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Abstract

Lattice atom interferometry in an optical cavity
by
Victoria Ann Xu
Doctor of Philosophy in Physics
University of California, Berkeley

Associate Professor Holger Miiller, Chair

Atom interferometers are powerful tools for both measurements in fundamental physics
and inertial sensing applications. Their performance, however, has been limited by the
available interrogation time of freely falling atoms in a gravitational field. In this thesis,
we realize an unprecedented interrogation time of 20 seconds by suspending the spatially
separated atomic wavepackets in the resonant lattice of an optical cavity. Unlike traditional
atom interferometers, our approach allows gravitational potentials to be measured by hold-
ing, rather than dropping, atoms. After seconds of hold time, gravitational potential energy
differences from as little as microns of vertical separation generate megaradians of interferom-
eter phase. This trapped geometry suppresses the phase variance due to vibrations by three
to four orders of magnitude, overcoming the dominant noise source in atom-interferometric
gravimeters.
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Chapter 1

Introduction

A familiar way to understand atom interferometers is that they are similar to laser inter-
ferometers, except that the roles of light and matter are reversed. Rather than diffracting
coherent states of light with physical beamsplitters and mirrors, atom interferometers diffract
single wavepackets of atoms using pulses of laser light, as sketched in Figure [I.I] Accord-
ingly, these laser pulses are often referred to as “atom optics.” A slight caveat to this analogy
is that unlike typical laser interferometers, which produce photons in coherent states with
long spatial coherence lengths, matter-waves typically have very limited spatial coherence

a / I
<
P y 4 L

X

Figure 1.1: Mach-Zehnder a) laser interferometer and b) atom interferometer. a) Opti-
cal schematic of a laser interferometer. Material beamsplitters (dotted grey) and mirrors
(solid grey) are positioned to split, redirect, and recombine photon wavepackets (blue) for
interference. Photodetectors at the output ports record interference fringes. b) Spacetime
diagram of an atom interferometer, with (dark grey) and without (light grey) gravity. Op-
tical beamsplitters and mirrors (pulsed optical lattices) split, redirect, and recombine single
atomic wavepackets (blue) for interference. Population oscillations between output states
are recorded as interference fringes.
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lengths, related to their thermal deBroglie wavelength. For example, a cesium atom freely
moving at room temperature might have a wavepacket size of only ~10 pm, while an electron
in this scenario has a wavepacket extent of ~ 4300 pm. In this sense, matter-wave inter-
ferometers are much more like white light interferometers or single-photon interferometers,
where the spatial coherence length of the object being interfered is quite finite compared to
the interferometer path lengths. Therefore in atom interferometers, there is the notion of
needing to spatially overlap individual partial wavepackets at the final time and place of the
last beamsplitter in order to observe interference.

In both optical and matter-wave interferometers, such as those shown in Figure [1.1](a)
and (b), the phase difference that is read out at the end of the interferometer records the
path length difference between the two spatially separated paths within the interferometer.
It is interesting then to consider what is required to coherently split and recombine the
wavefunction of a massive object— and not once, but several times in succession, as is required
to realize interferometers. Diffracting waves typically requires structures with spatial features
on the length scale of the wavefunction size. The first experiment to demonstrate the wave-
particle duality of matter, postulated by Louis de Broglie in 1924, was performed by Davisson
and Germer in 1927 [1]; they diffracted electrons off the surface of a crystal of nickel metal,
which works because the lattice spacing of the nickel was comparable to deBroglie wavelength
of their electrons. Since, many technologies, methods, and applications have emerged for
coherently diffracting matter-waves |2|. For example, the diffraction/scattering of neutron
matter-waves has now become a standard technique for studying material properties, while
coherent manipulation of neutrons for interferometry based on material gratings [3] and
mirrors |4, 5| has become a powerful probe of fundamental physics.

Light-pulse atom interferometers were first realized in the early 1990s, by using the
mechanical effects of stimulated two-photon Raman transitions to separate spatially the
center-of-mass wavefunction of sodium atoms [6]. This technique was enabled by 1) optical
technologies becoming sufficiently advanced, and 2) the laser cooling of atoms, which can
delocalize atomic wavepackets to the scale of optical wavelengths. Since this initial demon-
stration [7], more sophisticated beamsplitter techniques have been developed to diffract the
wavepackets with more photon momenta via e.g. driving multi-photon Bragg transitions
between momentum states of atoms [8|, or using Bloch oscillations in accelerated optical
lattices |9, 10| to separate the interferometer arms even farther. Performing atomic beam-
splitters with pulses of laser light leverages the precise control achievable over the frequency,
phase, amplitude, and beam profile of a laser beam to realize highly configurable and low
distortion beamsplitters, which can be advantageous over material gratings.

The development of these atomic beamsplitter technologies have allowed laser-cooled
atoms to realize matter-wave interferometers with renewed precision. Today, atom inter-
ferometers have demonstrated exceptionally precise measurements of importance in funda-
mental physics, such as measurements of gravity [11] and fundamental constants [12414],
tests of general relativity [15-18], and searches for new forces [19-H21]. Atom interferometers
have also shown great promise for inertial sensing applications [22] outside of the lab, with
companies and research labs worldwide now pursuing their development for real-world use.
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Still, just as the precision and controllability of laser beams provided advantages over
material gratings, atom interferometers today are now limited in large part by the uniformity
of atom-laser interactions between a cloud of atoms laser-cooled to finite temperature, and
the reality of a necessarily imperfect laser beam.

This is exactly how our use of a cavity-filtered laser beam stands to benefit the field:
the cavity boundary conditions enforce spatial mode filtering of its laser beam, to an extent
nearly unachievable for laser beams propagating in free space. Secondarily, the cavity pro-
vides resonant power enhancement and spectrally measurable beam geometries. With our
experiment, we have shown that the improved wavefront quality and spatial mode filtering
of the intracavity laser beam can enable uniform atom-light interactions both transversely
across an atomic ensemble, and axially for interferometers spatially separated along the cav-
ity axis. Altogether, the high beam quality of an optical cavity can allow several conventional
limitations of light-pulse atom interferometers to be overcome.

1.1 Trapped interferometry to overcome free-fall limited
interrogation times

In particular, a major obstacle to increasing the sensitivity of atom interferometers has been
the limited time during which coherent, spatially separated quantum superpositions of a
massive object can be interrogated. Up to 2.3 s of interrogation time has been realized in
a 10-meter atomic fountain 23|, and several seconds of interrogation time are the target of
experiments in fountains measuring hundreds of meters |24, [25], zero-gravity planes [26], drop
towers [27], sounding rockets [28], and the International Space Station [29-31]. Geometries
that use Bloch oscillations to periodically bounce [32] or trap the interferometer [33-35] have
been limited to interrogation times of 1 second, despite the long coherence times of Bloch
oscillations in an optical lattice [36].

The central result of this thesis is that a laser beam resonantly filtered by an optical
cavity can allow the free-fall limited interrogation times of terrestrial matter-wave interfer-
ometers to be overcome (Chapters @, . We demonstrate 20 seconds of coherence in an
atom interferometer trapped in an optical lattice, overcoming trap dephasing by using an
optical cavity as a spatial mode filter. After 20 seconds, the phase noise variance from our
laboratory vibrations is suppressed by up to 10* relative to traditional atomic gravimeters at
the same gravitational sensitivity, which are limited by the substantial excess noise caused by
aliasing vibrations between the laser pulses. Such aliasing is nearly absent in a lattice-hold
geometry with long hold times, due to the continuous accumulation of free evolution phase
in the trapped wave packets. Differential measurements performed by free-space atom inter-
ferometers can cancel vibrations, but their sensitivity is ultimately limited by the available
free-fall time in a gravitational field. Trapping the interferometer allows the sensitivity to be
increased by extending interrogation times rather than wavepacket separations or free-fall
distances, reducing experimental complexity and potentially minimizing systematics.
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More fundamentally, this lattice scheme presents an alternative approach to inertial mea-
surement with atoms, of holding atoms to directly probe a potential energy difference, rather
than dropping atoms to measure accelerations. This lattice geometry is therefore well-suited
for precision gravimetry [37, 38|, with exciting prospects for inertial sensing applications [22]
and fundamental tests of localized potentials [19-21]. Additionally, measuring the phase due
to a potential without subjecting atoms to an acceleration represents a milestone towards
observing a gravitational analogue of the Aharonov-Bohm effect [39], which has historically
been a long-standing goal for our experiment.

1.2 Overview of this thesis

The work in this thesis describes how we have used a cavity-filtered laser beam to perform
precise measurements of interesting potentials, and to explore new approaches and techniques
for atom interferometry. It is organized as follows.

We begin by describing the theoretical and experimental groundwork for our experiments
in atom interferometry. Chapter [2| begins by introducing some background on atom interfer-
ometers, and how they can be applied to sensing localized potential energy gradients. This
chapter concludes with a discussion on optical cavities, and their resonant filtering of a laser’s
transverse spatial modes and frequencies. Chapter [3| then proceeds describes our apparatus
and our typical experimental procedure, building upon the documentation in Matt Jaffe’s
thesis [40].

When I first joined the experiment, we operated our cavity interferometer as a traditional
free-fall atom interferometer, dropping atoms to measure localized potential gradients near
a small, in-vacuum source mass. In these earlier experiments, we focused on the science in
our measurements, e.g. testing theories of exotic dark energy forces [19, 20|, or measuring
attractive dipole forces from thermal radiation for the first time [21|, where this thesis picks
up from, starting in Chapter [l These early measurements using free-fall interferometry
absolutely did not require an optical cavity. Rather, the cavity’s spectral filtering of our
laser beamsplitters complicated our measurements |20, |41].

Instead, the novelty in these early experiments arose from probing localized potentials,
which is non-standard for atom interferometers because long free-fall times are typically
required to achieve high sensitivity, but long fall distances do not allow atoms to spend
sufficient time sampling the region of maximum potential gradient from a small source mass.
We had to optimize our free-fall interferometer to operate sensitively with limited free-fall
time, in order to sense our spatially localized signal [20]. This is precisely where a trapped
interferometer would be beneficial: it would allow increased sensitivity to a localized potential
by holding atoms for longer in a region of maximum potential gradient. Back then, we just
dropped atoms as test masses, and made precise measurements of their trajectories to probe
potentials in close proximity to our in-vacuum source mass. The ability to control the source
mass conditions (e.g. its position and temperature) allowed us to explore some fun physics.
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We then dove into science of Raman beamsplitters and, in hindsight, found the first
unique use of our cavity-filtered laser beam: that it could enable high efficiency, adiabatic
atom optics with no loss of contrast after many beamsplitter pulses [42]. Chapter [5| de-
scribes these spin-dependent kick interferometers, which we had initially taken interest in
to double the momentum transfer of a single Raman transition from 2hk to 4hk, with a
route to even larger momentum transfer, while still offering the state labelling and lax laser
cooling requirements of Raman beamsplitters. We quickly found that SDK beamsplitters
could enable complex, flexible, multi-pulse interferometer geometries such as single-source
gradiometers or juggling interferometers. Looking back now, the ability to observe contrast
after so many beamsplitter pulses was our first sign that the cavity mode had sufficiently
high quality wavefronts as to enable a new standard of coherent atom-laser interactions.

Finally, Chapters [6] and [7] detail our realization of an intracavity trapped atom inter-
ferometer [43]. Perhaps the most notable achievement here is our demonstration of a 20
second coherence time which, to our knowledge, is the longest spatially separated quantum
superposition of a massive object demonstrated to-date. For this, our imperfect cavity is
almost entirely to blame. On a human level, 20 seconds was more than enough time to feel
bored while waiting for fringe data to appear. Still, it is amazing that in the time we could
feel bored, the atoms remained optically suspended in superposition, with one arm held 4
micrometers above the other.

In Chapter [6] we describe how a cavity-filtered lattice allowed us to overcome the free-fall
limited interrogation times for massive particles in Earth’s gravitational field; how under-
standing the discrete and multi-path nature of lattice interferometers allowed us to restore
contrast for any setting of the beamsplitter pulse timings; and finally, how the lattice natu-
rally suppresses vibration phase noise to preserve phase stability for long hold times, at which
point the interferometer is most gravitationally sensitive. Chapter [7] details what we know
of limitations to our coherence times and spatial separations, e.g. why only 20 seconds, why
holding wavepacket separations of only 1-100 microns, etc. We describe reasons for atom
loss after seconds in the cavity lattice, examples of stray light sources we have resolved, and
our characterizations of residual cavity mode imperfections, which inform our approach to
extending coherence times and spatial separations even further.

At last, Chapter [§] describes some of the future work required to apply our lattice inter-
ferometer to real metrological use, and concludes this thesis with a broader vision of how
atom interferometers can be uniquely operated inside of an optical cavity.



Chapter 2

Background: Atom interferometry &
Optical cavities

This chapter will establish some theoretical groundwork for the phase of light-pulse atom
interferometers and the basics of optical cavities. We will begin by describing how a phase
shift arises from the spatial separation of partial wavepackets during the interferometer (“free
evolution phase,” A¢rg), then describe the net phase shift added by atom-laser beamsplitter
interactions used to realize the interferometer (“laser phase,” A¢r). We will discuss the
interferometer phase in the context of a few different measurement configurations, including
a Mach-Zehnder interferometer for measuring gravity and localized potentials, and a trapped
Ramsey-Bordé interferometer for measuring potential energy differences. At the end of
this chapter, we present some basic electromagnetism that describes how optical cavities
resonantly separate different spatial modes of a laser beam into different spectral components
which, after all, is the quirk that makes our cavity atom interferometer experiment unique.

2.1 Overview of a light-pulse atom interferometer

In quantum mechanics, a basic interferometer can be described by taking an initial quantum
state |¢;) = |1), placing the state into a superposition of two states |1) and |2) via a rotation
g, allowing the system to evolve according to the evolution operator U for a time T, and
finally, rotating the system back via ST to recombine and interfere the two states:

STUS ;) . (2.1)

The rotation S can be described as a “beamsplitter,” because it places the initial state into
a superposition of multiple states (equivalently, “splits” the state between multiple compo-
nents), which we will refer to as the interferometer “arms” or “paths.” An ideal beamsplitter
S in a two-state basis {|1),]2)} can be expressed as

S = % C i) , (2.2)
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which refers to a rotation of —7/2 using the o, Pauli matrix [44]. Acting on an initial
state |1), an ideal beamsplitter rotates the state into an equal superposition of |1) and |2),

S 1) = [1H2) +|2) . This beamsplitter is a specific instance of the more general rotation operator,

L G cos%—i@zsing (2«9 —1—9)5111—
R(0) = —10 5)= . A . , (2.3)
— (i, — 0,)sin & cos? +i6, sin &
where ¢ are the Pauli matricies, and R<§ = —51) corresponds to the beamsplitter rotation.

The time evolution operator U describes how the states evolve between beamsplitters,

A eld 0
U= < 0 ez‘¢2> (2'4>

to acquire the state phases ¢; o relative to the first beamsplitter.
Rotating the state back to recombine and interfere the arms is the purpose of the second
(or final) beamsplitter. Note that applying either St to undo the first rotation, or S to repeat

the first rotation, are both valid ways to recombine the two states for interference.
1

0
series of operations (beamsplitter-time evolution-beamsplitter) is given by

A 1 P2 4 i1
— af [ . .
[¥5) = STUS |¥n) = 3 (Z-(em _ ewl))

For a system starting in [¢);) = ) = |1), the interferometer’s output state after the

(2.5)

The probability to be found in each output port of the interferometer is given by the
magnitude-squared of the amplitudes, i.e. by projecting the interferometer’s output state

onto each output port, P; = \(%Wf)f = ‘(%l STUS |4y
be found in each output state:

2
. Doing so gives the probability to

(=
(Z) e E@ 2@% ' (2.6)

Thus, interferometers translate a phase difference between paths (a somewhat obscure
quantity), into probability oscillations of finding the atom in a given output port, i.e. a
measurable quantity. For quantum interferometry to be useful, we need to understand
how the wavefunction of any particle, e.g. neutrons, atoms, quasiparticles, etc, accumulates
phase as it freely evolves in the time inbetween beamsplitters, and from its interactions with
beamsplitters.

In our cavity-light pulse atom interferometer, we use pulses of intracavity light to realize
beamsplitters for laser-cooled cesium atoms, and we observe interference fringes as atom
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number oscillations of Ny, Ny between the output ports, i.e. the states [1), |2). We tune
various experimental parameters to vary the total interferometer phase A¢ between the
upper and lower arms, which leads to sinusoidal population oscillations in the asymmetry A
between output ports,

Ny — Ny
Nl + N2

related to the total interferometer phase, where C' is the interferometer contrast.
Many effects can cause these population oscillations to occur with less than full contrast.
Assigning probability amplitudes ¢, ¢ <1 to the oscillations in Eq. [2.6] we can define the

interferometer visibility
Prax — Pain_ 27/102
Poax + Poin a1+’
a quantity which relates to the coherence between interfering paths.
Understanding the total atom interferometer phase A¢, and its application to various

measurements, is the subject of this chapter. We limit the scope of our discussion here to
the two main phase contributions we have dealt with in our cavity atom interferometer

A= = C cos(Ag), (2.7)

V= (2.8)

A¢p = A¢rg + Adr, (2.9)

which includes the “free evolution phase” A¢pg = dfp — ¢rp that each arm accumulates
between the beamsplitters, and the “laser phase” A¢r, added by atom-laser interactions during
the laser beamsplitter pulses.

2.2 Free evolution phase A¢pg

We will begin by discussing the “free evolution phase,” A¢pg accumulated along each path,
as the wavefunction freely evolves between beamsplitter operations.

In atom interferometry, a common way to calculate this free evolution phase is to take
the path integral approach to quantum mechanics, which reduces a calculation of A¢pg to a
matter of integrating the particle’s energy along the classical trajectory of each arm. Here,
we will follow the detailed tutorial from Ref. [45].

Between the beamsplitters, the quantum state of the particle at some final time t; can
be determined by its state at some earlier time ¢; < ¢y through the time evolution operator

A

U(tfa ti)

A~

[9(tp)) = Ulty, i) [ () - (2.10)

In atom interferometry, the free evolution phase arises from the spatial separation of paths,
and so we can obtain the final wavefunction by projecting this final state onto the position
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basis:
Wlzpotr) = (zelo(tp) = (o Ulty 1) [ (1)
— [ el Oy, )3 o)
Werty) = [ da K(ap,ty ) 100, t0) @.11)
where the last step defined the “quantum propagator” K as
K(zp g 2i,ti) = (2| Uty 1) |2i) - (2.12)

K represents the probability amplitude that a particle starting at an initial time and position
(ti, z;) will arrive at a final time and position (¢, zf).

The quantum propagator can be used to calculate a time evolution from ¢; to ¢; in an
arbitrary number of intermediate steps. For example, one can describe an evolution from
the initial time ¢; to a final time ¢ via an intermediate time ¢; by

A A~ A~

U(tf?ti> = U(tfatl)U(thti) (2'13>

where ¢; < t; < ty. This lets the quantum propagator be rewritten in terms of an interme-
diate timestep t; by substituting Eq. into Eq. [2.12; doing so gives

Kzt 20, t) = (24 Ot )0 (11, 1) 20
= [ @ il Ottt ) (] D1, |2

K(Zf,tf,zl,tz) = /le K(Zf,tf;Zl,tl)K(Zl,tl;Zi,ti). (214)

This result shows that the total amplitude to go from an initial to final spacetime point
(ti,z;) = (ty, zp) is given by the sum of amplitudes passing through all possible intermediate
points (t1,z1). The amplitude for the state to pass through a particular intermediate point
(t1,21) is given by this product, K (zf,tf; 21, t1) K (21,815 24, ;).

Feynman’s path integral formulation for quantum mechanics [46] essentially slices the full
time period from ¢; to ¢y into infinitesimal time slices, calculates the time evolution for each
infinitesimal time interval, and then calculates the total amplitude by integrating together
all of the time intervals. The quantum propagator can be written as a functional integral
over all possible paths z(t) connecting the initial z; to final z; position,

Ziyts

zf,ty

Dl=()] exp {%sp[z@)]} | (2.15)

subject to the constraint that z(¢;) = z; and z(tf) = 2y, and where Sp[z(¢)] is the action
along the path I'. The action St is the integral of the Lagrangian £ = K — U (kinetic minus
potential energy) over time,

Selz()] = /t "t £l(1). (2.16)

i
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In classical limit, where

Sr/h>1, (2.17)

the phase factor St /h oscillates rapidly, causing neighboring paths far from the classical path
to destructively interfere. By contrast, the classical path minimizes the action. Therefore,
amplitudes for paths within the vicinity of the classical path will constructively interfere and
comprise the dominant phase contribution to the path integral in Eq. [2.15]

Atom interferometers typically operate in this classical limit, so it usually suffices to only
consider the classical trajectories of atoms through the interferometer. The classical path
can be found by minimizing the action St along the trajectory. Doing so yields the classical
equations of motion, i.e. the Euler-Lagrange equations:

d (0L oL

For a given interferometer geometry, based on how the wavepacket trajectories are ma-
nipulated by the beamsplitters, the free evolution phase ¢; accumulated by each arm i is
determined by the action St along the classical trajectory I'; that connects its initial and

final spacetime points,
1
¢i = 7

This gives the phases in the free evolution operator U from Eq.

~ e%sﬁ 0
U:< o s ) (2.20)

From Eq. then, the probability of finding an atom in a given output port ¢ of the

interferometer
2 (¢2 - ¢1>
P1 COS T
= ) 2.21

<P2> sin2 (¢2 - ¢1) ( )
2

depends on the differential free evolution phase A¢pr = ¢ — ¢1 accumulated between the
interferometer arms.

Sr,. (2.19)

2.2.1 Example: A¢ypg in a trapped Ramsey-Bordé interferometer

While the free evolution phase and path integral formulation can seem abstract and com-
plicated, the real strength in the path integral approach is that it can simplify what could
have been complicated math (i.e. calculating propagators), into a matter of algebra and
elementary classical mechanics (i.e. calculating energy differences along classical paths).

As an example, we can calculate the total free evolution phase of our trapped Ramsey-
Bordé interferometer [43], which we discuss in detail in Chapter [6]
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In general, the total free evolution phase is given by [45]

1 1
A¢FE:EI</FCIK—U)upper—7—i(/F‘CIK—U> (222)

lower

where A¢x and A¢y are the differential kinetic energy and potential energy phases, respec-
tively, between the upper and lower interferometer arms.
The net kinetic energy phase A¢g can be calculated by integrating

A¢y = %m/dt (vﬁpper(t) — vﬁ)wer(t)) (2.24)
= keggT (T + 2t 4). (2.25)

The net potential energy phase A¢y can be similarly calculated by integrating the following,
which considers the linear (Newtonian) gravitational potential energy difference U = mgAz
between the vertical arm separation Az = (hkeg/m)T determined by the beamsplitters,

Bov =" [ dt Gapr(®) = Siwa(2) (2.26)
= ketgT (T + 2t 4 + 7). (2.27)

The total free evolution phase is the net difference of these kinetic and potential energy
phases between the arms, as stated above in Eq. [2.23] Thus, the net free evolution phase in
our trapped Ramsey-Bordé interferometer is

mgAz

Agrg = kengT'T = T (2.28)

where Az is the vertical arm separation during the lattice hold time 7. There is zero net
free evolution phase accumulated outside of the lattice hold.

Separation phase

The path integral formulation assumes that the two partial wavepackets that constitute the
two interferometer arms interfere at the same position, and with the same momentum. How-
ever, this condition is not necessarily always met in atom interferometers; in fact, interference
can be observed as long as the wavepackets are within the spatial coherence length of the
atomic wavepacket at the final beamsplitter. The spatial coherence length of the wavepacket
is roughly given by the atom’s thermal deBroglie wavelength, Az = h/p (in our experiment,
Ar ~ 300 nm). The “separation phase” d¢ is given by

56 = p—;x (2.29)

where p, 0x are the spatial separation and average momentum, respectively, of the two partial
wavepackets at the time of the final beamsplitter.
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2.3 Atom-laser interactions — “laser phase” A¢ry,

The wavefunction also acquires an overall phase shift due to its interaction with the laser
beamsplitter pulses. Accordingly, we will refer the net phase shift added by the atom-laser
interactions of the beamsplitter pulses as the “laser phase.” We will first describe some physics
of Raman transitions, then how net phase contribution from a Mach-Zehnder sequence of
Raman pulses provides an inertial measurement, and conclude with a calculation of the laser
phase for our lattice interferometer pulse sequence.

Raman transitions have become a standard way to realize atomic beamsplitters and mir-
rors for light-pulse atom interferometers [6]. In general, long-lived atomic states are needed
for sensitive interferometers, which require long coherence times. Ideally, the interferometer’s
coherence time would not be limited by the lifetime of the atomic states. In our cesium-133
atoms for example, the D2 transition widely used for interferometry (62Si/, — 62P;/2) has
an excited state lifetime of only about 30 ns [47]; using the ground and excited states of
the D2 line for interferometry would limit the total interrogation time to 30 ns, after which
time the upper excited state spontaneously decays, giving away which-path information and
causing the quantum interference to be lost.

To extend the interrogation time, atom interferometers drive transitions between long-
lived atomic states. In alkali atoms, stable hyperfine ground states are often used for in-
terferometry. But in order to impart photon momenta to the states, transitions between
hyperfine states must be driven as optical transitions, because the recoil (hwyrs) associated
with the magnetic dipole transition (M1) transition between hyperfine states is too small
to create useful spatial separations of the interferometer arms, and a direct electric dipole
transition between hyperfine states is forbidden by dipole selection rules.

Recently, advances in the laser cooling and manipulation of more complex atoms such as
strontium have enabled demonstrations of atom interferometers based on single-photon clock
transitions [48,49] between a ground state and long-lived metastable state. This new research
direction is exciting for its potential use in atom-interferometric gravitational wave detection,
as well as the new route it paves to realizing large momentum transfer beamsplitters. There
exist additional techniques for large momentum transfer atom optics as well, such as Bragg
diffraction [8] between momentum states of the same internal state, or Bloch oscillations [9,
10| in an accelerated optical lattice. But since we have already introduced one new element
into our atom interferometry experiment, an optical cavity, we begin by using standard and
robust beamsplitter technologies. In this section, we focus on technologies relevant to our
cesium cavity atom interferometer, which interferes well-understood and easily manipulated
cesium atoms using standard Raman transitions between stable hyperfine ground states.

2.3.1 Raman atom optics

This section focuses on how a stimulated Raman transition can coherently manipulate atoms
and their trajectories for interferometry. This analysis will follow that in Ref. [50]. Consider
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the cesium D2 line, an optical transition with a ground-state hyperfine splitting, addressed
by a pair of counter-propagating laser beams at frequencies wr,; and wys, as in Fig. 2.1]

N
ho, |- T le, p)
7 A
kl + k2 S I
on -
a 2 R0\
‘ 6 = v ,'l W)
O L
R Ao, |- 61:.4—,“""; """"" T 12,p + k)
kz h(Dl — : / 4 HFS |1,p-hk1>
1 1 | >
-1 0 +1

Momentum (7k)

Figure 2.1: Raman transitions in a A system. (Left) Two counter-propagating laser beams
stimulate Raman transitions to coherently transfer two photons’ momenta to an atom.
(Right) Energy-momentum level diagram of the A system we use for Raman transitions.

[lluminating a cesium atom with a counter-propagating pair of laser beams allows the
atomic transition to be velocity sensitive. That is, if the atom has a velocity v, parallel
along the laser beams, it sees the laser frequency difference (wr; — wrz) Doppler-shifted by
an amount dgepp = (k1 — k2)v,. We can see this from Fig. as the atom moves along
ki, with velocity +wv., the atom sees the laser frequency wy; Doppler-shifted to the blue
by +|kiv,| in the atom’s frame; in the lab frame, one can say that the laser frequency is
unchanged but that atomic resonance shifts by +|kjv,|. At the same time, the atom moves
away from the second beam ks with velocity —v,, which red-shifts the atom-laser detuning
from wro by —|kav.|. In all, the velocity-sensitive two-photon Raman transition between
hyperfine states |1) and |2) is shifted by an amount dqep, = (k1 — k2) - v = kegr - v, Where we
have defined the effective wavevector kg = k1 — k.

We tune lasers to address the D2 transition in cesium, with a transition wavelength of
Ap2 ~ 852 nm. A laser beam with frequency wy; couples the lower ground state |1, p — hiky)
to the excited state |e, p), while a counter-propagating laser beam with frequency wys couples
le, p) to the upper ground state |2, p + hiks). The states are labelled by their internal quantum
numbers and their center of mass momentum p along the laser beam 7. The ground states
correspond to hyperfine states |1,2) = [F = 3, F = 4) in the lower 65} 5 manifold, and the
excited state |e) corresponds to states in the upper 62 /2 manifold. The hyperfine splitting
in cesium wyps has a defined transition frequency, w; — wy = wyps = 27 X 9.192631770 GHz,
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which represents the current SI definition of the second. Note that in contrast to the atomic
levels 7, the laser properties are denoted an additional “Li”.

In the Raman basis of coupled spin and momenta states, the atomic wavefunction can
be expressed as

W(t)) =ci(t) |1,p - hkl) + 02(75) |2,p + ﬁk2> + Ce(t) |€7p> . (2-30)

We will assume the coefficients normalize to one ((t)|1)(t)) = 1, which is true in the limit of
negligible spontaneous emission, and justifiable in our case because we use a relatively large
laser detuning from D2 resonance (A = —49 GHz from 4 — 5').

Solving the time-dependent Schrodinger equation for a three-level system

The dynamics of our three level system in the presence of a driving laser field can be described
by the time-dependent Schrédinger equation

0 y
tho, [U(t)) = H [4(1)) (2.31)

for the full HamiltonianH = H# + HAF , which includes the free atomic Hamiltonian HA
and the interaction Hamiltonian H4% for atoms in the oscillating electric field of laser light.
The atomic Hamiltonian is

2
A = ;’—M + Tiwer Je) (e] + Fiwsy |2) (2] (2.32)

where w,; = w, — w; and wy; = wy — w;. The interaction Hamiltonian is
HAT = —d - E(z,t) (2.33)

where d = er is the electric dipole operator. The total electric field from the two counter-
propagating laser beams E; and E, is given by

E(z,t) = Ep; cos(wpit — k12) + Eps cos(wpat + kaz)

e—i(let—klz) + €+i(wL1t—k1z) e—i(UJLQt-i-k‘QZ) + 6+i(UJL2t+k’22)
=Ep 5 + Eps 5
ei(klszth) e*i(*kngw[‘gt)
= ELlT + ELQ# + c.c. (234)

The single-photon Rabi frequencies 2; ,,, which describe the coupling strength between
|i) — |e) for the m-th frequency component of the driving electric field, are defined as

(i|d-Ep |e)
2h

for the m = 1,2 components of the total electric field. When actually calculating the
single photon Rabi frequency, first one can apply the dipole approximation to pull the field

Qi = — (2.35)
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amplitude |E,,| out of the spatial integral, —e (i|r - E,, |e), because E,, is roughly uniform
over the atomic wavefunction, A > aq. From the spatial integral, we also find that the single
photon Rabi frequencies for a given laser beam m differs between the two ground states |i)
primarily by Clebsch-Gordon coefficients, which appear while integrating the angular part
of these spatial wavefunctions. The spatial integral additionally shows that a direct electric
dipole transition between states in the same atomic orbital, i.e. between hyperfine ground
states |1) and [2) in 625 o, is forbidden due to parity; this zeroes H{s" = H3}" = 0 in the
interaction Hamiltonian.
In terms of these single photon Rabi frequencies, the interaction Hamiltonian is

HAF = RO ekiz=enit) 1oy (1| 4 pQsel(Rzmwi2t o) (9] 4 c.c. (2.36)

To account for the coherent transfer of photon momenta between the atoms and laser pho-
tons, we can substitute the relation

et = [ dp Ip) o (2.37)

into the phase factors involving photon momenta k; in Eq. [2.36] This substitution describes
how an atom absorbing or emitting a photon with wavevector k recoils from the photon’s
momentum, and consequently change its center-of-mass momentum p by the photon momen-
tum hk. This relation shows how the velocity-sensitive Raman transition induces transitions
between momentum states, alongside transitions between internal states.

The full Hamiltonian for Raman transitions can now be expressed in matrix form over
the basis used in describe the atomic wavefunction in Eq.

