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ABSTRACT OF THE DISSERTATION

Language-based Security for Web Browsers

by

Dongseok Jang

Doctor of Philosophy in Computer Science

University of California, San Diego, 2014

Professor Sorin Lerner, Chair

Web browsers are one of the most security-critical applications that billions of

people use to access their private information ranging from bank statements to medical

records. However, we have witnessed numerous browser security vulnerabilities that

allow attackers to steal these information or hijack a user’s machine in the last decade.

Many of these security vulnerabilities are rooted in the lack of security support

from programming languages used in browsers. First, JavaScript, the browser-side

scripting language, lacks flexible language constructs to isolate code originating from

different websites despite the common practice of merging JavaScript programs from

xiv



untrusted sources into one web page. As a result JavaScript attacks have affected

numerous sites. Second, C++, the language in which major browsers are implemented,

does not guarantee memory safety. As a result, memory corruption attacks are prevalent

in browsers; in the worst scenario, memory corruption attacks can hijack a user’s machine.

Third, due to the lack of reasoning support, C++ makes it challenging to implement

correct and thorough security policies in browsers comprising millions of lines of code.

Loopholes in implementations have thus been exploited to circumvent intended security

measures. These factors suggest that we can retrofit these languages with security-relevant

constructs or incorporate a security-oriented language to address these problems.

This dissertation argues that we can adapt language techniques to improve browser

security. To support this argument, we present the following contributions. First, we

present a dynamic information flow framework for JavaScript to detect and prevent data

stealing attacks in JavaScript web applications. Second, we present SAFEDISPATCH,

an enhanced C++ compiler that prevents C++ control flow hijacking attacks, a class of

attacks that exploit vtable pointers in the browser. Third, we present QUARK, a browser

with a kernel formally verified to satisfy crucial security properties even when another

browser component is compromised.

We highlight experimental results showing that each of our contributions is

a practical defense mechanism against various browser security problems. We have

implemented our proposals in real browsers such as Chromium and Webkit and showed

that they successfully run on real websites, including Google, Amazon, and Facebook.

xv



Chapter 1

Introduction

Web browsers serve an important role to securely mediate billions of people’s

private information ranging from banking transactions to medical records on diverse

websites, some of which turn malicious. Browsers are responsible to securely isolate and

share these information from different sites. In the modern web, a website consists of

not only static HTML documents, but also dynamic contents manipulated by client-side

web applications, typically written in JavaScript, that interact with multiple websites

having different security characteristics. The browser is responsible for defining the

boundaries of web applications originating from different sources, and applies proper

security checking among them so that the information on a site is neither corrupted

from nor leaked into other malicious sites accidentally. The browser also has another

fundamental security goal that any applications dealing with untrusted network data share

: the browser should prevent websites from directly accessing system resources (e.g., file

system).

However, we have witnessed numerous security problems ranging from data

stealing JavaScript to arbitrary code execution in all major browsers. JavaScript code

injection via cross-site scripting (XSS) accounted for 43% of all Internet security vul-

nerabilities documented during 2012 by WhiteHat Security [46]. Online advertisements

also have been misused to inject malicious JavaScript code into popular sites such as The

1



2

Wall Street Journal [84]. Indeed, almost all popular websites including Google Mail and

Facebook have often been affected by a certain form of malicious JavaScript injection

attacks [58, 36]. Browser have also suffered from all kinds of software bugs ranging from

incorrect security policy implementation to memory corruption bugs. On the one hand,

browsers have been plagued with memory corruption bugs that may lead to arbitrary

code execution [40, 109, 98, 71, 72]. On the other hand, browser security policies have

so rapidly evolved that some newly introduced security features were circumvented [47]

due to their inconsistency with old security features. Despite the efforts of researchers

to fix browser security bugs, critical exploits have been regularly found. To deal with

this problem, Google even has started a Vulnerability Reward Program as an attempt to

harden their Chrome browser [2]. We identify several reasons for these problems as the

lack of security support from the programming languages either run by the browser or

used to implement the browser.

First, JavaScript, the programming language for client-side web applications,

whose code the browser fetches from websites to execute, lacks language-based isolation

mechanisms such as information hiding. However, JavaScript has extremely dynamic

language features that sometimes allow for unexpected interference among JavaScript

programs embedded in a same webpage, but originating from different sources. Instead

of language-level security mechanisms, browsers have evolved with ad-hoc browser-level

isolation mechanisms such as the same origin policy (SOP) for access control of the

domain object model (DOM) exposed to JavaScript. These browser-level isolation mech-

anisms are sometimes too coarse-grained to accommodate diverse security requirements

of rapidly evolving Web 2.0 websites. For example, under the SOP, all JavaScript code

embedded in a same web page, no matter where it originates or how it is embedded, is
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given the same privilege 1. Under the rigidity of browser-level isolation mechanisms

such as the SOP, websites are forced to put JavaScript code even from other untrusted

input into the same origin of the hosting site. Consequently, over-privileged malicious

JavaScript code accidentally inserted into important sites have caused a variety of security

vulnerabilities such as cross-site scripting (XSS).

Second, the lack of memory safety in C++, the language in which major browsers

are implemented for its performance and popularity, has resulted in numerous memory

corruption bugs in the browser. C++ has notoriously many sources of memory corruption

bugs. For example, C++ does not support garbage collection, and it performs no array

bound checking; C++ also allows for unrestricted typecasting that lead to uncontrolled

memory access via type confusion. Therefore, memory safety entirely depends on the

correctness of a C++ program. However, browsers have become so complicated with

millions of lines of C++ code that there have often been found serious memory bugs.

Attackers exploit memory bugs in a C++ program to illegally overwrite control data

(e.g., return addresses, indirect jump targets) to lead the program to execute unexpected

instructions performing dangerous operations. In the worst case, memory corruption

attacks lead to full takeover of a user machine. In the case of web browsers, attackers

can exploit a victim browser by serving a maliciously crafted web content that triggers

memory corruption attacks; just by visiting a maliciously crafted webpage a victim’s

browser can turn into a backdoor of the attacker. The security community has responded

to such attacks with practical defenses [16, 81, 29, 7], and some of them have been

already deployed in some browsers. However, high profile attacks have constantly

shifted their focus to corrupting another class of control data such as virtual table

pointers [40, 109, 98, 71, 72].

1A recent browser security feature, Content Security Policy(CSP) refines this coarseness by distinguish-
ing JavaScript code by their origin and embedding method
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Third, C++ lacks language features such as a strong type system that helps to

assure the correctness of security-relevant code in complex browser implementations

consisting of millions of lines of C++ code. As the browser evolves with more func-

tionality, components securing them have also become complicated. For example, the

same origin policy, a seemingly simple policy originally introduced only for JavaScript,

is later extended to secure cross-site communication via XMLHTTPRequest (XHR),

persistent browser local storage, and even each pixel from HTML5 canvases. However,

the same origin policy was slightly modified for each of the cases to accommodate their

security requirements. As a result, it has become challenging to assure that these security

components are both temper-proof and complete due to their complexity, and there are

often found security vulnerabilities of incomplete security checking. For example, the

Firefox browser had bugs of missing the SOP checking in certain situations, which

enables attackers to bypass the SOP [5, 6].

In essence, many of browser security vulnerabilities are rooted in the lack of

security support from the programming languages used in the browser. The languages for

the browser, JavaScript and C++, are designed for their flexibility and performance instead

of security. However, it appear to be an unacceptable solution to re-implement millions

of existing JavaScript web applications or browser implementations in new security-

oriented languages. It is another social matter to convince JavaScript programmers of

switching to a new language for security. It also appear impractical to rewrite a significant

security-relevant portion of the browser from scratch in a new programming environment

considering its huge cost. These factors suggest that we have to find a solution that

harmoniously works with existing codebase without disrupting the development practice

of web programmers or browser developers.
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1.1 Outline of this work

This dissertation argues that we can adapt language-based techniques to address

the class of problems discussed above without sacrificing compatibility. To support this

argument, we propose three language-based methods, each of which alleviates a class of

the problems mentioned above in practical settings. For isolating JavaScript in one web

page, we adapt dynamic information flow [97] to specify and enforce confidentiality poli-

cies stating what parts of the web page can be read by what JavaScript code and integrity

policies stating what JavaScript code can affect what parts of the page. To address a class

of C++ control flow hijacking attacks frequently found in browsers [40, 109, 98, 71, 72],

we developed a specialized form of control flow integrity [7] to prevent vtable hijack-

ing, a class of memory corruption attacks that exploit C++ dynamic dispatch to hijack

the program control flow. To raise the software assurance level of the browser, we

adapt software formal verification to implement and verify the actual implementation

of a security-critical browser component; exploiting the kernel-based browser architec-

ture [15], our prototype browser with a verified kernel could provide strong guarantees

without reasoning about other components.

We outline our three language-based techniques for better browser security and

describe our research contributions associated with each of them.

• Dynamic Information Flow for JavaScript : we present a framework that tracks

information flow for JavaScript dynamically. Our framework residing in the

browser inserts and propagates taints through a JavaScript program as it runs to

enforce confidentiality and integrity policies. The dynamic nature of our analysis

allows it to precisely track flow even through the many features of JavaScript that

make static analysis hard. Our framework allows either web developers or browser

users to flexibly specify their diverse security requirements in terms of information
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flow, alleviating the problems caused by the rigidity of the same origin policy. To

show how well our framework can capture security violation of JavaScript in the

wild, we have used a Chromium browser enhanced with our flow framework to

conduct a large-scale empirical study over the Alexa global top 50,000 websites of

four privacy-violating flows: cookie stealing, location hijacking, history sniffing

and behavior tracking.

• Control Flow Integrity for C++ Virtual Calls : we address the growing threat of

C++ vtable hijacking with SAFEDISPATCH, enhanced C++ compiler that prevents

such attacks. SAFEDISPATCH instrument C++ programs with runtime checks that

precisely reflects static typing rules for dynamic dispatch. By carefully optimizing

these checks, we were able to reduce runtime overhead to just 2.1% in the first

vtable-safe version of the Google Chromium browser which we built with the

SAFEDISPATCH compiler.

• Formal Verification for Browser Kernel : we present a browser with a formally

verified kernel, Quark. Quark is structured similarly to the Chrome browser [15],

around a small kernel that mediates access to system resources for other browser

components. This architecture allows us to make strong guarantees about a millions

lines of code for other components just while formally verifying about only a few

hundreds line of code for the kernel within the demanding and foundational context

of the mechanical proof assistant Coq. We also show that Quark is practical even

with this strong guarantee : it opens popular demanding websites such as Google

Maps or GMail without disruption.

We demonstrate that the proposed methodology are practical by applying our

techniques to real browser such as Chrome and Webkit, and running the browsers

enhanced by our techniques on actual websites such as Google Mail and Facebook.
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1.2 Organization

The rest of this dissertation is organized as follows. Chapter 2 shows how to

capture realistic JavaScript attacks using dynamic information flow. Chapter 3 presents a

C++ code instrumentation technique to secure virtual function calls at runtime. Chapter

4 shows how to apply software formal verification to verify a browser kernel. Chapter 5

surveys related work on browser security and language-based applications. Chapter 6

presents further opportunities to improve our work and summarizes the dissertation.



Chapter 2

Securing JavaScript via Dynamic Infor-
mation Flow Tracking

Web applications often either intentionally or accidentally load JavaScript code

from untrusted sources, including ad sites and user input, which in some cases can steal or

corrupt important information in web applications. Furthermore, JavaScript can cleverly

manipulate the browser to exfiltrate private information residing in the browser without

the user’s consent. In this chapter, we present a dynamic information flow framework for

JavaScript that enforces confidentiality and integrity policies that respectively specify

what information can flow into and from certain JavaScript code. We have implemented

our approach in the Chromium browser that we can use to prevent malicious JavaScript

code from stealing the sensitive data of the hosting website. Furthermore, to show the

effectiveness of our approach as a survey tool, we used our framework to conduct a

large-scale study of privacy-violating information flows in JavaScript code over Alexa

top 50,000 websites. We have found a significant number of JavaScript web applications

exhibiting privacy-violating behavior suggesting that we need to take a step to devise an

effective defense against them.

8
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2.1 Motivation

JavaScript is a dynamically typed language that can be embedded in web pages

and executed by the web browser. JavaScript is becoming the lingua franca of modern

Web 2.0 applications. Almost every popular web site uses some amount of JavaScript,

and many interactive web sites, like search engines, email sites and mapping applications

are almost entirely implemented in client-side JavaScript.

Although JavaScript has enabled web developers to provide a richer web experi-

ence, JavaScript has also opened up the possibility for a variety of security vulnerabilities.

In particular, typical JavaScript applications are made up from code originating from

many different sources, including advertising websites and sometimes user-provided

content. Unfortunately, JavaScript does not provide strong protection mechanisms, so

that code included from a particular site, say for displaying an ad, essentially runs in

the context of the hosting page. Thus, the ad code has access to all the information

on the hosting web page, including the cookie, the location bar, and any other privacy-

sensitive information accessible on the page. The lack of strong protection mechanisms

in JavaScript has led to a variety of attacks like cross-site scripting.

To make JavaScript more secure, ideally we would like to specify and enforce

confidentiality policies stating what parts of the web page can be read by what JavaScript

code and integrity policies stating what JavaScript code can affect what parts of the page.

One formalism that is well suited for expressing these kinds of policies is information

flow policies which specify where in the code a given value can flow to. Thus, for

example, we could state using an information flow policy that sensitive information

stored in a cookie should not flow to any code loaded from third party ad servers. We

could also state a flow policy that the information from untrusted code should not flow to

the location bar of the hosting page.
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Although there has been work on static enforcement of information flow for a

variety of languages, performing static information flow on a language like JavaScript is

extremely hard. JavaScript has many features that make precise static analysis all but

impossible. These features include dynamic loading of code from the network, dynamic

code construction and evaluation, prototypes and dynamic dispatch, dynamically added

and removed fields, and dynamic field assignments (where the field name is constructed

at runtime).

Rather than trying to analyze the JavaScript code statically, in this chapter we

present a framework that tracks information flow for JavaScript dynamically. Our frame-

work inserts and propagates taints through the program as it runs to enforce confidentiality

and integrity policies. The dynamic nature of our analysis allows it to precisely track

flow even through the many dynamic features of JavaScript that make static analysis hard.

To show that a dynamic information flow for JavaScript is practical and flexible enough

to capture a variety of JavaScript security attacks, we have carried out this study in three

steps.

First, we have designed an expressive, fine-grained information flow policy

language that allows us to specify different kinds of malicious information flows in

JavaScript code (Section 2.2.1). In essence, our language allows us to describe different

kinds of flows by specifying sites within the code where taints are injected and sites from

which certain taints must be blocked. For example, to specify an information flow of

cookie stealing JavaScript, we inject a “secret" taint into the cookie, and block that taint

from flowing into variables controlled by third-party code. To specify flows to corrupt the

location bar, we inject an “untrusted" taint onto any values originating from third-party

code, and block that taint from flowing into the document’s location field.

Second, we have implemented a new JavaScript information flow engine in the

Chromium browser. Unlike previous JavaScript information flow infrastructures [38,
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107, 34], our engine uses a dynamic source-to-source rewriting approach where taints are

injected, propagated, and blocked within the rewritten JavaScript code (Section 2.2.2).

Although the rewriting is performed inside the browser, implementing our approach

requires understanding only the browser’s AST data structure, and none of the complexity

of the JavaScript run-time. Thus, in addition to supporting an extremely flexible flow

policy specification language, our approach is simple to implement and can readily be

incorporated inside other browsers or web proxies [59]. Even though the taints are

propagated in JavaScript, as opposed to natively, the overhead of our approach is not

prohibitively high. Our approach adds on average 60 to 70% to the total page loading

time over a fast school network (which is the worst condition to test our JavaScript

overhead). This is efficient enough for our exploratory study focused on investigating

how expressible our framework can be, and with additional simple optimizations could

even be feasible for interactive use (Section 2.3).

Third, we have used the Chromium browser enhanced with our information flow

framework to conduct a large-scale empirical study over the Alexa global top 50,000

websites of four kinds of privacy-violating information flows : cookie stealing, location

hijacking, history sniffing, and behavior tracking. Our results reveal interesting facts

about the prevalence of these flows in the wild. We did not find any instances of location

hijacking on popular sites, but we did find that there are several third party ad agencies

to whom cookies are leaked. We found that several popular sites — including an Alexa

global top-100 site — make use of history sniffing to exfiltrate information about users’

browsing history, and, in some cases, do so in an obfuscated manner to avoid easy

detection. We also found that popular sites, such as Microsoft’s, track users’ clicks

and mouse movements, and that huffingtonpost.com has the infrastructure to track

such movements, even though we did not observe the actual flow in our experiments.

Finally, we found that many sites exhibiting privacy-violating flows have built their
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var initSettings = function(s){
searchUrl = s;

}

initSettings("http://a.com?");

var doSearch = function() {
var searchBox = getSearchBoxValue();
var searchQry = searchUrl + searchBox;
document.location = searchQry;

}

eval(load("http://adserver.com/display.js"));

Figure 2.1. JavaScript code on a.com importing untrusted code from ad servers.

own infrastructure, and do not use pre-packaged solutions, we found throughout our

study, like ClickTale, tynt, Tealium, or Beencounter. Thus, our finding about them

shows that popular Web 2.0 applications like mashups, aggregators, and sophisticated

ad targeting are rife with different kinds of privacy-violating JavaScript code. Hence,

there is a pressing need to devise flexible, precise and efficient defenses against them;

and a dynamic information flow for JavaScript can be a good candidate as a defense

mechanism.

2.2 Information Flow Policies

We present our approach for dynamically enforcing information flow policies

through an example that illustrates the mechanisms used to generate, propagate and check

taint information for enforcing flow policies. The focus of our information flow policies

and enforcement mechanism is to detect many kinds of dangerous information flows,

not to provide a bullet-proof protection mechanism (although our current system could

eventually lead to a protection mechanism, as discussed further in Section 6). We defer a

formal treatment of our rewriting algorithm to a technical report [53].
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Web page Consider the JavaScript in Figure 2.1. Suppose that this code is a distillation of

the JavaScript on a web page belonging to the domain a.com. The web page has a text box

whose contents can be retrieved using a call to the function getSearchBoxValue (not

shown). The function initSettings is intended to be called once to initialize settings

used by the page. The doSearch function is called when the user clicks a particular

button on the page.

Dynamically Loaded Code The very last line of the code in Figure 2.1 is a call to load()

which is used to dynamically obtain a code string from adserver.com. load() can load

only JavaScript code from other sites under the same origin policy 1. This code string is

then passed to eval() which has the effect of “executing" the string as a piece of program

code in order to update the web page with an advertisement tailored to the particular user.

