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Abstract
Neuroblastoma is one of the most common pediatric cancers. This study used machine learning (ML) to predict the mortality and a 
few other investigated intermediate outcomes of neuroblastoma patients non-invasively from CT images. Performances of multiple 
ML algorithms over retrospective CT images of 65 neuroblastoma patients are analyzed. An artificial neural network (ANN) is used 
on tumor radiomic features extracted from 3D CT images. A pre-trained 2D convolutional neural network (CNN) is used on slices of 
the same images. ML models are trained for various pathologically investigated outcomes of these patients. A subspecialty-trained 
pediatric radiologist independently reviewed the manually segmented primary tumors. Pyradiomics library is used to extract 105 
radiomic features. Six ML algorithms are compared to predict the following outcomes: mortality, presence or absence of metastases, 
neuroblastoma differentiation, mitosis-karyorrhexis index (MKI), presence or absence of MYCN gene amplification, and presence of 
image-defined risk factors (IDRF). The prediction ranges over multiple experiments are measured using the area under the receiver 
operating characteristic (ROC-AUC) for comparison. Our results show that the radiomics-based ANN method slightly outperforms 
the other algorithms in predicting all outcomes except classification of the grade of neuroblastic differentiation, for which the elastic 
regression model performed the best. Contributions of the article are twofold: (1) noninvasive models for the prognosis from CT 
images of neuroblastoma, and (2) comparison of relevant ML models on this medical imaging problem.

Keywords Neuroblastoma · CT · Radiomics · Machine learning · Neural network

Introduction

Neuroblastoma is the most common extracranial malignant 
solid tumor in children and is responsible for approximately 
15% of childhood cancer deaths [1]. It derives from adrenal 
glands or parasympathetic nerve tissue around the spine 
and presents as masses in the neck, chest, abdomen, pelvis, 
or paraspinal tissue. Neuroblastomas have a high degree of 
heterogeneity concerning both histology and clinical behavior 

[2, 3]. The clinical staging only based on the tumor encasement 
or invasion, such as the international neuroblastoma risk group 
(INRG) staging system, may overlook the tumor heterogeneity 
and may not be sufficient for prognosis assessment [4]. Some 
tumors of the same INRG stage may have a poor prognosis, 
while some other tumors have an excellent response to 
treatment or even the possibility of spontaneous regression 
and benign transformation [5, 6]. Therefore, assessment of 
multiple prognostic factors is critical to evaluate pretreatment 
risk stratification and allow early and effective treatment 
interventions for highly malignant tumors. In addition to 
the clinical staging, more risk factors have been found to 
be associated with prognosis [7]. For example, histologic 
indicators, grade of neuroblastic differentiation, and mitosis-
karyorrhexis index (MKI) were found to have a prognostic 
value in neuroblastoma patients [8]. However, it is not easy to 
establish the relationship between the neuroblastoma tumor 
heterogeneity and those outcomes.

Radiomics is a promising way to assess the intra-tumoral 
heterogeneity through imaging and to assess prognosis [7]. 
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Radiomics means a set of statistical features on an image. 
Instead of analyzing small tissue samples from biopsy, 
radiomic features are derived from the entire primary tumor 
volume. Thus, radiomics can provide important heterogeneity 
information of the entire tumor. Many studies of other 
cancers [9–11] have shown significant relationships between 
radiomics and different investigated variables such as hormone 
status, tumor proliferation, and gene expression patterns. For 
example, Jackson et al. [9] have shown that radiomics is highly 
correlated with overexpression of epidermal growth factor 
receptor (EGFR), a known therapeutic target. Although there 
are many radiomics studies for predicting disease outcomes, 
little is known in particular on the impact of radiomics in 
neuroblastoma prognosis.

The application of convolutional neural networks (CNN) 
is an alternative potential approach for processing medical 
images to evaluate patient outcomes. A CNN architecture 
may be trained end to end with segmented tumor scans as 
input and disease labels as output. Although a deep learn-
ing model like CNN depends on a large number of labeled 
data for training, it has been shown that transfer-learning 
techniques previously trained on a large unrelated diverse 
dataset, such as ImageNet, can reduce the need for a large 
number of relevant training data [12, 13]. We present a pre-
dictive model based on a pre-trained 2D CNN architecture, 
namely, the VGG19. We also compared the classification 
performance of the resulting 2D CNN model with 3D radi-
omic feature–based models.