(p = hk1)* 0 M g,
2M 2
A hks)? h oy
HRaman — 0 % + hLUQl 222 €Z¢L2 (238)
QY neY, p?
PRI —igra 0722 —idLe I
5 e 5 e Wi + hweq

where each laser oscillator has its own laser phase, ¢r; = k; - z —w;tg, and the overall energies
have been referenced to that of |1), i.e.i.e. setting fuv; = 0.

It is convenient to now move our discussion into the rotating frame of the laser. Applying
the following transformations gives the rotated probability amplitudes in the laser frame,

& (t) = exp _1%4 0, (2.39a)
&(t) = exp | (% + w21> t] ea(1) (2.39b)
6(t) = exp |i (zz]:m + %1) t] co(t) (2.39¢)
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which we denote with a tilde. We can define two important detunings to relate the laser
frequencies to atomic resonance frequencies. First, we define the “single photon detuning” A,
which gives the laser detuning of wy,; from resonance with the transition |1,p — hiky) — |e, p):

2 2
p (p - hk?l)
A= PR ALCY
oME YT T onh “r1
hk?
= klvz — ﬁ + Wel — WL1- (240)

The key contributors to the single photon detuning are A =~ w.; — wr;. We identify the
remaining terms as i) the Doppler shift for atoms moving with velocity v, parallel to ki,
k1v, = ddopp ~ kHz - MHz; and ii) the Doppler shift due to a cesium atom absorbing a
photon on its D2 line % = Opec = 27 X 4.1327 kHz, which corresponds to the single photon
recoil velocity of v = hk% = 3.5225 mm/s [47]. We use a single photon detuning of
A = —49 GHz, many times the natural linewidth of the D2 transition I' = 27 - 5.223 MHz,

to suppress spontaneous emission from the excited state, where the scattering rate scales as

ro?2
Rgcat ~ A2 *

Next, we define the “two-photon detuning” § between the laser frequency difference wr; —
wr2 and the two-photon resonance from |1,p — ki) — |2,p + hks) as

5= [(p_hkl)2 Cw (p + hky)?

- } ~ (wns — o)

2Mh 2Mh
hk?  hk2
= — (k1 + ko)v, + {ﬁ - ﬁ} — woy — (wr2 — wr1) (2.41)

where unlike the single photon detuning, the contributions from each term in this two-
photon detuning can all be of comparable magnitude. In order of appearance, we identify

the terms as i) the two-photon Doppler shift 5]2370pp = —(ky + ko)v,; ii) the two-photon recoil

frequency 627, = % — %] = 27 x 8.2654 kHz; and iii) the central conceptual contribution,

the laser-detuning from true two-photon Raman resonance between |1) and |2), as given by
Wa1 — (sz - wL1)~

Combining the single-photon detuning A of wy; from the upper ground state to the
excited state |1,p — hky) — |e,p), with the two-photon detuning ¢ of the lasers (wp; — wra)
from Raman resonance |1,p — hky) — |2,p + hks), we find that the detuning of wrs from
|2, p + hke) — |e,p) is nicely given by A + .

Using these definitions and the Hamiltonian found above in the time-dependent Schrédinger
equation gives us the following equations of motion for this three-level system:

ihéy, = hQy e A, (2.42a)
ihiéy = hQgpe A, (2.42b)

ific, = I, €818 4 R BTG, (2.42¢)



CHAPTER 2. ATOM INTERFEROMETRY 17

Adiabatic elimination

We can reduce our three-level system into an effective two-level system between |1),|2) by
adiabatically eliminating the excited state |e) from consideration of the system’s dynamics.
This process of “adiabatically eliminating” the fast dynamics of irrelevant, non-resonantly
coupled levels is a common way to approximate the dynamics of multi-level systems. In our
case, it is well-justified because we choose a single-photon detuning A from the optical tran-
sition much greater than the transition linewidth, so there is a nearly negligible population of
the excited state, alongside strongly reduced single-photon scattering. If the optical detuning
is also much greater than the single-photon Rabi frequencies and two-photon detuning

A > (Qu, [Q92], 0, (2.43)

then the ground state dynamics are much slower than the excited state oscillations. These
considerations from choosing a large single photon detuning A can justify reducing the three
coupled equations in Eq. into an effective two-level system by adiabatically eliminating
the upper excited state.

We start by directly integrating Eq. for c.(t) with the coefficients ¢;, ¢y taken as
constants over integration in ¢’, i.e. ignoring their time-dependence, to obtain

Go(t) = / dt’ é.(t) (2.44a)
1
TN (

We then plug this result for c.(t) into Egs. [2.42a) and [2.42b|to de-couple their dynamics from
the excited state.

Qneid)mél + ngemmég) . (244b)

Effective two-level system between hyperfine ground states

Using c.(t) in Eqgs. [2.42a] and [2.42D| for ¢;(t) and cy(t) gives the effective two-level system
between |1) and |2), which can be expressed in the familiar form

él Q‘lw %ei(&f—dm) C1
ih| | ==h| o 2 (2.45)
Co 227 e*i(at*(f)L) Qgc &y

by identifying two key quantities: the on-resonance, 2-photon Rabi frequency €2y,, and the
ac Stark shift Q¢¢ of the level |7). Additionally, we have defined the laser phase ¢, for each
state in the interferometer as

oL = ¢Pr1 — P12
= (k1 — ka) -z — (w1 — wa)tp
¢L = ket - 2 — 0lo. (2.46)
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First, the two-photon Rabi frequency (25, describes the on-resonance coupling strength
between |1) and |2), and is defined as

011805,
YA

where A is the single photon detuning defined in Eq. [2.40]
Second, the ac Stark shift Q¢¢ of the level |i) induced by laser beams with frequencies m

ac |QZ m|
Qe Z T (2.48)

Oy, = (2.47)

where A, ,, is the detuning of the m frequency component from resonance with |i). For our
two-component laser field, the differential ac Stark shift of the hyperfine levels is given by

[Q1]? [0

de = =TT T A

(2.49)

to zeroth order in 6/A. Going forwards, we will remove the common-mode ac Stark shift
Q¢+ Q5¢ from the diagonals of the Hamiltonian, because this is just an overall energy shift
that shifts both ground states equally in the same direction. Neglecting the common-mode
ac Stark shift allows us to write the system of two coupled differential equations in terms of
the two-photon detuning ¢ from [2.3.1]

1 _s %ei(ét—m 1
ih| . | =-h]q 2 (2.50)
Co %e—i(ét—%) ) Gy

Finally, we can identify from this the generalized two-photon Rabi frequency e,

Qui = /O3, + 82 (2.51)

where Q. is the resonant 2-photon Rabi frequency between |1) and [2) (Eq. [2.47)), and 4 is
the two-photon detuning (Eq. . With the effective Rabi frequency and differential ac
Stark shift in hand, we have the required pieces to describe the three-level system Raman
transition as an effective two-level system.

Atom optics (atomic beamsplitters, mirrors)

In this two-level basis, the atomic wavefunction can be expressed as

[U(t)) = c1(t) |1, p — hky) + ca(t) |2,p + hks) . (2.52)

where the probability P;(t) of finding the atom in a state |, p;) at a time ¢ is given by |c;(t)]?.
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In the presence of a driving laser field with pulse duration 7, i.e. during a beamsplitter
pulse, we can understand how the system evolves by writing down a time evolution operator

U (to,to+7) = exp(—% tZOJrT dt'H (t )) in the basis of this effective two-level system,

Qe . 5 . Qe . Q . Qe .
c0s< 237'> + ZQeff sm< ;T> —@QZ; sin <THT> eioto

U aman = 2.53
a (T) . QQ'y . Qeﬂ"T —iot QeffT .0 . Qeﬂ"T ( )
—1 sin{ —— Je ' COSs —1 Sin
Qeﬁ 2 2 Qeff 2
which time-evolving the system over the pulse duration, from tq — to + 7.
For an ideal 50-50 beamsplitter (“7/2-pulse”), the pulse duration should satisfy
QeHTTr/Q = g (254)

To get the gist, we can assume that the laser is on two-photon Raman resonance, such that
9 = 0. The time-evolution operator for a 7/2-pulse is then given by

)2 1 ei57/2 iei(67/2+§to—q§L)
URéman(Tﬂ'/Q) = E ie—i(57/2+5t0—¢L) e—i57/2 : (255>

For an ideal mirror (“m-pulse”), the pulse duration should satisfy
QefiTr = T. (2.56)

Again assuming the laser is on Raman resonance, the time-evolution operator for a m-pulse
is

i(67/2+0to—or)
y ¢ ) . (2.57)

Ul?—{aman(T) =1 <€i(57/2+5t0¢L) 0

2.4 Ag¢r, as a tool for precise inertial measurements

In our experiments, we set the two-photon Raman frequency difference between counter-
propagating laser beams, wy,; — wr2, by setting the modulation frequency of an electro-optic
phase modulator in the path of our Raman laser; the carrier (laser) frequency corresponds
to e.g. w1, while the first-order phase sidebands are at wy; = wrs. As atoms fall due to
gravity, the Raman frequency difference must be ramped to hold the laser beams on two-
photon resonance with the Doppler-shifting Raman transition, which requires ramping the
laser frequency difference at a rate commensurate with the gravitational acceleration.

As the atom’s position relates to the phase added by each laser pulse (¢r; x keg - @), the
atom’s velocity relates to the Raman difference frequency (27 faopp = dopri/dt x ke - v) at
each laser pulse, and the atom’s local acceleration relates to the Raman ramp rate (27 x o =
dfaopp/dt < keg - @) between the laser pulses. Thus, changing the Raman ramp rate « has
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the same effect on the total laser phase A¢, as a change in the local acceleration. That
is, to the interferometer phase, a change in the local acceleration (due to e.g. the moon’s
gravity or vibrations) is indistinguishable from a change in the Raman ramp rate « between
beamsplitter pulses during the interferometer. This equivalence provides a convenient way
of using A¢r, to measure the acceleration experienced by on freely falling atoms.

Because inertial measurements in free-fall atom interferometers are often read out by
varying « to vary the laser phase A¢y,, it is important to understand how the total interfer-
ometer phase varies with « in order to accurately interpret a fringe measurement.

2.4.1 Mach-Zehnder interferometer as an atomic gravimeter

A Mach-Zehnder pulse sequence consists of three laser pulses, m — w/2 — 7, separated by
equally spaced pulse separation times 7', such that the total interferometer time is roughly
2T. This pulse series gives the total laser phase

AgL = 6T — g = 61 — 6y + 6y, (2:58)

We analyze the acceleration transfer function of the Mach-Zehnder laser phase in Section
following the analysis from Ref. [51], to compare the vibration phase sensitivities of a
Mach-Zehnder and trapped Ramsey-Bordé interferometer.

For a cesium atom interferometer driven by Raman transitions on the D2 line, the Raman
frequency must be ramped at a rate « of approximately

to compensate for the Doppler shift of two-photon Raman transitions as atoms fall due to
local gravity g. After freely falling for 120 ms (corresponding to a distance of 1/2gt* ~ 2
mm for launched atoms), the Raman transition Doppler shifts by 27 -2.76 MHz, comparable
to our cavity linewidth of 27- 3.03 MHz.

The laser phase A¢y, for a Mach-Zehnder interferometer (Eq. can be expressed in
terms of the Raman ramp rate a and the acceleration experienced by falling atoms a as

AgbL = (keﬂ‘ A — O[)TZ, (260)

where kg is the effective wavevector of laser light used to drive an n-photon beamsplitter.

Notice that the laser phase A¢y, leverages the large scale factor from the laser wavevector,
ket = 28522’:“ (factor of 2 for transferring 2hk photon momenta, more for nhik beamsplitters),
to provide an order 107 rad /m phase magnification to measurements of the atomic positions.
This large scale factor allows atom interferometers to perform precise acceleration measure-
ments using freely falling atoms as ideal test masses. It amounts to using the laser beam to
diffract atomic matter-waves, as also a stable and finely graded “laser ruler” (period of A\/2)
with which to precisely measure the atom’s ballistic trajectory.

Thus, Mach-Zehnder atom interferometers are often used as atomic gravimeters to pre-

cisely measure local gravity g [11]. To determine ay = kegg precisely, one can find the stable
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“zero fringe” where A¢y, = (keg - g — ap)T? — 0. Near ag = kegg, one can vary the pulse
separation time 7" to change the fringe frequency and precisely determine the setting of oy
that gives A¢r, = 0 as a measure of the acceleration.

Free evolution phase in a Mach-Zehnder interferometer

Mach-Zehnder atom interferometers measure accelerations primarily via the laser phase A¢ry,.
This is because, in general, closing a symmetric free-fall atom interferometer enforces that
the free evolution phase ¢Ly accumulated along each path i consists of equal parts kinetic
and potential energy |15 to thus cancel out of the total interferometer free evolution phase,
such that AgMZ = @IhP — giower = ().

2.4.2 ...for sensing localized potentials

For the experiments in this thesis, we do not use the Mach-Zehnders laser phase to measure
Earth’s gravity g, as is typically the done in atomic gravimeters [11]. Instead, we run Mach-
Zehnder interferometers to measure accelerations induced by atom-source mass interactions,
where the source mass potentials decay spatially over a few centimeters. To measure such
localized interactions using free-fall atom interferometers, it is imperative to understand
how the phase shift A¢y, relates to real accelerations, or more fundamentally, real potentials
because accelerations are merely the effect of a test mass moving in response to its interaction
with a spatially varying potential.

For accelerations induced by potentials which vary strongly over the spatial scale of the
interferometer trajectory, as is the case when measuring interactions with a small source
mass, the acceleration-induced phase shift must be calculated by integrating the potential
energy along each path, and taking the difference between the two paths [45, |52} 53|:

A¢y, = % /O [AE(2,(t)) — AE(2(t))] dt. (2.61)

where AE(z 2(t)) are the energy level shifts encountered by the atoms on the two trajectories
z12(t). An corresponding acceleration can be inferred from

Agy
kegT?

a= (2.62)
When the spatial separation of the interferometer arms (Az = 2v,.T") is much smaller
than spatial variations in the potential gradient, or the interferometer’s free-fall distance
(2fan = 0.5gt§pex), it is reasonable to treat the localized potential as a perturbation on each
arm and integrate according to the non-perturbed trajectories. This is to say, it is reasonable
to integrate the potential as an added perturbation on each arm’s unperturbed trajectory.
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2.4.3 Example: A¢y, in a trapped Ramsey-Bordé interferometer

Here, we calculate A¢y, for the specific Raman frequency ramp we used in our lattice inter-
ferometer [43] (Ch. [6)); see Fig.[2.2] This calculation can determines the expected laser phase
Ad¢r, dependence on experimental parameters, such as the pulse timing parameters or EOM
modulation chirp rates «/(27).

A laser phase ¢; is added to each interferometer arm as it receives a two-photon impulse;
the sign of the phase is determined by the direction of the photons’ momentum kicks (up-
wards=+, downwards=-). From the interferometer geometry illustrated in Fig. [6.4) we can

a .T. t t, . T.

Figure 2.2: Raman frequency ramp during the lattice interferometer.

write the total phase shift from the four laser pulses, noting that the upper arm is kicked up
by pulse 1 and down by pulse 3, while the lower arm is kicked up by pulse 2 and e.g. down
by pulse 4 to interfere:

Agy, = ¢"PPe — glover = (+01 — ¢3) — (+P2 — ¢a). (2.63)

We can relate the Raman frequency at each pulse f; to that of the first pulse, reading
from the frequency ramp in Figure 2.2}

fo— fi=—aT (2.64a)
f3 — f2 = —QCYtA (264b)
fa— f3 = —al. (2.64c)

From these frequencies f;, we can calculate the oscillator phase ¢; at the 4 laser pulses
relative to the first interferometer pulse ¢; by integrating ¢; = ftt; f(t)dt. This gives the
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laser phases,

¢2 - Cbl = flT - %OZTQ (265&)
¢4 — @3 = f31' — %aTQ. (2.65b)

These phase differences can now be plugged into Eq. to obtain the total interferom-
eter laser phase Agry,

Adr = (1 — ¢2) — (¢3 — ¢4) (2.66a)
=T(fs— f1) (2.66b)
Adr = oT(T + Ta), (2.66¢)

where T, is the total time between pulses 2 and 3 during which the Raman frequency ramps
at a rate o in the same direction, and the ramp rate is set near o = keg g =~ 27 - 23 kHz/ms
to diffract cesium atoms falling due to gravity. For our frequency ramp, T, = 2t4 because
we effectively stall the oscillator phase during the lattice hold time 7, by ramping frequency
symmetrically with a ramp rate a. For technical reasons, we triangularly ramp the Raman
frequency during the hold. A more straightforward implementation would be to simply hold
the frequency fixed, but this would require us to use a different frequency source for our
Raman EOM modulation than our current oneﬂ Rather than stall, previous lattice atom
interferometers |34}, |35] continuously ramped the Raman frequency throughout the hold such
that T, = 2t4 + 7, giving the laser phase a term linear in the lattice hold time 7.

2.5 Optical cavities

We will now move on from atom interferometry to discussing optical cavities. This section
will cover some basics of Fabry-Perot cavities, such as ours. Fabry-Perdt cavities are the
simplest geometry of an optical resonator; they consist of just two mirrors, separated by a
distance L.

For our experiment, we are interested in both the spatial structure of the Gaussian laser
beam formed by the resonant cavity mode, as well as the spectral transfer function of our
optical cavity. This section will first describe Gaussian beams, and then the Gaussian beam
bounded inside of an optical cavity. Then, we will describe how a resonance condition arises
in an optical cavity, and the cavity spectrum that results.

2.5.1 Gaussian laser beam

A laser beam with a Gaussian amplitude in the plane transverse (perpendicular) to the
propagation direction of the laser, i.e. a Gaussian laser beam, is a transverse electromagnetic

1AD9958, Analog Devices 2-channel DDS
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(TEM) mode. Such transverse modes arise by placing boundary conditions on an electro-
magnetic wave, as in the case of waveguides, optical cavities, etc. Appropriately then, the
Gaussian electric field amplitude comes as a solution to the Helmholtz equation

(VZP+k)A=0, (2.67)

which is a time-independent form of the wave equation (i = ¢ V?u), in the paraxial limit.
The paraxial approximation can describe laser beams which diverge “slowly,” i.e. where the
angle 6 between the wave vector k and the optical axis z is small § < 1 such that small-angle
approximations are useful. Except for strongly focused laser beams, typical laser beams are
often well-described in this limit. We won’t go through the derivation here, but just lay out
this context and introduce electric field that satisfy the paraxial Helmholtz equation.

For a laser beam which propagates along +2 with a field polarized along Z, the electric
field amplitude across a Gaussian laser beam is given by:

E(r,z) = ;eEO% exp <—#;2) exp (—z' (kz + k#zz) - 1/1(2))) (2.68)

where r is the radial distance from the central propagation axis of the beam, z is the axial
2

distance away from the beam waist (defined as where z = 0), k = =¥ is the wave number
based on the laser wavelength A, and Ey = Ege ™" is the complex electric field (amplitude
and phase) at z,¢t = 0,0. Note again that this solution for a Gaussian TEM amplitude is
only valid in the paraxial approximation, and will generally deviate from reality for tightly

focused laser beams.

b
r

-4 — F (7} Z:O)
-3 1 (r, z=0)
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Figure 2.3: Gaussian beam. a. Gaussian beam near the beam waist, and bounded by the two
mirrors of a Fabry-Perot cavity. b Normalized electric field E(r, z = 0) and beam intensity
I(r,z = 0) at the waist. The beam waist wy refers to the radius at which the field amplitude
decays to 1/e of its peak on-axis value, giving a corresponding “beam diameter” 2w at which
the intensity has decayed to 1/e? of its peak on-axis value.

From Figure 2.3] we can begin defining key parameters of a Gaussian beam:
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e The beam radius w(z) describes how rapidly the field amplitude decays away from the
optical axis. For a Gaussian beam, the waist grows as the beam propagates axially
way from its focus (where z = 0),

N R
w(z) = wy 1+<ZR> AT (2.69)

Specifically, the beam radius is defined by where the field amplitude decays to 1/e of
its on-axis peak amplitude (equivalently, where the intensity falls to 1/e* of its peak
value).

e The beam waist wy is defined as wy = w(z = 0), where the laser beam is “focused,”
i.e. smallest and thus most intense.

e Far from the beam waist z > zg, the beam size w(z) increases linearly in z. In the
limit of z — oo, Eq. allows definition of the beam divergence 6 as

A
f = lim arctan (w(z)) = —. (2.70)
2—00 z TWo
This divergence angle 6 is the angle between the beam radius and the optical axis. Far
from the waist, w(z) increases along the optical axis z as w(z) = ﬂiwoz

e The Rayleigh range is the axial distance zg it takes for the laser beam’s cross section
area to double, i.e. for the beam radius to increase by a factor of v/2,

2
TTWw,
2R = TO (2.71)

A Gaussian beam of wavelength A is determined almost entirely by its beam waist wy!

Now we can dive into the longitudinal phase factor (i.e. the latter part of Eq. which
varies with z). This includes three interesting factors:

e The position-dependent phase factor e~**# that accumulates with beam propagation.

e The radius of the wavefront curvature R(z), which describes surfaces of constant
phase, varies with axial position z as

2
R(z) =2 [1 + (Z—R) } . (2.72)
z
The wavefronts have the greatest radius of curvature at the Rayleigh distance from the
waist z = +zg. R(z) flips sign through the beam waist, where R(z) goes to infinity
as phase front curvature goes to zero, R(z = 0) = oo. This signals Gaussian beams
nominally have flat phase fronts and best resemble plane waves at their waist.
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e And finally, the Gouy phase describes how a Gaussian beam propagates along Z with
a phase velocity different from a plane wave,

z

¥ (z) = arctan (—) : (2.73)
2R

This is because unlike plane waves, Gaussian beams must also propagate in the trans-

verse direction. The phase velocity of a Gaussian beam is thus lower than that of a

plane wave, leading to an increase in the apparent wavelength near the waist.

The corresponding intensity of a Gaussian beam is given by the norm-squared of the

electric field )
|E(’I", Z) |2 Wo r’
Ir,z) =" =1 — | e - 2.74
(r, 2) 20 o) *®uere (2.74)
over the impedance of free-space n = ‘:—8, which in vacuum is about n =~ 377 ). The
on-axis peak intensity at an axial distance z away from the waist can be expressed in terms
of the total power F, in the beam,

2P,

I(r=0,z) = T2 (2.75)

Higher-order transverse modes

Before moving onto how this matters to an optical cavity, we note that in the definition
of the electric field amplitude in Eq. considered only the field amplitude Ey of the
fundamental transverse electromagnetic mode.

In general, there are a complete set of transverse mode structures which fit solutions of
the paraxial Helmholtz equation (Eq. [2.67)). Solving the equation in rectangular Cartesian
coordinates (r — (z, y)) allows the set of Hermite-Gauss polynomials H,,,(z,y) to describe
higher-order modes, with the substitution of

2
Eyexp (— ! ) — EoH,, (ﬁx) H, (ﬂy) (2.76)
w(z)? w(z) w(z)

to the transverse spatial profile used in Eq. Solving Eq. in cylindrical coordi-
nates (r — (r, 6)) yields the Laguerre-Gauss modes as transverse mode solutions, with the
generalized Laguerre polynomials Lé('r’, 0). The Gaussian mode has indicies of 00, and is
thus often referred to as the fundamental or TEMgy mode. Figure 2.4 shows the calculated
intensity profiles for several higher-order Hermite-Gauss modes H,,,(z,y). It's amazing that
in experiment, these bug-like intensity profiles are indeed directly observed on the mirror
surfaces.

The higher order transverse modes are super fun and interesting, with lots of unique
properties and potential use cases if one wants to play with them [55]. Just to point out a
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Figure 2.4: Spatial profile of higher order Hermite-Gauss modes, H,,(z,y) from Ref. [54].

couple of their interesting features: compared to the fundamental mode, higher order modes
are physically larger and span a greater volume; they diverge more quickly, and cannot be
focused as tightly; and they have funny phase properties in their nodes and antinodes.

Moving back into our experiment, an awesome feature of an optical cavity is that its
resonance conditions break the free space degeneracy of these higher order spatial modes.
Cavities can effectively project the spatial structure of a free space laser beam into a basis of
transverse modes which, in appropriate cavity geometries, are each cavity eigenmodes with
distinct mode frequencies. Later in this chapter, we will discuss how the cavity resonance
condition allows the Gouy phase to break the frequency degeneracy of higher-order laser
modes. This gives us the spatial mode filtering needed to achieve high fidelity control over
the optical wavefronts and shape of our cavity-filtered optical lattice beam.

2.5.2 Intracavity Gaussian beam

The shape of the intracavity laser beam can be found by matching the radii of curvature
for a Gaussian beam to the two mirrors’ radii of curvature, at the position of the mirrors.
This is a simple way to understand how placing boundary conditions on an electromagnetic
field determines the spatial and spectral properties of its resonant laser beam: we find the
shape of a Gaussian beam, itself already a solution to the paraxial Helmholtz equation,
which satisfies boundary conditions of our two cavity mirrors. Here, we will show the useful
equations describing the fundamental mode shape in a cavity, and run through a quick
example calculation for our cavity parameters.

Consider again how the Gaussian beam shown in Figure is bound between two
mirrors, separated by a distance L through a uniform medium of index n to form a Fabry-
Pero6t cavity. Here, we we will take n=1 because our cavity is installed in vacuum.

Let z1, Ry and 23, Ry be the axial coordinates and radius of curvature for the left and
right mirrors, respectively. We can write down the following equations based on the cavity
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boundary conditions:

29 — 21 = L (277)
- .
1
- B 2:
R(Zz) = 29 1+ (Z_R) = RQ (279)
2

where we have taken a standard optics convention that concave/focusing mirrors before/left
of the focus have negative radii. We can now solve the system of 3 equations for the 3
determining factors of our cavity beam: the Rayleigh range 2z, and the mirror positions z;
and zy away from the beam waist in the cavity, which defines z = 0.

Rearranging these boundary equations gives the following equations to determine the
cavity mode shape:

L(Ry — L)(Ry — L)(Ry + Ry — L)

o= (Ri + Ry — 2L)2 (280)
 —L(Ry- L)

U7 Ry + Ry — 2L)2 (281)

2y = Lifs = L) (2.82)

(Ry + Ry — 2L)%"

As an example, we can calculate the shape of the mode in our near-planar cavity. We’ll
use our radii of curvature R; = +10 m for the in-coupling mirror, Ry = oo for the flat mirror,
and our cavity length of L = 37.5 cm in Egs. [2.80. We find that the Rayleigh range of our
cavity beam is zg = 1.9 m. For A = 852 nm light, this translates into a mode waist of

ZRA
wo = 1/ 22 =718 pm. (2.83)
T
We find that the mode is located at (z1, 2z9) = (—37.5 cm,0) relative to the beam waist.
This means that beam waist is located at the second (flat) mirror (z = z3 = 0), and that the
curved mirror located a cavity length’s away (23 = —L). To understand our beam divergence
more concretely, we can also calculate the beam radius w(z) at each of the mirrors:

w(z; = —37.5 cm) —w01/1+——732 pm (2.84)
w(ze =0) =wp,/1+ Z— = 718 pm. (2.85)
R

At X\ = 852 nm, we see that our near planar cavity has an average beam waist of 725 um,
which changes linearly by about 14 microns (around 2%) over our 37.5-cm-tall cavity.
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2.5.3 Cayvity resonance and spectral properties

We will now switch gears from studying the shape of our cavity-formed laser beam, to
studying its spectral properties. This will begin by understanding how resonance conditions
arise in a Fabry-Perot cavity, and proceed to characterizing the frequency-domain properties
of the cavity transfer function.

Consider Figure where two mirrors M1 and M2 as described above, now have re-
flection and transmission field coefficients r;, t;, and intensity coefficients R; = |r;|* and
T; = |t;|*>. To start, we will neglect absorption or loss or scattering from the mirrors such
that R; +7; = 1.

L

} > Z

0 z

z

/Otzrze'i3¢

Reflectivity r; . Reflectivity 7,

Figure 2.5: Schematic of a Fabry-Perot cavity, adapted from Ref. [56].

Generally, the electric field at a given position z is determined by a sum over all reflections
from the cavity mirrors. Figure[2.5|shows how what happens at each reflection. An incident
field E; impinges on mirror M1, and transmits a component with a transmission coefficient
t;. This transmitted component E;t;, on the right side of M1, propagates across the cavity
length L to mirror M2 while acquiring a phase of ¢ = kz = kL along this single pass; the field
impinging on M2 is thus Ejt;e~*®. At M2, a component of the light will transmit through
the cavity mirror with a transmission coefficient ¢, and phase shift €"/2, to contribute a field
of —E;titoe™ to the total transmitted electric field from M2. Another component of this
first pass will reflect off of M2 with an 7, reflection coefficient, and gain a 7 phase shift as the
reflected component propagates back to M1. At M1, this field component is now FE;t roe™%2%.
As shown Fig. [2.5] this cycle of reflections happens over and over, as light bounces back and
forth between the two mirrors with diminishing amplitude in each reflection. In total, the
electric fields on each sides of the mirrors is an infinite sum of the field over all of these
reflections.
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The transmitted electric field is thus given by

E, = —Eititoe™ — Eititorirge” 3% — Eitytoriroriree” ¢ —
= —Eitytae (1 + riroe” 2% + (rimge 292 + ..

t1t2€_i¢
E=-F——— 2.86
¢ 1 —rirqe—i2¢ ( )

where the last step contracts by recognizing the infinite sum 3 _,° art = T

We can understand the cavity transmission 7" by considering the ratio of the transmitted
intensity [; to incident intensity I;,
I |Ef*/(2n0) tit3

T==2 = = .
I B2/ (2n0) |1 = riraem0)?

_ (I =R —Ro)
r= (1 — VRIR2)? + 4R Ry sin?(¢) | (2.87)

Figure [2.6| shows this normalized cavity transmission 7" as a function of frequency. Note that
the transmission 7T is also be written in terms of the circulating intensity
I
I

T2 (1-R)(1-Ry)

7 (2.88)

which reformulates the transmitted field as simply an incident field with intensity I. trans-
mitting through mirror M2. From this, we see also that the resonant circulating field can
have much greater circulating power than the incident light on the cavity. We will come
back to a definition of the resonant optical gain G for the intracavity field intensity.
The resonance condition at sin®(¢) = 0 can now be seen quite clearly in the denominator:
there is a peak in transmission when the phase ¢ is an integer multiple of m,
27

¢o=kL=—L=qrn — L:qi

) 2.
Aq v (2.89)

We refer to these different values of ¢ as different longitudinal modes of the cavity, or different
“free spectral ranges” (FSRs). The wavelengths and frequencies of the ¢g-th mode are
2L _qc

A D U= —. 2.90

q q ) q 2L ( )

These peaks in transmission occur regularly as the cavity length changes by A/2, or

equivalently, as the laser frequency v = ¢/\ changes by a free spectral range Avpgr, where
c 1

AVFSR = ﬁ = t_ . (291)
RT
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Figure 2.6: Cavity transmission as a function of frequency. Left: Cavity spectrum of a
given TEM mode over 5 free spectral ranges Avgggr, for low (red, r = 0.7) and high (black,
r = 0.98) mirror reflectivities. Right: Zoom-in of the Lorentzian cavity linewidth of the
mode with frequency v,, and full width at half maximum Avpwmwm.

Note that L is more generally the optical path length of the cavity, and because we operate
in-vacuum with two mirrors, this corresponds to the physical separation of the mirrors. More
generally, the free spectral range is determined by the inverse of the round-trip time ¢z for
a photon traveling at c inside the cavity.

Another important parameter is the characteristic width of the resonance feature. The
cavity linewidth Avpway is determined by the inverse lifetime of photons in the cavity 7.,y .
If only considering the mirror reflectivities, 7., is given by

round trip time, tgy 2L

(Avewin) ™! = Teay = (2.92)

fractional loss per round trip c(1-—RiRy)’

while the free spectral range above is determined by the photon’s round-trip time.
The ratio of the FSR Avgggr to the cavity linewidth Avpwmy is the cavity finesse F,

AVFSR o A _ W(RfR@)i

F=—"=—~—— "
Avpwam P 1 —(R1R2)2

, (2.93)

and is a function of the cavity mirror’s intensity reflectivity coefficients. F roughly describes
frequency-resolving power of the cavity. While there are many different ways of defining the
finesse, the approaches typically converge as written above in the limit of highly reflective
mirrors, R > 0.5. Generally, low-finesse cavities (getting into the ballpark of etalons) will
require more nuanced definitions. Moreover, for our cavity finesse, a rough estimate of the
optical gain G for the circulating field is

N

1.
= = 2.94
G- (294)
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Cavity projection of spatial modes into frequency non-degenerate eigenmodes

Recall our earlier discussion of higher-order Gaussian modes, e.g. Hermite-Gauss or Lagurre-
Gauss modes, which form a complete set of solutions for the transverse electric field ampli-
tudes with guided boundary conditions. A large part of the beauty of an optical cavity is that
its boundary conditions can be designed to lift the frequency degeneracy between higher-
order transverse laser modes, and separate the spatial modes into cavity modes with different
eigenfrequencies, spaced by the transverse mode spacing dv,,,. This allows the laser beam
structure in the cavity to be engineered by electronically controlling the frequency content
of the incident laser light.

