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Equation to Predict Riverine Transport
of Suddenly Discharged Pollutants

Mostafa Farhadian1; Omid Bozorg-Haddad2; Samaneh Seifollahi-Aghmiuni3;
and Hugo A. Loáiciga, F.ASCE4

Abstract: Pollution discharge to rivers is the leading cause of freshwater pollution. This paper presents a method for predicting the
concentrations of a pollutant that is suddenly released into a river. The prediction method is based on a first-order Gaussian function.
The coefficients of the Gaussian function are calculated using three power equations. These equations have six parameters whose values
are optimized with the genetic algorithm (GA). The results of this paper’s case study are compared with those obtained with the artificial
neural network method (ANN), genetic programming (GP), and from the analytical solution of the differential equation for riverine transport
of suddenly released pollutants. The proposed equation is applied in a case study that confirms its suitability for estimating the concentration
of pollutants downstream from a sudden release location in a river. The correlation coefficient (R2) and the root mean square error (RMSE) of
the training and testing data obtained from the application of the proposed equation increase and decrease approximately 14 and 50%,
respectively, in comparison with the values associated with the application of the analytical advection-dispersion to calculate the transport
of sudden pollution in rivers. DOI: 10.1061/(ASCE)IR.1943-4774.0001083. © 2016 American Society of Civil Engineers.

Author keywords: Sudden pollution; Pollution propagation; Advection-dispersion equation; Genetic algorithm; Data mining tools.

Introduction

Riverine water quality has been degraded by inadvertent, inten-
tional, and accidental discharge of pollutants in streams. The as-
sessment of riverine water pollution is key to developing remedial
and response actions (Hou et al. 2013). Water sampling is the most
accurate method for establishing the degree of riverine water pol-
lution. Yet, comprehensive spatial and temporal monitoring of
riverine water quality is expensive in time and funding demands.
For this reason, other indirect methods that rely on numerical pre-
diction models of riverine water quality and pollutant transport
have been developed to supplement measurement campaigns.

Matsuda (1979) developed a pollution prediction system to con-
trol the national waters and ports of Japan using the finite element
method. Wen et al. (1998) used a multiobjective optimization
model based on artificial neural network (ANN) to manage water
quality in the Tou-Chen River in Taiwan. Demirdag et al. (2000)
applied the ANN method to estimate values of the water quality

parameters in the Gediz River in western Turkey. Drago et al.
(2001) presented a three-dimensional numerical model for water
eutrophication and pollution transmission. They used this model
to analyze solid particles and pollutants discharged to water bodies.
Suen and Eheart (2003) estimated the nitrate concentration in the
Sangamon River of Illinois using the ANN. They compared the
results of back propagation neural network (BPNN) and radial
basis function neural network (RBFNN) methods with the results
of the multiple regression analysis (MRA) method and the soil and
water assessment tool (SWAT) considering the estimation accuracy
of the nitrate concentration. Caplow et al. (2004) studied the pol-
lution tracing and pollution advection and dispersion in the Hudson
River, including several reservoirs under operation. The latter
authors used a sulfur hexafluoride concentration as the pollutant
and traced it for seven days by solving the advection-dispersion
equation of pollution to evaluate the pollution distribution in the
river. Their results indicated that the coefficients of advection and
dispersion for sulfur hexafluoride were approximately 9.0 km=day
and 17.3 m2=s, respectively. El-Badia et al. (2005) identified the
location and value of point-source pollution using mathematical
models of river flow and contaminant transport. Jha et al. (2005)
reported that fertilizers and chemical substances used on Indian
farms cause nonpoint pollution sources and discharge of these
pollutants to surface water and ground waters. They estimated in-
put nutrients from three farms relying on 576 sets of water quality
data. Riahi-Madvar et al. (2009) developed a method for estimating
the coefficient of longitudinal dispersion in rivers using adaptive
network-based fuzzy inference system (ANFIS), field measure-
ments, and several statistical indices. The obtained results indicated
that the developed method is more accurate than 12 other experi-
mental methods used to calculate the dispersion coefficient. Noori
et al. (2011) determined that the dispersion coefficient is the most
important factor for modeling pollutant transport in surface waters.
They developed a model based on the ANN for predicting the
dispersion coefficient in natural waters. Tong and Deng (2015) es-
tablished that identifying unknown sources of pollution is essential
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for environmental protection and emergency actions. These authors
developed two equations for the pollution location and value (the
total mass of released pollution) based on the variable residence
time equation. Their equations were used to detect 23 pollutant in-
jection locations in five rivers in the United States. Heddam (2015)
developed a dynamic evolving neural-fuzzy inference system
(DENFIS) using artificial intelligence (AI) models for modeling
riverine dissolved oxygen (DO) concentration. This latter author
applied the developed model to hourly-observed data recorded
by the United States Geological Survey (USGS) in the Klamath
River. The qualitative indexes of the DENFIS system included pH,
temperature, specific conductance, and water depth. The perfor-
mance of DENFIS was evaluated with the root mean square error
(RMSE), the mean absolute error (MAE), and other statistical in-
dices, and the study results were compared with the results from
linear and nonlinear regressions. Khorsandi et al. (2015) deter-
mined the location, concentration, and the timing of pollution in-
jection to surface waters using data mining (ANN model) and
optimization [GA and pattern search (PS)] methods. These authors
applied the CE-QUAL-W2 numerical model coupled with ANN to
solve several hypothetical examples of pollution in a canal consid-
ering several types of pollution injection.

