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RESEARCH Open Access

Detecting protein variants by mass
spectrometry: a comprehensive study in
cancer cell-lines
Javier A. Alfaro1,2, Alexandr Ignatchenko3, Vladimir Ignatchenko3, Ankit Sinha2, Paul C. Boutros1,2,4*

and Thomas Kislinger2,3*

Abstract

Background: Onco-proteogenomics aims to understand how changes in a cancer’s genome influences its proteome.
One challenge in integrating these molecular data is the identification of aberrant protein products from mass-
spectrometry (MS) datasets, as traditional proteomic analyses only identify proteins from a reference sequence database.

Methods: We established proteomic workflows to detect peptide variants within MS datasets. We used a combination of
publicly available population variants (dbSNP and UniProt) and somatic variations in cancer (COSMIC) along with sample-
specific genomic and transcriptomic data to examine proteome variation within and across 59 cancer cell-lines.

Results: We developed a set of recommendations for the detection of variants using three search algorithms, a split
target-decoy approach for FDR estimation, and multiple post-search filters. We examined 7.3 million unique variant tryptic
peptides not found within any reference proteome and identified 4771 mutations corresponding to somatic and
germline deviations from reference proteomes in 2200 genes among the NCI60 cell-line proteomes.

Conclusions: We discuss in detail the technical and computational challenges in identifying variant peptides by MS and
show that uncovering these variants allows the identification of druggable mutations within important cancer genes.

Keywords: Proteogenomics, Proteoforms, Protein mutant detection, Integrative –omics, Protein search databases,
Personalized proteomics, Proteomics, Mass-spectrometry-based mutant detection

Background
A global effort is underway by cancer researchers to an-
notate biobanks with molecular data captured across the
genome, transcriptome, and proteome. While the
genomics and transcriptomics communities have estab-
lished pipelines for the identification of disease variants,
it remains difficult to elucidate the consequences of
these variations on the proteome. There is a need for
better methodologies to characterize all protein variants,
formally defined as proteoforms [1], from global proteo-
mics datasets. This includes germline, somatic, and post-
translational modifications (PTMs), including all possible
combinations, for any given protein. However, the

identification of PTMs and coding consequences of gen-
omic variations are conceptually different, since genomic
and transcriptomic studies can provide orthogonal
evidence for the existence of such a variant.
A fundamental task in mass-spectrometry (MS)-based

proteomics is the assignment of collected spectra to the
amino-acid sequences that gave rise to them. Proteins
are digested using enzymes with known cleavage sites to
produce peptides, which are then analyzed by MS. These
datasets consist of two types of measurements: (1) MS1

spectra survey a set of peptides present in the mass-
spectrometer at a given moment; and (2) MS2 spectra
originate from an attempt to isolate and fragment a sin-
gle peptide ion species identified in the MS1. Peptide
spectrum matches (PSMs) are assigned using search
algorithms [2–4] that match MS2 spectra to peptides
originating from a database of reference protein se-
quences. Typically, a target-decoy approach [5, 6] is used
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to estimate the false discovery rate (FDR), allowing users
to produce a final list of identifications at a selected con-
fidence level.
Generally, the proteomics community has aimed to

simplify these search databases by using canonical se-
quence representatives of each protein in the human
proteome. The rationale has been to reduce the peptide
search space in order to avoid spurious matching and
extensive peptide inference (i.e. peptides matching to
more than one database entry) [7]. Difficulties in assign-
ing spectra originate from a variety of factors including
low abundance, non-peptide molecules, modified pep-
tides, or mixtures of co-fragmenting peptides. The larger
the search database the higher the likelihood of a spuri-
ous match [8].
However, one limitation of using reference sequence

databases is that it is unclear how the cancer genome,
with all its mutations, structural variations, and epigen-
etic modifications, manifests in a cancer proteome.
Onco-proteogenomics expands search databases with
protein sequences not found in reference human pro-
teomes, such as germline variations, variants commonly
found in cohorts of tumor samples, or sample-specific
variants identified in genomic or transcriptomic ana-
lyses. Global MS-based proteomic strategies, in combin-
ation with genomics and transcriptomics, could resolve
this gap in knowledge [9–18] with the goal of improving
the characterization of the variant peptides (i.e. peptido-
forms) present in the sample.
Two types of databases are commonly used to incorp-

