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ABSTRACT: Transition metal compounds are traditionally considered to be challenging for standard quantum chemistry
approximations like coupled cluster (CC) theory, which are usually employed to validate lower level methods like density
functional theory (DFT). To explore this issue, we present a database of bond dissociation energies (BDEs) for 74 spin states of
69 diatomic species containing a 3d transition metal atom and a main group element, in the moderately sized def2-SVP basis.
The presented BDEs appear to have an (estimated) 3σ error less than 1 kJ/mol relative to the exact solutions to the
nonrelativistic Born−Oppenheimer Hamiltonian. These benchmark values were used to assess the performance of a wide range
of standard single reference CC models, as the results should be beneficial for understanding the limitations of these models for
transition metal systems. We find that interactions between metals and monovalent ligands like hydride and fluoride are well
described by CCSDT. Similarly, CCSDTQ appears to be adequate for bonds between metals and nominally divalent ligands like
oxide and sulfide. However, interactions with polyvalent ligands like nitride and carbide are more challenging, with even
CCSDTQ(P)Λ yielding errors on the scale of a few kJ/mol. We also find that many perturbative and iterative approximations to
higher order terms either yield disappointing results or actually worsen the performance relative to the baseline low level CC
method, indicating that complexity does not always guarantee accuracy.

1. INTRODUCTION

Single reference methods like Kohn−Sham density functional
theory (KS-DFT)1,2 and coupled cluster (CC)3,4 theory
constitute the backbone of main group quantum chemistry.
These methods implicitly rely on the assumption that one
particular electronic configuration (i.e., Slater determinant) is
overwhelmingly dominant over all others. While exceptions to
this single reference assumption are known in main group
chemistry (especially when bond dissociations3,5 and poly-
radicaloids6 are involved), KS-DFT has been spectacularly
successful in predicting energies and properties for species
comprised of main group elements alone.2,7−9 CC theory has

arguably been even more successful, with coupled cluster
singles and doubles with perturbative triples (CCSD(T))10

being generally considered to be the “gold standard” that is
readily capable of achieving errors below the widely accepted
“chemical accuracy” limit of 4 kJ/mol (i.e., about 1 kcal/mol),4

for predicting reaction energies and barrier heights.
The situation is quite different for transition metal

containing systems. While there are many transition metal
compounds that are clearly well described by a single Slater
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determinant, a far larger proportion of cases has many nearly
degenerate low lying electronic configurations that can
contribute significantly to the ground state, resulting in a
breakdown of the implicit single reference assumption. There
exists no formal barrier against the applicability of KS-DFT or
the CC hierarchy for multireference systems as these are in
principle capable of being exact. In practice, however, existing
approximations to KS-DFT and affordable CC theory have a
rather questionable record when it comes to transition metal
compounds.11−13 The natural fit for such species is therefore
explicitly multireference methods like complete active space
configuration interaction (CASCI), which treats all config-
urations within an active space of orbitals and electrons on a
variationally equal footing. However, the computational cost of
CASCI scales exponentially with the size of the active space,
with the modern limit of exact CASCI being around 22
electrons in 22 orbitals (≈5 × 1011 determinants), which
requires months of supercomputer CPU time.14 Practical CAS
calculations therefore typically orbital optimize CAS wave
functions (CASSCF15) from relatively small active spaces to
minimize variational energy as much as possible. The
variational CASSCF energy is often subsequently augmented
with perturbative corrections (usually via the CASPT216,17

approach). Such approaches however would miss non-
dynamical correlation outside the small initial active space
that a CAS calculation with a larger active space could capture.
There exist approximations to CASCI that are capable of

treating larger active spaces without compromising the
fundamentally multireference nature of the method (unlike
standard CC theory). Well known examples of such methods
are density matrix renormalization group (DMRG),18 quantum
Monte Carlo (QMC),19−21 and selected configuration
interaction (SCI).22−24 Multireference coupled cluster meth-
ods, like Mk-MRCC25,26 and internally contracted MRCC,27

also show promise for tackling multireference systems. The
computational cost for these methods however still scales far
too sharply with system size, preventing application to very
large systems like the metal−electrolyte interface in electro-
chemistry, a full metalloenzyme active site or large MOFs, for
example. DFT remains the only viable deterministic ab initio
avenue to such large systems, necessitating functionals that are
as accurate for transition metal chemistry as they are for the
main group elements.
The development of highly accurate main group functionals

was assisted by availability of even more accurate benchmark
data against which these functionals could be trained and
assessed.2,7 A target DFT functional RMSE of 4 kJ/mol would
require benchmark data with RMSE of about 0.4 kJ/mol, in
order to ensure DFT errors are precise enough for fitting/
assessments to be meaningful. This level of accuracy for main
group chemistry is typically achieved via composite schemes
like the W428 or HEAT29 approaches, which rely on the great
accuracy of CC methods for main group chemistry. Similarly
accurate ab initio data for transition metal chemistry is however
extremely difficult to come by, especially on account of
uncertainties surrounding applicability of CC theories for such
systems.
In this work, we present a set of benchmark bond

dissociation energies (BDEs) for a total of 74 spin states of
69 3d transition metal binary compounds using the
extrapolated Adaptive Sampling Configuration Interaction
(ASCI) method23,30 in a double-ζ def2-SVP basis.31 Such a
basis is too small for direct assessment of density functionals

but is large enough to be useful in assessing CC methods (in
the same basis) to determine their reliability for transition
metal containing systems. Our benchmark values appear to
have an estimated 3σ (i.e., 3 standard deviation) error that is
less than 1 kJ/mol for all cases, relative to the exact
nonrelativistic Born−Oppenheimer results in the same basis
(as estimated from the extrapolation procedure). This
indicates a 1σ error smaller than the target of 0.4 kJ/mol,
which should be satisfactory as benchmarks for comparing
against CC theory within the same basis. We then present an
assessment of reasonably affordable CC methods against this
benchmark to attempt to understand the limitations of CC
models for transition metal systems.

2. DATA SET SPECIES AND PREVIOUS WORK ON
THEM

We have studied 70 3d transition metal binary compounds of
the form MX (where M is the metal and X is one of H, C, N,
O, F, S, and Cl). This is not representative of standard
transition metal chemistry, as the common octahedral and
tetrahedral ligand field motifs are entirely missing from the
data set. However, near-exact quantum chemistry is tractable
for these simple linear species, making them an ideal test case
for determining how standard methods perform. Indeed, a
number of DFT studies have been carried out for such
molecules,32,33,35 but correlated wave function studies have
received greater attention in recent years. This was partly
catalyzed by Xu et al.,11 who suggested that CC methods like
CCSD(T) gave subpar performance relative to DFT methods
for reproducing experimental BDEs for a subset of 20
compounds (the 3dMLBE20 database11). Subsequent work36

however argued that standard CC theory was adequate for the
same 20 compounds. In fact, another study37 presented
benchmark BDE data for the 3dMLBE20 database using the
HEAT protocol,29 which would be very accurate if the high
level coupled cluster theory employed therein was adequate.
Efforts have also been made to assess the importance of
multireference contributions using multireference CC,12 and
very recently, an auxiliary-field QMC study of a subset of these
compounds has been carried out,13 though the reported error
bars appear to be rather too large (on the scale of 4−8 kJ/
mol).
In our opinion, a rather important problem with many of the

aforementioned works is an excessive reliance on questionable
experimental BDE data. Most of these papers do indeed note
that much of the available data is unreliable and at times
advocate revising specific experimental values12,37 or select one
specific number out of competing ones.33 Therefore, we define
our objective to be the production of quantum chemistry
benchmarks for these species, that approach the exact solutions
to the Born−Oppenheimer nonrelativistic Schrödinger equa-
tion in a finite basis set. Approximate CASCI methods like SCI
and DMRG offer an obvious route to solving the Born−
Oppenheimer nonrelativistic Hamiltonian, as they are tractable
for systems of this size (indeed, the FeS molecule has been
studied with SCI recently38) while being systematically
improvable to the exact result. We have therefore chosen to
use an SCI method to generate a sufficiently accurate data set
that can stand on its own legs and have ignored experimental
BDEs altogether for now. The only experimental quantity we
have taken into account is the ground spin state of the data set
species (presented in Table 1), which we employed to
determine what spin states to target.
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3. BRIEF OVERVIEW OF QUANTUM CHEMISTRY
APPROACHES