Calculation of the riverine transport of suddenly discharged pol-
lutants is of utmost importance considering that it has not been fully
addressed in the literature (Ahmadi et al. 2014; Ashofteh et al.
2013a, b, 2015a, c, b; Beygi et al. 2014; Bolouri-Yazdeli et al.
2014; Bozorg-Haddad et al. 2013, 2014, 2015b, a; Fallah-
Mehdipour 2013b, a; Orouji et al. 2013, 2014; Shokri et al.
2013, 2014; Seifollahi-Aghmiuni et al. 2013; Soltanjalili et al.
2013). The concentration of river pollutants can be calculated solv-
ing the differential equations for pollution transport. The diffu-
sion coefficient, a key factor in those equations, is difficult to
estimate for streams of variable characteristics. This paper pres-
ents a method to calculate pollutant transport in rivers using data
mining and a simulation method based on a first-order Gaussian
function. The constant coefficients of the first-order Gaussian func-
tion are determined using three power equations. Each of these
three power equations has two parameters that are optimized with
the GA. A case study illustrates the applicability of the developed
methodology.

Data Mining Methods

Data mining (sometimes called data or knowledge discovery) is the
process of analyzing data from different perspectives and summa-
rizing it in useful information that can be used to optimize perfor-
mance of managed systems. Technically, data mining is the process
of finding correlations or patterns among many fields in large rela-
tional databases. Data mining software is one of a number of ana-
lytical tools for analyzing data. ANNs and genetic programming
(GP) are herein applied for estimating pollution concentrations in
rivers.

Artificial Neural Network (ANN)

The ANN is a method commonly used in studies of water pollution.
The ANN has been found to be a very capable method for data
modeling. ANN is applied in this research for modeling riverine
pollution transport. ANN is designed to mimic the human neural
network system. It is an intelligent system that discovers relations
among data through analysis. ANN is herein applied for riverine
pollution transport. The two main varieties of ANNs are the multi-
layer perceptron (MLP) neural network and the general regression
neural network (GRNN), which are applied in this study.

Multilayer Perceptron (MLP)

The MLP is one of the simplest and the most efficient layouts in
ANN, whereby a MLP model consists of one input layer, one or
more hidden layer(s), and one output layer. All of the neurons in
one layer of the MLP network are connected to all neurons in the
next layer producing a completely connected network. In MLP
networks the number of neurons in each layer independent of the
number of neurons in other layers.