Our investigation is the first study to look into the 3D 
radiomics–based results and compare them against 2D 
CNN–based results to six prognostic features in neuroblas-
toma with CT images. We attempt to predict histopathology 
and clinical outcomes. In this study, we hypothesized that 
computed tomography (CT)–based radiomic features have a 
strong relationship with tumor heterogeneity that relates to 
the investigated endpoint patient outcomes: mortality (pres-
ence/absence of death during the study period), the presence 
of image-defined risk factors (IDRF), the grade of tumor 
differentiation, the presence or absence of metastases, the 

mitosis karyorrhexis index (MKI), the amplification of the 
MYCN oncogene. We used a few relevant machine learning 
(ML) models and compared the classification performance 
of these models on each outcome. Nested cross-validation 
approach [14] to select the best set of parameters and hyper-
parameters for machine-learned models. Parameters repre-
senting an ML model are used to predict at the inferencing 
stage. The human-selected hyper-parameters are typically 
pre-assigned even before training starts. Nested-cross valida-
tion allows automatic selection of hyper-parameters at the 
cost of extra logistics in training. Subsequently, we report 
appropriate models for the outcomes with respect to our 
small data set. Finally, we provide our perspectives on algo-
rithms’ relative performances for each outcome.

Materials and Methods

Description of Dataset

This work was a retrospective study of medical images and 
records that are qualified as exempt by the appropriate Insti-
tutional Review Board (IRB). Data collected for this cohort 
included pretreatment CT images, and clinical and histopathol-
ogy information. All clinical outcomes were collected from the 
electronic health records or physical medical charts. Images 
were anonymized before processing. Relevant patient outcomes 
data were abstracted from the medical records and linked to 
the respective images while maintaining the anonymity of the 
subjects. Our retrospective study was approved by the appropri-
ate IRB. The cohort included patients enrolled at two tertiary 
care academic pediatric hospitals (UCSF Benioff Children's 
Hospital, San Francisco, and UCSF Benioff Children's Hospi-
tal, Oakland, both in California, USA) from 2000 to 2015 with 
pathology-proven neuroblastoma or ganglio-neuroblastoma. A 
total of 65 pediatric patients (age range 0–16.3 years, mean 
age 2.6 years, 31 males and 34 females) met inclusion criteria 
(Table 1). The data of 35 patients were collected at a children’s 

Table 1  The statistics of 
prognostic outcomes in the 
neuroblastoma dataset

Prognostic outcomes Positive prognosis 
(favorable outcomes to the 
patient)

Negative prognosis 
(unfavorable outcomes to the 
patient)

Unknown prognosis

Presence of IDRF No: 12 (19%) Yes: 53 (81%)
Grade of neuroblastic 

differentiation
Well: 55 (84%) Poor: 7 (11%) Unknown: 3 (5%)

Presence of metastases No: 41 (63%) Yes: 24 (37%)
MKI Low: 41 (63%) Intermediate: 17 (26%) Unknown: 7 (11%)
MYCN status Normal: 45 (69%) Amplified: 11 (17%) Unknown: 9 (14%)
Mortality (presence/

absence of death in 
3 years)

No: 56 (86%) Yes: 9 (14%)
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hospital (name to be included after review). The other 30 
patient data were collected at another children’s hospital of the 
same institution but in a different location. 

In this study, we investigated six prognostic patient out-
comes, as mentioned before. We divided them into three 
primary outcomes and three secondary outcomes.

Primary Outcomes

(1) Mortality indicates death from the inception of the study in 
2013 through the time of the patient’s last interaction with the 
health care system (for some cases up until the year 2018). (2) 
The second primary outcome is the presence of metastases that 
represents if the neuroblastoma has spread outside the primary 
tumor and if it can be found in other tissues on CT images. (3) 
Another primary outcome, the grade of neuroblastic differen-
tiation, determines the neuroblastoma pathology differentiation, 
which describes the maturity of the neuroblastic cells. Poorly 
differentiated cells are immature and may, in combination with 
other disease features, indicate more aggressive tumor behavior.

