
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Online Spanners in Euclidean and General Metrics

Permalink
https://escholarship.org/uc/item/0k18g2zq

Author
Khodabandeh, Hadi

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0k18g2zq
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Online Spanners in Euclidean and General Metrics

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Computer Science

by

Hadi Khodabandeh

Thesis Committee:
Distinguished Professor David Eppstein, Chair
Distinguished Professor Michael T. Goodrich

Associate Professor Milena Mihail

2022

© 2022 Hadi Khodabandeh

DEDICATION

To Arash and Pouneh,
two innocent students who lost their lives in the shot down of flight PS752.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vi

LIST OF ALGORITHMS vii

ACKNOWLEDGMENTS viii

VITA ix

ABSTRACT OF THE THESIS xi

1 Introduction 1
1.1 Problem Definition . 1

1.1.1 Lightness and Sparsity . 2
1.1.2 Online Spanners and Competitive Ratio 2

1.2 History . 3
1.3 New Results . 4

1.3.1 Upper Bounds for Points in Rd . 5
1.3.2 Lower Bounds for Points in Rd . 5
1.3.3 Points in General Metrics . 5

2 Related Work 7
2.1 Geometric Spanners in the offline setting . 8
2.2 Dynamic & Streaming Algorithms for Graph Spanners 10
2.3 Incremental Algorithms for Geometric Spanners 11

2.3.1 Deformable Spanners . 11
2.3.2 Well-Separated Pair Decomposition (WSPD) 11
2.3.3 Ordered Yao-Graphs and Θ-Graphs 12
2.3.4 Online Steiner Spanners . 13

3 Euclidean metrics 15
3.1 An Improvement in All Dimensions . 15

3.1.1 Online Algorithm ALG1 . 16
3.1.2 Analysis . 17

3.2 Further Improvements in the Plane . 21

iii

3.2.1 Minimum-Weight Euclidean (1 + ε)-Spanner 21
3.2.2 Competitive Analysis . 23

3.3 Lower Bounds in Rd Under the L1 Norm . 27
3.3.1 Construction . 27
3.3.2 Competitive Ratio . 28

3.4 High Dimensional Euclidean Lower Bound 30

4 General metrics 32
4.1 The Ordered Greedy Spanner . 32

4.1.1 The Algorithm . 32
4.1.2 The Analysis . 33

4.2 Lower Bound for General metrics . 40
4.2.1 Erdős Girth Conjecture . 40
4.2.2 Competitive Ratio Lower Bound . 42

4.3 Ultrametrics . 43
4.3.1 Definition . 43
4.3.2 Spanner Construction . 44
4.3.3 Analysis . 44
4.3.4 Establishing the Trade-off . 46

5 Conclusions and future work 48

Bibliography 50

iv

LIST OF FIGURES

Page

2.1 A comparison of the complete graph on 30 random points on the plane with
greedy spanners of parameters 2, 1.2, and 1.05 on the same point set. 9

3.1 A point s is the representative of five nested squares in the quadtree. The
closest point to s is qi,ℓ ∈ Ci ∩ Pℓ in the cone Ci at level ℓ = 3, . . . , 7. 20

3.2 Any ab-path of weight at most (1 + ε)∥ab∥ lies in the ellipse Eab with foci a
and b. The shaded region R(a, b) is the part of the ellipse Eab between two
concentric circles centered at a. 21

3.3 Left: There consecutive cones, Ĉ0, Ĉ1, and Ĉ1, with apex p and aperture
√
ε.

Point q0 is the closest to p in Pℓ ∩ Ĉ1; and R(p, q0) ⊂ K̂1 = Ĉ0 ∪ Ĉ1 ∪ Ĉ2.

Right: No point in Pℓ is in the blue sector K̂, but there may be points in the
pink sectors. 25

3.4 The union U of triangles Ĉ ∩ h−, where L receives charges from the cones Ĉ. 26
3.5 A sketch of the construction for the lower bound in two dimensions. Any

online algorithm is required to add the red pairs. 27

v

LIST OF TABLES

Page

1.1 Overview of online spanners algorithms. In the last three rows, we compare
the spanner weight directly with the optimum weight (rather than the MST)
to bound the competitive ratio. 4

vi

LIST OF ALGORITHMS

Page
1 The naive greedy spanner algorithm. 8

vii

ACKNOWLEDGMENTS

I would like to first thank my advisor and my thesis committee chair, professor David Epp-
stein, for introducing me to this topic and guiding me through my adventure in graph theory
and computational geometry, and helping me with the difficulties along the way. It has been
an honor to be his student.

I learned a ton from my co-authors of this work: Sujoy Bhore, Arnold Filtser, and Csaba
D. Tóth, who are prominent figures in this area, and I am honored for having the chance
to work with them. I also thank my other thesis committee members: professors Michael
Goodrich and Milena Mihail for reviewing this thesis and reflecting their valuable comments.

I would like to thank my family for supporting me from the other side of the world, and my
friends and colleagues for being a valuable part of my life and my career. The theory lab in
UCI gave me the chance to know all these beautiful people.

viii

VITA

Hadi Khodabandeh

EDUCATION

Master of Science in Computer Science 2022
University of California, Irvine Irvine, California

Bachelor of Science in Computer Engineering 2018
Sharif University of Technology Tehran, Iran

RESEARCH EXPERIENCE

Graduate Research Assistant 2018–2022
University of California, Irvine Irvine, California

Undergraduate Research Intern 2017
Max Planck Institute for Informatics Saarbrücken, Germany

Undergraduate Research Intern 2016
Hong Kong University of Science and Technology Clear Water Bay, Hong Kong

TEACHING EXPERIENCE

Teaching Assistant 2019–2022
University of California, Irvine Irvine, California

ix

REFEREED CONFERENCE PUBLICATIONS

Non-approximability and Polylogarithmic Approxima-
tions of the Single-Sink Unsplittable and Confluent Dy-
namic Flow Problems [53]

Dec 2017

ISAAC 2017

On the Edge Crossings of the Greedy Spanner [40] Jun 2021
SoCG 2021

How to catch marathon cheaters: New approximation
algorithms for tracking paths [54]

Aug 2021

WADS 2021

PREPRINTS

Optimal Spanners for Unit Ball Graphs in Doubling
Metrics [41]

Jun 2021

An accurate non-accelerometer-based ppg motion arti-
fact removal technique using cyclegan [91]

Jun 2021

Online Spanners in Metric Spaces [14] Oct 2021

x

ABSTRACT OF THE THESIS

Online Spanners in Euclidean and General Metrics

By

Hadi Khodabandeh

Master of Science in Computer Science

University of California, Irvine, 2022

Distinguished Professor David Eppstein, Chair

Spanners are fundamental graph structures that preserve lengths of shortest paths in an input

graph G, up to some multiplicative distortion. Given an edge-weighted graph G = (V,E),

a subgraph H = (V,EH) is a t-spanner of G, for t ≥ 1, if for every u, v ∈ V , the distance

between u and v in H is at most t times their distance than in G.

In this thesis, we study the existing literature on offline and online spanners, and we introduce

some new results on online spanners in metric spaces. Suppose that we are given a sequence

of points (s1, . . . , sn), where the points are presented one-by-one, i.e., point si is presented

at the step i, and Si = {s1, . . . , si} for i = 1, . . . , n. The objective of an online algorithm is

to maintain a geometric t-spanner Gi for Si for all i. The algorithm is allowed to add edges

to the spanner when a new point arrives, however, it is not allowed to remove any edge from

the spanner. The performance of an online algorithm is measured by its competitive ratio,

which is the supremum, over all sequences of points, of the ratio between the weight of the

spanner constructed by the algorithm and the minimum weight of a t-spanner on Sn. Here

the weight of a spanner is the sum of all its edge weights.

Under the L2-norm in Rd for arbitrary constant d ∈ N, we present an online algorithm

for (1 + ε)-spanner with competitive ratio Od(ε
−d log n), improving the previous bound of

Od(ε
−(d+1) log n). Moreover, the spanner maintained by the algorithm has Od(ε

1−d log ε−1) ·n

xi

edges, almost matching the (offline) optimal bound of Od(ε
1−d) · n. In the plane, a tighter

analysis of the same algorithm provides an almost quadratic improvement of the competitive

ratio to O(ε−3/2 log ε−1 log n), by comparing the online spanner with an instance-optimal

spanner directly, bypassing the comparison to an MST (i.e., lightness). As a counterpart,

we design a sequence of points that yields a Ωd(ε
−d) lower bound for the competitive ratio

for online (1 + ε)-spanner algorithms in Rd under the L1-norm.

Then we turn our attention to online spanners in general metrics. Note that, it is not possible

to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even in

the offline settings, for general metrics. We analyze an online version of the celebrated

greedy spanner algorithm, dubbed ordered greedy. With stretch factor t = (2k − 1)(1 + ε)

for k ≥ 2 and ε ∈ (0, 1), we show that it maintains a spanner with O(ε−1 log k
ε
) · n1+ 1

k edges

and O(ε−1n
1
k log2 n) lightness for a sequence of n points in a metric space. We show that

these bounds cannot be significantly improved, by introducing an instance that achieves an

Ω(1
k
· n1/k) competitive ratio on both sparsity and lightness. Furthermore, we establish the

trade-off among stretch, number of edges and lightness for points in ultrametrics, showing

that one can maintain a (2 + ε)-spanner for ultrametrics with O(n · ε−1 log ε−1) edges and

O(ε−2) lightness.

xii

Chapter 1

Introduction

1.1 Problem Definition

Let M = (P, δ) be a finite metric space. Let G = (P,E) be the graph on the points

of P in M whose edges are weighted with the distances between their endpoints. The

graph G is a t-spanner, for t ≥ 1, if δG(u, v) ≤ t · δ(u, v), where δG(u, v) is the length of

the shortest path between u and v in G, and δ(u, v) is the distance between u and v in

M. The stretch factor t of G is the maximum distortion between the metrics δ and δG.

Spanners were first introduced by Peleg and Schäffer [81], and since then they have turned

out to be one of the fundamental graph structures with numerous applications in the area

of distributed systems and communication, distributed queuing protocol, compact routing

schemes, etc. [33, 68, 82, 83].

The study of Euclidean spanners, where P ⊂ Rd with L2-norm, was initiated by Chew [30].

Since then a large body of research has been devoted to Euclidean spanners due to its

vast range of applications across domains, such as topology control in wireless networks,

efficient regression in metric spaces, approximate distance oracles, data structures, and many

1

more [57, 62, 86, 90]. Some of the results generalize to metric spaces with constant doubling

dimensions [23] (the doubling dimension of Rd is d).

1.1.1 Lightness and Sparsity

Lightness and sparsity are two fundamental parameters for spanners. The lightness of a

spanner G = (P,E) is the ratio w(G)/w(MST) between the total weight of G and the weight

of a minimum spanning tree (MST) on P . The sparsity of G is the ratio |E(G)|/|E(MST)| ≈

|E(G)|/|P | between the number of edges of H and an MST. Since every spanner is connected

and thus contain a spanning tree, the lightness and sparsity of a spanner G, resp., are trivial

lower bounds for the ratio of w(G) and |E(G)| to the optimum weight and the number of

edges.

1.1.2 Online Spanners and Competitive Ratio

We are given a sequence of points (s1, . . . , sn) in a metric space, where the points are

presented one-by-one, i.e., point si is revealed at the step i, and Si = {s1, . . . , si} for

i ∈ {1, . . . , n}. The objective of an online algorithm is to maintain a t-spanner Gi for

Si for all i. The algorithm is allowed to add edges to the spanner when a new point arrives,

however it is not allowed to remove any edge from the spanner. Moreover, the algorithm

does not know the value of the total number points in advance.

The performance of an online algorithm ALG is measured by comparing it to the offline

optimum OPT using the standard notion of competitive ratio [21, Ch. 1]. The competitive

ratio of an online t-spanner algorithm ALG is defined as supσ
ALG(σ)
OPT(σ)

, where the supremum

is taken over all input sequences σ, OPT(σ) is the minimum weight of a t-spanner for the

(unordered) set of points in σ, and ALG(σ) denotes the weight of the t-spanner produced

2

by ALG for this input sequence. Note that, in order to measure the competitive ratio it is

important that σ is a finite sequence of points.

1.2 History

In the online minimum spanning tree problem, points of a finite metric space arrive one-

by-one, and we need to connect each new point to a previous point to maintain a spanning

tree. Imase and Waxman [69] proved Θ(log n)-competitiveness, which is the best possible

bound. Later, Alon and Azar [2] studied this problem for points in Euclidean plane, and

proved a lower bound Ω(log n/ log log n) for the competitive ratio. Their result was the first

to analyze the impact of auxiliary points (Steiner points) on a geometric network problem in

the online setting. Several algorithms were proposed over the years for the online minimum

Steiner tree and Steiner forest problems, on graphs in both weighted and unweighted settings;

see [1, 5, 12, 65, 79]. However, these algorithms do not provide any guarantee on the stretch

factor. This leads to the following open problem.

Question 1.1. Determine bounds on the competitive ratios for the weight and the number

of edges of online t-spanners, for t ≥ 1.

Previously, Gupta et al. [64, Theorem 1.5] constructed online spanners for terminal pairs

in the same model we consider here. The analysis of [64] implicitly implies that, given

a sequence of n points in an online fashion in a general metric space, one can maintain

a O(log n)-spanner with O(n) edges and O(log n) lightness, as pointed out by one of the

authors [89]. Recent work on online directed spanners [59] is not comparable to our results.

In the geometric setting, (1 + ε)-spanners are possible in any constant dimension d ∈ N.

Tight worst-case bounds Θd(ε
−d) and Θd(ε

1−d) on the lightness and sparsity of offline (1+ε)-

spanners have recently been established by Le and Solomon [73]. Online Euclidean spanners

3

in Rd have been introduced by Bhore and Tóth [17]. In the real line (1D), they have estab-

lished a tight bound of O((ε−1/ log ε−1) log n) for the competitive ratio of any online (1+ ε)-

spanner algorithm for n points. In dimensions d ≥ 2, the dynamic algorithm DefSpanner

of Gao et al. [52] maintains a (1 + ε)-spanner with Od(ε
−(d+1)n) edges and Od(ε

−(d+1) log n)

lightness, and works under the online model (as it never deletes edges when new points

arrive). However, no lower bound better than the 1-dimensional Ω((ε−1/ log ε−1) log n) is

currently known in higher dimensions.

