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Research and Applications
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Abstract
Objective: This study evaluates regularization variants in logistic regression (L1, L2, ElasticNet, Adaptive L1, Adaptive ElasticNet, Broken adap-
tive ridge [BAR], and Iterative hard thresholding [IHT]) for discrimination and calibration performance, focusing on both internal and external 
validation.
Materials and Methods: We use data from 5 US claims and electronic health record databases and develop models for various outcomes in a 
major depressive disorder patient population. We externally validate all models in the other databases. We use a train-test split of 75%/25% 
and evaluate performance with discrimination and calibration. Statistical analysis for difference in performance uses Friedman’s test and critical 
difference diagrams.
Results: Of the 840 models we develop, L1 and ElasticNet emerge as superior in both internal and external discrimination, with a notable AUC 
difference. BAR and IHT show the best internal calibration, without a clear external calibration leader. ElasticNet typically has larger model sizes 
than L1. Methods like IHT and BAR, while slightly less discriminative, significantly reduce model complexity.
Conclusion: L1 and ElasticNet offer the best discriminative performance in logistic regression for healthcare predictions, maintaining robust-
ness across validations. For simpler, more interpretable models, L0-based methods (IHT and BAR) are advantageous, providing greater parsi-
mony and calibration with fewer features. This study aids in selecting suitable regularization techniques for healthcare prediction models, bal-
ancing performance, complexity, and interpretability.
Key words: logistic regression; electronic health records; regularization; discrimination; calibration. 

Introduction
A recent review of the use of clinical prediction models finds 
that in recent years 67% of studies use some kind of regres-
sion analysis.1 One common issue when developing clinical 
prediction models is the susceptibility to overfitting. Overfit-
ting occurs when a model is overly complex such that it near 
perfectly fits the training data but is unable to generalize to 
new data. A common method to reduce overfitting when 
training regression models involves adding a regularization 
term to the model’s objective function. The regularization 
term adds a cost that aims to minimize model complexity. 
This is known as regularization. Studies on large observatio-
nal health data commonly use L1 regularized logistic regres-
sion, otherwise known as Least Absolute Shrinkage and 
Selection Operator (LASSO) for its feature selection capabil-
ities and good discriminative performance.2 As machine 
learning methods are advancing, pipelines to develop clinical 
prediction models, that work directly on large observational 
healthcare data (insurance claims and electronic healthcare 
records), are being developed. These pipelines develop 

models efficiently and improve model transparency. A recent 
study highlighting the use of a standardized analytical pipe-
line on observational health-data mapped to the Observatio-
nal Health Data Sciences and Informatics (OHDSI) common 
data model (CDM) shows that logistic regression with 
LASSO often outperforms other machine learning models 
when externally validating the developed model.3 External 
validation is when the model is validated on a different data-
set than it was trained on. It is common for developed models 
to have a drop in performance when transported to a differ-
ent dataset and one of the outstanding issues in developing 
prediction models on observational data is to develop more 
generalizable models which do not suffer from this drop.4

LASSO regularization is a method developed at the end of 
the last century. It has enjoyed great success due to its interpret-
ability and scalability5 and has been heavily used since its incep-
tion. Despite its success it has some limitations, especially 
regarding its feature selection capabilities. These limitations 
have led researchers to develop numerous other variants with 
differing theoretical properties. One such limitation is that if 
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there is a group of features in the data with high pairwise corre-
lations within the group, LASSO tends to select randomly one 
of the features as a representative of the whole group and push 
the rest to zero.6 Correlations between features are common 
when using standardized analytical pipelines in healthcare due 
to comorbidities and coding redundancies. Another limitation 
is that the LASSO feature selection is unstable unless specific 
conditions are met which rarely happens in practice.7 This 
means that the covariates selected will change drastically with 
minor changes in the data distribution. In practice this means 
that fitting models with LASSO regularization for example on 
different folds during cross validation can result in models 
selecting different features. Further there is an issue of false pos-
itives among the selected features. While LASSO is highly likely 
to select the relevant features, this is at the cost of features that 
are not relevant but end up in the model.8 This is worse when 
there is high collinearity among the features as is common in 
observational health data.9

