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Both governments and the private sector urgently require better estimates of the likely 1 

incidence of extreme weather events1, their impacts on food crop production and the 2 

potential consequent social and economic losses2. Current assessments of climate change 3 

impacts on agriculture mostly focus on average crop yield vulnerability3 to climate and 4 

adaptation scenarios4,5. Also, although new-generation climate models have improved 5 

and there has been an exponential increase in available data6, the uncertainties in their 6 

projections over years and decades and at regional and local scale, have not 7 

decreased7,8. We need to understand and quantify the non-stationary, annual and 8 

decadal climate impacts using simple and communicable risk metrics9 that will help 9 

public and private stakeholders manage the hazards to food security. Here we present 10 

an ‘end-to-end’ methodological construct based on weather indices and machine 11 

learning that integrates current understanding of the various interacting systems of 12 

climate, crops, and the economy to determine short to long-term risk estimates of crop 13 

production loss, in different climate and adaptation scenarios. For provinces north and 14 

south of the Yangtze River in China, we have found that risk profiles for crop yields 15 

that translate climate into economic variability follow marked regional patterns, shaped 16 

by drivers of continental-scale climate. We conclude that to be cost-effective, region-17 

specific policies have to be tailored to optimally combine different categories of risk 18 

management instruments.  19 

  20 

 21 

An increasing body of scientific evidence, derived from both observations and model 22 

simulations, indicates that the climate system never was, nor is it likely to ever be, 23 

statistically stationary10. Moreover, statistical characterization of slowly changing weather 24 

extremes is fraught with difficulties11. These stem partly from the potentially large effects 25 
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caused by lack of stationarity and partly from the existence of complex nonlinear processes 26 

and threshold effects. The assessment and the prediction of such effects, both deterministic 27 

and stochastic, on weather extremes depend on a number of interconnected drivers. For 28 

example, changes in weather variability season-to-season and year-to-year that affects food 29 

production derive from shifts in the statistics of decade-to-decade climate processes12,13. 30 

Thus, changes in the large-scale climate processes that drive both regional and global climate 31 

variability affect the annual onset of rainfall in the tropics and subtropics, as well as rainfall 32 

patterns in temperate latitudes, so playing a significant role in the variability of regional rain-33 

fed crop production14. The risk estimation methodology proposed here integrates large- and 34 

small-scale information, and is based on both observed and simulated data for weather, 35 

climate, crop vulnerability and economic conditions.  36 

The overall, end-to-end methodological construct is illustrated in Fig. 1. It relies on machine 37 

learning involving weather indices that characterize the vulnerability of crops to weather 38 

variability in different technological scenarios (Fig 1a).  39 

 40 

Figure 1 near here 41 

 42 

We here used a stochastic “weather-within-climate” downscaling approach that quantifies the 43 

interaction of low- and high-frequency climate variability (Fig. 1b) to determine the crop 44 

loss, risk profiles (Fig. 1d) for future climate scenarios.  These are then used to model the 45 

direct and indirect economic impacts subject to supply loss shock (Fig. 1e) and to determine 46 

optimum mix of risk transfer and mitigation policies in a particular region or country (Fig. 47 

1f). We assessed the potential of this methodological construct by using data for weather, 48 

crops, and the economy in four provinces (Shandong, Hebei, Guangdong, and Guangxi) of 49 

the People’s Republic of China, north and south of the Yangtze River.  50 
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 51 

Existing Integrated Assessment Models (IAMs) have attempted to provide first estimates of 52 

future possible costs of climate impacts on the economy subject to different global warming 53 

scenarios15,16. However, the sensitivity of these IAMs to individual economic parameters, 54 

such as the discount rate, has limited their usefulness. Taking this into account, the 55 

methodology presented in Fig. 1 focuses on the economic impacts driven by the local and 56 

regional characteristics of weather variability and climate state changes, the local response of 57 

the system considered (e.g. the crop production sector), and different scenarios of 58 

technological risk mitigation. 59 

 60 

Weather indices were devised as proxies of physical crop response to two of the main drivers 61 

of yield variability: precipitation variability and exposure to excess-temperatures. Other 62 

hazards such as cold shocks or radiation variability are not considered here. Observed 63 

historical daily weather data and soil databases for the studied provinces are used to simulate 64 

crop yields using mechanistic crop modelling. Daily precipitation and temperature data are 65 

used to build pixel-level databases of precipitation and temperature variability indices. Each 66 

index captures exposure to deficit precipitation or excess temperature during different time 67 

intervals of crop growth.  68 

 69 

The translation of the metrics of physical-loss risk into metrics of direct and indirect 70 

economic loss is carried out through macroeconomic modelling of exogenous, supply-side 71 

shocks. Probabilistic and scenario-based risk modelling is cascaded from climate to 72 

agricultural and finally economic loss through data clustering, by using machine learning 73 

techniques of recursive partitioning17 and Nonhomogeneous Hidden Markov Models18 74 