1.3 New Results

See Table 1.1 for an overview of our results.

Family Stretch Size Lightness Ref/comments

General metrics (2k − 1)(1 + ε) O(ε−1 log(1
ε
))n1+ 1

k O(n
1
k ε−1 log2 n) Theorem 4.1

O(log n) O(n) O(log n) [64, 89]
α-HST 2 α

α−1
n− 1 1 Lemmas 4.8 and 4.9

Ultrametric O(ε−1) n− 1 1 + ε Theorem 4.10
2 + ε O(nε−1 log ε−1) O(ε−2) Theorem 4.12

Doubling d-space 1 + ε ε−O(d) n ε−O(d) log n DefSpanner [52]

Euclidean d-space 1 + ε Od(ε
−d)n Od(ε

−(d+1) log n) DefSpanner [52]
1 + ε Od(ε

1−d)n Ω(ε−1n) ordered Θ-graph [85]

1 + ε Õd(ε
1−d)n O(ε−d log n) Theorem 3.2

Real line 1 + ε O(n) Θ̃(ε−1 log n) ordered greedy [17]

Family Stretch Size Competitive Ratio Ref/comments

General metrics 2k − 1 - Ω(1
k
· n 1

k) Theorem 4.6

Euclidean plane 1 + ε Õ(ε−1)n Õ(ε−3/2 log n) Theorem 3.6
Rd with L1-norm 1 + ε - Ω(ε−d) Theorem 3.13

Table 1.1: Overview of online spanners algorithms. In the last three rows, we compare
the spanner weight directly with the optimum weight (rather than the MST) to bound the
competitive ratio.

4

1.3.1 Upper Bounds for Points in Rd

Under the L2-norm in Rd, for arbitrary constant d ∈ N, we present an online algorithm for

(1 + ε)-spanner with lightness Od(ε
−d log n) and sparsity O(ε1−d log ε−1) (Theorem 3.2 in

Section 3.1). This improves upon the previous lightness bound of Od(ε
−(d+1) log n) by Gao

et al. [52, Lemma 3.8]. In the plane, we give a tighter analysis of the same algorithm and

achieve an almost quadratic improvement of the competitive ratio to O(ε−3/2 log ε−1 log n)

(Theorem 3.6 in Section 3.2). Recall that in the offline setting, Θ(ε−2) is a tight worst-case

bound for the lightness of a (1+ε)-spanner in the plane [73]. We obtain a better dependence

on ε by comparing the online spanner with an instance-optimal spanner directly, bypassing

the comparison to an MST (i.e., lightness). The logarithmic dependence on n cannot be

eliminated in the online setting, based on the lower bound in R1 [17].

1.3.2 Lower Bounds for Points in Rd

As a counterpart, we design a sequence of points that yields a Ωd(ε
−d) lower bound for the

competitive ratio for online (1 + ε)-spanner algorithms in Rd under the L1-norm (Theo-

rem 3.13 in Section 3.3). This improves the previous bound of Ω(ε−2/ log ε−1) in R2 under

the L1-norm. It remains open whether a similar lower bound holds in Rd under the L2-norm;

the current best lower bound is Ω((ε−1/ log ε−1) log n), established in [17], holds already for

the real line (d = 1).

1.3.3 Points in General Metrics

In Section 4.1, we study online spanners in general metrics. Note that it is not possible

to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even

in the offline settings, for general metrics. We analyze an online version of the celebrated

5

greedy spanner algorithm, dubbed ordered greedy. With stretch factor t = (2k−1)(1+ε) for

k ≥ 2 and ε ∈ (0, 1), we show that it maintains a spanner with O(ε−1 log 1
ε
) ·n1+ 1

k edges and

O(ε−1n
1
k log2 n) lightness for a sequence of n points in a metric space (Theorem 4.1). We

show (in Theorem 4.6) that these bounds cannot be significantly improved, by introducing

an instance where every online algorithm will have Ω(1
k
· n1/k) competitive ratio on both

sparsity and lightness. Next, we establish the trade-off among stretch, number of edges and

lightness for points in ultrametrics. Specifically, we show that it is possible to maintain a

(2 + ε)-spanner with O(ε−1 log ε−1) · n edges and O(ε−2) lightness in ultrametrics (Theo-

rem 4.12). Note that as the uniform metric (shortest path on a clique) is an ultrametric,

any subquadratic spanner must have stretch at least 2.

6

Chapter 2

Related Work

There has been an extensive effort in the literature for finding bounded-degree and lightweight

spanners for different graph classes or proving the efficiency of the existing constructions.

From the most general case of weighted graphs [75] to graphs of bounded width [22, 39] and

graphs whose weights are coming from a more restricted Euclidean or doubling metric space

[49, 23]. Different models have also been considered for this problem. In the offline model

the points are given at the start of the algorithm, and the algorithm decides which edges to

include in the spanner. In the online model, the points are given one by one to the algo-

rithm, and in each step, the algorithm has to provide a spanner to the current point set. The

algorithm cannot remove a previously added edge in this model. In the dynamic setting, the

algorithm can remove previous edges. The objective in this case can be maintaining a con-

stant lightness via minimal changes or a via a fast update time. It is known that the update

time for vertex addition in the online and dynamic models is lower bounded by Ω(log n) [58]

which comes from the close relationship of the spanning property and finding approximate

nearest neighbors [37, 77] of the new point. In the rest of this section, we briefly cover some

of the existing algorithms and results in each of the aforementioned models.

7

2.1 Geometric Spanners in the offline setting

In the offline settings, where the points are given to the algorithm at the beginning of the

execution, there are various ways to construct a (1+ε)-spanner for a point set that is located

in a Euclidean space of dimension d. The Yao-graph [90] is one of these constructions,

the greedy spanner is another construction, while WSPDs [87] can also yield a spanner

construction if the pairs in a WSPD have small diameter with respect to their distance.

Among the spanner constructions for Euclidean spaces, however, the greedy spanner is known

to have the highest quality.

A greedy spanner can be constructed by running the greedy spanner algorithm (Algorithm 1)

on a set of points on the Euclidean plane. This short procedure adds edges one at a time to

the spanner it constructs, in ascending order by length. For each pair of vertices, in this order,

it checks whether that pair already satisfies the bounded stretch inequality using the edges

already added. If not, it adds a new edge connecting the pair. Therefore, by construction,

each pair of vertices satisfies the inequality, either through previous edges or (if not) through

the newly added edge. The resulting graph is therefore a t-spanner. Examples of the results

of this algorithm, for three different stretch factors, are shown in Figure 2.1.

Algorithm 1 The naive greedy spanner algorithm.

1: procedure Naive-Greedy(V)
2: Let S be a graph with vertices V and edges E = {}
3: for each pair (P,Q) ∈ V 2 in increasing order of d(P,Q) do
4: if dS(P,Q) > t · d(P,Q) then
5: Add edge PQ to E

return S

A näıve implementation of the greedy spanner algorithm runs in time O(n3 log n), where n

is the number of given points [24]. Bose et al. [24] improved the running time of Algorithm 1

to near-quadratic time using a bounded version of Dijkstra’s algorithm. Narasimhan et al.

proposed an approximate version of the greedy spanner algorithm that reached a running

time of O(n log n), based on the use of approximate shortest path queries [32, 61, 80].

8

(a) Complete graph (b) Greedy 2-spanner

(c) Greedy 1.2-spanner (d) Greedy 1.05-spanner

Figure 2.1: A comparison of the complete graph on 30 random points on the plane with
greedy spanners of parameters 2, 1.2, and 1.05 on the same point set.

Despite the simplicity of Algorithm 1, Farshi and Gudmundsson [43] observed that in prac-

tice, greedy spanners are surprisingly good in terms of the number of edges, weight, maxi-

mum vertex degree, and also the number of edge crossings. Many of these properties have

been proven rigorously. Filster and Solomon [49] proved that greedy spanners have size

and lightness that is optimal to within a constant factor for worst-case instances. They

also achieved a near-optimality result for greedy spanners in spaces of bounded doubling

dimension. Borradaile, Le, and Wulff-Nilsen [23] recently proved optimality for doubling

metrics, generalizing a result of Narasimhan and Smid [80], and resolving an open question

posed by Gottlieb [56], and Le and Solomon showed that no geometric t-spanner can do

asymptotically better than the greedy spanner in terms of number of edges and lightness

[73]. Finally, Eppstein and Khodabandeh [40, 41] proved a linear bound on the number of

9

edge crossings of the greedy spanner in the two dimensional Euclidean plane. This in turn

implies the existence of sublinear separators and separator hierarchies for greedy spanners

of point sets in the two dimensional Euclidean plane. Therefore, sublinear separators and

separator hierarchies can be used to implement efficient recursive algorithms on these sub-

graphs [38, 54, 34]. The existence of sublinear separators were later generalized to higher

dimensions by Le and Cuong [76].

2.2 Dynamic & Streaming Algorithms for Graph Span-

ners

A t-spanner in a graph G = (V,E) is subgraph H = (V,E ′) such that δH(u, v) ≤ t · δG(u, v)

for all pairs of vertices u, v ∈ V . That is, the stretch t is the maximum distortion between the

graph distances δG and δH . Importantly, when G changes (under edge/vertex insertions or

deletions), the underlying metric δG changes, as well. The distance δG(u, v) may dramatically

decrease upon the insertion of the edge uv. In contrast, our model assumes that the distances

in the underlying metric space M = (P, δ) remain fixed, but the algorithm can only see the

distances between the points that have been presented. For this reason, our results are not

directly comparable to models where the underling graph changes dynamically.

For unweighted graphs with n vertices, the current best fully dynamic and single-pass stream-

ing algorithms can maintain spanners that achieve almost the same stretch-sparsity trade-off

available for the static case: 2k − 1 stretch and O(n1+ 1
k) edges, for k ≥ 1, which is attained

by the greedy algorithm [4], and conjectured to be optimal due to the Erdős girth conjec-

ture [42]. In the dynamic model, the objective is design algorithms and data structures that

minimize the worst-case update time needed to maintain a t-spanner for S over all steps,

regardless of its weight, sparsity, or lightness. See [8, 11, 13, 19] for some excellent work

10

on dynamic spanners. In the streaming model the input is a sequence (or stream) of edges

representing the edge set E of the graph G. A (single-pass) streaming algorithm decides, for

each newly arriving edge, whether to include it in the spanner. The graph G is too large to fit

in memory, and the objective is to optimize work space and update time [7, 9, 35, 44, 47, 78].

2.3 Incremental Algorithms for Geometric Spanners

We briefly review three previously known incremental (1+ε)-spanner algorithms in Euclidean

d-space from the perspective of competitive analysis.

2.3.1 Deformable Spanners

Gao et al. [52] designed a dynamic DefSpanner algorithm that maintains a (1+ε)-spanner

for a dynamic set S in Euclidean d-space. For point insertions, it only adds new edges, so

it is an online algorithm, as well. It maintains a (1 + ε)-spanner with Od(ε
−d) · n edges and

Od(ε
−(d+1) log n) lightness. Since the ∥MST(S)| is a lower bound for the optimal spanner

weight, its competitive ratio is also Od(ε
−(d+1) log n). The key ingredient of DefSpanner

is hierarchical nets [67, 72, 84], a form of hierarchical clustering, which can be maintained

dynamically. Hierarchical nets naturally generalize to doubling spaces, and so DefSpanner

also maintains a (1 + ε)-spanner with ε−O(d) · n edges and lightness ε−O(d) in for doubling

dimension d [55, 84].

2.3.2 Well-Separated Pair Decomposition (WSPD)

Well-separated pair decomposition was introduced by Callahan and Kosaraju [27] (see also [60,

66, 80, 88]). For a set S in a metric space, a WSPD is a collection of unordered pairs

11

W = {{Ai, Bi} : i ∈ I} such that (1) Ai, Bi ⊂ S for all i ∈ I; (2) min{∥ab∥ : a ∈ Ai, b ∈

Bi} ≤ ϱ ·max{diam(Ai), diam(Bi)} for all i ∈ I, where ϱ is the separation ratio; (3) for each

point pair {a, b} ⊂ S there exists a pair {Ai, Bi} such that Ai and Bi each contain one of

a and b. Given a WSPD with separation ratio ϱ > 4, any graph that contains at least one

edge between Ai and Bi, for all i ∈ I, is a spanner with stretch t = 1 + 8/(ϱ − 4). Setting

ϱ ≥ 12ε−1 for 0 < ε < 1, we obtain t ≤ 1 + ε.

Hierarchical clustering provides a WSPD [66, Ch. 3]. Perhaps the simplest hierarchical

subdivisions in Rd are quadtrees. Let T be a quadtree for a finite set S ⊂ Rd. The root of

T is an axis-aligned cube of side length a0, which contains S; it is recursively subdivided

into 2d congruent cubes until each leaf cube contains at most one point in S. For all pairs

of cubes {Q1, Q2} at level ℓ of T , create a pair {Ai, Bi} with Ai = Q1 ∩ S and Bi = Q2 ∩ S

whenever Dℓ ≤ dist(Q1, Qb) < 2Dℓ for Dℓ = ϱ ·diam(Q1) = 12ε−1 ·
√
d ·a0/2ℓ; and repeat for

all levels ℓ ≥ 0. Properties (1)–(3) of a WSPD are easily verified [66, Ch. 3]. The resulting

(1 + ε)-spanner has Od(ε
−d) · n edges [66, 67] and lightness Od(ε

−(d+1) log n) [17].

For point insertions in Rd, a dynamic quadtree only adds nodes, which in turn creates new

pairs in the WSPD, and new edges in the spanner. This is an online algorithm with the

same guarantees as DefSpanner [17, 67] (see also [51] for an efficient implementation).

2.3.3 Ordered Yao-Graphs and Θ-Graphs

One of the first constructions for (offline) sparse (1 + ε)-spanner in Euclidean d-space were

the Yao- and Θ-graphs [31, 71, 85]. Incremental versions of Yao-graphs and Θ-graphs were

introduced by Bose et al. [26]. Let S = {s1, . . . , sn} be an ordered set of points in R2. For

each si ∈ S, partition the plane into k cones with apex s and aperture 2π/k. The ordered

Yao-graph Yk(S) contains an edge between si and a closest previous point in {sj : j < i} in

each cone. The graph Θk(S) is defined similarly, but in each cone the distance to the apex is

12

measured by the orthogonal projection to a ray within the cone. Bose et al. [26] showed that

the ordered Yao- and Θ-graphs have spanning ratio at most 1/(1 − 2 sin(π/k)) for k > 8;

tighter bounds were later obtained in [25]. In particular, the ordered Yao- and Θ-graphs are

(1 + ε)-spanners for k ≥ Ω(ε−1).