Up to now in our discussion of the cavity’s spectral properties, we have only considered a
single TEM,,,,, mode. The resonance condition from Eq. can be more broadly expressed
as

/ dz k, = q(2m), (2.95)
RT

which states that the longitudinal phase factor accumulated during a round trip must be an
integer multiple of 27.
The electric field written in terms of higher order Hermite-Gauss transverse modes is

given by substituting Eq. into Eq. to obtain

E(r,2) = 2 By—C M, (ﬂx) i, (\/ﬁy) X

w(z) w(z) w(z)

k 2 2
exp (—z%) exp (—ikz) exp (ip(z)) . (2.96)
The transverse profiles in x, y at any location z differ by the Hermite polynomial factors
H,, . Along z, the magnitude of the Guoy phase shift for higher order modes is exaggerated
by the factor N + 1:
¥(z) = (N + 1) arctan (i) : (2.97)
ZR
where the combined mode number is N = m +n for Hermite-Gauss modes, and N = |[| 4 2p
for Laguerre-Gauss modes. The Guoy phase shift for the fundamental Gaussian mode only
changes by +m/2 radians over all of z, and by +m/4 radians within the Rayleigh distance
+2g; this is increased by the factor NV + 1 for higher order laser modes.
Applying the resonance condition Eq. 2.95] to the electric field solution including higher
order laser modes Eq. [2.96] and doing a ton of algebra, we eventually find that the eigenfre-
quencies for transverse modes inside a resonator are

c m+n+1
Vinn.g = Y7 q-+ — arccos(+4/9192) | (2.98)
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Figure 2.7: Transmitted cavity spectrum of transverse modes, measured in our transfer cavity
. Green oscilloscope trace shows the output of a photodetector placed in transmission
from our transfer cavity. Yellow oscilloscope trace shows the piezo ramp, which scans the
cavity length linearly in time. This image shows how distinct transverse modes come into
cavity resonance at different cavity lengths along the piezo scan.

where m, n are the transverse mode numbers, ¢ is the longitudinal mode number. Addition-
ally, we use and define the stability parameter g; for the ¢-th mirror as

9i = <1 - RA) : (2.99)

where R; is the i-th mirror’s radius of curvature. Note that only cavity geometries with
0 < g192 < 1 constitute stable resonators.

Eq. is a pretty general equation, and we are primarily interested in spacing dv,,,
between higher order transverse eigenmodes. The transverse mode spacing is another pre-
cisely measurable quantity which simply requires electronically tuning the laser frequency.
Measuring dv,,, provides a measurement of the mirrors’ radii of curvature:

A
OV, = sk arccos(£4/9192)- (2.100)

™

In our near-planar cavity there is pretty good cylindrical symmetry such that transverse
modes with the same total mode number 7 = m + n are typically degenerate, e.g. 159 =
V11 = V2. What breaks the transverse mode symmetries are generally experimental factors,
such as slight astigmatisms in the mirrors, rather than fundamental reasons.

2.5.4 Real cavities (lossy) filled with real media (resonant Cs
atoms)
Now that we’ve described somewhat “ideal” cavities, we’ll look a bit at how reality factors

in. This discussion is especially relevant to understand why our intracavity trapped interfer-
ometer works (Ch. @ and what we believe are the cavity’s limitations to controlling spatial
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decoherence (Ch. . Additionally, we consider some fun effects that one might think to
engineer and play with when addressing atoms with resonant laser light in an optical cavity,
as we speculate about further in the conclusion (Ch. [3).

Lossy mirrors?

Here, we take a first look at how absorption/loss/scattering from the mirror surfaces change
the cavity spectrum. To begin, the intensity loss in a single round trip can be expressed
in terms of an intensity-loss coefficient o per unit length, which shortens the photon’s
lifetime in the cavity Teay.

We can begin accounting for loss by making the substitutions R; — Rie %ess' and
Ry — Ree sl into Eq. [2.92] above, which modify the photon lifetime in the cavity to be

l

S LR _ trr
cav 1 — (Rlefalossl)(R267alossl) 1 — R1R2672alossl ’

(2.101)

Pulling this substitution through the analysis above gives the modified cavity transmission
spectrum, we find

[t (1 — Rl)(l — Rz)e_alossl
I, (1 — VR Roe ossl)2 4 4 /R Roe oss! sin®(¢)

This tells us that measurements of the cavity linewidth, which can be done to high
precision via electronic tuning of the laser frequency, can tell us about the intracavity loss.
Loss beyond just finite mirror reflectivities can be due to e.g. scattering from the mirror
surfaces because of surface roughness or dust, diffractive losses, absorption from the medium
filling the cavity length (due to e.g. resonant atoms present in the cavity mode), etc.

It’s one thing for loss to simply lead to less resonant power enhancement, lower finesse,
etc, but what concerns us are questions such as where does the scattered/stray light go?
For example, if it scatters off the mirror, then proceeds to scatter off the inside of the shiny
steel vacuum chamber, and then passes through the cavity mode, then this stray light will
interfere with the main cavity beam and cause local distortions of the optical wavefronts. Or,
how do factors such as cavity alignment [58|, cavity coupling, mechanical mirror distortions,
etc, impact the shape and wavefront quality of the cavity eigenmodes?

(2.102)

Atom-cavity coupling?

Another interesting question arises because our cavity is not actually empty: there are
resonant atomic scatters in the cavity at the laser wavelengths we couple in. Can we at
all engineer, or even observe, interactions between our cavity photons and our cold cloud
of cesium atoms in the cavity? Long answer short: not really, and not coherently. With a
high enough density of atoms in our cavity mode, we can see collective effects of our atoms
with cavity resonance. However, the single atom-photon coupling is too low to see coherent
atom-photon interactions. With a high density of cesium atoms inside our cavity, the atom
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cloud can act as a piece of glass in the cavity to shift the cavity spectra around. Effectively,
this is like using the cavity to perform multi-pass absorption imaging of atoms in our cloud; it
intertwines the resonance features of atoms in our cloud with our cavity spectrum. Generally
speaking, strong atom-photon cooperativity is needed for coherent control, and our cavity
geometry is not currently set up to enter the strong-coupling regime.

Of course the control and manipulation of atoms strongly coupled to resonant cavities is
an entire field of research, cavity quantum electrodynamics. In this thesis, we will largely
ignore atom-cavity coupling effects. Here, we calculate our atom-cavity cooperativity n, and
show why it has been okay to neglect these atom/cavity interactions.

From [59], the collective atom-cavity cooperativity n, which is a figure of merit describing
the interaction-to-decay ratio for atom-photon interactions, is given by

_4¢°
=5
The factor ¢ = v/Ngo describes the collective atom-photon coupling of an ensemble of N
atoms to photons in the cavity mode, where gy = dy+/wo/(2€9hV) is the single atom coupling
and 2gy is often referred to as the vacuum Rabi frequency. This vacuum Rabi frequency is
determined by the cavity mode volume and thus the cavity mode geometry; it determines
the ratio of atoms scattering photons into the cavity versus into free-space. From [59], in
terms of cavity parameters and the transition lifetime, the single atom coupling gy at an
antinode (peak intensity) in the cavity can be expressed as
2 6FAVFSR
90 = gy

Our beam has a typical mode waist of w ~ 718 um at the location of the atoms. For light

at A = 852 nm addressing Cs atoms on their 4,4 — 5 5 cycling transition (with a natural

linewidth of I = 27 - 5.23 MHz), the cavity linewidth is k = 27 - 3.03 MHz. For an atoms at
an antinode, we expect a maximum single-atom cooperativity 7;** of

N 22 3.6 - 1075, (2.105)

Ul (2.103)

(2.104)

which is quite far from the strong coupling regime reached when 1 > 1. Realistically, our
measurements of atom-cavity coupling show a much lower cooperativity because the atom
cloud is order millimeter, and thus spans many nodes and antinodes (“pancakes”) of our
cavity standing wave, effectively reducing the coupling we observe in measurements.

Still, we see the collective vacuum Rabi splitting strongly at the atom numbers and
densities typical of a magneto-optical trap in our experiment, typ. around ~ 10° atoms at a
density of 1019~ cm™3; we can see some signal down to atom numbers of roughly N > 10*
in the cavity mode. We will not go into these results in this thesis. A hope we had was to use
the vacuum Rabi splitting to image the atom number in the cavity, as this may provide both
a non-destructive measurement of atom number while overcoming the imaging fluctuations
that lead to detection noise. However, it seems that fluorescence imaging (even with our
dirty vacuum viewports!) is actually quite sensitive at low atom number, so we have yet to
do much more than experimentally play with the idea of vacuum Rabi read-out.
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Chapter 3

Experimental apparatus

This chapter contains relevant documentation on our experimental apparatus, including our
vacuum system, laser systems, and experimental procedure used to prepare the atom source
for interferometry. This will aim to build upon the documentation included in previous
theses |40, 57] and to provide sufficient experimental context for future chapters.

3.1 In-vacuum goods

Our atom interferometer setup shown in Figure has two unique in-vacuum features: an
in-vacuum optical cavity [55], and a miniature and mobile in-vacuum source mass [20].

3.1.1 “Science” cavity

The in-vacuum optical cavity consists of a plano-concave dielectric-coated mirror M1 (ROC; =
10 m) and a flat, gold-coated mirror M2 (radius of curvature ROC, = o), separated by a

length L = 37.4886(2) cm, inferred from the measured free spectral range FSR = 399.845(6)

MHz. The length and radii of curvature determine the waist size wg = 724 um at the lattice

laser wavelength A = 866 nm. This corresponds to a Rayleigh range zz = 1.90 m. These

radii of curvature can be measured using the transverse mode spacing 0v,,, = 25 MHz.

Key parameters of the science cavity can be found in Table 3.1} and more details about
the cavity can be found in [20, |40, 55|. Important wavelength-dependent parameters are
tabulated in Table [3.2] This variability comes from the wavelength-dependent reflectivity of
the dielectric curved mirror M1.

Generally, our cavity beam geometry is favorable for realizing a trapped interferometer.
For the lattice hold, the cavity length is stabilized to the TEMq Gaussian mode, suppressing
the spatial influence of higher-order transverse modes by ~8 cavity linewidths Avpwmy (per
mode order) to enforce smooth trap potentials for each lattice site. Furthermore, the near-
planar cavity geometry has a Rayleigh range zzr much greater than typical interferometer
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Figure 3.1: Picture of our cavity interferometer experiment during day-to-day operation.
The foreground contains the vacuum chamber and surrounding laser cooling optics, with the
shielded seismometer mounted on top of the vacuum chamber. The vacuum chamber can be
seen sitting on an aluminum frame that rests upon 4 air pads. In the back left, the control
computers are rack mounted; our typical view consists of CCD fluorescence images of the
atoms (upper), the Cicero control software [60] we use to run the experiment (middle), and
the MATLAB GUI software we use to plot image data in real time (lower). In the back right,
the equipment rack consists of useful diagnostics (cavity reflected photodetector signals) and
controls (electronic laser frequency tuning) for lasers used in our in-vacuum “science” cavity.
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Table 3.1: Science cavity parameters.

38

Cavity length L 37.4886(2) cm
Free spectral range Avpgr 399.845(2) MHz
Rayleigh range ZR 1.90 m
Intensity reflectivity of flat gold mirror M2 Ro 0.98
Radius of curvature for curved dielectric mirror M1 ROC; 10 m
Radius of curvature for flat gold mirror M2 ROC, 00
Transverse mode spacing OVmn 25.1 MHz

Table 3.2: Wavelength-dependent science cavity parameters.

A nm| | wp [pm] Avpwaum [MHz| R1 Finesse 7 | Optical gain G
780 687 12(1) 0.845 33 10
852 718 3.03(2) 0.973 132 42
866 724 3.03(2) 0.973 132 42

arm separations that we hold (Az ~ 4 - 350 pum, see Chapter |§] for details); this allows the
trap potentials experienced by the two arms to be highly homogeneous.

At our lattice wavelength A,y = 866 nm, the intensity reflectivities of the dielectric
mirrors are R; = 0.973 and Ry = 0.98 for the dielectric and gold mirrors, respectively.
In addition, the cavity linewidth (Eq. at 866 nm is still ovpway = 3.03(2). These
cavity properties can be measured with high precision; we do this by electronically tuning
the laser frequency and recording the reflected intensity from the cavity in-coupling mirror
on a photodetector. Combined with the FSR, we find a finesse at the lattice wavelength of
F = 132. This resonant power enhancement allows ~15 mW of incident 866 nm light, with
a typical mode-matching of roughly 75% into the fundamental Gaussian mode, to realize a
lattice depth of ~8 E,. (recoil energies) for atoms at the center of the cavity mode.

3.1.2 Source mass

Figure shows images of our in-vacuum source mass. For full details on the cylindrical
tungsten source mass, see [40].

Briefly, the infrared image shows how the MOT loads at location roughly 1 inch under
the source mass, with the source mass dimensions and MOT properties are labelled in the
image. The source mass is made of tungsten, which is relatively non-magnetic and amongst
the densest metals readily obtainable. From a 25.4 mm outer diameter, the cylinder was cut
(via electric discharge machining) to an inner diameter of 9.9 mm, and a 5 mm wide slit in
its shell. This slit allows the cylindrical source mass to move into the cavity mode without
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interrupting and unlocking the cavity.

me, =190.5¢g
OD =25.4mm
ID =9.9 mm

slit width = 5.0 mm
height = 25.6 mm I ~2.5cm
.

Cs-133 MOT
N ~ 4e9 atoms
ny~ 10"/cm3
T~10 uK

Figure 3.2: Source mass in the vacuum chamber. Left: Infrared image of MOT loading
roughly 1 inch under the source mass. Right: Picture of the source mass held in-vacuum
by a threaded rod.

The regular photo shows the source mass suspended in the central chamber of our vacuum
system: there is a threaded hole on the back of the source mass, which mounts the cylinder to
a threaded rod. The rod connects out of vacuum through a mechanical vacuum feedthrough
(“wobble stick”), which is attached to a pair of external translation stages that precisely
control the x- and y- positions of the source mass in the vacuum chamber.

3.2 Laser systems

Using a library of optical components shown in Figure from [61] and [44} |62, we will
show some relevant schematics the laser systems used in our experiment. Figure shows
where our trap, repump, science, and lattice lasers lase with respect to the relevant energy
levels of cesium.

Laser systems for laser cooling

We perform laser cooling on the D2 line in cesium, 625, /2 = 62 P; /2-

e Reference laser (852 nm), 3 — 4’. Our “reference” laser constitutes the fundamental
frequency reference for our experiment. Its frequency is injection-locked [63| using 300
uW of light from an external cavity diode laser (ECDL), which is locked to our cesium
spectroscopy. Our trap laser is offset-locked to the reference laser [40], and our transfer
cavity is length-stabilized to our reference laser [55].
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Figure 3.3: Components library used in optical schematics.

For laser cooling, the reference laser generally addresses F' = 3 — F”’ transitions, and
provides 1) MOT repump light which is required to keep atoms within the cooling
cycle, 2) the F' = 3 blowaway beam used to resonantly push and remove atoms in
F = 3 from the interferometry region, and 3) the cooling beam needed to bring atoms
into the vibrational ground state during Raman sideband cooling.

Cs spectroscopy (852 nm), 3 — 2’. Our hybrid cesium spectroscopy (see [44, 62,
64] for details) stabilizes the frequency of an ECDL to the 3 — 2 transition on the
cesium D2 line, based on the modulation transfer spectroscopy signal from a cesium
vapor cell. The spectroscopy light is frequency offset by 352.5 MHz using acousto-optic
modulators (AOMs), to injection lock [63] our reference laser on 3 — 4’ resonance.

Trap laser (852 nm), 4 — 5. The “trap” laser is frequency offset locked from the
reference laser |40| using the optics described in Figure ; we use the trap laser to
address D2 transitions from the upper hyperfine state to the excited state manifold,
F =4 — F’. For laser cooling, the trap laser provides 1) our MOT cooling light, which
scatters photons from the 4 — 5 cycling transition to reduce the atomic ensemble’s
average velocity to the Doppler limit, 2) the F' = 4 blowaway beam which removes
unwanted F' = 4 atoms from the detection region, and 3) the 4 — 4’ optical pumping
beam which pumps atoms back into the cooling cycle during Raman sideband cooling.
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Figure 3.4: Cesium level diagram. Laser cooling occurs on the D2 line ((62S1/5 — 6%Ps)2)),
with the “reference” laser addressing F' = 3 — F” transitions, and the “trap” laser addressing
F =4 — F’ transitions. For interferometry, the “science” laser is -49 GHz red-detuned of
4 — 5 resonance. The “lattice” laser at 866 nm is several nanometers on the D2 side of
tune-out, inbetween D1 and D2.
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Figure 3.6: Schematic of MOT optics.

Laser systems for atom-cavity manipulations

The overall lock scheme for lasers used in our experiment is described in detail in , .
The length of a “transfer” cavity on the optical table serves as a frequency reference for all
lasers which enter the in-vacuum “science” cavity. This includes the lattice laser (866 nm), the
interferometry laser (852 nm), and a “tracer” laser (780 nm). < 2 uW of tracer light is used
to stabilize the length of the science cavity, while the other lasers that interact more strongly
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with the cesium atoms are off. The length of the transfer cavity is stabilized in turn to a
“reference” laser, which is locked to a cesium transition through a hybrid spectroscopy ,
. The hybrid signal is based on modulation transfer spectroscopy which offers long-term
stability, with the added signal-to-noise characteristic of frequency modulation spectroscopy.

Science &=\
cavity M2 .
tracer PDH N
To tracer PDH To science PDH j
@ ° 8 A\ 1 (2) Science monitor e
i o
I8
FBH850-10 ®
FBH850-10 =~
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. Y To lattice PDH
M1 k
Lattice o
- frequency B | Transfer intensity Science
" Lattice lock stabilization Cavity
PDH
Tracer &
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Reference EOM E Tlr:gr |
: % _\:I y Lattice C;B?II to cavity-lattice locks
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Science

Science AO
(pulsed)
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Figure 3.7: Overview schematic of laser and cavity frequency stabilization schemes used
to bring multiple lasers into simultaneous resonance with our length-stabilized, in-vacuum

“science” cavity.

e Transfer cavity. Our transfer cavity is length-stabilized to the reference laser using

a Pound-Drever-Hall (PDH) frequency stabilization scheme [65|, which actuates a ring
piezo that moves one of its cavity mirror. This stabilizes the transfer cavity length
to the reference laser frequency. At 852 nm, our transfer cavity has a linewidth of
Aviiun =~ 2 MHz, a free spectral range of AvE, ~ 4.5 GHz, and a transverse mode
spacing of Av™ ~ 360 MHz. The following three lasers are then frequency-stabilized

to the length of the transfer cavity.

Science laser (852 nm), AP? = -49 GHz. The science laser drives the Raman atom
optics [55] in our cavity mode. This laser also forms the transverse lattice required for
3D Raman sideband cooling, and performs our lattice launch.



CHAPTER 3. EXPERIMENTAL APPARATUS 44

e Tracer laser (780 nm), AP? = +72 nm. Nominally, ~ 5 uW of 780 nm tracer laser
light is used to stabilize the length of our in-vacuum science cavity. We choose 780 nm
for the science cavity lock because this light is always on during the interferometer,
and 780 nm has great laser technologies, while being quite far blue-detuned as to avoid
problematic atom-light interactions. Still, we do run into dephasing from this light, as
we discuss later in Sec. [[.2.2

e Lattice laser (866 nm), AP? = -14 nm. This far-red-detuned lattice laser is used to
form the cavity lattice that holds the interferometer for extended periods of time [43],
while suppressing single photon scattering.

Lattice laser frequency stabilization to the transfer cavity

The lattice laser is frequency stabilized to the transfer cavity using a Pound-Drever-Hall
(PDH) scheme. A free-space electro-optic modulator (EOM) phase modulates the light to
create sidebands at fppy ~ 25 MHz. This light is sent through a fiber EOM, whose RF port
is driven with a tunable high frequency, fogeet ~ 0.6-1.2 GHz, which spans at least one FSR
(~400 MHz) of the science cavity. The fiber EOM modulation produces copies of the PDH
error signal at each phase modulation order, which are tunable via electronic tuning of foeet-

reflected PD

R ®—@ fon

Lattice M2 PBS

(q from transfer cavity

5N

Isolator

Bandpass

Fiber EOM Sotet

ﬁ)ffset _fp -

To science cavity, To transfer cavity, A A A A A A A >
up to 30 mW 180 uW frequency

Figure 3.8: Lattice laser breadboard optics, showing lattice laser frequency stabilization to
the transfer cavity, and the beam path for lattice light sent to the science cavity. The laser
polarization is carefully aligned to the modulation axis of the free-space EOM to suppress
residual amplitude modulation in the PDH lock. The lattice intensity in the science cavity
is controlled by adjusting the RF power to the Lattice AO.
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The lattice laser is frequency-offset locked to the transfer cavity on a fiber EOM sideband
at fofiset, Which is tuned such that the laser frequency (i.e. the carrier) is locked into resonance
with the science laser. That is, the fiber EOM sidebands are used to stabilize the lattice
laser to the transfer cavity length, at an offset f,gst Which places the lattice laser into science
cavity resonance. This allows the lattice to be simultaneously resonant with both the transfer
and science cavities, as is required for all lasers entering the science cavity.

3.3 Experimental sequence

Here, we describe a typical experimental sequence for preparing the atom source, launching
atoms into free fall, and reading out the interferometer.

3.3.1 Atom source
Laser cooling

An experimental cycle begins by using a two-dimensional magneto-optical trap (2D MOT)
to load cesium atoms into a 3D MOT near the center of our in-vacuum optical cavity. The
3D MOT can be seen glowing in the picture of our main chamber, Figure [3.2] This also
shows the anti-Helmholtz magnetic coils mounted on the big vacuum viewports, which in
effect aligns the zero-field point of the required quadrupole magnetic field configuration for
a MOT (which determines the position localization of the cold atom cloud), to the center of
the vacuum chamber. The trap laser is first detuned from 4 — 5’ resonance by about -16
MHz for magneto-optical trapping, and together with turning on the MOT coils, we load our
MOT for roughly 0.5-1 second to trap ~ 10° cesium atoms at a density of ~ 1010711 /cm?.
Then, the trap laser is further detuned by several more linewidths (e.g. 3 — 12I'py) while
the MOT’s magnetic fields are diminished; this allows polarization gradient cooling to bring
the atomic ensemble to sub-Doppler temperatures around 10 K. The ensemble temperature
can be measured by fitting how quickly the atom cloud’s 1-0 Gaussian width expands after
release from the MOT, as shown in Figure [3.9

The atoms are then loaded into a 3D optical lattice and Raman sideband cooling [66-68|
is performed to lower the ensemble temperature to near the recoil limit of around 300 nK.
This final stage of laser cooling leaves atoms in the |F' = 3, mp = 3) stretched state. Upon
release from the 3D lattice, microwave pulses adiabatically transfer the ensemble into the
magnetically-insensitive |F' = 3, mp = 0) state for interferometry.

Lattice launch

We then perform a lattice launch which sends about ~10% of the atoms upwards into free
fall [40]. Launching atoms into free-fall rather than dropping atoms is convenient for several
reasons: for the same free-fall distance, the interrogation time can be doubled; also, launched
atoms come to rest at the apex of their trajectory, which is convenient to e.g. load atoms at
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MOT+PGC, 16.2 MHz detuned from 4> 5’
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Figure 3.9: Time-of-flight measurement of the ensemble temperature after magneto-optical
trapping (MOT) and polarization gradient cooling (PGC) shows typical sub-Doppler axial
and transverse temperatures reached of around 10 pK.

rest into a stationary optical lattice as we do for our trapped interferometer (Ch. [6] [43]),
rather than having to catch moving atoms in a moving lattice.

We use Bloch oscillations in an accelerated lattice to perform the lattice launch [69]. The
accelerated lattice is realized by driving our science laser AOM with two RF tones w £ 0(t).
This produces two optical frequencies at §(t) = 27 - f(t), symmetrically centered about the
AOM modulation frequency w = 27- 80 MHz, where the science laser is locked to cavity
resonance. The atom’s velocity in the lattice is determined by 6(t) = kegv(t).

When these two tones enter the cavity, their total electric field can be written as

E = Eg (Sin [(w—=0)(z —t)]+sin[(w+ ) (z — )] +sin [(w — 0)(z + )] +sin [(w + 0)(z + )]

(3.1)
which basically includes all combinations of upwards/downwards-traveling lattices +z and
detunings w 4 d; for the launch, we do not account for additional phase shifts in the cavity.

Rearranging Eq. gives
E = 4E; cos(wt) (sin(k’z — dt) + sin(kz + 0t) — sin(kz) COS(&)) . (3.2)

In order, the three terms in Eq. show how ramping the lattice frequency §(t) creates an
upwards running lattice, a downwards running lattice, and an amplitude-modulated station-
ary lattice.

Our launch efficiencies suffer due to these extraneous lattices. We load atoms into our
lattice launch after they have been falling for several milliseconds following their release
from the 3D optical lattice used for Raman sideband cooling. The launch sequence begins
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Figure 3.10: Fluorescence images [57] of our atom cloud at various free-fall times after the
cavity-lattice launch. Unlaunched atoms fall due to gravity, while the ~10% of launched
atoms move upwards into free fall with an initial velocity of viaunch-

by adiabatically ramping up the launch intensity over 400 us to catch falling atoms in a
downwards running lattice, where f(¢;) ~ 180 kHz. Then, we must ramp the lattice first to
zero velocity f(t) = 0, and then past zero to the desired launch velocity which is typically
around f(tf) = fiaunech ~ 100 kHz - 1.5 MHz.

There are significant losses as the frequency ramps through zero, when the 3 lattices
(upwards, downwards, standing) become velocity-degenerate. At best, we could hope that
atoms come to occupy these 3 lattices equally, which would allow us to launch about 1/3 of
atoms in the upwards running lattice. In reality, we only achieve launch efficiencies around
~10%. Fig. shows the launched atom cloud flying upwards into free fall; the remaining
atoms are either launched quickly downwards, caught in the stationary lattice to falling
slowly due to gravity, or already thermally expanded out of the cavity mode to not even
see the cavity-lattice launch. The size of the launched atom cloud is roughly the size of our
cavity mode, and Fig. shows how even several ms of thermal expansion can let the atom
cloud size grow to exceed the size of the cavity mode.

Launched atoms reached the apex of their trajectory after a free-fall time t,pex of

aunc aunc A2
tapex = 4 b - fl h( / ) (33)
g g

which corresponds to a free-fall distance zgy of

1
Zfall = Egtzpex' (34)

In our experiment, free-fall distances have typically been of order zgy; ~ mm - cm from
apex times of typex ~ 20 ms - 80 ms. This range is largely limited by our 3.03 MHz cavity
linewidth, which can reasonably accommodate a final Doppler shift

Vlaunch ()\latt /2)
g

flaunch = (35)
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of about flaunen < 2 MHz, realizing launch velocities

Vlaunch = flaunch()\latt/Q) (36)

< 1.7 m/s. Launch efficiencies fall quite fast beyond this as the laser frequen-
cies significantly leave cavity resonance, and leave us with insufficient circulating power to
accelerate atoms using our cavity lattice.

of Vlaunch S

Raman velocity selection

After the launch, an optical Raman velocity selection is sometimes applied to choose a nar-
row velocity class to of atoms as the sample used for interferometry. This optical velocity
selection is a Doppler-sensitive Raman 7-pulse with a Fourier-limited bandwidth, and Gaus-
sian temporal profile. For the lattice interferometer in Chapter [6] for example, we apply an
optical velocity selection using a Gaussian pulse with a FWHM of 130 us, which narrows
the Doppler spread of the atomic ensemble to ~8 kHz before interferometry starts.

Interestingly, we have seen that if the velocity-selection (VS) pulse is too long, we must
be sure to ramp the pulse frequency to properly compensate for Doppler shifts during the
pulse. Otherwise, for a fixed pulse frequency and long VS pulses, we have seen the Doppler
shift of atoms during the pulse cause atoms to naturally undergo adiabatic rapid passage of
the Raman transition.

Before moving on, it is worth noting that we do optical VS because it helps us calibrate
pulse parameters to best address atoms at the center of the cloud, which are the principal
participants in the interferometer. beamsplitter pulse parameters that are often calibrated
include the two-photon Rabi frequencies or pulse amplitudes, or the two-photon Raman
detuning. Bandwidth-wise, VS is unnecessary for our Raman beamsplitters, since typically
the upwards (k+) and downwards (k—) transitions are well-separated spectrally, and our
typical beamsplitter bandwidth is sufficiently broad, with a 1-0 Gaussian pulse width around
1/7,7 =~ 1/(20 ps)= 50 kHz.

3.3.2 Coherent manipulation: intracavity Raman transitions

Intracavity Raman transitions driven by phase modulated light are complicated by the cavity
transfer function. Refs. [41] presents the results of a careful study we did on how phase
modulated light impacts our cavity atom interferometer.

In brief, the many frequency components created by phase modulating the Raman laser
lead to a spatial interference of Raman transitions along the optical axis, which cause strong
variations in the two-photon Rabi frequency as atoms move along the cavity axis. Addition-
ally, the individual laser beams corresponding to each frequency component also each con-
tribute uniquely to an ac Stark shift of the hyperfine ground state energy levels, complicating
the interferometer phase and beamsplitter operations further. These axial inhomogeneities
of the beamsplitter interactions are important for atom interferometers, which typically re-
quire long pulse separation times for higher sensitivity. This means that atoms must travel a
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Figure 3.11: Spatially varying Rabi flopping along the atomic trajectory (figure from [41]).
a. Rabi frequency versus time of flight (left axis). The spatial beat note of the Raman beam
pairs can be seen, as well as the general downward trend of wy,q for increasing time of flight.
The decreasing Rabi frequencies reflect how the EOM sidebands are linearly ramped out of
the cavity lineshape for larger Doppler shifts, resulting in lower light intensity in the cavity.
For details on how we generate and phase-lock our Raman EOM modulation frequency, see
[40, [55]. On the right axis, the atom cloud position is plotted as a function of time of flight.
The cloud passes the same spatial Rabi dead zone twice, once around ¢ = 20 ms on the
way up to the apex, and again around ¢ = 100 ms on the way down from the apex. b, c.
Measured Rabi frequency (circles) as a function of the laser detuning from cavity resonance
dcay compared to simulations (line), near a (b) maximum (¢ = 2.0 ms) and (c) minimum (¢
= 16.5 ms) of the spatial Rabi beat note at ., = 0.

greater physical distances between beamsplitter pulses to gain sensitivity, which leaves them
more susceptible to spatial variations in the atom-light interaction along the optical axis.
With careful consideration, the cavity transfer function can be manipulated to control
these inhomogeneous beamsplitter interactions and recover optimal Rabi flopping at arbi-
trary positions along the beam, as we show in [41]. Without care however, the spatially
varying beamsplitter interactions can lead to systematic light shift phases, or the inability to
drive Raman transitions at desired locations along the cavity axis. This problem may arise
when trying to measuring short-ranged potentials from small objects: the ideal trajectory for
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which atoms optimally sample the source mass potential may be one which requires beam-
splitters at e.g. locations where Raman transitions destructively interfere, which occur about
every 2w /kyps ~ 1.63 cm. For reference, atomic trajectories in our blackbody measurement
from Ch. [ spanned about 2.5 cm.