(NHMMs), as illustrated in Supplementary Fig. 1. The joint effects of precipitation variability 75 
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and excess temperature were modelled through stochastic-copula dependency; see Methods 76 

and Supplementary Fig. 2. Finally, complete province-level profiles of economic-loss risk 77 

were obtained by considering several technological scenarios for climate risk mitigation. 78 

While a historical climate scenario is presented here, the same methodological construct is 79 

applicable to obtain risk profiles in future climate scenarios by using simulated large scale 80 

climate driver NHMM covariates. 81 

 82 

Vulnerability of crops to weather variability varies strongly over their growing period. The 83 

length of this period and of the occurrence of stages of development such as flowering and 84 

maturity is also constrained by local weather variability and environmental conditions, as 85 

well as by genetic traits. In addition to extreme weather events, slight changes in planting 86 

season and duration of weather patterns may also reduce yields19. The weather indices are 87 

used to capture the response of crop growth to different features of weather variability. 88 

Excess heat indices are built by counting the number of days where the maximum 89 

temperature, Tmax, surpasses a critical threshold, Tc, of 30 or 35°C – for instance the number 90 

of days with Tc > 30°C from day 10 to day 40 of crop development. Precipitation deficit 91 

indices account for cumulative rainfall during a given period of crop growth. Supplementary 92 

Figure 3 summarizes the different periods of aggregation of weather indices and the colour 93 

code used in Figure 2.  94 

 95 

The machine learning methodology applied here to select pixel-level weather indices shows 96 

that the weather indices which best capture weather-driven yield variability exhibit spatial 97 

heterogeneity relative to the portion of the growing cycle accounted in the index. For 98 

instance, the optimal indices for the effects of precipitation variability (Fig. 2a) and excess 99 

heat (Fig. 2b) on maize yield variability in the northeastern province of Shandong are 100 
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heterogeneous, with several pixels spatially clustered according to different periods of the 101 

growing season (Supplementary Fig. 3) during which the crop is most sensitive to climatic 102 

effects. The spatial clustering of indices appears to follow topographical features of 103 

Shandong province. For instance, the central mountainous and the westernmost regions of the 104 

province are dominated by precipitation indices capturing vulnerability during, respectively, 105 

the middle and the end of the crop development. This spatial pattern of precipitation indices 106 

also depends on the technological scenario considered (i.e. local rain-fed variety, local 107 

irrigated variety, switched rain-fed variety), as shown in Supplementary Fig. 4. In contrast, a 108 

marked index spatial homogeneity is observed regarding the choice of critical temperature 109 

used to build heat wave indices. For each pixels, two sets of 25 heat wave indices using 30 or 110 

35°C as critical temperature was used to determine the optimum heat wave index. 30°C 111 

appears is homogeneously selected across all Shandong province (Figure not shown).      112 

 113 

Figure 2 near here 114 

 115 

Heat wave–driven variability in rice yield in the Southern provinces of Guangxi and 116 

Guangdong possesses similar spatial variability; see Supplementary Figs. 5a,b. Estimated 117 

impacts of weather variability and climate change on crop production are usually based in 118 

IAMs which implies spatially homogenous hydrometeorological indicators20. Doing so is 119 

likely to underestimate local-to-regional yield losses. In effect, the rate of succession of 120 

phenological growth stages in crops depends on the accumulation of temporal photo-thermal 121 

units19; this accumulation, in turn, depends on the interaction of local environmental 122 

variables. Therefore, the use of homogenous hydrometeorological indicators may fail to 123 

systematically capture times of peak vulnerability, e.g., during reproductive stages that vary 124 

with location. 125 
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 126 

 127 

Results obtained for northern Shandong (Fig. 2) and Hebei (not shown) provinces illustrate 128 

the importance of modelling the joint impacts of precipitation variability and excess 129 

temperature stresses on rain-fed crops. Under the baseline scenario of the currently grown, 130 

rain-fed maize variety, average yield variation throughout Shandong province, subject to the 131 

stress of precipitation variability alone, produces slightly positive yield anomalies, while the 132 

joint modelling of excess temperature and precipitation variability leads to spatially 133 

homogenous negative anomalies. Supplementary Figure 4 illustrates the latter.  134 

 135 

The nonlinearity of maize yield losses due to drought and heat stress is captured by our 136 

modelling and is consistent with agricultural field studies22,23. The relatively homogenous 137 

yield losses for irrigated rice subject to increasing heat wave exposure throughout the 138 

southern Guangdong (not shown) and Guangxi provinces in Supplementary Fig. 5 are 139 

consistent with existing literature24,25 and might actually be underestimated26. 140 