The construction generalizes to Rd for all d ∈ N [85]. For an angle α ∈ (0, π), let A ⊂ Sd−1

be a maximal set of points in the (d−1)-sphere such that mina,b∈A dist(a, b) ≤ α (in radians).

A standard volume argument shows that |A| ≤ Od(α
1−d). For each ai ∈ A, create a cone Ci

with apex at the origin o, aperture α, and symmetry axis oai. Note that Rd ⊆
⋃

i Ci. Given

a finite set P ⊂ Rd, we translate each cone Ci to a cone Ci(p) with apex p ∈ P . For every

cone Ci(p), the Yao-graph contains an edge between p and a closest point in P ∩Ci(p). For

every ε > 0 and d ∈ N, there exists an angle α = α(d, ε) = Θd(ε) for which the Yao-graph is

a (1 + ε)-spanner for every finite set P ⊂ Rd.

Ordered Yao- and Θ-graphs give online algorithms for maintaining a (1 + ε)-spanner for a

sequence of points in Rd. The sparsity of these spanners is bounded by the number of cones

per vertex, Od(ε
1−d), which matches the (offline) lower bound of Ωd(ε

1−d) [73]. However,

their weight may be significantly higher than optimal: For n equally spaced points in a

unit circle, in any order, Yao- and Θ-graphs yield (1 + ε)-spanners of weight Ω(ε−1n), hence

lightness Ω(ε−1n), while the optimum weight is O(ε−2) [73].

2.3.4 Online Steiner Spanners

An important variant of online spanners is when it is allowed to use auxiliary points (Steiner

points) which are not part of the input sequence of points, but are present in the metric

space. An online algorithm is allowed add Steiner points, however, the spanner must achieve

the given stretch factor only for the input point pairs. It has been observed through a series

of work in recent years, that Steiner points allow for substantial improvements over the

13

bounds on the sparsity and lightness of Euclidean spanners in the offline settings and highly

nontrivial insights are required to argue the bounds for Steiner spanners, and often they tend

to be even more intricate than their non-Steiner counterpart; see [15, 16, 73, 74]. Bhore and

Tóth [17] showed that if an algorithm can use Steiner points, then the competitive ratio for

weight improves to O(ε(1−d)/2 log n) in the Euclidean d-space.

14

Chapter 3

Euclidean metrics

We present an online algorithm for a sequence of points in Euclidean d-space (Section 3.1).

It combines features from several previous approaches, and maintains a (1 + ε)-spanner of

lightness Od(ε
−d log n) and sparsity Od(ε

1−d log ε−1) for d ≥ 1. Lightness is an upper bound

for the competitive ratio for weight; the sparsity almost matching the optimal boundOd(ε
1−d)

attained by ordered Yao-graphs. In the plane (d = 2), we show that the same algorithm

achieves competitive ratio O(ε−3/2 log ε−1 log n) using a tighter analysis: A charging scheme

that charges the weight of the online spanner to a minimum weight spanner (Section 3.2).

3.1 An Improvement in All Dimensions

We combine features from two incremental algorithms for geometric spanners, and obtain an

online (1 + ε)-spanner algorithm for a sequence of n points in Rd. We maintain a dynamic

quadtree for hierarchical clustering, and use a modified ordered Yao-graph in each level of

the hierarchy. In particular, we limit the weight of the edges in the Yao-graph in each level

of the hierarchy (thereby avoiding heavy edges). We start with an easy observation.

15

Lemma 3.1. Let G = (S,E) be a t-spanner and let w > 0. Let G′ = (S,E ′), where

E ′ = {e ∈ E : ∥e∥ ≤ w} is the set of edges of weight at most w. Then for every a, b ∈ S

with ∥ab∥ < w/t, graph G′ contains an ab-path of weights at most t ∥ab∥.

Proof. Since G is a t-spanner, it contains an ab-path Pab of weight at most t ∥ab∥ ≤ w. By

the triangle inequality, every edge in this path has weight at most w, hence present in G′.

Consequently G′ contains Pab.

3.1.1 Online Algorithm ALG1

The input is a sequence of points (s1, s2, . . .) in Rd, d ≥ 1. The set of the first n points is

denoted by Sn = {si : 1 ≤ i ≤ n}. For every n, we dynamically maintain a quadtree Tn

for Sn. Every node of Tn corresponds to a cube. The root of Tn, at level 0, corresponds

to a cube Q0 of side length a0 = Θ(diam(Sn)). At every level ℓ ≥ 0, there are at most

2dℓ interior-disjoint cubes, each of side length aℓ = a0 2
−ℓ. A cube Q ∈ Tn is nonempty if

Q ∩ Sn ̸= ∅. For every nonempty cube Q, we maintain a representative s(Q) ∈ Q ∩ Sn,

selected at the time when Q becomes nonempty. At each level ℓ, let Pℓ be the sequence of

representatives, in the order in which they are created.

For each level ℓ, we maintain a modified ordered Yao-graph Gℓ = (Pℓ, Eℓ) as follows. When

a new point p is inserted into Pℓ, cover Rd with Θd(ε
1−d) cones of aperture α(d, ε) as in the

construction of Yao-graphs. In each cone Ci, find a point qi ∈ Ci ∩ Pℓ closest to p; and add

pqi to Eℓ if ∥pqi∥ < 24aℓ
√
d · ε−1. The algorithm maintains the spanner G =

⋃
ℓ≥0Gℓ.

16

3.1.2 Analysis

Theorem 3.2. Let d ≥ 1 and ε ∈ (0, 1). The online algorithm ALG1 maintains, for a

sequence of n points in Euclidean d-space, an (1 +O(ε))-spanner with weight Od(ε
−d log n) ·

∥MST∥ and Od(ε
1−d log ε−1) · n edges.

Note that Theorem 3.2 implies that the competitive ratio of this algorithm is alsoOd(ε
−d log n).

Proof. Stretch Analysis. We give a bound on the stretch factor in two steps: First, we

define an auxiliary graph H = (S,E ′) which is a (1 + ε)-spanner for S by the analysis of

WSPDs. Then we show that G contains an ab-path of weight at most (1 + ε)∥ab∥ for each

edge of H. Overall, the stretch of G is at most (1 + ε)2 = (1 +O(ε)) for all a, b ∈ S.

First Layer: WSPD. For each level ℓ ≥ 0, let Hℓ = (Pℓ, E
′
ℓ) be the graph that contains an

edge between two representatives a, b ∈ Pℓ whenever ∥ab∥ ≤ 12aℓ
√
d · ε−1. Let H =

⋃
ℓ≥0Hℓ.

The auxiliary graph Hℓ contains an edge between the representatives of any such pair of

cubes at level ℓ. As noted, H =
⋃

ℓ≥0Hℓ is a (1 + ε)-spanner (cf. [66, 67]).

Second Layer: Near-Sighted Yao-graphs. As H is a (1 + ε)-spanner, for every a, b ∈ Sn,

it contains an ab-path of weight at most (1 + ε)∥ab∥. Consider such a path Pab = (a =

p0, . . . , pm = b). Each edge pi−1pi is in Hℓ for some ℓ ≥ 0. By construction, every edge in Hℓ

has weight at most 12aℓ
√
d · ε−1. For every level ℓ, the ordered Yao-graph Y (Pℓ) with angle

α(d, ε) is a (1 + ε)-spanner. The graph Gℓ = (Pℓ, Eℓ) constructed by ALG1 at level ℓ is a

subgraph of Y (Pℓ). By Lemma 3.1, for every p, q ∈ Pℓ with ∥pq∥ ≤ 12aℓ
√
d · ε−1, graph Gℓ

contains a pq-path of weight at most (1 + ε)∥pq∥.

Overall,H contains an ab-path Pab = (p0, . . . , pm) of weight at most (1+ε)∥ab∥. For each edge

pi−1pi of Pab, graph G contains a pi−1pi-path of weight (1 + ε)∥pi−1pi∥. The concatenation

of these paths is an ab-path of weight (1 + ε)2∥ab∥ ≤ (1 +O(ε))∥ab∥.

17

Weight Analysis. We may assume, without loss of generality, that the root of the quadtree

Tn is the unit cube [0, 1]d ⊂ Rd, which has diameter
√
d. This implies diam(Sn) ≤

√
d =

Od(1). Assume further that n > 1, and 1
4
≤ diam(Sn) ≤ ∥MST (Sn)∥.

Every edge in Eℓ at level ℓ has weight Od(ε
−1 2−ℓ). In particular, every edge at level

ℓ ≥ 2 log n has weight Od(ε
−1/n2); and the total weight of these edges is Od(ε

−1) ≤

Od(ε
−1∥MST (Sn)∥).

It remains to bound the weight of the edges on levels ℓ = 1, . . . , ⌊2 log n⌋. At level ℓ of the

quadtree Tn, there are at most 2dℓ nodes, hence |Pℓ| ≤ 2dℓ. If |Pℓ| < 3d, then Gℓ has at

most O(32d) = Od(1) edges, each of weight at most diam(Pℓ) ≤ diam(Sn) ≤ ∥MST(Sn)∥,

and so ∥Eℓ∥ ≤ Od(∥MST(Sn)∥). Assume now that |Gℓ| ≥ 3d. By the definition of ordered

Yao-graphs, each vertex inserted into Pℓ adds Θ(ε1−d) new edges, each of weight O(ε−1 2−ℓ).

The total weight of the edges in Gℓ is at most

∥Eℓ∥ ≤ |Pℓ| · ε1−d ·max
e∈Eℓ

∥e∥ ≤ Od(|Pℓ| ε−d 2−ℓ). (3.1)

We next derive a lower bound for ∥MST(Sn)∥ in terms of |Pℓ|, when |Pℓ| > 1 and ℓ > 2,

using a standard volume argument. Define a graph on the vertex set Pℓ such that two

nodes p, q ∈ Pℓ are adjacent iff p and q lie in neighboring quadtree cells of level ℓ. Since

every quadtree cell has 3d − 1 neighbors, this graph is (3d − 1)-degenerate, and contains an

independent set Iℓ of size at least (3d − 1)−1|Pℓ| = Ωd(|Pℓ|). The distance between any two

disjoint quadtreee cells at level ℓ is at least 2−ℓ. Consequently, the open balls of radius 2−(ℓ+1)

centered at the points in Iℓ are pairwise disjoint. None of the balls contains Sn for ℓ > 2, as

the diameter of each of ball is 2−ℓ while diam(Sn) ≥ 1
4
. For all ℓ > 2, MST(Sn) contains the

center of each ball and a point in its exterior; hence the intersection of MST(Sn) and each

ball contains a path from the center to a boundary point, which has weight at least 2−(ℓ+1).

18

Summation over |Iℓ| disjoint balls yields

∥MST (Sn)∥ ≥ |Iℓ| · 2−(ℓ+1) ≥ Ωd(|Pℓ| 2−ℓ). (3.2)

Comparing inequalities (3.1) and (3.2), we obtain ∥Eℓ∥ ≤ Od(ε
−d) ·∥MST (Sn)∥. Summation

over all levels ℓ ∈ N yields ∥E∥ ≤ Od(ε
−d log n) · ∥MST(Sn)∥, as claimed.

Sparsity Analysis. We show that G has Od(ε
1−d log ε−1) · n edges. Har-Peled proved

that the auxiliary graph H is O(ε−d)-degenerate, and so it has Od(ε
−d) · n edges [66, 67,

Lemma 3.9]. As G is a subgraph of H, hence has Od(ε
−d) · n edges as well. We improve this

bound using a charging scheme.

For the quadtree Tn maintained by algorithm ALG1, let T ′
n denote the compressed quadtree,

which is obtained from Tn by removing all leaves that correspond to empty cubes, and

supressing nodes with a single child [10, 66]. For n points in Rd, the compressed quadtree

has Od(n) nodes (which are nodes of the original quadtree, as well). For each node Q of T ′
n,

algorithm ALG1 adds Od(ε
1−d) edges between the representative s(Q) and the closest points

in each cone Ci (in Pℓ, where ℓ ≥ 0 is the level of Q in Tn). The total number of these edges

for all nodes of T ′
n is O(ε1−d) · n.

It remains to consider the nodes of the quadtree Tn that are compressed in T ′
n. Every

compressed node is part of a descending chain of single-child nodes in |mathcalTn. The

number of such chains is Od(n), as each chain has a unique direct descendant in T ′
n. Let

Qk, . . . , Qℓ be a maximal chain of single-child nodes in Tn, where Qj is on level j of Tn for

j = k, . . . , ℓ. These are nested cubes Qk ⊂ Qk−1 ⊂ . . . ⊂ Q1 with a common representative,

s = q(Qk) = . . . = s(Qℓ); see Figure 3.1. Let Ci be a cones with apex s and aperture α(d, ε)

in algorithm ALG1; and let qi,j denote the closest point to s in Ci ∩ Pj for j = k, . . . , ℓ. If

a point qi,j ∈ Pj represents some compressed cube Q′ (in another compressed chain), then

qi,j represents the parent of Q′, as well. In this case, qi,j ∈ Pℓ−1, which implies qi,j = qi,j−1.

19

Consequently, qi,j = qi,j−1 = . . . = qi,k. We may assume that only qi,k represents a compressed

node.

Ci

s qi,7

qi,6

qi,5

qi,4

qi,3

Q1

Q2

Q3

Figure 3.1: A point s is the representative of five nested squares in the quadtree. The closest
point to s is qi,ℓ ∈ Ci ∩ Pℓ in the cone Ci at level ℓ = 3, . . . , 7.

The first ≤ ⌈log ε−1⌉ nodes (i.e., Qj for k ≤ +⌈log ε−1⌉) jointly contribute O(ε1−d log ε−1)

edges to G. Summation over all compressed chains yields O(ε−1 log ε−1) · n edges. For

the remaining nodes in the chain (that is, nodes Qj for k < j ≤ ℓ − log ε−1), we use

thefollowing charging scheme: Charge the edge sqi,j to qi,j. Since j ̸= k, then qi,j represents

a noncompressed node at level j of Tn. Next we bound the charges received by qi,j.