To address these issues several variants of the LASSO have 
been developed. LASSO regularization incorporates an L1 
penalty into a model’s objective function by considering the 
absolute value of the coefficients’ magnitude. This leads some 
coefficients to be pushed to precisely zero selecting some fea-
tures while discarding others. L2 regularization on the other 
hand, known as Ridge,10 introduces a penalty based on the 
squared magnitude of the coefficients. Unlike L1, L2 does not 
force any coefficient to become exactly zero and all features 
are included in the final model. One of the first variants intro-
duced to improve the LASSO was ElasticNet6 which use a 
mixture of L1 and L2 penalty. This means that in the pres-
ence of groups of correlated features it will select the whole 
group while still maintaining its feature selection capacity. 
ElasticNet has been shown to be more stable in feature selec-
tion than LASSO.11 Another developed variant is the adap-
tive LASSO12 where each feature is adaptively penalized 
according to an estimation of its coefficient magnitude. This 
means larger coefficients are penalized less, which reduces 
bias, and smaller coefficients are penalized more which 
results in sparser (ie, selects less features) and more stable 
models where fewer false positive features are selected.13,14 A 
more recent adaptive variant is the broken adaptive ridge 
(BAR).15,16 This is a version where ridge regression is itera-
tively fitted and in each iteration the coefficients are penalized 
according to the inverse of the magnitude of their coefficient 

in the previous iteration, this is repeated until convergence. 
This variant has the desired property that it is an approxima-
tion for L0 regularization, which is equal to best subset selec-
tion where every possible combination of features is tried to 
select the best subset. Finally, another L0 approximation 
method is often used; iterative hard thresholding (IHT).17

IHT has the advantage that a maximum number of selected 
features can be specified which can be attractive in a clinical 
setting.

In this study, we empirically examine these different regu-
larization variants and investigate their discrimination and 
calibration performance both when evaluated on the same 
dataset as they are developed on (internal validation) and on 
a different dataset (external validation) and compare to the 
LASSO.

Methods
Data source
We use 5 US claims and electronic health record (EHR) data-
bases (Table 1). We develop our models on 1 database and 
externally validate on the other 4, then repeat for all data-
bases as the development database. The 5 databases in this 
study contain retrospectively collected deidentified patient 
healthcare data. The use of IBM and Optum databases were 
reviewed by the New England Institutional Review Board 
(IRB) and were determined to be exempt from broad IRB 
approval.

All datasets used in this paper were mapped into the 
OHDSI Observational Medical Outcomes Partnership Com-
mon Data Model (OMOP-CDM) version 5.18 The OMOP- 
CDM was developed to enable researchers with diverse data-
sets to have a standard database structure and vocabulary. 
This enables analysis code and software to be shared among 
researchers and across data sources which facilitates external 
validation of prediction models.

Study population
The target population consists of patients with pharmaceuti-
cally treated major depressive disorder (MDD) and the index 
date is their first diagnosis of MDD. We use individual 
patient features from an observation window of 1 year prior 
to index, and attempt to predict 21 different outcomes from 
1 day to 1 year after the index date (See Figure 1). These are 

Table 1. Overview of data sources used in the study.

Name Type Description Start End Size (million lives)

IBM® MarketScan® Com-
mercial Claims and 
Encounters (CCAE)

US Claims Patients aged 65 or younger. 
Employees who receive health 
insurance through their 
employer and their dependents

January 01, 2000 July 31, 2021 152

IBM® MarketScan® Medi-
care Supplemental 
(MDCR)

US Claims Patients aged 65 or older with 
supplemental healthcare

January 01, 2000 July 31, 2021 10

IBM® MarketScan® Medic-
aid (MDCD)

US Claims Patients with government  
subsidized healthcare

January 01, 2006 May 31, 2021 33

Optum® de-identified Elec-
tronic Health Record 
Dataset (Optum EHR)

