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Abstract

We develop an interactive model of human mem-
* ory called the Hebbian Recurrent Network (HRN)
which integrates work in the mathematical modeling
of memory with that in error correcting connection-
ist networks. It incorporates the Matrix Model (Pike,
1984) into the Simple Recurrent Network (SRN, El-
man, 1989). The result is an architecture which has
the desirable memory characteristics of the matrix
model such as low interference and massive general-
ization, but which is able to learn appropriate en-
codings for items, decision criteria and the control
functions of memory which have traditionally been
chosen a priori in the mathematical memory litera-
ture. Simulations demonstrate that the HRN is well
suited to a recognition task inspired by typical mem-
ory paradigms. In comparison to the SRN, the HRN
is able to learn longer lists, and is not degraded sig-
nificantly by increasing the vocabulary size.

Introduction

Within the recent literature there has been consider-
able debate about the ability of connectionist mod-
els to capture human memory phenomena. While
there is a feeling that connectionist models have much
to offer, the results thus far have been mixed (Rat-
cliff, 1990; Lewandowsky, 1991). Connectionist mod-
els provide mechanisms by which encodings, decision
criteria and control functions can be learned, yet, on
some very basic variables like the degree of interfer-
ence, they have not performed as well as conventional

1This paper has been supported by an Australian Postgrad-
uate Research Award to the first author, and an Australian Re-
search Council grant to Humphreys, Burt, Wiles and Tehan.

memory models.

We start by discussing the contribution of con-
nectionist models to the modeling of memory. Next
we examine some of the major aspects of memory
phenomena which remain obstacles for connectionist
models of memory. Finally we outline the Hebbian
Recurrent Network (HRN) which integrates learning
and memory models to address these issues.

Learning Issues

In an interactive model, it is the interplay of the en-
vironment and the architecture which leads to per-
formance (Dennis, Wiles, & Humphreys, 1992). For
example in optimizing connectionist models, perfor-
mance is determined both by the architecture (i.e.,
structure of the interconnections, the transfer func-
tion, and the values of the parameters) and the sta-
tistical contingencies embodied by the training set.
There are in essence three major advantages of such
a system for the modeling of human memory (Dennis
et al., 1992).

Firstly, while the performance of current mem-
ory models depends solely on architectural assump-
tions, the performance of an interactive model de-
pends both on architectural and environmental as-
sumptions. Since the environment is observable, en-
vironmental assumptions tend to be more amenable
to empirical verification (Anderson & Schooler, 1991;
Dennis et al., 1992) and hence interactive models can
provide more parsimonious accounts of the phenom-
ena of memory.

Secondly, interactive architectures can address
the developmental course of memory phenomena
(Bates & Elman, 1992). The developmental literature
demonstrates that memory strategies such as imag-
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ing, elaboration, naming and rehearsal are learned
(Hasher & Zacks, 1979), yet there has been little
progress in modeling such processes. Connectionist
models may be able to redress the situation.

Thirdly, there are a number of well documented
learning to learn phenomena which are not addressed
by current architectures (Postman, 1969). While
there has been some work done on specific transfer
effects (i.e., those which depend on the manipulation
of relations of successive tasks) there has been no
attempt to address nonspecific transfer effects (i.e.,
higher order transfer of skills, e.g., response learning)
despite a well developed empirical database. Connec-
tionist models offer an opportunity to develop such a
theory.

So, which aspects of the memory system are
learned? Current models can be summarized in terms
of their representations, their decision criteria and
their control paradigms. The following sections ad-
dress each of these in turn.

Learning Representation. The formation of
appropriate encodings for items which will be entered
into memory has been a difficult and largely unex-
plored area in the memory literature. While it is
known that items with similar meanings and percep-
tual forms interact with each other to a greater extent
than unrelated items there has been little progress in
determining how the formation of such an encoding
landscape may come about.

Connectionist models however, construct their
own internal representations, and hence offer a way
of avoiding many representational assumptions. Fur-
thermore, connectionist networks learn these repre-
sentations as a consequence of the environment in
which they are situated. They introduce a principled
way in which “abstract features” might be formed.
Hence the first of our design criteria for a model of
memory is that internal representation be learned.

Learning Decision Criteria. Another aspect
of the memory task which is usually held constant is
the decision mechanism. In most current models a
signal detection framework is applied and there is no
sense in which the matching function could be said
to have been acquired.

In the majority of memory paradigms, however,
subjects become more accurate as they gain experi-
ence. While some of the improvement may be due to
the refinement of the representation, a component of
this improvement is attributable to an improvement
in the ability to decide upon a response (Postman,
1969). Hence the second design criterion of the HRN
is that it be able to acquire decision criteria.