We claim that for every noncompressed node Q, the representative q = s(Q) receives at most

Od(1) units of charges. Indeed, suppose that q ∈ Pℓ and an edge sq has been charged to q.

Then ∥sq∥ ≤ 24aℓ
√
d · ε−1. However, s is the only point in the cube Q′

s := Qj−⌈log ε−1⌉ of

side length aℓ · 2⌈log ε
−1⌉ ≥ aℓ · ε−1 and diam(Q′

s) ≥ aℓ
√
d · ε−1. Consequently, Q′

s lies in the

ball Bq of radius 25aℓ
√
d · ε−1 centered at q. However, comparing the volumes of Bq and Q′

s

shows that Bq contains Od(1) interior-disjoint cubes Q
′
s, and so q is charged at most Od(1)

times. Summation over all all Od(n) noncompressed nodes over all levels ℓ > 0 shows that

the total number of edges that participate in the charging scheme is Od(n).

Overall, we have shown that G has at most O(ε1−d log ε−1) · n edges.

20

3.2 Further Improvements in the Plane

We presents a tighter analysis of algorithm ALG1 for d = 2 that compares the spanner weight

to the offline optimum weight, and bypasses the comparison with the MST (i.e., lightness).

3.2.1 Minimum-Weight Euclidean (1 + ε)-Spanner

For any a, b ∈ Rd, an ab-path Pab of Euclidean weight at most (1+ε)∥ab∥ lies in the ellipsoid

Eab with foci a and b and great axis of weight (1 + ε)∥ab∥; see Figure 3.2. A key observation

is that the minor axis of Eab is ((1 + ε)2 − 12)1/2 ∥ab∥ ≈
√
2ε ∥ab∥. Furthermore, Bhore and

Tóth [16] recently observed that the directions of “most” edges of the path Pab are “close”

to the direction of ab. Specifically, if we denote by E(α) the set of edges e in Pab with

∠(ab, e) ≤ α, then the following holds.

Lemma 3.3 (Bhore and Tóth [16]). Let a, b ∈ Rd and let Pab be an ab-path of weight ∥Pab∥ ≤

(1 + ε)∥ab∥. Then for every i ∈ {1, . . . , ⌊1/
√
ε⌋}, we have ∥E(i ·

√
ε)∥ ≥ (1− 2/i2) ∥ab∥.

c

o
a b

d

R(a, b)

Figure 3.2: Any ab-path of weight at most (1 + ε)∥ab∥ lies in the ellipse Eab with foci a and
b. The shaded region R(a, b) is the part of the ellipse Eab between two concentric circles
centered at a.

Let R(a, b) = Eab ∩N (a, b), where N (a, b) is the annulus bounded by two concentric spheres

centered at a, of radii 1+ε
2

∥ab∥ and ∥ab∥; see Figure 3.2 for an example.

Lemma 3.4. If 0 < ε < 1
9
, then every ab-path Pab of weight at most ∥Pab∥ ≤ (1 + ε)∥ab∥

contains interior-disjoint line segments s ⊂ R(a, b) of total weight at least 1
3
∥ab∥ such that

∠(
−→
ab, s) ≤ 3 ·

√
ε.

21

Proof. Since the distance between the two concentric circles is 1−ε
2

∥ab∥, every ab-path con-

tains a subpath of weight at least 1−ε
2

∥ab∥ in the ans N (a, b).

Let Pab be an ab-path of weight at most (1 + ε)∥ab∥. As noted above Pab ⊂ Eab. Hence,

∥Pab ∩ N (a, b)∥ = ∥Pab ∩ R(a, b)∥ ≥ 1−ε
2

∥ab∥ in R(ab); and so ∥Pab \ R(a, b)∥ = ∥Pab∥ −

∥Pab ∩R(a, b)∥ ≤ 1+3ε
2

∥ab∥.

Applying Lemma 3.3 with i = 3, the total weight of the edges e of Pab with dir(ab, e) ≤ 3 ·
√
ε

is at least 7
9
∥ab∥. The parts of these edges lying outside of R(a, b) have weight at most

∥Pab \ R(a, b)∥ ≤ 1+3ε
2

∥ab∥. Consequently, the remaining part of these edges are in R(a, b),

and their weight is at least
(
7
9
− 1+3ε

2

)
∥ab∥ ≤ 7−27ε

18
∥ab∥ ≤ 2

9
∥ab∥ if ε < 1

9
, as claimed

We also need an observation from elementary geometry; see Figure 3.2.

Lemma 3.5. For a, b ∈ Rd, let cd be the minor axis of the ellipsoid Eab. Then ∠cad ≤ 2 ε1/2.

Proof. We may assume, without loss of generality, that ∥ab∥ = 1. Let o be the center of

the ellipsoid Eab. Then sec∠cao = (cos∠cao)−1 = ∥ac∥
∥ao∥ = 1 + ε. From the Taylor estimate

sec(x) = 1 + 1
2
x2 + 5

24
x4 + . . . ≤ 1 + x2 for 0 < x < 1, we have ∠cao ≥ ε1/2. Consequently,

∠cad = 2∠cao ≥ 2ε1/2.

Theorem 3.6. Let d = 2 and ε ∈ (0, 1). The online algorithm ALG1 maintains, for a

sequence of n points in Euclidean plane, an (1 + ε)-spanner of weight O(ε−3/2 log ε−1 log n) ·

OPT, where OPT denotes the minimum weight of an (1+ ε)-spanner for the same point set.

Proof. Theorem 3.2 has established that algorithm ALG1 maintains a (1 + ε)-spanner. The

tighter competitive analysis uses Lemmas 3.4 and 3.5.

22

3.2.2 Competitive Analysis

Assume, without loss of generality, that diam(Sn) = Θ(1), hence the side length of every

quadtree square at level ℓ is Θ(2−ℓ). For a set Sn = {s1, . . . , sn} ⊂ R2, let G∗ = (Sn, E
∗)

be a (1 + ε)-spanner of minimum weight, and let OPT = ∥G∗∥. Let G = (Sn, E) be the

spanner returned by the online algorithm ALG1. Recall that G =
⋃

ℓ≥0Gℓ, where the total

weight of all edges at levels ℓ > 2 log n is less than diam(Sn), so it is enough to consider

ℓ = 0, . . . , ⌈2 log n⌉.

Claim 3.7. ∥Gℓ∥ ≤ O(ε−3/2 log ε−1) ·OPT for all ℓ ≥ 0.

Claim 3.7 immediately implies ∥G∥ ≤ O(ε−3/2 log ε−1 log n) · OPT. For every level ℓ ≥ 0,

Gℓ = (Pℓ, Eℓ) is a graph on the representatives Pℓ. Note that G∗ is a Steiner spanner with

respect to the point set Pℓ, as G
∗ is a spanner on all n points of the input.

We prove Claim 3.7 using a charging scheme: We charge the weight of every edge in Gℓ to

G∗ (more precisely, to line segments along the edges of G∗), and then show that each line

segment of weight w in G∗ receives O(ε−3/2 log ε−1) · w charge.

For every point p ∈ Pℓ, algorithm ALG1 greedily covers R2 by Θ(ε−1) cones of aperture

π/k = Θ(ε−1) and apex p, and adds an edge pqi in each nonempty cone Ci. For the

competitive analysis, we greedily cover R2 by Θ(ε−1/2) cones of aperture
√
ε and apex p.

We use translates of the same cone cover for all p ∈ Pℓ. Standard volume argument implies

that a cone of aperture
√
ε intersects O(ε−1/2) cones of aperture Θ(ε−1). We describe the

charging scheme for each such cone Ĉ.

23

Charging Scheme

Consider a cone Ĉ with apex p and aperture
√
ε. Let E(Ĉ) be the set of edges pq, q ∈ Ĉ

that algorithm ALG1 adds to Gℓ when p is inserted into Pℓ. Since Ĉ intersects O(ε−1/2)

cones of the ordered Yao-graph, then |E(Ĉ)| ≤ O(ε−1/2). By construction, every edge in Gℓ

has weight at most O(ε−12−ℓ).

∥E(Ĉ)∥ =
∑

pq∈E(Ĉ)

∥pq∥ ≤ |E(Ĉ)| ·O(ε−12−ℓ) ≤ O(ε−3/22−ℓ). (3.3)

Let q0 = q0(Ĉ) be a closest point in Pℓ∩ Ĉ to p. (Possibly, q0 arrived after p.) We distinguish

between two cases:

Case 1: ∥pq0∥ < 2 · 2−ℓ. Since q0 ∈ Pℓ, /nd Pℓ contains at most one point in each quadtree

cell of side length Θ(2−ℓ), this case occurs for at most O(1) times per apex p. On the one

hand, the sum of weights over all p ∈ Pℓ and all cones Ĉ with ∥pq0∥ < 2 · 2−ℓ is bounded by

O(|Pℓ| · ε−3/22−ℓ). On the other hand, OPT ≥ Ω(∥MST(Pℓ)∥) ≥ Ω(|Pℓ| · 2−ℓ). Consequently,

the total weight of all edges handled in Case 1 is O(ε−3/2)OPT.

Case 2: ∥pq0∥ ≥ 2 · 2−ℓ. The optimal spanner G∗ contains a pq0-path P0 of weight at most

(1 + ε)∥pq0∥. Recall P0 lies in the ellipse E0 with foci p and q0, and R(p, q0) is the half of

E0 that contains q0 (cf. Figure 3.2). Let E∗(Ĉ) be the set of maximal line segments e along

edges in E∗ such that e ⊂ P0 ∩ R(p, q0) and ∠(e, pq0) ≤ 3 ·
√
ε. By Lemma 3.4, we have

∥E∗(Ĉ)∥ ≥ 1
3
∥pq0∥. We distribute the weight of all edges in E(Ĉ) uniformly among the line

segments in E∗(Ĉ). That is, each segment of weight w in E∗(Ĉ) receives a charge of

∥E(Ĉ)∥
∥E∗(Ĉ)∥

· w ≤ O(ε−3/22−ℓ)

Ω(2−ℓ)
· w ≤ O(ε−3/2) · w. (3.4)

This completes the description of the charging scheme in Case 2.

24

R(a, b)

√
ε

Ĉ1
p

Ĉ2

Ĉ0

q0

p

K̂1

√
ε

√
ε

q0

Ĉ1

Ĉ2

Ĉ0

Figure 3.3: Left: There consecutive cones, Ĉ0, Ĉ1, and Ĉ1, with apex p and aperture
√
ε.

Point q0 is the closest to p in Pℓ ∩ Ĉ1; and R(p, q0) ⊂ K̂1 = Ĉ0 ∪ Ĉ1 ∪ Ĉ2. Right: No point

in Pℓ is in the blue sector K̂, but there may be points in the pink sectors.

Charges Received

A point along an edge of the optimal spanner G∗ may receive charges from several cones Ĉ,

possibly with different apices p ∈ Pℓ. Let L be a maximal line segment along an edge of G∗

such that every point in L receives the same charges.

For a cone Ĉ of aperture
√
ε, let K̂ denote a cone with the same apex and axis as Ĉ, but

aperture 3
√
ε; refer to Figure 3.3.

Claim 3.8. If L receives charges from Ĉ, then L ⊂ K̂.

Indeed, if L receive charges from Ĉ, then L ⊂ R(p, q0) ⊂ E0, where E0 is the ellipse with

foci p and the closest point q0 ∈ Ĉ ∩ Pℓ. By Lemma 3.5, R(p, q0) lies in a cone with apex p,

aperture 2
√
ε, and axis pq0. Consequently L ⊂ R(p, q0) ⊂ K̂, which proves Claim 3.8.

Note that if L receives positive charge from a cone Ĉ with apex p and closest point q0, then

∠(L, pq0) ≤ 3 ·
√
ε. Since the aperture of the cones Ĉ is

√
ε, then L receives charges from

cones Ĉ with at most O(1) different orientations. We may restrict ourselves to cones Ĉ that

are translates of each other (but have different apices in Pℓ).

25

Let A be the set of all translates of a cone Ĉ with aperture
√
ε and apices in Pℓ, and L

receives positive charge from Ĉ. We partition A into O(log ε−1) classes as follows. For

j = 1, . . . , ⌈log(2ε−1)⌉, let Aj be the set of cones Ĉ ∈ A such that 2j−ℓ ≤ ∥pq0∥ < 2j+1−ℓ,

where p ∈ Pℓ is the apex of Ĉ and q0 is the closest point in Pℓ ∩ Ĉ to p.

Claim 3.9. For each j, segment L receives O(ε−3/2) ∥L∥ total charges from all cones in Aj.

By refining (3.4) for a cone in Ĉ ∈ Aj, we see that L receives a charge

∥E(Ĉ)∥
∥E∗(Ĉ)∥

· ∥L∥ ≤ O(ε−3/22j−ℓ)

Ω(2−ℓ)
· ∥L∥ ≤ O(ε−3/22−j) · ∥L∥ (3.5)

from each cone in Aj. To prove Claim 3.9, it is enough to show that |Aj| ≤ O(2j).

h−

h−

L

p1

p2

p2

p4

Ĉ1

Ĉ4

U

Figure 3.4: The union U of triangles Ĉ ∩ h−, where L receives charges from the cones Ĉ.

We may assume, without loss of generality, that the symmetry axis of every cone in Aj is

parallel to the x-axis, and their apex is their leftmost point. Let h be a vertical line that

contains the left endpoint of L, and let h− be the left halfplane bounded by h; see Figure 3.4.

The intersections Ĉ ∩ h and K̂ ∩ h are vertical line segment of length O(2j−ℓ tan
√
ε). We

have L ∩ h ⊂ K̂ ∩ h by Claim 3.8; and obviously Ĉ ∩ h ⊂ K̂ ∩ h. Consequently, a vertical

line segment of length O(2j−ℓ tan
√
ε) contains h ∩ Ĉ for all Ĉ ∈ Aj.

Let U be the union of the triangles Ĉ ∩ h− for all Ĉ ∈ Aj. The interior of the Ĉ ∩ h− does

not contain any point in Pℓ. Consequently, the apices of all cones lie on the boundary ∂U of

U . The part of ∂U in h− is a y-monotone curve with slopes ±
√
ε. It follows that the length

26

of ∂U is O(2j−ℓ tan
√
ε/ sin

√
ε) = O(2j−ℓ csc

√
ε) = O(2j−ℓ). This, in turn, implies that ∂U

intersects O(2j) cubes of side length a02
−ℓ at level ℓ of the quadtree, and so |Aj| ≤ O(2j),

as required. This completes the proof Claim 3.9, and hence the proof of Theorem 3.6.