The precision of data modeling increases by considering a suf-
ficient number of neurons in the middle layers of the MLP neural
network. The number of neurons in the middle layers should be
increased when the complexity of data relationships is high, which
can be done by a trial and error procedure. A simple or complex
network can cause unsuitable training (under-fitting) or over train-
ing (over-fitting), respectively (Hosseini-Moghari et al. 2015). In
the under-fitting conditions, the network learns very little about the
existing relationships between training data which causes undesir-
able results in data training and testing. In the over-fitting condi-
tions, the network models only the training data to learn about the
relationship between inputs and outputs, and there is unsuitable
prediction for new data. In other words, data training is well done,
but testing is deficient.

General Regression Neural Network (GRNN)

The GRNN is a special type neural network that uses radial basis
function, and its number of neurons exceeds those of MLP neural
networks. GRNN is trained very fast and functions very well in
problems with various types of input and output data. GRNN is a
normalized radial basis function (RBF) network in which one
neuron forms the hidden layer for each input data set. This network
is able to estimate the parameters of the regression equations with
high precision. GRNN has three layers: (1) the first receives inputs
and data, (2) the second layer is a hidden one where radial functions
are used in its neurons and the number of these neurons is equal to
the number of input variables, and (3) the third is an output layer
that collects the outputs from the second layer and generates the
final outputs.

Genetic Programming (GP)

GP is an evolutionary method inspired by Darwin’s theory of
evolution that features crossover, mutation, and selection operators.
GP implements mathematical and logical functions and operators
as decision variables in addition to the common decision variables
of a problem. It functions with a tree structure instead of a binary
structure. Each chromosome in the initial population of the GP
has a set of functions and terminals. The function set includes
mathematic functions for summation, subtraction, multiplication,
division, trigonometry, and others. The terminal set includes vari-
ables and constant numbers (Koza 1992). Mathematical equations
are defined between different inputs and outputs using the GP, and
it is applied to calculate outputs according to the input data. GP has
been proven an efficient model for water resources system model-
ing in recent years. This study applies it to model riverine pollutant
transport.

1D Advection-Dispersion Equation of Pollutant
Transport in Rivers

Pollutant transport in a river is described by the one-dimensional
advection-dispersion equation [Eq. (1)] (Van Genuchten and Alves
1982). This equation assumes the complete mixing of a pollutant
with flow depth in a river. Other assumptions are: (1) there is no
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pollutant input and output along the river, (2) the dispersion and
decay coefficients are constant, and (3) hydraulic (physical prop-
erty) parameters of the river such as the velocity, flow, and section
area are constant:

∂c
∂t ¼ −u ∂c∂xþD

∂2c
∂x2 − kc ð1Þ

in which c = pollutant concentration (mg=l); x = distance between
prediction and pollution discharge points (m); t = time elapsed
since pollution injection in the river (s); D = dispersion coefficient
(m2=s); u = river flow velocity (m=s); and k = coefficient of pol-
lution decay (s−1). Eq. (2) represents the analytical solution of
Eq. (1) for the case of a sudden pollution injection (Farhadian et al.
2015):

cðx; tÞ ¼ M

2A
ffiffiffiffiffiffiffiffi
πDt

p exp

�−ðx − utÞ2
4Dt

− kt

�
ð2Þ

in which cðx; tÞ = pollutant concentration at location x and at time t
(g=l); M = sudden pollutant mass injected at time t ¼ 0 (kg), and
A = flow area of the river cross section (m2). The dispersion
and decay coefficients are dominant factors in predicting pollutant
transport using Eq. (2). Their values can be determined with exper-
imental study of the river or based on previous results obtained by
previous researchers. One of the most common experimental equa-
tions is the Fischer equation (1975) [Eq. (3)]:

D ¼ 0.011u2w2

h
ð3Þ

in which w = width of the flow section (m); and h = flow depth (m).
The pollution concentrations downstream of the location of pollu-
tant injection into the river can be estimated by calculating the
dispersion coefficient with Eq. (3) and applying the calculated
value in Eq. (1).

