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Germ-line specification is essential for sexual reproduction. In the
ovules of most flowering plants, only a single hypodermal cell enlarges
and differentiates into a megaspore mother cell (MMC), the founder
cell of the female germ-line lineage. The molecular mechanisms
restricting MMC specification to a single cell remain elusive. We
show that the Arabidopsis transcription factor WRKY28 is exclu-
sively expressed in hypodermal somatic cells surrounding theMMC and
is required to repress these cells from acquiring MMC-like cell identity.
In this process, the SWR1 chromatin remodeling complex mediates
the incorporation of the histone variant H2A.Z at the WRKY28 locus.
Moreover, the cytochrome P450 gene KLU, expressed in inner integu-
ment primordia, non–cell-autonomously promotesWRKY28 expression
through H2A.Z deposition at WRKY28. Taken together, our findings
show how somatic cells in ovule primordia cooperatively use chroma-
tin remodeling to restrict germ-line cell specification to a single cell.

megaspore mother cell | cytochrome P450 KLU | SWR1 | WRKY28

Germ-line cell specification is a critical process in sexually
reproducing organisms. Unlike animals, in which germ-line

cells are set aside early during embryogenesis, flowering plants
specify germ-line cells from somatic cells in the adult stage (1, 2).
Only one distal somatic cell of the nucellus in ovules of flowering
plants differentiates into a megasporocyte [also termed megaspore
mother cell (MMC)] to initiate the female germ-line lineage (3).
A lateral inhibition mechanism mediated by a ligand-receptor

system in the MMC and adjacent somatic cells prevents the
differentiation of multiple somatic cells into MMCs (4, 5). In
rice, this precise specification requires the MMC-expressed
TAPETUM DETERMINANT-LIKE 1A (OsTDL1A) peptide
ligand and its receptor MULTIPLE SPOROCYTE 1 (MSP1),
whose expression is limited to somatic cells surrounding the
MMC (6, 7). The maize ortholog of OsTDL1A, MULTIPLE
ARCHESPORIAL CELLS 1 (MAC1), also plays a role in sup-
pressing excessive MMC formation (8–10). MAC1 encodes a
secreted protein and is preferentially expressed in the MMC
(10), supporting the lateral inhibition model. Moreover, the
putative RNA helicase gene MNEME (MEM) in Arabidopsis is
expressed specifically in the MMC and inhibits neighboring so-
matic cells from acquiring MMC identity (11).
Intercellular signaling among somatic cells to restrict MMC

specification, without involving the cell that eventually becomes
the MMC, is only beginning to be understood. We recently
showed that the epidermal layer (L1)-expressed TEX1 protein
plays an important role in this process by promoting the biogenesis
of TAS3-derived transacting siRNAs (ta-siRNAs), which repress
the expression of ARF3 (12). Specifically, the expansion of ARF3
expression into lateral epidermal cells from the medio domain of
ovule primordia in a TAS3 ta-siRNA–insensitive mutant led to the
formation of supernumerary MMCs (12). This finding suggested

that intercellular signaling among somatic cells in the ovule pri-
mordia is critical for restricting MMC fate to a single somatic cell,
but the molecular mechanisms at work in the surrounding somatic
cells are still far from clear.
The Arabidopsis cytochrome P450 gene KLU (also known as

KLUH/CYP78A5) is thought to generate a mobile signal that
promotes the growth of leaves and floral organs in a non–cell-
autonomous manner (13, 14). In developing ovules, KLU is re-
quired for female meiosis and maternal control of seed size (15,
16). KLU is preferentially expressed in the inner integument,
which is located at the proximal end of ovule primordia, opposite
to the MMC along the proximal–distal axis (15, 16). The present
findings show that KLU functions non–cell-autonomously in
restricting MMC specification to a single cell. Along with the
ATP-dependent chromatin remodeling complex SWR1, KLU ac-
tivates the expression of the transcription factor (TF) gene
WRKY28, previously unknown to play a role in MMC specification.
The deposition of the histone variant H2A.Z by the SWR1 complex
atWRKY28 is dependent on KLU, suggesting that the KLU-derived
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signal is required for the recruitment of SWR1 to WRKY28. Fur-
thermore, we show that WRKY28 is required to prevent multiple
somatic cells from differentiating into MMCs. We therefore un-
cover a mechanism in which KLU-expressing proximal somatic
cells in ovule primordia repress MMC fate in distal cells through
WRKY28 activation in these distal cells.