3.3 Lower Bounds in Rd Under the L1 Norm

In this section we introduce a strategy based on the points on the integer lattice Zd, that

achieves a new lower bound for the competitive ratio of an online (1 + ε)-spanner algorithm

in Rd under the L1 norm.

Figure 3.5: A sketch of the construction for the lower bound in two dimensions. Any online
algorithm is required to add the red pairs.

3.3.1 Construction

We describe an adversary strategy with Ωd(ε
−d) points and show that any online algorithm

returns a (1+ε)-spanner whose weight is Ωd(ε
−d) times the optimum weight. One can extend

this result for arbitrary number of points, but that does not necessarily improve the lower

27

bound. The final point set X consists of the points of the integer lattice Zd in the hypercube

[0, 1
εd
)d, where ε < 1

d
. The points are presented in stages in order to deceive the online

algorithm to add more edges than needed. In step 2i, where 0 ≤ i < 1
2ε
, points x ∈ X such

that ∥x∥1 = i will be given to the algorithm. In step 2i+1, where 0 ≤ i < 1
2ε
, the adversary

presents points x ∈ X such that ∥x∥1 = ⌈1/ε⌉ − i (Figure 3.5). In other words, points are

presented in batches according to their L1 norms.

3.3.2 Competitive Ratio

Denote by Xi the set of points presented in step i. The idea is to show that there has to exist

many edges between Xi and Xi+1 in order to guarantee the 1+ ε stretch-factor. Specifically,

we define an ordered-pair as follows.

Definition 3.10 (ordered-pair). A pair of points (x, y) in Rd is an ordered-pair if x ∈ X2i

and y ∈ X2i+1 for some i, and xk ≤ yk for all k, where xk and yk are the k-th coordinates of

x and y respectively.

Now we show that any ordered-pair (x, y) ∈ X2i × X2i+1 requires an edge in the spanner

immediately after x and y are presented. To prove this, we show that previously presented

points cannot serve as via points in a (1 + ε)-path between x and y.

Lemma 3.11. Let (x, y) be an ordered-pair. Then there is no (1 + ε)-path between x and y

that goes through any other point z ∈ Xj with j ≤ i+ 1.

Proof. Let xk, yk, and zk be the k-th coordinate of x, y, and z, respectively. Then the

equality ∥x − z∥1 + ∥y − z∥1 = ∥x − y∥1 holds if and only if xk ≤ zk ≤ yk, for all k. Since

z ̸= x and z ̸= y, we can conclude that ∥x∥1 < ∥z∥1 < ∥y∥1, which means that z is not

added in the previous steps, which is a contradiction. So the equality does not hold and

28

∥x−z∥1+∥y−z∥1 is strictly larger than ∥x−y∥1. As both expressions are integers, we have

∥x− z∥1 + ∥y − z∥1 ≥ 1 + ∥x− y∥1

> ε∥x− y∥1 + ∥x− y∥1

= (1 + ε)∥x− y∥1.

The second inequality follows from the fact that ∥x − y∥1 < ε−1 which holds for any two

points in X. The above inequality shows that a (1 + ε)-path between x and y cannot go

through z and completes the proof of the lemma.

We next show that the total weight of the edges between ordered pairs is Ωd(ε
−2d).

Lemma 3.12. The total weight of the edges between the ordered-pairs is Ωd(ε
−2d).

Proof. Let x = (x1, . . . , xd) and y = (y1, . . . , yd) be two points in X. We show that if

xk ∈ [1
4ε(d+0.25)

, 1
4εd

] for all 1 ≤ k ≤ d, and yk ∈ [3
4ε(d+0.25)

, 3
4εd

] for all 1 ≤ k ≤ d − 1, then

there is choice of yd that makes (x, y) an ordered-pair. This would imply that there are

Ωd(ε
−2d+1) ordered-pairs and by Lemma 3.11, each pair requires an edge of weight Ωd(ε

−1),

thus the total weight of required edges would be Ωd(ε
−2d).

In order to find such a yd, recall that ∥x∥1+∥y∥1 = ⌈ε−1⌉ holds because (x, y) is an ordered-

pair. This equality uniquely determines the value of yd,

yd = ⌈ε−1⌉ −
d∑

k=1

xk −
d−1∑
k=1

yk.

We just need to prove the inequalities yk ≥ xk and yk ≤ 1/(εd) for this unique yk. This can

simply be done by plugging the maximum (and minimum) values of xks and other yks and

29

calculating the result,

yd ≥
1

ε
− d

4εd
− 3(d− 1)

4εd
=

3

4εd
> xd.

Also,

yd ≤
1

ε
+ 1− d

4ε(d+ 0.25)
− 3(d− 1)

4ε(d+ 0.25)
= 1 +

1

ε(d+ 0.25)
<

1

εd
.

Now we can prove the main theorem of this section.

Theorem 3.13. The competitive ratio of any online (1 + ε)-spanner algorithm in Rd under

the L1-norm is Ωd(ε
−d).

Proof. For the point setX ⊂ Rd, the unit-distance graph is a Manhattan network: It contains

a path of weight ∥xy∥1 for all x, y ∈ X. Its weight is Θd(ε
−d) which is an upper bound for

the weight of a (1+ ε)-spanner for any ε ≥ 1. By Lemma 3.12, any online algorithm returns

a spanner of weight Ωd(ε
−2d). Thus its competitive ratio is Ωd(ε

−d).

3.4 High Dimensional Euclidean Lower Bound

In this section, we show that for t ∈ [(1+ε)
√
2, (1−ε)2], every online t-spanner algorithm in

Rd must have competitive ratio 2Ω(ε2d). This would be a complementary lower bound for high

dimensional Euclidean spaces, in contrast with the lower bound we proved in Section 3.3,

where we assumed that d is a constant.

Theorem 3.14. For t ∈ [(1 + ε)
√
2, (1− ε)2], the competitive ratio of any online t-spanner

algorithm in Rd under the Euclidean norm is 2Ω(ε2d).

30

Proof sketch. Let A ⊆ {±1}d be a set of 2Ω(ε2d) points such that every u, v ∈ A differ in

(1±ε)d
2
coordinates (such a set can be constructed randomly using Chernoff). In particular,

∥u− v∥2 is in
√

(1± ε)2d. Every t-spanner for A must contain all
(|A|

2

)
edges, this is as the

weight of any two edges is at least 2
√

(1− ε)2d > t ·
√
(1 + ε)2d.

Next the adversary introduces the point 0⃗ with all zeros, which is at distance
√
d from

all other points. Let H be the star with 0⃗ as a center. Then for every u, v ∈ A, there

is a path in H of weight 2
√
d ≤ t ·

√
(1− ε)2d ≤ t · ∥v − u∥2. The competitive ratio is

Ω
(
(A2)/|A|

)
= 2Ω(ε2d).

31

Chapter 4

General metrics

4.1 The Ordered Greedy Spanner

In this section we study the online spanners problem on general metric spaces. The points

arrive one by one, where for each new point we also receive its distances to all previously

introduced points.

4.1.1 The Algorithm

In the offline setting, the celebrated greedy spanner algorithm [4] sorts the edges by increasing

weight, and then processes them one by one, adding each edge if by the time of examination,

the distance between its endpoints is too large. This algorithm achieves the existentially

optimal1 sparsity and lightness as a function of the stretch factor [50]. However, in the

online model, we do not receive the edges in a sorted order, and therefore cannot execute the

greedy algorithm. As an alternative, we propose here the ordered greedy algorithm. This is

1Specifically, if a t-spanner construction achieves an upper bound m(n, t) and l(n, t), resp., on the size
and lightness of an n-vertex graph then this bound also holds for the greedy t-spanner [50].

32

a deterministic algorithm working against an adaptive adversary. The algorithm receives a

stretch factor t, and works naturally as follows: We maintain a spanner H. When a point vi

arrives, we order its edges2 in the original metric by weight. Each edge {vi′ , vi} is added to

the spanner H if currently dH(vi′ , vi) > t · dX(vi′ , vi). Note that this algorithm can be easily

executed in an online fashion.

4.1.2 The Analysis

Theorem 4.1. Given an n-point metric space (X, dX) in an (adaptive) adversarial order,

with stretch factor t = (2k − 1)(1 + ε) for k ≥ 2 and ε ∈ (0, 1), the ordered greedy algorithm

returns a spanner with O(ε−1 log 1
ε
) · n1+ 1

k edges and weight O(ε−1n
1
k log2 n) · w(MST).

Proof. The bounded stretch of our spanner is straightforward by construction, as every pair

was examined at some point, and taken care of. Next we analyze the lightness.

In the online spanning tree problem, points of a finite metric space arrive one-by-one, and

we need to connect each new point to a previous point to maintain a spanning tree. The

ordered greedy algorithm connects each vertex vi, to the closest vertex in {v1, . . . , vi−1}. As

was shown by Imase and Waxman [70], the tree created by the ordered greedy algorithm

has lightness O(log n), which is the best possible [70]. Denote the online spanning tree by

TG. Note that the ordered greedy spanner H will contain TG, as a shortest edge between

a new vertex to a previously introduced vertex is always added to the spanner H. The

following clustering lemma is frequently used for spanner constructions (see e.g. [3, 29, 36]).

We provide a proof for the sake of completeness.

Claim 4.2. For every i ∈ N, the point set X can be partitioned into clusters Ci of diameter

at most Di = ε · (1 + ε)i w.r.t. the metric dTG
such that |Ci| = O(w(TG)

ε·(1+ε)i
).

2By edges we mean point pairs in the metric space, we will often use notation from graph theory.

33

Proof. Let Ni be a maximal set of vertices such that for every x, y ∈ Ni, dTG
(x, y) > 1

2
·Di.

For every vertex x ∈ Ni let Cx =
{
z : x = argminy∈Ni

dX(z, y)
}

be the Voronoi cell of x.

Clearly, diam(Cx) ≤ Di for all x. Further, consider a continuous version of TG (where each

edge is an interval). Then as the graph TG is connected, each cluster Cx contains at least

1
4
Di length of edges (as the balls

{
BTG

(x, 1
4
Di)
}
x∈Ni

are pairwise disjoint). It follows that

|Ci| = |Ni| ≤
w(TG)
1
4
Di

= O

(
w(TG)

ε · (1 + ε)i

)
,

as claimed.

For every i, consider the scale Ei = {e = {u, v} ∈ H : (1 + ε)i−1 ≤ dX(u, v) < (1 + ε)i}. We

now ready to bound the lightness.

Claim 4.3. The weight of the ordered greedy spanner is O(n
1
k · ε−2 log2 n) · w(MST).

Proof. For scale i, consider the clusters Ci from Claim 4.2. We create an (unweighted) cluster

graph Gi by contacting all the edges in each cluster and adding the edges Ei (i.e., for every

{u, v} ∈ Ei such that u ∈ Cu and v ∈ Cv, we add the edge {cu, cv} to Gi. Consider a cluster

C ∈ Ci where C = (u1, u2, . . . , u|C|) are the vertices ordered w.r.t. arrival times. We argue

that for every j = 1, . . . , |C|, the induced subgraph TG[{u1, . . . , uj}] is connected. Assume

for contradiction otherwise, and let j be the first index violating this rule. Let T j
G be the

tree TG right after the arrival of uj. On the one hand, T j
G is connected, and so it contains a

path P from uj to {u1, . . . , uj−1}. By the assumption that TG[{u1, . . . , uj}] is disconnected,

the a path P has interior vertices that are not {u1, . . . , uj}. On the other hand, there is

a path P ′ from uj to {u1, . . . , uj−1} in TG[C]. We conclude that TG contains two different

paths from u1 to uj, a contradiction to the fact that TG is a tree. Furthermore, note that as

TG is a tree, the diameter of TG[{u1, . . . , uj}] is bounded as well by Di.

We next argue that Gi is a simple graph. Suppose for contradiction that there is a cluster

34

C ∈ Ci with a self loop. This implies that there are va, vb ∈ C such that {va, vb} ∈ Ei.

But this is impossible as dX(va, vb) ≤ dT
G
(va, vb) < Di = ε · (1 + ε)i. Next, suppose for

contradiction that there is an edge {C,C ′} in Gi of multiplicity two or higher. Then there

are vertices x1, x2 ∈ C and y1, y2 ∈ C ′ such that {x1, y1}, {x2, y2} ∈ Ei. Assume, without loss

of generality, that y2 is the last arriving vertex among {x1, x2, y1, y2}. At the time {x2, y2} is

examined by the ordered greedy algorithm, there are paths from x1 to x2 and from y1 to y2

of weight at most Di. As {x1, y1} were already added to H, the spanner contains a x2y2-path

of weight at most 2Di + dX(x1, y1) ≤ 2 · ε · (1 + ε)i + (1 + ε)i < t · (1 + ε)i ≤ t · dX(x2, y2),

which contradicts to the fact that the algorithm chose to add {x2, y2}. We conclude that Gi

is indeed a simple graph.

Next, we argue that Gi has girth at least 2k + 1. Suppose for contradiction that there is

a cycle C0C1C2 . . . CβC0 in Gi with β ≤ 2k − 1, where the edge CjCj+1 corresponds to the

edge {xj, yj+1} ∈ Ei, modulo β. Assume, without loss of generality, that the edge {xβ, y0}

was added last. Note that at the time the algorithm examines {xβ, y0}, for every j, there is

a path in H from yj to xj of weight at most Di. Denote by Ĥ the spanner H at this time.

We conclude that

dĤ(y0, xβ) ≤
β∑

j=0

dĤ(yj, xj) +

β−1∑
j=0

dĤ(xj, yj)

≤ (β + 1) ·Di + β · (1 + ε)i

≤ (2k − 1)(1 + 3ε) · (1 + ε)i−1 ≤ (2k − 1)(1 + 3ε) · dX(y0, x2k−1),

which contradicts the fact that the edge {xβ, y0} was added to the algorithm.

A graph with girth 2k + 1 contains at most O(n1+ 1
k) edges (see e.g. [20]). Hence the total

weight of all the edges in Ei is bounded by

(1 + ε)i · |Ei| = O(|Ci|1+
1
k) · (1 + ε)i = O(n

1
k) · w(TG)

ε · (1 + ε)i
· (1 + ε)i = O(ε−1 n

1
k) ·w(TG).