orate protein variants into MS searches: community-
based databases include variations previously observed
while sample-specific databases include variants identi-
fied by DNA sequencing (DNA-seq) or RNA sequencing
(RNA-seq) of that sample [19]. Each approach has ad-
vantages and disadvantages. Large databases like dbSNP
[20], COSMIC [21], and UniProt [22] contain millions of
protein variants, which can increase the likelihood of
spurious database hits due to the increased database
size. By contrast, sample-specific databases may be
smaller, but are prone to false negatives resulting from
variants missed in DNA-seq or RNA-seq for experimen-
tal or computational reasons [23, 24]. Intratumoral
heterogeneity adds yet another potential source of
missed variant protein detection [25].
State-of-the-art MS is now reaching the resolution and

sensitivity to interrogate protein variations [26]. In paral-
lel, the computational developments needed to combine
proteomics with DNA-seq and RNA-seq in cancer sam-
ples are already underway [12, 19, 27–35]. Here, using
proteomic, transcriptomic, and genomic characterization
of the NCI60 cell-lines, we systematically investigate how
the choice of proteogenomic databases affects PSM as-
signment. We present a strategy for onco-proteogenomics

to assess the scope of variant peptides identified and their
potential impact to cancer biology.

Methods
We conducted our study within the NCI60 cell-line
panel with extensive genomic [36], transcriptomic
[37], and proteomic [38] data available. The proteo-
mics data consist of both a “deep” proteome derived
from extensive fractionation of cell lysate by electro-
phoresis into 24 gel pieces (nine cell-lines) and a
“shallow” proteome, which was generated using 12 gel
pieces (59 cell-lines).

Variant peptide database construction
The first step in variant protein identification was the
generation of protein sequence databases containing the
modified amino-acid sequences (Additional file 1: Figure
S1a). Briefly, protein-level outputs from variant effect
predictor [39] were parsed to proteins containing single
amino-acid variants, insertions, deletions, frameshifts,
stop-loss mutations, and fusions. Variant peptides were
filtered against a canonical human proteome from
UniProt (20,187 non-redundant proteins) to remove
peptides that also mapped to this reference database.
Variant sequences longer than six amino acids and con-
taining up to two missed tryptic cleavages on either side
of the mutated site were produced and added to the
FASTA file.
We explored variant-peptide detection with regards to

proteogenomic database size and content. Variant pro-
teins were obtained from five different sources: dbSNP
[20]; COSMIC [21]; UniProt [22]; exome-seq [36]; and
RNA-seq [37]. Augmented search databases were cre-
ated in 23 different ways derived from combinations and
subsets of these databases (Additional file 1: Figure S1b;
Additional file 2). We defined community-based data-
bases to include dbSNP, COSMIC, and variants anno-
tated in UniProt. Four sub-databases of COSMIC and
dbSNP were made to include single nucleotide variants,
indels, variants affecting genes in the COSMIC cancer
gene census and frameshifts, or stop losses or fusions.
For sample-specific database searches, all 59 NCI60 cell-
lines containing exome-seq data and 41 cell-lines
containing RNA-seq data were used. Three further data-
bases restricted to subsets of variants were generated for
a total of four sample-specific databases per cell-line and
per analyte type. We combined sample-specific and
community-based databases in two different ways: we
used a sample specific approach and a general approach
where all RNA-seq and exome-sequencing (exome-seq)
datasets were merged. In total, the RNA-seq cell-line
data characterized 675 cell-lines, which were also in-
cluded separately in their own database, as was all the
exome-seq data. A total of 473 different database
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combinations (Additional file 3; Additional file 1:
Figure S1b) were explored across all available cancer cell-
lines.

COSMIC, dbSNP, and exome-seq databases
COSMIC (v70), dbSNP (v141), and processed exome-seq
[38] datasets were downloaded in VCF format and
parsed using Variant Effect Predictor [39] (VEP.v.77)
from Ensembl tools release (v77) using the GRCh37 gen-
ome reference model. VEP output files were further
parsed to introduce mutations by retrieving the
described reference sequences from the Ensembl
proteome (GRCh37.75) and applying described substi-
tutions, insertions, and deletions using a series of
Bioconductor R scripts (R:v3.1.0; stringer:v0.6.2; clea-
ver:v1.2.0; Biostrings:2.32.1; Rsamtools:v1.16.1; Geno-
micFeatures:v1.16.2). Peptides were generated from
these mutated sequences allowing for up to two missed
cleavage sites. Duplicate peptides were collapsed and
headers identifying each mutation merged together.