3.3.3 Imaging

We detect the number of atoms in each interferometer output port using fluorescence imaging.
Immediately after the end of the interferometry sequence, we apply a laser pulse which
resonantly pushes atoms in the |F' = 4) ground state away from atoms in the |F' = 3) state,
spatially separating the two interferometer output ports. Once the clouds are sufficiently far
apart, we use MOT and repump light (resonant with the |F' =4) — |F' =5) and |F = 3) —
|’ = 4) transitions, respectively) to image both F' = 3 and F' = 4 output ports, collecting
fluorescence from the atoms for about 10-15 ms on a CCD camera to obtain an image such
as Figure 3.12]

AllAtoms-XGauss-pos = 1 Fraction= 546e-01  aiTempExpt = -2.73e-01
AllAtoms-ZGauss-c = 417.8um Excitation Fraction = 5.66e-01 aiTempSpec = -2.94e-01
AlAtoms-ZGauss-A=002  Excitation Fraction2 = 4.34e-01aiTempToptica = -1.67-02
Allatoms-ZGauss-pos = 6422um Excitation Fraction Up =

Lattice-Sum = 1.73e+05 lAtoms n0 = 2 Excitation Fraction 2 Up =

" aiTitY = -3.75-01
AllAtoms BlownAway ailitX = -2.84e-01
AllAtoms-Sum = 3.17e+05 . = aiSciCavPiezo = -3.02e-01
AlAtoma XGauss-o = 224 46um O AAY-Sum = 1.326+05 i cipowUnstab = -268e-01
AlAtoms-XGauss-A=002  External aiSciCavReflec = -3.13e-01

@ Background

Figure 3.12: Fluorescence image of ~300,000 atoms at the interferometer output. Dashed
lines indicate the user-designated regions containing atoms.

However, the near-resonant light which excites the atoms for fluorescence also induces a
large background signal on the camera caused by scattering off of other components in our
system. In order to isolate the fluorescence signal from the atoms, we collect two images: the
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first image I, including the atoms and the background, and then after a delay of 40 ms
in which the atoms continue falling away, we take a second image I, Which contains only
the background light used for fluorescence imaging. We directly extract the atomic signal

Lotom = Ifore — Tyack (37)

by subtracting the background image from the foreground.

Figure 3.13: Infrared image of the experiment during fluorescence imaging, showing the large
amount of scattered light during imaging. This image was taken by Matt, who bought a
cheap digital camera (maybe ~$20 on eBay?) and removed the IR filter. Using a digital
camera to image infrared light is very convenient, because of course humans are only sensitive
to visible light, and with a digital camera, one can see the infrared light in proper context
with its surroundings for easier debugging. Infrared light is imaged as purple. This picture
shows the fluorescence from our MOT, and the corresponding scatter of fluorescence imaging
light from dirty viewports. In this image, our CCD imaging camera is located on opposing
side of our vacuum chamber, approximately 6-8 inches away from the viewport, i.e. thus
about 12 inches away from the atoms.

However, when using this approach, we find that there can be significant imaging noise
via I,40m which is caused by the fluctuations in the background pattern of scattered light,
which changes during the 40 ms gap between the fore- and background images. These
fluctuations in imaging light are readily seen as the noise in Fig. If the scattered
imaging were perfectly stable between the foreground (“with atoms”) I,.. and background
(“without atoms”) Iy, images, background subtraction would perfectly reject the scattered
light in regions not containing atoms.
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What we observe is far from ideal background subtraction of the scattered imaging light.
Looking with an infrared camera, we see the image shown in Fig. [3.13} it is pretty obvious
that we have a lot of scattered imaging light, and thus easy to appreciate that there will
be temporal variations of the scattered light in the 40 ms between collecting the foreground
and background images.

At low atom numbers, especially as the fluorescence counts from atoms approaches the
number of background scattered counts, this imaging noise can dominate the uncertainty in
our measured population asymmetry A, based on atom numbers calculated from I,,,. For
our precision measurements, such as the blackbody measurement described in Chapter [}, we
have typically run with comfortable atom numbers (2 100,000) to suppress the effects of
the imaging noise. For long-hold time fringes of our trapped interferometer (Ch. @ however,
atom numbers are low, and we have found that detection noise due to fluctuating imaging
light has a large contribution to our fringe uncertainty.

When the spatial correlation in the background light between different regions of the
image is stronger than the temporal correlation in the background light over the 40 ms delay
between the two images, we have been able to perform a principal component analysis for
stronger background estimation and subtraction, that can help with detecting small atomic
signals; see Section for details. This technique has already found application in other
atomic physics groups, as the additional background scatter caused by fluorescence imaging
turns out to be a more general technical issue faced in cold atom experiments.

Lattice catch

A fun detection trick that we’ve employed in of the experiments in this thesis is using
a lattice “catch.” After the interferometer is closed but before fluorescence detection, we
reverse the lattice launch chirp to decelerate atoms at the center of the cavity mode to zero
velocity for imaging. We’ve used this in our blackbody measurement (Ch. |4f) and some of our
spin-dependent kick interferometers (Ch. ). A low intensity lattice catch can help increase
interferometer contrast by enabling us to selectively read out the interference signal from
central atoms, which can suppress some of the contrast loss from using a finite-sized laser
beam to address a cloud of atoms at finite temperature. In particular, because we have a
~ 720 pm beam waist that is comparable to the size of our atom cloud, the lattice catch can
help us considerably when working with free-space interferometers.

Cavity-trapped geometries naturally provides spatial filtering for the atom cloud since hot
atoms leave the lattice quickly, preferentially leaving centrally-located atoms to participate
in the interferometer and contribute to the fringe signal.
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Chapter 4

Attractive blackbody radiation

“Our physical attraction to hot bodies is real,
according to UC Berkeley physicists.

To be clear, they’re not talking about sexual
attraction to a “hot” human body.

But the researchers have shown that a
glowing object actually attracts atoms,
contrary to what most people — physicists
included — would guess.”

— Robert Sanders |70]

I was once told that since precision measurements may have a reputation as being tedious,
I should take any opportunity possible to find fun in these things.

This chapter presents our measurement of an attractive force on atoms due to blackbody
radiation [21]. Chronologically, this measurement was performed immediately after we had
completed our improved test of screened dark energy fields [20, 40|, ultimately measuring
the gravitational pull of our source mass (~65 nm/s?!). T had joined the cavity project on
the heels of this second dark energy measurement, where my contributions included catching
the lab flood in the middle of the night while I was on-call during data taking and finishing
QFT homework. Experimentally, testing for an attractive force from a hot object required
the same set up that we had just finished characterizing in detail. We were able to jump
into the blackbody measurement with almost no down time. The first signs of the force
being attractive, rather than repulsive, was the first time I experienced being really, really
excited about something science related. I remember seeing the near/far data suggesting
an attractive force, sort of freaking out and being too excited that my brain was in an
excitement fog, rushedly pushing elevator buttons to get from our Birge B131 basement lab
to our LeConte office, and hurriedly showing Matt on remote desktop that the force seemed
to be in the right direction. That sort of excitement I hadn’t experienced before. It is a
memory from graduate school I will cherish and was beyond privileged to have had.
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This chapter describes our free-fall atom interferometry measurement of an attractive
force due to blackbody radiation from a hot, miniature, in-vacuum source mass. This black-
body measurement is fun because the results often run counter-intuitive, but become com-
pletely clear when reframed through the lens of atomic physics, as was first proposed by our
collaborators in 2013 |71].

4.1 Introduction

Objects at finite temperature emit blackbody radiation with an outward energy-—momentum
flow. One might think that a nearby atom would experience an outward force due to radiation
pressure from photon scattering. At room temperature however, a cesium atom incoherently
scatters on average less than one of these blackbody photons every 10% years. Thus, it is
generally assumed that any scattering force exerted on atoms by such radiation is negligible.

However, atoms also interact coherently with the thermal electromagnetic field, which
is largely red-detuned from optical atomic transitions (see Figure . Blackbody radia-
tion induces a spatially varying ac Stark shift of the atom’s ground state energy, whose
gradient induces a much larger force towards the heated source. We measure an attractive
force induced by blackbody radiation between a cesium atom and a heated, centimeter-sized
cylinder, which is orders of magnitude stronger than the outward-directed radiation pres-
sure. Using atom interferometry, we find that this force scales with the fourth power of
the cylinder’s temperature. The force is in good agreement with that predicted from an
a.c. Stark shift gradient of the atomic ground state in the thermal radiation field |71]. This
observed force dominates over both gravity and radiation pressure, and does so for a large
temperature range.

In other words, we use a free-fall atom interferometer as a high precision accelerometer to
measure an attractive optical dipole force on atoms, caused by blackbody radiation gradients.
As a dipole force, blackbody radiation is red-detuned from strong atomic transitions over a
wide temperature range, with a spatial intensity gradient that decreases as I ~ 1/r? away
from the hot object; combined, the emitted blackbody radiation from a hot object serves as
a source of a dipole trap for nearby polarizable matter.

The spectral energy density u, (Ts) of thermal radiation from a blackbody at temperature
T is given by Planck’s Law,

8thi3 1
UV(TS) B 3 hv '
exp(kBTs) —1

Figure shows the spectrum of this thermal radiation as a function of wavelength A = ¢/v,
for sources spanning a large temperature range.

For the temperature range relevant to the lab, nearly all of object’s emitted thermal
radiation is far-red-detuned from the cesium D line. In this far-detuned limit |72], the energy
level shift of the atom’s ground state AFE can be approximated using its d.c. polarizability

(4.1)
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Figure 4.1: Blackbody radiation spectra, showing the energy density of blackbody radiation
for objects at various temperatures. For reference, strong optical transitions from the ground
state of cesium are located around the black dotted line, A ~ 0.85 um.
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where u(r) is the electromagnetic energy density for the thermal field at a distance r from

the source, and ¢; is the vacuum permittivity. For isotropic blackbody radiation emitted by

a source at temperature Ty, the spectral energy density per unit volume can be found by

integrating Planck’s Law (Eq. across all frequencies v to obtain

87T5(kBTs)4 40’T4
T,) = _ 9%
uT) 15(hc)3 c

(4.3)

This gives the ground state energy level shift (Eq. for cesium atoms in the blackbody
radiation field of a source mass at temperature Ty as

Cs 4
ARy = —2%0 7L (4.4)
C€o
where o = 5.67 x 107 W/(m?K") is the Stefan-Boltzmann constant.

The source mass geometry (see Section is important because it determines how the
intensity of blackbody radiation varies along the atom’s free-fall trajectory. Starting with
a physicist’s favorite geometry for the source mass, i.e. a sphere of radius R, the intensity
of blackbody radiation will dilute with distance r from the source, with an energy density
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u(r) decaying with distance as R?/(4r?). The gradient of this energy level shift gives the
blackbody force for a spherical source mass,

o (T T R

. 4.5
ceomes T (4.5)

a = —

This force points radially inwards to the heated object (except for atoms in an excited
state, whose polarizability may be negative). To model the force in our experiment, analytical
ray tracing was performed to account for our cylindrical and notched source mass geometry,
and our atomic trajectories (see Methods in [21]).

4.2 Blackbody force measurement: setup

As shown in Fig. we perform atom interferometry with cesium atoms in an optical
cavity to test for a force induced by blackbody radiation gradients. Our atom source is
described in Chapter [3} an ensemble of about 100,000 cesium atoms are laser-cooled to the
recoil temperature, prepared in the magnetically-insensitive |F' = 3, mp = 0) ground state,
and launched upwards into free fall.

A /2 b /2 B C

aggg [um/s?]

____________________ 0

oz uybieH

T T

Figure 4.2: Experimental setup. A. Space-time diagram of each atom’s trajectories in our
Mach-Zehnder interferometer. B. The intensity gradient of blackbody radiation surrounding
a heated, hollow cylinder causes a force on atoms. The cylinder is made from non-magnetic
tungsten and measures 25.4 mm in height and diameter. C. Calculated acceleration of cesium
atoms due to blackbody radiation, aggg, as a function of the distance z along the cylindrical
axis. The vertical axis is taken from the center of the source mass. The gray shaded area
marks the region inside the hollow core of the cylinder. Discontinuities in the predicted
acceleration stem from simplifying edge effects at the entrance to the hollow cylinder.

The interferometry sequence begins shortly after the atoms are launched up towards the
source mass. For this experiment, the launch velocity was set to vViaunen = 69.6 cm/s for
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an apex time of typex = Viaunch/9 = 71 ms, and apex height of zpy = 1/2ng&21pex = 2.47 cm.
These launch parameters optimize the interferometer trajectory to maximally sample the
blackbody potential energy gradient. The first pulse that splits the atom’s wavefunction
occurs 2.1 cm below the bottom face of the cylinder, and atoms reach 3.66 mm into the
cylinder at the apex of their trajectory. In free fall, a sequence of 7/2 — m — 7/2 pules,
separated by a pulse separation time of T" = 65 ms, splits, redirects and recombines the
freely falling atomic wavefunctions to form a Mach—Zehnder atom interferometer.

To efficiently detect the approximately 10° atoms at the interferometer output, we reverse
the launch sequence to catch the sample. Non-participating atoms which have left the cavity
mode due to thermal motion fall away and do not contribute to the interferometer read-out.
A pushing beam separates the state-labelled outputs of the interferometer, and the atom
number in each output port is counted by fluorescence detection.

The probability of an atom exiting the interferometer in a given output port P, P, oscil-
lates with the phase difference accumulated between the arms. In this Mach-Zehnder geom-
etry, the probability for atoms to be found in the state |F' = 3) varies as P3 = cos*(A¢r/2),
where A¢y, is the position-dependent phase shift from the beamsplitters.

4.2.1 Sensing accelerations induced by localized potentials

For accelerations induced by potentials which vary strongly over the spatial scale of the
interferometer trajectory, as is the case for potentials sourced by our small cylinder, the
acceleration-induced phase shift A¢r, must be calculated by integrating the potential energy
and taking the difference between the two paths [45, 53, (73]

1

M= [ ABG®) - ABG)] (4.6)

where AE(2 2(t)) are the energy level shifts encountered by the atoms on the two trajectories
212(t). A corresponding acceleration can be inferred from

Agy
kegT?

a= (4.7)
This is not the same calculation as integrating the average acceleration along each arm and
taking the difference. We have Boris Dubetsky to thank for clarifying this to us after publi-
cation of [21].

Because the spatial separation of the interferometer arms (Az < 0.5 mm) is much smaller
than spatial variations in the potential gradient (~cm) or the interferometer’s free-fall dis-
tance (~2.5 cm), it is reasonably safe to treat the blackbody potential as a perturbation on
each arm and integrate according to the non-perturbed trajectories. This is to say, it is rea-
sonable to ignore how the blackbody acceleration changes the free-space atomic trajectories
z12(t), and to integrate the blackbody potential according to its added energy level shift
AE(z12(t)) to each arm’s unperturbed trajectory.
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4.3 Blackbody force measurement: Procedure
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Figure 4.3: Measured acceleration over one cooling cycle of the cylinder, during which the
cylinder is toggled between a location “near” (red) and “far” (blue) from the atom interfer-
ometer. The measurement begins by heating the cylinder to a temperature of roughly 450
K at 0 hours, after which the cylinder cools to room temperature over ~3.5 hours via black-
body radiation and thermal conduction through the threaded rod. The bottom left shows 2
interference fringes taken with the cylinder in the “near” position; one fringe is taken at the
hottest source mass temperature (red) and one at the lowest temperature (blue). The phase
of the sinusoidal fit to each fringe comprises the atomic acceleration measurement. The right
hand side plots this acceleration data as a function of cooling time in a single thermal cycle.
We then measure the differential acceleration induced by the cylinder acy, i.e. the difference
of the red and blue data points, as a function of the measured source mass temperature 7.
The error bars indicate the 1-sigma error on the fitted phase.

Each thermal cycle begins by heating the cylinder to a temperature of about 460 K,
using an infrared fiber laser aligned into the notch of our in-vacuum cylindrical source mass.
Subsequently, as the cylinder cools over the next roughly 2-6 hours, we use atom interfer-
ometry to measure the acceleration experienced by the atoms falling through the thermal
radiation field of the cylinder. Meanwhile, we monitor the source mass temperature with an
infrared temperature sensor (Omega OS150 USB2.2, spectral response 2.0-2.4um) through
the vacuum chamber windows, which are made of fused silica and have a transmission cutoff
just under A = 3 um. When the source mass cools to near room temperature, we reheat it
with the fiber laser to begin the next cooling run.

Data from a single cooling cycle is shown in Figure 4.3l As the cylinder cools over a
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few hours, the source mass is moved between a position “near” and “far” from the atom
interferometer every few minutes, which helps stabilize the measurement against technical
drifts. The 5 mm slit in the side of the cylinder allows the source mass to move without
interrupting the cavity mode. Measuring accelerations differentially with respect to source
mass position allows us to separate forces induced by the source mass from other forces,
in particular the million-fold larger force from Earth’s gravitational acceleration. The near
position exposes the atoms to blackbody radiation arising from the source, while the far
position serves as a reference.

At each source mass position, ~80 experimental runs of the interferometer are performed.
Interference fringes are obtained by adjusting the rate of the gravity-compensation chirp «,
and we use 20 values of « to trace out a single interference fringe (see Fig. , bottom left).
We fit four successive fringes to obtain the phase shift, which represents the acceleration
measurement for a given source mass position at a given temperature. With an experimental
cycle time of 1.2 s (mostly MOT loading), we take data for ~6 minutes at each source mass
position.

Fig. shows a time series of differential acceleration measurements, isolating the signal
from acy, over a single cooling cycle. As the cylinder cools, the attractive acceleration
correlated with the cylinder position reduces to a force consistent with its gravitational pull.
The difference between successive pairs of near (red) and far (blue) measurements constitute
a single measure of ay in the bulk acceleration data shown in Fig. @]

4.4 Result: An attractive blackbody radiation force

Fig. |4.4] shows our measurements of cylinder acceleration a.y, averaged over many ther-
mal cycles, indicating an acceleration towards the source mass with a quartic temperature
dependence. Fig. [.4p,c show the strong statistical agreement between the measured and
calculated acceleration aqy as a function of the source mass temperature 7. The red dotted
line in Fig. [£.4] shows the predicted acceleration

Gcyl = Qgrav + aBBR (48)
from both the gravitational pull of the source mass ag, and the blackbody interaction
agsr = Cipg (T} — Tp) (4.9)

of atoms with the source mass. For the model plotted in red, agay = 66 nm/ s? is calcu-
lated, To = 296 K is the measured ambient room temperature, € = 0.30(2) is the measured
emissivity of the inner cylinder surface [40], and Cfgy is the acceleration scale factor

Cup = —4.5 x 10—11% (4.10)

calculated from the albedo and geometry of the source. The model leaves no free parameters.
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Figure 4.4: Blackbody acceleration data. Measured acceleration as a function of the source
mass temperature Ts. A quartic dependence on Tg is observed for the acceleration experi-
enced by cesium atoms towards the source mass. A. Data from 63 thermal cycles, about
2 — 5 h each, are binned in temperature with Ny, = 65 measurements per bin. The black
dots represent the weighted mean of each bin; vertical error bars show their 1-o statisti-
cal uncertainty. Systematic effects have been considered in detail and show no significant
contributions to the error bars; see Systematics section below. Horizontal lines show the
temperature spread of the Ny, = 65 measurements defining each bin. The red dotted line
is a calculation of the acceleration experienced by the atoms during interferometry, based
on their trajectories in free fall through the blackbody radiation field of the cylinder, and
modeling of the thermal field based on the cylinder geometry. The error in this calculation
is dominated by the ~ 10% uncertainty in the source mass emissivity measurement. The
gravitational pull of the cylinder gives the room temperature offset of the acceleration, in-
dicated by the black dotted line at ag., = —6677. B. Residuals from the bulk acceleration
data (cyan) to the zero-parameter theory model. C. A histogram of the bulk residuals is
well described by a normal distribution. A Gaussian fit to the histogram (black dot—dashed
curve) has a mean compatible with zero within the standard error of 2973,
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Our calculations of the blackbody radiation force were performed with Matthias Sonnleit-
ner; he was fantastic in calculating the thermal radiation seen by atoms carefully, thoroughly,
and quickly. For details on the source mass modeling, see our Methods in |21]. The theory
has no fit parameters; it takes into account only our source mass geometry and emissivity
measurements of the inner and outer cylinder surfaces, €iune;=0.30(2) and €qye;=0.08(4). The
source mass modeling accounts for the slot cut out of the cylinder, which spans an angle of
roughly 60°on the inner cylinder surface. This additional consideration reduces our estimate
of the blackbody-induced acceleration by about 60°/360°~17% compared to the calculated
acceleration for a full hollow cylinder.

Systematics

It is critical to rule out artifacts which could partially mimic a blackbody-induced acceler-
ation. This measurement was fortunate in that it was differential with respect to both the
source mass position and temperature, i.e. any effect mimicking this an attractive force would
need to depend on both source mass temperature and position. In addition, this blackbody
experiment took place immediately after we had performed a more comprehensive analysis
of systematic effects using the same experimental setup; see |20, 40| for details. All effects
analyzed are found to be below the percent level, compared to the blackbody force. In this
section, we discuss several effects particular to this experiment.

Outgassing of the source mass

The background pressure varies with source mass temperature. In the experiment, we heat
the source mass to high enough temperatures to effectively laser-“bake” the source mass from
outside vacuum. Initially, outgassing of the cylinder at 460 K caused a pressure increase from
a typical vacuum pressures of about 107!° Torr at room temperature, to 10~7 Torr at 460
K (measured by an ion gauge about 50 cm away from the cylinder). After several heating
and cooling cycles (where the titanium sublimation pump was run after each cycle to help
lower the pressure), the maximum pressure in each heating cycle was controlled to about
1078 Torr at 460 K.

At high pressure (~ 1078 Torr), hot background atoms outgassing from the heated source
mass can remove a substantial fraction of the cold atoms from the detection region, so it
could conceivably contribute to the measured force on the remaining atoms. This, however,
can be ruled out by multiple observations. First, this pressure should push the atoms away
from the source, while the observed acceleration is towards the source. Next, this repulsive
force should depend exponentially on the source mass temperature, but such an exponential
component is not evident in the data. Finally, any scattering of hot background atoms with
atoms that partake in the interferometer would be incoherent, and thus would reduce the
visibility of our interference fringes. However, Figure indicates that the fringe visibility
is constant over our temperature range, disfavoring this incoherent atom-atom scattering.
This observation further confirms that incoherent atom-photon scattering between atoms
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Figure 4.5: Visibility as a function of temperature, averaged in bins of 2 K for clarity.
Scattering or absorption of photons would lead to a dephasing of the atomic ensemble,
resulting in a reduction of visibility. No obvious loss of visibility is a strong indication that
the contribution of scattering and absorption events is negligible. Inset: Comparison of the
interference fringes taken at T = 437 K (red) and Ts = 326 K (blue).

and blackbody photons (via absorption or stimulated emission) is negligible as well, across
the range of source mass temperatures used in the experiment.

Constant a.c. Stark shifts from blackbody radiation

In addition to the cancellation between interferometer arms, spatially constant a.c. Stark
shifts would also be common to both ground-state hyperfine states, and thus cancel out even
within each interferometer arm. This is because the blackbody radiation is very far detuned
from any optical transition in the atom, and thus causes the same energy level shift to both
hyperfine ground states. To verify that we measure a real acceleration, rather than artifacts
of atom-light interactions, we used the interferometer with opposite-sign laser wavevector
+k.g, implementing so-called “k-reversal” [74]. This inverts the signal A¢p o< Keg - Gior T
arising from the acceleration a., but would not invert this constant a.c. Stark phase. We
observe that the force inverts sign with keg, as expected for a force. Our results in Fig. [£.4]
include data runs for both directions of the wavevector, performed independently, confirming
a real acceleration.

Magnetic fields

The magnetic fields are identical to those in Ref. [20]. Phase shifts due to source-dependent
magnetic fields give rise to an acceleration of only —2.5 & 11 nm/s?, less than 1% of the
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blackbody-induced acceleration.

Thermal expansion of the vacuum chamber

Heating of the cylinder eventually transfers heat to the vacuum chamber, potentially causing
thermal expansion. This could affect the interferometer by, for example, changing the cavity
length. Such thermal expansion is avoided using a slow temperature feedback loop to hold
the cavity distance constant throughout the experiment.

Surface effects

Near-field forces such as Casimir-Polder forces [75] are suppressed, since the atoms never
come closer to the source mass surface than about 2 mm, and these forces decay at a length
scale of the thermal wavelength, Ay = hc¢/(kpT'), where A < 50 um for 7' > 300 K.

DC' Stark shift. The source mass is electrically grounded [19, 20]. However, thin films
of surface oxidation ~10 nm thick may form an insulating layer, allowing a voltage to build
up. These films may have a dielectric strength of up to several MV /cm, allowing for surface
voltages of up to ~ 10 V. From the ground state dc polarizability of cesium, even a maximal
surface potential of 10 V would cause a maximum acceleration of only 0.8 nm/s? towards
the source mass for atoms 5 mm from the surface.

4.5 In the broader picture

It is interesting to note that the force exerted on a polarizable object due to the intensity
gradient of the blackbody radiation can be derived from the same fluctuation electrody-
namic formalism as the temperature-dependent Casimir-Polder force|76, |77]. Convention-
ally, thermal Casimir-Polder forces are considered in a planar geometry, where the intensity
gradient due to propagating radiation modes becomes zero, and only the contribution of
evanescent fields remains. Such forces dominate at a length scale of the thermal wavelength
At = he/kpT, where Ar < 50 um for T' > 300 K, and scale in different asymptotic regimes
as the first or second power of the surface temperature |77, |78]. In our experiment, the
Casimir—Polder force is negligible due to the millimeter-scale distance between the atoms
and the surface. However, the intensity of blackbody radiation of a finite-sized source body
is spatially dependent, and the propagating-mode contribution must be taken into account
[71]. This gives rise to a long-range force having the characteristic 7% scaling of blackbody
radiation, which we observe here for the first time.

Just as blackbody radiation affects atomic clocks |79, 80|, the acceleration due to the
blackbody field gradient observed here influences any high precision acceleration measure-
ments with polarizable matter, including atomic and molecular interferometers, experiments
using nanospheres and atom chip traps, and potentially measurements of the Casimir effect
and gravitational wave detectors. For example, inside a thin cylindrical vacuum chamber,
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the thermal radiation field nearly follows the local temperature T'(z) of the walls, inducing
an acceleration of atoms of

4
afz) = 10 20p0T"(2)

= 4.11
mag 02 ce ( )

where ma; and ax; are the atom’s mass and static polarizability. For caesium atoms, a
linear temperature gradient of 77(z) = 0.1 K/m around a base of 300 K would result in an
acceleration at the 10~m/ s level, non-negligible for the exciting next generation of high
precision atom interferometers which expect to reach such inertial sensitivities. Effects will be
suppressed in nearly overlapped simultaneous conjugate interferometers used for measuring
the fine structure constant|13, [14]. The acceleration can be mitigated by monitoring and/or
equalizing the temperature across the vacuum chamber, or (as indicated by our simulations)
by using wide, highly reflective vacuum chambers, wherein multiple reflections make the
thermal radiation more isotropic. On the other hand, blackbody radiation can be used to
simulate potentials. For example, heated test masses could be used to calibrate an atom
interferometer for measuring the gravitational Aharonov-Bohm effect [39].
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Chapter 5

Spin-dependent kicks for 4hk Raman
atom optics

This chapter describes a neat beamsplitter we developed for use in atom interferometry
[42]. In essence, this technique emerges from a question for atom interferometeers: “what
if, instead of starting a Raman atom interferometer with atoms in a single spin state, we
start with atoms in a spin superposition state?” For velocity-sensitive Raman transitions, the
two arms of the spin superposition will receive the two-photon kick in opposite directions,
doubling the arms’ momentum separation from 2 to 4 photon momenta.

We can now consider how to generate the initial spin superposition state, and how to
spatially separate the arms. Using free-space microwave pulses can generate the spin su-
perposition efficiently and uniformly across the atom cloud, since the cloud is quite uniform
over the spatial scale of microwave frequencies (e.g. for the wyg ~ 9.2 GHz cesium hyper-
fine splitting). Then, we can use optical mirror pulses (7) to transfer photon momenta and
manipulate the atom’s motion. This is great, since m-pulses generally do not leave system-
atic ac Stark phase shifts in atom interferometers, and what’s more: they can be performed
adiabatically. So starting in a spin superposition allows us to make exclusive use of optical
adiabatic rapid passage mirror pulses, which can address a broad velocity class of atoms with
high transfer efficiency and a robustness to experimental pulse parameters.

Using a microwave 7 /2-pulse beamsplitter to create the internal state superposition, and
optical adiabatic passages to spatially separate the arms, allowed us to diffract atoms with
an efficiency of 99% per ik momentum separation between the arms. This efficiency comes
despite using a small ~ 720 um cavity beam to address atoms in a roughly mm-sized cloud.
These high pulse efficiencies gave us the opportunity to realize multi-pulse interferometer
geometries, in a way that the low efficiencies typical of our Raman pulses had not allowed.
With these optical adiabatic passages, we demonstrated up to 16Ak of momentum separation
between the arms, a single-source gradiometer, and a juggling “resonant’ atom interferometer
where the arms were kicked around in loops to form a tunable, “lock-in” atomic accelerometer.

Before we get started, Matt had the best original title idea that captures this technique
in a really nice way, so let me just echo it here. This chapter shows what can be done when
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performing the two steps of a Raman beamsplitter, superposition and spatial separation,
separately, and thus “splitting the Raman beamsplitter.”

5.1 Spin-dependent kicks

Velocity-sensitive Raman transitions are often used in atom interferometers to both 1) create
a superposition of internal hyperfine states, and 2) spatially separate the states by 2 photons
of momenta. These two steps are usually performed simultaneously, but could be performed
separately [81], 82|, as in Ref. 83| with magnetic beamsplitters, [84] with trapped ions, and
[85] for ensemble temperature measurement of a cold atom cloud.

We do a traditional Raman beamsplitter in two-parts, where each step is performed
efficiently. We first use microwaves to generate the internal state superposition, then use
optical adiabatic passage to spatially separate two states; see Fig. Since the direction
of the photon momentum kicks is determined by the initial state, we refer to this two step
beamsplitter as a “spin-dependent kick” (SDK), inspired by the ion trapping scheme from
Refs. (84} 86].

Figure 5.1: SDK beamsplitter. A microwave Z-pulse fi/2 puts the atom into a superposition
of internal hyperfine states. A Raman adiabatic rapid passage m-pulse O+ delivers a spin-
dependent kick to each arm of the internal state superposition, spatially separating the arms
in opposite directions. The energy level diagrams on the right show the 3-level Raman
process involved for each arm.

5.1.1 Optical adiabatic rapid passage

Adiabatic rapid passage (ARP) provides independence of the Raman transition probability
from the exact laser intensity, enabling high transfer efficiency despite optical intensity vari-
ations over the atom cloud. Raman ARP pulses are driven by a pair of counter-propagating
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laser beams whose frequency difference is swept though Raman resonance. In our setup,
where Raman transitions are driven by a carrier-sideband pair from a fiber EOM phase
modulator [41], this corresponds to ramping the EOM modulation frequency throughout
the pulse duration. Maintaining a high Rabi frequency (“rapid”) while slowly sweeping the
two-photon detuning (“adiabatic”) allows the pulse to adiabatically transfer the atoms from
the initial to final state.

For our optical ARP pulses, we use a cosine-squared pulse shape for the laser intensity,
which gives the two-photon Rabi frequency

t
Qo (t) = Q cos® (W—) ;o T, <t <47, (5.1)
27,
for a pulse width of 27, = 200 us. This pulse shape is used for its constant adiabaticity [87],
which can be achieved by applying the proper two-photon detuning sweep d(t) during the
pulse. From Ref. [87], 6(¢) is given by

Q) I'(t)
V1-T()?

where for a mirror pulse of duration 27, (i.e. for transferring atoms entirely from one state
to the other), I'(¢) is

5(t) = (5.2)

t 1 . |t
I'(t)=—+4 —sin |—|. (5.3)
T, T Tp
These cosine-squared pulse intensity and detuning profiles are plotted in Figure [5.2
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Figure 5.2: Temporal profile of the normalized two-photon Rabi frequency €2(¢)/Qq (blue)
and two-photon detuning from Raman resonance 6(t) /€ (red) for a cosine-squared pulse of
duration 27, which maintains constant adiabaticity.

