-
ematical Sciences, 157(6), 789–815. 10.1007/s10958-009-9366-6

Mathis, A., Herz, A. V., & Stemmler, M. B. (2012). Resolution of nested neuronal rep-
resentations can be exponential in the number of neurons. Physical Review Letters,
109(1), 018103. 10.1103/PhysRevLett.109.018103

Mathis, A., Stemmler, M. B., & Herz, A. V. (2015). Probable nature of higher-
dimensional symmetries underlying mammalian grid-cell activity patterns. eLife,
4, e05979. 10.7554/eLife.05979

Mohan, P. A. (2016). Residue number systems. Springer.
Nanda, S. (2005). Subset sum problem. https://cs.dartmouth.edu/∼ac/Teach/CS105

-Winter05/Notes/nanda-scribe-3.pdf
Noest, A. J. (1988). Discrete-state phasor neural networks. Physical Review A, 38(4),

2196. 10.1103/PhysRevA.38.2196
Olshausen, B. A. (2014). Perception as an inference problem. In M. S. Gazzaniga

& G. R. Mangun (Eds.), The cognitive neurosciences (5th ed., pp. 295–304). MIT
Press.

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images. Nature, 381(6583), 607–609.
10.1038/381607a0

Omondi, A. R., & Premkumar, A. B. (2007). Residue number systems: Theory and imple-
mentation (vol. 2). World Scientific. 10.1142/p523

Penz, P. A. (1987). The closeness code: An integer to binary vector transformation
suitable for neural network algorithms. In Proceedings of the IEEE First Annual
International Conference on Neural Networks (pp. 515–522).

Plate, T. A. (1992). Holographic recurrent networks. In S. Hanson, J. Cowan, &
C. Giles (Eds.), Advances in neural information processing systems, 5 (pp. 34–41).
Curran.

Plate, T. A. (1994). Distributed representations and nested compositional structure. PhD
diss., University of Toronto.

Plate, T. A. (1995). Holographic reduced representations. IEEE Transactions on Neural
Networks, 6(3), 623–641. 10.1109/72.377968

Plate, T. A. (2003). Holographic reduced representation: Distributed representation for cog-
nitive structures (vol. 150). CSLI Publications Stanford.

Pouget, A., Dayan, P., & Zemel, R. (2000). Information processing with population
codes. Nature Reviews Neuroscience, 1(2), 125–132. 10.1038/35039062

https://doi.org/10.1126/science.1222403
https://doi.org/10.1038/s41565-023-01357-8
https://doi.org/10.1007/s10958-009-9366-6
https://doi.org/10.1103/PhysRevLett.109.018103
https://doi.org/10.7554/eLife.05979
https://cs.dartmouth.edu/ac/Teach/CS105-Winter05/Notes/nanda-scribe-3.pdf
https://doi.org/10.1103/PhysRevA.38.2196
https://doi.org/10.1038/381607a0
https://doi.org/10.1142/p523
https://doi.org/10.1109/72.377968
https://doi.org/10.1038/35039062


36 C. Kymn et al.

Rachkovskij, D. A. (2007). Linear classifiers based on binary distributed representa-
tions. Information Theories and Applications, 14(3), 270–274.

Rachkovskij, D. A., Slipchenko, S. V., Kussul, E. M., & Baidyk, T. N. (2005). Sparse
binary distributed encoding of scalars. Journal of Automation and Information Sci-
ences, 37(6), 12–23. 10.1615/J Automat Inf Scien.v37.i6.20

Rahimi, A., Kanerva, P., Benini, L., & Rabaey, J. M. (2019). Efficient biosignal pro-
cessing using hyperdimensional computing: Network templates for combined
learning and classification of ExG signals. Proceedings of the IEEE, 107(1), 123–143.
10.1109/JPROC.2018.2871163

Rahimi, A., & Recht, B. (2007). Random features for large-scale kernel machines. In
J. Platt, D. Koller, Y, Singer, & S. Roweis (Eds.), Advances in neural information
processing systems, 20 (pp. 1–8). Curran.

Räsänen, O., & Saarinen, J. (2016). Sequence prediction with sparse distributed hy-
perdimensional coding applied to the analysis of mobile phone use patterns. IEEE
Transactions on Neural Networks and Learning Systems, 27(9), 1878–1889.

Renner, A., Supic, L., Danielescu, A., Indiveri, G., Olshausen, B. A., Sandamirskaya,
Y., . . . Frady, E. P. (2024). Neuromorphic visual scene understanding with resonator
networks. Nature Machine Intelligence, 6(6), 641–652.

Schindler, K. A., & Rahimi, A. (2021). A primer on hyperdimensional computing
for iEEG seizure detection. Frontiers in Neurology, 12, 1–12. 10.3389/fneur.2021
.701791

Sitzmann, V., Martel, J., Bergman, A., Lindell, D., & Wetzstein, G. (2020). Implicit
neural representations with periodic activation functions. In H. Larochelle, M.
Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), Advances in neural information
processing systems, 33 (pp. 7462–7473). Curran.

Smith, D., & Stanford, P. (1990). A random walk in Hamming space. In Proceedings of
the International Joint Conference on Neural Networks, 2 (pp. 465–470).

Snaider, J., & Franklin, S. (2014). Modular composite representation. Cognitive Com-
putation, 6, 510–527. 10.1007/s12559-013-9243-y

Srinivasan, S., & Fiete, I. (2011). Grid cells generate an analog error-correcting code
for singularly precise neural computation. Nature Neuroscience, 14(10), 1330–1337.
10.1038/nn.2901

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Sing- hal,
U., . . . Ng, R. (2020). Fourier features let networks learn high frequency functions
in low dimensional domains. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Bal-
can, & H. Lin (Eds.), Advances in neural information processing systems, 33 (pp. 7537–
7547). Curran.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł., & Polosukhin, I. (2017). Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances
in neural information processing systems, 30. Curran.

Wang, T., & Roychowdhury, J. (2019). OIM: Oscillator-based Ising machines for solv-
ing combinatorial optimisation problems. In Proceedings of the 18th International
Conference on Unconventional Computation and Natural Computation (pp. 232–256).

Wohlberg, B. (2017). SPORCO: A Python package for standard and convolutional
sparse representations. In Proceedings of the Python in Science Conference, 15
(pp. 1–8).

https://doi.org/10.1615/J ignorespaces Automat ignorespaces Inf ignorespaces Scien.v37.i6.20
https://doi.org/10.1109/JPROC.2018.2871163
https://doi.org/10.3389/fneur.2021.701791
https://doi.org/10.1007/s12559-013-9243-y
https://doi.org/10.1038/nn.2901


Computing With Residue Numbers in High-Dimensional Representation 37

Yu, T., Zhang, Y., Zhang, Z., & De Sa, C. M. (2022). Understanding hyperdimensional
computing for parallel single-pass learning. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, & A. Oh (Eds.), Advances in neural information processing
systems, 35 (pp. 1157–1169). Curran.

Received March 27, 2024; accepted August 10, 2024.