Malicious Code Suppose that the string returned by the call to adserver.com was:

initSettings("http://evil.com?");

When this string is passed to eval() and executed, it overwrites the page’s settings. In

particular, it sets the variable searchUrl which is used as the target web page to which the

browser navigates with the search keyword, to refer to an attacker site evil.com. Now, if

the user clicks the search button, the document.location gets set to the attacker’s site,

and thus the user is redirected to a malicious website which can then compromise her

machine. Similarly, dynamically loaded code can cause the user to leak their password,

cookie, or other sensitive information available on a.com

2.2.1 Policy Language

The flexibility and dynamic nature of JavaScript makes it difficult to use existing

language-based isolation mechanisms. First, JavaScript does not have any information

1The actual browser does not support load(), but we introduce it here to model a variety of dynamic
code evaluation methods in a unified way
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hiding mechanisms like private fields that could be used to isolate document.location

from dynamically loaded code. Indeed, a primary reason for the popularity of the

language is that the absence of such mechanisms makes it easy to rapidly glue together

different libraries distributed across the web. Second, the asynchronous nature of web

applications makes it difficult to enforce isolation via dynamic stack-based access control.

Indeed, in the example above, the malicious code has done its mischief and departed well

before the user clicks the button and causes the page to redirect.

Thus, to reconcile safety and flexible, dynamic code composition, we need fine-

grained isolation mechanisms that prevent untrusted code from viewing or affecting

sensitive data. Our approach to isolation is information flow control [39, 75], where the

isolation is ensured via two steps. First, the website’s developer provides a fine-grained

policy that describes which values can affect and be affected by others. Second, the

language’s compiler or run-time enforces the policy, thereby providing fine-grained

isolation.

Policies In our framework a fine-grained information flow policy is specified by defining

taints, injection sites and checking sites. A taint is any JavaScript object, e.g., a URL

string denoting the provenance of a given piece of information. A site

r.f (x . . .)

corresponds to the invocation of the method f with the arguments x . . ., on the receiver ob-

ject r. Such site expressions can contain concrete JavaScript (e.g., document.location),

or pattern variables (e.g., $1) that can match against different concrete JavaScript values,

and which can later be referenced.

In order to allow sites to match field reads and writes, we model these using getter

and setter methods. In particular, we model a field read using a call to method getf,
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which takes the name of the field as an argument, and we model a field write using a call

to a method setf, which takes the name of a field and the new value as arguments. To

make writing policies easier, we allow some simple syntactic sugar in expressing sites:

r.x used as an r-value translates to r.getf(x) and r.x = e translates to r.setf(x,e).

An injection site

at S if P inject T

stipulates that the taint T be added to the taints of the object output by the method call

described by the site S as long as the condition P holds at the callsite. For example,

the following injection site unconditionally injects a “secret” taint at any point where

document.cookie is read:

at document.cookie if true inject “secret”

To make the policies more readable, we use the following syntactic sugar: when “if P” is

omitted, we assume “if true”. As a result, the above injection site can be expressed as:

at document.cookie inject “secret” (2.1)

A checking site

at S if P block T on V

stipulates that at site S, if condition P holds, the expression V must not contain the taint

T . We allow the guard (P), the taint (T) and the checked expression (V) to refer to the

any pattern variables that get bound within the site S. As before, when “if P” is omitted,

we assume “if true”.
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For example, consider the following checking site:

at $1.x=$2 if $1.url 6= “a.com” block “secret” on $2 (2.2)

The url field referenced above is a special field added by our framework to every object,

indicating the URL of the script that created the object. The above checking site therefore

ensures that no value tainted with “secret” is ever assigned into an object created by a

script that does not originate from a.com.

Confidentiality policies can be specified by injecting a special “secret" taint to the getter-

methods for confidential variables, and checking that such taints do not flow into the

inputs of the setter-methods for objects controlled by code originating at domains other

than a.com. Such a policy could be formally specified using (2.1) and (2.2) above.

Integrity policies can be specified by injecting special “untrusted" taints to getter-

methods for untrusted variables, and checking that such taints do not flow into the

inputs of setter-methods for trusted variables. Such a policy could be formally specifed

as:

at $1.x if $1.url 6= “a.com” inject “untrusted”

at document.location= $1 block “untrusted” on $1

We can specify even finer grained policies by refining the taints with information about

individual URLs. The expressiveness of our policy language allows us to quickly

experiment with different kinds of flows within the same basic framework, and could

also lay the foundation for a browser-based protection mechanism.
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2.2.2 Policy Enforcement

The dynamic nature of JavaScript, particularly dynamic code evaluation, makes

precise static policy enforcement problematic, as it is impossible to predict what code

will be loaded at run-time. Thus, our approach is to carry out the enforcement in a fully

dynamic manner, by rewriting the code in order to inject, propagate and checks taints

appropriately.

Although there are known dangers to using rewriting-based approaches for pro-

tection [68], our current goal is actually not protection, bur rather to find as many

privacy-violating flows as possible. As such, one of our primary concerns is ease of

prototyping and flexibility; in this setting, rewrite-based approaches are very useful. In

particular, implementing our approach only required understanding the browser’s AST

data structure, and none of the complexities of the JavaScript runtime, which allowed

us to quickly build and modify our prototype as needed. Furthermore, keeping our

framework clearly separate from the rest of the browser gives us the flexibility of quickly

porting our approach to other browsers.

Policy Enforcement Our framework automatically rewrites the code using the spec-

ified injection and checking sites to ensure that taints are properly inserted, propa-

gated and checked in order to enforce the flow policy in pure JavaScript. First, we

use the checking (resp. injection) sites to synthesize wrappers around the correspond-

ing methods that ensure that the inputs do not contain (resp. outputs are tainted with)

the taints specified by the corresponding taint expressions whenever the correspond-

ing guard condition is met. Second, we rewrite the code so that it (dynamically)

propagates the taints with the objects as they flow through the program via assign-

ments, procedure calls etc.. We take special care to ensure correct propagation in

the presence of tricky JavaScript features like eval, prototypes, and asynchronous
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calls.

Rewriting Strategy Our strategy for enforcing flow policies, is to extend the browser

with a function that takes a code string and the unique identifier for the security domain

of the code (in our example, the URL from which the code string was loaded), and returns

a rewritten string which contains operations that perform the injection, propagation, and

checking of taints. Thus, to enforce the policy, we ensure that the code on the web page

is appropriately rewritten before it is evaluated. We ensure that “nested" eval-sites are

properly handled as follows. We implement our rewriting function as a procedure in the

browser source language(C++) that can be called from within JavaScript using the name

RW and the rewriter wraps the arguments of eval within a call to RW to ensure they are

(recursively) rewritten before evaluation [114].

When the rewriting procedure is invoked on the code from Figure 2.1 and the

URL a.com, it emits the code shown in Figure 2.2. The rewriting procedure rewrites

each statement and expression. (In Figure 2.2, we write the original code as a comment

above the rewritten version.) Next, we step through the rewritten code to illustrate how

taints are injected, checked, and propagated, for the integrity property that specifies that

document.location should only be influenced by a.com.

Injection To inject taints, we extend every object with two special fields url and taint.

To achieve this, we wrap all object creations inside a call to a special function box which

takes a value and a url and creates a boxed version of the value where the url field is set

to url indicating that the object originated at url, and the taint field is set to the empty set

of taints. We do this uniformly to all objects, including functions (e.g., the one assigned

to initSettings), literals (e.g., the one passed as a parameter to initSettings), etc..

Next, we use the specified injection sites to rewrite the code in order to (conditionally)

populate the taint fields at method calls that match the sites. However, the integrity

injection site does not match anywhere in the code so far, and so no taints are injected
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//var initSettings = function(){...}
tmp0 = box(function(s){searchUrl = s;}, "a.com"),
var initSettings = tmp0;

//initSettings("http://a.com?");
tmp1 = box("http://a.com?", "a.com"),
initSettings(tmp1);

//var doSearch = function(){...}
var doSearch = box(function(){

var searchBox = getSearchBoxValue();

//var searchQry = searchBox + searchUrl;
var searchQry = TSET.direct.add(searchUrl), tmp2 = unbox(searchUrl),

TSET.direct.add(searchBox), tmp3 = unbox(searchBox),
tmp4 = tmp2 + tmp3, TSET.boxAndTaint(tmp4, "a.com");

//document.location = searchQry;
check(searchQry, "untrusted"), document.location = searchQry;

}, "a.com");

//eval(load("http://adserver.com/display.js"));
tmp5 = box("http://adserver.com/display.js", "a.com"),
tmp6 = box(load(tmp5), "a.com"),
tmp6.url = tmp5,
eval(RW(tmp6, tmp6.url));

Figure 2.2. Rewritten code from a.com. The comments denote the original code.

yet – they will be injected when code gets loaded from the ad server.

Checking Before each call site that matches a specified check site, we insert a call to a

special check function. The call to check is predicated on the check site’s condition.

The function check is passed the checked expression V and taint T corresponding to

the matching check site. The function determines whether the taints on the checked

expression contain the prohibited taint, and if so, halts execution.

For example, consider the rewritten version of the assignment to

document.location in the body of doSearch which matches the checking site from
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the integrity policy. The rewrite inserts a call to check. At run-time, when this call is

executed it halts the program with a flow-violation message if searchQry.taint has a

(taint) value of the form “untrusted”.

Propagation Next, we consider how the rewriting instruments the code to add instruc-

tions that propagate the taints.

• For assignments and function calls, as all objects are boxed, the taints are carried

over directly, once we have created temporaries that hold boxed versions of values.

For example, the call to initSettings uses tmp0, the boxed version of the

argument, and hence passes the taints into the function’s formals. The assignment

to searchBox is unchanged from before, as the right-hand side is function call

(whose result has already been appropriately boxed).

• For binary operations, we must do a little more work, as many binary operations

(e.g., string concatenation) require their arguments be unboxed. To handle such

operations, we extend the code with a new object called the taint-set, named TSET.

We use this object to accumulate the taints of sub-expressions of compound expres-

sions. The object supports two operations. First, TSET.direct.add(x,url), which

adds the taints in x.taint to the taint-set. Second, TSET.boxAndTaint(x,url),

which creates a boxed version of x (if it is not boxed), and the taints accumulated

on the taint-set, clears the taint-set, and returns the boxed-and-tainted version of

x. We use the direct field as there are several other uses for the TSET object that

are explained later. For example, consider the rewritten version of searchBox +

searchUrl. We add the taints from searchBox (resp. searchUrl) to the taint-set,

and assign an unboxed version to the fresh temporary tmp2 (resp. tmp3). Next,

we concatenate the unboxed strings, and assign the result to tmp4. Finally, we

call TSET.boxAndTaint(tmp4,“a.com”), which boxes tmp4 with the taints for the
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sub-expressions stored in the taint-set and set its url to “a.com " as its creator, and

returns the boxed-and-tainted result.

• For code loading operations (modeled as load(·)), the rewriting boxes the strings,

and then adds a url field to the result that indicates the domain from which the

string was loaded. For example, consider the code loaded from adserver.com.

The name of the URL is stored in the temporary tmp5, and the boxed result is

stored in a fresh temporary tmp6, to which we add a url field that holds the value

of tmp5.

• For eval operations, our rewriting interposes code that passes the string argument

to eval and the URL from which the string originated to the the rewriting function

RW, thereby ensuring the code is rewritten before it is evaluated. For example,

consider the operation at the last line of the code from Figure 2.1 which eval’s

the string loaded from adserver.com. In the rewritten version, we have a boxed

version of the string stored in tmp6; the rewriting ensures that the string that gets

executed is actually tmp6 rewritten assuming it originated at tmp6.url, which

will have the effect of ensuring that taints are properly injected, propagated and

checked within the dynamically loaded code.

The above code assumes, for ease of exposition, that the fields taint and url are

not read, written or removed by any code other than was placed for tracking. However,

our actual implementation makes sure that the user code cannot touch those fields by

interposing field access.

Attack Prevention Suppose that the load() operation returns the following code string.

initSettings("evil.com");
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The rewritten code invokes the rewriting function RW on the string, and the URL

adserver.com yielding the string

tmp10 = box("http://evil.com?", "adserver.com"),

if (tmp10.url != "a.com"){

tmp10.taint += ["untrusted"]

},

initSettings(tmp10);

The if-expression injects the taints to the value returned by the implicit getter-call (i.e.,

the read of tmp10) that yields the value passed to initSettings. Thus, the argument

passed to initSettings carries the taint “untrusted”, which flows into searchUrl

when the assignment inside initSettings is executed. Finally, when the button click

triggers a call to doSearch, the taint flows through the taint-set into the value returned

by the call TSET.boxAndTaint(tmp4,“a.com”), and from there into searchQry. Finally,

the check (just before the assignment to document.location) halts execution as the

flow violates the integrity policy, thereby preventing the location hijacking attack.

Rewriting for Confidentiality Policies The above example illustrates how rewriting

enforces integrity policies. The case for confidentiality policies differs only in how taints

are injected and checked; the taints are propagated in an identical fashion. To inject taints,

the rewriting adds a “secret” taint to the results of each read from a confidential object

(e.g., document.cookie). To check taints, the rewriting inserts calls to check before any

writes to variables (i.e., invocations of setter methods) in code originating in untrusted

URLs. The check halts execution before any value with the “secret” taint can flow into

an untrusted location.

Robustness Even though the primary purpose of our tool so far has been to evaluate

existing flows (a scenario under which we don’t need to worry about malicious code trying
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to subvert our system), our framework does in fact protect its internal data structures from

being maliciously modified. In particular, our tool disallows a user JavaScript program

from referencing any of the variables and fields used for taint tracking such as TSET.

More specifically, since our framework tracks reads and writes to all variable and field, it

can simply stop a program that tries to read or write to any of the internal variables that

we use to track information flow.

2.2.3 Indirect Flows

Next, we look at how the rewriting handles indirect flows due to control depen-

dencies. We start with the data structure that dynamically tracks indirect flows, and then

describe the key expressions that are affected by indirect flows.

Indirect Taint Stack (TSET.indirect) To track indirect flows, we augment the taint set

object with an indirect-taint stack (named TSET.indirect). Our rewriting ensures that

indirect taints are added and removed from the indirect taint stack as the code enters and

leaves blocks with new control dependencies at runtime. The TSET.boxAndTaint(·, ·)

function, which is used to gather the taints for the RHS of assignments, embellishes the

(RHS) object with the direct taints at the top of the direct taint stack, and the indirect

taints stored throughout the indirect taint stack. The latter ensures that at each assignment

also propagates the indirect taints that held at the point of the assignment.

Branches For branch expressions of the form if e1 e2 e2, we first assign the rewritten

guard to a new temporary tmp1, and push the taints on the guard onto the indirect taint

stack. These taints will reside on the indirect taint stack when (either) branch is evaluated,

thereby tainting the assignments that happen inside the branches. After the entire branch

expression has been evaluated, the rewritten code pops the taints, thereby reverting the

stack to the set of indirect taints before the branch was evaluated.

Example Consider the branch expression: if (z) { x = 0 } To ensure that taints
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from z flow into x when the assignment occurs inside the then-branch, the expression is

rewritten to:

tmp = z,

TSET.indirect.push(tmp),

if (unbox(tmp)){

x = TSET.boxAndTaint(box(0,...),...)

},

TSET.indirect.pop()

The ellipses denote the URL string passed to RW and we omit the calls to check and

TSET.direct.add(·, ·) for brevity. The rewrite ensures that the taints from the guard z

are on the indirect taint stack inside the branch, and these taints are added to the (boxed

version of) 0 that is used for the assignment, thereby flowing them into x. The pop after

the branch finishes reverts the indirect stack to the state prior to the branch.

Indirect vs. Implicit Flows. The above example illustrates a limitation of our fully

dynamic approach; we can track indirect flows induced by a taken branch (such as the

one above) but not implicit flows that occur due to a not-taken branch. For example,

if the above branch was preceded by an assignment that initialized x with 1, then an

observer that saw that x had the value 1 after the branch would be able to glean a bit of

information about the value of z. Our rewriting, and indeed, any fully dynamic analysis

[32] will fail to detect and prohibit such implicit flows.

Function Calls Our rewriting adds an indirect taint parameter to each function definition.

This parameter holds the indirect taints that hold at the start of the function body; the

taints on it are pushed onto the indirect taint stack when the function begins execution.

Furthermore, the rewriting ensures that at each function callsite, the indirect taints (in the

indirect taint stack) at the caller are passed into the indirect taint parameter of the callee.
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Event Handlers cause subtle information flows. For example, if foo is the handler for

the MouseOver event, the fact that foo is executed contains the information that the

mouse hovered over some part of the page. We capture these flows as indirect flows

triggered by the tests within the DOM event dispatch loop

while(1){

e = getEvent();

if (e.isClick()) onClick(e);

if (e.isMouseOver()) onMouseOver(e);

if (e.isScroll()) onScroll(e);

...

}

Thus, to capture flows triggered by a MouseOver event, we simply inject a taint at

the output of the $1.isMouseOver(...). The if ensures that the taint flows into the

indirect taint parameter of the registered handler (bound to onMouseOver).

Full JavaScript The examples described in this section have given a high-level overview

of our rewriting-based approach to enforcing information flow policies. Our implementa-

tion handles all of JavaScript including challenging language features like prototypes,

with-scoping, and higher-order functions. Our implementation also incorporates several

subtle details pertaining to how taints can be stored and propagated for unboxed objects,

to which a taint field cannot be added. The naive strategy of boxing all objects breaks

several websites as several DOM API functions require unboxed objects as arguments.

We refer the reader to an accompanying technical report [53] for the details.
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2.3 Implementation and Performance Evaluation

This section presents our implementation of rewrite-based information flow

framework for JavaScript in the Chromium browser, and describes several experiments

that quantify the performance overhead of our approach.

Implementation We implement the rewriting module in C++ within the V8 JavaScript

engine of Chromium that is invoked on any JavaScript code just before it gets sent into

the JavaScript engine. Thus, our implementation rewrites every piece of JavaScript

including that which is loaded by <script> tags, executed by eval or executed by via

document.write. Our rewriting module is given the information on how a piece of code

is inserted, and it can decide the security domain (url in our discussion so far) of the

code. The TSET library is implemented in pure JavaScript, and we modified the resource

loader of Chromium to insert the TSET library code into every JavaScript program it

accesses. The TSET library is inserted into each web page as ordinary JavaScript using a

<script> tag before any other code is loaded. The flow-enhanced Chromium can run

in normal mode or in taint tracking mode. When the taint tracking is on, the modified

Chromium tracks the taint flow as a user surfs on websites.

Optimizations We describe the three most important optimizations we performed for the

“optimized” bar. The first and most important optimization is that we implemented the

two most frequently executed TSET methods using 65 lines of C++, namely the methods

for taint lookup and unboxing. Second, in the TSET.direct stack, when there is a pop

followed by a push, and just before the pop there are no taints stored at the top of the

stack, we cache the object at the top of the stack before poping, and then reuse that same

object at the next push, thus avoiding having to create a new object. Because the push is

called on every assignment, removing the object creation provides a significant savings.

Third, we also cache field reads in our optimized TSET library. For example, whenever a
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property a.b is referenced several times in the library, we store the value of the property

in a temporary variable and reuse the value again. This produces significant savings,

despite the fact that all our measurements used the JIT compiler of the V8 engine.