 141 

Figure 3 near here 142 

 143 

The results demonstrate that important variations in province-level risk profiles depend on the 144 

regional features of weather and climate variability.  145 

 146 

To capture dependence on large-scale, low-frequency climate variability, we have 147 

constructed and applied an NHMM18; see Methods and Supplementary Fig. 6. In the 148 

northeastern provinces of Shandong (Fig. 3) and Hebei (not shown), the effect of low-149 

frequency climate change, modelled by this NHMM, is masked by high-frequency weather 150 
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variability. In fact, northeastern China is strongly affected by mid-latitude weather systems, 151 

as well as by teleconnections from the Tropical Pacific27,28.  152 

 153 

In contrast, for the southern Guangdong and Guangxi provinces, risk driven by weather 154 

variability depends strongly on the climate state. For a given state, the risk profiles in the 155 

southern provinces exhibit minimum variation for varying return periods of weather events, 156 

whereas drastic jumps, of 0.18 % and 1.15 % in losses of provincial gross domestic product 157 

(GDP) occur in Guangdong and Guangxi, respectively, as central-Eastern Pacific sea surface 158 

temperatures shift from a warm to a cold event, as captured by the Niño-3.4 index in our 159 

NHMM29 and illustrated in Supplementary Figs. 6 and 7.  160 

 161 

We have considered three different technological scenarios: (i) continuing use of a local rain-162 

fed variety; (ii) switching to another, more drought tolerant rain-fed variety; and (iii) the use 163 

of a local irrigated variety. Their effects on the risk profiles are illustrated in Fig. 3a and 164 

Supplementary Fig. 4. 165 

 166 

The probabilistic risk profiles of economic loss obtained by the present methodology are 167 

strongly driven by the physical-loss risk. But the different magnitudes of aggregated direct 168 

and indirect losses also reflect the shares of agriculture within each province’s GDP (Figs. 169 

3a,b). 170 

 171 

Our results should help formulate fiscal policy and public budgeting for these extreme 172 

weather risks. Risk management instruments can be used to minimize and cap the cost of 173 

weather and climate impacts on society, government and producers.  174 

 175 
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Investments in infrastructure that increases physical resilience are effective in mitigating 176 

risk30. Our results indicate a maize production loss generated by a 1-in-50-year event of 177 

excess temperature and precipitation variability produces an aggregate 0.7 % loss of 178 

Shandong provincial GDP (see Fig. 3b). They also indicate that in under an irrigation 179 

scenario, production and aggregate economic losses are cancelled. As shown in 180 

Supplementary Table 1, estimations of the cost of deploying new irrigation infrastructure and 181 

restoring existing decaying structures could be performed at a cost of up to 0.73 % of 182 

Shandong GDP. 183 

       184 

The economic efficiency of risk mitigating investments decreases, however, with the risk 185 

level considered and is only justifiable up to certain risk level31. In order to manage the 186 

residual risk, instruments of risk transfer and risk forecast can decrease the ex-post event 187 

costs of damage.  188 

We propose a “three-pillar”–based approach for rural development and food security risk 189 

management. The three pillars are: (i) risk mitigation, (ii) risk forecast, and (iii) risk transfer 190 

instruments. These need to be tailored and combined to respond to specific climate risk 191 

profiles characterizing a given region. We believe the results of the end-to-end probabilistic 192 

risk assessment methodology presented here will be particularly effective in setting the 193 

balance of these three pillars. The implications of this work are of concern for farmers and 194 

policy makers, as well as for the whole value chain of the food-and-fibre industry, and for its 195 

long-term sustainability. The crucial importance of providing such detailed end-to-end 196 

information to stakeholders is further summarized in the Supplementary Discussion.   197 
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 323 

Figure Legends and Tables 324 

 325 

Figure 1. Schematic diagram of the end-to-end methodology for deriving crop 326 

production and economic-risk profiles. Panel (c) uses input from panels (a) and (b) to 327 

produce grid-to-province PDFs of yield loss captured by weather indices, conditional on 328 

large-scale interannual climate processes. Panel (d) uses panel (c) grid-level yield loss PDFs 329 

and yield response functions subject to GHG and technological scenarios to derive regional-330 

level risk profiles of production loss. If the region matches an economic administrative unit 331 

(e.g. province, country), panel (e) uses (d) to derive distributions of province-level economic 332 

losses. Panel (f) uses panel (d) and/or, if relevant, panel (e), to determine optimum 333 

combinations of risk mitigation and transfer instruments to minimize risk of climate-driven 334 

losses. 335 

Words: 114 336 

 337 

Figure 2. Results of weather index–based modelling of maize yield in Shandong 338 

province. (a, b) Maps of indices selected to best capture on a 0.25° × 0.25° longitude-latitude 339 

grid (a) deficit precipitation, and (b) excess temperature–driven yield variability. Color scale 340 