Secondary Outcomes

(1) The presence of an image-defined risk factor (IDRF) 
is a surgical risk factor detected with imaging at the time 
of diagnosis [15]. The IDRF mainly evaluates if the neu-
roblastomas encase the surrounding vessels or organs and 
is an important factor in stratifying neuroblastoma. (2) The 
mitosis-karyorrhexis index (MKI) refers to the combined 
number of cells in mitosis or undergoing karyorrhexis, based 
on the evaluation of 5,000 tumor cells [16]. MKI results are 
then classified as follows: low (< 2% or < 100/5000 cells) 

or intermediate (> 2% and < 4% or 100 ~ 200/5000 cells) 
or high (> 4% or > 200/5000 cells). In this dataset, we do 
not have high MKI patients. The determination of the MKI 
involves a manual count of sufficient microscopic fields to 
include 5000 cells. (3) MYCN is a gene that is overexpressed 
in several different types of cancers, most notably in neuro-
blastoma. In neuroblastoma, the MYCN oncogene amplifica-
tion is an established indicator of poor prognosis [17].

Segmentation and Radiomic Feature Extraction

Primary tumors were hand-segmented from initial 
staging CT scans using the freely available open-source 
software package, 3D-slicer (https:// www. slicer. org). 
A subspecialty-trained pediatric radiologist with over 
8  years of experience has independently reviewed the 
hand-segmented primary tumors. The initial manual 
segmentation was performed by one of the co-authors 
(MP). These manual segmentations were verified by a 
pediatric radiologist (MZ). A neuroblastoma primary 
tumor segmentation example is shown in Fig.  1. The 
Pyradiomics library v2.2.0, as an extension of 3D-slicer, 
was used for extraction of radiomic features [18], which 
was implemented according to consensus definitions of the 
Imaging Biomarkers Standardization Initiative (IBSI), with 
a total of 105 quantitative features. No wavelet features were 
incorporated. We extracted all 105 3D radiomic features to 
characterize tumors, and these features can be categorized 
in the following classes: 18 first-order statistics features, 13 
shape-based features, 23 Gray Level Co-occurrence Matrix 
(GLCM), 14 Gray Level Dependence Matrix (GLDM), 16 
Gray Level Run Length Matrix (GLRLM), 16 Gray Level 

Fig. 1  Original images and manual segmentations of neuroblastoma on CT image in axial, sagittal, and coronal views
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Size Zone Matrix (GLSZM), and 5 Neighboring Gray 
Tone Difference Matrix (NGTDM). The descriptions and 
mathematical formulas of all radiomic features are defined 
in the Zwanenburg review paper [19].

In summary, the first-order statistical features capture 
image signal intensity and the distribution of the tumor 
intensity. The shape features describe the 3D geomet-
ric shape of a tumor. And the other features derived from 
GLCM, GLDM, GLRLM, GLSZM, and NGTDM present 
the spatial relationship information between neighboring 
voxels within the tumor region. All of these radiomic fea-
tures together characterize the heterogeneity of the tumor. 
Radiomic features were normalized over all patients’ data 
to standard z-scores before building outcome classifiers, as 
the min–max ranges of these feature values vary. The use of 
z-scores, as opposed to raw scores, is a standard procedure 
in ML in multi-variable analysis. All 105 features are used 
in modeling as described in the next section.