Proposed Equation

Consider a function whose shape is similar to the sudden-pollution
transport equation. The first-order Gaussian function meets such a
criterion, and is given by Eq. (4):

fðxÞ ¼ a1 exp

�
−
�
x − a2
a3

�
2
�

ð4Þ

in which fðxÞ = dependent variable; x = independent variable; and
a1, a2 and a3 = coefficients. The purpose is to match the graph of
the first-order Gaussian function to the graph of pollutant concen-
tration in a river. This can done for all locations along in a river
by changing the values of the coefficients a1, a2 and a3. Thus, the
coefficients of the Gaussian function are determined for different
locations of the river by relating pollutant concentration to the
Gaussian function coefficients. It is necessary to establish a suitable
relationship between the coefficients a1, a2, and a3 and the distance
from the point of pollutant injection in a river. These coefficients
are considered to be dependent variables in power equations in
which the distance from the point of pollutant injection is the
independent variable according to Eqs. (5)–(7):

a1 ¼ p1xp2 ð5Þ

a2 ¼ p3xp4 ð6Þ

a3 ¼ p5xp6 ð7Þ

where p1;p2; : : : ;p6 = constant coefficients. Eqs. (5)–(7) in-
volve few constant coefficients with which to calculate a1, a2,
and a3.

According to Eqs. (5)–(7), the coefficients a1, a2, and a3,
depend on x, and the six p coefficients are a characteristics of
the river. The coefficients a1, a2, and a3 are calculated for each
location x on the river by first determining the p coefficients.
The coefficients pi i ¼ 1; 2; : : : ; 6 are determined with GA
optimization. Thereafter, the graph of pollution at each location
is obtained with the fitted first-order Gaussian function.

Genetic Algorithm (GA)

Determining suitable values of the six p coefficients is accom-
plished by minimizing the RMSE with the GA. The GA is a
versatile optimization algorithm. This algorithm is inspired by evo-
lutionary phenomena such as heredity and gene mutation. It gen-
erates a random population of all the decision variables of the
problem at first, and then calculates the objective function for all
the decision variables. Then, the algorithm selects several solutions
according to their competence considering their desirability as mea-
sured by the objective function. The algorithm uses current possible
solutions to produce new, improved, solutions for the next step of
the optimization. This is an iterative process, and the algorithm im-
proves the solutions in each step until reaching a stopping criterion.

Assessment Criteria

This study applies two performance criteria to assess the predictive
skill of the method for calculating pollutant transport. These are the
RMSE and R2, which are used to evaluate the closeness between
the observed and calculated pollutant concentrations. The RMSE is
calculated as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðc − ĉÞ2
s

ð8Þ

where i = counter of concentrations; c = observed concentration
(ppb); ĉ = calculated concentration (ppb); and n = number of meas-
uring points. The R2 is given by Eq. (9):

R2 ¼ ½Pðc − c
⌢Þðĉ − c

⌣Þ�2P ðc − c
⌢Þ2 ×P ðĉ − c

⌣Þ2
ð9Þ

where c
⌢

= average of the observed concentrations (ppb) and
c
⌣

= average of the calculated concentrations (ppb).

Case Study

A set of pollutant concentrations at different points of the river is
required to apply this paper’s methods. The results of pollutant
tracking obtained by Atkinson and Davis (2000) are used in this
study. Their test was done in the Severn River of England, down-
stream of the Llanidloes Bridge. These authors selected a river
reach 13.7 km long without any tributaries and with high flow dis-
charge, and repeated the test twice to complete the missing and
questionable data in the second iteration. They used Rhodamine
as the tracer, which does not decay and injected it rapidly simulat-
ing sudden injection into the river. Fig. 1 shows the region of the
case study.

Atkinson and Davis (2000) considered seven measurement
stations ranging between 210 and 13,775 m from the injection
point to estimate the tracer concentration. The results obtained in
the first six stations are used in this study, whereas the results at the
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seventh station are ignored attributable to poor accuracy of the
concentration measurements at that station. The distance of these
six stations from the injection point and their hydraulic character-
istics are listed in Table 1.

After injecting the tracer, its concentration and the time of meas-
urement were recorded as shown in Fig. 2. The tracer injection time
determined starting time of sampling.

Results and Discussion

The calculated results from the data mining method, the analytical
equation, and the proposed method to estimate pollutant transport
are summarized below.

Pollutant Concentration Estimation with the Data
Mining Method

This section presents the results from the ANN and GP models.