Learning Control. Within the memory litera-
ture the nature of the control processes is often taken

for granted. For instance, how is it that the subject
decides when to give a response? Traditional math-
ematical models of memory assume that the answer
to this question is embedded in the program.

To learn control regimes within a connectionist ar-
chitecture one must turn to recurrent networks. Feed-
forward models learn representations and decisions
but cannot embody the temporal relations which
characterize control problems. There have been at-
tempts to apply recurrent networks in this area (Nolfi,
Parisi, Vallar, & Burani, 1990; Wiles & Phillips,
1991), and we will review these in more detail when
we attempt to fulfill the third design criterion, that
is, the acquisition of control processes.

Memory Issues

In the previous section we outlined the aspects of the
memory system which might be acquired by a con-
nectionist system. To be serious contenders as mem-
ory models, however, there are a number of obstacles
which must be overcome. It is to these that we now
turn.

Capacity and Interference. The problem of
catastrophic interference has received a great deal of
attention in the recent literature (Ratcliff, 1990; Mc-
Closkey & Cohen, 1989; Lewandowsky, 1991; French,
1991; Brousse & Smolensky, 1989; Hetherington &
Seidenberg, 1989; Wiles & Phillips, 1991). The diffi-
culty arises when what has been learned is disrupted
dramatically by subsequent learning, i.e. there is sig-
nificant retroactive interference. The problem is of
particular importance in the modeling of recognition
memory where the capacity is very large and the de-
gree of interference is small.

Within the literature two major strategies have
emerged in order to deal with the problem of catas-
trophic interference. The first involves increasing
the orthogonality of items and hence decreasing the
extent to which they interact (Lewandowsky, 1991;
French, 1991).

The alternative approach has been to use recur-
rent architectures to encode lists of items rather than
single items on their hidden units (Nolfi et al., 1990;
Wiles & Phillips, 1991). The network then has the
task of learning a single higher order encoding func-
tion rather than a sequence of items. Unfortunately,
this encoding function becomes much more difficult
to acquire as the number of items to be encoded
increases, and hence current recurrent architectures
have strict capacity restrictions. The first of the
memory criteria, then, is that the model avoid catas-
trophic interference while maintaining capacity.
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Generalization. Another issue closely related
to interference is the degree of generalization. What
proportion of the entire space of possible inputs must
the network be presented with during its training
phase in order to perform well on unseen cases? In
the context of memory, the important variable is the
size of the vocabulary. Subjects have extensive vo-
cabularies, yet are able to perform memory tasks in-
volving any of the items within that vocabulary. The
second memory criterion is to be able to generalize
well as the size of the vocabulary increases.

Rapid Binding. The last of the memory criteria
revolves around an important issue raised by Wiles
and Phillips (1991) concerning the distinction be-
tween memorization and learning. Memory involves
the rapid binding of already established representa-
tions rather than the acquisition of new representa-
tions. Enduring memories can be laid with presen-
tation durations of just a few hundred milliseconds.
The time course of learning to learn effects, in con-
trast, tends to be in the order of hours or days. A
model of memory should be capable of explaining the
difference between memorization and learning, and
be able to account for the difference in the time scales.

The Hebbian Recurrent Network

The aim is to address the above criteria by incor-
porating the Matrix Model into the SRN in a fash-
ion which takes advantage of the strengths of each.
There are two important points about the structure
of the HRN (see figure 1). Firstly, the representations
should be determined by the dynamics of the network
as a consequence of learning and not chosen a priori
by the experimenter. Hence the inputs to the mem-
ory system should come from the hidden activations
of the backpropagation network. Secondly, two layers
of backpropagation weights are available to map the
outputs of memory onto an appropriate response and
result of probing memory can be used to construct
the next cue to memory, allowing the possibility of
chains of recollection.

There are two ways in which one may view the
HRN. The first is to consider it a matrix memory
which has some optimized weights around it to handle
the control, decision and representation aspects. The
other way of thinking about it is as an SRN with long
term memory.

Simulations and Results

The SRN and HRN were applied to an episodic recog-
nition task. The network was presented with a se-

quence of study items during which it was to respond
with the “Blank” symbol. These were followed by a
test item and on the next time step the network had
to respond “Yes” if the test item was in the study list
and “No” otherwise.

