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Synthetically non-Hermitian nonlinear wave-like behavior in a
topological mechanical metamaterial
Haning Xiua,b,1 ID , Ian Frankelb,1 ID , Harry Liuc,1 ID , Kai Qianb ID , Siddhartha Sarkarc , Brianna MacNiderb ID , Zi Chena,2 ID , Nicholas Boechlerb,2 , and
Xiaoming Maoc,2

Edited by Glaucio Paulino, Princeton University, Princeton, NJ; received October 20, 2022; accepted March 20, 2023, by Editorial Board Member
Yonggang Huang

Topological mechanical metamaterials have enabled new ways to control stress
and deformation propagation. Exemplified by Maxwell lattices, they have been
studied extensively using a linearized formalism. Herein, we study a two-dimensional
topological Maxwell lattice by exploring its large deformation quasi-static response
using geometric numerical simulations and experiments. We observe spatial nonlinear
wave-like phenomena such as harmonic generation, localized domain switching,
amplification-enhanced frequency conversion, and solitary waves. We further map our
linearized, homogenized system to a non-Hermitian, nonreciprocal, one-dimensional
wave equation, revealing an equivalence between the deformation fields of two-
dimensional topological Maxwell lattices and nonlinear dynamical phenomena in
one-dimensional active systems. Our study opens a regime for topological mechanical
metamaterials and expands their application potential in areas including adaptive and
smart materials and mechanical logic, wherein concepts from nonlinear dynamics
may be used to create intricate, tailored spatial deformation and stress fields greatly
transcending conventional elasticity.

metamaterials | topology | mechanics | nonlinearity | non-Hermitian

The study of topological band theory in condensed matter physics has led to novel classes
of materials termed topological insulators (1, 2) and topological superconductors (3),
which support localized modes at the materials’ edges that are highly robust to defects and
perturbation (4). The stability of these modes stems from topological protection conferred
by the material’s bulk properties. Topologically nontrivial materials have been shown
to support unidirectional, backscattering-immune mode propagation, thus facilitating
the development of new superconducting devices (5) with applications in areas such
as quantum computation (6, 7) as well as magnetoelectronic (8) and optoelectronic
devices (9). Recently, the topological band theory has also been applied to the mechanical
domain, which has enabled the creation of topological mechanical metamaterials (TMMs)
that support phenomena such as energy localization and immunity to backscattering at
finite frequencies and a new ability to design and control quasi-static and spatiotemporally
varying stress and deformation fields in materials (10–14).

Topological mechanical metamaterials at the Maxwell point (as shown in Fig. 1A),
where the number of degrees of freedom (DOFs) balances with the number of constraints
in the bulk, are a subclass of TMMs (referred to as “Maxwell lattices”) in which modes
having zero energy, which are referred to as “zero” or “floppy” modes (ZMs), arise. Such
zero energy modes allow the lattice to deform without an energy cost. These ZMs have a
topological nature described by a polarization vector that is analogous to the topological
invariant seen in the Su–Schrieffer–Heeger model (15), and they localize such that, in the
linkage-limit, the edges the polarization vector points toward have zero stiffness and the
opposite edges are rigid (infinite stiffness) (16). The direction of the polarization vector
is controlled by the lattice’s geometry and is tunable through a homogeneous zero energy
deformation, also called the Guest–Hutchinson mode, and it is intrinsic to the lattice (17).
In the presence of interfaces or topological defects, this polarization can result in internal
localized states of self-stress (SSSs, which refers to force-balanced stress eigen-states) and
ZMs (16, 18). Further, due to the balanced numbers of DOFs and constraints in the
bulk, such lattices are holographic, and the state of the zero-energy configuration of a
d−dimensional material can be fully prescribed from its (d−1) dimensional boundary. In
special cases such as twisted kagome lattices, the mechanisms can be written as conformal
transformations (19, 20). Such holography adds additional levels of deformation control
since the bulk state can be controlled at the boundary via zero-energy configurations.
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Fig. 1. The 2D zero energy deformation fields in static Maxwell lattices map onto waves in 1D non-Hermitian, nonreciprocal dynamical systems and rich
nonlinear phenomena emerge. The axes labels denote the mapped quantities. (A) Geometry of the deformed kagome lattice we study here, where �, �, and
 are internal angles between the red and blue triangles in the unit cells (with normalized dimensionless side lengths of (0.4, 0.8, 1) and (0.5, 0.7, 1) for red
and blue triangles, respectively). (B) Topological transitions of the lattice shown in (A) by twisting �. The black arrows point to configurations at the boundary
between polarization domains. The blue vertical lines denote angles between which det �0 < 0 and the linearized ZM deformation of the homogeneous lattice
obeys hyperbolic PDEs, outside of which det �0 > 0 and the lattice obeys elliptic PDEs. (C) A zoomed-in view of a calculated section of an initially homogeneous
lattice with a2 polarization, �0 = 1.3344, and periodic boundary conditions on the left and right, perturbed by a sinusoidal static signal with kx = 0.349 rad/unit
cell and " = 20 mrad. (D) Full lattice corresponding to the section shown in (C). (E) 2D Fourier transform of the deformation field shown in (D), where the
nonlinear phenomena of harmonic generation can be seen. Subscripts x and y denote the “columns” and “rows” axes, respectively.