Results
The SWR1 Complex and KLU Genetically Interact to Prevent Supernumerary
MMC-Like Cells. Previously, we showed that mutants in ACTIN-
RELATED PROTEIN 6 (ARP6), a subunit gene of the chromatin
remodeling SWR1 complex, are defective in chromosome pairing
and organization during female meiosis I and have reduced seed set
(17). We observed similar defects in a klu mutant, including im-
paired homolog pairing and recombination during female meiosis I
and reduced fertility (16), which prompted us to generate the
arp6 klu double mutant to investigate the genetic relationship be-
tween ARP6 and KLU in reproduction. Fertility was dramatically
reduced in arp6 klu plants compared with WT, klu, and arp6 (Fig. 1
A and B). Reciprocal crosses between WT and the arp6 klu double
mutant revealed that the low fertility of arp6 klu plants was pri-
marily caused by female reproductive defects (Table S1).
To identify the cause of the female reproductive defects, we

first examined MMC specification in arp6 klu ovules. Similar to
WT ovules, arp6 and klu single mutant ovules have only one
MMC at the distal end of ovule primordia (17). We found that
94.1% (n = 324) of premeiotic WT ovules (Columbia ecotype,
stage 2-I to 2-II) contained one enlarged cell, which is typically
regarded as the MMC in such assays (18) (Fig. 1C). This rate is
comparable to what has previously been reported for Columbia
ecotype WT ovules (18). In contrast, a single enlarged cell was
seen in only 44.1% (n = 345) of premeiotic arp6 klu ovules (Fig.
1D). The remaining 55.9% had more than one enlarged cell (Fig.
1E), and this percentage was significantly higher than in arp6
(4.2%, n = 358) or klu ovules (10.1%, n = 276; Fig. 1F). The
phenotype of multiple MMC-like cells in Arabidopsis varies by
ecotype and developmental stage (18). Because arp6, klu, and
WT control are all in the Columbia background, and all ovules
were scored at the same developmental stages (2-I to 2-II) in this
assay, the observed differences in the number of MMC-like cells
are attributable to the arp6 and klu mutations rather than dif-
ferences in ecotype or developmental stage.
To examine the MMC specification defects in arp6 klu ovules,

we stained the ovules with propidium iodide, a method used to
score MMCs in ovule primordia (18). Confocal imaging of WT
ovules revealed a single enlarged hypodermal cell at the distal end
of ovule primordia (Fig. 1G). In contrast, 50.8% (n = 126) of
arp6 klu ovules contained more than one enlarged cell (Fig. 1 H
and I). To determine whether the enlarged cells were somatic
cells, we analyzed the localization of AGO9 protein. In WT
ovules, AGO9 accumulates in cytoplasmic foci in somatic cells at
the distal end of ovule primordia (19, 20) but exhibits nuclear
localization in the MMC (18). In a whole-mount immunolocali-
zation assay of premeiotic WT ovules, AGO9 localized to the
nucleus in the MMC (Fig. 1J). In premeiotic arp6 klu ovules,
AGO9 similarly accumulated in the nucleus in the supernumerary
MMC-like cells (Fig. 1 K–M). Moreover, the expression of the
MMC marker gene KNUCKLES (KNU; pKNU:KNU-Venus) (21),
although specific to the MMC in WT (Fig. 1N), was detected in
multiple enlarged MMC-like cells in arp6 klu ovules (Fig. 1 O–Q).
These findings indicated that these enlarged cells in premeiotic
arp6 klu ovules were distinct from the surrounding somatic cells
and had acquired molecular characteristics of MMCs.
To determine whether one or all of the enlarged cells undergo

meiosis, we analyzed callose deposition, a known cytological
marker for MMCs undergoing meiosis (17). In WT stage 2-III/IV
ovules, callose was deposited in transversely formed cell plates
between daughter cells (Fig. 1 R and S). In arp6 klu ovules,

transverse callose walls were detected in only one of the enlarged
cells (Fig. 1 T and U), even at later developmental stages. Thus,
despite the formation of multiple MMC-like cells in premeiotic
arp6 klu ovules, only one differentiated further to undergo
meiosis. Consistently, the supernumerary MMC-like cells adja-
cent to the functional megaspore in postmeiotic arp6 klu ovules
did not express ANTIKEVORKIAN (AKV; Fig. S1H), a gene
initially expressed in the functional megaspore and subsequently
expressed in the developing female gametophyte (11). Taken
together, our results show that multiple MMC-like cells acquired
cytological and molecular characteristics of MMCs, but they did
not all differentiate into fully functional MMCs.
To determine whether the function of ARP6 in repressing