Classifiers and Validation

We developed six ML models and a CNN model to clas-
sify the patient outcomes as listed in Table 1. The selected 
ML algorithms were multi-layer artificial neural network 
(ANN), lasso regression, elastic regression, logistic regres-
sion, random forest, and support vector machine classifier. 
We designed a three-layer fully connected ANN archi-
tecture containing a single hidden layer with 10 hidden 
units. The activation function of each neuron in the hid-
den layer was the sigmoid function. The momentum in the 
back-propagation process was set as 0.2. We hand-tuned all 
the hyper-parameters of the ANN, and they are as follows: 
learning rate = 0.00025, beta_1 = 0.9, beta_2 = 0.999, epsi-
lon = 1e-08, and decay = 0.0. To select radiomic features, 
the regularization method was embedded in classifiers. For 
elastic regression, we used L1 and L2 regularization methods. 
For the Lasso regression model, we used the L1 regulari-
zation method. The hyper-parameters of other algorithms 
were selected by a grid search approach. Grid search is an 
approach that can configure optimal hyper-parameters by 
scanning a set of potential hyper-parameters. Nested cross-
validation and grid search algorithm [14] was used to opti-
mize the best-performed parameters. To reduce the potential 
overfitting, we applied a nested cross-validation approach to 
split the dataset into training and validation groups repeat-
edly. In this study, we used stratified fivefold outer cross-
validation and threefold internal cross-validation to analyze 
the performance of our models. The grid search algorithm is 
a search algorithm to select the optimally performing hyper-
parameters. Inner cross-validation together with grid search 
is used to tune the parameters in each ML model.

We used a conventional 2D CNN to predict patient 
outcomes directly from the CT image instead of using a 3D 

CNN in this study. This is primarily due to the availability of 
a pre-trained model in 2D. We used the fixed-size bounding 
box image (224 × 224) to crop the tumor out of each slice 
to ensure that the extracted features correspond to the same 
spatial information across all images. We made sure that 
the tumor is at the center of the bounding box. Raw images 
were used, and no pre-processing filter was applied. We 
cropped 1625 2D images from 65 neuroblastoma CT cases 
(25 image sample-slices per patient). We used the VGG19 
model [20] to extract deep features of neuroblastoma 
images. The VGG19 model contains five blocks, each of 
which contains two or four convolutional layers and one 
max pooling layer. We added three fully connected layers at 
the end of the last convolutional layer. This model takes 2D 
image input to three RGB channels. In this study, the input 
images were duplicated across the three channels since they 
were in grayscale. All the hyper-parameters in the model 
were pre-trained by the well-known ImageNet dataset. 
We used VGG19’s default hyper-parameters and added a 
fully connected layer with two neurons at the end of the 
architecture. We did not perform any image augmentation, 
as our training set was relatively large (approximately 1600 
2D-slices), and traditional geometric image transformations 
are not useful in this case.

For radiomic feature–based studies, the synthetic minority 
over-sampling technique (SMOTE) [21] was used to bal-
ance the predictive label nested within grid search during 
training. The area under the receiver operator characteristic 
curve (ROC-AUC) was selected as the model evaluation 
metric to quantify the predictive performance of different 
models. Each experiment was repeated ten times to evalu-
ate the mean and standard deviation values of ROC-AUC. 
“Experiment” in this in silico context means running the 
cross-validation process. For the CNN model, we first calcu-
lated the mean prediction score of 25 images on each patient. 
We then generated the mean and standard deviation of ROC-
AUC results for all fivefold testing datasets.

Results

We compared the performance of six radiomics-based ML 
models, over all the available 105 3D radiomic features, 
and one 2D CNN–based model in classifying six known 
patient outcomes. Model performance results are presented 
in Tables 2, 3, and 4.

Statistics of Prognostic Outcomes

Table 1 shows the statistics of selected prognostic outcomes 
of patients in our dataset.
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Radiomics‑based Models

Among the ML techniques we experimented with, the multi-
layer ANN model over radiomic features of 3D images out-
performed the other models in predicting all the patient 
outcomes, except in one classification task. The results for 
radiomics-based analysis are shown in Tables 2 and 3.

Primary outcomes

Table 2 presents the ROC-AUC values for six ML mod-
els on tumor images. For the classification of the mortality, 
the overall “best performing” model ANN reached ROC-
AUC values of 0.79 ± 0.045. To justify the statement, we 
compared this distribution against that from the support 
vector machine, which provides the next-best ROC-AUC 
value. The corresponding p-value (with independent t-test) 
is shown in the table. In predicting another primary patient 
outcome, the presence of metastases, ANN again provides 
the best ROC-AUC of 0.83 ± 0.034. For the third another 
primary patient outcome, grade of neuroblastic differentia-
tion, the radiomics-based elastic regression approach out-
performed all other approaches achieving the performance 

of 0.82 ± 0.044. We provided p-value for each of the “best 
performing” model against the second-best performing one.