Benchmarks We employ a set of stress experiments using the standard cookie confiden-

tiality and location integrity policies to evaluate the efficiency of our approach and the

effect of optimizations. These policies require a significant amount of taint propagation,

as the cookie is heavily accessed and our benchmark sites contain lots of third-party code.

As our benchmarks, we use the front pages on the websites from the latest Alexa global

top 100 list. Alexa is a company which ranks websites based on traffic. The websites

on the Alexa global top 100 vary widely in size and how heavily they use JavaScript,

from 0.1 KLOC to 31.6 KLOC of JavaScript code. We successfully ran our dynamic

analysis on all of the pages of the Alexa global top 100 list, and we visited many of them

manually to make sure that they function properly.

2.3.1 Policies

To measure efficiency, we checked two important policies on each site. First,

document.cookie should remain confidential to the site. Second, document.location

should not be influenced by another site. Both policies depend on a definition of what

“another site" is. Unfortunately, using exactly the same URL or domain name often leads

to many false alarms as what looks like a single website is in fact the agglomeration

of several different domain names. For example, facebook.com refers to fbcdn.net

for many of their major resources, including JavaScript code. Moreover, there are

relatively well known and safe websites for traffic statistics and advertisements, from

which JavaScript libraries are imported on many other websites, and one may want to

consider those as safe. Thus, we considered three URL policies (i.e., three definitions

for “another site") (1) the same-origin policy stating that any website whose hostname
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Table 2.1. Flow results for a subset of the Alexa global 100 (last row summarizes results
for all 100 sites).

Site and rank Total Other KLOC # Taint Val(k) Cookie
KLOC s d w s d w s d w

1. google 1.8 0 - - × × × × × ×
2. yahoo 7.4 7.0 - 0 × × × × × ×
3. facebook 9.1 9.1 9.1 9.1 × × × × × ×
4. youtube 7.5 7.3 7.3 5.7 X X X × × ×
5. myspace 12.2 11.9 - 8.6 X X X × × ×
6. wikipedia <0.1 0 - - × × × × × ×
7. bing 0.7 0 - - × × × × × ×
8. blogger 1.8 1.1 - 0 X X × × × ×
9. ebay 13.6 13.4 - 12.9 X X X × × ×

10. craigslist 0 0 - - × × × × × ×
11. amazon 5.3 4.8 - - × × × × × ×
12. msn 7.3 6.7 6.1 5.6 X × × × × ×
13. twitter 5.6 5.5 - 1.3 × × × × × ×
14. aol 12.7 9.6 - <0.1 X X × × × ×
15. go 1.1 0.9 0.2 - X × × × × ×
−. Average 8.2 6.1 4.5 3.0 48 38 17 0 0 0

is different from the hostname of the current one is considered a different site. (2) the

same-domain policy, which is the same as the same-origin policy, except that websites

from the same public domain suffix are considered to be the same (e.g., ads.cnn.com

is considered the same as www.cnn.com). (3) the white-list policy, which is the same

as the same-domain policy, except that there is a global list of common websites that

are considered the same as the source website. For our experiments, we treat websites

referenced by three or more different Alexa benchmarks as safe. The white-list mainly

consists of well-known statistics and advertisement websites. We use a whitelist only to

evaluate the performance of our system under such conditions; we leave the exact criteria

for trusting a given third-party site to future work. Our rewriting framework makes it

trivial to consider different URL policies; we need only alter the notion of URL equality

in the checks done inside TSET.boxAndTaint and TSET.check.

Detected Flows Table 2.1 shows the results of running our dynamic information frame-
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work on the Alexa global top 100 list using the above policies. Because of space

constraints, we only show a subset of the benchmarks, but the average row is for all 100

benchmarks.

The columns in the table are as follows: “Site and rank" is the name of the

website and its rank in the Alexa global 100 list; “Total KLOC" is the number of lines

of JavaScript code on each website, including code from other sites, as formatted by

our pretty printer; “Other KLOC" is the number of lines of code from other sites; “#

Taint Val" is the number of dynamically created taint values; “Cookie" describes the

document.cookie confidentiality policy: Xindicates policy violation, and ×indicates

no flow i.e., policy satisfaction. The column for the location intergrity policy is omitted

since we have not found any violation of the policy on our benchmarks.

The above columns are sub-categorized into three subcolumns depending on the

applied URL policy: “s" is for the same-origin policy; “d" is for the same-domain policy;

“w" is for the white-list policy. A dash in a table entry means that the value for that table

entry is the same as the entry immediately to its left.

The code for each website changes on each visit. Thus, we ran our enhanced

Chromium 10 times on each website. To gain confidence in our tool, we manually

inspected every program on which a flow is detected, and confirmed that every flow was

indeed real.

Variation based on URL policies The number of lines of code from other sites decreases

as we move from the same-origin policy to the same-domain policy to the white-list

policy. Note that in some cases, for example facebook.com, code from other sites

is almost the same as the total lines of code. This is because most of the JavaScript

code for facebook.com comes from a website fbcdn.net. This website is not in the

same domain as facebook.com, and it is only referenced by one website and hence, not

included in our whitelist. In such situations, a site-specific white-list would help, but
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we have not added such white-lists because it would be difficult for us to systematically

decide for all 100 benchmarks what these white-lists should be. Thus, as we do not use

site-specific white-lists, our policy violations may not correspond to undesirable flows.

As the amount of other-site code decreases as we move from “s” to “d” to “w”,

the number of dynamically created taint values also decreases, at about the same rate.

That is, a large drop in other-site code leads to a correspondingly large drop in the number

of taint values created. Moreover, as expected, the number of policy violations also

decreases, as shown on the last line of the table: the violations of the document.cookie

policies goes from 48 to 38 to 17. We did not see a violation of the document.location

policy in any of our benchmarks.

2.3.2 Timing Measurements

Our rewrite-based information flow technique performs taint-tracking dynami-

cally, and so it is important to evaluate the performance overhead of our approach. We

measure performance using two metrics: total page load time, and JavaScript run time.

We modified the Chromium browser to allow us to measure for each website (1) the

time spent executing JavaScript on the site, and (2) the total time spent to download

and display the site. Figures 2.3 describes our timing measurements for JavaScript

time, and total download time on the 10 benchmarks with the largest JavaScript code

bases. The measurements were performed while tracking both the document.cookie

confidentiality and document.location integrity policies. The “average” benchmark

represents the average time over all 10 benchmarks. For each benchmark there are five

bars which represent running time, so smaller bars mean faster execution. For each

benchmark, the 5 bars are normalized to the time for the unmodified Chromium browser

for that benchmark. Above each benchmark we display the time in milliseconds for the

unmodified Chromium browser (which indicates what “1” means for that benchmark).
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Figure 2.3. Slowdown for JavaScript (upper) and Page Loading (lower)

The left most bar “not-optimized” represents our technique using the original version

of our TSET library, and using the same-origin URL policy. For the remaining bars, each

bar represents a single change from the bar immediately to its left: “optimized” uses

a hand-optimized version of our TSET library, rather than the original version; “dmn”

changes the URL policy to same-domain; “whlist” changes the URL policy to white-

list; and “trust-all” changes the URL policy to the trivial policy where all websites are

trusted.

JavaScript execution time The top chart of Figure 2.3 shows just the JavaScript execu-
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tion time. As expected, the bars get shorter from left-to-right; from “not-optimized” to

“optimized”, we are adding optimizations; and then the remaining bars consider progres-

sively more inclusive URL policies meaning there are fewer taints to generate, propagate

and check.

The data from Figure 2.3 shows that our original TSET library slows down

JavaScript execution significantly – anywhere from about 2.1X to 7.9X, and on av-

erage about 4.3X. The optimized TSET library provides significant performance gains

over the original library and provides 3.0X slowdown. The various white-lists provide

some additional gain, but the gain is relatively small. To understand the limits of how

much white-lists can help, we use the “trust-all” bar, which essentially corresponds to

having a white-lists with every website on it. Overall, it seems that even in the best case

scenario, white-lists do not help much in the overhead of our approach. This is because

our approach needs to track the flow of cookie regardless of the number of external

sites.

Total execution time The bottom chart of Figure 2.3 shows the total execution time

of the enhanced Chromium while loading the web page and running the scripts on it.

These measurements were collected on a fast network at a large university. The faster

the network, the larger the overheads in Figure 2.3 will be, as the time to download the

web page can essentially hide the overhead of running JavaScript. Thus, by using a fast

network, Figure 2.3 essentially shows some of the worst case slowdowns of our approach.

Here again, we see that the “optimized” bar is significantly faster than the “not-optimized”

bar. We can also see that the “whlst” bar provides a loading experience that is about 73%

slower.
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2.4 Empirical Study of History Sniffing

Next, we present an empirical study of the prevalence of history sniffing on

popular websites. In most browsers, all application domains share access to a single

visited-page history, file cache, and DNS cache [49]. This leads to the possibility of his-

tory sniffing attacks [51], where a malicious site (say, attacker.com) can learn whether

a user has visited a specific URL (say, bankofamerica.com), merely by inducing the

user to visit attacker.com. To this end, the attack uses the fact that browsers display

links differently depending on whether or not their target has been visited [24]. In

JavaScript, the attacker creates a link to the target URL in a hidden part of the page, and

then uses the browser’s DOM interface to inspect how the link is displayed. If the link is

displayed as a visited link, the target URL is in the user’s history.

In essence, the attack works by inserting invisible links into the web page and

having JavaScript inspect certain style properties of links, for example the color field,

thereby determining whether the user has visited a particular URL. While researchers have

known about the possibility of such attacks, hitherto it was not known how prevalent they

are in real, popular websites. We have used our JavaScript information flow framework

to detect and study the prevalence of such attacks on a large set of websites, and show

that history sniffing is used, even by quite popular websites, and finally showcase the

effectiveness of dynamic information flow as a detection mechanism for such information

stealing JavaScript attacks.

Policies We formalize history sniffing in our framework using the following information

flow policies:

at $1.getComputedStyle($2, . . .) if $2.isLink() inject “secret”

at send($1,$2) block “secret” on $2
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In particular, whenever the computed style of a link is read using getComputedStyle,

the return value is marked as secret. Whenever a value is sent on the network using send,

the second parameter (which is the actual data being sent) should not be tainted.

Benchmarks and Summary of Results To evaluate the prevalence of history sniffing,

we ran our information flow framework using the above two policies on the front pages of

the Alexa global top 50,000 websites.2 To visit these sites automatically, we implemented

a simple JavaScript web page that directs the browser to each of these websites. We

successfully ran our framework on these sites in a total of about 50 hours. The slowdown

for history sniffing was as follows: the JavaScript code slowed down by a factor 2.4X

and total page loading time on a fast network increased by 67%. Overall, we found that

of these 50,000 sites, 485 of them inspect style properties that can be used to infer the

browser’s history. Out of 485 sites, 63 are reported as transferring the browser’s history

to the network, and we confirmed that 46 of them are actually doing history sniffing, one

of these sites being in the Alexa global top 100.

Real cases of history sniffing Out of 63 websites reported as transferring the browser’s

history by our framework, we confirmed that the 46 cases were real history sniffing

occurrences. Table 2.2 lists these 46 websites. For each history-sniffing site, we give

its Alexa rank, its URL, a description of the site, where the history-sniffing code comes

from, and a list of some of the URLs inspected in the browser history.

Each one of the websites in Table 2.2 extracts the visitor’s browsing history and

transfers it to the network. Many of these websites seem to try to obfuscate what they

are doing. For example, the inspected URLs on youporn.com are listed in the JavaScript

source in encoded form and decoded right before they are used. On other websites,

the history-sniffing JavaScript is not statically inserted in a web page, but dynamically

generated in a way that makes it hard to understand that history sniffing is occurring by

2Here and elsewhere in the chapter we use the Alexa list as of February 1st, 2010.

youporn.com
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1:var k = { 0: "qpsoivc/dpn", 1: "sfeuvcf/dpn", ... };
2:var g = [];
3:for(var m in k) {
4: var d = k[m];
5: var a = "";
6: for(var f = 0; f < d.length; f++) {
7: a += String.fromCharCode(d.charCodeAt(f)-1)
8: }
9: var h = false;

10: for(var j in {"http://":"","http://www.":""}) {
11: var l = document.createElement("a");
12: l.href = j + a;
13: document.getElementById("ol").appendChild(l);
14: var e = "";
15: if(navigator.appName.indexOf("Microsoft") != -1 ) {
16: e = l.currentStyle.color;
17: } else {
18: e = document.defaultView.getComputedStyle(l, null).

getPropertyValue("color");
19: }
20: if(e == "rgb(12, 34, 56)" || e == "rgb(12,34,56)") {
21: h = true
22: }
23: }
24: if(h) { g.push(m) }
25:}
26:var b = (g instanceof Array)? g.join(",") : "";
27:var c = document.createElement("img");
28:c.src= "http://ol.youporn.com/blank.gif?id="+b;
29:document.getElementById("ol").appendChild(c)

Figure 2.4. Attack code as found on youporn.com

just looking at the static code. We also found that many of these websites make use of a

handful of third-party history-sniffing libraries. In particular, of the 46 cases of confirmed

sniffing, 22 sites use history-sniffing code from interclick.com and 14 use history-sniffing

code from meaningtool.com.

Figure 2.4 shows the JavaScript attack code exactly as found on youporn.com.

The code has an obfuscated list of inspected websites (line 1). We only show part of the

list — the actual list had 23 entries. For each site, the code decodes the website name

(line 6–8), creates a link to the target site on the page (lines 11–13), reads the color of the

link that was just created (lines 15–19), and finally tests the color (line 20–22). If the

youporn.com
interclick.com
meaningtool.com
youporn.com
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Table 2.2. Websites that perform real sniffing. “Src" is the source of the history sniff-
ing JavaScript code: “I”, “M” and “F”, indicate the code came from interclick.com,
meaningtool.com, and feedjit.com respectively, and “H” indicates the code came from
the site itself.

Rank Site Desc Src Inspected URLs
61 youporn.com adult H pornhub,tube8,+21
867 charter.net news I cars,edmunds,+46
2333 feedjit.com traffic F twitter,facebook,+6
2415 gamestorrents.com fun M amazon,ebay,+220
2811 newsmax.com news I cars,edmunds,+46
3508 namepros.com forum F twitter,facebook,+6
3603 fulltono.com music M amazon,ebay,+220
4266 youporngay.com adult H pornhub,tube8,+21
4581 osdir.com tech I cars,edmunds,+46
5233 gamesfreak.com fun I cars,edmunds,+46
5357 morningstar.com finance I cars,edmunds,+46
6500 espnf1.com sports I cars,edmunds,+46
7198 netdoctor.com health I cars,edmunds,+46
7323 narutocentral.com fun I cars,edmunds,+46
8064 subirimagenes.com hosting M amazon,ebay,+220
8644 fucktube.com adult H tube8,xvideos,+9
9616 straightdope.com news I cars,edmunds,+46
10152 guardafilm.com movie M amazon,ebay,+220
10415 estrenosdtl.com movie M amazon,ebay,+220
11330 bgames.com fun I cars,edmunds,+46
12084 10best.com travel I cars,edmunds,+46
12164 twincities.com news I cars,edmunds,+46
16752 kaushik.net blog H facebook,+100
17379 todocvcd.com content M amazon,ebay,+220
17655 filmannex.com movie I cars,edmunds,+46
17882 planet-f1.com sports I cars,edmunds,+46
18361 trailersplay.com movie M amazon,ebay,+220
20240 minyanville.com finance I cars,edmunds,+46
20822 pixmac.com hosting H istockphoto,+27
22010 fotoflexer.com widget I amazon,ebay,+220
23577 xepisodes.com fun M amazon,ebay,+220
23626 sincortespublicitarios.com movie F facebook,youtube,+8
24109 mimp3.net.com music M amazon,ebay,+220
24414 allaccess.com news I amazon,ebay,+220
24597 petitchef.com food M amazon,ebay,+220
24815 bleachcentral.com fun I amazon,ebay,+220
25750 hoopsworld.com sports I amazon,ebay,+220
27366 net-games.biz.com fun I cars,edmunds,+46
31638 6speedonline.com car I cars,edmunds,+46
34661 msgdiscovery.com tech M amazon,ebay,+220
35773 moneynews.com finance I cars,edmunds,+46
37333 answersingenesis.org religion H facebook,+62
41490 divxatope.com content M amazon,ebay,+220
45264 subtorrents.com content M amazon,ebay,+220
48284 sesionvip.com movie M amazon,ebay,+220
49549 youporncocks.com adult H pornhub,tube8,+21

color indicates a visited link, the h variable is set to true, which in turn causes the link to

be inserted in the list g of visited sites (line 24). This list is then flattened into a string

(line 26), and the flattened string is concatenated as a query string into a URL pointing to

interclick.com
meaningtool.com
feedjit.com
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urlol.youporn.com, a subdomain of youporn.com, and finally sent to the network via the

src name of an image (lines 27–29).

The flow in Figure 2.4 from the color property e to the array of visited sites g is

actually an indirect flow that passes through two conditionals (on lines 20 and 24). Our

framework’s ability to track such indirect flows allowed us to find this history-sniffing

attack. Note however that our framework found the flow because the sites being tested

had actually been previously visited (because we had already run the experiments once,

and so all the top 50,000 Alexa global sites were in the history). If none of the tested sites

had been visited, the g array would have remained empty, and no violation of the policy

would have been observed, even though in fact the user’s empty history would have

been leaked. This example is precisely the implicit flow limitation that was mentioned in

Section 2.2.3.

False-positive cases of history sniffing Of the 63 sites flagged by our framework, 17

are false positives in that a manual examination of the source code and run-time behavior

did not allow us to conclude that they were real cases of history sniffing. Out of these 17

sites, 12 contain JavaScript code that is too complicated to understand. The remaining

5 sites contain a history sniffing widget from interclick.com, but no suspicious runtime

behavior was detected by monitoring their network access. Our framework reported

these sites either because they inspected style properties for purposes other than history

sniffing, or because too many irrelevant values were tainted by our handling of indirect

flows.

A more stringent policy To investigate the possibility of history sniffing further, we also

looked at all the sites that simply read the computed style of a link. This uncovered an

additional 422 websites that read style properties of links, but did not send the properties

out on the network. Unfortunately, because our framework does not cover all the corner

cases of information flow in JavaScript (as discussed later), we cannot immediately

youporn.com
interclick.com
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Table 2.3. Characteristics of suspicious websites depending on JavaScript widget
provider.

Provider Description Sites Inspected URLs
addtoany social 83 120.2
infolinks advertisement 124 14
kontera advertisement 87 11.5
other - 32 44.4

conclude that these sites did not transfer the browser history. Even if we were certain

that the style information was not sent to the network, it is still possible that the absence

of sending data was used to reveal information about the browsing history. For example,

if a site sent the browsing history only if a link was visited, then the server could have

learned about certain links’ not being visited without any information’s being transfered

from the client. Thus, to better understand the behavior of these additional websites, we

inspected them in detail, and categorized them into two bins: suspicious websites, and

non-suspicious websites.