35

Let emax be the heaviest edge in H, and let imax be the index such that {x, y} ∈ Eimax . Note

that for every scale i ≤ imax − α have weight at most

w(Ei) ≤
(
n

2

)
· (1 + ε)i ≤ n2 · w(emax) · (1 + ε)−α ≤ n2 · w(TG) · (1 + ε)−α .

We conclude that the weight of the spanner is bounded by

w(H) =
∑

i≤imax

w(Ei) =
imax∑

i=imax−log1+ε n
2

w(Ei) +
∑

i<imax−log1+ε n
2

w(Ei)

≤ log1+ε n
2 ·O

(
ε−1n

1
k

)
· w(TG) +

∑
j≥1

w(TG) · (1 + ε)−j

≤ O

(
log n

log(1 + ε)
· n

1
k

ε
+

1

ε

)
· w(TG)

= O

(
n

1
k · log n

ε2

)
· w(TG) = O

(
n

1
k · log

2 n

ε2

)
· w(MST) .

We next bound the sparsity of the ordered greedy spanner.

Claim 4.4. The ordered greedy spanner has O(ε−1 log 1
ε
) · n1+ 1

k edges.

Proof. We will assume for simplicity that the algorithm was executed with parameter t =

(2k − 1)(1 + 2ε), later one can scale the results accordingly. Let {v1, . . . , vn} be the order

in which the vertices arrived. Let Hi be the state of the spanner just after the arrival of vi.

We will greedily construct a laminar set system N0 ⊆ N1 ⊆ . . . , where every pair of point

in Ni will be at distance at least (1 + ε)i w.r.t. the spanner H. Specifically, given a newly

arrived vertex vj which already joined Ni, vj will join Ni+1 if there is no vertex vj′ (where

j′ < j) at distance dHj
(vj, vj′) ≤ (1 + ε)i+1 in the current spanner. Let ∆i =

(1+ε)i+1−1
ε

. We

will call each set Ni a net, and every point vj ∈ Ni a net point. We argue that the set Ni

is ∆i dominating, that is every vertex vj has a net point vj′ ∈ Ni, such that at the time vj

36

arrived, dHj
(vj, vj′) ≤ ∆i.

Indeed, by induction there is a net point vq ∈ Ni−1 such that dHj
(vj, vq) ≤ ∆i−1, and q < j. If

vq ∈ Ni then we are done. Otherwise, there is a point vp ∈ Ni such that dHq(vq, vp) ≤ (1+ε)i

and s < q. Implying dHj
(vj, vp) ≤ dHj

(vj, vq)+dHq(vq, vp) ≤
(1+ε)i−1

ε
+(1+ε)i = (1+ε)i+1−1

ε
=

∆i. For i too small, let Ni = X, and ∆i = 0.

For every i, consider the scale Ei = {e = {u, v} ∈ H : (1 + ε)i−1 ≤ dX(u, v) < (1 + ε)i}. Set

s =
⌈
log1+ε(

4k
2k−1

· 1+ε
ε2·)
⌉
.

We argue that for every i, |Ei| ≤ O (|Ni−s \Ni+s|)1+
1
k . For this goal, we construct an

auxiliary graph Gi with Ni−s as vertices and Ei as edges. Specifically, for every {x, y} ∈ Ei,

let vxvy ∈ Ni be the closest vertices to x, y in Ni at the time they were added. Then we will

add the edge {vx, vy} to Gi.

Clearly Gi does not contain self loops, as the distance between two vertices x, y who has

the same closest vertex in Ni is bounded by 2∆i−s < (1 + ε)i−1. Suppose for contradiction

that there is an edge {v, u} in Gi of multiplicity two or higher. Then there are vertices

x1, x2, y1, y2 such that v was the closest vertex to x1, x2, u was the closest vertex to y1, y2, and

{x1, y1}, {x2, y2} ∈ Ei. Assume, without loss of generality, that y2 is the last arriving vertex

among {x1, x2, y1, y2}. At the time {x2, y2} is examined by the ordered greedy algorithm,

the pairs (x1, x2) and (y1, y2) already were examined, and hence H contain path from x1 to

x2 and from y1 to y2 of weight at most 2 · ∆i−s. By our assumption, {x1, y1} was already

37

added to H. Hence the spanner contains a x2y2-path of weight at most

dH(x2, y2) ≤ dH(x2, y1) + dX(x1, y1) + dH(y1, y2)

≤ 4∆i−s + (1 + ε)i

≤ 4(1 + ε)i−s

ε
+ (1 + ε)i

≤
(
1 + ε+

4

ε(1 + ε)s−1

)
(1 + ε)i−1 ≤ t · dX(x2, y2) ,

a contradiction to the fact that the algorithm choose to add {x2, y2}.

Next, we argue that Gi has girth at least 2k + 1. Suppose for contradiction that there is a

cycle u0u1u2 . . . uβu0 in Gi with β ≤ 2k − 1, where the edge ujuj+1 corresponds to the edge

{xj, yj+1} ∈ Ei, modulo β. Assume, without loss of generality, that the edge {xβ, y0} was

added last. Note that at the time the algorithm examines {xβ, y0}, for every j, there is a

path in H from yj to xj of weight at most 2 ·∆i−s. Denote by Ĥ the spanner H at this time.

We conclude that

dĤ(y0, xβ) ≤
β∑

j=0

dĤ(yj, xj) +

β−1∑
j=0

dĤ(xj, yj)

≤ (β + 1) · 2∆i−s + β · (1 + ε)i

≤ 2k · 2(1 + ε)i−s

ε
+ (2k − 1) · (1 + ε)i

= (2k − 1)(1 + ε+
4k

2k − 1
· 1

ε · (1 + ε)s−1
) · (1 + ε)i−1

≤ (2k − 1)(1 + 2ε) · dX(y0, x2k−1) ,

which contradicts the fact that the edge {xβ, y0} was added to the algorithm.

Consider a pair of net points u, v ∈ Ni+s. Then the distance between u, v in Gi has to

be at least 3. Otherwise, if dGi
(u, v) ≤ 2, there is a net point z ∈ Ni−s and two edges

38

{x0, y1}, {x1, y2} ∈ Ei corresponding to {u, z}, {z, v} in Gi. Then following the logic above,

dĤ(u, v) ≤ dĤ(u, x0) + dĤ(x0, y1) + dĤ(y1, x1) + dĤ(x1, y2) + dĤ(y2, v)

≤ 4∆i−s + 2 · (1 + ε)i

≤
(

8

ε(1 + ε)s
+ 2

)
· (1 + ε)i < (1 + ε)i+s ,

a contradiction to the fact that both u, v joined Ni. It follows that there are no edges between

vertices in Ni+s, and furthermore, each vertex in Ni−s \Ni+s is connected to at most a single

vertex in Ni+s. We conclude that the number of edges incident on Ni+s vertices is bounded

by |Ni−s \Ni+s|. As the induced graph Gi[Ni−s \Ni+s] has girth 2k + 1, it contains at most

O
(
|Ni−s \Ni+s|1+

1
k

)
edges (see e.g. [20]). We conclude

|Ei| = E (Gi) = E (G [Ni−s \Ni+s]) + |Ni−s \Ni+s| = O
(
|Ni−s \Ni+s|1+

1
k

)
.

We conclude a bound on the number of edges:

|E(H)| =
∑
i≥0

|Ei| ≤
∑
i≥0

O
(
|Ni−s \Ni+s|1+

1
k

)
≤ O(n

1
k) ·

∑
i≥0

|Ni−s \Ni+s| = O(s · n1+ 1
k) = O(

log 1
ε

ε
· n1+ 1

k) ,

where the second to last equality follows as each vertex can participate in at least 2s different

addends in the sum.

The theorem now follows.

39

4.2 Lower Bound for General metrics

In this section we prove an Ω(1
k
· n 1

k) lower bound on the competitive ratio of an online

(2k− 1)-spanner of n-vertex graphs. Our lower bound holds in both cases where the quality

is measured by number of edges or the weight. It follows that our upper bound in Theo-

rem 4.1 cannot be substantially improved, even if we consider competitive ratio instead of

lightness/sparsity.

4.2.1 Erdős Girth Conjecture

Recall that the Erdős Girth Conjecture [42] states that for every n, k ≥ 1, there exists an

n-vertex graph with Ω(n1+ 1
k) edges and girth 2k + 2. The proof of the following lemma is

based on a counting argument form the recent lower bound proof for (static) vertex fault

tolerant emulators by Bodwin, Dinitz, and Nazari [18].

Lemma 4.5. Assuming the Erdős girth conjecture, for every n, k ≥ 1, there exists an n-point

metric space (X, dX) with diameter 2k− 1, such that every (2k− 1)-spanner has Ω(1
k
·n1+ 1

k)

edges and weight Ω(n1+ 1
k).

Proof. Let G = (V,EG) be the graph fulfilling the Erdős girth conjecture. That is, G is an

unweighted n-vertex graph with girth 2k + 2 and |EG| = Ω(n1+ 1
k) edges. Set a metric dX

over V as follows, 3

∀u, v ∈ V dX(u, v) = min {dG(u, v), 2k − 1} .

Suppose that H = (V,EH) is a (2k− 1)-spanner for (V, dX) with weight function wH , where

the weight of an edge e′ ∈ {u, v} ∈ EH is wH(e
′) = dX(u, v). Let E

′ = EH \EG be the edges

3Note that ∀x, y, z ∈ V , dX(x, z) = min {dG(x, z), 2k − 1} ≤ min {dG(x, y) + dG(y, z), 2k − 1} ≤
min {dG(x, y), 2k − 1}+min {dG(y, z), 2k − 1} = dX(x, y) + dX(y, z). Thus dX is a metric space.

40

of H which are not in G. We say that an edge e′ ∈ E ′ covers an edge e ∈ EG, if there is a

shortest path in G between the endpoints of e′ going through e of weight at most k. Note

that as e′ has weight at most k, there is a unique shortest path in G between its endpoints.

In particular, each edge e ∈ E ′ can cover at most k edges in EG.

Consider an edge e = {v0, vs} ∈ EG \ EH . We argue that some edge e′ ∈ E ′ must cover

e. Suppose for contradiction otherwise, and let P = (v0, v1, . . . , vs) be the shortest path

in H between the endpoints v0, vs of e. Suppose first that P contains an edge vi, vi+1 of

weight at least wH({vi, vi+1}) ≥ k + 1. In particular, dG({vi, vi+1}) ≥ k + 1. Then by the

triangle inequality, dG(v0, vi) + dG(vi+1, vs) ≥ dG(vi, vi+1) − dG(v0, vs) ≥ k. It follows that

P has weight at least 2k + 1, a contradiction to the fact that H is a 2k − 1 spanner. We

conclude that for every i ∈ {0, . . . , s − 1}, dX(vi, vi+1) = dG(vi, vi+1) ≤ k. In particular, in

G there is a unique path Pi = (ui
0, . . . , u

i
si
) between vi to vi+1 of weight dG(vi, vi+1) ≤ k. As

no edge covers e, e does not belong to any of these paths. The concatenation of this paths

P0 ◦ P1 ◦ · · · ◦ Ps−1 is a path in G of at most 2k − 1 edges between the endpoints of e. It

follows that G contains a 2k-cycle, a contradiction.

For conclusion, as every edge in EG \ EH is covered, and every edge in E ′ = EH \ EG can

cover at most k edges, it follows that |EH \ EG| ≥ 1
k
· |EG \ EH |. In particular,

|EH | = |EH ∩ EG|+ |EH \ EG| ≥ |EH ∩ EG|+
1

k
· |EG \ EH | ≥

1

k
· |EG| .

To bound the weight, for each edge e′ = {s, t} ∈ E ′, let Ae′ be the set of edges in EG covered

by e′. Note that wH(e
′) = dG(s, t) = |Ae′ |. As all the edges in EG \ EH are covered, we

41

conclude

wH(EH) = wH(EH ∩ EG) + wH(EH \ EG)

= |EH ∩ EG|+
∑
e′∈E′

|Ae′|

≥ |EH ∩ EG|+ |EG \ EH | = |EG| = Ω(n1+ 1
k),

the lemma now follows.

4.2.2 Competitive Ratio Lower Bound

Theorem 4.6. Assuming Erdős girth conjecture, the competitive ratio of any online (2k−1)-

spanner algorithm for n-point metrics is Ω(1
k
· n 1

k), for both weight and edges.

In more details, there is an n-point metric space (X, dX) with a (2k − 1)-spanner HOPT =

(X,EOPT), and order over X for which every (2k − 1)-spanner produced by an online algo-

rithm will have Ω(1
k
· n 1

k) · |EOPT| edges, and Ω(1
k
· n 1

k) · w(HOPT) weight.

Proof. Consider the metric space (X, dX) from Lemma 4.5 with parameters n−1 and k. Let

X ′ be the metric space X with an additional point r at distance k−1
2

from all the points in

X. Note that no pairwise distance is changed due to the introduction of r. The adversary

provides the online algorithm the points in X first (in some arbitrary order), and the point

r last. After the algorithm received all the points in X ′, it has a 2k − 1-spanner Hn−1.

According to Lemma 4.5, Hn−1 has Ω(1
k
· (n − 1)1+

1
k) = Ω(1

k
· n1+ 1

k) edges, and Ω(n1+ 1
k)

weight.

Next the algorithm introduces r. Consider the spanner S = (X ′, ES) consisting of n − 1

edges with r as a center. Note that the maximum distance in S is 2k − 1, and hence S is a

2k − 1 spanner as required. Note that S contains n− 1 edges of weight 2k−1
2

each, and thus

42

have total weight of O(nk). We conclude

|EHn| ≥ |EHn−1| = Ω(1
k
· n1+ 1

k) = Ω(1
k
· n 1

k) · |ES| .

w(EHn) ≥ w(EHn−1) = Ω(n1+ 1
k) = Ω(1

k
· n 1

k) · w(S) .

4.3 Ultrametrics

4.3.1 Definition

An ultrametric (X, d) is a metric space satisfying a strong form of the triangle inequality, that

is, for all x, y, z ∈ X, d(x, z) ≤ max {d(x, y), d(y, z)}. A related notion is a k-hierarchical

well-separated tree (k-HST).

Definition 4.7 (α-HST). A metric (X, dX) is a α-hierarchical well-separated tree (α-HST)

if there exists a bijection φ from X to leaves of a rooted tree T in which:

• Each node v ∈ T is associated with a label ℓ(v) such that ℓ(v) = 0 if v is a leaf and

ℓ(v) ≥ αℓ(u) if v is an internal node and u is any child of v.