3.1. Adaptive Sampling Configuration Interaction
(ASCI). SCI methods assume that a large fraction of
determinants within the full CASCI Hilbert space has very
small coefficients in the exact wave function, and a good
approximation can be generated by simply selecting the
(expected) top contributors to the true wave function,
followed by diagonalization within that reduced subspace.22,39

The energy of the SCI wave function can be further lowered
via rotation to an approximate natural orbital basis3,23,39 or
orbital optimization within the active space.40,41 The remaining
correlation energy could be estimated via other approaches like
second order perturbation theory (PT2).23,42 SCI+PT2
absolute energies in fact often readily converge to the chemical
accuracy limit of 4 kJ/mol for even strongly correlated
transition metal systems,23,24 making them a useful option
for transition metal quantum chemistry. SCI methods
nonetheless cannot avoid the asymptotic exponential scaling
behavior of CASCI, as the total number of important
configurations grows exponentially with system size. The
computational cost however grows much more slowly, and SCI
+PT2 energies can be calculated for sizable systems like iron
porphyrin40,41,43 or Fe4S8 ferrodoxin

44 that lie well beyond the
reach of exact CASCI solvers.
Multiple flavors of SCI, utilizing different selection rules and

search spaces, exist in the literature.22−24,45 The ASCI
approach is the specific flavor that we have developed (as
described in detail elsewhere23,30) and will therefore be used in
our study. The ASCI energy is augmented with a deterministic
Epstein−Nesbet PT2 correction.46−48 Further accuracy gains
are possible by extrapolating the ASCI+PT2 energy against the
PT2 correction to the zero PT2 limit of the exact wave
function. We observe nearly linear behavior of the ASCI+PT2
energy against the PT2 correction, which is consistent with
behavior witnessed for other SCI methods.49,50 Similar linear
fits are also employed by DMRG to reach more accurate final
estimates.18 The standard deviation in the estimated intercept
from the ASCI+PT2 linear fit also quite naturally supplies an
error metric for the final estimated ASCI+PT2 energies.
Further details about the extrapolation have been given in
Appendix C.
3.2. Coupled Cluster Methods. A fairly large number of

CC methods have been analyzed in this present work, and we
therefore provide a very brief primer to these methods: see ref
4 for further details. CC methods approximate the exact wave
function by generating excitations out of a reference

determinant with an exponential operator. Given a reference
determinant |Φ0⟩ with occupied spin orbitals i, j... and virtuals
a, b..., the CC wave function to n excitations is

|Ψ⟩ = |Φ ⟩̂eT
0 (1)

̂ = ̂ + ̂ + ̂ ̂T T T T T... n1 2 3 (2)

∑ ∑̂ = ̂ =†

< <

† †T t a a T t a a a a; ; ...
i a

i
a

a i
i j a b

ij
ab

a b j i1
,

2
, (3)

Closed equations for the CC energy and the t amplitudes ti...
a···

are obtained by projecting the Schrödinger equation with the
CC wave function of eq 1 into the subspace of Hilbert space
spanned by |Φ0⟩ and all excitations out of it to order n. The
best known member of the CC family is coupled cluster singles
and doubles (CCSD)3 where T̂ is truncated at T̂1 + T̂2. More
accurate is CCSDT51 (where all triples are incorporated as
well, via T̂ = T̂1 + T̂2 + T̂3), and even more accurate is
CCSDTQ52 (where quadruples are also fully accounted for).
In general, CCSDT···n (which we henceforth refer to as
CC(n)) has a computational cost that scales as O(No

nNv
n+2)

(where No is number of occupied orbitals and Nv is the
number of virtuals), which quickly becomes very large with n.
CCSDTQ is the highest order exact CC method we have been
able to afford in this present work.

3.2.1. Perturbative Corrections. The accuracy of CC
methods can be augmented by incorporation of a perturbative
correction for higher order excitations not present in the
truncated exponential wave function of eq 1. The classic
example is CCSD(T),10 where the effect of connected triples is
accounted for via incorporation of terms that are exact to
fourth order in Møller−Plesset perturbation theory. Other
examples include CCSDT(Q)/A,53 CCSDT(Q)/B,53 CCSD-
[T],54 etc. Perturbative corrections to CC(n − 1) are
noniterative and tend to scale as O(No

nNv
n+1), which makes

them more affordable than an exact CC(n) calculation.
A related class of perturbative corrections is the Λ amplitude

based corrections, which employ the left-hand solutions to the
projected CC equations as well. These methods have the same
scaling as the more traditional perturbative corrections but are
considerably more computationally expensive. Examples of this
category include CCSD(T)Λ,

55 CCSDT(Q)Λ,
56 etc. An

important member of this class is CCSD(2),57,58 which
explicitly finds a PT2 correction to CCSD, and thus accounts
for some quadruple excitations along with the more standard
triples correction. CCSD(2) has a somewhat better track
record than CCSD(T) for some strongly correlated systems,8

due to renormalization of the one body terms in the former

Table 1. Experimental Ground Electronic States for the Species Considered32−34a

Sc Ti V Cr Mn Fe Co Ni Cu Zn

H 1Σ+ 4Φ 5Δ 6Σ+ 7Σ+ 4Δ 3Φ 2Δ 1Σ+ 2Σ+

F 1Σ+ 4Φ/4Σ− (5Π/5Δ) 6Σ+ 7Σ+ 6Δ 3Φ 2Π 1Σ+ 2Σ+

Cl 1Σ+ 4Φ (5?)* 6Σ+ 7Σ+ 6Δ (3?)* (2?)* 1Σ+ 2Σ+

O 2Σ+ 3Δ 4Σ− 5Π 6Σ+ 5Δ 4Δ 3Σ−
2Π 1Σ+

S 2Σ+ 3Δ 4Σ− 5Π 6Σ+ 5Δ 4Δ 3Σ−
2Π 1Σ+

C 4Π 3Σ (2Δ) (3Σ−) (4?)* 3Δ 2Σ+ 1Σ+ (2?/4?)* 3Σ−

N 1Σ+ 2Σ+ 3Δ 4Σ− 5Π 4? (5?)* (2Π) 3Σ− 4Σ−

aThe quantities within parentheses are the best theoretical estimates34 if they are not marked by *. Quantities marked with * are our best guesses
regarding spin of the ground state, using isoelectronic/isovalent species as a guide.
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that mitigates some unphysical behavior that can be observed
in the latter.
3.2.2. Iterative Approximations. It is also possible to

preserve only certain terms coming from higher order
excitations while solving CC equations, to generate iterative
approximations to the full higher order CC calculation.
Examples of such methods are CCSDT-1a,59 CCSDT-1b,54

CCSDT-354 (each being a better approximation to CCSDT
than the preceding one and are consequently more computa-
tionally expensive), and their higher order generalizations
CCSDTQ-1a, -1b, -3, etc. These iterative approximations for
T̂n therefore have a cost that is intermediate between the exact
CC(n − 1) problem and the exact CC(n) problem, depending
on the complexity of the surviving terms. We refer the
interested reader to refs 53 and 56 for greater discussion about
approximate corrections to CC methods, beyond the bare
bones picture presented here.