MMC-like cell fate applies to the SWR1 complex, we studied
SERRATED LEAVES AND EARLY FLOWERING (SEF),
another subunit of the SWR1 complex that physically interacts
with ARP6 (22). Premeiotic ovule primordia of sef klu double
mutants harbored supernumerary enlarged cells (Fig. 1V) much
more frequently (37.5%, n = 259) than WT (5.9%, n = 324), sef
(5.1%, n = 214), and klu (10.1%, n = 276) ovules (Fig. 1F). Fur-
thermore, seed set was also reduced in sef klu plants (7.8%, n =
320) compared with WT (98.0%, n = 540), klu (70.6%, n = 428),
and sef (69.2%, n = 351) plants (Fig. 1B). Taken together, our data
suggest that the chromatin remodeling complex SWR1 and cyto-
chrome P450 KLU genetically interact before meiosis to ensure
that only one hypodermal somatic cell gains MMC characteristics.
In addition to multiple MMC-like cells, we detected other

defects downstream of MMC specification in arp6 klu double
mutant ovules. There was an increased number of ovules with
meiotic defects [37.1% in arp6 klu (n = 286) vs. 0% in WT (n =
120); Fig. 1W], similar to the meiotic defects of arp6 (17) and klu
(16) single mutants; a decreased number of ovules with a func-
tional megaspore [45.6% in arp6 klu (n = 338) vs. 97.9% in WT
(n = 329); Fig. S1 A–H]; an increased number of ovules with
defective female gametogenesis [92.8% in arp6 klu (n = 292) vs.
0.8% in WT (n = 252); Fig. S1 I–M]; and a decreased number of
ovules with a fully formed female gametophyte [7.2% in arp6 klu
(n = 292) vs. 99.2% in WT (n = 252); Fig. S1 I and J]. The
combined effects of these defects probably led to the reduced
fertility of the arp6 klu double mutant (Fig. 1 A and B). Despite
these pleiotropic phenotypes during reproduction, our study
focused on the MMC specification defect, the earliest defect in
the arp6 klu double mutant ovule.

WRKY28 Expression Is Decreased in arp6 klu Ovule Primordia. To gain
insight into the mechanisms by which ARP6 and KLU coopera-
tively function in suppressing MMC specification, we identified
genes with altered expression levels in arp6 klu ovules compared
with WT and both single mutants. For RNA sequencing (RNA-
seq), we extracted RNA from WT, arp6, klu, and arp6 klu flower
buds. Because the MMC defect is specific to arp6 klu double
mutant ovules, we screened for differentially expressed genes
(fold change ≥ 2; P ≤ 0.05) in arp6 klu compared with WT, arp6,
or klu that were not differentially expressed when comparing the
arp6 or klu single mutants to WT. A total of 897 genes satisfied
these criteria. To focus on genes potentially involved in mega-
sporogenesis, we excluded genes that were not detected in a
previously published RNA-seq dataset of ovule primordia un-
dergoing megasporogenesis (16) and obtained 351 genes (Dataset
S1) from the set of 897 genes.
Of these 351 genes, eight were TF genes (Fig. 2A) and

therefore top candidates for genes with important regulatory
roles. Among the eight candidate genes (Table S2), AT4G18170/
WRKY28 (23) had the most enriched expression in ovule pri-
mordia with placenta (stage 2-I to 2-IV) relative to other tissues
and organs, including mature ovule, anther primordia (stage 4–7)
undergoing microsporogenesis, mature anther, leaf, root, and
stem (Fig. 2B). WRKY proteins are plant-specific zinc-finger
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domain TFs implicated in mediating environmental and de-
velopmental responses (24). RNA-seq showed that WRKY28
transcript levels were significantly reduced in arp6 klu floral buds

compared with WT, arp6, and klu floral buds (Table S2). To
confirm the reduced expression of WRKY28 in arp6 klu floral
buds, we excised ovule primordia with placenta (stage 2-I to 2-IV)

Fig. 1. Supernumerary enlarged cells form in arp6 klu ovules. (A) Opened siliques of WT and the klu, arp6, and arp6 klu mutants. (B) Quantification of seed-set
percentage. Data aremeans± SD (n= 10; **P < 0.01 by t test). (C) PremeioticWT ovule with a singleMMC. (D and E) Premeiotic arp6 klu ovules showing oneMMC (D)
or two enlarged cells (E). (F) Quantification of aberrant MMC specification (**P < 0.01 by Pearson’s χ2 test). (G–I) Confocal sections of premeiotic WT (G) and arp6 klu
(H and I) ovules stained by propidium iodide. Arrows point to the enlarged cells. (J–M) AGO9 immunolocalization in premeiotic WT (J) and arp6 klu (K–M) ovules.
Green and red signals correspond to AGO9 localization and propidium iodide signal, respectively. (N–Q) Signal corresponding to pKNU:KNU-Venus expression in
premeiotic WT (N) and arp6 klu (O–Q) ovules. (R, S, U, andW) Callose deposition in WT (R and S) and arp6 klu (U andW) ovules. (T) Differential interference contrast
(DIC) image shows the morphology of the ovule shown in U; an abnormally enlarged cell adjacent to the MMC is outlined by the white dashed line. (V) Premeiotic sef
klu ovule showing two enlarged MMC-like cells. Numbers in the panels denote the frequencies of the phenotypes shown. (Scale bars: A, 1 mm; C–E and G–W, 10 μm.)
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Fig. 2. Identification of WRKY28 as a candidate gene downstream of ARP6 and KLU. (A) The left horizontal bar chart designates the following gene sets:
differentially expressed genes between two genotypes, TF genes, and genes expressed in WT ovule primordia. The matrix diagram shows different com-
binations of overlap among these gene sets; the vertical bar chart indicates the gene number for a given combination. Dark/filled circles and light gray circles
indicate gene sets included and excluded from a combination, respectively. For example, eight TF genes (marked in red) expressed in ovule primordia were
differentially expressed in arp6 klu vs. arp6, klu, and WT, but not in klu vs. WT and arp6 vs. WT. (B) qRT-PCR analysis of the eight TF genes from A in different
tissues. Data are means ± SD. (C) qRT-PCR analysis ofWRKY28mRNA levels in WT, arp6, klu, and arp6 klu ovules with placenta undergoing megasporogenesis.
Data are means ± SD (n = 3; **P < 0.01).
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and performed quantitative RT-PCR (qRT-PCR). This analysis
showed a significant reduction in WRKY28 transcripts in arp6 klu
ovule primordia compared with WT, arp6, and klu ovule primordia
(Fig. 2C).