List Length. Figure 2(A) shows the effect of
increasing the list length on the performance of the
SRN, and HRN respectively. While the performance
of the SRN has decreased to chance after only 5 items,
the HRN sustained its performance until it reached
10 item lists. In these simulations the vocabulary size
was set to be twice the list length so as to maintain
a 0.5 probability of a positive test item. Hence when
list length reaches 10 the vocabulary has reached 20
items. The inability of the network to memorize
larger lists may be a consequence of the fact that
the vocabulary size has reached the number of hid-
den units rather than an indication of the memory
capacity.

Vocabulary Size. Figure 2(B) shows perfor-
mance as the vocabulary size is manipulated when
the HRN is applied to the 4-item recognition task.
As was noted earlier, performance is virtually unaf-
fected by vocabulary size until it reaches the number
of hidden units. At this point there is a sharp drop.

Hidden Unit Analysis. While the SRN must
form a representation of the entire list in its hidden
unit activation patterns, the HRN can rely on the
hebbian memory to store items. Figure 3 shows Hier-
archical Cluster Diagrams (HCA) of the hidden unit
patterns after the final study item has been input
which demonstrate this point.

Discussion and Conclusions

The introduction outlines six criteria for a model of
human memory and at this stage we evaluate the
HRN’s performance on these. The architecture of
the HRN is designed so that it will learn representa-
tion, decision criteria and control and hence the first
three criteria are met. In such a simple task the de-
gree of control required was limited. The only major
distinction to be made was between the study phase,
and the decision phase. This distinction though was
typically learned very quickly, usually well within one
hundred epochs.

The HRN avoids catastrophic interference, inher-
iting the performance characteristics from the matrix
memory. Its ability to generalize well even as the
number of vocabulary items increased is of particular
importance, and is one of the major distinguishing
factors between it and the SRN. The last of the crite-
ria was the rapid binding in memory of already estab-
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Figure 1: The Hebbian Recurrent Network Architecture. The solid arrows are sets of weights which are mod-
ified using the backpropagation algorithm. The dashed line represents the feeding of hidden unit activations
through a set of Hebbian weights to the context units in preparation for the next timestep. The Hebbian
weights are updated after the activations are fed through. In addition the input pattern was required on the
output to ensure that the states corresponding to different inputs were separated.

lished representations. While the possible represen-
tations are developed by the backpropagation mech-
anism, specific memories are stored in the hebbian
weights. It is the dual memory architecture which
avoids catastrophic interference, allows for the signif-
icant improvement in generalization, and accounts for
the dramatically different timespans of memory and
learning.
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Figure 2: (A) Performance (d’) as a function of List Length on the HRN and SRN. The HRN performs
much better than the SRN on lists of length 9 or less. On lists of length 10 the HRN’s performance falls
to chance. (B) Performance (d’) as a function of the Number of Vocabulary Items using the HRN on the 4
item recognition task. The size of the vocabulary seems to make little difference until it reaches 20 when it
drops to below chance. The bars indicate the 95% confidence intervals.

quential learning problem.. In Bower, G. H. Postman, L. 1969. Experimental analysis of learning
(Ed.), The psychology of learning and motiva- to learn. In Bower, G. H., & Spence, J. T.
tion, 109-165. Academic Press, NY. (Eds.), Psychology of Learning and Motivation,

o ) Vol. 3, 241-297. Academic Press.
Nolfi, S., Parisi, D., Vallar, G., & Burani, C. 1990.
Recall of sequences of items by a neural net- Ratcliff, R. 1990. Connectionist models of recogni-

work. In Touretsky, D. S., Elman, J. L., Se- tion memory: Constraints imposed by learning
jnowski, T. J., & Hinton, G. E. (Eds.), Proceed- and forgetting functions. Psychological Review,
ings of the 1990 Connectionist Models Summer 97(2):285-308.

School. Morgan Kaufmann, San Mateo, CA. . : .
i e bt Wiles, J., & Phillips, S. 1991. Serial recall of binary

Pike, R. 1984. Comparison of convolution and ma- sequences. Unpublished manuscript.
trix distributed memory systems for associative
recall and recognition. Psychological Review,
91(3):281-293.

398



Simple Recurrent Network E _ .

The "a" clusters

(=]

Hebbian Recurrent Network

a - lists which contained an "a"
X - lists which did not contain an "a"
3 - indicates that the "a" was in the third position

Figure 3: Hierarchical Cluster Analysis (HCA) of the hidden unit patterns after the study list has been
input. For the SRN the sequences which contain an “a” regardless of position are clustered together. In
contrast the HRN clusters only the third position “a”s well. The first and second position “a”s are mixed
in with the non “a” patterns (i.e. Xs). The HRN does not need to separate these items in the hidden unit
vectors since they are retained in the hebbian memory.
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