4. COMPUTATIONAL METHODS

All ASCI+PT2, CCSD, CCSD(T), and CCSD(2) calculations
were carried out with Q-Chem 5.2,60 and all other CC
calculations were performed with MRCC.61,62 The geometries
were obtained from the compilation in ref 32 (experimental
wherever possible, BP86 optimized otherwise) and are given in
the Supporting Information. The spin states employed are
listed in Table 1, although alternative spin states were also
considered for some species (as noted in Tables 2 and 6). The
def2-SVP basis31 was used for all calculations. Restricted open-
shell Hartree−Fock (ROHF) orbitals were used for all
calculations, in order to minimize spin contamination in the
CC wave function (and eliminate it in the energy). The 1s
orbitals of C, N, O, and F were held frozen (i.e., a He core), as
were the 1s, 2s, and 2p orbitals for S, Cl, and the metal atoms
(i.e., a Ne core). The error in the extrapolated ASCI+PT2
numbers is found from the standard deviation in the intercept
of the linear fit of the ASCI energy against the PT2 correction,
with the reported error being thrice this standard deviation
(i.e., 3σ error, which should correspond to a 99.7% confidence
interval under the not quite justified assumption of a normal
distribution).
We note that the electronic structure of many of the species

considered is quite challenging at the HF level, with multiple

saddle points in orbital space and, in some cases, multiple local
minima. This is a significant challenge as it is difficult to be
certain if we had reached the self-consistent field (SCF) global
minima. We ran stability analysis on all the Q-Chem SCF
solutions to ensure that they were at least local minima, but
this was not possible with the MRCC package. The lowest
energy MRCC SCF solution was often above the energy of the
best Q-Chem SCF solution despite our best efforts to coax
MRCC into locating the same minimum as Q-Chem. The
converse was not true-i.e., no MRCC SCF solution was below
the corresponding Q-Chem one in energy. A comparison
between ASCI and higher order CC is not straightforward for
systems where the two codes operate on different references, as
it is quite likely that the methods will converge to different
eigenstates of the Hamiltonian. The cases with SCF differences
were consequently eliminated from the statistical analysis. We
have noticed similar local extremum problems at the SCF level
with larger basis sets (def2-TZVPP31), and different SCF
references in past assessments could easily account for a fair bit
of variation in reported numbers. A full listing of Q-Chem SCF
energies has been supplied in the Supporting Information, in
order to guide any future assessments.

5. RESULTS AND DISCUSSION

5.1. Bond Dissociation Energies. Table 2 lists all the
extrapolated ASCI+PT2 bond dissociation energies that we
have calculated to better than (estimated) 3σ error of 1 kJ/
mol. The list of error estimates, along with geometry and spin
state listings, can be found in the Supporting Information. We
were unable to converge the energies of CoF, (triplet) CoCl,
and (quartet) FeN to the desired level of accuracy and
therefore refrained from reporting them in Table 2. We
consequently have BDEs for 74 spin states for 69 compounds,
although we miss the likely ground spin states for CoCl and
FeN. We also note that ZnN is unstable with respect to
dissociation to the ground state Zn and N atoms, but it can be
bound on excited state surfaces. Indeed, Zn seems to form
significantly weaker bonds (relative to all other metals, for any
given ligand) as a consequence of the full d shell. In contrast,
the strongest bonds are typically formed by Sc, Ti, and V,
which have relatively more empty d orbitals.

Table 2. Bond Dissociation Energies (BDEs) Predicted by Extrapolated ASCI+PT2 for the def2-SVP Basis, in kJ/mola

Sc Ti V Cr Mn Fe Co Ni Cu Zn

H 210.4 185.7c 199.6 202.3 131.9 137.7 (hextet) 162.7c 195.3 248.9 79.3
134.8 (quartet)

F 578.2 500.3c 469.6 431.2 387.3 399.3 IC (quintet)c 319.1 (quartet) 372.5 260.1
IC (triplet)c 275.1 (doublet)

Cl 413.2 364.4c 349.2 331.0c 289.4 286.0 245.1 (quintet)c 226.0 (quartet) 333.1 180.3
IC (triplet)c 270.5 (doublet)

O 615.9 605.3 562.6c 377.8 268.6 291.3 291.4 225.7 226.1 77.5

S 410.2 379.5 346.3c 248.2 173.1 223.3 225.6 224.9c 230.1 72.7

C 210.4 326.5 302.4 256.9c 218.4 282.4 275.2c 299.8c 207.7 (quartet) 92.2
182.1 (doublet)

N 275.0 415.5 404.2 300.7 77.7 134.2 (hextet)c 122.9 93.1c 123.4 −15.0 (quartet)
ICb (quartet) −132.2 (doublet)

aMultiple spin states were considered for some species, resulting in BDE values for high spin (HS) and low spin (LS) cases. All values presented
have an (estimated) 3σ error under 1 kJ/mol (typically much less). bIC stands for insufficiently converged (i.e., high error) cases that have
consequently not been reported. cMRCC could not find the lowest energy SCF state, and so the CC data is incomplete.
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A detailed performance analysis of CC methods is given in
subsequent subsections. This is organized based on ligand
valency, since we found that the monovalent H, F, and Cl
containing species have very similar behavior, as do the
divalent O and S containing species. To a lesser extent, the
polyvalent C and N ligand containing species also show similar
features. We note that donation of ligand lone pairs into metal
d orbitals is a possibility for all nonhydride species, resulting in
a deviation from typical ligand valency, but we nonetheless find
it useful to classify ligands based on nominal valency for the
purpose of analyzing trends.
5.2. Monovalent Ligands. The statistical errors predicted

by tested CC methods against the ASCI benchmark for
monovalent ligand containing species are presented in Table 3,

although data for some species (Co and Ti compounds, as well
as CrCl) is missing from this analysis due to lack of complete
CC data (as well as ASCI data, in the case of CoF and triplet
CoCl). More detailed, species-specific analysis is provided in
the next few subsections, but several general trends are
immediately apparent from Table 3. As anticipated, CCSDTQ
is the most accurate method, predicting very low RMSE that
are well within our benchmark error bars for both hydrides and

halides. In contrast, it is clear that CCSD (despite being exact
for an ensemble of isolated two electron pairs) is nowhere near
chemical accuracy for describing this single bond, mostly due
to systematic underestimation of the metal−ligand interaction
on account of missing correlations involving three or more
electrons. CCSD(T) partially mitigates this, but not to a
satisfactory extent as there is still a sizable chunk of missing
correlation energy. The more robust CCSD(2) and CCSD-
(T)Λ methods have significantly lower errors, suggesting that
they are more appealing as perturbative corrections to bare
CCSD. Local approximations to CCSD(2)/CCSD(T)Λ
analogous to DLPNO-CCSD(T)63 could therefore be of
great utility for studying transition metal chemistry involving
metal to ligand single bonds. A fair amount of the error
nonetheless still originates from systematic underbinding. The
full triples term in CCSDT appears to be sufficient for
obtaining the correct BDE of hydrides but systematically
underbinds the halides by approximately 1.2−1.5 kJ/mol.
An interesting feature is that some complex methods

statistically fail relative to simpler models. The −1a and −1b
families of iterative corrections give quite disappointing results,
with the performance of these iterative quadruples being worse
than bare triples alone in many cases! Similarly, the (Q)/A and
(Q)/B perturbative corrections either worsen predictive power
relative to bare CCSDT or are about neutral, though the (Q)/
B correction always has smaller error than (Q)/A. The −3
iterative approximation fares much better, but its greater
computational expense makes the similarly accurate Λ
perturbative correction more appealing. Overall, the robust
members of the CC hierarchy (exact CC models and Λ based
corrections) show effectively systematic improvement with
complexity, until we are well within the error bars of our
benchmark numbers.