COSMIC fusions
Gene fusions were obtained from those manually
curated from peer-reviewed publications by COSMIC
curators [21]. Fusions lacking inversions were parsed
from COSMIC HGVS format by extracting appropriate
transcripts (from the GRCh37.75 Ensembl genome
model) and merging the corresponding sequences.
Tryptic peptides spanning a three-frame translation over
the fusion were added to the FASTA database for
proteogenomic searching. Note: inversions and more
complex fusions were not included in our analysis.

RNA-seq
RNA-seq datasets were obtained from the authors [37]
as tab-delimited files with each mutation fully character-
ized within a RefSeq protein. Each line in the file was
parsed using in-house R scripts to generate mutated pro-
tein sequences. Tryptic peptides with up to two missed
cleavages were generated overlapping the mutation site.
RNA-seq in-frame fusions were made by merging nu-
cleotide sequences for the 5’ and 3’ regions of the fusion.
All tryptic peptides spanning the fusion crossover were
added to the database.

UniProt variants
The UniProt database was downloaded in XML format
(December 2015) and variants described therein were
parsed and corresponding UniProt reference sequences
modified.

Variant peptide detection
Using these databases, variant peptides were identified
from the NCI60 cell-lines using a proteogenomic

pipeline implementing a split target-decoy approach
[15], three search algorithms [2–4], and several additional
filters (Additional file 1: Figure S2a, b; Additional file 4;
Additional file 5). These filters (1) removed sequences
mapping to the human proteome as described above
(RefSeq, Ensembl, and UniProt), (2) removed peptide-
spectrum-matches that could also be based on chemical
or PTMs of reference peptide sequences, and (3) removed
protein variants with no alternative evidence for their
expression.

Target decoy database construction
For each FASTA file above, sequences were combined
with reviewed canonical Swiss-Prot (v.2014.12.09)
protein sequences and each combined sequence was re-
versed. These original and reversed sequences were
merged together to create proteogenomics FASTA data-
bases used for peptide-spectrum match assignment.

Target decoy database searching
MS RAW files were converted to mzXML format using
ReAdW (http://tools.proteomecenter.org/software.php)
and searched against the proteogenomics FASTA data-
bases with X!Tandem [2] (v.13.09.01.1), Comet [3]
(v.2014.02 r2), and MS-GF+ [4] (v.0.9949). The following
search parameters were used for all searches: carbamido-
methylation of cysteine as a static modification, oxidation
of methionine as a dynamic modification, a ±10 ppm
precursor mass tolerance, a ±0.4 Dalton fragment mass
tolerance for CID, and ±10.0 ppm fragment mass toler-
ance for HCD. All searches were performed on a 22-node
cluster with 12 cores and 64 GB RAM on each node.
Output files were converted into tab-delimited files that
standardized outputs from all search algorithms
(Additional files 6, 7, 8 and 9). The search results were
then subjected to a series filtration steps, described next.

Spectral-level FDR cutoff
We calculated spectral-level FDR cutoffs using a split
target-decoy approach as initially proposed in [15]. FDR
was calculated separately for variant peptides and Uni-
Prot PSMs using decoys generated from each database,
respectively, although MS data were searched against
one merged FASTA file. In each case, PSMs with differ-
ent mass-to-charge ratios were treated separately. PSMs
with less than 1% spectral FDR were retained for
subsequent analyses.

Filtering of resulting peptide lists
Applying a stringent spectral-level FDR filter does not
guarantee that every PSM represents a correct identifica-
tion, especially when single peptide identifications are
involved, as is the case in proteogenomics. A number of
scenarios could result in false-positive identifications.
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The detected peptide may be an adjacent tryptic peptide
not overlapping the variant, which can arise from
FASTA sequences containing missed tryptic cleavage
sites included within the database. A variant peptide
could be correctly assigned to the spectrum, but inad-
vertently also match to or be isobaric with a sequence of
a different reference protein. A peptide could be errone-
ously matched to a spectrum, because the mass shift
caused by a substitution happens to coincide with the
mass shift associated with a PTM on the same or
possibly different peptide. Finally, when searching large
databases, false-positive rates can be harder to control
because there is a higher probability of matching a high
scoring peptide from among the larger number of se-
quences available. We developed a series of post-search
filters to mitigate these potential caveats. In the future,
these approaches could be further refined, using either
synthetic spectral libraries or more sophisticated statis-
tical approaches.