(see Supplementary Fig. 3) indicates the phase of crop growth in which the selected index 341 

captures highest sensitivity. (c) Map of 10-year return period production (see Methods) of 342 

~200 to ~1,400 tons/pixel. Panels (d)–(g) present computations for a heat wave index. (d) 343 

Mixed univariate distributions of the index, subject to each NHMM state. (e) Viterbi-344 

weighted sum of each distribution. The convolution of (f), the response function of yield to 345 
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heat wave, with (e) allows obtaining the distribution of yield (g). Results shown for a single 346 

local maize variety rainfed technological scenario. 347 

Words: 132 348 

 349 

Figure 3. Risk profiles of province-level physical production and aggregate economic 350 

loss in China’s northeast Shandong province. (a) Risk profiles of maize provincial 351 

production loss, driven by the joint impacts of excess temperature and precipitation 352 

variability, subject to three different technological scenarios: (i) continuous line – local rain-353 

fed variety; (ii) dotted line – switched rain-fed variety; and (iii) long-dashed line – local 354 

irrigated variety. (b) Risk profiles of direct and indirect aggregate economic loss expressed as 355 

percentage of provincial gross domestic product (GDP2008): (i) black bars – local rain-fed 356 

variety; (ii) yellow bars – switched rain-fed variety; and (iii) red bars – local irrigated variety.  357 

Words: 97 358 

 359 

 360 

Methods 361 

Word Count: 840 362 

Data sources  363 

Daily observed weather data on precipitation, radiation, and maximum and minimum 364 

temperatures were used. The data set was provided by the National Climate Centre (NCC) of 365 

the China Meteorological Administration (CMA) on a 0.25° × 0.25° longitude-latitude grid, 366 

available from 1961 to 2012; it covered the two northeastern provinces of Shandong and 367 

Hebei, and the two southern provinces of Guangxi and Guangdong. Grid-level maize and rice 368 

yields were simulated in those northeastern and southern provinces, respectively, using a 369 

mechanistic crop model called DSSAR-CERES.  370 
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Random forest-based indices selection 371 

We selected the most effective pixel-level pairs of indices to capture the effects of deficit 372 

precipitation and excess temperature on yield variability by a random-forest algorithm. This 373 

algorithm uses ensemble-based recursive partitioning and thus permits one to circumvent the 374 

issues of cross-correlation between indices and of a large number of variables vs. a small 375 

sample size.  376 

 377 

Extreme value multivariate modelling 378 

Robust stochastic characterization of the interannual variability of the optimum grid-level 379 

weather indices was carried out using univariate distributions of mixed, exponential–380 

Generalized Pareto Distribution (GPD) type. The latter allows one to accurately estimate the 381 

risk of occurrence of events that are both rare and extreme, within a modified Generalized 382 

Pareto Distribution framework across the whole gridded domain studied. The stochastic 383 

dependence of deficit precipitation and excess temperature is characterized by coupling their 384 

univariate mixed distributions 𝐹! and 𝐹! within a Gumbel-Hougaard copula model, as 385 

described in the equations (1) and (2) below.  386 

 387 

𝐹 𝑋,𝑌 = 𝐶! 𝐹! ,𝐹!                                                                                                                                                                                                                                                         (1) 

 388 

Here 𝐶!   is the Gumbel-Hougaard Archimedean extreme value copula, 389 

 390 

𝐶! = − − log 𝑢! ! + − log 𝑢! ! !!/!                                                                                                                                                 (2) 

 391 
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The coefficient of dependence is  θ ≥ 1, where θ = 1 characterizes independence of the 392 

uniform transforms 𝑢!  and 𝑢! of the mixed univariate 𝐹!  and 𝐹! distributions of precipitation 393 

and heat wave grid-level indices, respectively.  394 

 395 

The Gumbel-Hougaard Archimedean copula enables us to characterize dependence in both 396 

the upper and lower tails without assuming independence of extreme-value occurrences, as is 397 

the case in Gaussian copulas. An example of stochastic dependence of two weather indices, at 398 

the same location and subject to a technological scenario, is presented in Supplementary Fig. 399 

2. 400 

 401 

Nonhomegenous Hidden Markov Model “weather-within-climate” modelling 402 

Historical univariate or multivariate distributions of weather indices are derived by adopting a 403 

“weather-within-climate” modelling framework. The distributions are modelled conditionally 404 

on hidden regional weather states, St that capture seasonal variability. These states are 405 

conditioned themselves on observed or simulated continental and planetary-scale climate 406 

drivers that capture interannual modes of variability. A Nonhomogenous Hidden Markov 407 