Due to their intrinsic scalability and a high degree of control
over deformation and stress fields through the tuning of the
topological polarization vector, Maxwell lattices have been
suggested for future use related to robotics, impact and energy
absorption, tear resistance, nanoscale manufacturing via origami,
and acoustic and phonon logic and computation devices, e.g.,
logic strategies via multistable metamaterials (21–27).

Although this revealed wealth of applications, the study
of Maxwell lattices has been confined, by and large, to the
linear, small deformation limit (16, 17, 20, 28, 29). Intriguing
nonlinear effects such as topological solitons (which are localized
transitions between two topologically different states) have been
revealed in one-dimensional (1D) Maxwell chains (30, 31). In
two-dimensional (2D) topological Maxwell lattices, the study
of nonlinear effects has been so far limited to perturbation
theories (22). This is an important gap as nonlinear systems do
not obey superposition and, as such, support an ability to control
the spatiotemporal allocation of energy in materials that vastly
exceeds their linear counterparts (32–34) through phenomena
such as self-localization (35, 36), frequency conversion and
dynamic tunability (37, 38), and chaos (39), as well as rich
interplay with finite-frequency topological states (2, 22, 40–
45). The nonlinear response of topological systems has been
extensively studied within the realm of photonics, including
experimental demonstrations involving frequency conversion,
edge solitons, and active lasing (41). Within the context of
mechanical topological systems, a handful of experiments in 1D
have demonstrated phenomena such as nonlinear conduction via
topological solitons (30, 46) and topological phase transitions
(47). Hence, we envision that combining nonlinear responses
with topological nontriviality (and its characteristic localization

and amplification, nonreciprocity, and robust protected states)
will lead to an important expansion of the ability to tailor
spatiotemporal stress, deformation, and energy fields, with
application areas demonstrated for nonlinear dynamical systems
ranging from impact mitigation (48) to neuromorphic (49) and
ultrafast mechanoacoustic computation (50, 51).

In this work, we show that ZMs of 2D topological Maxwell
lattices map to waves in 1D non-Hermitian active or damped
systems, which have been shown to exhibit unique phenomena
such as parity–time symmetry and unidirectional invisibility
(52, 53) and nonreciprocal, i.e., the response is asymmetric
when source and observation points are interchanged (54–56)
dynamical systems, which maps the 2D elastic deformation in
TMMs to 1D nonlinear wave propagation. This mapping shares
similarity with the symplectic elasticity method that takes one
spatial direction (e.g., the transverse direction) as a pseudotime
variable and reduces the total spatial dimensions (57–59). A rich
set of nonlinear phenomena associated with dynamical systems
arise in this static system, offering precise remote control of
complex zero-energy spatial deformation patterns. It is important
to highlight that there is a direct interplay between the topology of
the lattice, which directly maps to the synthetic non-Hermiticity,
and the observed nonlinear phenomena as a result of the
topology-induced amplification. As such, small perturbations
can lead to large amplitude, nonlinear responses. In other fields,
space-time mappings have historically brought critical insight
in many fields in science, from polymer physics to quantum
criticality, and time crystals (60–63). Using exact geometric
calculations and subsequent experimental validation of nonlinear
ZMs in deformed kagome TMMs, we observe spatial nonlinear
wave-like phenomena including harmonic generation, localized
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topological domain switching, amplification-enhanced frequency
conversion, and solitary waves. The results presented here are
scale-free, material independent, and add a unique dimension
to mechanical metamaterials engineering, wherein deformation
fields can be predicted and intricately designed using insights
derived from the analysis of nonlinear waves in non-Hermitian
systems (32, 35, 52, 64–67).