5.2.1. Hydrides.We next consider the individual hydrides by
tabulating the magnitudes of errors in BDE predictions for a
subset of CC methods in Figure 1.
This shows that CCSD(T) appears to encounter some

difficulty with the low spin (quartet) FeH, CoH, and NiH but
is otherwise able to predict BDEs with an accuracy roughly
similar to the chemical accuracy limit of 4 kJ/mol (i.e., 1 kcal/
mol), despite the larger RMSE in Table 3. CCSD(2) is almost
universally much better, but it still has unacceptably high error
for CoH. Unfortunately, lack of complete CC data for CoH
and TiH prevents us from explicitly determining what is the
minimum level of CC theory that has errors below sub 1 kJ/
mol for these two species. CCSDT is adequate for the others,
with CCSDTQ further lowering errors.

Table 3. Root Mean Squared Error (RMSE) and Mean Error
(ME) in BDEs Predicted by CC Methods for Monovalent
Ligands, against the ASCI Benchmark (in kJ/mol)a

Hydride Fluoride Chloride

method RMSE ME RMSE ME RMSE ME

CCSD 8.9 −5.5 8.5 −7.1 9.2 −6.9
CCSD(T) 6.9 −4.1 4.2 −3.2 8.2 −4.6
CCSD(T)Λ 1.6 −0.3 2.0 −1.1 1.9 −1.4
CCSD(2) 1.5 −0.9 1.4 −0.5 2.1 −1.6
CCSDT-1a 3.9 1.4 2.3 1.1 3.5 0.7
CCSDT-1b 3.0 0.5 2.3 0.9 2.6 0.2
CCSDT-3 1.4 −0.3 1.3 0.0 1.3 −0.8
CCSDT 0.5 −0.3 1.6 −1.5 1.3 −1.2
CCSDT(Q)/A 2.7 −1.6 2.2 −1.7 4.4 −2.4
CCSDT(Q)/B 2.1 −1.2 1.6 −1.1 3.0 −1.7
CCSDT(Q)Λ 0.8 −0.5 0.6 −0.5 1.2 −0.9
CCSDTQ-1a 2.0 −1.1 2.0 −1.7 2.6 −1.8
CCSDTQ-1b 1.4 −0.8 0.8 −0.6 1.5 −1.1
CCSDTQ-3 0.5 −0.4 0.7 −0.6 1.0 −0.9
CCSDTQ 0.2 −0.1 0.5 −0.4 0.6 −0.6

aThe CC methods have been listed roughly in order of their
complexity. Not included: CrCl and compounds of Co and Ti, due to
lack of complete data.

Figure 1. Magnitude of errors (in kJ/mol) of selected CC methods against the ASCI benchmark for all the hydrides. The highlighting is done on a
per column basis (i.e., shows the relative level of difficulty encountered by a method for a given species, relative to all species).
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5.2.2. Fluorides. Figure 2 and Table 3 show that fluorides
behave very similarly to hydrides. Figure 2 shows that while
CCSD(T) is challenged by low spin (doublet) NiF and CuF, it
is generally very accurate for the rest of the species. CCSD(2)
however remains the more robust performer overall. In
contrast to the hydrides, CCSDT does not guarantee sub 1
kJ/mol error (possibly on account of metal electrons
interacting with ligand lone pairs, which could not happen in
hydrides), but CCSDTQ appears to be always sufficient. While
we were unable to converge the extrapolated ASCI+PT2
energy of CoF to the desired accuracy (3σ error below 1 kJ/
mol), the variational ASCI solutions within the Ms = 1
subspace suggest that the high spin quintet state is the ground
state within the def2-SVP basis and not the experimentally
observed triplet state. Furthermore, quintet CoF appears to be
more challenging for CCSD(T) than any of the other species,
and even CCSD(2) fails to significantly reduce error relative to
CCSD(T). Prima facie, triplet CoF is likely to be even more
challenging (via analogy to chlorides, as discussed below).
5.2.3. Chlorides. The chlorides again exhibit behavior quite

similar to hydrides and fluorides (as can be seen from Figure 3
and Table 3). CCSD(T) is satisfactory for most species but
gives quite a disappointing performance for the low spin
(doublet) NiCl states. Partially converged numbers (provided
in the Supporting Information) suggest that LS (triplet) CoCl
is very challenging for both CCSD(T) and CCSD(2),
suggesting that it is quite a difficult molecule to model.
5.3. Divalent Ligands. The oxides and sulfides can be

expected to be more challenging than hydrides and halides due
to the potential of metal ligand double bonds, which would
involve four electrons and thus could be difficult for even
CCSDT to model. In fact, even partial triple bonds are
potentially possible via donation of ligand lone pairs to the
metal, possibly increasing the complexity of the interaction.
The statistical values in Table 4 reveal that this is indeed the

case. CCSD’s performance is nothing short of disastrous, as it
underestimates the bond energy by ≈40−55 kJ/mol.
Perturbative corrections help recover most of the missing
correlation, but the BDEs are still systematically under-
estimated by ≈10 kJ/mol. Interestingly, CCSD(2) and
CCSD(T)Λ do not represent significant improvements over
CCSD(T) for oxides, and in fact, they perform worse for

Figure 2. Magnitude of errors (in kJ/mol) of selected CC methods against the ASCI benchmark for all the fluorides. CoF is missing due to our
inability to converge the benchmark to a 3σ estimated error of 1 kJ/mol.

Figure 3. Magnitude of errors (in kJ/mol) of selected CC methods against the ASCI benchmark for all the chlorides. LS (triplet) CoCl is missing
due to our inability to converge the benchmark to a 3σ estimated error of 1 kJ/mol.

Table 4. Root Mean Squared Error (RMSE) and Mean Error
(ME) in BDEs Predicted by CC Methods for Divalent
Ligands, against the ASCI Benchmark (in kJ/mol)a

Oxide Sulfide

method RMSE ME RMSE ME

CCSD 58.7 −55.4 44.7 −41.4
CCSD(T) 16.4 −12.3 9.7 −8.3
CCSD(T)Λ 13.4 −9.3 14.3 −11.6
CCSD(2) 14.4 −11.7 14.4 −12.5
CCSDT-1a 24.5 17.9 9.5 2.9
CCSDT-1b 22.8 15.3 10.5 1.1
CCSDT-3 11.4 3.9 8.9 −2.3
CCSDT 6.2 −5.3 3.9 −3.4
CCSDT(Q)/A 25.0 −21.8 14.8 −12.7
CCSDT(Q)/B 6.7 −5.2 3.7 −0.2
CCSDT(Q)Λ 2.5 0.1 0.9 0.2
CCSDTQ-1a 12.7 −11.5 8.3 −7.3
CCSDTQ-1b 3.8 −2.8 1.8 −0.9
CCSDTQ-3 3.9 −3.2 2.6 −2.1
CCSDTQ 1.2 0.3 0.9 0.3
CCSDTQ(P)/A 5.8 −5.2 4.7 −3.8
CCSDTQ(P)/B 7.1 −6.5 5.7 −4.7
CCSDTQ(P)Λ 0.4 −0.2 0.5 −0.3

aThe CC methods have been listed roughly in order of their
complexity. VO, VS, and NiS were not included as all data was not
available.
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sulfides (which was very rarely the case for the monovalent
hydride and halide ligands). The CCSD(2) vs CCSD(T)
performance difference for sulfides stems mostly from
CCSD(2) underestimating BDEs relative to CCSD(T),
which is perhaps an unintended byproduct of the renormalized
one body terms present in the former to prevent divergent
behavior.
The iterative triples approximations CCSDT-1a, -1b, and -3