Filtration against reference proteomes
A filter was required to deal with scenarios where de-
tected peptides inadvertently matched or could not be
distinguished from peptides in the reference proteome.
Detected peptides were matched against reference pro-
teomes including that of Ensembl (GRCh37.75), RefSeq
(release 68), and UniProtKB/Swiss-Prot sequences. Iso-
baric leucine and isoleucine residues, which cannot be
distinguished, were considered identical during this fil-
tration process.

Chemical modification filter
Mass shifts in MS2 spectra could also be attributed to
PTMs (chemical or enzymatic) within some reference
peptide sequence. To deal with the possibility that PTMs
were being misidentified as mutations in our pipeline, all
cell-line proteomic data were re-searched with
MaxQuant [40] against the reviewed canonical
UniProtKB FASTA database in “dependent-peptide”
mode. Dependent peptides are assigned to MS2 as pos-
sible modifications to already identified peptides within
a sample (i.e. modifications could be classic PTMs or
amino-acid substitutions). A schematic detailing how
MaxQuant dependent peptides were used to remove po-
tentially misidentified mutants is in Additional file 1:
Figure S2b, representing a conservative way of dealing
with this potential issue (i.e. preference was given to the
MaxQuant results and discordant peptides were
removed from our results).
Potential post-translational or chemical modifications

that matched to filtered variant PSMs by scan header
were examined as to the position of the proposed PTM.
For this analysis, dependent peptides were filtered such
that the probability that the modification occurred at a

specific site (the positional probability) was greater than
0.8. This relaxed threshold was used to ensure that MS2

spectra for proteogenomic peptides that could be assigned
as chemically modified sequences from a differing starting
peptide sequence or site of modification were removed. It
was our observation that dependent peptides modified at
the same site as proteogenomic peptides nearly always de-
scribed the same mutation (i.e. the modification simply re-
sulted in a different amino acid that was also called by the
proteogenomics search). An example table showing pep-
tides removed by our approach is shown for the exome-
seq data (Additional file 10).
We also generated a list of variant peptides derived

from the dependent-peptide search. These were filtered
from all modifications proposed by MaxQuant as fol-
lows. First, we identified the amino-acid residue in the
canonical peptide sequence that was modified. Next, we
assigned single amino-acid variants based on MS1 mass-
shift that was consistent with an amino-acid change
from that starting amino acid. We used a positional
probability threshold of ≥ 0.95 to stringently threshold
these dependent peptides and found 1031 unique single
amino-acid variants (Additional file 11).

Protein abundance filter
To further reduce potential false-positives, we elected to
remove all proteogenomics PSMs for which there was
no additional evidence of protein abundance (i.e. identi-
fication of peptides mapping to canonical sequences of
the same protein). Therefore, each mutated peptide in-
cluded in our final list has additional evidence of being
expressed within the same cell-line.
The final list of PSMs from different search algorithms

were then grouped based on the source RAW file and
Scan ID and categorized into the following tiers:

Tier 1: all peptides identified after the above filtration
process.
Tier 2: peptides identified by at least two algorithms.
Tier 3: peptides identified by all three algorithms.
Tier 4: peptides identified by all three algorithms with
two spectra or more.

Detailed information of search output results and
filtration steps for all NCI60 cell-lines is available in
Additional files 4 and 5.

Results
Characterizing reference and variant protein sequence
databases
Our aim was to describe protein sequence variation be-
yond what is already included in reference proteomes.
We therefore began by examining the background of the
reference human proteomes, with the aim to understand
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the differences between them in tryptic peptide space.
We examined four commonly used reference proteomes:
(1) a database of 20,187 canonical protein sequences
from UniProt (Swiss-Prot); (2) a second UniProt
database with 88,717 proteins including isoforms (Swiss-
Prot + Trembl); (3) the reference proteome derived from
the Ensembl genome model using GRCh37 (v75) with
104,763 protein sequences (henceforth denoted
Ensembl); and (4) the reference proteome derived from
the RefSeq annotation model (release 68) consisting of
72,128 proteins. We in silico digested each of these ref-
erence human proteomes to produce a total of 2.95 mil-
lion distinct tryptic peptides within the range of 6–35
amino acids in length; peptides that are most commonly
detected by MS (Fig. 1a; Additional file 1: Figure S3). Of
these, 70% (2,064,452) showed 100% sequence identity
between all reference proteomes. The remaining 30%
(887,991) of tryptic peptides constituted a large number
of potentially detectable tryptic peptides missing in at
least one reference proteome.
Given this disagreement between reference proteomes