Results

Topological Polarization andAnalogy to 1DDynamical Systems.
In Maxwell lattices, the number of DOFs and the number of
constraints are identical in the bulk. By the Maxwell–Calladine
index theorem (16, 19, 28, 68), this equality indicates that the dif-
ference between the number of ZMs (zero modes) and SSSs (states
of self-stress) is proportional to the size of the open boundary. By
manipulating the unit cell geometry, the ZMs can be localized at
the boundaries of the lattice at which the topological polarization
vector RT points. Considering a finite 2D deformed kagome
lattice consisting of Nx (number of columns) by Ny (number of
rows) unit cells (with two triangles per unit cell), the total number
of nodes and bonds (edges of triangles) under open boundary
conditions are N = 3NxNy + Nx + Ny and Nb = 6NxNy,
respectively. Consequently, the number of ZMs N0 is given by
N0 = 2N − Nb + Ns = 2Nx + 2Ny + Ns, where Ns are the
number of SSS in the system, with Ns = 0 for an open boundary
conditioned lattice. Removing the number of rigid body DOFs
of the whole lattice, the remaining number of nontrivial ZMs is
2Nx + 2Ny−3. For our lattice, shown in Fig. 1A, its configuration
is described by a set of angles {αi,j, θi,j, γi,j} defined for each unit
cell at the i-th row and j-th column. The counting of ZMs and the
definition of every angle in the lattice are described in SI Appendix,
Note 1. For a homogeneous lattice, all {αi,j, θi,j, γi,j} are set to
be the same in each unit cell, leaving only one free angle α (i.e.,
the Guest–Hutchinson mode, which homogeneously transforms
the whole lattice without costing elastic energy) to determine
the geometry of the homogeneous configuration as is shown in
Fig. 1B. This angle also determines the topological polarization
RT of the lattice (16), which is defined via the phase winding
φ(k) of the determinant of the equilibrium matrix Q that maps
tension on the bonds to the total force on the sites in momentum
space k, where [Q(k) = |Q(k)|iφ(k)], and lattice vectors ai,
such that RT =

∑
i ai

1
2π

∮
dki · ∇kiφ(k). When RT = 0 (with

a proper gauge), all edges of the lattice have ZMs, while when
RT 6= 0, the polarization vector points toward the “soft” edges
that the ZMs are localized to, such that the edges opposite to the
direction of RT becomes the “hard” edges. As shown in Fig. 1B,
the deformed kagome lattice experiences topological transitions
at three critical angles αa2 , αa1 , and αa2−a1 . When α < αa2 or
α > αa2−a1 , the lattice has RT = 0. Between these two critical
angles, the lattice is topologically polarized, and RT has two
distinct directions, a2 or a2 − a1, separated by αa1 .

We first consider the deformation of our TMMs in the
continuum limit, where ZMs are determined at linear order of the
x displacement vector, ux , by the third order partial differential
equation (PDE):

([ε0yy∂
2
x −2ε0xy∂x∂y +ε0xx∂2

y ]+[C1∂
3
x +C2∂

2
x ∂y +C3∂x∂

2
y ])ux = 0,

[1]
with ε0 being the Guest–Hutchinson mode, a soft strain always
present in Maxwell lattices (69) (SI Appendix, Note 3 for the
derivation of Eq. 1, its interpretation as a wave equation in
1D, as well as a discussion of time reversal symmetry and
energy conservation of this wave equation). As discussed in ref.

17, this type of soft, spatially varying modes u generally arise
in all materials in which a homogeneous strain ε0 is soft. In
Maxwell lattices, this soft strain ε0 is guaranteed to exist and cost
exactly zero energy (69), and the spatially varying soft modes
u take the form of exact zero energy modes, protected by the
Maxwell–Calladine index theorem (17, 20). Such soft strain
ε0 can also accidentally arise due to geometric singularities in
overconstrained lattices, such as planar quadrilateral kirigami,
where these soft modes u cost a small amount of elastic
energy even when the hinges are considered perfect (70–74).
Importantly, in Maxwell lattices, the fact that these ZMs are exact
zero energy makes them scale-free and materials-independent.