Scans of the ARP pulse parameters are shown in Figure[5.3] Experimentally, we find that
atoms with a detuning in the range of ££2/2 can be transferred with a measured efficiency
of 96% (£1%, depending on the intensity used). The two-photon detuning ¢ is scanned
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Figure 5.3: Adiabatic rapid passage pulse scans. a) Detuning scans for the k+ /k— Doppler-
sensitive transitions. The excitation fraction is scanned as a function of the two-photon
detuning of the Raman beams ¢, or equivalently the EOM modulation frequency from. b)
Detuning scans for ARP, Gaussian, and square shaped pulses. The detuning offset from
two-photon hyperfine resonance dy = wyps is removed for clarity. ¢) Pulse intensity scans
for ARP vs. Gaussian pulses. ARP pulses are significantly less sensitive to laser intensity
fluctuations than a standard Gaussian pulse (green). The two k + /k— transitions exhibit
different Rabi frequencies because the cavity length is slightly mismatched from perfect
hyperfine resonance. As is, when atoms move upwards towards their apex, the modulation
sideband-carrier pair for the k+ transition is suppressed while the k— is enhanced due to
their positionings within the cavity lineshape; this scenario is reversed after the apex.

as changing the EOM modulation frequency frgom. Figure [5.3] shows the flat excitation
profile over the dagp = 150 kHz frequency sweep of our ARP pulses, as well as the relative
insensitivity of ARP pulses to both laser intensity and frequency fluctuations, compared to
Gaussian or square pulses.

5.1.2 Re-phasing and dynamic phase cancellation

While adiabatic pulses improve pulse efficiency and robustness to experimental parameters,
adiabatic passage introduces a large phase spread across the atom cloud. On the Bloch
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sphere, an adiabatic passage involves the state vector precessing around the drive vector
with frequency 2, while accumulating a large dynamic phase

Y= / Q) dt. (5.4)

When adiabatic passage is used to transfer states from one pole of the Bloch sphere to the
other, this precession describes a narrow cone. However, when applied to a superposition
state (which starts and ends on the equator), the precession occurs in great circles around
the Bloch sphere. Intensity variations now give rise to a spread in dynamic phase (many )
across the atom cloud, which can lead to dephasing.

However, unlike an efficiency spread, a phase spread can be reversed. If two pulses are
applied in quick succession with alternating sign of v (determined by initial state and sweep
direction), their net dynamic phase cancels. Our cavity interferometer has unique benefits
and drawbacks in this context. While the cavity’s spatial mode-filtering addresses transverse
variations in the two-photon Rabi frequency due to wavefront intensity fluctuations, the
cavity’s frequency response causes the intensities of the carrier and £1-order Raman EOM
sidebands to vary, resulting in asymmetric Rabi frequencies for the k+, k— transitions (see
Figure (c)) This asymmetric and varying Rabi frequency causes an unequal dynamic
phase to accrue between successive k + /k— pulses used to augment the momentum transfer.
Careful analysis and measurements of Raman transitions driven by phase-modulated light
in our cavity atom interferometer can be found in detail in [40, 41}, 57].

To overcome the varying dynamic phase between successive k4+ ARP pulses in the cavity,
we scale the Rabi frequencies in each k4 pulse pair to be equal by lowering the pulse intensity
of the stronger transition, to match the Rabi frequency of the weaker transition. Given
the cavity’s high wavefront uniformity, pulse matching the Rabi frequencies to compensate
for the cavity’s frequency response allows our dynamic phase cancellation to improve over
previous atom interferometers using standard beamsplitters and ARP augmentation pulses
[88], where re-phasing imperfections limited pulse separation times to less than 10 ms.

5.2 SDK Interferometer geometries

Interferometers can be realized by combining SDKs and adiabatic passages. A basic SDK
interferometer is shown in Figure (a): this involves one SDK beamsplitter (fiz, O),

followed by two optical adiabatic passages (O+, O:) to stop and re-direct the interferometer
arms, and a final SDK beam splitter ((5,, /l%) to re-combine the wave packets for interference.
This basic SDK interferometer separates the arms by 4hk of photon momenta, twice that of
a traditional 2hk Raman interferometer.

Larger momentum transfer (LMT) geometries can be realized by cascading SDKs, as
shown in Fig. (b) Alternating between the O+ and O_ transitions allows for increased
momentum transfer in the same direction, as the spin state toggles between F' = 3 and
F' = 4. This requires alternating the two-photon Raman detuning for successive pulses,
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which in principle could be avoided by applying microwave m-pulses between optical pulses;
however, adding the extra microwave pulse proved less efficient in our apparatus.

Basic SDK interferometer, Large momentum transfer,

4hk Anhk
b) "

-
I 7N,
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Figure 5.4: SDK interferometry. a) Basic SDK interferometer. The basic SDK interfer-
ometer consists of two pulse pairs, separated by a wavepacket (or “pulse”) separation time
T, during which the arms separate with a 4v,.. = 4hk/mcs =~ 1.4 cm/s velocity difference.
An SDK interferometer begins with a microwave m/2-pulse (fir/2), which places a cesium
atom in a superposition of hyperfine levels |F' = 3) and |F =4). A time ¢, later, the first
optical ARP pulse (O+) separates the arms by 4hk for a pulse separation time of 7', after
which another adiabatic passage pulse (O+) brings the two arms to relative rest. The free-
fall time 7 is centered around the apex of the atomic trajectory; we use this time to avoid
apex effects. After 7, as atoms fall down from their apex, a final pair of optical ARP pulses
drive the opposite transition (O_) to spatially recombine the interferometer arms. A time ¢,
after the last optical pulse, a final microwave 7/2-pulse /i, resolves the spin superposition,
closing the interferometer. b) Large momentum transfer. Inverting the laser wavevector
between successive pulses (OJr vs. O_ ) kicks the arms in the opposite directions. Applying
a sequence of pulses alternating between the two directions allows one to increase the mo-
mentum separation between the arms. Since both laser frequencies travel in both directions
in the cavity, either O+ or O_ transitions can be chosen (a large enough Doppler shift, i.e.
velocity separation, between the arms breaks the degeneracy of these two transitions).

The phase difference between the arms of this 4nhk SDK interferometer (where n =
1,2,3,... is the total photon momenta transferred) is given by

Ap=4n(k-a)T(T+71), (5.5)
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where a is the acceleration experienced by the atom, k is the Raman laser wavevector, and
T and 7 are the pulse separation times and co-propagating time labelled in Fig. [5.4h.

5.2.1 Large momentum transfer Raman atom optics

With pulse matching, we see excellent contrast out to 7" = 44 ms, as shown by the data
in Fig. . Our interferometer with the largest scale factor (16hk, T' = 44 ms, 7 = 18
ms) accumulates a phase of 16k¢T (T + 7 + n,7,) = 3.4 Mrad from Earth’s gravitational
acceleration g (accounting for n, pulses of duration 7,, where ik represents the single-photon
momentum Aiga—). As a traditional 2ik Raman Mach-Zehnder interferometer at the same
pulse separation time (7' = 44 ms) accumulates a phase of 2kgT? = 0.28 Mrad, use of SDKs
provides an almost order of magnitude larger interferometer phase. Inertially-sensitive fringes
in agreement with Eq. are observed until the interferometer phase becomes vibration-
limited around A¢ =~ 0.5 Mrad; beyond this, fringe contrasts are extracted from contrast
histogram fits to the data.

Interferometers with even-n exhibit slower contrast decay than those with odd-n. For
8hk, a fit to an exponential decay of contrast C' oc exp(—1"/Tp) gives a time constant of
Ty = 260 ms. For even-n, pulse pairs of a 4nhk-interferometer can occur in quick succession,
separated only by the pulse duration 27, rather than the pulse separation time 7". Figure
illustrates this configuration for 8ak; such even-n configurations are critical for efficient
re-phasing. For odd-n, such as Fig. [5.4h, a single pulse pair is separated by 7', which can
be up to 200 times longer than the 27, time between pulse pairs in even-n geometries. This
gives more time for an atom to move within the laser beam profile, degrading dynamic phase
cancellation.

At larger momentum separation, in addition to the less efficient rephasing due to cloud
expansion, the contrast is further degraded by the finite adiabatic passage pulse bandwidth.
Specifically, as the momentum difference between arms increases, so does the relative Doppler
shift (Opopp = k- U) between the arms, until it exceeds the bandwidth over which the rapid
adiabatic passage pulse sweeps. At 12hk (16hk) separation, the maximum Doppler shift
between the arms is already 12(16)/Ass2 X vrec &~ 100kHz (132kHz), while our ARP pulse
bandwidth is only 125 kHz. We are currently limited to this 125 kHz pulse bandwidth because
we use the same laser frequencies to address both interferometer arms, and we use a fiber
EOM to generate these laser frequencies. Due to the fiber EOM damage threshold, we only
use ~12 mW of incident power to the cavity (providing roughly 12 mW x(F /7 ~ 40) ~ 500
mW of circulating power) to drive these ARP transitions. More laser power would allow us
to have a higher Rabi frequency, and thus sweep across a larger two-photon detuning range
to overcome this bandwidth limitation and realize larger momentum transfer.

These bandwidth considerations, along with pulse inefficiencies and thermal expansion of
the atom cloud, also contribute to atom loss in our velocity-selective imaging (i.e. our lattice
“catch”). At lower atom numbers, the lower numbers lead to imaging noise which begins to
degrade interferometer contrast, as discussed in Section [3.3.3] Typically, we detect between
0.1 — 1.5 x 10% atoms, with lower atom numbers at larger n and 7.
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Figure 5.5: Large momentum transfer interferometers. Top: SDK interferometer contrast
as a function of the gravitational phase A¢(g) accrued from Earth’s gravity, g ~ 9.83.
Contrast is measured for several orders of momentum transfer, at wavepacket separation
times of T" = 5, 15, 25, and 44 ms. Here, a time of roughly 7 ~ 20 ms was set to avoid
apex effects. The upper dashed line indicates the contrast of a Ramsey clock (with only the
outer fiz pulses creating an internal state superposition, i.e. no spatial separation) measured
for reference at each interferometer configuration. High visibility fringes are observed for
A¢ < 0.5 Mrad, above which vibration noise dominates. Contrast is therefore determined
by fitting histograms of ~ 200 interferometer outputs to an arcsine probability distribution
function . Error bars represent the 1o statistical uncertainty in the contrast fit param-
eter. The blue dotted line provides a comparison to traditional 2hk Raman Mach-Zehnder
interferometers in our apparatus with 7" = 22, 55, and 65 ms. Bottom: The fringe for a 4hk
interferometer with 7" =1 ms, 7 = 26 ms is shown, along with its contrast histogram. Each
point in the top panel of this figure comes from fitting such a histogram to the fringe data.
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5.2.2 Single-source gradiometer

We can use this ability to efficiently transfer many photon momenta to realize multi-pulse
interferometer geometries, such as the single-source gradiometer shown in Fig. [5.6]
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Figure 5.6: Single-source gradiometer. Insert: Gradiometer schematic. The first half of
an 8hk SDK interferometer is used to first split, then stop, the two arms. Once the two
arms are back to the same velocity, the interferometer sequence begins for each arm of the
gradiometer, with the SDK pulses simultaneously addressing both arms. The phases of the
two interferometers can then be read out using the four output ports. The main plot shows
gradiometer data (red, blue circles). The two interferometers have a fixed phase difference
which is independent of common mode phase noise. When plotted parametrically as done
here, the interferometer outputs form an ellipse whose shape is determined by this relative
gradiometric phase difference. Ellipses are plotted both with (red, hollow) and without (blue,
filled) a transverse laser beam applied to phase shift the lower interferometer by ¢,.. For
this data, the atoms initially separated for Tyraqio = 63 ms, giving (8hk)Tgradic = 1.764 mm
of separation to the gradiometer. 7' = 7 = 0.3 ms were then used for the interferometers.

The gradiometer sequence begins with an initial SDK beam splitter, performed here with
8hk momentum transfer, which separates the atoms into two partial wavepackets for a time
Tgradio- This precisely sets the gradiometer’s baseline separation, i.e. the distance between
the two interferometers forming the gradiometer. After Tiyaqi0, @ second 8hk LMT pulse
sequence brings the two gradiometer arms back to equal velocity; these arms are now the
atom source for the two SDK interferometers, which are then simultaneously driven on both
gradiometer arms. Comparing the two interferometers allows for a differential measurement
of their relative phase which rejects common-mode noise such as vibrations and laser phase
noise [90].
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We open the gradiometer ellipse in Fig. by shining a transverse laser beam to selec-
tively phase shift the lower SDK interferometer with respect to the upper one, thus creating
a relative phase ¢,. between the interferometers. Using SDK pulse sequences to realize a
single-source gradiometer has a few key benefits: 1) it allows the upper and lower interferom-
eters to start with the same initial velocity and internal states, which can reduce systematic
effects, and 2) the gradiometer baseline can be precisely known, since it is determined by
the photon momentum transferred n and the gradiometer separation time Tgaqio-

5.2.3 Resonant atom interferometer

We then performed a fun, proof-of-principle demonstration with these highly efficient pulses:
a juggling, “resonant” atom interferometer. In this geometry, the interferometer arms are
exchanged back and forth to enclose loops, forming a tunable resonant detector which can be
used to search for accelerations that oscillate with fixed periodicity. Such resonant interfer-
ometry schemes have been proposed to search for e.g. gravitational waves [91] or oscillating
forces due to light dark matter [92].

The interferometer schematic is shown in Fig. [5.7|(inset) with m = 3 loops; lock-in
ac detection is achieved by having the wavefunction enclose several loops. The sensitivity
function reverses in each loop, since the arms are kicked in alternating directions (for more
details, see Ref. [91]). A requirement for such a detector is that many photon momenta
can be transferred with high efficiency, i.e. highly efficient atom optics. Performing many
loops increases the frequency selectivity (“quality factor” @) of the resonant detector, and
therefore its noise suppression at other frequencies. The frequency probed is readily set by
tuning the duration of each loop.

We demonstrate a proof-of-principle juggling interferometer with visible interference
fringes after 51 loops, which requires 104 optical m-pulses. Previously, up to three loops
had been demonstrated [74]. The top panel of Fig. confirms the expected behavior of
such a resonant interferometer. For even numbers of loops m, dc effects (such as gravity and
the laser phase per loop ¢1) cancel, and the interferometer phase remains zero regardless of
1. That is, changing the laser phase ¢; enclosed by each loop by e.g. varying the Raman
ramp rate o does not change the total phase in an even-looped interferometer. For odd m,
the net interferometer phase reflects that of a single loop @1, regardless of m.

In this demonstration, contrast data were taken with loop sizes of T'= 7 = 10 us at 4hk
splitting to allow over 100 optical m-pulses of 200 us duration to occur within the available
free-fall time (this includes the extra ~ 5 — 10 ms of free-fall time around the apex to avoid
apex effects, such as atom loss from simultaneously driving the 3 k; _, Raman transitions
which become degenerate at zero velocity). For odd-looped interferometers, phase-stable
fringes are observed at each loop order.
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Figure 5.7: Resonant atom interferometer. Top: Interference fringes for different number
of loops m, as the laser phase per loop ¢; is varied. Bottom: Contrast decay is plotted as
both a function of the number of loops m (upper axis), and corresponding number of optical
pulses n (lower axis). The resonant interferometer geometry for m = 3 loops is illustrated
in the lower left. The dotted line represents a model with no free parameters, using only
the independently measured Ramsey contrast (88%), measured ARP pulse efficiency (96%),
and the calculated single photon scattering rate (1% per pulse). Agreement with the data
indicates negligible sources of additional contrast loss beyond single photon scattering. The

inset shows phase-stable fringe data for an interferometer with m = 51 loops.
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5.3 Outlook for application

In summary, performing the Raman beamsplitter in two steps is a relatively simple technique
to implement experimentally, with many potential benefits. Here, we have demonstrated
several multi-pulse interferometer geometries exclusively enabled by the use highly efficient
optical adiabatic passages in manipulating the atom’s trajectories. The flexibility afforded
by high efficiency pulses allowed us to realize large momentum transfer atom interferometers,
form a single-source gradiometer, and demonstrate a resonant juggling interferometer.

The baseline 47k momentum transfer, and larger 4nhk atom optics, allow SDK interfer-
ometers to combine advantages from both Bragg atom optics (LMT compatibility, ac Stark
insensitivity) and Raman adiabatic passage (state-labelled output ports, high transfer effi-
ciency, large pulse bandwidth, simpler atom sources). High power, large bandwidth Raman
pulses with fast, simple atom preparation could allow for large momentum transfer in com-
pact set ups, suitable for precise inertial sensing [22]. Short pulses forming many loops near
a source mass could serve as a lock-in force sensor to probe viable mass ranges for light dark
matter candidates [92]. It will be exciting to see if this SDK technology can contribute to
mobilizing atom interferometers for real-world application, or improving the sensitivity for
the next generation of atom interferometers to come.
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Chapter 6

Intracavity trapped atom interferometer

“Hold my gravimeter”
— Andrea Taroni [93|

This chapter presents the results of our work in trapped atom interferometry, where we
use a resonant cavity mode to suspend an atom interferometer mid-flight. The results here
have been published in full in [43], with [40, [57] containing some details and early results.

Here, we discuss the key factors that allow us to demonstrate 20 seconds of coherence for
an atom interferometer held in an optical lattice. We overcome trap dephasing by using an
optical cavity to spatially mode filter our optical lattice beam. In turn, the cavity-filtered
lattice allows us to surpass the free-fall limited interrogation times of massive particles falling
in Earth’s gravitational field. In doing so, we confronted the multi-path nature of lattice
interferometry, which is naturally introduced as atoms coherently delocalize across the optical
lattice. We used both the interferometer contrast and phase to to understand how this lattice
delocalization spatially modifies the atomic wavepackets; this understanding allowed us to
mitigate contrast oscillations caused by naiive choice of the beamsplitter pulse separation
times. Moreover, we found that the interferometer phase accumulated from gravitational
potential energy differences across optical lattice sites is robust against beamsplitter timings.
With long hold times and large spatial separations, this phase represents a stationary measure
of the gravitational acceleration via the gravitational potential energy difference between
interferometer arms. Finally, we describe how long lattice hold times naturally suppress the
phase noise from vibrations to preserve phase stability for long coherence times, when the
interferometer becomes most gravitationally sensitive.

First light: Detuning-limited performance in a near-detuned cavity lattice

We had seen the first promising signs that a cavity could enable trapped interferometers with
long coherence times and large spatial separations when we initially attempted trapping our
interferometer in a cavity lattice formed by our Raman laser.
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Figure 6.1: Interference fringes for a pulse separation time of 7" = 50 ms, corresponding to a
wavepacket separation of Az = 350 um, with (black) and without (green) a 7 = 30 ms hold
in a cavity lattice formed by our Raman laser. No significant contrast loss was observed for
this large spatial separation.

Figure shows fringes for a wavepacket separation of Az = 350 um (7'=50 ms) trapped
for 7 = 30 ms in our Raman lattice. Compared to previous trapped atom interferometers
[34, 35] which used free-space retro-reflected laser beams, we found it encouraging that we
could hold a Az = 350 um superposition state for 30 ms with no significant contrast decay.

In addition to looking at the contrast decay for larger wavepacket separations, we also
measured contrast as a function of hold time in the Raman lattice. The Raman laser is
comparably near-detuned; it is only A = -49 GHz red of the 4—5’ transition. At this
detuning, we expect a scattering-limited contrast lifetime of about 52 ms for |F' = 4) atoms
held in a Uy = 15F,. lattice (-49 GHz detuning, ~180 W incident 852 nm power), and about
74 ms for atoms held in |F' = 3) in the same 15 E,. lattice (-58 GHz detuning, ~180 pW
incident power). These expectations fit reasonably with our contrast decay measurements
in Figure [6.2] suggesting that we reached a detuning-limited performance for wavepacket
separations of up to Az = 2u,.(T = 65ms) ~ 450 pm when trapping in our near-detuned
Raman lattice. That we could hold wavepacket separations of up to Az = 2ve.(T = 65ms) ~
450 pm for even 30 ms with no contrast loss was a promising sign that the cavity’s spatial
mode-filtering might enable long coherence times in a trapped geometry.

These preliminary results encouraged us to upgrade to a far-detuned laser for the lattice
light. We chose A, = 866 nm for our lattice, which is the wavelength that minimizes the
scattering-per-recoil-depth between the D1 and D2 lines in cesium. Because the wavelength-
dependent reflectivity of our dielectric mirror coating drops beyond the D1 line, we were un-
able to pick a farther-detuned or more technologically convenient lattice wavelength without
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Figure 6.2: Detuning-limited performance when holding in the near-detuned Raman lattice.

exchanging cavity mirrors. Still, we note that 14 nm is not a significant detuning compared

to the easily 50-100 nm detunings often used for experiments involving atoms in free-space
optical lattices.

Far detuned optical lattice trapping

Here, we will briefly discuss some of the mechanics of trapping atoms in far-detuned optical
lattices before moving onto our experimental realization.

An optical lattice creates a standing wave of light which interacts with polarizable atoms
via an induced electric dipole interaction, i.e. the a.c. Stark shift

Ugp = —d - E, (6.1)

where E is the electric field of the optical lattice, d = aE is the induced atomic dipole
moment, and « is the atomic polarizability. Assuming small extensions of the atomic cloud
(Eq. 42 in |94]), one can write the optical dipole potential for a standing wave of light as

(@) - ()]

for a standing wave vertically oriented along the z-axis. A standing wave provides tight
confinement along the axial direction, with high on-axis axial trap frequencies of

Ukt (r) ~ —Uy cos?(kz)

dip

w, = hk(2Uy/m)Y2 (6.3)

In the limit of large detunings and negligible saturation [94], the trap depth of the optical
dipole potential Ugip(r) and the single photon scattering rate I'scat(7) as a function of beam
intensity I(r) at a distance r from the beam center are

Uan(r) = 5 (5 ) 1) (6.4)
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where the trap depth and scattering rate are related by
r
hrseat = ZUdip . (66)

Using far-detuned light allows for reduced scattering, which scales as I'year ¢ A2, compared
to the trap depth, which scales as Ug;p(7) oc A™1. This enables a greater ratio of coherent
atom-light interactions (via the ac Stark shift /dipole potential) versus incoherent interactions
(i.e. single photon scattering).
We will often specify the lattice depth in terms of the recoil energy from scattering a
lattice photon,
o thQatt

= 6.7
2mcs ( )

rec

with a wavevector kj,;. For 15 mW of incident 866 nm light on the cavity, and a typical
cavity coupling into the fundamental mode of 75%, we have a circulating power of ~470 mW
for a trap depth of Uy =~ —8F,. at the beam center.

Note the negative sign of the trap depth for red-detuned laser light; we will drop the
negative sign going forwards and only specify the magnitude of our lattice depth. In a
red-detuned laser field, ground state atoms become high-field seeking and thus attracted to
maxima of the field, i.e. antinodes along the optical lattice. The converse scenario is true
for blue-detuned light fields: ground state atoms are low-field-seeking and minimize their
energy at intensity minima, i.e. nodes along the optical lattice.

Landau-Zener losses

Atoms remain suspended in the lattice by undergoing Bloch oscillations [95-H97] due to grav-
ity. For cesium atoms trapped in a shallow vertical lattice, ground band Bloch oscillations
have a period determined by the gravitational potential energy difference between adjacent
lattice sites,

h

where mcs is the atomic mass of cesium, d = Aj,/2 = 433 nm is the lattice period, and
g ~ 9.8 m/s? is the local gravitational acceleration.

At each Bloch oscillation, there is a probability P that atoms will Landau-Zener tunnel
and leave the lattice |69],

sgd\ "
T = (mC J ) ~ 707.5 ps, (6.8)

2
m Uo

Poss = exp(—a./a) with a. = ag— 6.9

loss p( c/ ) c 064 (Erec) ( )

where ag = h;’f is a natural unit of acceleration in the lattice, and a.. is the critical acceler-

ation. For cesium atoms in a 866 nm lattice, ag = 87 m/s?.
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Figure 6.3: Lattice loading as a function of lattice depth. a) Calculated survival probability
of completing No Bloch oscillations as a function of lattice depth, given by (1 — Pjog)VEO.
The threshold for Landau-Zener tunneling is higher and sharper for increasing numbers of
Bloch oscillations. This is calculated for an infinite plane wave lattice where all atoms see
the same laser intensity; this model neglects effects from the finite laser beam waist, atom
cloud size, and transverse velocity spread. b) Measured atom number and surviving fraction
of atoms after a 1.05 second lattice hold (Ngo = 1,485) as a function of the lattice depth,
showing both the linearized AOM control voltage and calibrated lattice depths. The “simple”
model (cyan) uses the model plotted in (a), where all atoms see the same laser intensity.
The “finite cloud” model (red) accounts for a finite-sized atom cloud and lattice beam waist,
and neglects the transverse velocity spread of the cloud. The model considers a lattice beam
waist of wg = 724 pm and on-axis depth Up/FEye., with a 1-0 cloud width manually set to
o = 635 pum for this plot; see [40] for details of how we have modeled our thermal atom cloud
in a finite-sized laser beam. The “finite velocity” model (blue) describes a point source of
atoms, with finite transverse velocity spread (300 nK~4.3 mm/s) in a finite laser beam.

For cesium atoms in a 5 E,.. lattice for example, Py is roughly 107 per oscillation.
This showcases the high efficiency of using Bloch oscillations to transfer photon momenta
to atoms. By comparison, our typical (non-ARP) Raman pulses only have efficiencies of
50%-80% per pulse, which only transfers 2 photon momenta. Moreover, typical Raman
atom optics are highly sensitive to the pulse intensity and duration. Figure (6.3 shows the
efficiency and robustness of Bloch oscillations, both calculated (Fig. [6.3p) and measured
(Fig. 6.3p). Compared to using traditional Raman or Bragg atom optics to kick atoms,
Bloch oscillations are much more efficient and robust to experimental parameters.

While a 5 .. lattice is, in principle, sufficient for atoms to complete nearly 40,000 Bloch
oscillations before the loss probability reaches 50%, in practice there are many additional loss
sources in a shallow, 1D, vertical optical lattice. A summary of our adventures to reach long
atom lifetimes in our cavity lattice are described in Section [7.1] of the next chapter. Notably,
while we often use the lattice depth to refer to the peak on-axis trap depth, recall that our
atom cloud is about the same size at our cavity mode. This means that the ensemble sees
a full-scale intensity variation of the lattice beam, and so the outer parts of the cloud do
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not see a sufficient lattice depth to be trapped against gravity. Therefore, we must operate
at higher trap depths than the minimum required to trap a single atom against gravity,
increased by a factor of averaging the beam intensity over the atom cloud. In experiment,
we typically use an on-axis trap depth of about Uy = 8 .., which corresponds to about 15
mW of incident power on the cavity.

6.1 Experimental sequence

Each experimental run begins by the preparing the atom source, as described in Ch. [3]

Cesium atoms are laser cooled to recoil temperatures (~300 nK) after Raman sideband
cooling in a 3D lattice, adiabatically transferred into the magnetically-insensitive mp=0
state using microwaves, and then launched millimeters upwards into free fall using the in-
tracavity lattice. In free fall, counter-propagating laser beams in the cavity manipulate the
atomic trajectories. As discussed in Chapter 2] we realize atomic beamsplitters by stim-
ulating two-photon, velocity-sensitive Raman transitions between magnetically-insensitive
hyperfine ground states of cesium, /' = 3 and F' = 4, imparting two photons’ momenta to
the atoms with each laser pulse. The 7/2-pulse intensities are tuned to place atoms in an
equal superposition of the two state-labelled momentum states, |ga, po) and |g1, po + hkeg).
This enacts a coherent matter-wave beamsplitter which separates the two partial wave pack-
ets with a relative velocity of 2v,e.= 7 mm/s, where vy, = % is the recoil velocity of a
cesium atom absorbing a single photon on its D2 line.

Lattice interferometer pulse sequence

Our lattice interferometer employs two pairs of Raman 7/2-pulse beamsplitters, as shown in
Fig. . We use the same pulse sequence as previous trapped atom interferometers [34, 35].

The first pair of /2 laser pulses, separated by a time 7" — T3, splits the matter-waves
into four paths as atoms move upwards towards the apex. This first pulse separation time
T: determines the spatial separation Az; of the partial wavepackets prior to the lattice hold,
Az = 20617

We select two of these four paths, in which the wavepackets are vertically separated
by a distance Az; while sharing the same hyperfine ground state and external momentum.
This selection uses a quick (~ 6 us) resonant “blow-away” laser pulse, aligned transversely
through the cavity, to push the undesired paths out of the cavity mode immediately before
the lattice laser intensity ramps up for the hold. We typically use a blow-away pulse resonant
with the F' = 4 — F’ = 5 transition to reject paths in the upper hyperfine state, and thus
selectively load atoms in the lower hyperfine ground state |ga, po + fikeg) into the lattice (see
Fig. for detrimental effects of long blowaway pulses). We choose these paths because
they correspond to paths which have each been “kicked” once by the beamsplitter pulses,
implying that their transverse velocities were sufficiently low to remain within the cavity
mode between the lattice launch and the apex lattice hold. Because our atom cloud size
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Figure 6.4: Lattice interferometer schematic. a. Trajectories of atoms in the lattice in-
terferometer. The red solid lines show trajectories for the state |go, po), where atoms with
momentum py are in the state |g2); the blue dashed lines show the state |g1, po + hkes), where
atoms kicked by two photons of momentum fik.g are in the state |g;), where |g;) and |gs)
are the hyperfine ground states of cesium (typically corresponding to F' = 3 and F' = 4,
respectively). Each pulse pair is separated by a time 7. Between the /2 pulses and the
lattice hold, atoms move in free fall towards the apex of their trajectory for a time ¢5. At
the apex, atoms are loaded in a far-detuned optical lattice formed by the mode an optical
cavity (red stripes) and undergo Bloch oscillations in the lattice to remain suspended for a
time 7. b. Pulse timing sequence of the lattice hold and Raman beamsplitters.
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is roughly the size of the cavity beam, this transverse spatial selection preferentially loads
atoms in the central part of the cloud into the lattice hold.

At the apex of their trajectory, we adiabatically load atoms into the ground band of
a far-detuned optical lattice with a period of d = Ap,t/2, where the laser wavelength is
Alatt = 866 nm. For adiabatic lattice loading (unloading), the lattice intensity exponentially
ramps up (down) over 350 us. Atoms are suspended in the lattice for a time 7, undergoing
Bloch oscillations [95-97| due to gravity. After 7, atoms are adiabatically unloaded from the
lattice, and we apply a second F' = 4 blowaway pulse to remove atoms which have scattered
lattice photons and decayed back into |F' = 4). Atoms which have scattered but decayed into
|F' = 3) can thus remain trapped and contribute to contrast loss. Based our calculations for
scattering from the D1 and D2 (Eq. lines, the single photon scattering rate for atoms
in a 866 nm lattice of ~ 8F,.. peak depth is around I's..; = 10 seconds.

The last pair of 7/2 interferometry pulses recombine the wavepackets as as atoms fall
downwards after the lattice hold. This last pulse separation time T — T5 determines the
spatial separation from which paths are recombined and interfered, Azy = 20,6.15.

At the final beamsplitter pulse, the atomic matter-waves interfere according to the phase
difference A¢ = @upper — Plower accumulated between the upper and lower arms. As a result,
the probabilities P; 4 of detecting an atom in the output ports corresponding to F' = 3 and
F = 4 oscillate with this phase difference P34 = 1 [1 + C cos(A¢)], where C' is the fringe
contrast. Since only two of the four spatially unresolved output ports interfere, the maximum
contrast is limited to C' = 0.5 in this geometry. The atom number in each port (N34) is
measured through fluorescence imaging (see Sec. . The total interferometer phase, Ag,
is extracted from interference fringes observed as oscillations in the population asymmetry

N3 — Ny

A=l
Ns + N,

= C cos(Ag) (6.10)
between the output ports. We tune various experimental knobs to vary the total inter-
ferometer phase A¢. Measuring the asymmetry A helps to normalize against shot-to-shot
fluctuations of total atom number. The interference fringes are fit to sines, and the fit
amplitudes (i.e. 1/2 peak-to-peak) are the fitted fringe contrast C'.

6.2 Interferometer phase

For traditional atomic gravimeters operating in free space (i.e. free-fall Mach-Zehnder atom
interferometers), the total interferometer phase A¢ = A¢p + A¢pg is dominated by the
atom-light interaction phase A¢y (“laser phase”), while the free evolution phase A¢pg is
zero. Each laser pulse contributes a phase ¢; proportional to the atoms’ position ¢; x k - x.
In the lattice interferometer, the four beamsplitter pulses contribute an overall atom-light
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interaction phase [34] 35| to the interferometer, given by

A¢L — (bupper o (blower

= (¢1 — ¢2) — (¢3 — ¢4) (6.11)
— hagT(T +To), (6.12)

where the time T, = 2t4 corresponds to the total free fall time between pulses 2 and 3
during which the Raman beams are ramped at a rate « in the same direction. See Section
for our calculation of the total laser phase A¢y, for our experimental implementation
of this pulse sequence. For atoms in free fall, A¢p, can provide a sensitive measurement of
accelerations such as gravity [11], which influence the atoms’ position at each laser pulse.