Suspicious sites Of the 422 sites, 326 sites exhibit what we would categorize as sus-

picious behavior. In particular, these suspicious websites inspect a large number of

external links, and some of these links are dynamically generated, or they are located in

an invisible iframe. We found that many of them embed a JavaScript widget developed

by another website that inspects the browser history systematically.

Table 2.3 shows how such widgets are used on the 326 sites. For each JavaScript

widget, we give the name of its provider, a description of its provider, the number of sites

embedding it, and the number of URLs it inspects on average over the sites on which

it is embedded. The most notable is a menu widget developed by addtoany.com which

inspects around 120 URLs on average to activate or deactivate each menu item depending

on the browser history.

addtoany.com
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Non-suspicious sites The remaining 96 sites seemed non-suspicious. Of these, 77 simply

inspect their own website history. The remaining 19 samples have JavaScript code that is

too complicated for us to fully understand, but where the sites seem non-suspicious.

Incompleteness Our current implementation would miss information flow induced by

certain browser built-in JavaScript APIs. For example, consider the code:

arr.push(z); var result = arr.join(’,’)

The value z is inserted into an array and then all the elements of the array are joined

into a string using the the built-in method join. Even though we have implemented

a wrapper object for arrays to track array assignments and reads, we have not yet

implemented a complete set of wrappers for all built-in methods. Thus, in the above

case, even though result should be tainted, our current engine would not discover

this. It would be straightforward, although time-consuming, to create precise wrappers

for all built-in methods that accurately reflect the propagation of taints. Moreover, our

current implementation does not track information flow through the DOM, although

recent techniques on tracking information flow through dynamic tree structures [91]

could be adapted to address this limitation.

Even if our implementation perfectly tracked the taints of all values through

program execution, our approach would still miss certain history sniffing attacks. For

example, the attacking website can use a style sheet to set the font of visited links to be

much larger than the size of unvisited links. By placing an image below a link, and using

JavaScript to observe where the image is rendered, the attacker can determine whether the

link is visited or not. These kinds of attacks that use layout information would currently

be very hard to capture using a taint-based information flow engine. Some attacks in

fact don’t even use JavaScript. For example, some browsers allow the style of visited

links to be customized with a background image that is specific to that link, and this
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background image can be located on the attacker’s server. By observing which images

are requested, the attacker can infer which links have been visited, without using any

JavaScript. However, these history sniffing attacks are usually not as efficient as the ones

via JavaScript detectable by our framework.

Despite all these sources of incompleteness, our JavaScript information flow

framework can still be used as a diagnostic tool to find real cases of history sniffing

via JavaScript, considered as the most dangerous one due to its efficiency. By running

experiments on the Alexa global top 50,000 we have found that 46 sites really do perform

history sniffing, and one of these sites is in the Alexa global top 100. We have also found

several sites that have suspicious behavior, even though our current tool does not allow

us to conclude with full certainty that these sites transfer the browser’s history.

2.5 Empirical Study of Behavior Tracking

We have also conducted an empirical study on the prevalence of keyboard/mouse

tracking on popular websites. JavaScript code can install handlers for events related to

the mouse and keyboard to collect detailed information about what a user is doing on a

given website. This information can then be transfered over the network. It is not enough

to take a naive approach of simply prohibiting information from being transfered into the

network while the event handler is being executed since the gathered information can be

accumulated in a global variable, and then sent over the network in bulk (which is what

we actually observed in our study).

Policies To use our information flow framework for detecting keyboard/mouse tracking,
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we use the following policies in our framework:

at $1.isMouseOver() inject “secret”

at $1.isClick() inject “secret”

at $1.isScroll() inject “secret”

. . .

at document.send($1,$2) block “secret” on $2

Benchmarks and Summary of Results We ran our information flow framework using

the above policies on the front pages of the Alexa global top 1,300 websites. One

of the challenges in performing this empirical study automatically is that, to observe

keyboard/mouse tracking, one has to somehow simulate keyboard and mouse activity.

Instead of actually simulating a keyboard and mouse, we instead chose to automatically

call event handlers that have been registered for any events related to the keyboard or

mouse (click,mousemove,mouseover,mouseout,scroll,copy,select). To this end, in each

web page we included a common piece of JavaScript code that automatically traverses

the DOM tree of the current page and systematically triggers each handler with an event

object that is appropriately synthesized for the handler. Another challenge is that many

of the sites that track keyboard/mouse activity accumulate information locally, and then

send the information in bulk back to the server at regular intervals, using timer events.

These timer events are sometimes set to intervals spanning several minutes, and waiting

several minutes per site to observe any flow would drastically increase the amount of time

needed to run our test suite. Furthermore, it’s also hard to know, a priori, how long to

wait. To sidestep these issues, in addition to calling keyboard and mouse event handlers,

we also automatically call timer event handlers. We successfully ran our framework on

the Alexa top 1,300 websites in a total of about two hours.
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Overall, we found 328 websites on which network transfers were flagged as

transferring keyboard/mouse information to the network. Of these transfers, however,

many are visually obvious to the user. In particular, many websites use mouse-over events

to change the appearance of the item being moused-over. As an example, it is common for

a website to display a different image when the mouse moves over a thumbnail (possibly

displaying a larger version of the thumbnail). Although these kinds of flows can be used

to track mouse activity, they are less worrisome because the user sees a change to the

web page when the mouse movement occurs, and so there is a hint that something is

being sent to the server.

Ideally, we would like to focus on covert keyboard/mouse tracking, in which

the user’s activities are being tracked without any visual cues that this is happening (as

opposed to visible tracking where there is some visual cue).3 However, automatically

detecting covert tracking is challenging because it would require knowing if the key-

board/mouse activity is causing visual changes to the web page. Instead, we used a

simple heuristic that we developed after observing a handful of sites that perform visible

keyboard/mouse tracking. In particular, we observed that when the mouse/keyboard

information is sent to the server because of a visual change, the server responds with a

relatively large amount of information (for example a new image). On the other hand, we

hypothesized that in covert tracking, the server would not respond with any substantial

amount of data (if any at all). As a result, of all the network transfers found by our

information flow tool, we filtered out those where the response was larger than 100 bytes

(with the assumption that such flows are likely to be visible tracking). After this filtering,

we were left with only 115 websites. We sampled the top 10 ranked websites among

these 115 sites.
3One could view this heuristic as charging sites, in bandwidth, for the privilege of exfiltrating user

attention data.



43

Table 2.4. Top 7 websites that perform real behavior sniffing.

Rank Site Description Events
3 youtube contents click
11 yahoo.co.jp portal click
15 sina.com.cn portal click
19 microsoft software mouseover,click
34 mail.ru email click
53 soso search engine click
65 about search engine click

Real cases of covert tracking Of the 10 sites we sampled, we found that 7 actually

perform covert keyboard and mouse tracking that we were able to reliably replicate.

These 7 websites are listed in Table 2.4. For each site, we give its Alexa rank, its URL,

a short description, and events being tracked covertly. One may be surprised to see

“clicking” as being tracked covertly. After all, when a user clicks on a link, there is a

clear visual cue that information is being sent over the network – the target of the link

will know that the user has clicked. However, when we list clicking as being tracked

covertly, we mean that there is an additional event-handler that tracks the click, and sends

information about the click to another server. google is known for doing this: when a

user clicks on a link on the search page, the click is recorded by google through an event

handler, without any visual cue that this is happening (we do not list google in Table 2.4

because we only visit the front pages of websites, and google’s tracking occurs on the

search results page)

The most notable example in Table 2.4 is the microsoft.com site, which covertly

tracks clicking and mouse behavior over many links on the front page and sends the

information to the web statistics site webtrends.com.

Cases of visible tracking Of the 10 sites that were sampled, 3 were actually cases of

visible tracking, despite our filtering heuristic. In one of these cases, the server responded

microsoft.com
webtrends.com
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Table 2.5. Websites that perform real behavior sniffing using tynt.com.

Rank Site Description Events
503 thesun.co.uk news copy, mouseover
548 metrolyrics music copy, mouseover
560 perezhilton entertainment copy, mouseover
622 wired news copy, mouseover
713 suite101 blog copy, mouseover
910 technorati blog copy, mouseover
1236 answerbag search engine copy, mouseover

with very small images (less than 100 bytes) that were being redrawn in response to

mouse-over events. In an other case, the server responded with small JSON commands

that caused some of the web page to be redrawn. In all of these cases, there was a clear

visual cue that the information was being sent to the server.

Cases of using tracking libraries Of the 115 sites on which the filtered flows were

reported, we found that 7 used a behavior tracking software product developed by

tynt.com to track what is copied off the sites. These 7 websites are listed in Table 2.5.

The library monitors the copy event. When a visitor copies the content of a web page to

her clipboard, the library inserts the URL of the page into the copied content. Thus, the

URL is contained within subsequent pastes from the clipboard, e.g., in emails containing

the pasted text, thereby driving more traffic to the URL. Using our framework, we

discovered that on each client website, the copied content is also transferred to tynt.com.

Suspicious website While investigating several sites that installed event handlers, we

also found that the huffingtonpost.com site exhibits suspicious behavior. In particular,

every article on the site’s front page has an on-mouse-over event handler. These handlers

collect in a global data structure information about what articles the mouse passes over.

Despite the fact the information is never sent on the network, we still consider this case

to be suspicious because not only is the infrastructure present, but it in fact collects the

tynt.com
tynt.com
tynt.com
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information locally.
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Chapter 3

Securing C++ Virtual Function Calls

Several defenses have increased the cost of traditional, low-level attacks that

corrupt control data, e.g., return addresses saved on the stack, to compromise program

execution in modern web browsers [101]. In response, creative adversaries have begun

circumventing these defenses by exploiting programming errors to manipulate pointers

to virtual tables, or vtables, of C++ objects. These attacks can hijack program control

flow whenever a virtual method of a corrupted object is called, potentially allowing the

attacker to gain complete control of the underlying system. In this chapter we present

SAFEDISPATCH, a novel defense to prevent such vtable hijacking by statically analyzing

C++ programs and inserting sufficient runtime checks to ensure that control flow at

virtual method call sites cannot be arbitrarily influenced by an attacker. We implemented

SAFEDISPATCH as a Clang++/LLVM extension, used our enhanced compiler to build a

vtable-safe version of the Chromium browser, and measured the performance overhead

of our approach on popular browser benchmark suites. By carefully crafting a handful of

optimizations, we were able to reduce average runtime overhead to just 2.1%.

3.1 Motivation

Web browsers demand both performance and abstraction, making a low-level,

object-oriented language like C++ the tool of choice for their implementation. Unfortu-

46
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nately, this focus on performance has all too often taken precedence over critical security

concerns. Malicious attacks frequently exploit the low-level programming errors that

plague these systems, allowing an adversary to corrupt control data, pointers to code

which the program later jumps to. By compromising control data, attackers are able to

hijack program execution, in the worst case leading to arbitrary code execution.

Buffer overflows are one of the most familiar techniques for corrupting control

data: by overwriting the return address in a function’s activation record on the stack,

the attacker can specify which instruction the CPU will jump to when the function

returns, thus hijacking the program’s execution. The security community has responded

to such attacks with numerous defenses, including stack canaries [29], data execution

prevention [70], and custom allocators to protect the heap [16]. These successful defenses

have increased the cost of mounting traditional attacks, forcing adversaries to adopt

increasingly sophisticated approaches.

Instead of overwriting return addresses saved on the stack, several recent, high

profile attacks have shifted their focus to corrupting another class of control data: heap-

based pointers to virtual tables, or vtables. A C++ class’s vtable contains function pointers

to the implementations for each of its methods. All major C++ compilers, including

GCC, Visual C++, and LLVM, use vtables to implement dynamic dispatch: whenever an

object invokes a virtual method, the vtable for that object’s class is consulted to determine

which function should be called. This layer of indirection enables polymorphism in C++

by allowing a subclass to invoke its own version of a method, overriding its parent class.

For performance, the first word of a C++ object with virtual methods is a pointer

to its class’s vtable. Unfortunately, this efficiency comes at a price: memory safety

violations can nullify an important invariant: the vtable pointer stored in an object of

type τ always points to the vtable of τ or one of its subclasses. If an attacker can corrupt

an object’s vtable pointer to instead point to a counterfeit vtable, then they can hijack
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program control flow whenever that object calls one of its virtual methods, potentially

executing malicious shellcode [88]. In this chapter, we call such attacks vtable hijacking

and describe an efficient technique to prevent them.

Security researchers previously demonstrated one of the many ways an attacker

can hijack vtables: by exploiting use-after-free errors. In this particular attack method,

an adversary first identifies a dangling pointer, a reference to an object that has been

freed. The attacker then tricks the program into (1) allocating a counterfeit vtable, and

(2) overwriting the first word pointed-to by the dangling pointer with a pointer to that

counterfeit vtable. Finally, the attacker manipulates the program to invoke a virtual

method via the dangling pointer. Because the attacker has overwritten the vtable pointer

in the freed object, this method call will jump to an address of the attacker’s choosing,

as specified by their counterfeit vtable. Exploiting such use-after-free errors is just one

way to launch vtable hijakcing attacks, others include traditional buffer overflows on

the stack or the heap [88] and type confusion [106, 33] attacks. Unfortunately, such

vtable hijacking attacks are no longer merely a hypothetical threat particularly in web

browsers [71, 72].

We increasingly observe robust vtable hijacking attacks in the wild, often leading

to the execution of malicious shellcode. Such attacks have recently been shown practical

in complex applications, including major web browsers: in recent Pwn2Own compe-

titions, vtable hijacking enabled multiple arbitrary code execution attacks in Google

Chrome [40], Internet Explorer [98], and Mozilla Firefox [109]. In fact, abusing dynamic

dispatch in C++ was the major security weakness in all these browsers. In a recent

Google Chrome exploit, Pinkie Pie employed a vtable hijacking attack to construct a

Zero-day vulnerability to escape the renderer sandbox and execute arbitrary code [35].

As a result of such attacks, researchers have recently singled out vtable hijacking as one

of the most straightforward attack vectors exploiting heap vulnerabilities, as an attacker
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can often construct inputs to influence when a program allocates and frees objects and

even their contents.

Unfortunately, existing defenses that could prevent vtable hijacking are either

incomplete or do not specifically take advantage of the C++ type system to provide

the best possible accuracy and performance. Techniques like reference counting can

help mitigate vtable hijacking attacks that exploit dangling pointers, e.g., by preventing

dangling pointers from being used for invoking methods. Unfortunately, there are many

other ways to mount vtable hijacking attacks that do not require a dangling pointer.

Other techniques like control flow integrity [7, 117, 116, 115, 118] can secure all indirect

jumps to prevent many kinds of control flow hijacking attacks, including vtable hijacking.

However, these techniques do not take advantage of the C++ type system for the specific

task of securing virtual method calls, and therefore none of these techniques treat C++

virtual method calls both precisely and efficiently.

In this chapter, we address the growing threat of vtable hijacking with SAFEDIS-

PATCH, an enhanced C++ compiler that prevents such attacks. SAFEDISPATCH first

performs a static class hierarchy analysis (CHA) to determine, for each class c in the pro-

gram, the set of valid method implementations that may be invoked by an object of static

type c. SAFEDISPATCH uses this information to instrument the program with dynamic

checks, ensuring that, at runtime, all method calls invoke a valid method implementation

according to C++ dynamic dispatch rules. By carefully optimizing these checks, we

were able to reduce runtime overhead to just 2.1% and memory overhead to just 7.5% in

the first vtable-safe version of the Google Chromium browser which we built with the

SAFEDISPATCH compiler.

In this chapter, we explain the following contributions:

• We develop SAFEDISPATCH, a comprehensive defense against vtable hijacking

attacks. We detail the static analysis and compilation techniques to efficiently
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ensure control flow integrity through virtual method calls.

• We detail the implementation of SAFEDISPATCH as an enhanced C++ compiler

and discuss several security and performance trade offs that influenced our design.

• We applied SAFEDISPATCH to the entire Google Chromium web browser code

base to evaluate the effectiveness and efficiency of our approach. By developing a

handful of carefully crafted optimizations, we were able to reduce runtime overhead

to just 2.1% and memory overhead to just 7.5%.

In the next section we provide additional background on C++ dynamic dispatch

and vtable hijacking and then overview how SAFEDISPATCH prevents such attacks.

Section 3.3 follows, where we detail the SAFEDISPATCH compiler, key optimizations

we developed to minimize overhead, and some of the different security and performance

tradeoffs we considered. Next, in Section 3.6, we evaluate our SAFEDISPATCH implemen-

tation along several dimensions, including performance overhead, while in Section 3.7

we discuss the security implications of our approach.

3.2 SAFEDISPATCH Overview

In this section we provide additional background on dynamic dispatch in C++,

illustrate vtable hijacking with a detailed example, and provide a high level description

of how SAFEDISPATCH prevents such attacks.

3.2.1 Dynamic Dispatch in C++

Before detailing an example vtable hijacking attack, we briefly review how

dynamic dispatch invokes object methods in C++. Consider the code in the upper part of

Figure 3.1, which declares two classes: a Window class with one virtual method named
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// for displaying content on screen
class Window: {

public: virtual void display(string s) { ... }
};

// specialized for small screens on mobile devices
class MobileWin: public Window {

public: virtual void display(string s) { ... }
};

Window* w = flag ? new Window() : new MobileWin();
w->display("Hello"); // invoke virtual method
delete w; // free w, now dangling

// behavior of code generated for w->display("Hello")
typedef void* method; // method is func ptr of any type
typedef method* vtable; // vtable is array of methods
vtable t = *((vtable *)w); // 1. vtable @ 1st word of object
method m = t[0]; // 2. lookup by display’s id, 0
m(w, "Hello"); // 3. make virtual call

Figure 3.1. C++ Dynamic Dispatch. Consider the simple Window class above for
displaying a string on the screen. C++ compilers translate each virtual method call
into lower level code that performs three steps: (1) dereference the first word of the
calling object to retrieve its class’s vtable pointer, (2) index into the vtable by the
method’s position in the class to retrieve the appropriate function pointer, and (3) call the
retrieved function pointer, passing the calling object as the first argument, followed by
any additional arguments. If an attacker corrupts an object’s vtable pointer to point to a
counterfeit vtable, possibly by exploiting a dangling pointer, then they can cause steps
(1) and (2) to lookup malicious code and step (3) to execute it.
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display for displaying a string on the screen and a MobileWin subclass of Window

which overrides display to provide an implementation specialized for smaller screens.

C++ dynamic dispatch rules dictate that when an object calls a virtual method,

the actual implementation invoked depends on the runtime type of the calling object.

This layer of indirection allows subclasses to override their parent class’s implementation

of methods and is one of the key mechanisms for polymorphism in C++. For example,

in the code snippet from Figure 3.1, the call w->display("Hello") will either invoke

Window::display or MobileWin::display, depending on what w refers to at run-time,

which in turn is determined by the flag variable.