Solutions to this PDE to the quadratic order (first square
brackets) can be obtained by considering the case with pre-
scribed kx (wave number along x), where the ZM is given by

ky = ε0xy±
√
− det ε0

ε0xx
kx . When det ε0 > 0, corresponding to the

Guest–Hutchinson mode being a dilation dominant (auxetic)
mechanism and the PDE being elliptic, ky is complex with an
imaginary part k′′y ∝ ±kx , describing a pair of ZMs localized on
the top and bottom edges, respectively. With proper coordinate
transformations, these ZMs are mapped to conformal transfor-
mations (17, 19). Adding terms with higher-order derivatives
only quantitatively changes these ZMs. In the opposite case,
det ε0 < 0, corresponding to the Guest-Hutchinson mode being
a shear dominant (nonauxetic) mechanism and the PDE being
hyperbolic, ky is real, describing a pair of bulk ZMs. Unless
fine-tuned, when terms of higher-order derivatives (the second
square brackets in Eq. 1) are introduced, the solution of ky
becomes complex, with the imaginary part k′′y ∝ k2

x being higher
order, indicating slower decay. Importantly, the sign of these
decay rates is determined by the topological polarization RT ,
in all cases. The same conclusion can be reached by starting
with given ky. We note that most known cases of topologically
polarized 2D Maxwell lattices belong to the hyperbolic case
(det ε0 < 0) (17).

For the nonauxetic case, the mapping to a hyperbolic equation
suggests that an analogy can be made between the 2D spatial
PDE of Eq. 1 and a 1D space-time PDE (more details in
SI Appendix, Note 3, Eqs. S.32–S.35). As shown in Fig. 1,
the specific analogy between 2D spatial deformation and 1D
spatiotemporal deformation we propose herein has progression
across columns, or in the x direction, correlating with space, and
progression across rows, or in the y direction, correlating with
time evolution in the 1D analog dynamical system (y ↔ t).
In Eq. 1, the second-order cross-derivative term thus provides a
conservative nonreciprocity along the x direction as the “waves”
propagate in “time” (y). Interestingly, the third-order terms
become nonconservative in the analog system, making the wave
equation “synthetically” non-Hermitian (53). The y-component
of the topological polarization in the 2D spatial lattice thus
translates to a spatially uniform activity/damping in the 1D space-
time lattice. Similarly, the ∂x∂2

y ux term provides a nonreciprocal
activity in the effective 1D lattice.

Given the aforementioned analogy to a 1D nonreciprocal,
non-Hermitian, spatiotemporal system, we aim to study “wave
propagation” in our 2D spatial TMM. With the expected
polarization-dependent spatial amplification/decay, we expect
large amplitude deformations outside the confines of a linear,
small deformation approximation, leading to the proliferation
of rich nonlinear phenomena. We note that while the spa-
tiotemporal analogy is made using Eq. 1, which is linear, the
full deformation field can be described by adding nonlinear
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terms, such that the mapping between the topological phase
and the synthetic non-Hermiticity still applies in the nonlinear
regime. To this end, we numerically calculate the exact nonlinear
ZM configuration for chosen homogeneous configurations, with
periodic boundary conditions on its left and right edges, and
then an applied perturbation to the soft or hard edge of the
lattice such that the θ angles θ1,j = θ0 + f (j), where θ0 is the
initial homogeneous θ value. Given three angles and fixed edge
lengths of the triangles, a hexagon is fully determined to within
a choice of a single convex or concave angle (Fig. 1; SI Appendix,
Note 2, Eqs. S.2–S.5 for details). We choose the convexity where
the complementary angle (angle on the opposite side across the
hinge) to θ is always less thanπ , which allows us to span the entire
topological polarization range. By solving iteratively through each
row starting with the edge where the perturbation is applied,
the entire lattice can be determined geometrically, without
approximation. Periodic boundary conditions are implemented
by using Newton’s method and numerically solving for a
compatible periodic solution at each row (SI Appendix, Note
2, Eqs. S.13 and S.14). Within the context of our analogy to a
1D spatiotemporal system, this is as if we are applying an initial
condition across the entire lattice and then letting the system
evolve in time.

Linear and Weakly Nonlinear Response. We start by verifying
wave characteristics of ZMs in 2D Maxwell lattices in the
linear and weakly nonlinear regimes using our exact geometrical
numerical method. Because the lattice satisfies the Maxwell
criterion, this ZM configuration is exactly geometrically deter-
mined, independent of materials and length scales, in contrast
to low-energy modes studied in refs. 70, 72–74. We start with
a homogeneous lattice deep in the a2 topologically polarized
phase. The critical angles between which the lattice is hyperbolic,