Model (NHMM) is used to achieve this two-step conditioning and enable the introduction of 408 

non-stationarity, as illustrated in Supplementary Figure 1 across a gridded domain and 409 

equation (3) below.   410 

The weather index distributions,  𝑃 𝑂!:! , 𝑆!:!|𝜆, 𝑧!:! , thus use continental-scale climate 411 

variables, 𝑧!:!, observed or, potentially, simulated by high-end general circulation models, 412 

subject future greenhouse gas scenarios45. The non-stationary univariate distributions of 413 

pixel-level precipitation and excess heat, 𝑂!:!, follow the mixed GPD-exponential univariate 414 

framework presented above. The copula-characterized stochastic dependency between 415 

marginal is considered stationary across weather states.  416 
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 419 

Here 1961 ≤ t ≤ 2012 while 𝑆! are the hidden states of the two-states Markov chain, 𝑧! is the 420 

non-stationary NINO3.4 index acting as covariate, and 𝜆 = 𝑎! ,𝜋! !!{!,!} contains the 421 

transition parameters  𝑎!, and initial probabilities 𝜋!, of the NHMM, and 𝑏!! the distribution of 422 

the observed weather indices at time 𝑡, depending on the state 𝑆! as follows:     423 

𝑃 𝑂!:! , 𝑆!:!|𝜆, 𝑧!:! = 𝜋! 𝑧! 𝑏!! 𝑂! 𝑧! 𝑎!"

!!!

!!!

𝑧! 𝑏!! 𝑂!!! 𝑧!!!                                                                            3  

And where 424 

• 𝑎!"(𝑧!) is the transition probability from state 𝑖 at time 𝑡 to 𝑗 at time 𝑡 + 1 of a first-425 

order Markov chain as a function of the non-stationary covariate 𝑧!; 426 

• 𝜋! 𝑧!  is the probability that the initial hidden state at 𝑡 = 1 is 𝑖 , 𝑆! = 𝑖; and 427 

• 𝑏!!(𝑂!!!|𝑧!!!) is a component of the vector of observed weather indices 428 

characterized by mixed densities 𝐹! and 𝐹! cited above, and dependent on the value 429 

of the non-stationary covariate 𝑧!!!.  430 

 431 

Generalized Additive Mixed crop response modelling 432 

In order to model the vulnerability functions of crop yield to the combined or individual 433 

effects of precipitation variability and excess temperature exposure, Generalized Additive 434 

Mixed Models (GAMMs) are used. The use of a GAMM 𝑔 𝜇!   enables capturing non-linear 435 

response of crop yield 𝜇!   to the varying values of a single or several weather indices, cf. Fig. 436 

2 (f), 437 

 438 

𝑔 𝜇! = 𝑋!𝜃 + 𝑓! 𝑥!! + 𝑓! 𝑥!! +…                                                                                  (4) 439 
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 440 

Here 𝜇! ≡ 𝐸(𝑌!), with 𝑌! the rice or maize yield response variable following an exponential-441 

family probability distribution function with and 𝑦! is the ith observation of the rice or maize 442 

yield variable, 𝑋! is the ith row of the model matrix with its corresponding 𝜃 parameter vecto443 

      444 

Also, in order to model the univariate model of rice or maize yield response to heat waves or 445 

deficit precipitation, a smoothing basis composed of natural cubic splines is used. Ultimately, 446 

the convolution of the GAMM-based yield response function with the distribution of the 447 

corresponding grid-level indices results in the distribution of yield loss as a function of 448 

indices values. 449 

 450 

Input-Output-based economic impact modelling  451 

An Input-Output modelling approach is used to assess direct and indirect Province-level 452 

economic impacts due to weather-driven maize production shortfall. Additional details 453 

concerning the methodology can be found in the Supplementary Information section. 454 

 455 

 456 
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Supplementary Methods 6 

Data sources  7 

The datasets contain less than 0.1 % data gaps1. The quality of the datasets was controlled by 8 

the CMA following Qian and Lin (2005)2. The temperature data homogeneity was controlled 9 

by CMA using the method of standard homogeneity test3, the moving t-test4, and departure 10 

accumulating method5. Precipitation datasets are not adjusted, while temperature datasets 11 

were homogeneity-adjusted1. 12 

The mechanistic crop model used has been calibrated with observed yield and soil data at the 13 

Chinese Academy of Agricultural Sciences6,7,8.    14 

 15 

Random forest-based indices selection 16 

In each pixel, two sets of databases of (i) 25 precipitation indices, and (ii) 50 excess heat 17 

indices are built based on the pixel-specific date of planting, The 25 different periods of 18 

aggregation of the weather indices across the crop growing period are represented in 19 

Supplementary Figure 3. Datasets of excess temperature indices are computed in each pixel 20 

using two critical temperatures Tc = 35°C or Tc = 30°C, and accounting for the numbers of 21 

days with Tmax > Tc during each of the aggregation periods. Precipitation indices are built by 22 

computing cumulative precipitation during the same 25 different aggregation periods. 23 