This lattice-based interferometer can realize nearly the opposite scenario: the free evo-
lution phase A¢pg can constitute more than 99% of the total phase alongside only a small
contribution from Ad¢y,. Between the beamsplitter pulses, each arm accumulates a phase ¢pg
which can be calculated by integrating the Lagrangian £ over the classical trajectory [45]
(see Sec. . Suspending the interferometer causes a phase difference

| A
Adrn = /AUdt - %T, (6.13)

to accumulate between the upper and lower arms during the lattice hold time 7, due to the
gravitational potential energy difference AU = mcsgAz across the vertical arm separation
Az during the lattice hold. There is zero net contribution to the free evolution phase outside
of the lattice hold.

6.3 20 seconds of coherence at Az =4 um

Figure shows interference fringes due to the gravitational potential energy difference
from a vertical separation of Az = 3.9 um, corresponding to nine lattice spacings. Fringes
remain visible as the interferometer is trapped for up to 7 = 20 seconds, at which point
Ag¢rg = 1.6 Mrad. Without the lattice to hold atoms against Earth’s gravity, interrogating
freely falling atoms for 20 seconds would require launching atoms upwards in a ultra-high
vacuum tower about 0.5 km tall. In our interferometer, atoms travel less than 2 millimeters
in total. This allows highly sensitive yet very compact atomic setups, which helps suppress
spatially dependent systematic effects such as gravitational and magnetic field gradients.
Moreover, differential measurement of A¢pg between short (~0.2 s) and long (20 s) times
substantially suppresses phases independent of the hold time, isolating the gravitational
signal. Most optimistically, this feature may allow us to suppress systematic ac Stark phase
shifts, which results from the atom-laser beamsplitter interactions. Rejecting ac Stark phases
is especially important in our cavity interferometer because the cavity transfer function filters
the multi-component and chirping laser field required to drive beamsplitter transitions. A
full characterization of the cavity impacts on Raman transitions in our experiment can be
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Figure 6.5: Interference fringes and contrast decay. a) Interference fringes are visible

after holding atoms in a spatially separated state for up to 7 = 20 seconds, or ~28,300
Bloch oscillations, in an optical lattice. Each data point (filled circles) is averaged over 2-4
interferometer cycles. Error bars show the 1-o spread. We fit each fringe to a sine (solid
lines) whose fitted amplitude gives the fringe contrast, C. For each hold time, the mean
asymmetry (A) is removed for clarity. This interferometer used a pulse separation time of
T = 0.516 ms and t4 = 11 ms. The upper x-axis (A7 ~ us) shows a fringe frequency of
wre(An =9) = 27 x (12.7 kHz) in the hold time 7, consistent with a vertical arm separation
of Az = 20,67 = 3.9 um, or An = 9 lattice sites. The lower x-axis (7 ~ s) shows the phase
coherence over seconds of hold time. b) An interference fringe with a large acceleration scale
factor is obtained when holding a wavepacket separation of Az ~ 280 ym (7= 40 ms) for
7 = 2 s. This fringe was recorded by varying the laser phase A¢y, via the Raman ramp rate
a. c) Fitted contrast (filled circles) as a function of hold time 7 and wavepacket separation
Az. The contrast lifetime 7¢(Az) for each wavepacket separation Az is extracted from fits
(solid lines) to an exponential decay, C(7,7¢(Az)) = 0.5e~7/7(32)  d) Contrast lifetimes
Tc(Az) decrease with increasing wavepacket separation Az.
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found in [41]. For our previous inertial measurements [20], the ac Stark phase shifts from
beamsplitters were a key systematic to control.

6.3.1 Necessity of an optical cavity

The cavity is instrumental in enabling these long coherence times. After 20 seconds in
a lattice depth of Vj = 8F (where E, is the recoil energy), each interferometer arm
accumulates a ~2 Mrad lattice light shift. To observe contrast, the difference in the lattice
light shift phase between the interferometer arms can only vary across the atomic sample
by < m radians; otherwise, averaging over the phase spread across the atomic ensemble
causes the observed contrast to average to zero. This means that the difference in the lattice
intensity profile between the partial wavepackets must be at the 1076 level. The fundamental
cavity mode has a Rayleigh range of zr = 1.9 m, much larger than the wavepacket separations
of Az ~ 100 pum, defining a highly uniform beam geometry between the interferometer arms.
The cavity spatially filters the beam; with a transverse mode spacing of 8.3 cavity
linewidths, only the fundamental Gaussian mode is resonant while the first higher-order
mode is suppressed nearly 70-fold. Higher-order transverse modes are suppressed even more
strongly. The cavity’s spectral selectivity suppresses light at other frequencies, such as from
the broadband pedestal emission of diode lasers. Next, the intracavity power enhancement
reduces the required input power by roughly F/m ~ 42-fold. This reduces the amount of
light scattering off other optical elements such as external lenses, mirrors, back of cavity
mirrors, or vacuum viewports, reducing the stray light generated at such optical elements.

6.4 Phase robustness to the multi-path nature of lattice
interferometry

6.4.1 Contrast as a probe of wavepacket structure

Unlike free-space atom interferometers, the optical lattice modifies the spatial structure of
the atomic wave packets. In particular, the finite spatial extent of the atomic wavepackets
coherently distributes across multiple adjacent lattice sites, causing the partial wavepackets
along each arm to acquire a finer spatial substructure at the lattice spacing d. Because
the atom interferometer phase relates to the spatial separations between arms, while the
interferometer contrast relates to the spatial overlap of partial wavepackets at the final
beamsplitter, we must understand how the lattice modifies the wavepacket’s spatial structure.

In this section, we study how lattice delocalization coherently maps the two-path in-
terferometer from free-space into a multi-path interferometer after lattice loading, and the
consequent impact on the contrast and phase of our lattice interferometer. With respect
to phase, we find that the free evolution phase is robust against beamsplitter and lattice
loading protocols, because A¢pg = (mgAz/h)7 is discretized by the vertical arm separa-
tions in the lattice, which necessarily maps the free-space arm separation an integer number
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of lattice sites, Az — And. This independence of the A¢pg from the exact beamsplitter
pulse parameters is beneficial for interferometers, as differential measurement of A¢pg at
different hold times 7 can provide inertial measurements that suppress systematics related
to the laser beamsplitters. Despite the phase robustness against the beamsplitter timing
parameters however, the interferometer contrast C', which most fundamentally relates to the
wavepacket spatial structure, is affected by choices of the beamsplitter timings.

Spatial contrast modulation at the lattice period was how we stumbled upon these lat-
tice phase dynamics. For a long time, we had operated naiively, assuming the free-space
wavepacket structure persisted after the lattice hold; coming from free-space atom interfer-
ometry, this seemed justified. But this approach led us to observe spatial contrast oscillations
at the lattice period d. The studies in this section will describe what we were really see-
ing. First, that there was an extra phase term A¢pg which varied with hold time 7; we
did not initially expect this because our previous accelerometry experiments only relied on
the laser phase A¢r. Second, the multi-path nature of lattice interferometry due to de-
localization in the lattice; this creates additional (“parasitic”) interferometer arms spaced
by Az = (An £ 1)d. Combined, what we had initially believe to be a “loss of contrast”
when setting pulse separation times to half-integer multiples of the lattice period (satisfying
20T = (An + 1/2)d), actually was the result of improperly recombining interferometer
arms with the final beamsplitter pair, because the arm spacing had shifted in the lattice.

Contrast envelopes

Atom interferometry with thermal atoms is a single-particle interference effect. The inter-
ferometer contrast is fundamentally given by the spatial overlap integral of the interfering
partial wavepackets at the time of the final pulse, (¢/(Z)|y(Z)) [98]. Because time evolution
in quantum mechanics is given by a unitary operator U(t, ), the spatial overlap integral of
the wavepacket at a time t based on the wavepacket’s time evolution from an earlier time ¢,

W' @)W(t) = (W' (U (t, ) | U(t, to))(to))
= (V'(to)|[¥(to)) (6.14)

is independent of the free time evolution, and depends solely on the relative positions the
two partial wavepackets being interferred.

Because each atom only interferes with itself, contrast can be observed as long as the
wavepacket positions at the time of the final pulse are within the coherence length of the
sample, as determined by the thermal de Broglie wavelength Ay of the atomic wave packet.
This requires that the path length difference between two interferring paths is less than Ap
of the atomic wavepacket. For a particle of mass m in thermal equilibrium at a temperature
T, the thermal deBroglie wavelength A\r describes the 1/e spatial extent of the particle’s
Gaussian wavepacket, and is given by

h

M = —(——=.
T \/27kaBT

(6.15)
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Measuring contrast envelopes

Contrast can thus be observed when two partial wavepackets are recombined to within a
distance of A\p. In the lattice sequence, the distance from which paths are recombined and
interfered Azy = 2v,..T5 is determined by the pulse separation time T, between pulses 3 and
4. Slightly varying this time by T, £ 075 is a common way to interferometrically measure
the spatial coherence length of the atomic wavepacket,

AZQ = 2vrec(T2 + (STQ), (616)

where the width of the contrast peak, or “contrast envelope,” gives the deBroglie extent of
the atomic wavepacket, Azy = 2uy.To £ A7/2.

In order to scan contrast envelopes, one must obtain and fit the contrast of interference
fringes at each pulse separation offset time 67;. Our standard procedure for measuring
contrast envelopes is to 1) set dT» for a given run, 2) at each 073, obtain interference fringes
by varying the laser phase A¢y, via stepping of the Raman ramp rate «, and 3) fit the fringe
contrast C' measured for each value of 075.

However, as can be seen from the contrast envelope measurements in Figure and
especially 7 a fascinating (and completely surprising to us) new dimension in which to
measure contrast envelopes was for varying hold times 7. In particular, we find that the
contrast envelopes oscillate at the Bloch frequency, and thus we measure the full contrast
envelopes for hold times of integer NV and half-integer NV + 1/2 multiples of the Bloch period
7. These dynamics are most interesting in the case of the beating interference we observe,
discussed at the end of this section.

6.4.2 Az discretization in the lattice
Az = Azy = And: Integer lattice loading

When matching the free-space wavepacket separations Az o to an integer number An of
lattice spacings d,

Az = 2011 — An( Mg /2) (6.17)
AZQ = 2Vpecln — AZl, (618)

contrast is observed within At of Az, = Az;. Meeting this condition can be achieved by
setting T} and T, to satisfy integer number of lattice periods, as stated in Eq. This
integer lattice loading gives rise to the peak in contrast around Azy = Az = 9d (Fig.
). This integer loading configuration best fits our expectations from measuring contrast
envelopes in free-space atom interferometers, which is typically done to measure the deBroglie
width of the atomic wavepacket, because integer loading matches the free-space wavepacket
separation to the lattice period d. This enables two partial wavepackets to load, occupy, and
unload from the optical lattice while retaining two paths with the same spatial separation
as created by the first beamsplitter pair.



CHAPTER 6. LATTICE ATOM INTERFEROMETER 90

Contrast

04 03 02 0.1 0 E
Az /d=1
1 2 0.5
2
3 M 0
7= (N+112)rg 4
5 © -0.5
7= Nr, ~~
B 6 N
7 < F =9
8 0.5

23 °
s ©
o
v

N

G o5 ].=
0.5
1
2 r- ') 0
3 :
7= (N+112)7g 4 ! -0.5
5 w5 1 - - - - -
7= Nrg 6 ! H
7 <. o R X o of
8 1 ( 7| J ) o]
B ? ..... ' s \, o iy
0 ] PF bo P od ’ 18
11 :
12 - -
04 03 02 041 s TB/2 0 TB/2 8
Contrast T- ZQQTB

Figure 6.6: Lattice delocalization. (A-B) Integer lattice loading, Az (7)) = Azy(T3). (C-
H) Non-integer lattice loading, Az (T1) # Az (Ts). (A) Spacetime trajectory for integer
lattice loading, with Az;/d = 9. (B) Contrast as a function of the closing pulse separation
Azy(Ty) for the integer lattice loading shown in (A), after holding for 7 = integer N (blue)
or half-integer N+%2 (red) Bloch periods, 75. For each Azy(T3), the fringe contrast was
obtained by varying A¢y, over a multiple-m range, and fitting to a sine. (C) Spacetime tra-
jectory for half-integer lattice loading, with Az;/d = 9.5. The upper and lower arms acquire
different spatial distributions. D) Contrast as a function of Azy(75) for the half-integer lat-
tice loading shown in (C), after holding for 7 = integer N (green) or half-integer N+%2 (pink)
Bloch periods. (E-H) Free evolution fringes from the half-integer lattice loading Az /d =
9.5 in (C), near a hold time of 7 ~ 299 75 (0.2115 s). The oscillation frequencies verify the
discretized arm separations that result from loading a half-integer initial wavepacket separa-
tion. For Azy/d = 1,9, and 10, panels (E, F, H) show oscillation frequencies corresponding
to the labelled arm separations of wpg(An=1), wrr(An=9), and wpr(An=10), respectively.
(G) At Azy/d = 9.5, oscillations at wrpg(An=9), and wrpg(An=10) add, showing a beat-
ing interference in the free evolution phase at their difference frequency of one lattice site
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Coherent lattice delocalization — Stationary lattice beamsplitter?

Loading an atom interferometer into an optical lattice causes the partial wavepacket along
each arm to each delocalize across the lattice. This changes the two arm interferometer from
free space into a multi-arm interferometer, around the initial wavepacket separation. Be-
cause phase shifts in atom interferometers largely arise from the spatial separations between
interferometer arms, and because the wavepackets become spatially modulated at the lattice
period, the lattice’s spatial structure plays an intimate role in the phase and interference
criteria of our lattice atom interferometer.

For A\t 2 d, persistent An = 1 interferometer

It is interesting to note that even without the first pair of beamsplitter pulses, as long as the
thermal deBroglie extent of the wavepacket is comparable to the lattice spacing Ay 2 d,
the lattice will delocalize the wavepacket into adjacent lattice sites. Simply loading an
atom into the lattice creates an atom interferometer because the lattice acts as a stationary
beamsplitter, which coherently splits the wavepacket across adjacent lattice sites. The colder
the atom is, i.e. the broader its deBroglie wavelength, then the more lattice sites it will come
to occupy, and more interferometer arms are created. In the limit of Bose-condensing a gas
of atoms, where the atoms’ deBroglie wavelengths come to overlap and thus extend into the
microns range (spanning 10-100s of lattice sites), interferometer phases can be a useful probe
of lattice physics. We do not operate in this regime: we interfere single atoms at the recoil
temperature, corresponding to deBroglie wavelengths of roughly 300 nm in cesium, after
holding them in a d = 433 nm optical lattice. Because A\t 2 d, our wavepackets delocalize
primarily into just neighboring lattice sites.

We verify coherence between these added paths in two ways. First, we measure a peak in
the contrast envelope whenever we recombine and interfere arms from a spatial separation
of Azy = d, demonstrating that the wavefunction delocalization into adjacent lattice site is
a coherent splitting of the matter-wave. Accordingly, Figures and show spatial
overlap (i.e. a peak in contrast) within At of the lattice period Az, = d, for any choice of
initial lattice loading conditions Az;. This contrast peak is observed even in the absence of
initial beamsplitters. Second, we vary 7 to obtain the free evolution fringe shown in Fig.
[6.6E. The oscillation frequency,

wrp(An) = (mcggd) An = <2—7T) An (6.19)

with An = 1, verifies that A¢pg accumulates from the gravitational potential energy differ-
ence across a vertical arm separation of Az = d. Together, these observations confirm the
discrete physical spatial separation of interferometer arms created by the lattice, and the
coherence of this lattice delocalization as a stationary matter-wave beamsplitter.
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Figure 6.7: Beating interference in the free evolution phase. Upper: Beating fringes that
result from simultaneously closing two spatially overlapped interferometers, where the beat
note evolves as a function of hold time 7. Data shown in solid purple circles, averaged across
3-4 runs each. The light purple line represents a fit to a sum of 2 sines, which yields the two
fringe frequencies f; = 12.7 kHz and f, = 14.1 kHz. The difference of these two frequency
components corresponds precisely to the Bloch frequency, fo — fi = 1.4kHz = 1/75, where
the Bloch period 75 = 707.5 us (Eq. is defined by the gravitational potential energy
difference between adjacent lattice sites. Lower: Fast Fourier Transform of the beat note
time series fringe data (circles) andg fit (line) from above. The frequency domain shows
peaks at the two frequency components f; and f, present in the beating interference.

Az, # And: Non-integer lattice loading — multi-path interferometry

When the initial separation is a non-integer number of lattice spacings Az; # And, lattice
loading can cause the wavepackets’ spatial distributions to differ between the upper and
lower arms. Figure shows an example with Az; = 9.5d: one arm splits between two
adjacent lattice sites, becoming two new interferometer arms which are separated by An =1
from one another, and An = 9 and 10 from the distant arm. We verify coherence by
changing Az to interfere different combinations of the three arms; Figure shows the
corresponding contrast envelopes within At of Azy/d = 1, 9, and 10. Moreover, we vary
T to obtain free evolution fringes for each combination of arms (see Fig. E, F and H,
respectively), reaffirming the phase coherence of this stationary lattice beamsplitter. The
observed oscillation frequencies wpg(An) demonstrate the discretization of arm separations
in multiples of the lattice spacing d.
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Az = Azy = %d: Beating interference in the free evolution phase

At Azy/d = 9.5, the lower arm is partially spatially overlapped with both upper arms, and the
final pulse closes the two interferometers with separations of An = 9 and 10 simultaneously.
As a result, we observe the adjacent wavepackets separated by An = 1 coming into and out
of phase at their difference frequency wpg(An = 1), while interfering with the distant arm
constructively after integer Bloch periods 7 = N7g, or destructively after half-integer Bloch
periods 7 = (N + 1/2)7g. This results in a beating interference in the free evolution phase,
which we observe by varying 7 (see Fig. and Fig. [6.7).

This section shows clearly that the free evolution phase A¢pg does not accumulate at
continuous rates during the lattice hold; rather, this phase accumulates with fixed fringe
frequencies, which correspond to arms vertically separated by integer lattice spacings. In
particular, the beating interference shows this discretization of arm separations during the
lattice hold. Enforcing that the arm separation is fixed to an integer number of sites is a
convenient feature that makes the fringe frequency wgg, which encodes the inertial measure-
ment, robust to the pulse timing parameters. We have shown that even for the worst-case
half-integer lattice loading, which exaggerates the multi-path nature of the lattice interfer-
ometer, wpg remains unperturbed. Additionally, we have shown how the pulse separation
times before T} and after T, the lattice hold can be appropriately chosen to overcome the
effect of lattice delocalization on interferometer contrast.

6.5 Vibration noise suppression

Overcoming vibration noise is a necessary step to preserving the interferometer’s phase sta-
bility at long hold times. For example, the phase noise from vibrations limit the performance
of state-of-the-art atomic gravimeters |37, [38|. Fortunately, we found that the continuous
phase accumulation during the lattice hold can average away the phase noise from mechan-
ical vibrations after seconds of hold time. Thus reaching seconds of phase coherence in the
lattice creates a natural route to overcoming the phase noise from vibrations, and one with
a compact geometry.

Instead of reducing vibrations themselves, seconds of hold time cut off the interferom-
eter phase sensitivity to vibrations rapidly above e.g. ~50 mHz after holding for 7 = 20
seconds. This suppresses the phase noise from vibrations by 3-4 orders of magnitude across
the problematic ~0.1-100 Hz range, where vibrations are difficult to suppress [99]. Because
gravitational signals are predominantly around dc, this orders-of-magnitude reduction in
the interferometer noise bandwidth significantly increases the signal to noise ratio of the
measurement. In Section below, we derive the interferometer phase response to the
acceleration noise caused by vibrations, i.e. the acceleration transfer function H (27 f), ac-
counting for vibration sensitivity of both phase terms A¢r, and A¢rg. Here, we describe
how long hold times 7 suppress the phase noise from vibrations.

Figure shows the agreement between the measured and calculated transfer function,
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Figure 6.8: Lattice interferometer acceleration transfer function. Measured (black circles)
and calculated (blue line) transfer function, normalized to 1 at dc as |H (27 f)|?/|H (0)]?,
for a lattice interferometer with 7" = 1.066 ms, and 7 = 5.0 seconds. A Mach-Zehnder
interferometer with comparable dc acceleration sensitivity has a pulse separation time of
Tz = 73.5 ms, whose transfer function is plotted in red. The lattice interferometer transfer
function suppresses the phase variance arising from mechanical vibrations in the critical
~(0.1-100 Hz frequency range by 2-3 orders of magnitude over the equivalent Mach-Zehnder
interferometer. Inset: Data and calculations are plotted on a linear scale and show good
agreement. Each data point represents the mid-fringe phase variance from ~70 experimental
runs, in response to an applied acceleration which pushes the vacuum chamber at a drive
frequency f. The transfer function measurement is detailed in Section below.

|H (27 f)]?/|H (0)]?, for a lattice interferometer with 7" = 1.066 ms and 7 = 5.0 seconds.
We directly measure |H (27 f)\2 by using a voice coil to apply accelerations to the vacuum
chamber at a frequency f, and record the mid-fringe phase variance as the drive frequency f is
varied. Details on the measurement can be found below in[6.5.2] Notably, this measurement
confirms that the transfer function |H (27 f)|? oscillates at a frequency commensurate with
the hold time 7: f}** = 1/7 = 0.2 Hz. These hold time oscillations in the transfer function
are exactly what we expect for a continuously accumulating inertial phase: as the vibration’s
frequency matches integer multiples of the hold time, the effect of the vibration averages out
entirely, leaving no residual noisy phase. The converse we expect as well: that as a vibration’s
frequency competes roughly N + 1/2 multiples of the hold time, the extra m-radians of the
vibration’s cycle during the lattice hold will leave the maximum amount of phase noise in
the interferometer. This leads us to expect, for Figure [6.8] that drive frequencies matching
integer hold times f ~ 1/(NT) create minimum phase variance, and that drive frequencies
at half-integer hold times f ~ 2/(NT) create the maximum phase variance. We see exactly
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this behavior in the transfer function oscillations at fi** = 0.2 Hz for a 7 = 5 s hold.

For comparable dc acceleration sensitivity to this lattice interferometer, a Raman Mach-
Zehnder (MZ) interferometer would require a pulse separation time of Tz = 73.5 ms, setting
the first zero in its transfer function at )% = 13.6 Hz. This is nearly 70x higher than f2t;
by comparison, the lattice interferometer suppresses vibration phase variance by a factor
of 10% better than a MZ at 5 Hz, with broadband vibration suppression across the 0.1-100
Hz frequency range of problematic seismic and mechanical vibration noise. For a target
dc sensitivity, the vibration immunity in this lattice geometry can be further enhanced by
increasing hold times 7 and decreasing pulse separation times 7.

6.5.1 Transfer function analysis

Phase noise from vibrations has been studied for the traditional Mach-Zehnder geometry,
where all of the measured phase A¢ comes from the laser phase A¢r,. We expand this
formalism to quantify the effect of vibration noise in our interferometer geometry, where
the free evolution phase A¢pg has a significant contribution. This analysis follows the
supplement from [43| and was originally presented in [40]; we include it here for completeness.

In traditional interferometers, the position of the mirror that is used to retro-reflect the
interferometer light sets the inertial reference frame of the measurement. In the cavity inter-
ferometer however, the position of both cavity mirrors sets the inertial frame. In considering
vibration noise in our apparatus, the cavity can be treated as a rigid body since the cavity
length is stabilized with a feedback bandwidth of ~45 kHz, much faster than the typical
frequencies of mechanical vibrations. To analyze the interferometer phase noise caused by
cavity vibrations, we derive the transfer function from acceleration noise of the cavity to
phase noise in the lattice interferometer, for both the laser phase A¢r, and free evolution
phase A¢rpg.

Lattice interferometer laser phase

The acceleration transfer function relating vibrations of the cavity to noise in A¢y, is derived
here. To focus this analysis on the phase noise from mechanical vibrations, which impact
primarily the low frequency band of ~1-100 Hz, the laser pulses are assumed to occur in-
stantaneously (i.e. with zero pulse duration). As calculated in Section earlier, and
re-iterated in Sec. above, the total lattice interferometer laser phase A¢y, from the four
7/2 beamsplitter pulses is

Agr, = (¢1 — ¢2) — (3 — da). (6.20)

Consider a phase jump d¢r, which occurs at time tj,mp. A jump in the laser phase results
from e.g. vibrations changing the position of the cavity with respect to the atoms. This
jump in d¢p, shifts the total interferometer phase by d¢. These phase shifts d¢ and d¢r, are
related by the sensitivity function g (t), which is defined as

do = gu(t)dér, (6.21)
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From Eq. [6.20] if the phase jump occurs during between pulses 1 and 2, the total interfer-
ometer phase shifts by d¢p = —d¢r,. Similarly, if the phase jump occurs between the pulses
3 and 4, the interferometer phase shifts by the opposite amount d¢ = +d¢r,. Phase jumps
d¢r, which occur during 7" (between pulses 2 and 3) do not produce an overall phase shift
in the interferometer. This gives the following sensitivity function for the laser phase, where

1, 0<t<T g

0, T<t<T+T <
gL(t): i ’ > 0

1, TH+T <t<2T+T

0, else At

(6:22) T T
t

Figure 6.9: Lattice interferometer: Laser phase sensitivity function, gr (t)

the first interferometer pulse occurs at t = 0.
Integrating the laser phase noise during the interferometer dey (t) against gy, (t) gives the
total interferometer phase fluctuation ¢,

o = / o1 (£)do (1) = / " g2 gy (6.23)

. dt

Instead of analyzing noise in the time-domain, it is better to characterize the frequency
components of the noise in the Fourier domain, where this expression can be re-written in
terms of the Fourier transforms (indicated with a tilde) as,

56 = / dw HO () i (—w) (6.24)

where H"(w) = —iwg,(w) is defined as the transfer function from laser phase noise ¢r,(w)
to interferometer phase noise d¢. The Fourier transform of gr(t) (Eq. [6.22) is given by

< 4 / T T+1T
gL(w) = / e~ Wty (t)dt = —e 2T+ gin (w_) sin (M> (6.25)

o w 2 2

To compare with free evolution phase noise, the laser phase transfer function can be
re-written in terms of the acceleration noise caused by vibrations of the cavity. The laser
phase noise due to vibrations ¢r,(¢) can be expressed in terms of position noise,

(bL(t) = k'eff('rcavity(t) - xatom(t)) (626)

To convert to acceleration noise, consider a Fourier decomposition of the position noise
where a perturbation at frequency w changes the relative position of the cavity mirrors and
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the atoms by Z(w). Taking the second time-derivative gives an expression for the position

fluctuations in terms of accelerations, #(w) = —-5a(w). The laser phase noise now becomes,
7 keff ~
i) = — i) (627)

in which a(w) is the acceleration noise of the cavity due to vibrations. This form of ¢r,(w) can
now be used in Eq. to define a new transfer function, which converts from acceleration
noise to interferometer phase noise by

H(w) = —%Hﬁ(w) (6.28)

The variance of the interferometer laser phase (o1,)? can be calculated [40, 51| by integrat-

ing the acceleration transfer function for the laser phase |H{(w)|? against the acceleration
noise power spectral density S, (w),

(op)* = /OOO dw|Hf (w)]*S, (w) (6.29)

where the norm-squared of the acceleration transfer function for A¢y, is

2 /
|H (w)* = 16z sin? (%) sin? (M) : (6.30)

w 2

Lattice interferometer free evolution phase

We now derive the transfer function from the acceleration noise of the cavity to free evolution
phase noise. From Eq. [6.13] this interferometer accumulates a net free evolution phase A¢pg
during the lattice hold time 7 from the linear gravitational potential difference across the
interferometer, AU = mgAz, such that

1 1
Are = / aAU = - / dt (mgAz) (6.31)

T

Here, Az is the vertical separation during the lattice hold. This separation is enforced by
the interferometer geometry to be

hkeﬁ
m

Az = And = 20T = T (6.32)
where An is an integer number of lattice sites.

To extend the analysis of vibrations to A¢pg, we can assume that the atomic wavepackets
follow the vibrating lattice. Cavity vibrations can be treated as the acceleration noise a(t)
experienced by atoms trapped in the vibrating lattice. Acceleration is a useful physical
quantity here because it allows us to invoke the equivalence principle to equate this noise
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a(t) to a noisy gravitational field g — g+ a(t), for which the noisy potential energy entering
the interferometer can be expressed as

AU =m a(t) Az (6.33)

A sensitivity function gpg(t) for the free evolution phase can then be defined via the

relation
46(t) = grn(t) [m alt) A=(t)/H] dt, (6.34)

where d¢(t) is the amount of free evolution phase accumulated due to the noisy acceleration
a(t) in the interval dt. The additional factors set gpg to be unitless.

Vibrations of the cavity are coupled to the atoms while they are trapped in the lattice.
Therefore, an acceleration caused by a vibration of the cavity will only shift A¢pg if it occurs
during 7. The free evolution phase sensitivity function is therefore

1

1, te =) < >

else

0 T T+T 2T+T
t

Figure 6.10: Lattice interferometer: Free evolution phase sensitivity function, grg()

As with the laser phase, the vibration noise contribution d¢ to the free evolution phase is
calculated by integrating eq. over the interferometer duration. Since gpg is nonzero only
during the lattice hold, we can substitute in (from Equation [6.32) Az = hkegT'/m, giving

56 = hogT / dt gre(t) alt) = kT / i Gre(w) d(—w)

= /dw Hig(w)a(—w). (6.36)

In the above equation, tildes again represent a Fourier transform and Hig(w) = ke Grr(w)
has been defined as the transfer function from acceleration noise to free evolution phase

noise. The Fourier transform of gpg(t) is
2 _. wT
gre(w) = —e (T g (—) 6.37
gre(w) e sin (6.37)
The free evolution phase variance (opg)? is again calculated by integrating against the

acceleration noise power spectral density

(ovs)’ = | dul Higl)P5,(w) (6.38)
0
where the norm-squared of the acceleration transfer function for A¢pg is

42,17
|Hep ()2 = —ef g2 (%) . (6.39)

w?
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Mach-Zehnder laser phase

The Mach-Zehnder laser phase is A¢k, = ¢ — 2¢2 + ¢35, where ¢; is the laser phase added
by the i-th pulses in this geometry. Each of the pulses are separated by a pulse separation
time T'. The sensitivity function for the MZ laser phase [51] is thus given by

-1, 0<t<T !
guz(t) =< 1, T<t<2T (6.40) S of}—— I
[=))
0, else
-1

0 T 2T

t
Figure 6.11: Mach-Zehnder interferometer: Laser phase sensitivity function, gyz(t)

Comparison

Table [6.1| compares the transfer functions for the lattice interferometer laser phase |H{(w)|?
and free evolution phase |H&g(w)|?, with the Mach-Zehnder laser phase |H,(w)]?.

6.5.2 Transfer function measurement

Figure displays the result of our lattice interferometer’s acceleration transfer function
measurement; this section will fill in more documentation on how this measurement was
performed. A force F,. at frequency f was applied to the vacuum chamber using a voice
coil, driving accelerations of the vacuum chamber with an acceleration noise power spectral
density of S,(w) o apd(w — 27w fy). The interferometer translates this physical acceleration
into a phase shift according to its acceleration transfer function, as analyzed above in Section
[6.5.1] Measuring the variance of the phase noise in response to the applied acceleration from
the voice coil yields a measurement of the interferometer transfer function |Hg, (27 fo)|?.
The interferometer phase noise for a given voice coil drive frequency f is observed by
running ~ 70 shots of the experiment, while setting the phase at a mid-fringe point where
the output port population ratio changes linearly with phase. The resulting population
ratio spread is then proportional to the variance in phase noise. However, the envelope
of |HZ,.(w)|* varies by about two orders of magnitude over the frequency range of applied
accelerations. Figure shows the raw excitation fraction data for a 2-second transfer
function measurement which we initially used while setting up the measurement. If the
applied force is not sufficient to create a measurably large phase variance, then mid-fringe
measurements are limited by imaging noise (see e.g. the low frequency data in Figure m;
the scatter of phase measurements ~0.1 Hz is comparable to the scatter caused by imaging
noise). On the other hand, if the applied force creates too large of a phase variance, then the
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Mach-Zehnder Lattice AI Free evolution
laser phase A¢k, laser phase Ag¢L,, phase A¢LE,
b1 1 — 202 + @3 (1 — ¢2) — (3 — Pa) 2 [dt a(t)Az(t)
Noisy X (%) (1) oL(t) a(t)
Agi(X) Jit 1) Jit (1) b Jit (6)X (1)

g(t) —|__|— 1] ' J—l_

ke ke
f X —a — wg _w_g 1
16]453 . wT 16k§ . wT\ . w(T +T") 4k2.T? wT
|H (w)]? W4H sin’ <2> 7351112 (2> sin® (2) Z)Hz sin’ (—2 )

Table 6.1: Vibration phase sensitivity expressions for relevant interferometer phases. These
phases are discussed in terms of a noisy variable X, and a function f that maps X to a
common variable, the acceleration a.

measured population ratio leaves the linear regime, and the phase spread becomes difficult
to infer from the population ratio spread. To prevent too small or large of a phase variance,
we feed-forward on the voice coil drive amplitude to keep the resulting phase spread in the
linear region on the slope of the fringe.