Secondary outcomes

For three secondary outcomes, the best performing model, 
ANN, reached mean ROC-AUC values of 0.76 ± 0.021, 
0.66 ± 0.031, and 0.77 ± 0.038 for the presence of image-
defined risk factor (IDRF), the mitosis-karyorrhexis index 
(MKI), and the presence or absence of MYCN gene ampli-
fication, respectively. Table 3 shows the performance of all 
six ML models. The statistical significance is estimated with 
p-value computation, as before.

2D Image–based CNN Model

The performance of CNN on 2D slices of tumors is uniformly 
poorer than the best performance from other models. Table 4 
presents results for all six patient outcomes. It is notable that 
the differences of performance are not always necessarily sig-
nificant. Our observation is based on the mean values from our 
experiments. This ML model achieves its highest performance 
of 0.79 ± 0.55 for the presence of metastases.

Table 2  Mean ROC-AUC value table of a machine learning model 
for three primary prognostic outcomes (bold text indicates the highest 
value for each outcome or row, along with the corresponding p-value 

indicating the significance of its difference from the next largest value 
in the row; standard deviation values are in parentheses next to the 
mean)

Radiomics-based 
ANN

Lasso regression Elastic regression Logistic regression Random 
forest

Support vector 
machine

Mortality 0.79 (0.045)
(p = 0.001)

0.72
(0.058)

0.72 (0.063) 0.71 (0.041) 0.65
(0.055)

0.76 (0.039)

Presence of 
metastases

0.83 (0.034)
(p = 0.011)

0.81
(0.043)

0.79
(0.048)

0.68 (0.053) 0.81
(0.028)

0.78 (0.061)

Grade of neuroblastic 
differentiation

0.80 (0.047) 0.75
(0.040)

0.82 (0.044)
(p = 0.030)

0.79 (0.038) 0.78
(0.051)

0.78 (0.066)

Table 3  Mean ROC-AUC value table of machine learning model 
versus prognostic outcomes (bold text indicates the highest value for 
each outcome or row; standard deviation values are in parentheses). 

As in Table 2, the p-value for each row’s best mean compares against 
the second-best performing model in the row

Radiomics-based ANN Lasso regression Elastic regression Logistic regression Random forest Support vector 
machine

Presence of IDRF 0.76 (0.021)
(p = 0.033)

0.64
(0.033)

0.75 (0.025) 0.66 (0.045) 0.71
(0.038)

0.73 (0.273)

MKI 0.66 (0.031)
(p = 0.011)

0.61
(0.042)

0.60 (0.036) 0.64 (0.045) 0.62
(0.047)

0.60 (0.039)

MYCN status 0.77 (0.038)
(p = 0.001)

0.72
(0.048)

0.73 (0.052) 0.67 (0.031) 0.66
(0.053)

0.71 (0.043)
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Discussion

Discussion on Machine Learning Model

In this study, we have investigated the classification performance 
of multiple ML algorithms from imaging data. We analyzed 65 
neuroblastoma patient data, which is a relatively large number 
of cases that one can obtain for this disease from a single institu-
tion. To the extent we know, there is no such study of applying 
ML over radiological images in neuroblastoma.

Radiomics‑based Models

In Tables 2 and 3, we observe that most algorithms’ performances 
are relatively close to each other (within a standard deviation 
range), even though the radiomics-based ANN model over 3D 
radiomic features seems to be consistently accurate for most out-
comes (within the range of 0.76 to 0.83), except for MKI (0.66). 
For each outcome, this method’s mean performance is the highest 
among all ML algorithms, except for the grade of neuroblastic 
differentiation, although the differences are not always substan-
tial. However, even in the case of neuroblastic differentiation, the 
difference is within a standard deviation with respect to the best 
performing elastic regression. Similar capabilities of ANN with 
radiomic features have been reported within many research areas 
in bioinformatics, such as disease classification and identification 
of biomarkers [22]. We also found that the lasso regression and 
elastic regression models, which are linear regression models 
with L1 or L2 regularizations, respectively, perform better than 
the pure linear regression models without regularization. This is 
possibly because L1 or L2 regularizations are able to reduce the 
overfitting problem. Even though we did not reduce the number 
of radiomic features with any external selection method, pre-
sumably, the elastic regression’s capability to focus on important 
features helped it. In interpreting results reported in Tables 2 and 
3, one must keep in mind the low sample size.