H2A.Z Deposition at the WRKY28 Locus Requires ARP6 and KLU. The
highly conserved histone variant H2A.Z has been described as a
“molecular rheostat” for the transcriptional control of gene ex-
pression, and it plays critical roles in the early development of
multicellular organisms (25, 26). The replacement of H2A by
H2A.Z in nucleosomes is mediated by the ATP-dependent
chromatin remodeling complex SWR1 (27). Therefore, we hy-
pothesized that ARP6 controls WRKY28 expression through the
deposition of H2A.Z at the WRKY28 locus, similar to the role of
ARP6 in regulating the expression of other genes (17, 28, 29).
To test this hypothesis, we performed chromatin immuno-

precipitation (ChIP) by using an H2A.Z antibody in WT and
arp6 floral buds. In WT floral buds, we detected the highest level
of H2A.Z occupancy downstream of the first nucleosome (+1)
near the WRKY28 transcription start site (TSS) among the tested
regions (Fig. 3 A and B). To confirm that the H2A.Z signals were
in fact H2A.Z-specific, we included the gypsy-like transposon
gene AT4G07700 (Fig. 3C), a gene previously shown to have
H2A.Z-free nucleosomes, as a negative control (30). In WT
floral buds, H2A.Z was not detected in any of the regions
assayed in AT4G07700. As another negative control, we per-
formed ChIP with the H2A.Z antibody on aerial nonreproduc-
tive tissues (i.e., lacking inflorescences or floral buds). No
enrichment of H2A.Z was observed for any of the tested regions
of WRKY28 in WT or any of the mutants (Fig. 3D), consistent
with the low expression levels of WRKY28 in vegetative tissues
(Fig. 2B). In arp6 floral buds, the enrichment of H2A.Z in the
+1 nucleosome regions was greatly reduced (Fig. 3B). Taken
together, these data suggest that the ARP6-containing SWR1
complex controls WRKY28 expression through H2A.Z deposi-
tion at the WRKY28 locus near the TSS.
Chromatin remodeling complexes are recruited to specific

target genes by gene-specific factors (31, 32). In light of the re-
ducedWRKY28 expression in arp6 klu ovule primordia, we tested
whether H2A.Z deposition at the WRKY28 locus is also de-
pendent on KLU by performing ChIP with the H2A.Z antibody
in WT, klu, and arp6 klu floral buds. H2A.Z enrichment at
WRKY28 was greatly reduced in klu compared with WT and
almost completely depleted in arp6 klu (Fig. 3B). To determine
whether KLU is required for the recruitment of SWR1 to the
WRKY28 locus, we performed ChIP with ARP6 antibody to ex-
amine ARP6 occupancy at WRKY28. In WT, we detected ARP6
at the +1 nucleosome position near the TSS (Fig. 3E), coinciding
with the enrichment of H2A.Z (Fig. 3B). ARP6 enrichment was
not detected in arp6 floral buds (Fig. 3E), indicating that the
signals in WT truly corresponded to ARP6 occupancy. In klu
floral buds, ARP6 enrichment at the +1 nucleosome of WRKY28
was reduced compared with WT (Fig. 3E). These findings are
consistent with a role of KLU in recruiting ARP6 to WRKY28 to
deposit H2A.Z.