at the peptide level, we recommend that variant peptides
eventually reported by proteogenomics should be filtered
against the Ensembl, RefSeq, and UniProt derived pro-
teomes. To illustrate why this is necessary, after filtering
against the smallest human reference proteome “canon-
ical protein sequences” from UniProt, 7.3 million
distinct tryptic peptides remained within our proteoge-
nomic databases. However, of these, 35,446 overlapped
with the other three reference human proteomes
(Fig. 1b), with 43% derived from Ensembl and RefSeq
and 57% were present within Uniprot + isoforms (Swiss-
prot + Trembl). Variants present in reference proteomes
were all in community-derived databases, though 12%
were also found in sample-specific exome-seq. These
peptides cannot be disambiguated from the reference
and should not be included in the final set of variant
peptides detected. Improper filtering of putative variant
peptides is a critical and often overlooked issue in their
detection. When we compare our methodology to other
efforts [41], we find that while we start with nearly the
same peptides, we are more conservative and exclude
many variant peptides from our final lists (Additional file
1: Figure S4). However, our filtration steps are conserva-
tive, aimed to rigorously reduce false-positive identifica-
tions, especially in the context of sample specific
databases. If follow-up validation strategies using synthetic
peptides and targeted peptide quantifications are applied,
less stringent filters may be appropriate.
Taking the prostate cancer cell-line PC3 as an ex-

ample, the total number of unique protein variants con-
tained within the major database types we generated is
summarized in Fig. 1c and Additional file 3. Millions of
unique and distinct tryptic peptides (7.3 million) derived

from our databases represent the tryptic space of prote-
ome variation explored in this study. Each peptide was
included within at least one database, but there was
much redundancy between databases (Fig. 1d–f ). While
thousands of peptides (12,043) with sample-specific
genomic evidence were included (Fig. 1d, e), the vast
majority of peptides (6.84 million) were exclusive to
community-based databases (Fig. 1f ).

Scope of variant peptides identified
In total, 13,302 unique variant peptides were identified
within the deep NCI60 proteomic dataset (Additional
files 6 and 7). To understand how these peptides differed
in terms of confidence of identification, we quantified
the evidence for peptide identification using four tiers of
stringency (Fig. 2a). Tier 1 peptides were assigned by the
union of the three search algorithms (13,302 peptides).
Tier 2 and tier 3 peptides were identified by either two
(3071 peptides) or three algorithms (1610 peptides), and
tier 4 peptides were identified by three algorithms and
more than one PSM (836 peptides). These overall trends
were also representative for one cell-line, as shown for
PC3 (Fig. 2b). The peptides identified in PC3 came from
a diversity of databases and would often be present in
smaller database searches as well as larger ones (Fig. 2c).
The overall numbers of PSMs, unique peptides, and mu-
tations detected within the nine deep proteomes has also
been summarized (Fig. 2d). We further evaluated all
PSMs to check for biases in hydrophobicity, charge, and
length (Additional file 1: Figure S5). We found that vari-
ant peptides identified through our pipeline, tended to
be larger and of higher charge than those identified
using standard proteomic searches (see “Discussion”).
We focused on community-derived databases or

sample-specific database searches (Additional file 1:
Figure S1b). Fewer peptides (272) were identified with
genomic evidence than from the tryptic space of
community-derived variants (11,761; Fig. 2e). The pro-
portion of peptides with genomic evidence increased
from tier 1 to tier 4. This mild improvement for peptides
with genomic evidence came at the cost of proteoge-
nomic peptide identification (Fig. 2d).
We evaluated how peptides with and without dataset-

specific genomic evidence differed in their score
distributions (Fig. 2f). We focused on those peptides that
were derived from community-based databases, some of
which also had genomic evidence. For each search, pep-
tides were percentile ranked, with a percentile rank of 1%
indicating a peptide in the top 1% of peptides in that
search. At tier 1 there was only a slight bias showing bet-
ter PSM scores if the peptide had sample-specific genomic
evidence, supporting the validity of these community-
based peptide identifications (Fig. 2f; Additional file 1:
Figure S6). MS-GF+ consistently identified more peptides
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than COMET and Tandem. The fraction of peptides with
population variation evidence and the fraction of peptides
with genomic evidence initially identified in tier 1 decreased
relatively linearly with tier (Fig. 2g). A 12% improvement in
peptide median score occurred between tiers 1 and 2
(Fig. 2f/h). This compared to a ~6% improvement from tier
2 to tier 3, indicating the benefit of incorporating additional