The vacuum chamber is supported against gravity on seismic attenuation air pads with
a resonance frequency f.s = 2.7 Hz. The applied force F,. pushes against the spring force
from the air pads, defining a new equilibrium position z, for the sum of gravity plus these
two spring forces. All data was taken with f < 1 Hz, sufficiently below f.es so that the
transfer function of the air pads is approximately flat. The air pads respond quite linearly
to pushing in this low frequency limit, and so we can consider the motion of the vacuum
chamber to track the equilibrium position zeq.

A voice coil force at frequency f is linearly proportional to an applied current I(t) =
Iysin(2w ft). This implies a motion of the vacuum chamber z(t) = zg + 0z sin(27 ft), where
0z is the amplitude of the position displacement, and is proportional to Iy. The resulting



CHAPTER 6. LATTICE ATOM INTERFEROMETER 101

c

o 1.0
0.8 ®
0.6 ) © o )

0.4 e © o o SN
0.2

0.0

ExcitationFract

9.76 9.77 9.78 9.79 9.80 9.81 9.82 9.83 9.84
9a [m/s?]

1.0

ExcitationFraction

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Voice coil drive frequency f[Hz]

Figure 6.12: Raw transfer function data of a preliminary run, which used a 2 second hold
time. Top. An interference fringe is measured for this interferometer setup (grey circles),
with a pulse separation time of 7" = 0.516 ms and hold time of 7 = 2.0 s. The fringe is fitted to
a sine, where the phase-sensitive zero-crossing corresponds to g2 = 9.066) (red circle), and the
phase-insensitive maxima corresponds to g7'** = 9.816 (green circle). Bottom. Successive
measurements (grey circles) toggle between a phase-sensitive setting ¢° (red line) and phase-
insensitive setting ¢g7** (green line), as the voice coil pushes on the vacuum chamber at a

«
frequency f. The drive frequency is swept across several oscillations of the transfer function,
which for 7 = 2 s, is expected to oscillate with f}** = 1/7 ~ 0.5 Hz. Phase measurements
at the middle (¢°) and max (¢g™*) of the fringe are well-resolved for drive frequencies of
f =~ 0.5, 1 and 1.5 Hz, matching the anticipated oscillations of the transfer function. The
phase-insensitive point at the fringe maxima (green line) acts as a contrast reference for the
duration of the measurement to stabilize against technical drifts. The phase-sensitive point
on the slope of the fringe (red line) phase shifts linearly in response to vibrations induced
by the voice coil drive. The transfer function measurement in Fig. reports the variance

of phase-sensitive measurements, i.e. variance of data scattered around the red line.
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acceleration is .

a(t) = —— 2 sin(2r ft) 1= ag(f) sin(27 ft). (6.41)
(27 f)

While §z does not depend on f, the voice coil’s applied acceleration aq(f) is frequency
dependent. We thus feed-forward a frequency-dependent amplitude proportional to (27 f )2,
to compensate and flatten the amplitude of the drive current. The current that drives the
voice coil is therefore

I(t) = 2nf)° Iosin(27 ft). (6.42)

Controlling the frequency dependent drive amplitude yields an experimentally measurable
phase variance across the full frequency range. We then correct for the extra factor of (27 f )2
in the drive to extract the transfer function |Hf (w)|?| and to plot it in Fig. [6.8] The overall
amplitude of the data is fitted to the normalized transfer function; this overall scale factor
is the only free parameter in Fig. [6.8

6.6 Outlook

Overall, the lattice interferometer realizes an attractive scheme for metrology by holding
atoms to directly probe the potential energy difference, rather than dropping atoms to mea-
sure accelerations. This approach strongly suppresses vibration noise while extending inter-
rogation times in a compact volume, overcoming the two major limitations (vibrations, size)
in conventional atomic gravimetry. This lattice geometry is therefore well-suited for preci-
sion gravimetry [38|, with exciting prospects for geophysics [22], and fundamental tests of
short-ranged forces such as dark energy [19, 20|, Casimir forces [100], or short-ranged gravity
[101]. Additionally, measuring the phase due to a potential without subjecting the atoms
to an acceleration represents a milestone towards observing a gravitational analogue of the
Aharonov-Bohm effect [39], which can provide a novel atom-interferometric measurement of
Newton’s constant G [12] through the gravitational potential.
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Chapter 7

Intracavity trapped atom interferometer:
Technical details

We now present some experimental details of our trapped atom interferometer [43].

We begin this chapter by describing how we reached seconds-scale lifetimes for atoms in
our cavity lattice. The lattice lifetime is relevant to achieving long coherence times because,
put simply, there are no interferometers left once all the atoms are lost from the lattice. We
use a shallow, 1D, vertically oriented cavity lattice to hold atoms, and we had to address
several sources of atom loss in order to sustain seconds-scale atom lifetimes in the lattice.
We describe the major loss sources in this section— namely, the relative stability of the
lattice laser and science cavity, the vertical alignment of our cavity mode to gravity, and
the influence of background gas collisions due to finite vacuum pressure. When the atom
number drops below < 50,000, the detection noise from fluctuating imaging light dominates
the fringe uncertainty. We describe an image processing technique we used to suppress this
detection noise and better estimate the interferometer contrast at low atom numbers.

Next, we discuss the big open question of spatial contrast decay. We present our mea-
surements of contrast loss as a function of lattice depth, and show some examples of stray
light which we have identified and resolved in order to reach seconds-scale coherence in our
trapped interferometer. Hopefully these examples help illuminate the very low light levels
our interferometer is sensitive to, and give context to the types of dephasing we considered
and searched for. To conclude, we show some observations of residual cavity mode imperfec-
tions, which have encouraged us to now upgrade our in-vacuum cavity mirrors for the first
time since initial construction of our experiment [55].

7.1 Seconds-scale atom loss in the cavity lattice

The loss rate of atoms from the lattice is, in principle, unrelated to the coherence of our lattice
atom interferometer. In real experiments however, atom loss reduces the atomic signal to
counts comparable to imaging light fluctuations; see the earlier discussion in Section |3.3.3]
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Below <50,000 atoms, detection noise is our largest noise source. While sufficient averaging
could overcome detection noise, it is experimentally difficult to hold the system sufficiently
stable for a long enough time. Consider a 20-second interferometer; with 20 points per fringe,
it takes about 7 minutes to record a single interference fringe, and almost 30 minutes to collect
4 fringes. While the experiment can be overall stable for hours or days, long hold times
exaggerate the sensitivity to both short- and long-term relative laser-cavity instabilities.
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Figure 7.1: Atom number and ground-state fraction of atoms caught in |F = 3,mpr = 0)
and held for a time 7 in a 866 nm cavity lattice. Upper: Atom lifetime scan in a shallow
~ 8 F. lattice. An exponential fit shows a characteristic lattice lifetime of 7.4 seconds.
Lower: Ground-state fraction of atoms as a function of hold time 7. Atoms caught in
|F' = 3,mp = 0) can scatter and spontaneously decay into either |F' = 3) or |F' = 4), with
a single photon scattering rate determined by the laser detuning, and branching ratios for
various decay channels determined by Clebsch-Gordon coefficients. An F' = 4 blowaway
laser pulse in the detection region separates the two internal states for atom counting. Note
that this measurement averages the output port population over all mpg levels; with applied
magnetic field gradients, we have not see strong indications of populations in mg # 0 levels.
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Figure shows the exponential decay of atom number in the lattice as a function of
hold time 7, as was typical for our experiments in [43|. Atoms remain held in an Uy = 8E,.
lattice (peak depth) for a characteristic 1/e time of 7.4 seconds. While the effects discussed
here may also contribute to ensemble phase spreads and dephasing, or single-atom contrast
loss, we primarily consider their contribution to atom loss.

7.1.1 Multi-faceted stabilization of the lattice laser

This section focuses on the many ways that we had to stabilize our ECDL lattice laser to
reach seconds of hold time in a cavity lattice. We describe the lattice laser’s Pound-Drever-
Hall frequency stabilization to the transfer cavity (initially described in Sec. , the passive
vibration and acoustic isolation we provide for the laser itself, the intensity stabilization of the
lattice light incident on the cavity, and most importantly how relative fluctuations between
the lattice laser and science cavity resonance translate into intensity noise on our intracavity
lattice. In particular, intracavity lattice intensity noise at twice the axial trap frequency
causes parametric heating of atoms from the lattice, which is likely a primary driver of our
atom loss; overcoming this limitation requires high short- and long- term relative stability
of our lattice laser and science cavity resonance.

Lattice laser frequency stabilization to the transfer cavity

Section describes our Pound-Drever-Hall (PDH) frequency stabilization of the lattice
laser to the transfer cavity, with the 866 breadboard schematic shown in Figure Here,
we note that it was critical for us to use a free-space electro-optic modulator (EOM) to
generate the PDH sidebands, rather than use a fiber EOM as we had originally planned.
Using the fiber EOM to create PDH sidebands did not allow us to gain sufficient control of
the residual amplitude modulation (RAM) in the PDH error signal.

An EOM is a birefringent crystal which phase modulates along one axis, but not the
other; the imperfections in laser polarization alignment to the modulation axis can show
up as residual amplitude modulation in the demodulated PDH error signal. RAM causes
drifts of the error signal’s vertical offset, changing the absolute frequency that the lockpoint
corresponds to. Our initial plan had been to lock the laser with a electronic sideband
lock scheme, where both the PDH fppy and tunable offset f gt frequencies are generated
electronically and used RF-modulate a fiber EOM [40, 57]. With this approach however, it
was incredibly difficult to stabilize the RAM in our fiber EOM lock, likely due to fiber EOM
manufacturing difficulties in managing the fiber-to-EOM crystal interfaces.

An approach we could have taken then (and can take in the future) is upgrading to
a narrower linewidth transfer cavity, where the same RAM drift corresponds to a smaller
frequency shift of the lock point. Currently, our transfer cavity linewidth is Avfy g ~ 2
MHz; it should be straightforward to reduce this linewidth by 1-2 orders of magnitude, which
would directly translate into reduced RAM and more stable locks. Additionally, it may even
allow the RAM from using a fiber EOM for PDH to become manageable.
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We got around this problem (unstable RAM in fiber EOMs) by instead using a free-space
EOM to control the fppy phase modulation. For us, using a free-space EOM for the fppy
sidebands allowed us to manually align the laser polarization to EOM modulation axis, which
let us sufficiently control RAM in our lattice PDH error signal. We modulate the fiber EOM
at fomset 1O create tunable copies of the PDH error signal at each f g manifold. The low V.,
and broadband modulation of the fiber EOM (vs. the high V, and resonant RF modulation
of a free-space EOM) provides PDH lockpoints which are electronically tunable by 1 free
spectral range of our science cavity, ensuring that a co-locking point between our 3 cavity
lasers (780 tracer, 852 Raman, 866 lattice) can always be achieved.

Lattice ECDL passive vibration isolation from seismic and acoustic noise

The external cavity diode laserl] we use as our lattice laser is highly sensitive to mechanical
disturbances (seemingly, much more so than other ECDL’s...). As a result, the lattice laser
is mounted onto a 60 mm thick breadboard, which rests on a passive Minus-K vibration
isolation platformﬂ which altogether is enclosed in a roughly 1/2-inch thick acrylic box
(with a lid) that is lined with soundproofing foam.

Still, mechanical disturbances from the optical table, or high frequency room acous-
tics and vibrations, can unlock or significantly perturb the lattice laser stabilization to the
transfer cavity. The laser is particularly sensitive to high frequency disturbances (notably,
dropping a screwdriver near the laser, as happens regularly in an optics lab..). This level of
mechanical sensitivity for a locked laser is typical of our other locked ECDLs.

A straightforward upgrade would be to replace the lattice laser with a more mechanically
stable laser, whether it is another ECDL or, if higher power or more tunability is needed,
maybe even a Ti:Saph laser. Alternatively, with broader wavelength coatings, we could also
move to a more technologically convenient wavelength past the D1 line, such as 915 nm or
1064 nm. We bought this Newport ECDL essentially for historical reasons. Back then, we
had no idea to what extent the cavity could enable a trapped interferometer, and we wanted
the fastest and cheapest way to try a far-detuned lattice interferometer. It should be fairly
trivial to get a more mechanically stable, broadly tunable, and high power laser than what
we use now, but will require more money and time.

Lattice laser intensity stabilization into the cavity

We intensity stabilize the lattice laser after its fiber launch on the cavity breadboard and
before coupling into the cavity. We do not observe that lattice intensity stabilization has
any effect on the lattice lifetime, despite the servo showing a measurable improvement in
the intensity noise spectrum before the cavity. This further suggests that it is the dispersive
conversion of laser frequency noise into intracavity lattice intensity noise that drives atom
loss, as we describe next. We primarily use intensity stabilization to hold the power levels

!Newport Vantage Tunable Diode Lasers TLB-7115-01 with an 6800-LN Controller
2Xuejian won this Minus-K stage- thanks Xuejian!
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constant across day-to-day operation. The intensity servo compensates for drifts in the power
level delivered to the cavity from e.g. misalignments to the fiber input, lab temperature drifts,
etc; it cannot account for drifts of the circulating power due to e.g. the cavity coupling.

Cavity conversion of laser frequency noise to intracavity intensity noise —
lattice heating

Holding atoms in a cavity lattice exaggerates the lattice intensity noise, because the cavity
dispersively converts laser frequency noise into intracavity intensity noise. This means the
problem is no longer one of just laser intensity stabilization, but also one of laser and cavity
frequency stabilization. The relative frequency fluctuations include slow drifts due to e.g.
drifting lockpoints in the frequency stabilization servos, as well as fast noise from the finite
linewidth of the laser, or noise in the cavity length stabilization servo, whose bandwidth is
limited by low-frequency resonances of the science cavity piezo used to stabilize the cavity
length. We suspect that these dispersive intensity fluctuations are the primary reason for
atom loss in our lattice, because we notice that fast atom loss almost always correlates with
a poor lattice or cavity lock. Moreover, for experiments in free-space lattices, lattice heating
has been well-established as a source of atom loss [102].

The most critical intensity noise is the noise power at twice the axial trap frequency,
which we expect around 2 fi,a, ~ 18 kHz. We have calculated and previously measured the
axial trap frequency in a cavity lattice formed by our Raman laser, as shown in Figure [7.2]
The drops in atom number occur when the lattice is amplitude modulated at twice the axial
trap frequency, which drives parametric loss of atoms from the lattice.
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Figure 7.2: Parametric loss as a measure of the axial trap frequency. Lattice amplitude
modulation in a 852 nm lattice hold, as a measure of the axial trap frequency in the lattice.
Shaking the lattice at half the axial trap frequency maximally drives parametric loss of atoms
from the lattice. The trap frequency (Eq. is proportional to the lattice depth Uj.



CHAPTER 7. LATTICE ATOM INTERFEROMETER - DETAILS 108

Figure 7.3: Cavity FM-to-AM conversion of laser frequency noise to intracavity lattice in-
tensity noise. The green scope traces show the signal from a photodetector measuring the
reflected lattice laser power from the science cavity. Note how the noise on the reflected
intensity increases when tuning the lattice laser from cavity resonance (left) to 200 kHz off
resonance (right), in our 3.03 MHz linewidth science cavity. In the insets, the width of the
neon green line represents the finite lattice laser linewidth.

Fig. [7.3] shows an example of how much the intracavity intensity can change for a 200
kHz laser detuning from resonance in a 3 MHz linewidth cavity. We probe the circulating
power in the cavity by measuring the reflected power on a photodiode. The intracavity
intensity noise is sensitive to almost all of our laser locks, including the lattice laser lock to
the transfer cavity, the lattice laser linewidth, the cavity length stabilization servo which is
based on the tracer laser lock to the transfer cavity, and ultimately to the external cesium
reference that our transfer cavity is length-stabilized to. Controlling the lattice intensity
noise in the cavity is demanding on all of our laser and cavity servos.

Since [43], we have explored more complex locking schemes to further improve the relative
stability of the science cavity and lattice laser. First, we changed our science cavity length
stabilization servo to directly stabilize the science cavity length to the lattice laser, rather
than use an intermediate 780 nm tracer laser. This caused one major problem during the
lattice interferometer: as we turned the lattice on (~ 20 mW) and off (~ 10 uW), the reflected
photodetector input to the servo varies over a couple orders of magnitude. We resolved this
variable input gain issue by intensity stabilizing a pick-off of the reflected 866 nm light, i.e.
intensity stabilizing the input to this direct cavity-lattice servo. When the lattice laser’s lock
intensity was too high, e.g. 100 pW-mW instead of ~ 10 uW, we had complications in the
efficiency of our Raman beamsplitters.

Once we added the additional intensity servo to stabilizes the reflected lattice power,
locking the science cavity directly to the lattice laser really worked well, and rendered our
780 nm tracer laser obsolete. Furthermore, locking the science cavity directly to the lattice
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laser was experimentally convenient because the lattice lockpoint is electronically tunable via
the fiber EOM modulation frequency. This gives a broader and flatter tuning range than our
780 nm tracer offset frequency, which is tuned by a double-passed wide-band AOM that loses
diffraction efficiency at larger offset frequencies. However, the added intensity stabilization
to the PDH photodetector made this lock scheme more sensitive to optical alignment than we
would have liked, and there is furthermore not much space on the cavity breadboard, which
is suspended from the vacuum chamber. There are straightforward paths to making the
alignment more robust (e.g. a double-passed intensity stabilization AOM), but we decided
to stop here.

Once the cavity is locked to the lattice laser, we can implement the high bandwidth
cavity-lattice scheme from [103|. At low frequencies (<40 kHz, limited by piezo resonances),
the cavity length is locked to the lattice laser via feedback to the science cavity piezo. At
higher frequencies, the lattice laser is in turn locked to the science cavity length, by means of
feedback to the AOM frequency controlling the lattice intensity sent to the cavity— that is,
feeding back to the frequency of the AO used for lattice intensity stabilization (which feeds
back to the RF power driving the AOM). This scheme preliminarily demonstrated that high
frequency AOM feedback could improve the cavity-lattice lock bandwidth, and potentially
improve lattice lifetimes by several seconds.

While these more complex schemes are pretty cool and have been effective, their complex-
ity often leaves us less flexible than we’d like. Especially because we are largely studying the
spatial dephasing at seconds, rather than tens of seconds, of hold time, these more complex
lattice-cavity lock schemes are a bit overkill for our more typical day-to-day operation of 1-5
second interferometers.

7.1.2 Cavity tilt alignment

A 1D lattice is sometimes described like a stack of optical pancakes. I once thought of
holding the atoms in each pancake of our 1D cavity lattice, as holding atoms in an optical
“bowl.” In reality though, because we use a shallow and vertically aligned 1D lattice that is
just above the threshold to overcome Landau-Zener tunneling from gravity, each lattice site
actually hold atoms in more of a plate than a bowl. As the cavity mode (i.e. the plate) tilts,
the atoms Landau-Zener tunnel (i.e. fall) out of the lattice hold as they radially traverse the
mode. We have seen considerable atom loss from a 6-second ~8-E,.. lattice hold, when the
cavity mode is tilted in excess of ~1 mrad from the gravitational axis.

We have used several methods to determine the nominal tilt setpoint that maximally
aligns the cavity axis to the gravitational axis. In this section, we will take this opportunity
to describe three methods we have used to determine tilt setpoints over the course of this
thesis, illustrating the different avenues of inertial sensitivity we’ve played with: laser phase
in a free fall Mach-Zehnder atom interferometer, atom loss in a shallow 1D optical lattice,
and free evolution phase in a trapped atom interferometer.

Our active tilt feedback uses an electronic tiltmeter signal to feed back to air pads sup-
porting the optical table; see the supplemental of Ref. [20] and Matt Jaffe’s thesis [40] for
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details. We measure the tilt of our vacuum chamber using an electronic bubble levelf] at-
tached to the top of our vacuum chamber with an adjustable optics mount. The two analog
voltage outputs represent the projection of the vacuum chamber tilt along an arbitrary x-
and y- axis. An analog feedback loop zeroes the voltage difference between the measured
tilts and their respective setpoints by adjusting the air pressure in the optical table legs; the
pressure is adjusted by using a linear servo motor to actuate the handles of needle valves
attached to two diagonally opposed table legs. The servo time constant was set to about
1 minute, to ensure that optical table tilt servo acts much slower than the active levelling
pads between the vacuum chamber and optical table, which provide an additional layer of
vibration isolation for the vacuum chamber. This active tilt stabilization typically holds the
measured tilt to well within 50 prad (i.e. ~50 mV) of their setpoints.
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Figure 7.4: Measured variation of g as a function of x- and y- tilts of the cavity. The
horizontal axis is zeroed at the tilt setpoint, which corresponds to the voltage tilt offset of a
quadratic fit (solid red line) to measured data (blue circles). The measured values of g are
extracted from the phase of interference fringes recorded at each (x,y) tilt position.

We can now describe several methods we have used to determine the nominal tilt setpoints.

1) In a Mach-Zehnder gravimeter, the interferometer phase is given by the atom-
laser interactions of the beamsplitters A¢p, = keg - @, which is the projection of the atomic
position x along the laser ruler. However, atoms fall along the gravitational axis, while the
laser beam is tethered to the lab frame with all its vibrations and tilts. Vertically aligning
the interferometry laser beam k.g to the gravitational axis g along which atoms fall thus
allows the acceleration measurement to be first-order insensitive to tilts of the cavity mode:

A¢L = (keff ' g)T2
= keggT? cos 0 = keggT?(1 — 6 + ...) (7.1)

Our active tilt stabilization was first installed during our second chameleon measurement
in 2016 [20] to suppress a tilt systematic which arose from the source mass systematically

3 Applied Geomechanics 755-1129 + Model 781 Signal Conditioning Unit, in "low gain" mode with 1.0
urad/mV sensitivity
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tilting the vacuum chamber between “near” and “far” positions from the atom interferometer,
mimicking an acceleration that changed with source mass position. For this experiment, the
tilt setpoint was determined by using our MZI to maximize measurement of g as a function
of x- and y- tilt, as shown in Figure [7.4] This involved measuring how interference fringes
phase shift and change frequency as a function of the cavity tilt.

Radial cloud width oscillations
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Figure 7.5: Radial trap oscillations. Left: Radial trap frequency measured by observing
oscillations in both the atom cloud size (upper left) and the transverse cloud position (lower
left) as a function of lattice hold time. Gaussian fits the atom cloud allow for measuring
oscillations of the cloud size (corresponding to the 1-o width, shown in red circles), and
the cloud position (green circles). The radial trap frequency is extracted from sinusoidal
fits (solid lines) to the trap oscillations. Right: Calculation of optical potential for a tilted
lattice, illustrating how the trap depth is effectively reduced by a 6 = 1 mrad tilt of the
cavity with respect to Earth’s gravity.

The radial trap frequency in the 1D lattice is low (wyagial & 27 X 2.15 Hz), so even a small
projection of Earth’s gravity along the radial direction will cause atoms to leak out the sides
of the trap.

2) In a lattice hold, atom loss results from cavity tilts because our 1D lattice has
weak radial confinement. The radial trap frequency in the 1D lattice is low (wyadial = 27 % 2.15
Hz), so even a ~mrad projection of Earth’s gravity along the radial direction will cause atoms
to leak out the sides of the trap. Fig. (right) shows a calculation of the effectively reduced
trap potential for a # = 1 mrad tilt of the cavity mode.

We employ active tilt stabilization for our lattice interferometer experiments, where the
nominal tilt setpoints were found by maximizing the atom number in an 8 F., 7 = 6
second lattice hold. This procedure was performed maybe 2 years after the previous MZ
determination of the tilt setpoint, during which time the tilt stabilization had been largely
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unused to simplify the day-to-day operation of the experiment. In fact, we only became
aware of the tilt sensitivity because the table leg pressures were adjusted while checking
whether the optical table was floating; after adjusting the table leg pressures, we suddenly
had ~10x less atoms for the same optical power incident on the cavity, same cavity coupling,
and same experimental sequence. It took the whole day to realize that the changing optical
table tilt was responsible for this; the following week, we optimized the atom number using
a long lattice hold to determine the tilt setpoints.

3) In the trapped interferometer, tilts also affect the interferometer phase
by reducing the gravitational potential energy difference across the arm separation in the
hold. This in turn reduces the fringe frequency as a function of hold time 7, as expected from
calculation of the lattice interferometer’s free evolution phase A¢rg. Aligning and stabilizing
the cavity tilt allows an inertially sensitive measurement based on differential measurement
of A¢pg at varying hold times 7

.9z cosf gA
Ay = 159 hZCOS T~ mcg Sl -6+ .. (7.2)

to become first-order insensitive to cavity tilts 6 from the gravitational axis.

7.1.3 Vacuum pressure

One expected source of seconds-scale atom loss in cold atom experiments is through collisions
with background gas particles, due to finite vacuum pressure. For typical atom interferometry
experiments with single thermal atoms (e.g. the ones in our lab), vacuum pressure had not yet
usually been a significant issue for either contrast or atom loss. So we were somewhat caught
off-guard by our sensitivity to vacuum pressure. Our trapped interferometer is sensitive to
collisions between trapped atoms and background gas particles, which can be moving with
thermal velocities ~300 m/s, meaning that any collisions with background gas particles will
almost certainly cause atoms to leave the lattice.

Figure [7.6| shows our measurement of the trap lifetime as a function of the measured
vacuum pressure. While the ion gauge (Varian UHV-24) shows a pressure of p &~ 4 x 107!
Torr, this gauge underestimates the in-situ vacuum pressure in the trap region because this
gauge is installed almost directly in front of our titanium sublimation pump (ti-sub), which
is likely the lowest pressure region in the entire chamber.

To sublimate titanium and coat the interior walls of the vacuum chamber, we set the
current on the controller to run ~45 Amps through the ti-sub filament for about 1-2 minutes
at a time. Our controller automatically ramps the current up to its set value. The controller
also auto shuts off after fixed time of flowing the current; just resetting the knob fixes this,
and it’s not really a problem. Every several months, it can help to run the ti-sub multiple
times: the first time, running the current until the pressure on the ion gauge spikes and then
decreases or stalls before turning it turned off. Then waiting a few minutes and running the
filament again, ideally letting the pressure decrease a bit between runs. Repeating maybe
3-5 runs in fast minutes-ish sequence should be sufficient; at the end, the ti-sub should feel
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Figure 7.6: Fitted 1/e decay times (blue dots) of atoms from the cavity lattice as a function
of the measured vacuum pressure on a relatively distant ion gauge, which underestimates the
in-situ pressure in the trap region by a factor of about 3-5. Lattice lifetime measurements
were taken after running the titanium sublimation pump, which first spikes the vacuum
pressure and then slowly pumps down the chamber. As the vacuum pressure decreases over
hours, we measure the atom number as a function of lattice hold time 7, and fit the atom
loss to obtain a characteristic lifetime 7,. for atoms in the lattice hold (black circles) as a
function of measured vacuum pressure p on a distant ion gauge. The error bars correspond
to 1-0 uncertainties in the fitted lifetimes.

hot to the touch. It may then be nice to wait several hours and run it again, or wait a couple
days and run it again too. If the pumping seems to be slower than normal, it may be time
to move onto the next ti-sub filament. Overall, the sublimated titanium layer effectively
increases the pumping speed for more reactive particles, most usefully hydrogen, by causing
them to react with the titanium deposited on the walls of the vacuum chamber; this removes
gas particles and reduces the vacuum pressure in the chamber, thus reducing the rate of
background gas collisions.

To note, as of writing this thesis, Cris and James have finished our recent vacuum upgrade,
and pumped our vacuum chamber back into the mid-10~!* Torr range! A secondary ion gauge
has now been added to the “Computer+Up” flange of the MOT chamber. This second gauge
is farther from the titanium sublimation pump (with no direct line of sight), which should
allow for more accurate measurement of the vacuum pressure in the atom trapping regionﬁ.

4Preliminarily, the new ion gauge measures the pressure in the main chamber to be about 3-5 times
higher than previously reported pressure on the ion gauge near the ti-sub.
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7.1.4 Image processing for the detection of small atomic signals

We detect the number of atoms in each interferometer output port using fluorescence imaging,
as described in Section [3.3.3] However, the near-resonant light which excites the atoms
also contributes a large background signal on the camera caused by scattering off of other
components in our system. Notably, there was a dirty viewport directly opposite to the
camera (see Fig. , which is exactly in the path of the imaging beams! As of writing,
this viewport was cleaned in the recent vacuum upgrade.

For imaging, we isolate the fluorescence signal from the atoms by 1) collecting the image
Itore including atoms and background, 2) waiting for 40 ms during which the atoms continue
falling away, 3) taking a second image Ij,ex Which contains only background light, and 4)
subtracting the two images,

Iatom = [fore - Iback (73)

to obtain the background-subtracted image I, from which we extract the atomic signal.

However, when using this approach, we find that the uncertainty in [, is dominated
by the fluctuation of the background light during the 40 ms gap between collecting the two
images. This uncertainty in the atomic fluorescence image dominates the uncertainty in the
population asymmetry A, which is calculated from I o,.

Principal component analysis for accurate background subtraction

Interference fringes are readily visible with standard subtraction of the background image
(Eq. for hold times up to 15 seconds. When the participating atom number drops
below ~50,000 atoms however, the imaging noise from background light can become almost
comparable to the contrast. For the long fringe shown in Figure [6.5] we calculate the atomic
signal 3 .

Totom = [fore — Tyack (74)

using a more accurate estimate fback of the true background image, constructed by using
the information in I,. which is outside of the regions containing atoms. Our approach
is similar to that discussed in Chapter 4 of Ref. [104] in the context of removing fringes
from absorption images. Our procedure is detailed in the next paragraph; in brief, we begin
by calculating an orthonormal set of basis images B, which represent the typical spatial
structures observed in the background images. Then, for each measured image I, we
construct e, by adding together the basis images with weights determined by their overlap
with the structures in /... outside of the regions containing the atom clouds.

This scheme relies on the fact that the spatial correlation in the background light between
different regions of the image is stronger than the temporal correlation in the background
light over the 40 ms delay between images. The procedure may be broadly useful when using
fluorescence imaging to detect small atomic signals; we were lucky to have Logan Clark work
with us for a summer, during which he developed and applied this image processing technique
to our setup. This technique for background estimation has already found use in other atomic
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physics groups that use fluorescence imaging, and thus face detection noise from scattered
imaging light.

Our procedure for constructing the background estimates fback proceeds as follows. Note
that each image may be thought of as a vector whose length is the number of pixels in the
image, such that standard techniques of linear algebra are applicable. First, we perform a
principal component analysis (PCA) on a large set of average-subtracted background images,
which produces an orthonormal set of basis images B,,, sorted in ascending order by the
amount of variance in the set of background images which occurs along each basis image.
In addition to the basis elements produced by PCA, we prepend an additional element
representing the pixel-wise average across all the background images as the element Bj.
We next apply a Gram-Schmidt orthonormalization procedure to produce a modified set of
basis images B, which are orthogonal in the region which does not contain the atom clouds,

satisfying the condition (én oM > . <B~m oM > = 0,un, Where the mask M is defined as,

M= {1 region without atoms (7.5)

0 regions containing atom clouds

Here, the symbol - denotes the inner product and the symbol o denotes element-wise mult-
plication (the Hadamard product). After constructing this basis, for each image I4, _ we

calculate the overlaps O7 = <B~n oM > (I JZOT& o M) between the image and the first 35 basis

elements in the region which does not contain atoms. We next construct the background esti-
mate [}, , = Ziio O} B,,, which includes the estimated background in the regions containing

atoms. Finally, for each image j we calculate the atomic signal I, = =T }Om

- Igack'
In our analysis, we find that the use of Iom typically reduces the excess noise caused by

background light fluctuations by a factor of 1.6 relative to I som,.