Preferential Expression of WRKY28 in the Hypodermal Somatic Cells
Surrounding the MMC Is Controlled by ARP6 and KLU. To analyze the
expression pattern of WRKY28 in ovule primordia, we generated
WRKY28 promoter-driven GFP (pWRKY28:GFP) lines in the
WT background. Until stage 1-III, there was no GFP fluores-
cence in ovule primordia (Fig. 4B). The earliest GFP expression
was detected exclusively in the hypodermal somatic cells flanking
the developing MMC in the nucellus (Fig. 4A) at stage 2-I (Fig.
4C), and GFP expression in these cells persisted until stage 2-IV
(Fig. 4 D and E). In postmeiotic stage 3-I ovules containing a
teardrop-shaped functional megaspore, pWRKY28:GFP expres-
sion was not detected (Fig. 4F).

Additional strategies confirmed the preferential expression of
pWRKY28:GFP. By using ovule whole-mount in situ hybridiza-
tion (33), we detected WRKY28 mRNA specifically in the hy-
podermal somatic cells surrounding the MMC (Fig. 4 G–I). As a
negative control for the in situ hybridization experiment, we in-
cluded a wrky28 mutant generated through CRISPR/Cas9 ge-
nome editing. Three independent wrky28-Cas9 mutant lines had
nucleic acid deletions and/or insertions near the beginning of the
WRKY28 ORF, leading to N-terminal truncation or premature
translation termination (Fig. S2C). Western blotting using anti-
WRKY28 polyclonal antibodies (Fig. S2D) showed reduced
WRKY28 protein levels in these three lines, with the wrky28-Cas9-
3 mutant having the greatest reduction (Fig. S2E). We therefore
included the wrky28-Cas9-3 mutant for the in situ hybridization
analysis and pistil qRT-PCR assay. The 2-nt deletion near the
beginning of the WRKY28 ORF in wrky28-Cas9-3 (Fig. S2C) also
caused reduced WRKY28 mRNA level as detected by the in situ
hybridization (Fig. 4 J and K) and qRT-PCR experiments (Fig.
S2H), probably because of nonsense-mediated mRNA decay in the
wrky28-Cas9-3 line, indicating that the signals in the hypodermal
somatic cells surrounding the MMC (Fig. 4 G andH) were specific
to WRKY28 RNA. In addition, ovule whole-mount immunolocal-
ization using anti-WRKY28 antibodies showed signals within the
hypodermal somatic cells surrounding the MMC in WT (Fig. 4 P
and Q) but not in wrky28-Cas9-3 ovule primordia (Fig. 4R). These
results demonstrate the specific expression of WRKY28 in hypo-
dermal somatic cells surrounding the MMC. To our knowledge,
this is the first marker gene for cells surrounding the MMC in the
hypodermal cell layer.
We next examined WRKY28 expression in arp6 klu ovules. The

signals of pWRKY28:GFP (Fig. 4 N and O), WRKY28 mRNA
(Fig. 4 L and M), and WRKY28 protein (Fig. 4S) in the hypo-
dermal somatic cells surrounding the MMC were greatly reduced
in arp6 klu ovules compared with WT (Fig. 4 C–E, G, H, and P),
indicating that the cell-specific expression of WRKY28 in ovule
primordia is controlled by ARP6 and KLU.

Loss of WRKY28 Phenocopies the Defects of arp6 klu Ovule Primordia.
To test the hypothesis that WRKY28 functions downstream of
ARP6 and KLU in restricting the MMC fate to a single cell, we
first analyzed whether WRKY28 loss of function would lead to
multiple MMC-like cells as observed in arp6 klu. Publicly available
lines with transfer DNA (T-DNA) insertions in theWRKY28 locus
are limited; none of the available T-DNA lines have insertions in
the WRKY28 coding region, and one line with an insertion in the
WRKY28 promoter did not have reduced WRKY28 mRNA levels
(Fig. S2 A and B). We therefore generated wrky28 mutants to
assess loss of function by using two different strategies, CRISPR/
Cas9-induced mutations and the conversion of WRKY28 into
a dominant repressor.
Ovules in three independent wrky28-Cas9 lines with reduced

WRKY28 protein levels (Fig. S2 C–E) contained multiple enlarged
MMC-like cells (Fig. 5 B, F, and G) at a much higher frequency
than WT (Fig. 5 A, D, and E), showing that wrky28-Cas9 plants
phenocopied the defects observed in arp6 klu. Additionally, the
enlarged cells in premeiotic wrky28-Cas9-3 ovules exhibited nuclear
AGO9 signal (Fig. 5 H and I), as observed in arp6 klu mutant
ovules. Thus, WRKY28 represses ectopic MMC-like cell fate.
We next tested if WRKY28 functions as an activator of gene

expression in ovules, similar to its reported function in other
tissues (23). For this analysis, we examined the expression levels
of ISOCHORISMATE1 (ICS1), whose expression is directly ac-
tivated by WRKY28 in leaf protoplasts (23). In all three wrky28-
Cas9 lines, ICS1 expression in the pistils of stage 9–11 flower
buds was significantly reduced compared with WT (Fig. S2F).
In wrky28-Cas9-3 ovules undergoing meiosis, callose was de-