US EHR Patients of all ages January 01, 2007 December 31, 2021 106

Optum® De-Identified 
Clinformatics® Data 
Mart Database 
(Clinformatics®)

US Claims Patients of all ages May 01, 2000 March 31, 2022 93
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the same prediction problems as have been used previously.20

The outcomes are acute liver injury, acute myocardial infarc-
tion, alopecia, constipation, decreased libido, delirium, diar-
rhea, fracture, gastrointestinal hemorrhage, hyponatremia, 
hypotension, hypothyroidism, insomnia, nausea, seizure, 
stroke, sudden cardiac death, suicide and suicidal ideation, 
tinnitus, ventricular arrhythmia, and vertigo.

Features
The individual patient features included are continuous age 
at index, sex, conditions, drug ingredients, procedures, and 
observations. These are all extracted from an observation 
window of 1 year prior to the index date. Conditions, drug 
ingredients, procedures, and observations are extracted as 
binary indicator variables with the value 1 indicating the 
presence of the feature in the observation window. In the 
context of the OMOP-CDM, conditions indicate the presence 
of a disease, sign or symptom, either observed by the health-
care provider or reported by the patient. Drug codes indicate 
exposures to drugs and are combined under the active ingre-
dient to reduce feature dimensionality. Procedures are activ-
ities or processes carried out by the healthcare provider and 
observations are clinical facts about a patient not captured by 
other clinical tables in the CDM.

As the features represent whether a patient has a condition/ 
drug/procedure/observation record in the year prior to their 
prediction index, the values are never missing (0¼no record, 
1¼ record present). However, we do not impute missing 
records in the observational dataset, so in theory a patient 
may have a value of 0 for the feature “diabetes condition 
record in the prior year” but have diabetes unrecorded. Age 
is normalized by its max value in the training set and features 
rarer than 0.1% of observations are removed.

Further details about software used to extract features are 
in Supplementary Material.

Algorithms
We use 7 different prediction algorithms to develop our mod-
els. They are all integrated into the PatientLevelPrediction 
(version 5.4.5) R package (https://github.com/OHDSI/ 
PatientLevelPrediction/) to facilitate ease of development and 
external validation on data from the OMOP-CDM. The fol-
lowing algorithms are used to develop models: LASSO,2 L2 
penalized logistic regression (Ridge),10 L1/L2 penalized logis-
tic regression (Elastic Net),6 adaptive L1 regularized logistic 
regression (Adaptive LASSO),12 adaptive L1/L2 penalized 
logistic regression (Adaptive ElasticNet), BAR,15 and IHT.17

Further details about software used for model development 
are in the Supplementary material.

We develop models using a train-test split of 75%/25%. 
Most algorithms use a 3-fold cross validation21 on the train-
ing set in combination with grid search to select the best 
hyperparameters, except for BAR-BIC and IHT-BIC which 
use the Bayesian information criteria (BIC). Algorithms that 
use Cyclops for model fitting (see Supplementary material) 
uses auto search instead of grid search to find the best hyper-
parameter.5 For all these algorithms the hyperparameters are 
the strength of the penalty. We also include a version of BAR 
that uses 3-fold cross validation and a simple grid search of 
10 penalties, ranging from BIC to 0.1 � BIC, to select the best 
penalty based on the area-under-the-receiver-operating- 
characteristic curve (AUC). BAR and IHT require an initial 
fit of ridge regression which uses cross validation to find the 
optimal ridge regression penalty on the training set before 
refitting on the whole training set to get the initial regression 
coefficient estimates. Finally, all models are refit on the whole 
training set with fixed penalties set to the value from the 
hyperparameter search before internal validity is assessed on 
the test set. Since logistic regression models on this kind of 
data do not improve performance above around 3000 out-
come events,18 if the training set includes more than 3000 
events with a 75%-25% split the split was adjusted so the 
training set would only include 3000 events and the rest of 
the data would go to the test set to increase power in our per-
formance estimates.