Results of the ANN Method

The input and output data vectors were defined for the ANN. The
locations of measurement stations (Table 1) and the measurement
times (Fig. 2) are the input data to the ANN. The measured pollu-
tant concentrations (Fig. 2) are its output data.

The data are divided into training, validation, and testing sets in
the ANN, which can be done selectively or randomly. This model
fits a suitable equation to the data using the training and validation
data sets and evaluates the performance of the obtained equation
using the testing data. The training and validation data sets are
together called the training data, and the RMSE and R2 assessment
criteria are calculated for the training and testing sets separately.
The training and testing data are selected from among all available
data by the user when applying a selective division. Also, in the
random division, a percentage of all the data is randomly deter-
mined for training, and the remaining data are considered as the
testing data. Selective division of data was implemented for as-
sessing the performance of the ANN in predicting the pollutant
concentration, and 70% of the data were used for model training
and the remaining data used as testing data. Specifically, 70% of the
data were selected from the beginning of the data set for training,
and the remaining 30% of the data were selected as the data set for
testing progression from upstream stations to downstream stations
in the river.

The MLP and GRNN networks are well suited for data model-
ing, and were implemented in this study with the MATLAB soft-
ware. The number of neurons and layers in the MLP network and
the number of parameters in the GRNN network were determined
by trial and error. Then, the assessment criteria were calculated for
the MLP and GRNN networks (Table 2).

It is seen in Table 2 that the ANN is not suitable for training
data or testing data, and it is therefore for predicting the pollutant
concentration in the river. The low predictive skill of the ANN is
attributable to using location and time as the input data, only,
because location and time change with pollutant transport in the
river, whereas other parameters such as flow area, flow velocity,
and dispersion and decay coefficients are constant along the river
or exhibit independent changes.

A

B C
D

E

F

Main river

Tributary

Measurement station 

Injection at 
Llanidloes 
Bridge 

Fig. 1. Severn River in the study area (adapted from Atkinson and
Davis 2000)

Table 1. Distance from the Injection Point and Hydraulic Characteristics
of Measurement Stations

Station
Distance from

injection point (m)
Area
(m2)

Flow
(m3=s)

Flow velocity
(m=s)

A 210 10.62 7.33 0.69
B 1,175 9.13 7.03 0.77
C 2,875 10.81 7.24 0.67
D 5,275 10.58 7.51 0.71
E 7,775 22.56 9.25 0.41
F 10,275 13.80 9.80 0.71
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Fig. 2. Tracer concentration at six stations of the Severn River

Table 2. Results of the Assessment Criteria for ANN, GP, Analytical
Equations, and Proposed Equation

Model

Training data Testing data

R2 RMSE R2 RMSE

ANN-MLP 0.34 128.6 0.69 148.6
ANN-GRNN 0.87 64.6 0.00 13.3
GP 0.81 76.7 0.09 19
Analytical equation using
Fischer’s dispersion

— — 0.85 44.5

Analytical equation with
optimized dispersion

0.98 29.6 0.69 52.6

Proposed equation 0.99 33.7 0.72 30.3
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Results of the GP Method

The input and output data for GP and ANN are the same. Data were
divided into two main groups for training (70% of all the data) and
testing (the remaining 30% of all the data) in GP, similar to the
ANN method. The GENEXPRO software developed by Ferreira
(2001) was used to implement the GP method. The results for the
performance criteria of the GP are listed in Table 2. It is seen in
Table 2 that the accuracy of GP for modeling pollutant transport
is poor, and its results are similar to those from the ANN. There-
fore, these two data mining methods were not suitable for modeling
the transport of sudden pollutant injection in the study river.

Results from the Analytical Equation

Two procedures were implemented for calculating the dispersion
coefficient. The first is based on Fischer’s equation (1975), and
the second relies on GA optimization whereby the dispersion co-
efficient was considered as the decision variable. The purpose of
optimization with GA is achieving good resemblance between con-
centrations calculated with the analytical equation and observed
ones available in the case study.