tected only in the intermediate walls of a single MMC rather
than in all enlarged cells (Fig. 5 J and K). We further examined
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these cells for the expression of a meiosis-related gene, AtDMC1,
which is specifically expressed inMMCs undergoing meiosis (17) (Fig.
5L). In wrky28-Cas9 ovules, only one enlarged cell expressed
pAtDMC1:GFP (Fig. 5M). In addition, the functional megaspore
marker pAKV:H2B-YFP was not detected in the multiple enlarged
cells adjacent to the functional megaspore in wrky28-Cas9-3 (Fig. 5O),
consistent with the analysis of pAKV:H2B-YFP in arp6 klu (Fig. S1H).
Taken together, these results suggest that, even though multiple

enlarged cells acquired MMC characteristics in wrky28-Cas9 ovules,
only one cell fully differentiated into an MMC and underwent
meiosis, similar to the observations in arp6 klu ovules (Fig. 1 J and K).
In addition to multiple enlarged cells, wrky28-Cas9-3 ovules

more frequently contained abnormal female gametophytes (Fig.
5 N–Q) compared with WT (Fig. S1 A and I). This defect
probably contributed to the reduced fertility of the wrky28-Cas9
lines (Fig. 5 R and S).
As a second strategy to probe the biological function of

WRKY28, we converted WRKY28 into a transcriptional re-

pressor by using the chimeric repressor silencing approach (34).
WRKY28 was fused with an SRDX repressor domain, a 12-aa
motif that converts TFs into dominant repressors (34), and the
transgene was expressed under the 35S promoter. The SRDX
line had reduced seed set (Fig. 5S) and contained multiple en-
larged cells in ovule primordia more frequently (38.2%, n = 325)
than WT plants (5.9%, n = 324; Fig. 5 A, C, and D). The en-
larged cells in p35S:WRKY28-SRDX ovules also showed nuclear
AGO9 localization pattern (Fig. 5T) and expressed the MMC
marker gene KNU (pKNU:KNU-Venus; Fig. 5 U–X), indicating
that the cells were distinct from the surrounding somatic cells
and had acquired some of the molecular characteristics of
MMCs. ICS1, a direct target of WRKY28, was expressed at a
lower level in p35S:WRKY28-SRDX pistils than in WT (Fig. S2F),
indicating that WRKY28-SRDX repressed ICS1 expression,
whereas WRKY28 normally promotes ICS1 expression. The
expression of WRKY28 paralogs in p35S:WRKY28-SRDX and
wrky28-Cas9-3 pistils was comparable to their expression in WT

Fig. 3. KLU regulates H2A.Z deposition and ARP6 at WRKY28. (A) Gene diagram of WRKY28 with black boxes indicating exons and an arrow marking the
TSS. Regions amplified by PCR primer sets are shown as black bars below the diagram; the numbers indicate the distance (in base pairs) to the TSS (designated
as 0). (B) ChIP with polyclonal H2A.Z antibody to analyze H2A.Z enrichment at WRKY28 near the TSS in WT, arp6, klu, and arp6 klu floral buds (**P < 0.01 by
Pearson’s χ2 test). (C) ChIP analysis for H2A.Z occupancy at the negative control gene At4g07700 in WT, arp6, and klu floral buds. (D) ChIP analysis for H2A.Z
enrichment at WRKY28 in WT, arp6, klu, and arp6 klu aerial plant tissues lacking inflorescences. (E) ChIP with polyclonal ARP6 antibody to analyze
ARP6 enrichment at WRKY28 in WT, klu, and arp6 floral buds (**P < 0.01 by Pearson’s χ2 test). (B–E) Values are means ± SD from two biological replicates.
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(Fig. S2 G and H), indicating that the presence of multiple
MMC-like cells in the WRKY28-SRDX and wrky28-Cas9 lines
was not a result of misexpression of WRKY28 paralogs. Taken
together, our results demonstrate that WRKY28 suppresses
MMC fate in hypodermal cells surrounding the MMC.

WRKY28 Overexpression Partially Complements the MMC Specification
Defects in arp6 klu Ovules. To test whether WRKY28 functions
downstream of ARP6 and KLU to inhibit the formation of mul-
tiple MMC-like cells in ovule primordia, we transformed arp6+/−

klu−/− plants with a full-length WRKY28 genomic fragment under
the control of the 35S promoter. We used arp6+/− klu−/− plants for
transformation because fertility was severely compromised in
double homozygous arp6 klu plants. In the T1 generation, six in-
dependent arp6 klu transformants carrying the p35S:WRKY28
transgene were obtained, and all had elongated siliques (Fig. 6A)
and increased seed set (Fig. 6B and Table S3) compared with

arp6 klu plants. We examined the MMC phenotype in the ovule
primordia of two of the six arp6 klu p35S:WRKY28 lines. In both
lines, the phenotype of multiple MMC-like cells in premeiotic
ovules occurred less frequently (28.6%, n = 262; and 39.8%, n =
231) than in arp6 klu plants (55.9%, n = 345) but more frequently
than in WT plants (5.9%, n = 324; Fig. 6 C and D). This partial
complementation indicates that WRKY28 is one player function-
ing downstream of ARP6 and KLU to inhibit ectopic MMC for-
mation in ovule primordia.
As arp6 klu p35S:WRKY28 plants still generated a normal