2D Image–based CNN Model

Compared to the 3D radiomics–based ANN model, the 
2D CNN image–based model resulted in relatively poorer 

classification performance over our limited data set. This 
is likely because of the following four reasons. First, 3D 
radiomics had access to statistics on neuroblastoma tumors 
in a higher dimension than what 2D CNN had. The 3D radi-
omics technique is able to utilize not only voxels’ relation-
ships within the same slice but also voxels’ relationships 
between neighboring slices. Second, the 2D CNN model is 
trained on 2D images of a rectangular box containing tis-
sues outside the neuroblastoma tumors that may have poten-
tially introduced noise into the training dataset, especially 
for our relatively small amount of data. In comparison, the 
3D radiomics model is trained only on tumor segmentation 
without such noise. Third, due to the heterogeneity of neu-
roblastoma, the 2D CNN may have been trained on a slice 
that is not related to the outcome label for the whole tumor. 
This is because we used multiple slices of each 3D image 
over the tumor region as if each slice were independent but 
in reality, they had the same labels as that of the 3D image. 
This may result in some of the training data being potentially 
mislabeled. Fourth, CNN is a data-hungry technique and our 
sample size was not necessarily enough for it.

There are a few reasons why we (and often other research-
ers on similar problems) chose to use 2D CNN rather than 
3D CNN. (1) As mentioned before, usage of pre-trained 
VGG19 required 2D images as input. Pre-trained models 
reduce the need for an even larger training data set and 
provide better accuracy than otherwise. We hope that the 
availability of pre-trained 3D CNN models in the future will 
alleviate this restriction in medical imaging research but 
presently, we had to accept this limitation. (2) Training with 
3D images was computationally prohibitive, even using an 
NVIDIA V-100 GPU. (3) Working with the 2D slices of the 
3D images, rather than the 3D images themselves, increased 
our training and testing data size by many folds (× 25) than 
what we would have had with original 3D images. As noted 
earlier, our training set is relatively small for the purpose 
of using CNN. This approach of using 2D slices where the 
number of available 3D images is not enough is often dis-
cussed in medical imaging research. Small sample size did 
not pose a significant challenge for other ML models that 
used 3D radiomics information as in the CNN model since 
the curse of dimensionality is much less with the former. The 
dimension or number of radiomic features is slightly more 
than one hundred. In contrast, the dimension for a 2D image 
is the number of pixels that runs close to thousands, even 
after using only the masked region of interest.

Discussion on Patient Outcome Prediction

Primary Outcomes

Among all outcomes, the radiomics-based ANN model 
was able to classify the presence of metastases with the 

Table 4  Mean ROC-AUC results of 2D CNN model. Standard devia-
tion values are in parentheses

Prognostic outcomes ROC-AUC value

Primary outcomes
Mortality
Presence of metastases
Grade of neuroblastic differentiation
Secondary outcomes
Presence of IDRF
MKI
MYCN status

0.76 (0.046)
0.79 (0.055)
0.77 (0.068)
0.71 (0.057)
0.63 (0.024)
0.74 (0.037)
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highest ROC-AUC (0.83 ± 0.034). In general, we found 
that CT radiomic features have good predictability of 
the presence of metastases and neuroblastic differentia-
tion (0.82 ± 0.044). A similar high correlation between 
the presence of metastases and CT radiomic features can 
also be found in many other studies [23–25]. The suc-
cess of predicting the mortality is quite surprising, where 
the highest ROC-AUC value is achieved from the ANN: 
0.79 ± 0.045. If similar performance is observed with a 
larger sample size in the future, the model parameters 
themselves may be investigated to provide deeper insight 
on how mortality rate is being correlated with radiomic 
features.