Of the many implementation strategies for dynamic dispatch, Virtual Method

Tables, or vtables are the most common. Prevalent C++ compilers, including GCC, Visual

C++, and Clang++, all use vtables due to their efficiency. To implement vtables, the

compiler assigns each virtual method in a class an identifier, which for simplicity we

assume is done by numbering virtual methods sequentially. A vtable for class C is then

an array t such that t[i] is the implementation of method i for class C. At compile time,

the compiler constructs a vtable for each class, and inserts code in the constructor of each

class to initialize the first word of the constructed object with a pointer to the vtable for

that class.

To implement a virtual method call the compiler generates code that performs

three steps: (1) load the vtable pointer, located at position 0 in the calling object, (2)

lookup index i in the vtable, where i is the index of the method being called (3) call

the method implementation found at index i in the vtable. The lower part of Figure 3.1

uses C++ notation to illustrate the behavior of code generated for w->display("Hi"),

assuming that display is given index 0 by the compiler. Note that if w points to a Window

object, then the vtable will contain Window::display at location 0, whereas if w points

to a MobileWin object, then the vtable will contain MobileWin::display at location 0.
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Because vtables are used in determining control flow, if an attacker can illegally

manipulate an object’s vtable pointer, they can hijack program execution whenever that

object invokes a virtual method. Since objects are ubiquitous in C++ programs, such

control data is abundant, making vtable hijacking an attractive target for adversaries

seeking to exploit low-level programming errors. We next illustrate how an attacker may

mount such attacks.

3.2.2 vtable Hijacking

Having reviewed C++ dynamic dispatch, we now illustrate an example of vtable

hijacking using the code in Figure 3.2. This code mimics the structure of a browser

kernel in the style of OP [42] or Google Chrome [87, 15]. In these browsers, tabs run

as separate, strictly sandboxed, processes whose only capability is communicating with

the browser kernel process. To perform privileged operations, e.g., rendering to the

screen or initiating a network connection, a tab process must send requests to the browser

kernel process which enforces access control for privileged operations. This architecture

provides strong security properties: even fully compromising a tab does not immediately

grant an attacker the ability to run arbitrary code since the tab sandbox prevents an

exploited tab from performing any privileged operations. Of course, if the browser kernel

contains an exploitable bug, the attacker may take full control of the underlying system.

The attack we demonstrate here assumes an adversary has already compromised a

tab process which they now use to mount an attack against the highly privileged browser

kernel. Although the code in this example is greatly simplified, a similar attack was

central to Pinkie Pie’s 2012 Zero-day exploit against Google Chrome [35]. Furthermore,

while this example shows how vtable hijacking can be used to compromise a browser

kernel, the approach generalizes to mounting attacks against many kinds of software,

allowing an adversary to hijack program control flow, and thus potentially execute
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class Shell {
public: virtual string run(string cmd) { ... }

};

// for displaying content on screen
class Window: {

public: virtual void display(string s) { ... }
};

// specialized for small screens on mobile devices
class MobileWin: public Window {

public: virtual void display(string s) { ... }
};

void tab_request_handler_loop(void) {
Shell* sh = NULL;
Window* win = SMALL_SCREEN ? new MobileWin() : new Window();

while (TRUE) {
TabRequest r = recv_tab_request();
switch (r.kind) {

case GET_DATE:
if (sh == NULL) sh = new Shell();
// run shell with safe, const string
string d = sh->run("date");
send_tab_response(r.originating_tab, d);
break;

case DISPLAY_ALERT:
win->display(r.msg);
// equivalently:
// vtable t = *((vtable *)win);
// method m = t[0];
// m(win, r.msg)
//
// If the object that win points to was accidentally deleted, and a Shell object
// was allocated in its place, then the above call invokes method 0 of Shell via
// the dangling win ptr, namely "run" with a tab-controlled arg!
break;

case GET_HTML:
...
// BUG: accidental delete, win ptr now dangling
delete win;
...
break;

}
}

}

// attack request sequence to run arbitrary shell command
GET_HTML, GET_DATE, DISPLAY_ALERT

Figure 3.2. Example vtable Hijacking. The above code sketches the core of a browser
kernel in the style of Google Chrome: tabs run as separate, strictly sandboxed processes
and send requests to the kernel to perform privileged operations like running shell
commands or accessing the network. The main loop above illustrates how such a browser
kernel responds to unprivileged tab requests. Due to a use-after-free error, an attacker
can craft a sequence of requests causing the above code to run arbitrary shell commands.
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malicious shellcode.

The core of Figure 3.2 depicts a loop inside the browser kernel to handle requests

from unprivileged tab processes. For this simplified example, we consider three handlers

which together enable a vtable hijacking attack that will allow an adversary to execute an

arbitrary shell command.

The handler for GET_DATE uses a Shell object to execute a shell command which

retrieves the system’s date information, and then sends the result back to the requesting

tab. Note that the parameter passed to Shell::run is a safe, constant string.

The handler for DISPLAY_ALERT renders a tab-provided string to the screen using

a Window object. According to the C++ type system, at runtime this object will be an

instance of Window or any of its subclass. In this case, there are two possibilities, either

the Window class or the MobileWin class, which is specialized to render on smaller

screens, and is used depending on the setting in the SMALL_SCREEN variable flag.

These two handlers alone do not contain an exploitable bug. However, we now

introduce a third handler for GET_HTML requests which, somewhere in the process of

fetching HTML for a tab-provided URL, inadvertently deletes the Window object pointed

to by win, leaving the win pointer dangling.

The attack now consists of the adversary controlled tab sending three requests:

GET_HTML, GET_DATE, and DISPLAY_ALERT. First, when kernel processes the GET_HTML

request, the win object is accidently deleted. Second, when the kernel processes the

GET_DATE request, a new Shell object is allocated. The memory allocator places this

object at the same memory location just freed by the previous handler in a certain

situation, leaving the dangling win pointer to refer to this newly allocated Shell ob-

ject. Third, when the kernel processes the DISPLAY_ALERT request, the method call

win->display(r.msg) dereferences the first word of win to get a vtable and calls the

first function contained in that vtable. However, since win now points to a Shell object,
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its vtable pointer refers to Shell’s vtable whose first element is the run method. There-

fore, win->display(r.msg) actually calls Shell::run with r.msg as a parameter, a

value provided by the attacker controlled tab. Thus, by sending these three requests

in order, the compromised tab has tricked the kernel into running an arbitrary shell

command, completely violating the kernel’s security guarantee: the browser kernel’s

prime directive is to ensure all privileged operations are appropriately guarded, even in

the face of a fully comprised tab processes.

This example illustrates just one of the many ways an attacker may mount a

vtable hijacking attack. In addition to exploiting use-after-free errors, traditional buffer

overflows (on the stack or heap), type confusion attacks, and vtable escape vulnerabilities

are some of the techniques an attacker can employ to corrupt an object’s vtable pointer

and hijack program execution. We next sketch how SAFEDISPATCH prevents the attack

shown in this example and consider the general case in subsequent sections.

3.2.3 SAFEDISPATCH vtable Protection

The attack illustrated in Figure 3.2 hijacks the control flow of the program

through the win->display(r.msg) method call to trick the program into invoking

Shell::run(r.msg) instead. To prevent such attacks, SAFEDISPATCH inserts code to

check the integrity of control-flow transfers for virtual method calls. In particular, at each

virtual method call site, SAFEDISPATCH inserts checks to ensure that the code being

invoked is a valid implementation of the called method according the static type of the

object being called. For example, Figure 3.3 sketches the code that SAFEDISPATCH

generates to protect the call win->display(r.msg). The additional checking code,

shown in bold, guarantees that the method being called is either Window::display or

MobileWin::display, which SAFEDISPATCH knows are the only two valid possibilities

given the static type of win. This checking code not only prevents the previously described
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// SafeDispatch protection for win->display(r.msg)
vtable t = *((vtable *)win); // load vtable
method m = t[0]; // lookup method
if(m == Window::display ||

m == MobileWin::display) // check ensures m valid
m(win, r.msg);

else // otherwise, signal error
error("bogus method implementation!");

Figure 3.3. SAFEDISPATCH Protection. The SAFEDISPATCH compiler inserts checks at
each method call site, analogous to those shown in bold above, to ensure that a method
looked up from an object’s vtable is valid given the object’s static type, i.e., that it is
the requested method of the object’s class or one of its subclasses. Since our Window
class has one subclass which overrides display, there are two valid methods in this
case, Window::display and MobileWin::display. This check ensures that control
flow through method calls is valid under the C++ type system, effectively preventing the
attacker from executing arbitrary code. We detail our general approach in Section 3.3.

attack, but also adds only minimal overhead compared to the existing dynamic dispatch

code.

So far, we have shown how SAFEDISPATCH prevents an attack on a simple

example. In the remainder of the chapter we explain how SAFEDISPATCH works in

the general case, and present experimental results demonstrating that the overhead on

complex, industrial scale applications is relatively low.

3.3 The SAFEDISPATCH Compiler

At their core, vtable hijacking attacks cause a virtual method call to jump into

code which is not a valid implementation of that method. SAFEDISPATCH defends

against all such attacks by instrumenting programs to dynamically ensure that, at every

virtual method call site, the function pointer retrieved from the object’s vtable is a valid

implementation of the method being called (according to C++ dynamic dispatch rules),

even if an attacker has managed to corrupt memory by exploiting a bug in the program.

In this section we describe our implementation of SAFEDISPATCH as an enah-

nced C++ compiler, built on top of the Clang++/LLVM compiler infrastructure [62].
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SAFEDISPATCH extends this infrastructure with three major passes to insert checks which

protect a C++ program from vtable hijacking: (1) a variant of static Class Hierarchy

Analysis [31] (CHA) which allows us to determine, at compile time, all the valid method

implementations that may be invoked by an object of a particular static type at a given

method call site, (2) a pass which uses the results from CHA to insert runtime checks that

will ensure all method calls jump to valid implementations during program execution, and

(3) various optimizations to reduce the SAFEDISPATCH runtime and code size overhead.

We describe each of these three passes in more detail below.

3.3.1 Class Hierarchy Analysis

SAFEDISPATCH instruments a program to ensure all virtual method calls are valid

at runtime, but before inserting these dynamic checks we must first determine, at compile

time, which implementations are valid for each virtual method call site. Class Hierarchy

Analysis [31] (CHA) is a static analysis that gathers this information by constructing the

program’s class hierarchy, i.e., immediate subtyping relation, and then traverses this class

hierarchy to compute the set of valid implementations for each virtual method of every

class. The end result produced by CHA will be a map ValidM which gives us, for each

class c and each virtual method n, the set ValidM[c][n] of method implementations that

could be invoked at runtime if an object with static type c were used to call method n.

Consider the example CHA results in Figure 3.4. In this case, the program

being analyzed only contains five classes forming a three-layer hierarchy: D and E are

subclasses of C while B and C are subclasses of A. Conceptually, this hierarchy is computed

by creating a graph containing a node for each class in the program and then adding

an edge from class c to c′ whenever c extends c′. Each node also stores information

about its class’s methods, in particular indicating which implementations are inherited

from parents (which we depict using *) and which the class overrides with its own
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m1 m2 m3

A
A::m1
B::m1
C::m1

A::m2
D::m2

A::m3
E::m3

B B::m1 A::m2 A::m3

C C::m1 A::m2
D::m2

A::m3
E::m3

D C::m1 D::m2 A::m3

E C::m1 A::m2 E::m3

m1
m2
m3

A

m1
*
*

B
m1
*
*

C

*
m2
*

D
*
*
m3

E

ValidM

Figure 3.4. Example Class Hierarchy Analysis (CHA). Our Class Hierarchy Analysis is
a static (compile time) analysis that uses the class hierarchy to compute which method
implementations can be invoked by objects of each class type. The left diagram above
shows an example hierarchy of five classes where subclasses point to their parent class:
D and E are subclasses of C while B and C are subclasses of A. These classes have three
methods: m1, m2, m3. In each class’s box, we denote inheriting a parent’s method
implementation with * and list the names of overridden methods. For example, in this
case C overrides A’s implementation of m1, but inherits the implementations of m2 and
m3. The results of our Class Hierarchy Analysis (CHA) is the ValidM table, specifying
for each object type which implementations of a method may be invoked at runtime,
according to C++ dynamic dispatch rules. In the example table above right, we see that
calling method m2 on an object pointed-to by a pointer of type C can invoke either class
A’s or D’s implementation of m2.
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// ValidM maps class C and method name N to the set of
// function pointers implementing N for C and its subclasses
map<class, map<string, set<method>> ValidM;

// computing ValidM at compile time
ValidM = new map<class, map<string, set<method>>();
foreach (class c in all_classes()) {

ValidM[c] = new map<string, set<method>>();
// all_method_names(c) returns all method names of class c,
// including any methods inherited from parent classes
foreach (string n in all_method_names(c)) {

ValidM[c][n] = new set<method>();
// all_subclasses(c) returns c and all its subclasses
foreach (class sc in all_subclasses(c)) {

// static_lkup(sc, n) returns the func ptr
// implementing the method named n for an object of
// class sc, according to C++ dynamic dispatch rules
ValidM[c][n].add(static_lookup(sc,n));

}
}

}

Figure 3.5. Our CHA which constructs ValidM at Compile Time. At compile time
SAFEDISPATCH performs CHA to construct ValidM, a table specifying for each method
of each class type which implementations may legitimately be invoked at runtime. The
SAFEDISPATCH compiler generates ValidM by iterating over all the program’s classes.
For each class c, SAFEDISPATCH considers all the names of c’s methods, including those
transitively inherited from parent classes. For a given method name n, SAFEDISPATCH

determines which implementations of n may be invoked at runtime by iterating over all of
c’s (transitive) subclasses, including c itself. For each subclass sc of c, SAFEDISPATCH

determines statically which implementation of n an sc object would invoke and adds it to
the set of valid implementations in ValidM[c][n].

implementation (which we depict using the method’s name).

Our version of CHA analyzes, for each method n of each class c, which of c’s

subclasses override n with their own implementation. Along with c’s (possibly inherited)

implementation, the set of such method implementations are the only valid callees that

may be invoked by an object of static type c when it calls n at runtime. This is made

precise by the code shown in Figure 3.5, which computes this information and stores the

result in a table called ValidM.

In practice, implementing CHA for large, complex applications like browsers

poses a serious challenge, primarily due to subtle interactions between the many C++
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inheritance mechanisms, e.g., access modifiers, templates, virtual vs. non-virtual method

properties, overloading, and multiple inheritance. To manage this complexity, we build

on top of the Clang++ module responsible for constructing C++ vtables at compile

time. Clang++ is an industrial strength compiler, capable of handling the tremendous

complexity that arises in real-world C++ applications.

Precision and Scalability. SAFEDISPATCH uses CHA to determine, at compile

time, which program locations a runtime method call may legitimately jump to. As

a type-based analysis, CHA is relatively lightweight and scales up to large, complex

applications. However, type-based analyses scale because they are generally coarse-

grained and therefore less precise. It is possible that an object x stored in a variable of

static type c only ever has runtime type c′ where c′ is a subclass of c. In such instances,

CHA will overestimate the set of valid implementations x may invoke, including the

implementation for c and all implementations in other subclasses of c, while in reality

only the implementation in c′ is called at runtime.

Such sources of imprecision could be remedied by using a more powerful static

analysis. The additional precision would provide stronger security guarantees by further

restricting an attacker’s ability to invoke method implementations that should never arise

during legitimate program execution. However, accurately tracking which classes flow to

a particular variable x at compile time would require a precise whole program dataflow

analysis. While such analyses exist, they often don’t scale to the kinds of programs we

aim to protect, leading to unacceptable increases in compile time. Those analyses that

can scale in fact do so by giving up on precision, which would bring us back to square

one. As a result, we feel that our type-based approach in CHA presents the best tradeoff

by being precise enough to prevent real world attacks without dramatically increasing

compile times.

We do note that CHA is fundamentally a whole program analysis, and thus
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requires all an application’s code to be available at compile time. Unfortunately, this

currently precludes the use of separate compilation in our prototype implementation.

However, our SAFEDISPATCH implementation is a research prototype and we feel that

future work can address this limitation by annotating compiled object files with partial

analysis results and composing those results to complete SAFEDISPATCH’s program

instrumentation at linktime.

3.3.2 SAFEDISPATCH Method Checking Instrumentation

After SAFEDISPATCH computes the CHA results, it can instrument the program

with checks to ensure that whenever an object calls a virtual method, control jumps to one

of the method implementations statically determined to be valid. Figure 3.6 shows how

SAFEDISPATCH instruments each source level method call. For now, consider the basic

strategy illustrated in part (A) of Figure 3.6. In the generated code for o->x(args), after

the implementation m for method name "x" has been looked up in the vtable dereferenced

from o’s vtable pointer, SAFEDISPATCH inserts a call to check(static_typeof(o), "x",

m) before invoking m. This call to check consults the CHA results in ValidM to ensure

that m is one of the valid implementations for "x" when called by an object which has

o’s static type. Note that expressions in italics are evaluated at compile time as they

require source-level information available only to the compiler. As shown in part (B) of

Figure 3.6, SAFEDISPATCH also reduces runtime overhead by partially inlining calls to

the check function, which we discuss in greater detail below.

Data Structures for Checking. The operation for checking method validity,

ValidM[c][n].contains(m), is critical for performance since it is inserted at every

virtual method call site. Broadly speaking, SAFEDISPATCH uses an array of sets of

valid method implementations to perform this validity checking. More specifically, for

each pair (c,n) where c is a class and n is a method name, SAFEDISPATCH generates
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// source level method call
o->x(args);

// (A) generated code without check inlining
vtable t = *((vtable *)o);
method m = t[vtable_position(x)];
check(static_typeof(o), "x", m);
m(o, args);

// (B) generated code with check partially inlined
vtable t = *((vtable *)o);
method m = t[vtable_position(x)];
if (m != m1 && m != m2 && m != m3)

check(static_typeof(o), "x", m);
m(o, args);

void check(type c, string n, method m) {
if (!ValidM[c][n].contains(m)) {

error("bogus method implementation!");
}

}

Figure 3.6. SAFEDISPATCH Instrumentation. At each method call site, SAFEDISPATCH

inserts a check in the generated code to ensure that objects only invoke methods allowed
by the static C++ type system. As shown in (A), the basic SAFEDISPATCH instrumenta-
tion simply adds a call to the check() function immediately before the jump to a method
implementation. check(c,n,m) consults the ValidM table to ensure that function pointer
m is a valid implementation of the method named n for objects with static type c. To
avoid an extra function call at every method invocation, SAFEDISPATCH actually uses
profiling information to partially inline check(). As shown in (B), SAFEDISPATCH

inserts a branch to test if the function pointer looked up from the calling object’s vtable
is one of the most common valid implementations of the method used at this call site.
If it is, SAFEDISPATCH safely skips the call to check(), thus avoiding the overhead of
an additional function call in the common case. Note that all expressions in italics in
the code above are evaluated at compile time as they require source-level information
available only to the compiler.
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at compile time a unique natural number i(c,n) which is used to index into a large

array of sets. The set at position i(c,n), which contains the possible implementations

for method n of class c, is represented as an unordered array of pointers to method

addresses. Therefore ValidM[c][n].contains(m) involves an array lookup to retrieve

ValidM[c][n], followed by a linear scan through the resulting set. In our experiments

we found that the average set size was very small (1.44 for method checking) and as

result we do not expect that using a more elaborate data structure for representing these

sets (e.g. a hash-set) would reduce the overhead significantly. Instead, we focus on other

aggressive optimizations, for example the inlining of common checks, as explained in

Section 3.3.3.