yield quite a disappointing performance as well, though they
seem to have a bias toward overestimating bond energies
versus underestimating them. Even the effect of full triples is
insufficient, as CCSDT has an RMSE of 6 kJ/mol for oxides
and 4 kJ/mol for sulfides (most of which arose on account of
systematically missing correlation energy coming from
connected four electron interactions), which is quite sobering
with regards to applying CC theory to arbitrary transition
metal species involving metal−ligand multiple bonds. The
(Q)/A perturbative correction significantly worsens perform-
ance, while the more robust (Q)/B correction merely manages
to nearly break even relative to bare CCSDT. The much more
expensive (Q)Λ correction however gives good performance,
bringing RMSE quite a bit below the chemical accuracy limit.
It is still not foolproof (as can be seen from the shabby
performance for NiO shown in Figure 4), and the errors are
too high to be of benchmark quality; but it is the most
inexpensive method to give acceptable performance by itself.
Iterative quadruples corrections have a more mixed

performance with CCSDTQ-1a being terrible but CCSDTQ-
1b and -3 improving upon CCSDT. Even CCSDTQ’s full
quadruples only results in RMSE ≈ 1 kJ/mol, indicating that
the oxides are a challenging collection. CCSDTQ nonetheless
appears to be an adequate level of theory for purposes other
than DFT grade benchmark generation, since the metal−ligand
interactions are at most a double bond with four electrons (if
ligand lone pair donation is neglected), which the exact
quadruples should be able to mostly handle. Pentuples
corrections via (P)Λ improve results even further, though
other perturbative or iterative approximations may not be

worth the computational effort invested (as can be seen from
the poor performance of (P)/A and (P)/B corrections).

5.3.1. Oxides. Figure 4 shows individual errors predicted by
relatively robust CC methods for all the oxides. CoO and NiO
appear to be the most challenging species overall, although the
rest can hardly be described as easy, especially at the
CCSD(T) level. Even full CCSDTQ fails to bring error in
NiO below 2 kJ/mol, and a (P)Λ correction proves necessary!
This however is unlikely to be a consequence of a partial triple
bond resulting from oxygen lone pair donation to Ni, as Ni has
a 3d84s2 configuration and thus is unlikely to accept any more
than two electrons from O. Interestingly enough, CCSDT does
worse than CCSD(T) for ScO and TiO, indicating CCSD(T)
low errors are a consequence of cancellation of errors between
an overestimation of the perturbative triples correction and
complete neglect of quadruples. This general behavior is
already long known to be responsible for part of the
extraordinary accuracy of CCSD(T) for main group
chemistry.64 Similar error cancellations might also be
responsible for the relatively better performance of CCSD(T)
vs CCSD(2) for a number of species.

5.3.2. Sulfides. Figure 5 shows that the sulfides act similar to
oxides overall, even though the magnitude of the errors is
smaller (possibly due to the weakness of the MS bond
relative to the MO bond). CCSD(2) consistently under-
performs relative to CCSD(T), likely due to cancellation of
errors in the former. CCSDT itself predicts errors above
chemical accuracy for a number of compounds but appears
fairly accurate for MnS and CuS. Full CCSDTQ is able to
attain sub 1 kJ/mol error for all species with available data,
other than TiS. Consistent sub kJ/mol accuracy can however
only be obtained with the extremely expensive (P)Λ correction.

5.4. Polyvalent Ligands. The carbides and nitrides can be
expected to have much more complex electronic structure
relative to the preceding species, due to the possibility of
metal−ligand triple bonds. Table 5 reveals that CCSD is
catastrophically bad (RMSE 72−73 kJ/mol), due to systematic
underestimation of bond correlation energy by 60−65 kJ/mol.
CCSD(T) fares a lot better (RMSE of 11 kJ/mol for nitrides

Figure 4. Magnitude of errors (in kJ/mol) of selected CC methods against the ASCI benchmark for all the oxides.

Figure 5. Magnitude of errors (in kJ/mol) of selected CC methods against the ASCI benchmark for all the sulfides.
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and 14 kJ/mol for carbides), but this is solely due to fortuitous
error cancellation,64 since full CCSDT winds up doing worse
(RMSE 13 kJ/mol for nitrides and 21 kJ/mol for carbides,
mostly on account of systematically missing 11−14 kJ/mol
correlation energy on average)! It therefore appears that the
perturbative (T) correction is a significant overestimate
(possibly due to pseudodivergent behavior of the perturbative
contributions) that partially compensates for missing higher
order terms, resulting in CCSD(T) not being as bad as one
might expect. The poor performance of CCSDT however
dooms the more robust (T)Λ correction, as well as all the
iterative approximations to full triples. Very interestingly,
CCSD(2) gives a much lower RMSE than CCSD(T)Λ, even
though the two methods had similar errors for all preceding
cases. The higher accuracy of CCSD(2) is therefore likely a
consequence of the perturbative quadruples terms contained in
it. This, coupled with the less divergent behavior of CCSD(2),
therefore suggests that it is getting the approximately correct
answer for more rigorous reasons than CCSD(T), although it
could also be a beneficiary of error cancellation. Overall, both
CCSD(T) and CCSD(2) underestimate bond energies by

roughly 10 kJ/mol due to missing correlation energy stemming
from higher order connected terms.
Approximate quadruples corrections help reduce the error in

CCSDT too, but this again likely originates from error
cancellation, given that full CCSDTQ has higher RMSE than
CCSDT(Q)Λ (and CCSDTQ-1b, for the case of carbides).
The decent performance of the (Q)/A and (Q)/B corrections
is noteworthy as they seemed to worsen CCSDT performance
for the more weakly correlated species considered earlier. The
higher accuracy of CCSDT(Q)/B however owes a great deal
to spurious overbinding relative to full CCSDTQ (as can be
seen from mean errors in Table 5). Full CCSDTQ in fact has
an RMSE of 4−6 kJ/mol (3 kJ/mol of which comes from
systematic underbinding), which is far too large relative to the
accepted chemical accuracy limit of 4 kJ/mol. Pentuples
corrections prove necessary to lower the error further, with
CCSDTQ(P)Λ having an RMSE of 1.6 kJ/mol for carbides and
1.1 kJ/mol for nitrides, most of it coming from systematically
underestimating bond energy by 1 kJ/mol. Full CCSDTQP
proved computationally intractable, and so it is not completely
certain how much of CCSDTQ(P)Λ’s great accuracy is a result
of error cancellations. Interestingly, the (P)/A and (P)/B
perturbation ansatze failed to improve upon CCSDTQ for the
carbides but were very accurate for the nitrides. This difference
in behavior is quite difficult to understand, though it is possible
that these corrections were acting in a more divergent manner
for the more strongly correlated carbides (as evidenced by
their low systematic error relative to the consistent under-
binding behavior seen from nitrides). Overall however, it is
quite clear that the metal−ligand triple bonds are extremely
challenging for CC calculations.

5.4.1. Carbides. Figure 6 reveals that, while most of the
carbides are quite challenging for CC methods, a few are
relatively easily described. The performance of CCSD(T) for
ScC, ZnC, and high spin (quartet) CuC is not too poor, and
the good performance of CCSDT for these species suggests
that cancellation of errors had little role to play here. Low spin
(doublet) CuC is also decently described at CCSDT and
higher levels of theory. TiC and VC are considerably more
challenging; but CCSDTQ can get errors down to chemical
accuracy, and the (P)Λ pentuples correction improves
predictions further. MnC and FeC, on the other hand, are
incredibly challenging, with CCSDTQ predicting errors
around 10 kJ/mol, and even the (P)Λ correction results in
2−3 kJ/mol error.