• dX(x, y) = ℓ(lca(φ(x), φ(y))) where lca(u, v) is the least common ancestor of any two

given nodes u, v in T .

It is well known that any ultrametric is a 1-HST, and any k-HST is an ultrametric [6].

43

4.3.2 Spanner Construction

Suppose that we are given an HST in the online model. Construct a spanner H using the

following algorithm: for every arriving vertex v, let u be the first vertex in the order of arrival

among all the nearest neighbors of v. We add the edge {u, v} to the spanner H. Note that

H is a spanning tree at all times (we will later argue that it is actually an MST).

We show that for general ultrametrics, the online algorithm can maintain a spanner of

lightness arbitrarily close to 1 (with constant stretch).

4.3.3 Analysis

Lemma 4.8. If U is an α-HST, then the spanner H has distortion 2 · α
α−1

.

Proof. Think of the representation of the HST as a tree with labeled internal nodes. For

every internal node χ, we call the first descendent in the order of arrival the center of χ.

Consider a vertex v at the time of its arrival, let χ be an internal node which is an ancestor

of v, and let u be the center of χ. We argue that dH(v, u) ≤ t · dU(v, u) for t = α
α−1

. The

proof is by induction. The induction step is immediate if the edge {u, v} was added to H.

Otherwise, let χ′ be the highest internal node which is an ancestor of v but has a center other

than u. Let x be the center of χ′. At the time when x arrives, it was the only descendent

of χ′. In particular, the closest neighbors of x at this time is u (as otherwise, there must

be an internal vertex χ′′ between χ′ and χ with center other than u). As u is the center of

χ, it is the first arriving descendent of χ. In other words, u is the first vertex in the order

of arrival among all the nearest neighbors of u. We conclude that {x, u} ∈ H. As U is an

44

α-HST ℓ(χ′) ≤ 1
α
ℓ(χ). By the induction hypothesis, dH(v, x) ≤ t · dU(v, x). We conclude

dH(v, u) ≤ dH(v, x) + dH(x, u) ≤ t · dU(v, x) + dU(x, u)

= t · ℓ(χ′) + ℓ(χ) ≤
(
t

α
+ 1

)
· ℓ(χ) = t · ℓ(χ) = t · dU(v, u) .

For two arbitrary vertices u, v, let χ = lca(u, v), and let x be the center of χ. By the

definition of HST, dU(v, x), dU(x, u) ≤ dU(v, u). Using the previous argument,

dH(v, u) ≤ dH(v, x) + dH(x, u) ≤ t · (dU(v, x) + dU(x, u)) = 2t · dU(v, u) .

Lemma 4.9. The spanner H is an MST of U .

Proof. Assume for contradiction otherwise. Then w (MST(U)) < w (H) . Let T be an MST

of U containing the maximum number edges of H. Let {u, v} = e ∈ H \ T be some edge.

Assume, without loss of generality, that u arrived before v, and let χ = lca(u, v). As the

algorithm added edge {u, v} to H, necessarily u is the center of χ. Further, there is a child

node χv of χ, where v is a unique descendent of χv (at the time of arrival). Let Sv be the set

of all descendants of χv in U . Then T contains at least one edge from the vertices of Sv to a

vertex outside of Sv. Let e
′ ∈ T be such an edge that is on the unique uv-path in T . Then

w(e′) ≥ ℓ(χ) = w(e), and T ∪ {e} \ {e′} is a spanning tree of U , of weight at most w(T). A

contradiction to the maximality of T .

Theorem 4.10. Given an ultrametric U , for every α ≥ 1, an online algorithm can maintain

a 2α2

α−1
-spanner of wieght α·w(MST). Alternatively, for every ε > 0, it can maintain a spanner

of weigth (1 + ε) · w(MST) and stretch 2(1+ε)2

ε
= O(ε−1).

Proof. Let Uα be the α-HST for U where we round every distance up to the next integer

power of α. That is, dUα(u, v) = α⌈logα dU (u,v)⌉. Note that dU(u, v) ≤ dUα(u, v) < α · dU(u, v).

45

In particular, the weight of the MST in Uα is larger than the MST of U by at most a factor

α. We run the online algorithm above on Uα instead of U . As a result, we get a spanner Hα

of Uα with stretch 2 · α
α−1

and lightness 1 (w.r.t. Uα). Let H be the same spanner with the

original weights. Then for every pair of vertices u, v

dH(u, v) ≤ dHα(u, v) ≤
2α

α− 1
· dUα(u, v) ≤

2α2

α− 1
· dU(u, v) .

The weight of H is bounded by w(H) ≤ w(Hα) = w(MST(Uα)) ≤ α · w(MST(U)).

Remark 4.11. The minimal possible stretch in the Theorem 4.10 above is 8, which is ob-

tained for lightness α = 2. This stretch is the best possible stretch obtained by a spanning

tree. Indeed, consider the metric induced on the leaves of the full binary tree. One can ob-

serve that this is an ultrametric. Chan et al. [28] showed that for every ε > 0, there is a full

binary tree large enough such that every tree over its set of leaves has stretch greater than

8− ε. (see [45, 46, 48, 63] for further details on the Steiner point removal problem.)

4.3.4 Establishing the Trade-off

Note that a spanner with stretch smaller than 2 might require Ω(n2) edges. Indeed, the

uniform metric (where all distances are 1) is an ultrametric, and every spanner with a

missing edge has stretch at least 2. Similarly, it follows that every such spanner will have

lightness Ω(n). In the next theorem we show that an online algorithm can get arbitrarily

close to stretch 2.

Theorem 4.12. Given an ultrametric U , for every ε ∈ (0, 1
2
), an online algorithm can

maintain an (2 + ε)-spanner with O(ε−1 log ε−1) · n edges and O(ε−2) · w(MST) weight.

Proof. For every i ∈ {0, 1, . . . , κ} with κ =
⌊
log1+ε ε

−1
⌋
, let Ui be the ultrametric U , where

for every pair of vertices, dUi
(u, v) is defined to be the (1 + ε)i · ε−j for the minimal index j

46

such that dUi
(u, v) ≤ (1 + ε)i · ε−j. We construct a spanner Hi for Ui using the algorithm

above. The final spanner will be H =
⋃

i Hi (with the original weights).

The sparsity is straightforward, as we have κ+1 = O(log1+ε ε
−1) = O(ε−1 log ε−1) trees. For

the lightness, let T be an MST of the ultrametric X. Denote by Ti the MST of Ui. For every

edge e ∈ T , it holds that

κ∑
i=0

wUi
(e) ≤ wU(e)

κ∑
i=0

(1 + ε)i =
(1 + ε)κ+1 − 1

ε
· wU(e) = O(ε−2) · wU(e).

We now can bound the weight of H as follows:

wU(H) ≤
κ∑

i=0

wU(Hi) ≤
κ∑

i=0

wUi
(Hi) =

κ∑
i=0

wUi
(Ti) ≤

κ∑
i=0

wUi
(T)

=
κ∑

i=0

∑
e∈T

wUi
(e) =

∑
e∈T

κ∑
i=0

wUi
(e) =

∑
e∈T

O(ε−2)wU(e) = O(ε−2)wU(T).

It remains to analyze the stretch of H. For every pair of vertices u, v ∈ U , there are unique

indices i, j such that (1 + ε)i−1 · ε−j < dU(u, v) ≤ (1 + ε)i · ε−j. Hence in Ui it holds that

dUi
(u, v) ≤ (1 + ε) · dU(u, v). As Ui is an ε−1-HST, it holds that

dH(u, v) ≤ dHi
(u, v) ≤ 2ε−1

ε−1 − 1
·dUi

(u, v) ≤ 2

1− ε
· (1+ ε) ·dU(u, v) ≤ 2(1+3ε) ·dU(u, v) .

One can obtain the stretch factor 2 + ε, stated in the theorem, by scaling ε accordingly.

47

Chapter 5

Conclusions and future work

We studied online spanners for points in metric spaces. In the Euclidean d-space, we pre-

sented an online (1 + ε)-spanner algorithm with competitive ratio O(ε1−d log n), improving

the previous bound of Od(ε
−(d+1) log n) from [17]. In fact, the spanner maintained by the

algorithm has Od(ε
1−d log ε−1) · n edges, almost matching the (offline) optimal bound of

Od(ε
1−d) ·n. Moreover, in the plane, a tighter analysis of the same algorithm provides an al-

most quadratic improvement of the competitive ratio to O(ε−3/2 log ε−1 log n), by comparing

the online spanner with an instance-optimal spanner directly, circumventing the comparison

to an MST (i.e., lightness). Note that, the logarithmic dependence on n is unavoidable due to

a Ω((ε−1/ log ε−1) log n) lower bound in the real line [17]. However, our lower bound Ω(ε−d)

under L1-norm in Rd shows a dependence on the dimension. This leads to the following

question.

Question 5.1. Does the competitive ratio of an online (1 + ε)-spanning algorithm for n

points in Rd necessarily grow proportionally with ε−f(d) · log n, where limd→∞ f(d) = ∞?

For t ∈ [(1 + ε)
√
2, (1 − ε)2], we showed that every online t-spanner algorithm in Rd must

have competitive ratio 2Ω(ε2d). Next, we studied online spanners in general metrics. We

48

showed that the ordered greedy algorithm maintains a spanner with O(ε−1 log k
ε
) ·n1+ 1

k edges

and O(ε−1n
1
k log2 n) lightness, with stretch factor t = (2k−1)(1+ε) for k ≥ 2 and ε ∈ (0, 1),

for a sequence of n points in a metric space. Moreover, we show that these bounds cannot be

significantly improved, by introducing an instance that achieves an Ω(1
k
· n1/k) competitive

ratio on both sparsity and lightness. Finally, we established the trade-off among stretch,

number of edges and lightness for points in ultrametrics, showing that one can maintain a

(2 + ε)-spanner for ultrametrics with O(n · ε−1 log ε−1) edges and O(ε−2) lightness.

49

Bibliography

[1] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor. A general approach
to online network optimization problems. ACM Transactions on Algorithms (TALG),
2(4):640–660, 2006.

[2] N. Alon and Y. Azar. On-line Steiner trees in the Euclidean plane. Discrete & Compu-
tational Geometry, 10:113–121, 1993.

[3] S. Alstrup, S. Dahlgaard, A. Filtser, M. Stöckel, and C. Wulff-Nilsen. Constructing light
spanners deterministically in near-linear time. Theoretical Computer Science, 2022.

[4] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted
graphs. Discrete & Computational Geometry, 9(1):81–100, 1993.

[5] B. Awerbuch, Y. Azar, and Y. Bartal. On-line generalized Steiner problem. Theoretical
Computer Science, 324(2-3):313–324, 2004.

[6] Y. Bartal, N. Linial, M. Mendel, and A. Naor. Some low distortion metric Ramsey
problems. Discret. Comput. Geom., 33(1):27–41, 2005.

[7] S. Baswana. Streaming algorithm for graph spanners—single pass and constant pro-
cessing time per edge. Inf. Process. Lett., 106(3):110–114, 2008.

[8] S. Baswana, S. Khurana, and S. Sarkar. Fully dynamic randomized algorithms for graph
spanners. ACM Trans. Algorithms, 8(4):35:1–35:51, 2012.

[9] R. Becker, S. Forster, A. Karrenbauer, and C. Lenzen. Near-optimal approximate short-
est paths and transshipment in distributed and streaming models. SIAM J. Comput.,
50(3):815–856, 2021.

[10] M. d. Berg, O. Cheong, M. J. Kreveld, and M. H. Overmars. Computational geometry:
algorithms and applications, 3rd Edition. Springer, 2008. see here.

[11] T. Bergamaschi, M. Henzinger, M. P. Gutenberg, V. V. Williams, and N. Wein. New
techniques and fine-grained hardness for dynamic near-additive spanners. In Proc. 32nd
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1836–1855, 2021.

[12] P. Berman and C. Coulston. On-line algorithms for Steiner tree problems. In Proc. 29th
ACM Symposium on Theory of Computing (STOC), pages 344–353, 1997.

50

https://www.worldcat.org/title/computational-geometry-algorithms-and-applications/oclc/227584184

[13] A. Bernstein, S. Forster, and M. Henzinger. A deamortization approach for dynamic
spanner and dynamic maximal matching. In Proc. 30th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1899–1918, 2019.

[14] S. Bhore, A. Filtser, H. Khodabandeh, and C. D. Tóth. Online spanners in metric
spaces. arXiv preprint arXiv:2202.09991, 2022.

[15] S. Bhore and C. D. Tóth. Light Euclidean Steiner spanners in the plane. In Proc. 37th
International Symposium on Computational Geometry (SoCG), volume 189 of LIPIcs,
pages 31:1–17. Schloss Dagstuhl, 2021.

[16] S. Bhore and C. D. Tóth. On Euclidean Steiner (1+ε)-spanners. In Proc. 38th Sym-
posium on Theoretical Aspects of Computer Science (STACS), volume 187 of LIPIcs,
pages 13:1–13:16. Schloss Dagstuhl, 2021.

[17] S. Bhore and C. D. Tóth. Online Euclidean spanners. In Proc. 29th European Symposium
on Algorithms (ESA), volume 204 of LIPIcs, pages 116:1–16:19. Schloss Dagstuhl, 2021.

[18] G. Bodwin, M. Dinitz, and Y. Nazari. Vertex Fault-Tolerant Emulators. In M. Braver-
man, editor, 13th Innovations in Theoretical Computer Science Conference (ITCS
2022), volume 215 of Leibniz International Proceedings in Informatics (LIPIcs), pages
25:1–25:22, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik.

[19] G. Bodwin and S. Krinninger. Fully dynamic spanners with worst-case update time.
In Proc. 24th Annual European Symposium on Algorithms (ESA), volume 57 of LIPIcs,
pages 17:1–17:18. Schloss Dagstuhl, 2016.

[20] B. Bollobás. Extremal Graph Theory. Academic Press, London, 1978.

[21] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998. see here.

[22] G. Borradaile, E. W. Chambers, D. Eppstein, W. Maxwell, and A. Nayyeri. Low-stretch
spanning trees of graphs with bounded width. arXiv preprint arXiv:2004.08375, 2020.

[23] G. Borradaile, H. Le, and C. Wulff-Nilsen. Greedy spanners are optimal in doubling
metrics. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2371–
2379, 2019.