αc1,αc2, are shown in Fig. 1B. We then apply a low-amplitude
sinusoidal perturbation to the soft edge (the top row), such that
f (j) = ε sin (kx j). The resulting deformation field is shown in
Fig. 2 A–C and is described by a superposition of two ZMs that
decay into the bulk that closely match expectations from the linear
theory (further described in SI Appendix, Note 2 and Fig. S4).
A 2D Fourier transform of the deformation field can be seen in
Fig. 2B, overlaid with two white lines denoting the real part of the
wave number ky of the two ZMs predicted by the linear theory.
Of the two ZMs, one has a shorter y-direction wavelength (higher
“frequency” in the effective 1D spatiotemporal system) with faster
decay, which is part of a highly dispersive branch, and the other
a longer y-direction wavelength with slower decay, which is part
of a weakly dispersive branch. The initial increase in amplitude
of the deformation field with distance from the perturbation
(decreasing row number) that can be seen in Fig. 2 A and C is
due to the input phase of the two ZMs and coherent interference.
There are two superimposed, phase-shifted oscillating modes
with different values of vertical wavevector component ky, whose
envelopes decay exponentially downward from the top, each at
different rates. The combination of the differing input phase and
different decay rates of the two ZMs results in the rapid change in
the amplitude of α from the top surface into the bulk. Fig. 2D–F
details the same system shown in Fig. 2 A–C , but with a larger
initial perturbation, inducing the nonlinear phenomena of har-
monic generation (38), similar to Fig. 1. An additional example
that verified the linear and weakly nonlinear results of a lattice in
the a2 − a1 polarized phase can be found in SI Appendix, Note 4.

These static ZMs in 2D, which resemble spatiotemporal
patterns of 1D dynamical systems, are accurately described by the
PDE Eq. 1, the coefficients of which are determined by the unit
cell geometry. For a given kx , two solutions of complex ky arise
from the PDE (dashed lines in Fig. 2 B and E)), which agree well

A B C

FED

Fig. 2. Linear and weakly nonlinear response due to a sinusoidal perturbation applied to the soft (Top) edge of a kagome Maxwell lattice deep in the a2
polarized region. The lattice has �0 = 1.3144 rad and kx = 0.0524 rad/unit cell. (A–C) Linear response at " = 1 �rad. (D–F ) Weakly nonlinear response and
harmonic generation at " = 1 mrad. (A and D) Deformation field. (B and E) 2D Fourier transform of (A and D). White solid lines denote the real part of the ZMs
predicted by linear theory, and white dashed lines represent the real parts solved from the PDE Eq. 1. (C and F ) Select rows of (A and D). The pink star in (C and F )
denotes the initial homogeneous angle, and the background shading denotes the topological phase (always a2 polarization in this case).
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with both the values computed using the full lattice linear theory
(solid curves) and the geometric numerical calculation (heat
map). Further comparisons including the whole wavefield are
included in SI Appendix, Note 3. These agreements demonstrate
the quantitative link between ZMs in 2D Maxwell lattices and
1D dynamical systems.

Strongly Nonlinear Phenomena. We now proceed to explore
more strongly nonlinear phenomena arising in these lattices.
In particular, we show three examples, namely, automatic
and localized topological polarization switching, amplification-
enhanced frequency conversion, and solitary wave formation.
The first example, the switching of topological polarization as
a result of nonlinear waves, occurs when the lattice is in the a2
phase close to the boundary with the a2 − a1 phase. As shown in
Fig. 3, for this case, a sinusoidal perturbation causes regions
of deformation significant enough to cause local transitions
to a2 − a1 polarization. The boundaries between regions of
different polarization are known to support internal SSSs (18),
which has been shown to have implications for lattice fracture
(75). We highlight that this domain switching is a strictly
nonlinear effect as it requires finite deformation. Such finite
deformation effects may lead to boundary-defined (holographic)
programmable topological domain walls.

The second example, amplification-enhanced frequency con-
version, occurs when the lattice is excited from the hard edge
of a polarized lattice or either edge of a nonpolarized lattice. In
the case of perturbing from the hard edge, following the linear
theory, we expect the perturbation to project to two ZMs, which
both grow exponentially into the bulk. In the context of our
analogy with the 1D, nonreciprocal, non-Hermitian system, this
would map to either an active system evolving forward in time
or a damped system evolving backward in time. In Fig. 4 A–
C , we show the calculation for the sinusoidal perturbation of
a lattice deep in the a2 − a1 domain. As shown in Fig. 4A, the
deformation field amplifies into the bulk. We stop the calculation
at 18 rows, after which a zero strain solution cannot be found
due to overlap or nonconnection of the triangles such that the
lattice is “broken.” To better illustrate the “time evolution” of
the mode, we show the trajectory of the lattice in the phase space
of the angles. In Fig. 4 A and C , the growth in amplitude can be
seen to be accompanied by the generation of higher-frequency
wave components, which is connected to the blue loops in the
angular phase space plot of Fig. 4B.