algorithms rapidly depleted. Similar trends for these score
distributions were observed for a standard UniProt search
(Fig. 2f; Additional file 1: Figure S6). We recommend using
tier 2 as a balance between sensitivity and specificity, al-
though we suggest that all proteogenomics PSMs should be
closely examined (possibly using synthetic peptides) before
subsequent analysis.
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Fig. 1 The detectable tryptic space of reference and variant human proteins. a Distribution of 2.9 million reference proteome tryptic peptides
(length 6–35 amino-acids; including two possible trypsin missed cleavages) derived from four commonly used reference proteomes. Counts are
represented using a log10 scale. Panels (b–f) use the prostate cancer cell-line PC-3 as an example. b Distribution of the 35,445 variant peptides that are
also contained within at least one reference proteome. Y-axis covariate depicts the source of the variant. Color gradient indicates the percentage of
the 35,446 variants that overlap with each reference using a log10 scale. c Numbers of protein variants in the nine major database variants used to
search PC-3 proteomics data. Counts are in a log10 scale. d Total number of exome-seq derived variant peptides and their membership in other databases.
Counts are in a log10 scale. e Total number of RNA-seq derived variant peptides and their membership in other databases. Counts are in a log10 scale.
f Total number of peptides derived from various community-based databases and their redundancy with each other. Counts are in a log10 scale
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The relevance of proteogenomic peptides
Any proteogenomic pipeline must detect peptides in an
unbiased manner across the entire genome as well as
variations in relevant cancer genes and pathways. Pep-
tide variants identified within the NCI60 dataset were

broadly distributed across the genome (Fig. 3a), but
clearly the detected variants are just a fraction of those
theoretically detectable within the datasets searched. In
total, we found 4771 unique protein variations mapping
to 2200 genes at tier 2 (Additional file 12) across both

a b

c

d e f

g h

Fig. 2 Detection of variant proteins within the nine deep proteomes. a Numbers of unique variant peptides identified in tiers 1–4 using MS data
from the nine deep proteomes. b Unique variant peptides identified within the prostate cancer cell-line PC3 across tiers 1–4 (log10 scale). c Heatmaps
depicting the percent contribution of each database towards the total number of peptides identified for that tier in PC3. The number of peptides
overlapping each database pair is provided as well. Color scale is in log10. d Total number of spectra, peptides, and unique mutations identified by tier.
e Summary of peptides identified within the nine deep proteomes within sample-specific databases or within community-based databases (tiers 1–4).
f Percentile score distribution summary by algorithm and tier. X-axis ranges from high scoring peptides (0’th percentile) to lower scoring peptides
(100’th percentile). A similar figure using original e-value scores is depicted in Additional file 1: Figure S6. The distribution of peptide scores from a search
against a standard UniProt database is shown in black. g Increasing the stringency of identifying a peptide influences the percentage of peptides present
in community-based databases between tiers 1 and 2 more than moving to subsequent tiers. h When compared, tier 2 peptides tend to be higher ranked
by 12% than tier 1 peptides; this improvement in peptide rank drops off quickly from tier 2 to tier 3 (4%) and tier 3 to tier 4 (1%)
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the deep (1511 HGNC gene ids) and the shallow (1469
HGNC gene ids) proteomes. The median number of
mutations per gene was just 1 in both proteome

datasets. However, there were a few genes where an ex-
cess of variants was identified across cell-lines. AHNAK,
a large 700-kDa structural scaffold nucleoprotein with

a

b

c

d

Fig. 3 Identification of cancer-related variant peptides. a Genome coverage of potentially detectable proteogenomic peptides (6–35 amino acids)
within the generated search databases (bottom). Variant proteins identified at tier 2 within 59 shallow and nine deep proteomes have been summarized
in black and gray, respectively (top). Black dots correspond to the locations of COSMIC cancer census genes and orange dots indicate those detected at tier
2. b Variants identified were assessed by the drug gene interaction [43] database to identify variants that might potentially be targetable or affect related
pathways. Counts relate to the number of variant peptides identified in each category for tier 2 peptides. Only categories significantly enriched at p< 0.01
are depicted. c Variant peptides detected for CTTNB1. Mutation locations have been depicted in orange. Identification of reference peptides for the same
protein are shown in blue, with an alignment describing the peptides detected. Bar plots illustrate the variants that were present in genomics for this gene
(top) and all mutations present in community-based databases (bottom). d A tier 2 peptide identified for CTTNB1 showing clear coverage of y and b ions