[24] P. Bose, P. Carmi, M. Farshi, A. Maheshwari, and M. Smid. Computing the greedy
spanner in near-quadratic time. Algorithmica, 58(3):711–729, 2010.

[25] P. Bose, J. D. Carufel, P. Morin, A. van Renssen, and S. Verdonschot. Towards tight
bounds on theta-graphs: More is not always better. Theor. Comput. Sci., 616:70–93,
2016.

51

https://www.cambridge.org/il/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/online-computation-and-competitive-analysis?format=PB&isbn=9780521619462

[26] P. Bose, J. Gudmundsson, and P. Morin. Ordered theta graphs. Computational Geom-
etry, 28(1):11–18, 2004.

[27] P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph problems
in higher dimensions. In V. Ramachandran, editor, Proceedings of the Fourth Annual
ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 25-27 January 1993, Austin,
Texas, USA, pages 291–300. ACM/SIAM, 1993. see here.

[28] T.-H. H. Chan, D. Xia, G. Konjevod, and A. Richa. A tight lower bound for the Steiner
point removal problem on trees. In Proc. 9th Conference on Approximation Algorithms
for Combinatorial Optimization Problems, and 10th Conference on Randomization and
Computation (APPROX/RANDOM), pages 70–81, Berlin, 2006. Springer-Verlag.

[29] S. Chechik and C. Wulff-Nilsen. Near-optimal light spanners. ACM Trans. Algorithms,
14(3):33:1–33:15, 2018.

[30] L. P. Chew. There are planar graphs almost as good as the complete graph. J. Comput.
Syst. Sci., 39(2):205–219, 1989.

[31] K. L. Clarkson. Approximation algorithms for shortest path motion planning. In Proc.
19th ACM Symposium on Theory of Computing (STOC), pages 56–65, 1987.

[32] G. Das and G. Narasimhan. A fast algorithm for constructing sparse Euclidean spanners.
International Journal of Computational Geometry & Applications, 7(04):297–315, 1997.

[33] M. J. Demmer and M. P. Herlihy. The arrow distributed directory protocol. In Proc.
12th Symposium on Distributed Computing (DISC), volume 1499 of LNCS, pages 119–
133. Springer, 1998.

[34] F. Ebrahimnejad and J. R. Lee. Non-existence of annular separators in geometric graphs.
arXiv preprint arXiv:2107.09790, 2021.

[35] M. Elkin. Streaming and fully dynamic centralized algorithms for constructing and
maintaining sparse spanners. ACM Trans. Algorithms, 7(2):20:1–20:17, 2011.

[36] M. Elkin and S. Solomon. Fast constructions of lightweight spanners for general graphs.
ACM Trans. Algorithms, 12(3):29:1–29:21, 2016.

[37] D. Eppstein, M. T. Goodrich, and N. Mamano. Reactive proximity data structures
for graphs. In Latin American Symposium on Theoretical Informatics, pages 777–789.
Springer, 2018.

[38] D. Eppstein, M. T. Goodrich, and D. Strash. Linear-time algorithms for geometric
graphs with sublinearly many edge crossings. SIAM Journal on Computing, 39(8):3814–
3829, 2010.

[39] D. Eppstein and E. Havvaei. Parameterized leaf power recognition via embedding into
graph products. Algorithmica, 82(8):2337–2359, 2020.

52

https://dl.acm.org/doi/10.5555/313559.313777

[40] D. Eppstein and H. Khodabandeh. On the edge crossings of the greedy spanner. In
37th International Symposium on Computational Geometry, volume 12, page 37, 2021.

[41] D. Eppstein and H. Khodabandeh. Optimal spanners for unit ball graphs in doubling
metrics. arXiv preprint arXiv:2106.15234, 2021.

[42] P. Erdős. Extremal problems in graph theory. Theory of Graphs and Its Applications
(Proc. Sympos. Smolenice), pages 29–36, 1964. see here.

[43] M. Farshi and J. Gudmundsson. Experimental study of geometric t-spanners. ACM
Journal of Experimental Algorithmics, 14:1.3:1–1.3:29, 2009.

[44] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. Graph distances in the
data-stream model. SIAM J. Comput., 38(5):1709–1727, 2008.

[45] A. Filtser. Steiner point removal with distortion O(log k) using the relaxed-Voronoi
algorithm. SIAM J. Comput., 48(2):249–278, 2019.

[46] A. Filtser. Scattering and sparse partitions, and their applications. In Proc. 47th
International Colloquium on Automata, Languages, and Programming (ICALP), volume
168 of LIPIcs, pages 47:1–47:20. Schloss Dagstuhl, 2020.

[47] A. Filtser, M. Kapralov, and N. Nouri. Graph spanners by sketching in dynamic streams
and the simultaneous communication model. In Proc. 32nd ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1894–1913, 2021.

[48] A. Filtser, R. Krauthgamer, and O. Trabelsi. Relaxed Voronoi: A simple framework
for terminal-clustering problems. In Proc. 2nd Symposium on Simplicity in Algorithms
(SOSA), volume 69 of OASICS, pages 10:1–10:14. Schloss Dagstuhl, 2019.

[49] A. Filtser and S. Solomon. The greedy spanner is existentially optimal. In Proceedings
of the 35th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC), pages 9–17. ACM, 2016.

[50] A. Filtser and S. Solomon. The greedy spanner is existentially optimal. SIAM J.
Comput., 49(2):429–447, 2020.

[51] J. Fischer and S. Har-Peled. Dynamic well-separated pair decomposition made easy. In
Proc. 17th Canadian Conference on Computational Geometry (CCCG), pages 235–238,
2005. see here.

[52] J. Gao, L. J. Guibas, and A. Nguyen. Deformable spanners and applications. Comput.
Geom., 35(1-2):2–19, 2006.

[53] M. J. Golin, H. Khodabande, and B. Qin. Non-approximability and polylogarithmic
approximations of the single-sink unsplittable and confluent dynamic flow problems.
arXiv preprint arXiv:1709.10307, 2017.

53

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.210.7240
http://www.cccg.ca/proceedings/2005/32.pdf

[54] M. T. Goodrich, S. Gupta, H. Khodabandeh, and P. Matias. How to catch marathon
cheaters: New approximation algorithms for tracking paths. InWorkshop on Algorithms
and Data Structures, pages 442–456. Springer, 2021.

[55] L. Gottlieb and L. Roditty. An optimal dynamic spanner for doubling metric spaces. In
Proc. 16th Annual European Symposium on Algorithms (ESA), volume 5193 of LNCS,
pages 478–489. Springer, 2008.

[56] L.-A. Gottlieb. A light metric spanner. In Proc. 56th IEEE Symposium on Foundations
of Computer Science (FOCS), pages 759–772, 2015.

[57] L.-A. Gottlieb, A. Kontorovich, and R. Krauthgamer. Efficient regression in metric
spaces via approximate Lipschitz extension. IEEE Transactions on Information Theory,
63(8):4838–4849, 2017.

[58] L.-A. Gottlieb and L. Roditty. An optimal dynamic spanner for doubling metric spaces.
In Proc. 16th European Symposium on Algorithms (ESA), volume 5193 of LNCS, pages
478–489. Springer, 2008.

[59] E. Grigorescu, Y. Lin, and K. Quanrud. Online directed spanners and Steiner forests.
In Proc. Approximation, Randomization, and Combinatorial Optimization Algorithms
and Techniques (APPROX/RANDOM), volume 207 of LIPIcs, pages 5:1–5:25. Schloss
Dagstuhl, 2021.

[60] J. Gudmundsson and C. Knauer. Dilation and detours in geometric networks. In
Handbook of Approximation Algorithms and Metaheuristics, volume 2. Chapman and
Hall/CRC, 2nd edition, 2018. see here.

[61] J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Fast greedy algorithms for
constructing sparse geometric spanners. SIAM Journal on Computing, 31(5):1479–1500,
2002.

[62] J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and M. Smid. Approximate distance
oracles for geometric spanners. ACM Transactions on Algorithms (TALG), 4(1):1–34,
2008.

[63] A. Gupta. Steiner points in tree metrics don’t (really) help. In Proc. 12th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 220–227, 2001. see here.

[64] A. Gupta, R. Ravi, K. Talwar, and S. W. Umboh. LAST but not least: Online spanners
for buy-at-bulk. In P. N. Klein, editor, Proc. 28th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 589–599, 2017.

[65] M. Hajiaghayi, V. Liaghat, and D. Panigrahi. Online node-weighted steiner forest and
extensions via disk paintings. SIAM J. Comput., 46(3):911–935, 2017.

[66] S. Har-Peled. Geometric Approximation Algorithms, volume 173 of Mathematical Sur-
veys and Monographs. AMS, Providence, RI, 2011. see here.

54

https://www.routledge.com/Handbook-of-Approximation-Algorithms-and-Metaheuristics-Second-Edition/Gonzalez/p/book/9780367570286
https://dl.acm.org/doi/10.5555/365411.365448
https://bookstore.ams.org/surv-173/

[67] S. Har-Peled and M. Mendel. Fast construction of nets in low-dimensional metrics and
their applications. SIAM J. Comput., 35(5):1148–1184, 2006.

[68] M. Herlihy, S. Tirthapura, and R. Wattenhofer. Competitive concurrent distributed
queuing. In Proc. 20th ACM Symposium on Principles of Distributed Computing
(PODC), pages 127–133, 2001.

[69] M. Imase and B. M. Waxman. Dynamic Steiner tree problem. SIAM Journal on Discrete
Mathematics, 4(3):369–384, 1991.

[70] M. Imase and B. M. Waxman. Dynamic steiner tree problem. SIAM J. Discret. Math.,
4(3):369–384, 1991.

[71] J. M. Keil. Approximating the complete Euclidean graph. In Proc. 1st Scandinavian
Workshop on Algorithm Theory (SWAT), volume 318 of LNCS, pages 208–213. Springer,
1988.

[72] R. Krauthgamer and J. R. Lee. Navigating nets: Simple algorithms for proximity search.
In Proc 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 798–807,
2004. see here.

[73] H. Le and S. Solomon. Truly optimal Euclidean spanners. In Proc. 60th IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pages 1078–1100, 2019.

[74] H. Le and S. Solomon. Light Euclidean spanners with Steiner points. In Proc. 28th
European Symposium on Algorithms (ESA), volume 173 of LIPIcs, pages 67:1–67:22.
Schloss Dagstuhl, 2020.

[75] H. Le and S. Solomon. Near-optimal spanners for general graphs in (nearly) linear
time. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 3332–3361. SIAM, 2022.

[76] H. Le and C. Than. Greedy spanners in euclidean spaces admit sublinear separa-
tors. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 3287–3310. SIAM, 2022.

[77] N. Mamano, A. Efrat, D. Eppstein, D. Frishberg, M. Goodrich, S. Kobourov, P. Matias,
and V. Polishchuk. Euclidean tsp, motorcycle graphs, and other new applications of
nearest-neighbor chains. arXiv preprint arXiv:1902.06875, 2019.

[78] A. McGregor. Graph stream algorithms: a survey. SIGMOD Rec., 43(1):9–20, 2014.

[79] J. Naor, D. Panigrahi, and M. Singh. Online node-weighted Steiner tree and re-
lated problems. In Proc. 52nd IEEE Symposium on Foundations of Computer Science
(FOCS), pages 210–219, 2011.

[80] G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University
Press, 2007.

55

https://www.wisdom.weizmann.ac.il/~robi/papers/KL-NavNets-SODA04.pdf

[81] D. Peleg and A. A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–116,
1989.

[82] D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. SIAM J.
Comput., 18(4):740–747, 1989.

[83] D. Peleg and E. Upfal. A trade-off between space and efficiency for routing tables.
Journal of the ACM (JACM), 36(3):510–530, 1989.

[84] L. Roditty. Fully dynamic geometric spanners. Algorithmica, 62(3-4):1073–1087, 2012.

[85] J. Ruppert and R. Seidel. Approximating the d-dimensional complete Euclidean graph.
In Proc. 3rd Canadian Conference on Computational Geometry (CCCG), pages 207–
210, 1991.

[86] C. Schindelhauer, K. Volbert, and M. Ziegler. Geometric spanners with applications in
wireless networks. Computational Geometry, 36(3):197–214, 2007.

[87] M. H. Smid. The well-separated pair decomposition and its applications., 2018.

[88] M. H. M. Smid. The well-separated pair decomposition and its applications. In Handbook
of Approximation Algorithms and Metaheuristics, volume 2. CRC Press, 2nd edition,
2018. see here.

[89] S. W. Umboh. Personal communication, October 2021.

[90] A. C. Yao. Space-time tradeoff for answering range queries (extended abstract). In
Proc. 14th Annual ACM Symposium on Theory of Computing (STOC), pages 128–136,
1982.

[91] A. H. A. Zargari, S. A. H. Aqajari, H. Khodabandeh, A. M. Rahmani, and F. Kurdahi.
An accurate non-accelerometer-based ppg motion artifact removal technique using cy-
clegan. arXiv preprint arXiv:2106.11512, 2021.

56

https://www.routledge.com/Handbook-of-Approximation-Algorithms-and-Metaheuristics-Second-Edition/Gonzalez/p/book/9780367570286

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Thesis
	Introduction
	Problem Definition
	Lightness and Sparsity
	Online Spanners and Competitive Ratio

	History
	New Results
	Upper Bounds for Points in Rd
	Lower Bounds for Points in Rd
	Points in General Metrics

	Related Work
	Geometric Spanners in the offline setting
	Dynamic & Streaming Algorithms for Graph Spanners
	Incremental Algorithms for Geometric Spanners
	Deformable Spanners
	Well-Separated Pair Decomposition (WSPD)
	Ordered Yao-Graphs and -Graphs
	Online Steiner Spanners

	Euclidean metrics
	An Improvement in All Dimensions
	Online Algorithm ALG1
	Analysis

	Further Improvements in the Plane
	Minimum-Weight Euclidean (1+)-Spanner
	Competitive Analysis

	Lower Bounds in Rd Under the L1 Norm
	Construction
	Competitive Ratio

	High Dimensional Euclidean Lower Bound

	General metrics
	The Ordered Greedy Spanner
	The Algorithm
	The Analysis

	Lower Bound for General metrics
	Erdős Girth Conjecture
	Competitive Ratio Lower Bound

	Ultrametrics
	Definition
	Spanner Construction
	Analysis
	Establishing the Trade-off

	Conclusions and future work
	Bibliography