7.2 Spatial contrast decay: known unknowns

Interferometer sensitivity increases with longer hold times 7 and larger wavepacket separa-
tions Az, with a signal-to-noise related to the contrast. From Fig. [6.5c, at the smallest
spatial separation (Az = 3.9 pum), we measure a 1/e contrast lifetime in the lattice of
Tc(Az) = 8.4(4) seconds. The contrast lifetimes decrease when holding larger wavepacket
separations (Fig. ), presumably from residual imperfections of the cavity-filtered optical
lattice beam. Understanding the source of this spatial dephasing is the final topic of this
thesis, and addressing this limitation is critical if we are to bring our trapped interferometer
to the sensitivites of modern free-fall atomic gravimeters.

In this section, we show select observations and examples that aim to capture our current
understanding of contrast decay in the lattice interferometer. First, we show how contrast
decay scales strongly with lattice depth, despite how, in principle, the interferometer coher-
ence should have no fundamental relation to the trap depth. Next, we show examples of
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“stray” light, which we have identified and resolved as the cause of seconds-scale ensemble
dephasing. These examples set the tone for the low light levels that our interferometer is
sensitive to; we hope we have resolved most stray light issues unrelated to the cavity mode,
but of course absolute control of stray light is not an easily solvable problem. Next, we show
some measurements of cavity mode distortions in a test cavity we constructed to mimic
our in-vacuum cavity. Judging from our stray light sensitivity, the mode distortions of our
test cavity and their variability along the optical axis, are concerning. Still, the test cavity
does provide an in-situ measurement of our actual cavity mode, just a reference point. To
characterize imperfections of our actual cavity, we image the scatter of our cavity mode
from the mirror surfaces using a CCD camera placed at a grazing angle to the mirror. We
find that the cavity mode scatters considerable light off the mirrors, making the stray light
from mirror surface loss another a plausible source of our observed contrast decay, and one
which suits our observations of spatial dephasing with both increased lattice depth and larger
wavepacket separations. A last factor to consider is the finite beam divergence of the cavity
mode, which changes the beam size from wy = 718 pm at the flat mirror (i.e. waist) to 732
pm at the lower mirror for A = 852 nm light. It will be interesting to try a symmetric cavity
and see whether our beam divergence introduces enough trap inhomogeneity to cause this
contrast decay.

7.2.1 Contrast loss as a function of lattice depth

While contrast loss with hold time and wavepacket separations limit our sensitivity, it is also
useful to characterize contrast loss with respect to lattice depth, as a search for technical
sources of contrast decay related to our cavity mode.
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Figure 7.7: Contrast decay with lattice depth. a. Contrast decays with increasing lattice
depth for various separations. b. Fitted phase shift as a function of lattice depth for
wavepacket separation times of 7' = 2.17 ms and T" = 5.00 ms.

While contrast is fundamentally independent of the lattice depth, Fig. [7.7h presents our
observations that higher lattice depths consistently cause faster contrast loss. Our lattice
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laser power is quite limited (< 30 mW incident on the cavity), and within the range of
accessible lattice depths, the data has been inconclusive on whether there is a phase shift
associated with the higher lattice depths (Fig. ) If the contrast loss were purely due
to an ensemble phase spread caused by beam divergence of the cavity mode, then we might
expect larger wavepacket separations to see a larger difference in the lattice intensity as
the interferometer arms are far-separated along the cavity axis. Thus, we may expect a
differential ac Stark phase shift that increases with wavepacket separation. The phase shift
data is somewhat inconclusive because we cannot go to higher lattice depths, and cannot
hold for long enough with our near-detuned Raman laser. Still, even without a phase shift,
our observations that contrast loss scales strongly with lattice depth suggest that our cavity
mode itself may be a source of ensemble phase spreads that lead to contrast loss.

Furthermore, our contrast decay has not been sensitive to the mode matching into TEMjy,
nor to the input alignment across transverse cavity modes. During the course of our mea-
surement, we increased our cavity coupling up to 80% by a more appropriate (larger) asphere
in the fiber out-coupler on the cavity breadboard. In our simple setup, this fiber asphere is
the only lens we use to couple into the cavity; as such, it determines both the beam waist and
divergence at the in-coupling mirror. A simple telescope would enable independent control
over beam size and divergence, but space is incredibly constrained on our cavity breadboard.
The breadboard must be suspended from our vacuum chamber because the chamber rests
on airpads, and is not directly mounted to the optical table.

This is to say, operating the lattice interferometer with extreme cavity misalignments,
poor mode matching, or poor coupling efficiencies, all do not seem to notably affect inter-
ferometer contrast when atoms are held with the same intracavity lattice depth. Any of
these conditions simply require more incident laser power to reach the equivalent intracavity
trapping intensities. And in this case, Fig. shows that the contrast decay scales very
strongly with the intracavity intensity. This is a strong suggestion that the imperfections of
the cavity mode itself cause contrast decay.

7.2.2 Contrast loss from “stray” light

We now show several examples of spatial dephasing from “stray light” which we have found
and resolved. These examples are likely common sources of stray light in atomic physics
experiments, as we had apparently operated with these conditions for years and never noticed
until held an interferometer for seconds.

1. Figure[7.8h shows contrast loss caused by a 1 mW “F = 4” blowaway laser pulse, shining
on an interferometer held in |F' = 3), for 10 us versus 1 ms (as was typical previously).
Reducing F' = 4 blowaway pulse duration from 10 pus — 1 ms immediately increased
the interferometer contrast by nearly three-fold, from 5.5% to 13.5%. Such blowaway
pulses are commonly used in atomic experiments to push away atoms in undesired
states. We apply blowaway pulses twice during the interferometer: once before the
lattice hold, to reject an unwanted pair of paths produced by the first beamsplitter pair;
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and again after the lattice hold, to reject atoms which have scattered lattice photons
and decayed into the alternate ground state. The blowaway pulse shines transversely
across the interferometer. When holding atoms in |F' = 3), we use F' = 4 blowaways
resonant with the 4 — 5’ transition, which are 9.2 GHz detuned from 3 — F” resonance.

a
4-5' middle blowaway pulse, no hold Science shutter open/closed, T = 3 s hold
(~1 mW resonant light, Az=40 um) 08 (~0.1 uW leaked power, Az=7 um)
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Figure 7.8: Examples of identified instances where stray light has caused spatial dephasing.
a: Contrast loss due to the duration of the “F = 4” blowaway pulse (~ 1 mW) that occurs
mid-interferometer, for Az ~ 40 ym. This data is taken without the hold because blowaway
pulses shine outside of the hold time, and thus their effects are independent of 7. Decreasing
the blowaway pulse duration from 1 ms (red) to 10 us (blue) increased contrast nearly three-
fold, from 5.5% to 13.5%. b: Contrast loss from leaving open the mechanical Raman shutter
open during the lattice hold, leaking 100 nW of light to the cavity input. When holding a
spatial separation of 7 um for 7 = 3 s in the presence of this leaked 852 nm cavity lattice,
we see strong dephasing (green) when leaving the Raman shutter open. Closing the Raman
shutter during the hold (black) immediately improved contrast by an order of magnitude,
from 1% to 10%.

2. We found that it was imperative to hold the Raman shutter closed during the seconds-
scale lattice holds. Figure shows contrast loss from not closing the mechanical
shutter placed between the Raman laser and the cavity input (“Raman shutter”) during
the hold. Specifically, this shutter was placed to block the light from the first diffracted
order of an AOM, which was OFF during the lattice hold. We had originally just
diminished the AOM drive without closing the mechanical shutter, because after all,
there was still a lossy (~- 6 dB insertion loss) fiber EOM between the AO and the
cavity input. Still, we measured ~ 0.1 uW of Raman light at the output of the fiber
EOM when the shutter was off, and this leakage light is optically aligned into the
cavity mode. A cavity finesse of F = 132 at 852 nm amplifies this ~100 nW of
leakage interferometry light by a factor of F/m = 42, creating an incommensurate 852
nm lattice with ~ 4 yW circulating power. As the 866 nm lattice light holds atoms
with Az = 7 pm along this incommensurate (and accidental) 852 nm cavity lattice, we
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observe strong dephasing in a 7 = 3 second lattice hold when the shutter was left open.

After closing the shutter, contrast increased immediately by an order of magnitude,
from 1% to 10%.
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Figure 7.9: Spatial contrast oscillations in a 1-second hold due to dephasing from incom-
mensurate 780 nm background lattice of varying power levels, for various spatial separations,
with matched pulse separation times T' = T7 = T». At 780 nm, the optical gain in the cavity
is only ~10 (see Table[3.2). a-b) 120 uW of power in an 80 nm blue-detuned incommensu-
rate lattice can dephase a 1-second interferometer with micrometer arm separations, if the
wavepacket separation is not aligned to the beat note between incommensurate lattices. c)
Raw data. At each setting of T', interference fringes are scanned by varying A¢r,, and their
contrast is extracted from sinusoidal fits to the fringe. d) Sketch of the incommensurate 780
nm lattice (blue), while atoms (clouds) are held in the main lattice (red), showing how the
optical potential from different lattices come in and out of phase along the cavity axis.
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3.

We observe spatial contrast oscillations due to dephasing from incommensurate 780
nm “tracer” laser, which we stabilize the cavity length to. To suppress the influence of
tracer light, we considerably reduced the amount of power in the cavity lock, from order
milliWatts, to our now typical power of about 2 yW in our cavity lock to the 780 nm
laser. Using lower tracer powers did not measurably improve contrast, and moreover
would have required more sensitive photodetectors for the reflected cavity signal. Note
that at 780 nm, the cavity has only finesse of only F/ = 33, for an optical gain of
only about 10 (see Table . For high and lower tracer powers for the cavity lock,
contrast is observed when the wavepacket separation matches the beat note between
the 780/866 incommensurate lattices. These superimposed lattices re-phases every ~9
sites along the 866 nm lattice. As a result, contrast decay curves in Fig. [6.5c,d are
only measured for wavepacket separations spaced by 9 lattice sites Az = n(9d).

When the 780 nm tracer light is sufficiently low, e.g. in the pink scan of Figure [7.9p,
we also find high spatial frequency contrast oscillations, which occur at the lattice
period d rather than 780/866 beat note period 9d. These fast contrast oscillations
are caused by lattice modulation of the wavepacket’s spatial structure, as discussed in
Section [6.4.1] The nodes of the fast contrast modulation correspond to nodes along
the beating interference shown in Fig. as the scans here in Figure used T =T,
(i.e. Az; = Azy), and varied A¢y, rather than A¢pg to scan interference fringes as a
measure of contrast for each pulse timing configuration.

Cavity mode distortions and their spatial correlation lengths
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Figure 7.10: Cavity mode distortions of a test cavity. The first image shows the transmitted
cavity beam after Fourier filtering of fast spatial components in the image; the mode is
imaged onto a CCD camera placed directly behind the flat test cavity mirror. The next
image shows the mode residuals relative to a 2D Gaussian. The final image shows the
smoothed residuals, with a purple circle drawn at the beam waist.

Because our coherence lifetimes decay strongly for larger wavepacket separations and
higher lattice depths, we sought to understand what the residual imperfections of the cavity-
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filtered lattice beam might be like, e.g. at what level do mode distortions in a “typical”
optical cavity deviate from a perfect Gaussian beam, how do these mode deviations along
the cavity axis, and how can we characterize these mode deviations and their influence on
the interferometer?
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Figure 7.11: Spatial correlation of test cavity mode distortions along the optical axis. Top:
Residuals of the test cavity mode distortions evolve as the transmitted cavity beam propa-
gates over several inches. Data were taken by translating the CCD camera, and performing
the analysis of residuals shown in Fig. [7.10] The circle indicates the beam waist. Bottom:
Spatial correlations of test cavity residuals along the optical axis. Fitting to an arbitrary
model shows a characteristic correlation length of approximately 1.5 inches.

To tackle these questions, our awesome postdoc team did the following measurements
while I was out of town. A test cavity with a similar geometry to our in-vacuum science
cavity was constructed with whatever mirrors were on hand; this led to a test cavity with
a curved mirror with a 5 m radius of curvature and the same dielectric coating, opposite a
flat dielectric mirror through which the cavity mode could be transmitted and imaged.

Figure [7.10] shows the transmitted cavity beam through the flat mirror, as imaged on a
ThorLabs CCD camera directly behind the mirror. These images required Fourier filtering
to remove high spatial frequency fringes from light etaloning in the optics, in order to resolve
transmitted cavity mode’s percent-level deviations from a 2D Gaussian. Interestingly, these
residuals are independent of the cavity alignment and mode matching, stable in time, and of
course robust against beam translations on the photodetector surface. Independence from
the cavity coupling suggests that these residuals are a result of the cavity’s intrinsic mode
distortions. While similar residuals were observed for various mode positions, in the future
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it would be interesting to disentangle mode distortions of the intracavity beam due to mirror
surface conditions, from distortions introduced by transmitting the beam through the flat
mirror substrate.

Next, we measure how these mode distortions spatially vary along the optical axis, and
estimate spatial coherence length of these residuals. This is done by translating the camera
along the optical axis, away from the flat cavity mirror. Figure shows how the residual
mode distortions of the transmitted beam evolve spatially along the optical axis, with roughly
a characteristic correlation length of 1.5 inches for our test cavity.

To reiterate, the contrast decay we observe are due to spatial inhomogeneities that vary
along the optical axis. From our test cavity measurements, it does seem that for an essentially
randomly constructed optical cavity, these residual mode distortions exist, and their spatial
profile can measurably vary along the optical axis. This leaves residual distortions of the
cavity mode as a plausible explanation for our interferometer contrast decay. Still, these test
cavity measurements are only a reference point for the %-level mode distortions which can
be found in a realistic optical cavity. What we really need to understand our contrast decay,
is to perform these measurements for our in-vacuum optical cavity.

Our next-generation cavity will finally provide access to the transmitted cavity beam,
which is incredibly exciting because we will have an opportunity to better measure the
spatial structure of our in-vacuum cavity mode. In the old cavity, we could not perform
this transmission measurement because the flat cavity mirror was gold coated and glued to
a solid copper bullet, that entirely blocks the transmitted beam.

7.2.3 Scattered light from imperfect cavity mirrors

One methods we have used to characterize imperfections of our in-vacuum cavity mirrors is
to directly image the scatter from the mirror surfaces. To do this with a low background,
we place CCD cameras at a steep nearly a 90 degree angles to the mirror surfaces, as shown
in Figure Cameras are about 1-2 feet outside the vacuum chamber while imaging the
~ 720 um mode on the in-vacuum mirror surfaces. Should the cavity mirrors be absolutely
perfect and lossless, we would expect to see almost no light from the cavity mode scattered
transversely onto our cameras. Of course this is absolutely not what we see (doh): the mirror
surfaces allows the cavity mode to shines when locked on TEMg, resonance.

Figure shows scattered light from cavity mode off on both the upper and lower
cavity mirrors. For scale, in Fig. we are imaging the surface scatter from about 500
mW of circulating power in the cavity mode (i.e. about 15 mW of incident lattice power), as
is typical for interferometer lattice holds. This is a considerable circulating power, compared
to the uWs of far-detuned light that have caused dephasing in the past. We’ll note that
while this method provided a sensitive measure of the stray light scattered from our mirror
surfaces, we did not make a very quantitative measurement of the scattered light intensity.

It’s interesting (terrifying?) to ask what happens to scattered light from the cavity
mirror surfaces. For example, this stray light, scattered from the cavity mode off of the
mirror surfaces, could reflect off the shiny interior walls of the vacuum chamber and come to
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Upper cavity mirror, Laser @ TEM,, resonance

Figure 7.12: Imaging the scattered light from the upper and lower cavity mirror surfaces
with the lattice laser locked on TEM{, resonance, giving ~ 500 mW of circulating power in
the cavity mode for these images. The camera is out-of-vacuum and placed about 2-3 feet
away from the mirror surface, imaging a spot size of ~ 720 ym on the mirror surface. Note
the visible dust on the lower cavity mirror surface. We image the upper cavity mode through
the side mirror substrate; this upper mirror is 1/2”, gold coated, and flat. It is fun to note
that the mode is much dimmer when the laser is locked away from cavity resonance (i.e. no
resonant power enhancement), and that scanning through higher order cavity modes allows
us to image a larger spot size on the mirrors, while gaining a sense of the image’s spatial
scale based on features of various HG,,,,, transverse modes.

interfere with the main cavity beam, introducing high spatial frequency wavefront distortions.
Such a scenario would be compatible with our observations: if surface scatter from the cavity
mirrors were introducing stray light into our vacuum chamber during the hold, the spatial
dephasing from this stray light would naturally scale with increasing lattice trap depth, i.e.
increasing amounts of stray scatter.

Cavity mode translations across the mirror surfaces

Experiments which are too uncontrolled to confidently show data for, but which we have
attempted nonetheless, include translating the cavity mode around the mirror surfaces in
search of a higher quality location on the mirrors. For example, we might have hoped to find
a spot on the mirrors with less scatter, or a more dust free spot on the cavity mirrors where
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the scattered light (imaged in Fig. was minimized. Another sign might have been that
the cavity linewidth measurably increases at more lossy spots on the mirror surfaces.

We translated the cavity mode by using the slip stick in-vacuum piezos [40] to adjust
knobs on our cavity mirror mounts; it was relatively straightforward to translate the mode
by millimeters. With each mode translation, we imaged the scattered light from the cavity
mirrors (not very quantitative, as seen by Fig. and measured the cavity linewidth via
electronic tuning of the lattice laser’s fiber EOM sideband. We did not observe significant
variations of the cavity linewidth throughout our translations, though the scattered light did
show surface variations over the cavity mirrors.

We attempted to study interferometer contrast decay for a few different mode positions on
the cavity mirrors. However, this often required realignment of the entire atom interferome-
ter by millimeters to the north, south, etc, which made it difficult to perform a well-controlled
comparison of contrast decay for different mode locations. Translating the mode by a cou-
ple millimeters generally required re-calibrating magnetic fields for laser cooling and state
preparation, and realigning our transverse lattice (~mm beam waist) for Raman sideband
cooling. It is a bit hard to compare an optimized experiment at one location, to an unopti-
mized experiment at another. So while we did see variations in contrast decay for different
mode positions, it was not significant enough to conclusively attribute to specific spots on
the cavity mirrors.

7.3 Outlook for improved coherence times

Altogether, we believe it is very likely that residual imperfections of the cavity-filtered lattice
beam, whether due to e.g. beam divergence, intrinsic mode distortions, or scattered light
from the mirror surfaces, are a significant limitation to our contrast decay with wavepacket
separation, and 20 second coherence times for micrometer spatial separations.

As of this writing, our team moving forwards, postdoc Cris Panda and grad student
James Egelhoff, have finished an upgrade of our cavity mirrors! We will try a symmetric
cavity this time, where both mirrors are 1-inch in diameter with a 20 m radii of curvature.
The lower cavity mirror is glued to the ring piezo, and the ring piezo is now backed by a
hollow copper shell; this set up had previously been installed on the upper cavity mirror.
This time, the copper piezo mount has a hollow core for the cavity beam to pass through,
allowing us to image the transmitted cavity mode. Also, the copper mount for the ring piezo
is actually filled with lead this time, unlike last time where we had just thought it was for
years. Hopefully, mounting the ring piezo to this lead-filled copper shell will help extend the
cavity servo bandwidth and in turn, the lattice lifetimes.

Furthermore, based on our observations of the dephasing from stray light, and the light
scattered from our cavity mirror surfaces, there is reason to hope that clean, new cavity mir-
rors will improve our coherence lifetimes and allow for holding larger wavepacket separations.
Something to look forward to in the future (beyond the end of 2020)!
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Chapter 8
Outlook

The lattice interferometer realizes an attractive scheme for metrology by holding atoms to
directly probe the potential energy difference, rather than dropping atoms to measure ac-
celerations. This approach strongly suppresses vibration noise while extending interrogation
times in a compact volume, while providing an avenue to overcoming the major limitations
(vibrations, size) in conventional atom interferometry. This lattice geometry is therefore well-
suited for precise atomic gravimetry [38|, with exciting prospects for geophysics [22], and
measurements of localized potentials for tests of fundamental physics [19H21]. Fundamen-
tally, measuring the phase due to a potential without subjecting the atoms to an acceleration
represents a milestone towards observing a gravitational analogue of the Aharonov-Bohm ef-
fect [39], which can provide a novel atom-interferometric measurement of Newton’s constant
G [12] through the gravitational potential.

Notably, our use of a cavity-filtered lattice beam to trap an atom interferometer allowed
us to interrogate a spatially separated atomic wavepacket while it was suspended for 20
seconds in an optical lattice. This represents, to our knowledge, the longest coherence
time to-date for a massive object in a spatially separated quantum superposition state. As
we aim to realize even longer coherence times, and for larger wavepacket separations, our
demonstrations can continue to inform theories regarding the macroscopic limits of quantum
mechanics [105].

8.1 Future work on the lattice interferometer

Still, the necessary work remains to be done. It remains to characterize the lattice interfer-
ometer for real metrological use. We can begin to characterization the lattice interferometer
performance by considering real targets, such as measuring e.g. the source mass gravity to
characterize short-term sensitivity, or measuring e.g. the daily Earth-Moon tides to charac-
terize long-term phase stability.

This lattice geometry is, in principle, ideal for measuring localized potentials, such as our
source mass gravity. An interesting thing might be to observe the source mass gravitationally
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“disappear,” as the interferometer is held at varying heights along cylindrical axis of the
source mass. As the interferometer height crosses the center of the mass, the source mass
gravity should flip sign, crossing zero at the center of the cylinder. Our contrast decay
indicates that our current interferometer performance is almost, but not entirely, sufficient
to remeasure the source mass gravity. The limited spatial separations we can coherently hold
must be overcome in order for us to operate lattice interferometers with sensitivities better
than our own Mach-Zehnder interferometers.

Alongside improving the sensitivity to perform real measurements, we must also char-
acterize systematics. There are good preliminary signs that differential measurement of
A¢rg between short and long hold times can allow for a rejection of beamsplitter systemics,
which have been our most problematic phases as the cavity filters the frequency content our
beamsplitter light [20, |41]. Tt would be really useful if the lattice geometry can reject these
beamsplitter phases, and along with it, any phases that scale independently of hold time.

Using the lattice interferometer to measure the daily variations in local gravity ¢ due to
the Earth-Moon tides could be a useful method for characterizing the long-term stability of
our lattice interferometer. As an atomic gravimeter, our cavity interferometer did not have
the long-term stability required for tidal measurements, due to drifting cavity and laser locks
which cause fluctuating beamsplitter ac Stark phases over hours timescales. We were able
to reject these phases for differential measurement of cylinder-induced accelerations [19-21],
where we toggled the cylinder position every ~5 minutes (much faster than drifts in the ac
Stark phases). Hopefully, differential measurement of A¢gg in our lattice interferometer will
allow us to reject these beamsplitter phases, and restore our ability to accurately measure
absolute accelerations with long-term phase stability.

Alongside developing lattice interferometry for real metrological use, we also hope to
reach higher sensitivities with our setup. Ultimately, our goal would be to trap atom inter-
ferometers with not microns of vertical separation, but with millimeters or centimeters of
spatial separation, for seconds of hold time. There will be many issues to tackle along the
way, but holding large spatial separations would allow trapped interferometers to reach the
sensitivities of state-of-the-art atomic gravimeters, while offering vibration suppression in a
compact geometry.

Our new vacuum upgrade offers an exciting time to navigate renewed limits to our co-
herence. Based on our previous observations of stray light, and especially stray light caused
by the cavity mode scattering off our mirror surfaces, there is good reason to hope that our
new cavity mirrors will offer considerable improvements.
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8.2 Speculative new configurations

With different atoms

This lattice geometry is well-suited for precision gravimetry [38] and is potentially a good
candidate for on-chip or transportable inertial sensing with atoms. The possibility of bring-
ing mobile atom interferometers online has exciting prospects for e.g. geophysics [22], where
absolute and high precision gravimeters which can operate in the field are useful. In partic-
ular, one can also imagine using a different atom than cesium, such as rubidium, where the
laser cooling remains standard. A Rb lattice interferometer might be an excellent way to
realize a mobile trapped atom interferometer, as the required technologies at both 1560 nm
and 780 nm are well-developed and available in fiber, and one can use the same laser source
for lattice holds and beamsplitters.

With more elaborate mirror coatings and cavity geometries

With more sophisticated mirror coatings, one might also imagine coating the mirrors for high
lattice finesse at one wavelength while leaving a lower finesse at the beamsplitter wavelength.
Or, if using atoms with richer atomic structure such as strontium, coating the cavity mirrors
differently to address different wavelengths, e.g. low finesse on a beamsplitter transition (if
not using the clock state), high finesse for a far-detuned lattice hold, and high finesse for
the clock transition in order to allow strong atom-cavity coupling and dispersive cavity read
out.

One can also imagine using a cavity with more than two mirrors, such as a bowtie cavity,
which could allow a segment of the intracavity laser beam to be more planar than possible in
a 2-mirror cavity. This could help suppress ensemble dephasing caused by beam divergence.

Even within two mirror cavities, one can imagine using a smaller cavity with higher
finesse. The lattice interferometer makes such cavity geometries again compatible with the
requirements of precision interferometry. For example, the ability to hold the interferometer
renders our ~40 cm long cavity entirely unnecessarily long. Additionally, our large cavity
linewidth is no longer necessary to accommodate large free-fall distances and large Doppler
shifts of atomic transitions, because the interferometer sensitivity is now decoupled from the
atoms’ free-fall time. For example, our blackbody measurement required atoms to spend
about 130 ms in free fall, with beamsplitter pulses applied every 65 ms; during this 65 ms,
the Raman transition Doppler shifts by 1.5 MHz, about half of the cavity linewidth. By
contrast, in our 20 second lattice interferometer, the short pulse separation times (7" = 0.516
ms) come with a Doppler shift of only about 25 kHz.

8.2.1 Going quantum

The lattice interferometer thus may allow cavity geometries with strong atom-cavity coupling
to be compatible with the requirements of precise atomic gravimetry. Strong coupling could
be an exciting path to both bring atom interferometers to the shot noise limit of inertial



CHAPTER 8. OUTLOOK 128

phase measurement, and then beyond atom-shot-noise-limited inertial phase measurement
by generating and manipulating quantum correlations.

Stronger atom-cavity coupling for phase estimation beyond the SQL

While large thermal atom clouds are typically used for interferometry, their interference
is still single-atom physics because atoms in the ensemble are uncorrelated. That means
experiments interfering a thermal cloud of N atoms are performing N independent interfer-
ometers at once, and the measured interferometer phase A¢ is the ensemble average of the N
simultaneous experiments. As such, there is a phase uncertainty introduced by the discrete
nature of the individual atoms contributing to the measurement, that of atom shot noise
which gives rise to the Standard Quantum Limit (SQL) in this context. The SQL introduces
a fundamental phase uncertainty of A¢sqr = 1/ V/N radians to the phase measurement,
constraining the phase sensitivity attainable from interfering N uncorrelated atoms.

Leveraging quantum correlations to enable phase estimation better than the SQL is a
topic of much active research. However, the techniques used to generate correlations between
atoms are often at odds with the requirements of precision atom interferometers, which
require well-defined and well-separated momentum states; to-date, it does not seem that
entanglement between momentum states suitable for inertial sensing has been demonstrated.
Furthermore, atom interferometers have yet to perform shot noise limited measurements of
an acceleration-sensitive phase; state-of-the-art atom interferometers typically operate at
phase noise uncertainties far above the SQL.

There are many exciting proposals on how such squeezed atom interferometers can be
realized, but all require more complex experimental apparatuses than exist currently. Pro-
posals imagine a wide range of setups, such as interfering BECs (coherent atom sources) [106],
or using 3+ mirror optical cavities to entangle momentum states of thermal atoms [107, |108|.
Experimentally, apparatuses using 2-mirror cavities have been the ones to demonstrate the
largest spin squeezings to-date [109} [110].

Furthermore, it is worth taking a moment to appreciate where atom interferometry exper-
iments are today. Our experiment had been the first and only intracavity atom interferometer
operational for several years, and we use a simple 2-mirror, near-planar cavity, with very low
atom-cavity coupling. Only in the past few years have additional cavity interferometers ex-
periments begun coming online, and it will be exciting to see the new directions that future
experiments take.

Stronger atom-cavity coupling for dispersive interferometer read out

On a more practical note, strong atom-cavity coupling can help reduce detection noise,
which was the biggest noise source in our trapped interferometer [43| due to the limited
lattice lifetimes. With our current cavity, we have been able to read out the interferometer
using the collective vacuum Rabi coupling between atoms and our cavity mode. In this
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regime, atoms act like a piece of glass in the cavity, and we can count the number of atoms
in a given state by precisely measuring the change in cavity resonance.

Stronger atom-cavity coupling may, optimistically, allow our vacuum Rabi imaging to
detect fewer numbers of atoms with higher signal-to-noise than our fluorescence imaging.
Imaging atom number via the cavity spectrum not only reduces the noise in fluorescence
imaging from e.g. stray light hitting our camera, but would also enable us to read out the
interferometer from any location along the cavity axis, leaving our measurement untethered
from the detection region.

It would be amazing to use the vacuum Rabi splitting of our cavity mode to read out the
interferometer from anywhere along the cavity axis. At present, we must wait for atoms to
fall back into the detection region after interferometry, because that is where our fluorescence
imaging beams and CCD camera are aligned. Dispersive interferometer read out would be
especially beneficial for measurements of localized potentials [19-21|, where the optimal
holding location might be centimeters away from the detection region. Furthermore, using
the cavity mode for imaging preferentially reads out the interferometry signal from central
atoms, which can help mitigate contrast loss caused by the thermal transverse motion of
atoms within a finite-sized laser beam.

Measuring potentials at the shot noise limit

The most sensitive atomic gravimeters can reach amazing sensitivities of 42 nm/s* around
1 s and almost 4 nm/s? after 100 s [37], with room for improvement before reaching their
shot noise limit from 5 x 107 atoms of ~ 0.1 nm/s?. Their limiting noise source is from the
phase noise caused by vibrations [37, |38|, which is our Mach-Zehnder gravimeter’s largest
noise source; we have shown that vibration noise can be largely addressed by using long
lattice hold times (Section [43]). Gravimeters also face additional noise [111] from e.g.
the thermal motion of atoms, optical wavefront aberrations, laser/Raman phase noise, and
detection noise. The cavity’s ability to spatial mode filter both the cavity laser beam and
the atom cloud to strongly suppress noise related to the finite laser beam size and finite
ensemble temperature of the atom cloud.

If noise improvements via e.g. dispersive cavity read out, better atom trapping, or vibra-
tion phase noise suppression can bring experiments to the shot noise limit, it would represent
a technical milestone for atom interferometers. Until then, reducing the fundamental shot
noise limit reduces one small contribution to the total measured phase noise, alongside much
larger noise contributions from detection and vibration noise. Nonetheless, one can always
operate experiments with few atoms to ensure shot noise dominates the phase uncertainty;
in such a regime, it is possible to begin studying how quantum correlations can translate
into metrological gain for inertial measurements, while atom interferometers in parallel work
towards reducing technical noise. It is certainly exciting that one day, atom interferome-
ters could sense gravity or other external potentials with shot-noise-limited phase resolution
and, as laser interferometers have demonstrated [112} [113], apply quantum enhancements to
performing useful measurements.
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8.3 Unique operation of cavity atom interferometers

Realizing lattice interferometers with long coherence times has allowed a new approach
towards atom interferometry, and one which is uniquely suited to operation as a cavity
interferometer. With the lattice interferometer, one can imagine holding an arbitrary spatial
separation in a fixed location to optimally sample a localized potential. To bring atoms
to the desired location, one could transport atoms anywhere along the cavity axis using a
fixed velocity lattice which acts an atomic elevator. Then, one can perform a quick series of
large momentum transfer beamsplitters to rapidly separate the arms to the required spatial
separation. Or better yet, one could find a scheme to spatially separate the interferometer
arms with a guided lattice beamsplitter. The lattice then holds the atoms in place as they
accrue phase shifts from e.g. potentials sourced by a miniature, mobile, in-vacuum object.
After closing the interferometer, one can then imagine immediately reading out the fringe
signal via dispersive cavity read out based on the atoms’ collective vacuum Rabi splitting
of the cavity mode. This vacuum Rabi imaging would allow the interferometer to operate
at arbitrary positions along the cavity axis, no longer requiring that atoms return to the
detection region for interferometer read out.

It will be exciting to see the next generation of experiments bring new atoms and new
cavities into play for precision matter-wave interferometry. Cavity atom interferometry can
offer new approaches to quantum and precision metrology, with many practical benefits that
the work in this thesis has just begun to explore.
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