5.4.2. Nitrides. The MN compounds appear to have quite
complex electronic structure overall, similar to the MC
compounds (see Figure 7). Only high spin (quartet) ZnN
can be considered to be “easy” from a CCSD(T) perspective,

Table 5. Root Mean Squared Error (RMSE) and Mean Error
(ME) in BDEs Predicted by CC Methods for Polyvalent
Ligands, against the ASCI Benchmark (in kJ/mol)a

Carbide Nitride

method RMSE ME RMSE ME

CCSD 72.0 −60.3 72.8 −64.6
CCSD(T) 14.2 −11.9 10.8 −9.0
CCSD(T)Λ 32.0 −21.2 17.3 −12.3
CCSD(2) 11.9 −10.4 9.9 −9.0
CCSDT-1a 11.2 −0.3 21.6 9.0
CCSDT-1b 33.2 −13.7 20.9 0.2
CCSDT-3 24.1 −13.1 12.8 −7.3
CCSDT 21.2 −13.9 13.4 −10.9
CCSDT(Q)/A 13.7 −0.8 13.1 −9.6
CCSDT(Q)/B 11.0 3.2 7.1 −1.0
CCSDT(Q)Λ 1.7 −0.2 1.5 −1.2
CCSDTQ-1a 6.4 −3.6 7.6 −6.1
CCSDTQ-1b 2.6 −0.8 6.1 −4.2
CCSDTQ-3 5.4 −4.3 6.8 −5.6
CCSDTQ 5.7 −3.3 4.0 −3.0
CCSDTQ(P)/A 5.2 0.1 2.1 −1.2
CCSDTQ(P)/B 6.4 −0.2 2.2 −1.0
CCSDTQ(P)Λ 1.6 −1.0 1.0 −0.7

aThe CC methods have been listed roughly in order of their
complexity. CrC, CoC, NiC, FeN, and NiN were not included as all
data was not available.

Figure 6. Magnitude of errors (in kJ/mol) of selected CC methods against the ASCI benchmark for all the carbides.
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although the good performance of CCSDT for low spin
(doublet) ZnN and CuN suggest that these compounds are
not too challenging. At the other extreme, VN, CrN, MnN, and
CoN appear to be quite challenging as even CCSDTQ predicts
around 4 kJ/mol error. The (P)Λ correction however gives
good performance for VN and CrN. The less robust (P)/A and
(P)/B corrections yield similar behavior as well, and this
consistency between the three recipes suggests that the good
behavior is not all due to error cancellation. MnN and CoN
however appear to be challenging even with pentuples
corrections and therefore should probably be excluded from
any DFT development data sets.
5.5. Behavior for the 3dMLBE20 Data Set. The

3dMLBE20 data set proposed by Xu et al.11 is a subset of
20 molecules out of our full data set, which has been studied
more extensively than others with wave function theory,11,36,37

albeit mostly by comparison to experiment. The original study
by Xu et al.11 claimed that CC theories were in general
suboptimal for this subset, but this has been subsequently
contested.36,37 Reference 37 in fact presented benchmark
BDEs using the HEAT protocol,29 which uses CCSDTQ as the
highest level of theory. We therefore decided to specifically
examine how well various methods fare for this specific subset.
We begin by noting that the data set is 45% chlorides, 30%

hydrides, 15% oxides, and 10% sulfides. The absence of any

nitrides or carbides immediately gives CC theory a
considerable advantage relative to our full data set. However,
a number of challenging cases like CoCl are present. Xu et al.
had attempted to classify the molecules into a 7 member single
reference (SR) subset and a 13 member multireference subset,
based on the T̂1 MR metric,65 which is depicted in Figure 8,
along with errors predicted by some representative CC
methods. It is immediately apparent that the SR labeled
species have BDEs that can be estimated by CCSD(T) to
chemical accuracy.
The MR labeled cases give more interesting behavior, with

CuH, VCl, VH, and CrH showing essentially the same
behavior as the supposedly SR species and TiCl potentially
exhibiting similar behavior (but not VO, due to the error
increasing on moving to CCSD(2) from CCSD(T), suggesting
cancellation of errors in the latter). CCSDT appears adequate
for NiCl, MnS, and quartet FeH, for which CCSD(T) predicts
larger errors than the chemical accuracy limit. ZnO and CrO
appear to require quadruples corrections to reach chemical
accuracy, while the incomplete information for CoH also pegs
it as a difficult species. CoCl is a harder case, as we have
energies for the high spin quintet state and were not able to
converge the triplet ground state to sufficient accuracy. The HS
CoCl state looks relatively easy, but the LS state appears to be
much more difficult. We therefore think that CCSD(T) can get

Figure 7. Magnitude of errors (in kJ/mol) of selected CC methods against the ASCI benchmark for all the nitrides.

Figure 8. 3dMLBE20 data set (with SR and MR classification), along with absolute errors (in kJ/mol) predicted by various CC approaches against
our benchmark.
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to chemical accuracy for 5 out of the 13 supposed MR species
and all the SR labeled species. Three of the MR subset require
full triples corrections, two others need some quadruples
corrections, and the remaining three appear to be challenging
for CC theory; but insufficient data is available to determine
what is the minimum level of CC theory needed to accurately
find their BDE. However, the overall accuracy of CCSDTQ
indicates that the values presented in ref 37 are quite accurate,
though around 1 kJ/mol error is possible for CrO, ZnCl, ZnO,
NiCl, and ZnS, and it is difficult to be fully certain about VO,
CoH, and CoCl. The uncertainties in typical experimental
results however suggest that ref 37 values should be well within
those error bars.
5.6. Estimate of Multireference Character. It is also

interesting to consider the multireference character of the
studied species. There are multiple measures for this in the
literature like the aforementioned T1 metric,65 but they are
known to yield conflicting results.11 We have therefore chosen
to use the following simple approach to determine the
multireference character of the studied systems, using an
estimate for the number of unpaired electrons resulting from
correlation driven uncoupling of electron pairs, that are strictly
paired in a Slater determinant with restricted orbitals.

1. Construct alpha and beta density matrices Pα and Pβ
from the ASCI variational wave function.

2. Diagonalize the spinless density matrix P = Pα + Pβ to
obtain spinless natural orbitals.

3. Rotate Pα and Pβ to this natural orbital basis. The
resulting diagonal elements (Pα)ii and (Pβ)ii would then
be α and β natural orbital populations nα,i and nβ,i.

4. The estimated number of correlation driven unpaired
electrons is then

∑ − + −α α β βn n n n(min( , 1 ) min( , 1 ))
i

i i i i, , , ,

The resulting metric is consequently a generalization of
earlier work for closed-shell species66 and essentially involves
summation of the difference in spin populations of the exact
wave function and the ROHF type determinant in the natural
orbital basis. This metric correctly predicts roughly 2 unpaired
electrons for single bond dissociation (specifically, 2.04 for

stretched ethane), roughly 4 for double bonds (specifically,
4.21 for stretched ethene), and 6 for triple bonds (specifically,
6.14 for stretched N2). It also predicts approximately 1.94
unpaired electrons for singlet p-benzyne (which is functionally
a biradical) and a value of 0.97 for O3-a classic example of a
main group species with strong correlation.28 Values of this
quantity for all the studied species are given in Table 6.
The values in Table 6 reveal that the species studied are not

very multireference on the whole, typically having less than 1
correlation driven unpaired electrons. None appear to
represent a situation where a full electron pair is broken
because of correlation (i.e., a metric >2). The most
multireference species (>1) are TiH, quartet FeH, CoH,
CoO, CrS, and FeS out of the mono- and divalent ligand
containing species (though CrO, NiO, VS, and CoS are quite
borderline). Many carbides and nitrides however have more
than one correlation driven unpaired electron (with only a few
like CuC being exceptions). Species with large values of this
metric are among the most challenging species in the entire
data set (like CoH, NiO, or MnC), although it would be
unwise to solely draw conclusions about the relative difficulty
of species based solely on this factor, since tough species like
LS NiCl can have smaller values like 0.62 (suggesting strong
correlation sans significant multireference character).