The other case where the ZM amplifies is when a nonpolarized
lattice is perturbed from either edge. In this case, in the linear
theory, one ZM grows and the other decays. A generic pertur-
bation projects to both ZMs, and the growing one is observed
far from the edge. Here, we study a sinusoidal perturbation on a
lattice deep in the RT = 0 domain. As mentioned above, linear
ZMs in this lattice are described by conformal transformations.
In Fig. 4 D–F ), using the same conventions as Fig. 4 A–C ),
we show the deformation of the perturbed lattice. In contrast to
the hyperbolic case of hard-edge perturbation, in Fig. 4 D and
F , we see the formation of “kinks.” At linear order, these kinks
can be understood as a signature of conformal transformations,
which have a one-to-one correspondence with complex analytic
functions. All analytic functions periodic in x can be expanded in
the basis of eikz , which features these kinks. Higher-order terms,
both in u and in derivatives, lead to further complex features
of these kinks. Such kink formation may find future use in
applications that can take advantage of deformation amplification
or stress concentration. In SI Appendix, Note 5 and Fig. S7, we
show further examples for sinusoidal perturbation ofRT = 0 and
a2 lattices that are closer to the polarization boundaries, wherein
domain switching can be observed.

The third—and perhaps the most intriguing—example,
solitary waves, occurs when the lattice is subject to local-
ized perturbations. Typically described as localized waves that
maintain their shape as they propagate with constant, often
amplitude-dependent, speed and shape, solitary waves are one
of the most canonical phenomena that emerge from nonlinear
systems (34–36). Herein, we distinguish solitary waves from the
more restrictive localized type of wave referred to as “solitons,”
which “reappear virtually unaffected in size or shape” following
collisions (76). While solitary waves are most commonly con-
sidered in conservative systems, they have also been studied in
a wide range of nonconservative (i.e., non-Hermitian) systems
(32, 34, 35, 52, 64, 66, 67).

To explore the possibility of such localized traveling structures
in our system, we induce a point perturbation at the top of
a lattice with the same homogeneous configuration as studied
in Fig. 2 and sweep a range of perturbation amplitudes, where
f (j) = εδ(j − jp) and jp is the column to which the perturbation
is applied. As can be seen in Fig. 5A–C ), using the language of the
1D spatiotemporal system analogy, we see that two main solitary
waves emerge with nearly constant speeds and interact with each
other: one with a fast wave-speed and decay rate and the other
with a slow wave-speed and decay rate. In Fig. 5 and below, we use

A B C

Fig. 3. Intrinsic localized topological polarization switching (a strictly nonlinear phenomenon) and domain formation due to a sinusoidal polarization applied
to the soft edge (Top) of the deformed kagome Maxwell lattice near the border of the a2 polarized phase. The lattice has �0 = 1.5344 rad, kx = 0.0524 rad/unit
cell, and " = 1 mrad. (A) Deformation field, (B) 2D Fourier transform of (A) with white lines representing the real part of the ZMs solved from the linear theory,
and (C) select rows of (A). The pink star in (C) denotes the initial homogeneous angle, and the background shading denotes the topological phases. The dashed
black lines in (A) denote boundaries between regions of different polarizations.
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A B C

FED

Fig. 4. Nonlinear wave amplification and frequency conversion in Maxwell lattices in response to sinusoidal perturbation, wherein the topological localization
(and equivalently “synthetic non-Hermiticity”) drives large amplitude, nonlinear deformations. (A–C) Hard-edge perturbation (from the Bottom) of an a2 − a1
polarized lattice (�0 = 2.3144 rad), where kx = 0.314 rad/unit cell and " = 1 �rad. (D–F ) Perturbation (from the Top) of an unpolarized lattice with �0 = 0.7144
rad, with kx = 0.314 rad/unit cell and " = 1 mrad. (A and D) Deformation field. The configuration of the lattice in the dashed box is shown below the plot.
(B and E) Phase space of (A and D), where blue to red color gradient denotes a progression from Top to Bottom rows, respectively. The insets provide a zoomed-in
view near the perturbation. (C and F ) Select rows of (A and D). The pink stars in (C and F ) denote the initial homogeneous angles, and the background shadings
denote the polarization regions.