Secondary Outcomes

The presence of image-defined risk factors (IDRFs) in 
neuroblastic tumors depends on the severity of primary 
neuroblastoma encasing vessels or invading neighboring 
organs. The presence of IDRFs has a strong correlation 
with patients’ prognoses. It also helps to predict surgical 
outcomes, provides risk stratification, and guides interna-
tional neuroblastoma risk group’s (INRG’s) staging system 
[26]. However, primary tumor heterogeneity is not directly 
related to IDRFs. Thus, our models perform moderately 
(max ROC-AUC 0.76 from radiomics-based ANN) in pre-
dicting the presence of IDRFs. Our study also suggested 
that radiomic features may have lesser information content 
regarding the presence of MKI than for predicting other 
outcomes. Similar reasons may account for the interme-
diate performance for predicting mortality and amplified 
MYCN outcomes. MYCN outcome indicates the ampli-
fication of the MYCN gene. According to Gillies et al. 
[27], radiomic features can provide important information 
regarding the sample genomics but are not significantly 
related to gene expression, which has been proved to be 
helpful in the cases of neuroblastoma [28].

We found that MKI prediction is low across all ML algo-
rithms (0.60–0.66), and actually, the ANN prediction value 
is the highest (0.66) in the respective row in Table 2. Low 
prediction accuracies across all algorithms indicate that 
the observer-dependent MKI is not well-predicted by ML 
models based on CT images. We believe its low prediction 
capability (0.66) for MKI is because CT images do not have 
enough resolution to predict the mitosis and karyorrhexis 
that this index measures. MKI indicates that a pathologist 
counted 5000 or more cells on the neuroblastoma patient’s 
histology under the microscope, which is time-consuming 
and observer dependent. This makes MKI labels somewhat 
subjective. Literature has suggested an alternative approach 
to reduce observer dependence in measuring the MKI [20]. 
Similar to Atikankul’s finding [20], our result also indicates 

that the observer-dependent MKI may not be accurate and 
is not as reliable as other outcomes.

Conclusion

Our study provides a proof of concept that ML over previ-
ously extracted radiomic features may be a better alterna-
tive than a 2D CNN that is trained over slices of radiologi-
cal images to predict patient outcomes. However, we could 
not perform a comparison against 3D CNN for computa-
tional limitations, which may be the case in many practical 
scenarios. The approach of training over radiomic features 
is computationally much easier to perform. Given the con-
cern within the community on the variability of radiomic 
features across different studies, our result from data span-
ning two different hospitals is somewhat interesting, even 
though both hospitals are under the same institution using 
the same vendor’s machines with the same protocol for 
imaging. It is to be noted that the radiomic features are 
normalized (z-score) before being used by ML algorithms. 
However, we could not study the cohorts independently to 
validate the independence of radiomic features for small 
sample sizes in each of the cohorts. Hopefully, our work 
will inspire a broader multi-institutional study to validate 
this. The small sample size and the possibility of feature 
variation remain limitations in our study.

It is also worth investigating the role of individual radi-
omic features in “explaining” the outcomes, whereas a 
CNN applied directly on images has limited explanation 
capability. As future directions of this work, similar stud-
ies with multiple ML models (over radiomic features or 
directly on images) may be conducted over other medical 
imaging areas (disease models and imaging modalities) to 
converge on the appropriate models for clinical use. Given 
the limited size of data, we did not investigate relative 
importance of features and model parameters. We intend 
to do so in the future to gain possible key insights [29]. 
Finally, given the small sample size, the generalizability 
of our conclusions remains a limitation in our study.

In this paper, we decided to present seven ML models’ 
performances that produced the best results out of a few 
different techniques we tried. For any clinical deployment, 
it may be necessary to use multiple ML models’ results 
and use a weighted voting approach to provide a final pre-
diction for each outcome along with a confidence measure.

Potent future work is to automate the tumor segmenta-
tion process and then perform the radiomics-based analy-
sis or apply CNN. This automation will make our work 
feasible to be verified on a large-scale dataset where man-
ual segmentation of each tumor is not scalable over a study 
with a large sample size. Automated segmentation will 
also make the clinical deployment of ML models easier.
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