Analytical Equation Using Fischer’s Dispersion
Coefficient

The dispersion coefficient is calculated using the Eq. (3) and its
value is applied in the analytical equation. The downstream pollu-
tant concentration is estimated considering the location and meas-
urement time in each of six stations. The R2 and RMSE criteria were
calculated for the predicted concentrations and were equal to 0.85
and 44.5, respectively (these are listed in Table 2).

It is not necessary to divide the data set into training and testing
sets using the analytical equation because this equation only re-
quires the values of the parameters and does not require training.
Therefore, all the data were used for testing of the analytical equa-
tion, and the assessment criteria are considered only for testing of
this equation. Values of these criteria show that the analytical equa-
tion yields better results than the data mining methods even though
only 30% of the data were used for testing the data mining method.
Also, the accuracy of the analytical equation is poor for estimating
pollutant concentration even though it produced better results than
those of the ANN and GP methods. The observed and calculated
concentrations obtained from the analytical equation are shown in

Fig. 3. In Fig. 3 and other following figures, the peak of the pol-
lutant graph at each station is specified with the name of the related
station to identify the observed and calculated pollution graphs of
each station.

Fig. 3 shows that the analytical equation yielded a suitable
estimation of pollutant concentration only at station A using the
dispersion coefficient obtained from the Fischer (1975) equation.
The calculated concentrations at other stations are very different
from the observed ones in magnitude and occurrence time. The
maximum difference in concentration value and time between the
calculated and observed concentrations occurred at stations E
and F. These results show that the analytical equation has undesir-
able performance for estimating the pollutant concentration in the
case study using the Fischer dispersion coefficient, which is the
result of numerous changes in the physical and hydraulic character-
istics along the river path.

Analytical Equation Using an Optimized Dispersion
Coefficient

The dispersion coefficient was herein considered as a decision
variable, and its value was optimized for each river reach. These
reaches encompass the distance between the injection point and
station A and the distances between the six considered stations
that define six reaches. Therefore, six optimal values of the disper-
sion coefficient were determined. The optimization minimized the
RMSE between the observed and calculated concentrations. All
possible values of the dispersion coefficients were evaluated with
this procedure, and the value which causes the maximum similarity
between the observed and calculated concentrations was selected.

The data for stations A and D were used as training data, and
data for the other stations were used as testing data and yielded the
best results using a trial and error procedure. Therefore, the value of
the dispersion coefficient was determined with the GA to minimize
the value of the RMSE between the observed and calculated con-
centrations at stations A and D. The pollution concentration at each
station was calculated with the optimized value of the dispersion
coefficient in Eq. (2) (the analytical equation). The values of the
assessment criteria for training and testing data are listed in Table 2.
Also, the observed and calculated concentrations using this method
are shown in Fig. 4. The results indicate that considering a wide
range of variation for the dispersion coefficient and selecting an
optimal value for it with the optimization model produces better
results than those calculated with other experimental equations
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developed for calculating the dispersion coefficient. Fig. 4 demon-
strates that using the optimized dispersion coefficient is effective in
increasing the accuracy of the calculated pollutant concentrations
using the analytical equation. The improvement was observed at
all stations, but still the overall accuracy of this method is ques-
tionable. The inability of the optimized dispersion coefficient in
yielding accurate concentrations shows that, unlike the results of
previous studies, the dispersion coefficient does not affect the re-
sults of mathematical equations for pollutant transport to achieve
calculated concentrations that are suitably close to observed ones.