We use the AUC and the area under the precision-recall 
curve (AUPRC) to evaluate discriminative performance. The 
AUC is the most widely used and general metric to measure 
discrimination and does not depend on selecting a prediction 
threshold.22 AUPRC is another commonly used discrimina-
tion metric, particularly for rare outcomes.23 We evaluate 
calibration by computing the expected calibration error 
(ECE), also known as the E-avg.24 ECE measures the average 
difference of predicted versus expected risk in 10 equally 
spaced risk strata. We chose the ECE since we need a single 
metric for calibration that uses the whole range of risks. We 
develop the models on each database and then externally vali-
date their performance on the other databases.

Statistical analysis
We use Friedman’s test to compare the performance of differ-
ent algorithms.25 This is a non-parametric test that detects if 
the different algorithms are ranked differently to each other 
on the different prediction problems. If the null hypothesis is 
rejected for a difference in ranks between the algorithms, we 
proceed with a post-hoc test testing all pairwise differences 
controlling for multiplicity. We plot the results from the post- 
hoc test in a critical difference diagram which show the ranks 

Figure 1. A patient level prediction problem. Conditions, drugs, procedures, and observations from an observation window prior to an index date are 
used to predict the outcome during a time-at-risk after index. Reproduced from John et al19 with permission from BMC Medical Research Methodology.
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of each algorithm with horizontal lines connecting algorithms 
that are not significantly different from each other (see Sec-
tion 3.2.4 in Demsar25 for further details). We do this for dis-
crimination and calibration. We then look at distributions of 
model sizes of each model and compare them to the achieved 
performance.

Results
Study population
Table 2 provides an overview of study population statistics 
across the 5 different data sources. The age distributions are 
quite different between databases. CCAE and MDCD have 
younger people while MDCR has older. Optum EHR and 
Clinformatics® are more spread in age.

Discrimination
In total we develop 840 models across the 5 databases (7 dif-
ferent algorithms with 2 hyperparameter tuning strategies for 
1; predicting 21 outcomes; in 5 databases: 8 × 21 × 5¼ 840). 
The AUC on the test set between the different algorithms are 
significantly differently ranked (Q(7) ¼ 555, P<.001).  
Figure 2A shows a critical difference diagram for the internal 
discrimination performance. The best ranked algorithms are 
the LASSO and ElasticNet with no statistically significant dif-
ference between their ranks. Ridge is in third place, then the 
adaptive LASSO and adaptive ElasticNet, then the L0- 
approximate methods, IHT, and BAR. The average AUC dif-
ference between the best and worst algorithm is 2.8% points. 
Practically this mean that when randomly selecting 1 person 
with and 1 without the outcome, the best algorithm will get 
the order correct (assign higher risk to person with outcome) 
on average 2.8% points more often than the worst algorithm. 
We then externally validate the 840 developed models across 
the other 4 databases resulting in 3360 external validations 
(840 models × 4 databases). We find that the external dis-
crimination performance measured using AUCs is signifi-
cantly different between the algorithms (Q(7) ¼ 1678, 
P<.001). Figure 2B shows the critical difference diagram for 
the external discrimination performance. The ranks of algo-
rithms are the same as during internal performance. LASSO 
and ElasticNet show the best performance while the approxi-
mate L0 methods rank last. The average difference between 
the best and worst algorithm is 2.8% points AUC. In Figure 
S1 results with the area under the precision-recall curve and 
in Tables S1 and S2 the ranks per each of the 21 outcomes 
are shown.

Calibration
Figure 3 shows the results for the ECE. The algorithms are 
ranked differently for internal calibration performance (Q 
(7)¼286.7, P<.001). The approximate L0 methods, BAR, 
and IHT lead in calibration. The adaptive LASSO, adaptive 
ElasticNet, and Ridge regression rank worst. The magnitude 
of difference between the best and worst algorithm is small or 
only 0.001. Externally the algorithms rank differently (Q 
(7)¼31, P<.001). However, there is more variation in the 
ranks, with all average ranks between 4 and 5, and the mag-
nitude of difference between the best and worst algorithm is 
small or less than 0.001.