Alfaro et al. Genome Medicine  (2017) 9:62 Page 8 of 12



known roles in cell-migration and metastasis topped the
list with 91 variants identified across the nine deep pro-
teomes. In total, 211 COSMIC cancer gene census genes
harbored detected variants, demonstrating the potential
of proteogenomics for variant detection in cancer. These
genes tended to be highly expressed within the nine
deep proteomes, as estimated using iBAQ scores from a
standard UniProt search (Additional file 1: Figure S7).
Variants identified were assessed by the drug gene inter-

action database [42, 43] in order to identify those variants
that could be targetable by a drug or affect targetable path-
ways. We tested whether the genes associated with variant
peptides identified at tier 2 (3071 unique peptides) were
enriched in specific druggable gene categories when com-
pared to equally sized random subsamples of unique pep-
tides identified in a standard UniProt search against the nine
deep proteomes. As a null distribution, we took 100,000 sub-
samples of 3071 peptides from a UniProt search and binned
them into categories within the drug gene interaction data-
base. Using this methodology, several druggable gene cat-
egories were statistically enriched (p < 0.01) in variant
peptide detections at tier 2 (Fig. 3b). Statistically enriched cat-
egories included variants from various tumor suppressors,
cell-surface proteins, proteins involved in drug resistance,
and proteins involved in transcription factor binding.
We mapped variant peptides back onto the canonical

reference sequence for the oncogene beta-catenin
(CTNNB1) (Fig. 3c), revealing several mutations in both

the deep and shallow proteomes in cell-lines derived from
different cancers. While many variants were identified,
they were only a small fraction of the possible variants for
CTNNB1 (Fig. 3c, bar plots). As an example, we refer to a
tier 2 PSM with both exome-seq and RNA-seq evidence
for which we have identified a peptide sequence (Fig. 3d).
We identified 111 fusion proteins in the nine deep

proteomes and 508 fusion proteins in the 59 shallow
proteomes (Additional files 8 and 9). The gene encoding
the RNA-binding protein FUS is located at a common
site of chromosomal translocations in human low grade
fibromyxoid sarcomas and frequently forms chimeric
fusions with one of several different genes [44]. We
identified four different FUS-CREB3L2 fusions across
seven cell-lines, from a total of 101 FUS-CREB3L2
fusions present in COSMIC (Fig. 4a/b; Additional file
1: Figure S8). These fusions were identified independ-
ently of RNA-seq, for which fusion calls from sample-
specific transcriptomics (median three per cell-line) were
rare [37]. Based on our sample-specific RNA-seq searches,
only three fusions were identified across the nine deep
proteomes and 33 across the 59 shallow proteomes.

Discussion
Proteogenomic approaches promise the personalized de-
tection of genomic aberrations within protein samples
and may represent an important untapped area in cancer
biomarker discovery. We explored the limits of variant

a

b

Fig. 4 Identification of fusion peptides. We identified several fusions of FUS to CREB3L2 of which there are 101 reported in the COSMIC database.
a Of these 101 fusions, four were repeatedly identified across six cell-lines. b MS2 spectrum for one fusion peptide is displayed
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peptide detection using MS-based proteogenomics strat-
egies. In general, there are three interrelated aspects of
PSM assignment at play: (1) the capacity to separate
peptides in chromatography and mass-to-charge space;
(2) the sensitivity of the mass-spectrometer itself; and
(3) the overall sequence coverage of the tryptic pepti-
dome. Proteomics search-algorithms must identify the
amino-acid sequence with the highest likelihood to have
produced a particular MS2 spectrum, carefully taking
these challenges into account. Algorithms must screen
protein sequence databases and identify a set of putative
peptides of the same mass (within error) of the peak in
the MS1 spectrum associated with the MS2 in question.
In variant peptide identification, as database size in-
creases, the algorithm must choose from an increasingly
large pool of potential peptides, which must be assigned
to spectra that often may originate from more than one
peptide molecule.
Interestingly, variant peptides identified through our