MMC, we hypothesized that ectopic expression of WRKY28 in
the MMC is not sufficient to inhibit normal development of the
MMC itself. To test this hypothesis, we specifically expressed
WRKY28-GFP in the MMC by using the MMC-specific promoter
KNU (Fig. 6E) (21). pKNU:WRKY28-GFP transgenic plants
exhibited normal MMC specification (95.4% of ovules showing a
single enlarged MMC, n = 368; Fig. 4 C and D) and normal seed

Fig. 4. Cell-specific expression pattern of WRKY28 in ovules undergoing megasporogenesis. (A) Schematic representation of the distal structure of a pre-
meiotic ovule with an MMC and the surrounding somatic cells (marked in green) in the hypodermal L2 cell layer (yellow outline), adjacent to epidermal
L1 cells (blue outline). (B–F) pWRKY28:GFP expression in WT ovules from stage 1-III to stage 3-I. (G–M) In situ localization of antisense and sense WRKY28
mRNA in whole-mount WT (G–I),wrky28-Cas9-3 (J and K), and arp6 klu (L andM) ovules. (N and O) pWRKY28:GFP expression in arp6 klu ovules from stage 2-I
to stage 2-II. No GFP signal was observed. Red signal corresponds to FM4-64 dye outlining the ovule. (P–S) WRKY28 (P) and preimmune serum
(Q) immunolocalization in WT ovules and WRKY28 immunolocalization in wrky28-Cas9-3 (R) and arp6 klu (S) ovules. Green and red signals correspond to
WRKY28 localization and propidium iodide signal, respectively. FM, functional megaspore. (Scale bars: 10 μm.)
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Fig. 5. Ectopic MMC specification and aberrant female gametophyte development in mutants with disrupted WRKY28 function. (A) Premeiotic WT ovule
with a single MMC. (B and C) Premeiotic wrky28-Cas9-3 (B) and p35S:WRKY28-SRDX (C) ovules with more than one enlarged cell. (D) Quantification of
aberrant MMC specification (**P < 0.01 by Pearson’s χ2 test). (E–G) Confocal sections of premeiotic WT (E) and wrky28-Cas9-3 (F and G) ovules stained by
propidium iodide. (H and I) AGO9 immunolocalization in premeiotic wrky28-Cas9-3 ovules. (J and K) Callose deposition (J) and ovule morphology (K) in
wrky28-Cas9-3 ovules. (L and M) pDMC1:GFP expression in WT (L) and wrky28-Cas9-3 (M) ovules undergoing meiosis. (N) Postmeiotic wrky28-Cas9-3 ovule.
(O) pAKV:H2B-YFP expression in a postmeiotic wrky28-Cas9-3 ovule. (P and Q) wrky28-Cas9-3 ovules at mature stage. (R) Siliques of WT and wrky28-Cas9-3.
Red arrows point to aborted seeds. (S) Quantification of seed set in WT and wrky28 mutants. Data are means ± SD (n = 10; **P < 0.01).
(T) AGO9 immunolocalization in premeiotic p35S:WRKY28-SRDX ovules. (U–X) Signal corresponding to pKNU:KNU-Venus in premeiotic p35S:WRKY28-SRDX
ovules. Numbers denote the frequencies of the phenotypes shown. Abnormally enlarged cells are outlined by a white dashed line or indicated by a red
arrowhead. FM, functional megaspore. (Scale bars: A–C, E–Q, and T–X, 10 μm; R, 1 mm.)
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set (97.9%, n = 658; compared with 98.0%, n = 540 inWT). These
results suggest that ectopic WRKY28 expression in the MMC is
not sufficient to suppress MMC fate. This finding, together with
the specific expression of WRKY28 in hypodermal cells sur-
rounding the MMC, suggests that the main function ofWRKY28 is
to suppress MMC fate in the somatic cells surrounding the MMC.