Externalizing Linktime Symbols. One subtlety of the method checking instru-

mentation is that the compiler does not statically know the concrete address where method

implementations will be placed at linktime. It may seem that the SAFEDISPATCH com-

piler can handle this issue by simply referring to the linktime symbols for each method

implementation. However, many modern C++ compilers restrict the linktime symbols for

method implementations to only internal symbols, meaning that they cannot be referred

to outside of code for their class. This poses a problem for SAFEDISPATCH as we need

to check method implementation addresses wherever they may be called, not just in the

class where they’re defined. To address this issue, we externalize all linktime symbols

for method implementations, allowing us to refer to them outside of their defining class.

It would be straightforward to add an additional pass to check that these externalized

symbols are only used in (1) internally by the defining class or (2) in SAFEDISPATCH

instrumentation, together providing a guarantee equivalent to that of the unmodified C++

compiler.
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3.3.3 SAFEDISPATCH Optimizations

To minimize SAFEDISPATCH’s runtime overhead, we developed a handful of

optimizations to reduce the cost of each check. Most importantly, we profile applications

and partially inline the checks performed by the check function as shown in part (B) of

Figure 3.6. This partial inlining compares the function pointer retrieved from an object’s

vtable against the concrete addresses of the N most common implementations of the

method being called in profiling. In Figure 3.6 we limit N to just the three most common

implementations, but in practice we can choose a value that balances the performance

improvement of inlining against the increase in code size, which, in the worst case, could

negatively impact instruction cache performance. In our actual experiments, discussed in

Section 3.6, we inline all checks observed during profiling, which increases codesize, but

did not present significant performance overhead for our benchmarks.

SAFEDISPATCH also performs devirtualization: in the case that CHA is able to

statically determine there is a single valid method implementation at a given method

call site, we rewrite the call to forgo vtable lookup and directly call the unique valid

implementation. This avoids unnecessary memory operations to load the vtable and other

computations to set up a virtual method call.

Now that we have inlined frequently executed checks, the high-level code in part

(B) of Figure 3.6 still needs to be translated into low-level code. A direct naïve translation

leaves room for two important optmizations, which we now describe. Consider again the

code in part (B) of Figure 3.6, and let’s look at a direct unoptimized translation to low-

level code, as shown in part (A) of Figure 3.7. One source of overhead in this low-level

code is that there are two opportunities for branch mis-prediction: one is to mis-predict

which of the if (..) goto L1 statements will fire; the second is to mis-predict where

the indirect call through m will go (note that m is a function pointer). Our first low-level
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// source level method call
o->x(args);

// (A) direct unoptimized translation
vtable t = *((vtable *)o);
method m = t[vtable_position(x)];
if (m == m1) goto L;
if (m == m2) goto L;
if (m == m3) goto L;
check(static_typeof(o), "x", m);

L: setup_call_args(o, args);
indirect_call m;
...

// (B) eliminate indirect calls
vtable t = *((vtable *)o);
method m = t[vtable_position(x)];
if (m == m1) goto L1;
if (m == m2) goto L2;
if (m == m3) goto L3;
check(static_typeof(o), "x", m);
setup_call_args(o, args);
indirect_call m;
goto LR;

L1: setup_call_args(o, args);
direct_call m1;
goto LR;

L2: setup_call_args(o, args);
direct_call m2;
goto LR;

L3: setup_call_args(o, args);
direct_call m3;
goto LR;

LR: ...

// (C) eliminate duplicate code
vtable t = *((vtable *)o);
method m = t[vtable_position(x)];
setup_call_args(o, args);
if (m == m1) goto L1;
if (m == m2) goto L2;
if (m == m3) goto L3;
check(static_typeof(o), "x", m);
indirect_call m;
goto LR;

L1: direct_call m1;
goto LR;

L2: direct_call m2;
goto LR;

L3: direct_call m3;
goto LR;

LR: ...

Figure 3.7. Low-level SAFEDISPATCH Optimization. The code above illustrates low-
level optimizations used in SAFEDISPATCH to eliminate branch misprediction for fre-
quently called methods and to eliminate duplicate code for setting up method invocations.
As in Figure 3.6, all expressions in italics above are evaluated at compile time.
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optimization is that we can remove the second mis-prediction opportunity by placing

a direct call once we know which of the three conditional has fired. This is shown in

part (B) of Figure 3.7, where we now have direct calls for all checks that have been

inlined. However, this code now has a lot of code duplication – namely all the setup for

parameters. While this doesn’t affect the number of instructions executed at run-time,

it creates code bloat, which can have adverse effects on instruction-cache performance.

Our second low-level optimization is that we hoist the duplicate code from inside the

conditionals and use a single copy right before the conditionals, as shown in part (C) of

Figure 3.7.

With all of the above optimizations, namely profile-based inlined checks and

low-level optimizations, we were able to reduce the runtime overhead of SAFEDISPATCH

to 2.1% and the codesize overhead to 7.5%. Section 3.6 will provide a more detailed

empirical evaluation of the overheads of SAFEDISPATCH.

3.4 An Alternate Approach: Vtable Checking

The previous section showed how SAFEDISPATCH checks the control flow trans-

fer at virtual method call sites. In this section, we present an alternate technique which

establishes the same control-flow guarantee, but provides additional data integrity guar-

antees in the face of multiple inheritance, at the expense of additional runtime overhead.

Later, in Section 3.6, we evaluate and compare the overhead of both approaches.

3.4.1 Pointer Offsets for Multiple Inheritance

To better explain this alternate approach, we first review vtables in more detail.

In practice, vtables store more than just function pointers; they also contain offset values

that are used to adjust the this pointer appropriately in the face of multiple inheritance.

For example, consider a class C that virtually inherits from both A and B. The
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data layout of C objects will first include the fields from A, followed by the fields from B.

Inherited methods from A will work unmodified on objects of type C because the offset of

A’s data fields are the same in A as in C. However, methods inherited from B will not work,

because B’s methods assume that B’s fields start at the beginning of the object, whereas

in C these fields are located after A’s fields.

To address this problem, the compiler creates wrappers in C for methods inherited

from B. Before calling B’s original implementation of the method, the wrapper adjusts

the calling object’s this pointer by an appropriate offset so that it points to the B part of

the C object. The situation is further complicated if C is subclassed again using additional

multiple inheritance, in which case the layout for the fields inherited from A and B could

change in the subclass of C. To address this problem, pointer offsets for this are stored

in the vtable, so that the correct offset can be used at run-time depending on what class is

being used to make the method call.

While our approach from Section 3.3 always protects against malicious control

flow at virtual method call sites, it does not defend against an attacker counterfeiting

a vtable with incorrect this pointer offsets. If an attacker successfully mounts such

an attack, our previously described approach would still protect the control flow at

virtual method calls, but the attacker could corrupt the this offset on entry to a method,

potentially leading to further data corruption.

3.4.2 vtable Checking

To additionally protect this pointer offsets at method calls, we implemented an

alternate vtable hijacking defense called vtable checking. Instead of checking the validity

of the function pointer looked up from an object’s vtable, we check the vtable pointer

itself to ensure that it is valid given the static type of the calling object. In this way, we

not only guarantee valid control flow at method calls, but also ensure that the offset value



69

of this is computed appropriately.

Figure 3.8 shows how each source level method call is instrumented in the vtable

checking approach. As in Figure 3.6, expressions in italics are evaluated at compile

time as they require source-level information available only to the compiler. We insert a

check similar to the method checking instrumentation shown in Figure 3.6, but move the

instrumentation earlier to check the vtable itself instead of the function pointer retrieved

from it. In general, for code generated for method call o->x(args), we insert a call to the

vt_check(static_typeof(o), t) after vtable t has been loaded from o’s vtable pointer.

This call to vt_check consults the results of a modified CHA analysis to ensure that t is

one of the valid vtables for an object of o’s static type. The computation for ValidVT

is a modified, simpler version of the computation for ValidM described in the previous

section, since the compiler already computes vtables. In particular, for each class c we

collect the vtables for c and all of its subclasses, and store this entire set in ValidVT[c].

Similarly to method checking, the operation ValidVT[c].contains(t) is performed

in two steps: ValidVT[c] is implemented as an array lookup and contains(t) is

implemented using linear search. Here again, the average size of ValidVT[c] in our

experiments was very small (2.58) and we reduce runtime overhead by selectively inlining

calls to the vt_check function, taking advantage of profiling information as discussed in

the previous section.

3.4.3 Performance Implications

The vtable checking approach described above provides a stronger security guar-

antee than the method checking approach described in the previous section, as it also

ensures the integrity of this pointer offsets. Unfortunately, this stronger guarantee also

incurs higher runtime overhead: since subclasses frequently inherit method implementa-

tions from their parent classes, at any virtual method call site, the number of valid vtables
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// source level method call
o->x(args);

// generated code with vtable check partially inlined
vtable t = *((vtable *)o);
if (t != t1 && t != t2 && t != t3)
vt_check(static_typeof(o), t);
method m = t[vtable_position(x)];
m(o, args);

void vt_check(type c, vtable t) {
if (!ValidVT[c].contains(t)) {

error("bogus vtable!");
}

}

Figure 3.8. Alternate SAFEDISPATCH vtable Checking. The instrumentation above
illustrates an alternate vtable hijacking defense: checking the vtable pointer itself before
using it to look up a method implementation. Similar to the approach shown in Figure 3.6,
the SAFEDISPATCH instrumentation for this alternate strategy inserts a check in the
generated code at each method call site, but in this case the check ensures that the calling
object’s vtable pointer agrees with the static C++ type system. The vt_check(c, t)
function (analogous to the check() function discussed earlier) consults the ValidVT
table (constructed from a modified CHA) to ensure that vtable t is a valid vtable for
objects of c’s static type. As in Figure 3.6, we partially inline this check using profiling
information to avoid the overhead of an extra function call at most method invocations.
Again, note that all expressions in italics in the code above are evaluated at compile time
as they require source-level information available only to the compiler. This alternate has
higher overhead in certain situations, but provides stronger data integrity guarantees in
the face of multiple inheritance.
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is always greater than or equal to the number of valid method implementations that can

be invoked.

To better understand why this is the case, consider an example in which a class

A declares method foo, and suppose there are many subclasses of A, none of which

override foo. Now for any method call x->foo() where the static type of x is A, method

checking just needs to compare against A::foo, since it is the only valid implementation

of foo. On the other hand, vtable checking must compare against each vtable of the many

subclasses of A, since each subclass has its own vtable. We explore the performance

implications of this difference further in Section 3.6.

3.5 A Hybrid Approach for Method Pointers

In previous sections we described two vtable hijacking defenses, method checking

and vtable checking, each presenting different tradeoffs. To best choose between these

tradeoffs, we must consider additional subtleties arising from yet another C++ feature:

method pointers. Conceptually, C++ method pointers are similar to traditional function

pointers, except that pointers to virtual methods are invoked by dynamic dispatch, which

means they could be exploited by vtable hijacking attacks and thus SAFEDISPATCH must

also protect virtual calls through method pointers.

Figure 3.9 illustrates the behavior of C++ method pointers with two simple

classes, A and B, where A contains a single method foo and B extends A and overrides

foo. The method pointer f is declared to point to a method of an object of type A or one

of A’s subclasses, and then f is assigned to point to A::foo. Next an A object is allocated

and A::foo is called through the method pointer f. Afterward a B object is allocated and

the same method pointer, f, is used to call one of the object’s methods. However, in this

case, control jumps to B::foo instead of A::foo since method pointers are invoked by

dynamic dispatch : a method pointer is essentially an index into vtables of a class or the



72

class A {
public: virtual void foo(int) { ... }

};

class B: A {
public: virtual void foo(int) { ... }

};

void (A::*f)(int); // declare f as ptr to some method of A
f = &A::foo; // f now points to the foo method

A* a = new A();
(a->*f)(5); // method call via f ptr, invokes A::foo

a = new B();
(a->*f)(5); // method call via f ptr, invokes B::foo

Figure 3.9. Method Pointer Example. Because C++ method pointers are invoked via
dynamic dispatch, even though f is only assigned once, the first call above jumps to
A::foo while the second jumps to B::foo.

class’s subclasses.

To implement method pointer semantics, C++ compilers generate code which

stores a vtable index in method pointers instead of the concrete address of a method’s

implementation. For example, if foo is placed at index 0 in the vtables of A and B, then

the statement f = &A::foo will store the value 0 in f. When a call is made through

a method pointer, the method pointer’s value is used to index into the calling object’s

vtable to retrieve the appropriate method implementation to invoke.

3.5.1 Revisiting Previous Approaches

We now evaluate our previous two approaches, method checking and vtable

checking, in the face of method pointers. First, consider our vtable checking technique

from Section 3.4. Fortunately, vtable checking correctly handles method pointers with

only a slight modification: since a method pointer is simply a vtable index and vtable

checking guarantees the validity of vtables at runtime, SAFEDISPATCH simply checks

that vtable indices from method pointers are within the valid range of methods for the

given class, thus ensuring that method implementations retrieved by indexing into valid
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vtables with a method pointer will also be valid. While simple, this modification is

essential for preventing hijacking attacks through method pointers: if an attacker could

arbitrarily set the method index to be out of range for the given class’s vtable, they could

cause a virtual method pointer call to jump to malicious code.

Second, consider our method checking technique from Section 3.3. In particular,

consider a call through a method pointer of the form (x->*f)(...), where the class

used in the declaration of method pointer f is C. We must modify our method checking

approach so that for such calls, the instrumentation checks, at runtime, that the function

pointer extracted from the calling object’s vtable is one of the implementations for any

method of C or its subclasses, that satisfies the method pointer’s argument type signature.

This conservative approach can lead to a blow up in the number of required checks for

large class hierarchies with many methods, like those found in modern web browsers.

This effect is seen in Section 3.6 where we evaluate and further compare our different

defenses. Unfortunately, improving on this approach would require a precise whole

program dataflow analysis to compute which method implementations a pointer may

point to. Despite decades of research, such analyses are difficult to scale to the large,

complex applications most frequently targeted by vtable hijacking attacks.

3.5.2 Hybrid Approach

Comparing method checking and vtable checking in the face of method pointers

leads to a key observation: at method pointer call sites, vtable checking typically requires

many fewer comparisons than method pointer checking, since method pointer checking

must compare against all method implementations from several classes. This situation is

exactly the opposite from traditional method calls where vtable checking always demands

at least as many comparisons as method checking, as discussed at the end of Section 3.4.

This observation suggests a hybrid approach: perform vtable checking (enhanced
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with vtable index range checks) at method pointer call sites and method checking at

traditional method call sites. We implemented this hybrid approach in SAFEDISPATCH

and found that it incurs less runtime overhead than all other techniques, while providing

the same strong security guarantees against vtable hijacking. We further discuss the

performance implications of our hybrid approach in Section 3.6. At a member function

call site, the numbers of method/vtable checks are compared, and vtable checks are used

only when the number of the vtable checks is stricly less than the number of the method

checks.

3.6 Evaluation

In this section we evaluate SAFEDISPATCH along three primary dimensions: (A)

runtime and code size overhead, (B) effort to develop our prototype, and (C) compatibility

with existing applications and programming practice.

3.6.1 SAFEDISPATCH Overhead

To evaluate the overhead of our SAFEDISPATCH defense, we used our en-

hanced C++ compiler to build a vtable-safe version of Google Chromium [15], a full-

featured, open source web browser which forms the core of the popular Google Chrome

browser [87]. Google Chromium is extremely large and complex, far larger than any

SPEC benchmark; it contains millions of lines of production code, in diverse components

(HTML renderer, JPEG decoder, Javascript JIT, IPC library, etc.) developed across

multiple organizations (Google and various open source groups). Chromium serves as

an ideal test case for SAFEDISPATCH: not only is it a complex, high performance C++

application with millions of users, but has also been targeted by several vtable hijacking

attacks [35, 40].

Benchmarks. We measured SAFEDISPATCH overhead on Chromium over six de-
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Figure 3.10. SAFEDISPATCH Overhead. We measured the overhead of SAFEDISPATCH

on the Google Chromium browser over six demanding benchmarks: three industry
standard JavaScript performance suites (octane, kraken, and sunspider) and three HTML
rendering performance tests (balls, linelayout, and html5). All results are reported from
the average of five runs, using percentage overhead compared to a baseline with no
instrumentation. “mchk” is the unoptimized method pointer checking from Section 3.3,
“vtchk” is the unoptimized vtable checking from Section 3.4. “inline_rand” indicates that
we inline all checks that our Class Hierarchy Analysis tells us are needed for safety, but
we inline them in a random order (i.e., no profile information). “inline_prof” indicates
that we inline the checks observed during profiling in order of how frequently they occur.
“hybrid” is the hybrid approach from Section 3.5, which does profile-based inlining,
but also combines method pointer checking and vtable checking. Note that two bars
did not fit in the graph with the scale we chose for the y axis, namely “vtchk” and
“vtchk_inline_rand” for html5; we shortened those bars, and show their values right on
top of the bars (rather than change the scale and make all the other bars more difficult to
read).
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Table 3.1. SAFEDISPATCH Benchmarking Results and Code Size Overhead. The table
above shows our benchmarking measurements for SAFEDISPATCH which correspond to
the runtime overhead graph in Figure 3.10: “sp” stands for sunspider, for times reported
in milliseconds, smaller is better, for other reported quantities (score, fps, and runs), larger
is better. We additionally measured average code size increase due to SAFEDISPATCH

data structures and instrumentation, and observed overheads typically well under 10%.

Instrumentation
octane krkn sp balls lnlayout html5 Code
(score) (ms) (ms) (fps) (runs) (ms) Size %

none 15353 1556 254 14.95 106.26 3543 -

mchk 14454 1643 285 12.73 90.43 4233 7.20

mchk_inline_rand 14897 1599 272 13.84 94.47 3974 14.11

mchk_inline_prof 15278 1570 263 14.50 100.71 3830 7.48

vtchk 14101 1782 310 11.47 88.10 5294 7.31

vtchk_inline_rand 14969 1725 304 11.24 74.91 6793 44.18

vtchk_inline_prof 15228 1574 270 13.42 97.43 3892 7.85

hybrid 15299 1570 256 14.71 102.39 3721 7.48
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manding benchmarks: three industry-standard JavaScript performance suites (octane [41],

sunspider [11], and kraken [74]), and three HTML rendering performance tests (balls,

linelayout, and html5). The three HTML rendering benchmarks are drawn from the

WebKit performance test suite [111], the engine underlying several major web browsers

including Google Chrome, Apple Safari, and Opera. We selected these benchmarks from

the suite as three of the most important for performance and rendering correctness. We

briefly describe the benchmarks below:

Our JavaScript benchmarks, octane, kraken, and sunspider are performance

benchmarking suites from the Google Chrome, Mozilla Firefox, and Apple WebKit

teams respectively. These benchmarks strive to measure real-world workloads and

exercise many important browser functionality accessable to JavaScript. For octane

we report the benchmark score where higher is better and for kraken and sunspider we

measure running time in milliseconds where smaller is better.

balls creates thousands of small ball-shaped DOM elements, moves them around

on the screen, measures how many of them can be moved in a fixed amount of time, and

reports frames per second as its output. We report frames per second (fps); higher is

better.

linelayout creates multiple DOM objects containing copious text. The renderer

must draw many text lines, automatically inserting line breaks and allocating DOM

objects efficiently on the screen, ensuring the renderer correctly handles the layout of

DOM elements on the screen. We report number of complete runs in a fixed period;

higher is better.

html5 performs millions of DOM manipulations to test numerous HTML5 features

and is one of the most demanding WebKit performance tests. Each complex rendering is

compared to an industry-standard reference rendering, thus ensuring optimizations have

not introduced incorrect behavior. We report timing results in milliseconds; smaller is
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better.