We selected the most effective pixel-level pairs of indices to capture the effects of deficit 24 

precipitation and excess temperature on yield variability by a random-forest algorithm9. 25 

Therefore, for each pixel one precipitation index and one excess heat index are selected from 26 

the population of 25 precipitation 50 and excess heat potential indices.  27 

For each set of 25 precipitation or 50 excess heat pixel-level indices, the Random Forest 28 

algorithm was programmed to extract a subset of 5 indices randomly for 5,000 times to 29 

compute regression trees. The indices importance measure is obtained after computation of 30 

the average of the 5,000 initial trees.    31 

 32 

Extreme value multivariate modelling 33 

A dynamic mixture model10 was used to enable unsupervised threshold setting for the fitting 34 

of the GPD distribution. The stochastic dependence of the exponential-GPD mixed 35 

distributions of precipitation and excess heat indices is subsequently characterized using a 36 

Gumbel-Hougaard copula framework11.    37 

 38 

Nonhomegenous Hidden Markov Model “weather-within-climate” modelling 39 

Using the best fit test of Aikake Information Criteria12, a two-state Hidden Markov Model 40 

(HMM) with St=1 and St=2  was fit in each pixel on the observed time series variables of 41 

weather indices O1:T. The two pixel-level states capture seasonal patterns of indices 42 

variability. For instance, at time t with St = 1, the distribution 𝑃 𝑂!|𝑆! = 1  of precipitation 43 

or excess heat indices, Ot, corresponds to a characteristic distribution observed during a “less 44 

dry” and “less warm” season. In contrast, distribution of indices when St = 2, 𝑃 𝑂!|𝑆! = 2 , 45 

corresponding to a “dryer” and “warmer” state 2 type season. The different state-dependent 46 

indices distribution during “wet-mild” (blue pdf) or “dry-warm” (red pdf) states is illustrated 47 

in Figure 2(d). Within the Non-homogenous Hidden Markov Model (NHMM) the sequence 48 



of weather states 𝑆!:! is dependent upon the sequence 𝑧!:! of large scale climate driver 49 

covariates (i.e. Niño3.4 index). These covariates can be observed or, potentially, simulated by 50 

high-end general circulation models, subject future greenhouse gas scenarios13 51 

Supplementary Figure 7 illustrates the parameters of a two-state NHMM fitted in one of 52 

Shandong province 280 pixels with Niño3.4 index used as non-stationary covariate. 53 

 54 

While the El Niño Southern Oscillation is known to be amongst the main drivers of the Asian 55 

Summer Monsoon14,15 the seasonal and interannual variability of the summer Monsoon in 56 

North East China is also associated with other drivers that are not taken into account in the 57 

model used here where only one non-stationary covariate is included. Other drivers such as 58 

the snow cover conditions in Eurasia and the Tibetan Plateau16,17, the Indian Ocean Dipole 59 

interannual oscillation18, and tropospheric cooling over Northern latitudes of China18,19 have 60 

also been shown to exert an influence on the summer Monsoon variability in North East 61 

China, in conjunction with ENSO. Given the demonstrative nature of the manuscript in 62 

illustrating the methodological construct developed, only ENSO, the main driver of the Asian 63 

Summer Monsoon was used, and a more detailed study would allow characterization of the 64 

relative influences and interactions of the various climate drivers cited here on the Northeast 65 

China Summer Monsoon variability.       66 

Furthermore, the interaction of global climate forcing, derived from increased emissions of 67 

greenhouse gases, with regional climate forcings20,21, which result from tropospheric 68 

pollution and natural climate variability, amplify the uncertainty of projections of local 69 

weather variability in climate models. In particular, the prediction of local precipitation 70 

variability, both seasonal and interannual, such as the dates of rainfall season onset, is 71 

uncertain and represents a persistent barrier to robust forecasting of the impacts of weather 72 

variability on food supply. Furthermore, the uncertainty of future tropospheric pollution and 73 



the negative sensitivity of crop production to solar dimming increases the uncertainty of 74 

future food production in regions such as northeast China22. 75 

 76 

Generalized Additive Mixed crop response modelling 77 

Within the GAMM23 described, 𝑓! are smooth functions of the 𝑥! covariates that can be 78 

defined using a basis function that can be expressed linearly as follows with 𝑏!(𝑥) the jth 79 

element of the basis function and 𝛽! scalar parameter values:   80 

 81 

𝑓 𝑥 = 𝑏! 𝑥 𝛽!  

!

!!!