Calculated Pollutant Concentration with the Proposed
Equation

The proposed equation is a dimensionless equation based on find-
ing six constant coefficients [Eqs. (5)–(7)]. The observed concen-
trations at stations A and D served as the training data to determine
the values of these coefficients. The data of the other stations were
used for testing of the proposed equation. The GA was used to
optimize the values of these six coefficients by minimizing the
RMSE between the observed and calculated concentration at sta-
tions A and D. The a1, a2, and a3 coefficients are calculated for all
stations [Eqs. (5)–(7)] based on the calculated values of the six p
coefficients and the distance of each station from the injection
point (Table 1). Thereafter, the pollution concentration at each sta-
tion was calculated considering the a1, a2, and a3 coefficients in
the Gaussian function and the concentration measurement time
from the Atkinson and Davis study (2000) as the input to this func-
tion. The assessment criteria for the developed equation were cal-
culated according to the pollutant concentrations at the training
and testing stations (Table 2). Also, Fig. 5 shows the observed
and calculated pollution concentrations using the proposed equa-
tion. Fig. 5 demonstrates that there is a suitable correlation be-
tween the observed and calculated concentrations at stations A
and D. Also, the results of the proposed equation are much better
than those from the data mining methods and the analytical equa-
tion according to the testing stations. The proposed equation does
not consider the hydraulic parameters that change along the
13.7 km study reach. Yet, the proposed equation acceptably esti-
mated the riverine pollutant concentration by determining appro-
priate values for six p coefficients. This demonstrates the
predictive skill of the proposed equation for estimating riverine
pollutant concentration.

The flow in the river of our case study is slightly increased by
lateral flows. In addition, the concentration measurements had

insufficient accuracy at several stations (Atkinson and Davis 2000).
These and other factors affected the measurement accuracy of
observed concentrations by Atkinson and Davis (2000). This is
obvious in the graph of observed concentrations at all stations,
especially in stations D, E, and F whose peak values are not bell
shaped. This lack of accuracy in measuring the observed concen-
trations rendered the Gaussian function and the calculated coeffi-
cients unable to completely match the hydrograph of the calculated
concentrations to the observed ones. Therefore, the accuracy of
the calculated concentrations by the proposed equation was de-
creased (Fig. 5).

All methods of estimating the pollutant concentration have some
strengths and weaknesses. The weakness of the proposed equation
is its requirement to have concentration and time data of pollution
graphs downstream of the injection point to calculate the values of
the six p coefficients. The number of required data must be suffi-
cient to prevent decreasing the accuracy of the calculated concen-
trations when the hydraulic parameters are variable. Thus, it would
be necessary to measure these data for each river and use them for
predicting pollutant concentrations when a sudden release occurs.

The analytical equation is commonly used for modeling riverine
pollutant transport. The analytical equation with optimized dis-
persion coefficient is a procedure developed in this study. The R2

and RMSE obtained with the analytical equation equaled 0.85 and
44.5, respectively, and they were equal to 0.92 and 44.1 with the
analytical equation with an optimized dispersion coefficient. The
R2 and RMSE obtained with the proposed equation equaled 0.99
and 22.16, respectively. Therefore, the improvement of R2 and
RMSE with the proposed equation relative to the analytical equa-
tion are equal to 14 and 50%, respectively, and are equal to 7 and
50%, respectively, compared with the analytical equation with an
optimized dispersion coefficient.

The proposed equation requires only two parameters of location
and time for estimating pollutant concentration at each point down-
stream of the injection point after determining the values of the six
p coefficients, which is another advantage of the proposed equa-
tion. This is valuable in comparison with the mathematical equa-
tions and especially with computer simulation models that require
values of many parameters such as the flow area, flow velocity, type
of river bed, dispersion and decay coefficients, slope, water temper-
ature, insolation, wind speed, and so forth.

Concluding Remarks

A mathematical equation using first-order Gaussian function for
estimating pollution concentration in rivers was proposed in this
study. This equation has three variable parameters, and the values
of these parameters, through three equations, are optimized using
GA. To evaluate the effectiveness of the proposed equation, a case
study that includes results of a pollutant tracking experiment in the
river, was used. In addition to the proposed equation, ANN, GP, and
mathematical equations were used to compare the results obtained
from the proposed equation with other important methods of esti-
mating pollution concentration in riverine environments.

The results of the proposed equation, using the assessment cri-
teria R2 and RMSE, were compared with the results of the methods
of ANN and GP and the mathematical equation to estimate pollu-
tion concentration in the river. The results showed that the proposed
equation has better results than all the above methods judged by its
R2 and RMSE, achieving improvements of 7 and 50%, respec-
tively. Therefore, the equation proposed in this study is a practical,
accurate, and straightforward approach to estimate pollution con-
centration caused by suddenly discharged pollutants in rivers.
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