pipeline tended to be larger and of higher charge than those
identified using standard proteomic searches. While the
exact reason for this observation is currently not known,
we speculate that for larger databases a better search score
is required to pass a predefined 1% FDR (based on a target-
decoy approach). Larger peptides, which in general are as-
sociated with a higher score could hence be favored in this
process. However, as a caveat, longer peptides tend to have
slightly lower overall y and b ion coverage, which could also
lead to potential false-positives.
We have developed a series of recommendations to

serve as guidelines to better characterize variant proteo-
forms within cancer proteomics datasets using custom
sequence databases and a target-decoy approach. (1) We
recommend variant peptides be identified using more
than one search algorithm using a split target-decoy ap-
proach [15]. (2) We further recommend the use of sev-
eral filters to reduce sources of possible false-positive
identification not accounted for by commonly used pro-
teomics approaches. This includes filters that remove
variant peptides detected within standard reference pro-
teomes or that could be accounted for by a PTM of a
given peptide sequence. (3) We also recommend that
identified protein variants be supported with additional
evidence for the expression of their source protein.
Ultimately, generation of custom protein sequence da-

tabases and filtering of resulting data to balance the sen-
sitivity and specificity of peptide detection will depend
on the investigator and goal of the project. For example,
it may be appropriate when using databases with
sample-specific genomic evidence to keep peptides that
match to reference proteomes for further investigation.
Conversely, in the absence of sample specific data, vari-
ant peptides could be identified using large publicly
available databases, although with a higher risk of false-

positive identifications. As a final recommendation, we
suggest that promising candidates be visually inspected
and preferentially compared to spectra generated by syn-
thetic peptides. This will provide additional validation
and the possibility for the development of targeted pro-
teomics assays.
Our study illustrates the need for further improve-

ments in proteogenomics pipelines. With our stringent
search criteria, we identified 4771 protein variants corre-
sponding to somatic and germline deviations from refer-
ence proteomes in 2200 genes among the NCI60
cell-line proteomes. This is despite the tens of thousands
of identifiable peptide variants with sample-specific
genomic evidence present in our search databases. The
detection of protein variants is particularly difficult as
each can only be detected by six unique tryptic peptides
after accounting for up to two missed cleavages. Proteins
may be lost during protein extraction and peptide biases
may be introduced during digestion, detection, and PSM
assignment. These technical challenges, as others have
noted [32], lead to a lack of sequence coverage among
all proteins identified and result in a lack of sensitivity
for variant peptide identification. Compounding on a
lack of sensitivity is the potential for false identification.
As has been shown for PTMs, it is plausible that the use
of alternative proteases could increase the likelihood of
detecting specific mutations by shotgun proteomics [45].
There are other strategies for detecting variants from
MS datasets. The proteogenomic approach can easily be
integrated with semi-supervised methods that search for
variants of reference proteins present in standard search
databases. The dependent peptide searches we used to
filter out potential PTMs allow for a comparison to
these approaches. We collected 1031 high confidence
single-amino-acid-variant dependent peptides (positional
probability > 0.95) (Additional file 12). In Total, 97 vari-
ant peptides or 10.3% of dependent peptide variants
overlapped with proteogenomic variants, highlighting
the potential for these methodologies to expand our
capacity for variant protein detection. Other semi-
supervised or “open search algorithms,” such as the
recently released MSFragger [46] and spectral network
inference [47], could also be used as additional strategies
for the parallel identification of PTMs or proteoform
variants. While beyond the scope of the current manu-
script, head-to-head comparisons of open search
algorithms, custom database proteogenomics searches,
and spectral libraries using massive synthetic peptide
libraries [48] are now possible and will likely lead to the
refinement of current proteogenomic strategies.

Conclusions
Proteogenomics can identify germline and somatic mu-
tations within important cancer genes (Fig. 3). While the
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underlying technology improves, the proteogenomics
community can now focus on integrating alternative
strategies for detecting protein variants. The proteoge-
nomic approach described here can be integrated with
semi-supervised methods that search for variants of ca-
nonical proteins and de novo sequencing (i.e. PEAKS
[49]) based methodologies that could identify variants
missed by genomics. Added sensitivity could be achieved
by constructing spectral libraries from synthetic peptides
derived from genomic evidence, which could help with
the development of more statistically refined proteoge-
nomics pipelines.
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