                                                                                                                                                                                                                                                              (5) 

Here a spline basis due to the ability provided to estimate the properties of 𝑓 over a large 82 

domain of the response variables. Cubic splines are used as smooth functions within the 83 

GAMM. Cubic splines can be described as portions of cubic polynomials joined together at 84 

specified knots in the response domain. The knots are located at specific quantiles values of 85 

the response variable. Given the locations of the knots 𝑥!∗: 1,… , 𝑞 − 2  the ith row of the 86 

𝑦 = 𝛽𝑋 +   𝜀 model matrix can be written using a cubic spline as: 87 

 88 

𝑋! = 1, 𝑥! ,𝑅 𝑥! , 𝑥! ,… ,𝑅 𝑥! , 𝑥!!!                                                                                                                                                                                               (6) 

   89 

Input-Output-based economic impact modelling  90 

Supply-side shock is simulated using a Gosh model formulation24 of province-level Input-91 

Output tables25 as detailed in equation (5) below. The crops considered are singled out from 92 

the rest of the economic network in order to model both direct and indirect economic losses 93 

derived from supply shortages ∆𝑣. Input-Output tables were obtained from the National 94 

Bureau of Statistics26 repository and province-level maize and rice grain production used to 95 



single out these sectors in the tables were retrieved from Provincial Agricultural Statistical 96 

Records27,28,29,30, and ∆𝑥 below is the vector of changes in final supply for each sector 97 

represented. 98 

 99 

∆𝑥 = 𝐺!∆𝑣                                                                                                                                                                                                                                                                                    (7) 

 100 

Here 𝐺 is the Gosh inverse, ∆𝑥 the vector of changes in final demands and productions of 101 

each of the 𝑛 = 47 represented sectors of the provinces economies, subsequent to a change in 102 

supply of ∆𝑣 = (0,0,∆!"#$,… ,0)′ of supply in maize in Shandong and Hebei or rice in 103 

Guangdong and Guangxi. The elements of the Gosh inverse coefficients reflect the total value 104 

of production 𝛿𝑥! coming about in sector 𝑗 ∈ [|1,𝑛|] per unit of primary input 𝛿𝜈! in sector 105 

1 ≤ 𝑖 ≤ 𝑛. 106 

 107 

Supplementary Discussion 108 

More frequent and broad-spread crop failures resulting from extreme weather conditions 109 

require new sources and types of financial products. Here the main driver is ensuring the 110 

sustainability of product sourcing by minimizing and smoothing in time, the costs caused by 111 

climate and weather hazards to farmers, the food-and-fiber industry, and society. Developing-112 

country farmers are vulnerable to climate change and to the impacts of extreme events. Lack 113 

of resources reduces their ability to cope with these conditions. Moreover, the occurrence of 114 

natural disasters frequently forces their governments to divert planned investments to 115 

immediate post-catastrophe aid and reconstruction. 116 

 117 

The role of improved modelling of future agricultural production loss risk on food stocks at 118 

both the national and international levels is becoming critically important. At the national 119 



level, the ability to base policy, procurement and safety net decisions on reliable data is vital. 120 

The previous existence of global food stocks and surpluses meant that shortfalls at the 121 

national level could be managed through access to international markets. With the reduction 122 

in global stocks and the fact that the majority of these are not liquid — as they are situated in 123 

countries unlikely to allow their export — the ability of national governments to purchase 124 

internationally has decreased35.  125 

 126 

With the increase of long-term investment funds in the equity markets and closer financial 127 

controls resultant from the 2008 financial crisis, equity analysts are increasingly interested in 128 

long-term sustainability plans of publicly listed companies, including food purchasers and 129 

retailers. This will ultimately result in share price differentiation between those companies 130 

who are, and those who are not, building long-term variables — such as climate change — 131 

into their business models and practices. 132 

 133 

At the international level, the use of more accurate temporal and spatial modelling of future 134 

production would enable the humanitarian-aid architecture to be better planned and 135 

resourced. Such accurate modelling would also enable multi-country policy dialogue to occur 136 

in the case of shocks to the global food system, reducing the likelihood of volatile, “beggar-137 

thy-neighbour” policy changes. Initiatives in this direction include the Agriculture Market 138 

Information System (AMIS) and Global Agricultural Monitoring (GEOGLAM) project. 139 

Much more remains to be done and will require the establishment of innovative 140 

collaborations between different disciplines and actors, including physical, agricultural and 141 

economic researchers and institutes. 142 

 143 
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Supplementary Figures and Tables Legends 256 

Supplementary Figure 1. Schematic of the “weather-within-climate” and index-based, 257 

local-to-regional weather risk modelling framework. The bottom of the figure shows grid-258 

level columns (i.e. databases) of N potential weather indices acting as proxies of weather-259 

driven crop yield loss (colour coding of indices as described in Supplementary Figure 3). The 260 

most effective index is selected using an ensemble-based recursive partitioning algorithm 261 

resulting in a mosaic of weather indices that capture the sensitivity of crop yield to daily 262 

variability of one or more weather variables. Each selected weather index is modeled 263 