5.7. Cluster Decompositions. It is also instructive to
consider what cluster amplitudes are present in the true many
body wave function, in order to determine what is the best a
given level of CC theory might perform. Information about
this can be obtained by decomposing the ASCI variational
wave function (which in principle contains nearly all the
important degrees of freedom, and thereby nearly all strong
correlation) into cluster amplitudes via the CLUSTERDEC
program67 (which has been described in ref 68). The number
of potential cluster amplitudes however is very large, and we
therefore consider only the largest cluster amplitude of the
entire decomposition, since strong correlation in such systems
is likely to arise on account of interactions between very
specific electrons, which would indicate outsized impact of
specific cluster amplitudes. While most of the cluster
amplitudes are likely a fair bit more approximate than the
energies (since the PT2 and extrapolation induced gains in
accuracy are not present), the largest ones are expected to be

Table 6. Effective Number of Unpaired Electrons Arising from Broken Electron Pairs for Species Considered, As Estimated
from the ASCI Variational Wave Functiona

Sc Ti V Cr Mn Fe Co Ni Cu Zn

H 0.67 1.16 0.35 0.39 0.27 0.29 (hextet) 1.06 0.63 0.40 0.31
1.12 (quartet)

F 0.71 0.40 0.41 0.44 0.36 0.38 ICb 0.38 (quartet) 0.44 0.38
0.46 (doublet)

Cl 0.81 0.45 0.45 0.50 0.42 0.44 0.43 (quintet) 0.43 (quartet) 0.47 0.43
ICb (triplet) 0.62 (doublet)

O 0.66 0.73 0.80 0.96 0.90 0.89 1.08 0.95 0.60 0.89

S 0.81 0.88 0.98 1.27 0.82 1.00 0.97 0.88 0.57 0.69

C 0.78 1.01 1.17 1.57 1.79 1.51 1.52 1.46 0.54 (quartet) 0.90
0.89 (doublet)

N 1.04 0.91 1.03 1.40 1.44 1.02 (hextet) 1.05 0.91 0.70 0.52 (quartet)
ICb (quartet) 1.03 (doublet)

aMultiple spin states were considered for some species, resulting in values for high spin (HS) and low spin (LS) cases. bIC stands for insufficiently
converged (i.e., high error) cases that have not been reported.
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among the most converged due to the ASCI selection rule
being effective at identifying important degrees of freedom.
Figures 9a, 9b, and 9c present the largest cluster amplitudes

generated by cluster decompositions of the ASCI variational
wave functions (in the approximate natural orbital basis) for
hydrides, oxides, and carbides, as representative cases for the
three ligand classes. There is no point in considering T̂1 since
eT̂1 serves to only perform orbital rotations.69 Figure 9a shows
that the magnitude of the largest cluster amplitude monotoni-
cally decays with increasing the order of excitation for the
hydrides, and all excitation orders are well separated from each
other. These species therefore could be considered to be well
behaved, as there are no anamolous cases where |T4| jumps
above |T2| in magnitude or the like. The largest |T5| and |T6| are
below 10−3 suggesting that CCSDTQ should be adequate,
which is indeed reflected by the energy errors in Figure 1.
Similar behavior is seen for fluorides and chlorides. A
monotonic convergence of exact CC methods with an
increasing number of allowed excitations is therefore expected
(which is what we observe in energy errors until CCSDTQ).
The oxides (as shown in Figure 9b) exhibit somewhat

similar behavior. However, several species have large T5 and T6
values, and the gap between the largest T4, T5, and T6 values is
often quite small, indicating that post CCSDTQ corrections

might be needed in cases to have very high accuracy, as
confirmed by Figure 4. Sulfides have very similar behavior as
well. On the other hand, Figure 6 reveals significantly different
behavior for the carbides. The gaps between the largest T
amplitudes are often small, and the largest T5 amplitude jumps
above the largest T4 for TiC, while the largest T6 is larger than
the largest T5 for MnC and FeC. This suggests that such
species would be quite challenging with CCSDTQ or even (P)
corrections. Indeed, MnC and FeC have errors in excess of 2
kJ/mol even with CCSDTQ(P)Λ. The nitrides also exhibit
similar behavior, showing the challenges CC theory faces in
describing interactions between metals and multivalent ligands.
We would however caution against overanalyzing the

connection between the largest cluster amplitudes and the
energy errors discussed earlier, as the latter involves collective
interplay between individual amplitudes and Hamiltonian
matrix elements, which can be glossed over by global metrics
over all amplitudes. Indeed, while these plots can at times
reveal periodic trends (relative “easiness” of HS CuC indicated
by low T magnitudes in Figure 9c are confirmed by energy
errors in Figure 6, as an obvious case), they are often not very
effective is distinguishing between species. For instance, NiO
appears to have much smaller T5 and T6 values than ScO or
TiO and yet has a larger CCSDTQ error than the latter two.

Figure 9. Largest T amplitudes for MX species, using ASCI wave functions.
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Use of different global metrics like the ||L||2 norm yielded a
similar picture as well, indicating that further insight may not
be readily obtained by other global metrics over amplitudes
alone.

6. CONCLUSIONS

In summary, we have estimated the BDEs of 74 spin states of
69 3d transition metal binary compounds (out of the 70
possible species with the H, F, Cl, O, S, C, and N ligands) with
an expected 3σ error under 1 kJ/mol relative to the exact,
Born−Oppenheimer nonrelativistic results in the def2-SVP
basis. This high level of accuracy was possible by using the
ASCI approach to generate compact SCI wave functions,
whose energies were augmented with a PT2 correction and
were subsequently extrapolated to the full CASCI limit of zero
PT2 energy. The resulting finite basis BDEs were used to
assess the performance of standard CC models for transition
metal systems.
We find substantial differences in behavior between three

groups of ligands. The monovalent hydride and halide ligand
containing species are on the whole relatively well described
with basic CC theories like CCSD(T), barring some noticeable
exceptions. These exceptions include all the Co containing
compounds, as well as quartet FeH, NiH, CuF, doublet NiF,
and doublet NiCl. The remainder however are described to
essentially chemical accuracy with CCSD(T). This is expected
behavior, as the metal−ligand single bond here is a two
electron interaction, which main group chemistry experience
suggests should be quite well described by triples corrections
on top of CCSD. It is nonetheless worth noting that CCSD(T)
mostly tends to systematically underbind due to missing
correlation. More robust corrections like the (T)Λ and (2)
corrections do even better than (T), which suggests that
developing local approximations to them in the manner of
DLPNO-CCSD(T) would be a worthy endeavor toward more
accurate transition metal quantum chemistry. CCSDT is nearly
always sufficient in getting to around 1 kJ/mol accuracy (or
better) for all of these molecules (including the challenging
cases for CCSD(T) where data is available), and a robust
quadruples correction (such as (Q)Λ or full Q) appears to
nearly always reduce residual errors considerably.
The situation is somewhat different for the divalent O and S

ligands. Four electron metal ligand interactions are possible for
these species, which would indicate that even CCSDT could
find them challenging. This is indeed borne out by the BDEs,
with CCSDT having errors of around 6 kJ/mol for oxides and
4 kJ/mol for sulfides. Approximate triples corrections like
CCSD(T) consequently perform worse, with errors in the
order of 10−16 kJ/mol stemming from systematically missing
correlation energy. The CCSD(2) and CCSD(T)Λ methods
either do not significantly improve upon CCSD(T) or
sometimes perform worse, likely on account of their more
robust perturbative models damping the corrections too much
relative to the more minimal (and more susceptible to
divergence) CCSD(T). Perturbative (Q)Λ corrections on top
of CCSDT lower error considerably, and RMSE around 1 kJ/
mol is achieved when full CCSDTQ is used, suggesting that
the challenge was indeed modeling four electron correlations.
A pentuples (P)Λ correction is necessary to attain sub 1 kJ/mol
accuracy for such species, highlighting the challenges involved
with developing a DFT functional development quality
benchmark purely from CC approaches.