Model sizes
Figure 4 shows the model sizes. Ridge regression is not 
included since it always includes all features, and its average 
model size is 4013 coefficients. In Figure 4 while ElasticNet is 
equal in discriminative performance to LASSO it does so 
with larger model sizes. The 2 adaptive methods have slightly 
lower sizes than their non-adaptive counterparts. The BAR 
and IHT models have by far the smallest model sizes with an 
average of 17 and 13 coefficients in the model, respectively. 
When we used CV instead of BIC to determine penalty results 
we found slightly higher median model size for BAR as well 
as a longer tail towards higher model sizes.

Discussion
This empirical study helps researchers developing models 
choose whether to pick a regularization technique that maxi-
mizes discriminative performance (ie, use LASSO or Elastic-
Net) or whether they would be happy to achieve a slightly 
less discriminative model that requires fewer features and is 
therefore easier to understand and implement (ie, use IHT or 
BAR). Most researchers tend to use ridge, LASSO, or Elastic-
Net as regularization techniques, but our results empirically 
investigate the impact of regularization technique across 21 
prediction problems and 5 databases. These results now pro-
vide guidance into the impact of regularization choice on dis-
crimination, calibration, and model parsimony.

Our results show that logistic regression with the LASSO 
and ElasticNet regularization techniques lead to improved 
discrimination over the other techniques investigated. This 
discrimination remains consistent between the internal per-
formance and external performance. However, the approxi-
mate L0 based techniques lead to improved parsimony and 
internal calibration. Internal and external calibration patterns 
differed, where internally IHT and BAR have better 

Table 2. Study population characteristics.

CCAEb MDCRc MDCDd Optum EHRe Clinformatics®f

Study population 2 220 724 181 912 628 293 3 140 079 1 649 138
Age (mean ± std) 41.1 ± 14.9 74.9 ± 7.8 33.6 ± 17.0 47.6 ± 19.1 50.7 ± 20.3
Sex (% male) 31.3% 32.8% 27.4% 30.9% 32.5%
No. of eventsa (median, 

first, and third quartile)
12 358 (4619-27 575) 2363 (1736-5030) 5584 (2798-12 291) 17 624 (7627-46 724) 14 257 (8944-39 265)

Candidate predictors 42 219 29 548 36 697 72 254 47 254

a We have 21 different prediction problems per database, each with different number of outcome events.
b IBM® MarketScan® Commercial Claims and Encounter.
c IBM® MarketScan® Medicare Supplemental.
d IBM® MarketScan® Medicaid.
e Optum® de-identified Electronic Health Record Dataset.
f Optum® De-Identified Clinformatics® Data Mart Database.
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calibration but externally it was harder to see a superior tech-
nique, although LASSO and BAR tend to be slightly better 
calibrated. Overall, our results stand consistent with prior 
theoretical work, that shows L0 techniques lead to improved 
parsimony and calibration.26 One novel insight is that the 
improvement in calibration of the L0 techniques does not 
hold when models are externally validated.

If model discrimination is the only important criterion for 
a model developer using logistic regression, then the devel-
oper would likely want to pick either ElasticNet or LASSO 
regularization. These 2 regularization techniques resulted in 
similar AUC across the prediction problems and the AUC 
was higher than alternative regularization techniques investi-
gated. ElasticNet results in more features being included in 

Figure 2. (A) Critical difference diagram of the developed models ranked using internal AUC. (B) Critical difference diagram ranked using external AUC. 
The critical difference (CD) line indicates how big of a difference is needed to be significantly different. Solid lines connect algorithms with no significant 
difference between them. Abbreviations: BIC ¼ Bayesian information criteria, CV ¼ cross validation.