(downward dashed arrows) conditionally on latent, regional-level variables capturing 264 

intraseasonal weather variability in each region. The set of homogenous latent variables is 265 

itself modeled conditionally on observed or simulated, time varying, large-scale variables that 266 



capture interannual climate variability. The latter variables are used to project the regional set 267 

of selected indices into different climate scenarios. 268 

Supplementary Figure 2. Bivariate distributions of the indices for heat wave and 269 

precipitation variability, associated with a single pixel in Shandong province, subject to 270 

rain-fed local variety scenarios. (a) Joint cumulative distribution of dependence between 271 

heat wave and precipitation variability indices, using a Gumbel copula model. (b) Return 272 

period of joint occurrence of the indices for heat wave and precipitation variability.  273 

 274 

Supplementary Figure 3. Weather index color code, as illustrated by sample building 275 

for a cumulative weather index, namely the deficit rainfall for the 135 daylong growing 276 

period of a given crop. The color code of each weather index is calibrated on the yellow-277 

red-blue color scale located above all the indices. If an index recording deficit precipitation is 278 

at the beginning of the crop growth cycle (i.e. during the first third of the 135- day period) its 279 

color is yellow and tends to green. For deficit precipitation at the middle  (i.e. during the 280 

second third of the growth cycle, including the reproductive stages) the color is red. Finally, 281 

for deficit precipitation during the last third of the crop cycle the color is blue. Overlapping 282 

deficit precipitation indices capture periods are indicated by corresponding colour proportions 283 

Brown colored “NaN” is used to encode lack of data. 284 

 285 

Supplementary Figure 4. Matrix of the impact of weather conditions and technological 286 

scenario on the maize yield in northeast China’s Shandong province. Rows indicate the 287 

technological scenario, while the columns indicate the individual, (a)-(f), or combined, (g)-288 

(i), weather hazards (i.e. precipitation, heat or both).  289 

 290 



Supplementary Figure 5. Results of weather index–based modeling of rice yield 291 

response to excess temperature in South China’s Guangxi province. (a) Map of Guangxi 292 

with indices selected at pixel level to best capture rice yield variability driven by excess 293 

temperature. The colour scale is fully displayed in Supplementary Fig. 3 and  indicates the 294 

phase of the crop growth cycle during which the selected weather index captures most 295 

significantly higher sensitivity to excess heat: beginning – green-yellow; middle – red-purple; 296 

end – purple/blue-dark blue; and grey: whole season. (b) Map of the 10-year return period for 297 

rice production, derived from the pixel-level distributions of weather indices for rice yield 298 

response, and pixel-level sown area; light-yellow–to–dark-orange scale from ~200  to ~1,400 299 

tons/pixel.  Results shown for a single local irrigated technological scenario, of local rain-fed 300 

rice.  301 

Supplementary Figure 6. Schematic diagram of the Nonhomogenous Hidden Markov 302 

Model (NHMM) used. R1 and R2 represent the observed uni- or multivariate distributions 303 

of the weather indices. S1 and S2 are hidden variables that describe regional weather 304 

variability on intraseasonal scales, while X(t) is a time-varying covariate that captures 305 

interannual climate variability. The vertical arrows represent conditional dependence, while 306 

the horizontal arrows linking S1 and S2 represent transition probabilities between the two 307 

latent variables; self-transition probabilities are represented by circular arrows. The Niño-3.4 308 

index, based on Tropical Pacific sea surface temperatures, is used as X(t), while S1 and S2 309 

are derived from the observed R1 and R2 weather indices.          310 

 311 

Supplementary Figure 7. Schematic diagram of the two-state NHMM for a grid point in 312 

Guangxi province. (a) Transition probabilities for the two states of the NHMM conditioned 313 

on central-eastern Pacific sea surface temperatures, as captured by the Niño-3.4 index. (b) 314 



Most probable sequence of states on the same grid point as decoded using the Viterbi 315 

algorithm32. 316 

 317 

Supplementary Table 1. Cost estimates for new development and renovation of 318 

irrigation infrastructure in Shandong province, expressed in millions of 2008 USD 319 

(USD×106) and percentage of 2008 aggregate provincial GDP (% GDP); the latter 320 

amounted to 3.09 trillion Yuan in 2008 (i.e. 0.46 trillion 2008 USD). Sown area figures are 321 

extracted from the USDA ERS statistical database33. Irrigated land areas are extracted from 322 

the National Bureau of Statistics26 (NBS) and FAO's AquaStat34, respectively, lower and 323 

upper bound estimates for the year 2001. The FAO irrigation infrastructure cost database is 324 

used to access potential costs of deployment and renovation/modernization of irrigation 325 

infrastructure in Shandong province used here35: (i) average cost of new infrastructure for 326 

underground pumped water irrigation in Asia of 550 USD/ha; and (ii) average cost of 327 

rehabilitating and modernizing underground pumped water irrigation projects in China of 328 

1,670 USD/ha. 329 
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