Runtime Overhead. Figure 3.10 presents the runtime overhead percentage of

SAFEDISPATCH on benchmarks using a number of different approaches and optimiza-

tions, whereas Table 3.1 presents the raw numbers, including memory overhead. See the

caption of Figure 3.10 for what each configuration of SAFEDISPATCH corresponds to

(e.g., “mchk_inline_rand”). All our results are the average of five runs on an otherwise

quiescent system running Ubuntu 12.04 on an Intel i7 Quad Core machine with 8GB of

RAM.

From Figure 3.10, we can see that in general, all the “mchk” overheads are

smaller than the “vtchk” overheads. This is consistent with the fact that, as described

in Section 3.8, the number of valid vtables at a given method callsite is often 2x greater

than the number of valid method implementations. Figure 3.10 shows the effectiveness

of partial inlining of checks not just using profile information, but also using a random

order. The random order is meant to capture the situation where we perform inlining,

but we don’t have profile information. We can see that inlining alone, without profile

information (“mchk_inline_rand” and “vtchk_inline_rand”) improves performance com-

pared to the unoptimized instrumentation, but only for method checking. For vtable

checking, the random-order inlining causes a slowdown because there were too many

checks to inline, which affected performance negatively (this is confirmed by the memory

overhead shown in Table 3.1. Inlining with profile information (“mchk_inline_prof” and

“vtchk_inline_prof”) provides a significant reduction in percentage overhead compared

to the unoptimized instrumentation. Finally, Figure 3.10 also shows that that the hybrid

approach from Section 3.5 has the lowest overhead by far, about 2% on average.

Cross Profiling. As shown above, profiling information can significantly reduce

SAFEDISPATCH overhead. However, once deployed, applications are often run on inputs

that were not profiled. To measure the effectiveness of profiling on one application and
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Table 3.2. Cross Profiling. To evaluate the effect of profiling across benchmarks, we
measured the overhead of running each binary optimized for one JavaScript performance
suite on the other suites. The numbers reported are percentage overhead for the hybrid
approach.

Benchmark Overhead %
Profile octane kraken sunspider
octane 0.30 2.51 6.30
kraken 0.79 1.22 6.69
sunspider 1.15 2.25 1.97

running on another, we used each of the binaries optimized for each JavaScript benchmark

and ran it on the others. We focused on JavaScript benchmarks for this cross-profiling

evaluation because the rendering benchmarks each evaluate a different kind of rendering

(e.g., text, graphics, html rendering), and it would be unlikely that one of them would

be a good predictor for others (in essence we would have to profile all three rendering

benchmarks to get a representative set, but then this would not evaluate cross-profiling).

Table 3.2 shows the results of cross-profiling for the hybrid approach. Each row and each

column is a benchmark, and at row y and column x, we show the percentage overhead of

running the x benchmark using the binary optimized for y’s profile information. While

we can see that in some cases the overhead jumps to 6%, if we profile with sunspider, the

overhead still remains in the vicinity of 2%. This may indicate that sunspider is a more

representative Javascript benchmark, which is better suited for generating good profile

information.

Code Size Overhead. We also measured the increase to code size resulting from

SAFEDISPATCH data structures and instrumentation in the generated executable, shown

in the final column of the table from Table 3.1. For the hybrid approach, the generated

executable size was within 10% of the corresponding unprotected executable. Note that
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Table 3.3. SAFEDISPATCH Prototype LOC. The table above characterizes the major
components in our SAFEDISPATCH implementation. The basic instrumentation module
is implemented as a Clang++ compiler pass and inserts calls to the check() fucntion as
described in Section 3.3 function at each method call site, additionally logging some type
data. These logs are used by the CHA module, written in Python, to build the ValidM
and ValidVT used during checking at runtime. The final module is implemented as a set
of low-level LLVM passes to inline checks based on profiling information.

Component Framework Language LOC
Basic Instrumentation Clang++ C++ 177
Class Hierarchy Analysis - Python 691
Inlining Optimizations LLVM C++ 381
Total 1249

the memory overhead for “vtchk_inline_rand” is substantial, which is consistent with the

run-time overhead for “vtchk_inline_rand” from Figure 3.10.

3.6.2 Development Effort

Our prototype implementation of SAFEDISPATCH has three major components:

(1) the basic instrumentation compiler pass, (2) CHA analysis to generate the ValidM

and ValidVT internal SAFEDISPATCH checking data structures, and (3) inlining opti-

mizations. The size of each component is listed in Table 3.3.

The basic instrumentation pass is implemented as a pass in Clang++ while the

compiler has access to source-level type information which is erased once a program is

translated into the lower level LLVM representation. This pass also produces information

used in our second major component, the CHA analysis, which we implemented in a

set of Python scripts to build the intermediate ValidM and ValidVT tables. Finally, we

implemented our inlining passes as an optimization in LLVM which can take advantage

of profiling information to order checking branches by how frequently they were taken in

profile runs.
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3.6.3 Compatibility

In principle, SAFEDISPATCH only incurs minimal compile time overhead to build

the ValidM and ValidVT tables and instrument virtual method call sites as described

in Sections 3.3, 3.4 and 3.5. Thus, in principle, the programmer should be able to use

SAFEDISPATCH on every compilation without disrupting the typical edit, compile, test

workflow. However, in our current prototype implementation, SAFEDISPATCH performs

two full compilations to gather necessary analysis results before instrumenting the code,

leading to a roughly 2x increase in compile time. As mentioned above, this is an artifact

of our prototype implementation which can easily be fixed and is not an inherit limitation

of SAFEDISPATCH.

The SAFEDISPATCH prototype also requires a whole-program CHA to perform

instrumentation, and does not currently support separate compilation. There are two

main challenges in supporting separate compilation. The first challenge is to make

CHA modular. In particular, the compiler would have to generate CHA information per-

compilation unit, which the linker would then combine into whole-program information.

This approach to CHA is very similar to the approach taken in GCC’s vtable verification

branch [104, 103]. The second challenge is to inline checks in a modular way. In

particular, editing code in one file could require additional checks in another file. To

address this challenge, the compiler could insert calls to check at compile time, and then

replace these calls with inserted inlined checks at link-time (similarly to link-time inlining

of function calls). Finally, profiling data for inlining optimizations can be collected using

a profile build in which the check function collects the required function/vtable pointers.

This profile build can easily support separate compilation, as it does not require inlining

or CHA.
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3.7 SAFEDISPATCH Security Analysis

In this section we consider the security implications of SAFEDISPATCH including

the class of attacks SAFEDISPATCH prevents and some limitations of our approach.

3.7.1 SAFEDISPATCH Guarantee

The checks inserted by the SAFEDISPATCH compiler guarantees that each virtual

method call made at runtime jumps to a valid implementation of that method according to

C++ dynamic dispatch rules. This guarantee immediately eliminates the attacker’s ability

to arbitrarily compromise the control flow of an application using a vtable hijacking

attack. Our defense would prevent crucial steps in many recent, high profile vtable

hijacking attacks, e.g., Pinkie Pie’s 2012 Zero-day exploit of Google Chrome which

escaped the tab sandbox and allowed an adversary to compromise the underlying system.

In addition to preventing many attacks, SAFEDISPATCH provides an intuitive guarantee

in terms of the C++ type system, which is easy to understand for programmers who are

familiar with the type system. Furthermore, the programmer cannot inadvertently nullify

the SAFEDISPATCH guarantee through a programming mistake; the checks inserted by

SAFEDISPATCH will detect errors such as incorrect type casts which would otherwise

lead to a method call invoking an invalid method implementation.

The SAFEDISPATCH guarantee provides strong defense against vtable hijacking

attacks, regardless of how the attack is mounted, e.g., use-after-free error, heap based

buffer overflow, type confusion, etc. As discussed further in the next section on related

work, other defenses only focus on particular styles of attack (for example mitigating

use-after-free errors by reference counting), or incur non-trivial overhead (for example

using a custom allocator to ensure the memory safety properties necessary to prevent

vtable hijacking via dangling pointers). Furthermore, SAFEDISPATCH protection is
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always safe to apply: all programs should already satisfy the SAFEDISPATCH guarantee

according to the C++ type system – we are simply enforcing it at runtime.

SAFEDISPATCH also defends against potentially exploitable, invalid typecasts

made by the programmer [33]. If a programmer incorrectly casts an object of static type

c to another type c′ and at runtime the object does not have type c′, then methods invoked

on the object will not be valid implementation and SAFEDISPATCH will signal an error.

The astute reader may wonder why the checks inserted by SAFEDISPATCH

instrumentation are any more secure than the vtable pointer stored in a runtime object.

Unlike such heap pointers, the checks inserted by SAFEDISPATCH and their associated

data structures are embedded in the generated executable which resides in read-only

memory, ensuring that an attacker will not be able to corrupt SAFEDISPATCH inserted

checks at runtime whereas vtable pointers stored in C++ objects reside in writable

memory. Of course, this assumes the attacker will not be able to remap the program’s

text segment, or portion of memory containing the application’s executable code, to be

writable.

3.7.2 SAFEDISPATCH Limitations

SAFEDISPATCH guarantees that one of the valid method implementations for a

given call site will be invoked at runtime, not that the correct method will be called. For

example, an attacker could still corrupt an object’s vtable pointer to point to the vtable

of a child class, causing an object to invoke a child class’s implementation of a method

instead of it’s own. While this call would technically satisfy the static C++ dynamic

dispatch rules, it could lead to further memory corruption or other undesirable effects.

SAFEDISPATCH detects vtable pointer corruption precisely when it would result

in an invalid method invocation. This does not prevent other memory corruption attacks,

such as overwriting the return address stored in a function’s activation record on the stack.
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SAFEDISPATCH also does not currently prevent corrupting arbitrary (non-object) function

pointer values. Such function pointers are important in systems making extensive use

of callbacks or continuations. SAFEDISPATCH could be extended to protect such calls

through function pointers by conceptually treating them as method invocations of a

special ghost class introduced by the compiler. This change, which we will explore in

future work, would also be transparent to the programmer and would further strengthen

our guarantee.

SAFEDISPATCH only protects the code it compiles. Thus, if an application

dynamically loads unprotected system libraries, an attacker may be able to compromise

control flow within the library code via vtable hijacking. While such libraries can

be compiled with SAFEDISPATCH to prevent such attacks, it’s important to note that

SAFEDISPATCH requires performing a whole program Class Hierarchy Analysis on the

entire program, including all application libraries and all system libraries. Unfortunately,

it is well known that such whole program analyses present challenges in the face of

separate compilation, dynamically linked libraries, and shared libraries. As a result,

our current SAFEDISPATCH prototype protects the entire application code, including

all application libraries, but it does not protect shared system libraries such as the C++

standard library.

Dynamically linked libraries are also a possible source of incompatibility with

the current SAFEDISPATCH prototype. For example, consider an application that uses

a subclass implemented in an external, dynamically linked library. Since the subclass

information is not statically available to SAFEDISPATCH’s CHA, any such dynamically

loaded subclass method implementations will be reported as invalid by check at runtime.

To overcome this limitation, SAFEDISPATCH would be required to dynamically update its

ValidM and ValidVT tables as dynamic libraries are loaded at runtime by instrumentation

of certain system calls (e.g., dlopen). In future work, we hope to address this limitation
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by developing better techniques for performing our CHA analysis in the face of separate

compilation and dynamically linked libraries.

3.7.3 Performance and Security Tradeoffs

As discussed in previous sections, there are multiple strategies for enforcing the

SAFEDISPATCH guarantee which lead to different security and performance tradeoffs.

Vtable checking provides additional data integrity guarantees over method checking,

in particular for this pointer offsets in the face of multiple inheritance, but at the

cost of additional runtime overhead. Our hybrid approach adopts vtable checking at

method pointer call sites to reduce runtime overhead, but uses method checking at non-

method-pointer call sites, and so does not provide the same data integrity guarantees as

vtable checking. Although the additional data integrity guarantee provided by vtable

checking may mitigate some attacks, we feel that the significantly reduced overhead of

our method checking and hybrid approaches offer a more realistic tradeoff for complex,

high performance applications like web browsers.
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Chapter 4

Formal Verification for Kernel-based
Browsers

Despite the critical security role of web browsers, attackers routinely exploit

implementation bugs in browsers to exfiltrate private data and take over the underlying

system. In this chapter, we present QUARK, a browser structured with a centralized

kernel that mediates security-critical resources access. QUARK’s kernel implementation

has been formally verified in Coq: we give a specification of our kernel, show that

the implementation satisfies the specification, and finally show that the specification

implies several security properties, including tab non-interference, cookie integrity and

confidentiality, and address bar correctness.

The QUARK project was a joint project with another PhD student, Zachary Tatlock.

The disseration author’s primary contribution in QUARK was the design of QUARK’s

architecture, and the design and implementation of all the non-kernel components that

interact with the kernel. Zachary Tatlock’s primary contribution was the implementation

and formalization of the Kernel in Coq.

86
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4.1 Motivation

Security experts consistently discover vulnerabilities stemming from implemen-

tation bugs in all popular browsers, leading to data loss and remote exploitation. In the

annual Pwn2Own competition, part of the CanSecWest security conference [4], security

experts demonstrate new attacks on up-to-date browsers, allowing them to subvert a

user’s machine through the click of a single link. These vulnerabilities represent realistic,

zero-day exploits and thus are quickly patched by browser vendors. Exploits are also reg-

ularly found in the wild; Google maintains a Vulnerability Reward Program, publishing

its most notorious bugs and rewarding the cash to their reporters [2].

Researchers have responded to the problems of browser security with a diverse

range of techniques, from novel browser architectures [15, 110, 42, 99, 69] and defenses

against specific attacks [57, 45, 48, 14, 86] to alternative security policies [55, 96, 47, 14,

95, 8] and improved JavaScript safety [23, 52, 92, 10, 114]. While all these techniques

improve browser security, the intricate subtleties of web security make it very difficult to

know with full certainty whether a given technique works as intended. Often, a solution

only “works” until an attacker finds a bug in the technique or its implementation. Even

in work that attempts to provide strong guarantees (for example [42, 20, 99, 19]) the

guarantees come from analyzing a model of the browser, not the actual implementation.

Reasoning about such a simplified model eases the verification burden by omitting the

gritty details and corner cases present in real systems. Unfortunately, attackers exploit

precisely such corner cases. Thus, these approaches still leave a formality gap between

the theory and implementation of a technique.

There is one promising technique that could minimize this formality gap: fully

formal verification of the browser implementation, carried out in the demanding and

foundational context of a mechanical proof assistant. This strict discipline forces the
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programmer to specify precisely how their code should behave and then provides the

tools to formally guarantee that it does, all in fully formal logic, building from basic

axioms up. For their trouble, the programmer is rewarded with a machine checkable proof

that the implementation satisfies the specification. With this proof in hand, we can avoid

further reasoning about the large, complex implementation, and instead consider only

the substantially smaller, simpler specification. In order to believe that such a browser

truly satisfies its specification, one needs only trust a very small, extensively tested proof

checker. By reasoning about the actual implementation directly, we can guarantee that

any security properties implied by the specification will hold in every case, on every run

of the actual browser.

Unfortunately, formal verification in a proof assistant is tremendously difficult.

Often, those systems which we can formally verify are severely restricted, “toy” versions

of the programs we actually have in mind. Thus, many researchers still consider full

formal verification of realistic, browser-scale systems an unrealistic fantasy. Fortunately,

recent advances in fully formal verification allow us to begin challenging this pessimistic

outlook.

We demonstrate how our approach presented in this chapter, formal shim verifi-

cation, radically reduces the verification burden for large systems to the degree that we

were able to formally verify the implementation of a web browser, QUARK, within the

demanding and foundational context of the mechanical proof assistant Coq.

At its core, formal shim verification addresses the challenge of formally verifying

a large system by cleverly reducing the amount of code that must be considered; our

approach restructure an existing system in a way that all components communicate

through a small, lightweight shim which ensures the components are restricted to only

exhibit allowed behaviors. Formal shim verification only requires one to reason about the

shim, thus eliminating the tremendously expensive or infeasible task of verifying large,
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complex components in a proof assistant.

Our web browser, QUARK, exploits formal shim verification and enables us to

verify security properties for a million lines of code while reasoning about only a few

hundred. To achieve this goal, QUARK is structured similarly to Google Chrome [15] or

OP [42]. It consists of a small browser kernel which mediates access to system resources

for all other browser components. These other components run in sandboxes which

only allow the component to communicate with the kernel. In this way, QUARK is able

to make strong guarantees about a million lines of code (e.g., the renderer, JavaScript

implementation, JPEG decoders, etc.) while only using a proof assistant to reason about

a few hundred lines of code (the kernel). Because the underlying system is protected

from QUARK’s untrusted components (i.e., everything other than the kernel) we were

free to adopt state-of-the-art implementations and thus QUARK is able to run popular,

complex websites like Facebook and GMail.

By applying formal shim verification to only reason about a small core of the

browser, we formally establish the following security properties in QUARK, all within a

proof assistant:

1. Tab Non-Interference: no tab can ever affect how the kernel interacts with another

tab

2. Cookie Same Domain: cookies on a domain can only be accessed/modified by

tabs of that domain

3. Address Bar Integrity and Correctness: the address bar cannot be modified by

a tab without the user being involved, and always displays the correct address bar.

To summarize, our contributions are as follows:
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• We demonstrate how formal shim verification enabled us to formally verify the

implementation of a web browser. We discuss the techniques, tools, and design

decisions required to formally verify QUARK in detail.

• We identify and formally prove key security properties for a realistic web browser.

• We provide a framework that can be used to further investigate and prove more

complex policies within a working, formally verified browser.

The rest of the chapter is organized as follows. Section 4.2 presents an overview

of the QUARK browser. Section 4.3 details the design of the QUARK kernel and its

implementation. Section 4.4 explains the tools and techniques we used to formally verify

the implementation of the QUARK kernel. Section 4.5 evaluates QUARK along several

dimensions while Section 4.6 discusses lessons learned from our endeavor.