r and c to denote rows and columns, respectively, in the derivative
terms. Fig. 5 D and E shows the dependence of speed and decay
rate of the two solitary waves on perturbation amplitude. At first
glance, it appears that there is a minimal interaction between the
two solitary waves as they intersect. However, additional calcula-
tions for the same conditions as described in Fig. 5, but with five
times fewer columns, and thus more collisions between the waves
(SI Appendix, Note 6), show a significantly greater variation in the
speeds and decay rates of the solitary waves. This suggests that the
two solitary waves do interact upon their collisions. Additional

data for the peak-to-peak decay rate in terms of α and the evo-
lution of average α with an increasing row number are included
in SI Appendix, Fig. S9. Interestingly, both the narrow and wide
lattices have perturbation amplitudes for which the decay rate
of α is zero across the sampled rows (in contrast to d2α/dr2),
which is reminiscent of solitary waves in nonconservative systems,
where nonlinearity, dispersion, and loss/gain balance to form a
traveling wave packet of constant shape (34, 35, 52, 66, 67). Such
slow decay suggests that these waves can be considered analogs
to weakly dissipative solitary waves (64, 67).

A B

C

D

E

Fig. 5. Formation of two solitary waves resulting from a point perturbation at the edge of an a2 polarized Maxwell lattice and their collisions. The lattice has
�0 = 1.3144 rad, and the point perturbation is applied to the Top row at column 50. (A–C) Perturbation amplitude " = 0.23 mrad. (A) d2�/dr2 as a function
of space. (B) � − �0 and (C) d2�/dr2 for rows 5,000 (blue), 5200 (red), and 5,400 (black). Rows 5,200 and 5,400 are sequentially offset by 1.25 mrad in (B) and
0.2 μrad/(unit cell)2 for visualization purposes. The black arrows point to the fast-moving, spatially wider, solitary wave. (D) “Speed” dc/dr of the solitary waves
as a function of ". (E) Decay rate of the peak-to-peak magnitude of d2�/dr2 of the solitary waves �, defined d2�

dr2 max
−

d2�
dr2 min

= Ae�r .
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Fig. 6. Repulsion between two solitary waves, visualized via d2�/dr2, for two
point perturbations applied to the soft edge (Top) of a lattice with the same
homogeneous angle as in Fig. 5. Perturbations of ±" = 0.6 mrad are applied
at columns 50 and 350, respectively. The solid and dashed lines demonstrate
the predicted behavior of their perspective perturbations, respectively, based
on the speeds calculated in SI Appendix.

Augmenting the complexity of the two solitary waves generated
from a single point perturbation in the examples of Fig. 5, we
simulate the response of the TMM to two point perturbations
of differing signs (Fig. 6). As can be expected from the prior
results, four solitary waves are generated; however, here, we see the
unexpected phenomenon that the two long-lived solitary waves
appear to repel one another and propagate with similar speeds
thereafter. This change of behavior can be seen by comparing
the intersection of their predicted trajectories calculated from
the single perturbation case (shown in SI Appendix, Figs. S10
and S11), which are denoted by the dashed and solid white
lines. Although the predicted trajectories intersect after about
2000 rows, the solitary like waves in the actual response never
intersect, suggesting there is some form of repulsion between the
two slow solitary-like waves. Such repulsion has been seen for
solitary waves in other nonlinear systems, for instance, that of
two kinks or two antikinks (topological solitons) in Sine-Gordon
systems (36, 77) or optical spatial solitons (78).

Experimental Validation. To validate the numerical simulation
results, we built physical models composed of laser-cut acrylic
triangles pinned together such that they are free to rotate. The
experimental lattice has a prescribed fixed perturbation on the
top of the lattice, periodic boundary conditions on the left
and right sides, and a free boundary condition on the bottom.
Periodic boundary conditions are set by taking the α values for
the first and last columns from the numerical simulations and
pinning the left and right edge triangles to positions to match
them. The perturbation is prescribed at the top of the lattice

in a similar manner by fixing the top triangles. The resulting
bulk configuration is found by taking a picture of the resulting
lattice and using image processing to locate each hinge of the
lattice and the resulting α, θ , and γ angles are calculated from
those locations. More details of the image processing algorithm
can be found in SI Appendix, Note 7. In Fig. 7, we show
two lattice configurations with different-sized unit cells (31.5
[mm] and 40 [mm] along the longest sides cr,b) under two
different perturbations, a harmonic perturbation Fig. 7 A–D and
a point perturbation Fig. 7 E–H ). The lattice configuration is
purely geometric and theoretically scale independent. In practice,
manufacturing limitations such as the size of the hinge used
put a lower limit on the unit cell size. Recent research has
shown, however, that rotating features at the microscale are
achievable through advanced 3D printing techniques (79). The
error between the experimental and numerical lattices is found
by taking the difference between the experimental α value of
each unit cell αexp and the numerically solved α value αsim and