Figure 3. Expected calibration error (ECE) ranked according to (A) internal and (B) external performance. Abbreviations: CD ¼ critical difference, BIC ¼
Bayesian information criteria, CV ¼ cross validation.
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the final model compared to LASSO, with medians of 245 
and 189, respectively. Therefore, if model discrimination is 
very important, but the developer still has some constraint on 
model complexity, the developer may prefer LASSO over 
ElasticNet. Implementing such a model with a few hundred 
features would not be feasible manually, but it could be 
implemented as part of an EHR system.

If a researcher developing models knows that implement-
ing a model with hundreds of features would be difficult, for 
example if it requires manually inserting features into a form 
or they value understanding the model, then the researcher 
may prefer to use L0 based regularization such as IHT or 
BAR. A median of 13 and 17 features were required across 
the prediction task for IHT and BAR, respectively. This 
means these models would be simple to implement and clini-
cians would be able to understand the models more com-
pared to the LASSO models that required a median of 189 
features. Most developed models are not clinically imple-
mented, and these simpler models could be an attractive 
choice for clinicians.27

While the ranks in discrimination are statistically signifi-
cant and the average AUC difference is 2.8% points between 
best and worst algorithm, it is difficult to say what this means 
for a specific clinical use case. One tool to do such things is 
decision curve analysis where the gain to detecting one more 
true positive is compared to the cost of increased false posi-
tives.28 This requires selecting a threshold or range of thresh-
olds which depend on the intended clinical use case or even 
preference of the patient. That is not possible at the large 
scale of comparisons done in this article.

Exploring the potential reasons behind the underperform-
ance of adaptive LASSO and ElasticNet compared to their 

standard counterparts in our study, we identify several fac-
tors that might influence these findings. First, the initial coef-
ficient estimates crucial for these methods are derived from 
ridge regression, which, while helpful in high-dimensional 
and collinear settings, introduces bias that could affect subse-
quent adaptive penalization. Despite utilizing a gamma value 
of one, as typically recommended, the possibility remains 
that an alternate gamma setting might yield better perform-
ance in our data context. Furthermore, the choice of using 3- 
fold cross-validation for determining the optimal penalization 
parameter was informed by prior studies focused on LASSO 
but could be suboptimal for adaptive methods. Future 
research could investigate some of these factors to improve 
model fitting performance with adaptive LASSO and Elastic-
Net in similar high-dimensional analyses.

Our study’s strengths include comparing multiple regulari-
zation techniques across 21 prediction problems and 5 data-
bases. In addition, we investigated calibration, 
discrimination, and model parsimony both internally and 
externally. However, our study has some weaknesses. Firstly, 
we only investigated one target population and future work 
should expand this study to more target populations. Sec-
ondly, we focused on logistic regression, but the regulariza-
tion techniques can be applied to different supervised 
learning methods and the results found for logistic regression 
may not generalize to other supervised learning methods. In 
future work it would be interesting to explore whether the 
results generalize to other supervised learning methods. We 
do not explore all possible penalties, we select penalties to 
investigate based on if they are commonly used in the litera-
ture and have performant implementations available suitable 
for our large scale comparison. Other penalties such as 

Figure 4. Distributions of model sizes for the 840 developed models. The vertical line and red number represent the median model size. Abbreviations: 
BIC ¼ Bayesian information criteria, CV ¼ cross validation.
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SLOPE or SCAD could be interesting to investigate as well in 
the future.29,30 Finally, we focused mostly on binary features 
and it is unknown whether the results would generalize to 
continuous features. However, most of the implemented clin-
ical prediction models use binary features, such as Well’s cri-
teria, CHA2DS2VASc, HAS-BLED, and Charlson 
comorbidity index.31–34

The literature shows that logistic regression is a common 
modelling technique used by researchers developing health-
care prediction models. When using big healthcare data to 
develop prediction models, a situation that is becoming more 
common, regularization is required to limit overfitting. Our 
large-scale empirical study can be used to guide researchers 
who need to select which regularization techniques to imple-
ment. If model parsimony and understanding is not impor-
tant, that LASSO regularization is a good tradeoff between 
performance and number of features, but if model parsimony 
and understanding is important, then BAR often performs 
well while only including a manageable number of features.
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