Discussion
Although several signaling pathways important for germ-line
specification in plants—for example, the TPD1–MSP1 ligand-
receptor signaling pathway and the small RNA-involved path-
ways, have been uncovered in many angiosperms including
Arabidopsis, maize, and rice (7, 8, 12, 20, 35), the mechanisms
underlying the restriction of the germ-line precursor to a single
cell remain largely unknown. Here, we show that the TF gene
WRKY28 is specifically expressed in hypodermal cells sur-
rounding the MMC, cells that appear to have the potential to
develop into MMCs (Fig. 6F). Disruption of WRKY28 function
resulted in these cells acquiring the cytological and molecular
characteristics of MMCs. We therefore uncovered a mechanism
in which the local expression of WRKY28 in somatic cells sur-
rounding the MMC suppresses excessive MMC specification.

This mechanism is different from that revealed in a recent study
in which a group of redundant cyclin-dependent kinase inhibitors
of the KIP-RELATED PROTEINs (KRPs) functions in ensuring
a single MMC formation by preventing over-proliferation (i.e.,
additional mitotic divisions) of the already specified MMC (36).
The excessive MMC cells in the krp4/6/7 triple mutants often
appeared similar in size and were located side by side or one on
top of another of the already specified MMC (36); however,
supernumerary MMC-like cells in the wrky28 and arp6 klu mu-
tants were rather randomly located, and these cells differed in
size. Moreover, the excessive MMC-like cells in the wrky28 and
arp6 klu mutants are positioned in the place of the hypodermal
cells surrounding the MMC, indicating that loss of WRKY28
function in these cells may have led the cell to become enlarged
and adopt some characteristics similar to that of MMC. We
further showed that the chromatin remodeling complex SWR1
(29, 37–39) mediates the incorporation of the histone variant
H2A.Z at WRKY28 to promote its expression. We found that
H2A.Z deposition at WRKY28 by SWR1 is dependent on the
Arabidopsis cytochrome P450 gene KLU. As ARP6 occupancy
at WRKY28 is reduced in klu mutants, it is likely that KLU
helps recruit SWR1 to the WRKY28 locus. Intriguingly, KLU is

Fig. 6. Partial complementation of arp6 klu MMC specification defects by WRKY28 overexpression. (A) Siliques of plants with the indicated genotypes. (Scale
bar: 1 mm.) (B) Quantification of seed set in arp6 klu plants with and without the WRKY28 transgene. Values are means ± SD (n = 6; **P < 0.01). (C) Quan-
tification of aberrant MMC specification in premeiotic ovules (**P < 0.01 by Pearson’s χ2 test). (D) DIC images of premeiotic ovules with the indicated genotypes.
Numbers denote the frequencies of the phenotypes shown. Red arrows indicate multiple enlarged cells. (Scale bar: 10 μm.) (E) Signal corresponding to pKNU:
WRKY28-GFP expression in a premeiotic ovule (WT background). (F) Proposed model for the coordinated action of KLU and SWR1 in suppressing ectopic MMC
fate by promoting WRKY28 expression in the hypodermal somatic cells surrounding the MMC. II, inner integument; OI, outer integument.
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expressed preferentially in the inner integument of the ovule
(22), which lies opposite the cells expressing WRKY28 along the
proximal–distal axis. These observations suggest that the reg-
ulation of WRKY28 expression by KLU is not cell-autonomous.
KLU is known to play an important role in determining plant
organ size in a non–cell-autonomous manner (20, 22). The KLU-
dependent signal has been proposed to have a range of activity
beyond individual organs and flowers and to be distinct from
classical phytohormones (21). We speculate that the same KLU-
dependent mobile signal provides positional information to re-
press MMC fate in somatic cells. If so, how the MMC escapes
this suppression is unknown.
Taken together, our findings elucidate a previously unknown

mechanism at work in somatic cells surrounding the germ-line
precursor to prevent ectopic germ-line formation. This mecha-
nism involves the TF WRKY28 that suppresses MMC fate, the
chromatin remodeling complex SWR1 that promotes WRKY28
expression through H2A.Z deposition, and, presumably, a KLU-
dependent mobile signal that helps recruit SWR1 to the WRKY28
locus (Fig. 6F).

Materials and Methods
Detailed descriptions of the study materials and methods are provided in SI
Materials and Methods.

Materials and Growth Conditions. WT Arabidopsis thaliana (Col-0 ecotype),
arp6 (Garlic_599_G03), klu (SALK_024697C), and sef (CS822749) were grown
under 16 h light/8 h dark at 22 °C.

Histological Analysis. Cleared ovules, in situ hybridization, and callose staining
were performed as previously described (40). Immunostaining of ovules and
imaging of fluorescent signals (GFP, YFP, and antibody staining) were con-
ducted as described in a previous study (40).

RNA-Seq Analysis. RNA isolation and sequencing was performed as previously
described (16). The RNA-seq datasets were deposited in the National Center
for Biotechnology Information (NCBI) Sequence Read Archive (SRA) data-
base (accession no. SRP124412).

ChIP-qPCR. ChIP-qPCR was performed as previously described (38). Primers
used in this study are listed in Table S4.
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