The C and N ligands create even more complex electronic
structure on account of their ability to form metal ligand triple
bonds, whose six electron interactions are potentially beyond
even CCSDTQ to model. CCSDT itself fails quite badly for
such species, systematically underestimating BDEs by 10−18
kJ/mol. Somewhat miraculously, CCSD(T) has lower RMSE
and ME than CCSDT, which is likely a consequence of an
overestimated (T) perturbative correction compensating for
the effect of missing quadruples. CCSD(T)Λ, on the other
hand, winds up failing badly on account of trying to mimic
CCSDT to a greater extent. CCSD(2) in contrast has
somewhat lower error than CCSD(T) despite a less divergent
triples correction, on account of the presence of some
quadruples contributions. CCSD(2) therefore is likely getting
a “better” answer than CCSDT for more physically correct
reasons, even though nearly all its error stems from systematic
underbinding. Full CCSDTQ itself has errors in the range of
3−6 kJ/mol, which are only further reduced by incorporation
of a pentuples (P)Λ correction that is realistically unaffordable
for most species. These species therefore represent extra-
ordinarily challenging cases that can only be optimally
addressed by explicitly MR methods and are unlikely to be
converged (in the complete basis set limit) to sufficient
accuracy for inclusion in a functional development benchmark
data set.
In addition, we find some surprisingly poor performers

among computationally intensive methods. The iterative
approximations to higher order CC methods do not appear
to offer any advantages over robust perturbative corrections
like (2) or the (n)Λ ones, despite their greater asymptotic
scaling. More surprisingly, the (Q)/A and (Q)/B perturbative
corrections appear to degrade the performance of CCSDT for
most cases, indicating that it is not really worth it to carry out
these calculations in general. The corresponding pentuples
(P)/A and (P)/B corrections appear to often be similarly
problematic based on available data, suggesting that they too
should probably be avoided. Overall, we recommend using
only Λ based perturbative corrections beyond the triples level
for transition metal systems, over iterative approximations or
other perturbative models.
In conclusion, we have shown how different CC methods

fare for different forms of ligand metal interaction over a data
set of 3d transition metal binary compounds. Looking to the
future, this information could be used to generate a highly
accurate composite scheme that combines CC and SCI data to
obtain dissociation energies at the complete basis set limit.
Such data (especially for monovalent ligands like H, F, Cl, Br,
OH, NH2, CH3, etc.) would be quite useful for incorporating
transition metal information to existing DFT functional
development data sets. Work along these directions is currently
in progress.

■ APPENDIX A: JUSTIFICATION FOR BASIS SET
CHOICE

The def2-SVP basis was used for nearly all calculations in this
work, despite its relatively small size. The computed BDEs for
instance cannot be compared to experiment at all, and some
spin-state orderings are incorrect because of basis set
incompleteness errors. However, all the CC approaches
being assessed are wave function theory techniques that
attempt to approximate FCI solutions for any finite basis, and
it is therefore fair to compare methods in this manner.
Furthermore, precedent from main group thermochemistry
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indicates that high order CC contributions quickly reach the
basis set limit around the double-ζ level,28,70 enabling
protocols like HEAT29 or W428 to only use double-ζ basis
sets at the CCSDTQ level (or beyond). We do however
recognize that transition metal systems could potentially
exhibit slower basis set convergence for high order CC
contributions.
On a practical note, we observe that def2-SVP is the largest

basis for which full CCSDTQ calculations could be performed
with the resources available to us, which nonetheless took a
while. The significant increase in number of virtual functions
on moving to a triple-ζ basis would result in roughly a 64 times
longer calculation, which was unviable for the whole data set.
We have encountered little difficulty in getting ASCI numbers
for many of the data set species to chemical accuracy with the
def2-TZVPP basis, and much higher accuracy gains appear
readily achievable with modest increase of variational space to
10 or 20 million determinants. This is largely a consequence of
the extra basis functions mostly adding dynamical correlation,
whose effects could be easily estimated via the PT2 correction.

■ APPENDIX B: ISSUES WITH ROCC FROZEN CORE
There are two possible choices of orbitals derived for ROHF
for use in CC calculations. The “standard” approach employs
the ROHF optimized orbitals straightaway, while the “semi-
canonical” orbitals are obtained by diagonalizing the alpha and
beta Fock matrices generated from the ROHF density to have
formally unrestricted orbitals. Furthermore, it is possible to
neglect the core orbitals during the semicanonicalization
process. There are therefore often small differences in
ROCC values between codes, as was noted in the original
W4 paper, for instance.28

Semicanonical orbitals are nonetheless more widely used as
they are the formally appropriate choice for perturbative
corrections to CC. On the other hand, the Q-Chem ASCI code
is set up to solely operate with standard orbitals, which
dramatically simplifies the computation. So there is a slight
difference in the CASCI orbital subspaces treated with ASCI
+PT2 and the CC approaches using MRCC. The energetic
impact of the difference can be well estimated by finding the
difference between the CCSD BDEs from both sets of orbitals,
as the resulting core effects are likely tiny. As anticipated, it is

almost universally minuscule, with the typical values being
0.1−0.2 kJ/mol, although there are a few cases where it goes as
large as 1 kJ/mol. Attempting to “standardize”MRCC energies
with these numbers led to very similar errors, and thereby did
not affect conclusions at all. This effect has consequently been
neglected in the present study, though a full list of these
differences can be found in the Supporting Information.

■ APPENDIX C: LINEAR EXTRAPOLATION AND
ERROR ESTIMATION

The ASCI+PT2 energy (EASCI+PT2) was extrapolated against
the PT2 correction (EPT2) to the FCI limit of EPT2 = 0, in order
to estimate the true FCI energy. An essentially linear behavior
was seen in most cases (consistent with behavior seen for other
SCI methods49,50), leading us to use a linear fit in order to
minimize the possibility of overfitting. The standard
uncertainty in the slope and intercept of linear fits are also
quite well-known (see ref 71, for instance), providing a
relatively reliable metric for the accuracy of our fit. Indeed, the
standard deviation of the intercept for fitting data points {yi}
against the variable {xi} is

σ
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where n is the number of data-points, x̅ is the average of {xi},
σx
2 and σy

2 are variances of {xi} and {yi}, respectively, and r2 is
the square of the coefficient of correlation for the fit. Low
intercept error σ can therefore be achieved by low 1 − r2 (i.e.,
r2 is very close to 1) or low σy

2 (i.e., y is almost flat and
therefore has little variation). For our purposes, the latter
condition indicates that EASCI+PT2 itself has nearly converged
(has low variation).
The ligand atoms C, N, O, F, S, and Cl had PT2 corrections

below 10−8 au, and no extrapolation was therefore necessary.
For all other systems, we performed linear regression with
three points (typically corresponding to variational ASCI
subspaces of 1 million, 2 million, and 5 million determinants)
to determine the intercept and the standard error σ associated
with it. In some cases (most notably the V atom), the fit was
not very linear at all, but EASCI+PT2 itself was very converged,
leading to low σy

2 and therefore low error. For others,

Figure 10. Examples of both excellent (left) and suboptimal (right) linear fits. The data has been fit only to the three points with smallest EPT2 by
magnitude, but results from smaller variational subspaces have been added to show trends. The raw data has been supplied in Table 7.
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extrapolation recovered a substantial amount of energy (going
up to 4 kJ/mol in cases), but very small 1 − r2 led to low error
predictions. An example for this has been depicted in Figure
10a. Certain species like CoF however had rather nonlinear
behavior (as can be visually seen from Figure 10b) and
insufficient convergence of EASCI+PT2, leading to large predicted
error and subsequent exclusion from Table 2 and analysis (see
Table 7).
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