E

B

C

D H

G

F

A

Fig. 7. Physical realization of a2 polarized Maxwell lattices with laser-
cut triangles, pinned hinges, and three prescribed boundaries, along with
a comparison to numerical predictions. (A–D) Sinusoidal perturbation for
�0 = 1.3144, " = 0.1 rad, kx = 0.6283 rad/unit cell. (E–H) Point perturbation
for �0 = 1.3144 rad, " = 45 mrad applied at column 3. (A and E) Photographs
of the deformed lattice, where the left and right boundaries are prescribed
to follow the computed periodic boundary configuration, (B and F ) measured
angles, and (C andG) simulated angles. (D andG) Percent differences between
experiment (B and E) and simulation (C and F ).
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normalizing it by the homogeneousα valueα0. The error for both
experiments was very small with a maximum error of less than
5%, as seen in Fig. 7 D and H . This error is due to the precision
of the fit between the triangular unit cells and the pins used.
Additionally, we note that in our experimental realization for the
configuration showing the solitary wave propagation Fig. 7 E–H ,
multiple unit cells with θ angles close toπ with sufficient pressure
can be forced to snap from concave to convex configurations with
the given prescribed boundaries as well as slight variability in the
experimental configuration due to manufacturing tolerances of
the hinges.

Discussion

The two central contributions of this work are i) demonstrating,
to the linear order, that the ZMs of 2D TMMs (Maxwell lattices)
can be mapped to waves in 1D non-Hermitian, nonreciprocal,
dynamical systems; and ii) extending the study of 2D TMMs to
the nonlinear regime and exploring the interplay therein with
topological nontriviality. Within that scope, we showed that
an array of nonlinear wave-like phenomena exists, including
harmonic generation, localized topological domain switching,
amplification-enhanced frequency conversion, and solitary wave
generation. Each of these phenomena has its own unique
implications for designing stress and deformation fields in
materials that extends significantly past what has hitherto been
achievable in linear regimes of TMMs, and, more broadly, via
elasticity. Among these, localized intrinsic domain formation has
the potential to tailor regions of SSSs with implications to fracture
mechanics (75), and solitary wave generation has implications
for compact, amplitude-dependent spatially addressable signal
transmission (80) and remote-controlled localization of stress
and deformation, both of which may find interesting use in
the context of mechanoresponsive metamaterials (81). In the
context of the analogy to the 1D spatiotemporal system, these 2D
lattices offer a convenient emulator for nonlinear waves and share
similarities with the mapping between d -dimensional quantum
systems with (d + 1)-dimensional classical systems, which
led to important advances in understanding quantum phase
transitions (61). Finally, we envision a potentially intriguing
scenario stemming from this work, wherein elasticity and inertial
effects are incorporated into the lattice, such that perturbations

are restricted by the underlying topology of the lattice as shown
herein, but evolve in time.

Materials and Methods

The fabricated lattice structures are created by laser cutting (using a Glowforge
Basic 3D laser cutter) 1/8-inch-thick acrylic layers assembled with barrels (Fig. 7A)
or dowel pins (Fig. 7E) and screws. For the experiment in Fig. 7A, each of the
barrels (6063 Aluminum Low-Profile Binding Barrels from McMaster-Carr) has a
diameter of 13/64 inch and length of 1/4 inch (3/8 inch at the boundaries due
to an extra layer of acrylic for prescribed periodic left–right boundary condition).
For the experiment in Fig. 7E, each of the dowel pins (Alloy Steel Pull-Out Dowel
Pin from McMaster-Carr) has a diameter of 1/4 inch and a length of 1/2 inch.
Geometries of triangle unit cells are shown in SI Appendix, Figs. S12 and S13.
The lattices are assembled by pinning down the triangles in two layers and
to the laser-cut acrylic boundaries. Left and right boundaries are connected at
the bottom of the lattice without interfering with the bottom row of triangles.
Boundary pieces are connected using M3 screws and nuts.

Data, Materials, and Software Availability. All data generated or analyzed
during this study are included in this published article (and its SI Appendix).
All related codes are uploaded to GitHub: https://github.com/xiuhaning/2D_
TMM_geometry_solutions.
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