4.2 QUARK Architecture and Design

Figure 4.1 diagrams QUARK’s architecture. Similar to Chrome [15] and OP [42],

QUARK isolates complex and vulnerability-ridden components in sandboxes, forcing

them to access sensitive system resources through a small browser kernel. Our kernel,

written in Coq, runs in its own process and mediates access to resources including the

keyboard, disk, and network. Each tab runs a modified version of WebKit in its own

process. WebKit is the open source HTML rendering engine used in Chrome and Safari.

It provides various callbacks for clients as Python bindings which we use to implement

tab components. Since tab components should not directly access any system resources,

we hook into these callbacks to re-route WebKit’s network, screen, and cookie access

through our kernel written in Coq. QUARK also uses separate components for displaying

to the screen, storing and accessing cookies, as well reading input from the user. Each
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Figure 4.1. QUARK Architecture. This diagram shows how QUARK factors a modern
browser into distinct components which run in separate processes; arrows indicate
information flow. We guarantee our security properties by formally verifying the QUARK

Kernel in the Coq proof assistant, which allows us to avoid reasoning about the intricate
details of other components.
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instance of the components are spawned as a separate, sandboxed process that is only

allowed to send a message to the kernel.

Throughout this chapter, we assume that an attacker can compromise any QUARK

component which is exposed to content from the Internet, except for the kernel which

we formally verified. This includes all tab components, cookie components, and the

graphical output component. Thus, we provide strong formal guarantees about tab and

cookie isolation, even when some components have been completely taken over (e.g., by

a buffer overflow attack in the rendering or JavaScript engine of WebKit).

4.2.1 Graphical User Interface

The traditional GUI for web browsers manages several key responsibilities:

reading mouse and keyboard input, showing rendered graphical output, and displaying

the current URL. Unfortunately, such a monolithic component cannot be made to satisfy

our security goals. If compromised, such a GUI component could spoof the current URL

or send arbitrary user inputs to the kernel, which, if coordinated with a compromised tab,

would violate tab isolation. Thus QUARK must carefully separate GUI responsibilities to

maximize our security guarantees while still providing a realistic browser.

QUARK divides GUI responsibilities into several components which the kernel

orchestrates to provide a traditional GUI for the user. The most complex component dis-

plays rendered bitmaps on the screen. QUARK puts this component in a separate process

to which the kernel directs rendered bitmaps from the currently selected tab. Because the

kernel never reads input from this graphical output process, any vulnerabilities it may

have cannot subvert the kernel or impact any other component in QUARK. Furthermore,

treating the graphical output component as a separate process simplifies the kernel and

proofs because it allows the kernel to employ a uniform mechanism for interacting with

the outside world: messages over channels.
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Figure 4.2. QUARK Screenshot. This screenshot shows QUARK running a Google search,
including an interactive drop-down suggesting query completions and an initial set of
search results from a JavaScript event handler dispatching an “instant search” as well as
a page preview from a search result link.
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To formally reason about the address bar, we designed our kernel so that the

current URL is written directly to the kernel’s stdout. This gives rise to a hybrid

graphical/text output as shown in Figure 4.2 where the kernel has complete control over

the address bar: we only trust that the simple terminal process correctly prints out the

character stream from the kernel’s stdout to correctly show the address to the user. With

this design, the graphical output process is never able to spoof the address bar.

QUARK uses a separate input process to support richer inputs, e.g., the mouse.

The input process is a simple Python script which grabs keyboard and mouse events from

the user, encodes them as user input messages, and forwards them on to the kernel. For

keystrokes, the input process simply sends the ASCII code of the typed key to the kernel.

Mouse clicks are sent to the kernel through un-printable ASCII values, interpreted as

different mouse click events by the kernel. Because the input process only reads from

the keyboard and mouse, and never from the kernel or any other QUARK components, it

cannot be exposed to any attacks originating from the network. Furthermore, the user

input is not mistakenly leaked to other components since the user input is only taken by

the input process and directly sent to the kernel.

4.2.2 Example of Message Exchanges

To illustrate how the kernel orchestrates all the components in QUARK, we detail

the steps from startup to a tab finishing loading http://www.google.com. The user opens

QUARK by starting the kernel which in turn starts three processes: the input process,

the graphical output process, and a tab process. The kernel establishes a two-way

communication channel with each process it starts. Next, the kernel creates a tab process

on the security domain “google.com” (see Section 4.2.4 and 4.2.5 for details of the tab

security domain), and then sends a (Go "http://www.google.com") message to the

tab indicating it should load the given URL (for now, assume this is normal behavior for

http://www.google.com
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all new tabs).

The tab process comprises our modified version of WebKit wrapped by a thin

layer of Python to handle messaging with the kernel. After recieving the Go message, the

Python wrapper tells WebKit to start processing http://www.google.com. Since the tab

process is running in a sandbox, WebKit cannot directly access the network. When it

attempts to, our Python wrapper intervenes and sends a GetURL request to the kernel. As

long as the request is valid under its security domain “google.com”, the kernel responds

with a ResDoc message containing the HTML document the tab requested.

Once the tab process has received the necessary resources from the kernel and

rendered the Web pages, it sends a Display message to the kernel which contains a

bitmap to display. When the kernel receives a Display message from the currently

focused tab, it forwards the message to the graphical output process, which in turn

displays the bitmap on the screen.

When the kernel reads a printable character c from standard input, it sends a

(KeyPress c) message to the currently selected tab. Upon receiving such a message,

the tab calls the appropriate input handler in WebKit. For example, if a user types “a”

on Google, the “a” character is read by the kernel, passed to the tab, and then passed to

WebKit, at which point WebKit adds the “a” character to Google’s search box. This in

turn causes WebKit’s JavaScript engine to run an event handler that Google has installed

on their search box. The event handler performs an “instant search”, which initiates

further communication with the QUARK kernel to access additional network resources,

followed by another Display message to repaint the screen. Note that to ease verification,

QUARK currently handles all requests synchronously.

http://www.google.com
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4.2.3 Efficiency

With a few simple optimizations, we achieve performance comparable to WebKit

on average (see Section 4.5 for measurements). Following Chrome, we adopt two

optimizations critical for good graphics performance. First, QUARK uses shared memory

to pass bitmaps from the tab process through the kernel to the output process, so that the

Display message only passes a shared memory ID instead of a bitmap. This drastically

reduces the communication cost of sending bitmaps. To prevent a malicious tab from

accessing another tab’s shared memory, we run each tab as a different user, and set

access controls so that a tab’s shared memory can only be accessed by the output process.

Second, QUARK uses rectangle-based rendering: instead of sending a large bitmap of

the entire screen each time the display changes, the tab process determines which part of

the display has changed, and sends bitmaps only for the rectangular regions that need to

be updated. This drastically reduces the size of the bitmaps being transferred, and the

amount of redrawing on the screen.

The Ynot library [77] QUARK uses only has single-character read/write routines,

imposing significant overhead since every single character read/write needs to be sepa-

rately handled by the operating system kernel. For better I/O performance, we defined a

new I/O library which uses size n reads/writes. This reduced reading an n byte message

from n I/O calls to just three: reading a 1 byte tag, followed by a 4 byte payload size, and

then a single read for the entire payload.

We also optimized socket connections in QUARK. Our original prototype opened

a new TCP connection for each HTTP GET request, imposing significant overhead. Mod-

ern Web servers and browsers use persistent connections to improve the efficiency of

page loading and the responsiveness of Web 2.0 applications. These connections are

maintained anywhere from a few seconds to several minutes, allowing the client and
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server can exchange multiple request/responses on a single connection. Services like

Google Chat make use of very long-lived HTTP connections to support responsive

interaction with the user.

We support such persistent HTTP connections via Unix domain sockets which

allow processes to send open file descriptors over channels using the sendmsg and

recvmsg system calls. When a tab needs to open a socket, it sends a GetSoc message to

the kernel with the host and port. If the request is valid, the kernel opens and connects

the socket, and then sends an open socket file descriptor to the tab. Once the tab gets the

socket file descriptor, it can read/write on the socket, but it cannot re-bind the socket to

another host/port. In this way, the kernel controls all socket connections.

Even though we formally verify our browser kernel in a proof assistant, we were

still able to implement and reason about these low-level optimizations.

4.2.4 Socket Security Policy

The GetSoc message brings up an interesting security issue. If the kernel al-

lowed for all GetSoc requests no matter what destination they are connected to, then a

compromised tab could open sockets to any server and exchange arbitrary amounts of

information. This arbitrary communication completely violates the same origin policy

and can be exploited to bypass the local firewall. Therefore, the kernel must prevent this

scenario by restricting socket connections.

To implement this restriction, we introduce the idea of a domain suffix for a tab

which the user enters when the tab starts. A tab’s domain suffix controls several security

features in QUARK, including which socket connections are allowed and how cookies

are handled (see Section 4.2.5). In fact, our address bar, located at the very top of the

browser (see Figure 4.2), displays the domain suffix, not just the tab’s URL. We therefore

refer to it as the “domain bar”.
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For simplicity, our current domain suffixes build on the notion of a public domain

suffix, which is a top-level domain under which Internet users can directly register

names, for example .com, .co.uk, or .edu – Mozilla maintains an exhaustive list of such

suffixes [3]. In particular, we require the domain suffix for a tab to be exactly one level

down under a public suffix, e.g., google.com, amazon.com, etc. In the current QUARK

prototype the user provides a tab’s domain suffix separately from its initial URL, but one

could easily compute the former from the later. Note that, once set, a tab’s domain suffix

never changes. In particular, any frames a tab loads do not affect its domain suffix.

We considered using the tab’s origin (which includes the URL, scheme, and port)

to restrict socket creation in an attempt to enforce the same origin policy in the kernel,

but such a policy is too restrictive for many useful sites. For example, a single GMail

tab uses frames from domains such as static.google.com and mail.google.com. However,

our actual domain suffix checks are modularized within QUARK, which will allow us to

experiment with finer grained policies in future work.

To enforce our current socket creation policy, we first define a subdomain relation

≤ as follows: given domain d1 and domain suffix d2, we use d1 ≤ d2 to denote that d1 is

a subdomain of d2. For example www.google.com ≤ google.com. If a tab with domain

suffix t requests to open a connection to a host h, then the kernel allows the connection

if h ≤ t. To load URLs that are not a subdomain of the tab suffix, the tab must send a

GetURL message to the kernel – in response, the kernel does not open a socket but, if the

request is valid, may provide the content of the URL. Since the kernel does not attach

any cookies to the HTTP request for a GetURL message, a tab can only access publicly

available data using GetURL. In addition, GetURL requests only provide the response

body, not HTTP headers.

Note that an exploited tab could leak cookies by encoding information within the

URL parameter of GetURL requests, but only cookies for that tab’s domain suffix could

.com
.co.uk
.edu
google.com
amazon.com
static.google.com
mail.google.com
www.google.com
google.com
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be leaked : a tab cannot get cookies via GetURL since we do not provide any access

to HTTP headers with GetURL. In addition, a tab whose domain suffix is google.com

can only access cookies for *.google.com under our cookie policy 4.2.5. For exmaple,

an exploited tab on google.com can steal cookies for www.google.com, but not for

www.facebook.com.

We also slightly enhanced our socket policy to improve performance. Sites with

large data sets often use content distribution networks whose domains will not satisfy

our domain suffix checks. For example facebook.com uses fbcdn.net to load much of

its data. Unfortunately, the simple socket policy described above will force all this data

to be loaded using slow GetURL requests through the kernel. To address this issue, we

associate whitelists with the most popular sites so that tabs for those domains can open

sockets to the associated content distribution network. The tab domain suffix remains

a single string, e.g. facebook.com, but behind the scenes, it gets expanded into a list

depending on the domain, e.g., [facebook.com, fbcdn.net]. When deciding whether to

satisfy a given socket request, QUARK considers this list as a disjunction of allowed

domain suffixes. Currently, we provide these whitelists manually.

4.2.5 Cookies and Cookie Policy

QUARK maintains a set of cookie processes to handle cookie accesses from tabs.

This set of cookie processes will contain a cookie process for domain suffix S (see

Section 4.2.4) if S is the domain suffix of a running tab. By restricting messages to and

from cookie processes, the QUARK kernel guarantees that tab processes will only be able

to access cookies appropriate for their domain suffix.

The kernel receives cookie store/retrieve requests from tabs and directs the re-

quests to the appropriate cookie process based on their domain suffix. If a tab with

domain suffix t asks to store a cookie string with domain c, then our kernel allows the

google.com
*.google.com
google.com
www.google.com
www.facebook.com
facebook.com
fbcdn.net
facebook.com
facebook.com
fbcdn.net
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operation if c ≤ t, in which case it sends the store request to the cookie process for

domain suffix t. Similarly, if a tab with domain suffix t wants to retrieve a cookie for

domain c, then our kernel allows the operation if c≤ t, in which case it sends the request

to the cookie process for domain suffix t and forwards any response to the requesting tab.

The above policy prevents cross-domain-suffix cookie reads from a compromised

tab, and it prevents a compromised cookie process from leaking information about its

cookies to another domain suffix; yet it also allows different tabs with the same domain

suffix (but different URLs) to communicate through cookies (for example, mail.google.

com and calendar.google.com).

4.2.6 Security Properties of QUARK

We provide intuitive descriptions of the security properties we proved for the

kernel of QUARK; formal definitions appear later in Section 4.3. A tab in the kernel is a

pair, containing the tab’s public domain suffix as a string and the tab’s communication

channel as a file descriptor. A cookie process is also a pair, containing the public domain

suffix that this cookie process manages and its communication channel to the kernel. We

define the state of the kernel as the currently selected tab, the list of tabs, and the list of

cookie processes. Note that the kernel state only consists of strings and file descriptors.

We prove the following main theorems in Coq:

1. Response Integrity: The way the kernel responds to any request only depends on

past user “control keys” for tab creation/switching (keys F1-F12 in our prototype).

This ensures that one browser component (e.g., a tab or cookie process) can never

influence how the kernel responds to another component, and that the kernel

never allows untrusted input (e.g., data from the web) to influence how the kernel

responds to a request.

mail.google.com
mail.google.com
calendar.google.com
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2. Tab Non-Interference: The kernel’s response to a tab’s request is the same no

matter how other tabs of a different domain suffix interact with the kernel. This

ensures that the kernel never provides a direct way for one tab to attack another tab

or steal private information from another tab across their domain suffix.

3. Same Domain Suffix Socket Creation: The kernel disallows any cross-domain

socket creation (as described in Section 4.2.4).

4. Same Domain Suffix Cookie Access: The kernel disallows any cross-domain-

suffix cookie stores or retrieves (as described in Section 4.2.5).

5. Domain Bar Integrity and Correctness: The domain bar cannot be compromised

by any browser component, and is always equal to the public domain suffix of the

currently focused tab.

4.3 Kernel Implementation in Coq

QUARK’s most distinguishing feature is its kernel implemented and proved correct

in Coq. In this section we present the implementation of the main event handling loop of

the kernel. In the next section we explain how we formally verified the kernel.

Coq enables users to write programs in a small, simple functional language and

then reason formally about them using a powerful logic, the Calculus of Constructions.

This language is essentially an effect-free (pure) subset of popular functional languages

like OCaml with the additional restriction that programs must always terminate. Unfor-

tunately, these limitations make Coq’s default implementation language ill-suited for

writing system programs like servers or browsers which must be effectful to perform I/O

and by design may not terminate.
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Definition kstep(ctab, ctabs) :=
chan <- iselect(stdin, tabs);
match chan with
| Stdin =>

c <- read(stdin);
match c with
| F12 =>

t <- mktab();
write_msg(t, Render);
return (t, t::tabs)

| ...
end

| Tab t =>
msg <- read_msg(t);
match msg with
| GetSoc(host, port) =>

if(safe_soc(host, domain_suffix(t)) then
send_soc(t, host, port);
return (ctab, tabs)

else
write_msg(t, Error);
return (ctab, tabs)

| ...
end

end

Figure 4.3. Body for Main Kernel Loop. This Coq code shows how our QUARK kernel
receives and responds to requests from other browser components. It first uses a Unix-
style select to choose a ready input channel, reads a request from that channel, and
responds to the message appropriately. For example, if the user enters function key F12,
the kernel creates a new tab and sends it the Render message. In each case, the code
returns the new kernel state resulting from handling this request.

To address the limitations of Coq’s implementation language, we use Ynot [77].

Ynot is a Coq library which provides monadic types that allow us to write effectful,

non-terminating programs in Coq while retaining the strong guarantees and reasoning

capabilities Coq normally provides. Equipped with Ynot, we can write our browser

kernel in a fairly straightforward style whose essence is shown in Figure 4.3.

Single Step of Kernel QUARK’s kernel is essentially an infinite loop whose body re-

actively responds to a request from the user or tabs. In each iteration, the kernel calls

kstep which takes the current kernel state, handles a single request, and returns the new
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kernel state as shown in Figure 4.3. The kernel state is a tuple of the currently focused

tab (ctab), the list of tabs (tabs), and a few other components which we omit here (e.g.,

the list of cookie processes). For details regarding the loop and kernel initialization code

please see [54].

The function kstep starts by calling iselect (the “i” stands for input) which

performs a Unix-style select over stdin and all tab input channels, returning Stdin if

stdin is ready for reading or Tab t if the input channel of tab t is ready. iselect is

implemented in Coq using a select primitive which is ultimately just a thin wrapper over

the Unix select system call. The Coq extraction process, which converts Coq into OCaml

for execution, can be customized to link our Coq code with OCaml implementations of

primitives like select. Thus select is exposed to Coq essentially as a primitive of the

appropriate monadic type. We have similar primitives for reading/writing on channels,

and opening sockets.

Request from User If stdin is ready for reading, the kernel reads one character c using

the read primitive, and then responds based on the value of c. If c is F12, a keycode

for function key F12, the kernel adds a new tab to the browser. To achieve this, it first

calls mktab to start a tab process (another primitive implemented in OCaml). mktab

returns a tab object, which contains an input and output channels to communicate with

the tab process. Once the tab t is created, the kernel sends it a Render message using

the write_msg function – this tells t to render itself, which will later cause the tab

to send a Display message to the kernel. Finally, we return an updated kernel state

(t, t::tabs), which sets the newly created tab t as the current tab, and adds t to the

list of tabs.

In addition to F12 the kernel handles several other cases for user input, which we

omit in Figure 4.3. For example, when the kernel reads keys F1 through F10, it switches

to tabs 1 through 10, respectively, if the tab exists. To switch tabs, the kernel updates the
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currently selected tab and sends it a Render message. The kernel also processes mouse

events delivered by the input process to the kernel’s stdin. For now, we only handle

mouse clicks, which are delivered by the input process using a single un-printable ASCII

character (adding richer mouse events would not fundamentally change our kernel or

proofs). The kernel in this case calls a primitive implemented in OCaml which gets the

location of the mouse, and it sends a MouseClick message using the returned coordinates

to the currently selected tab. We use this two-step approach for mouse clicks (un-printable

character from the input process, followed by primitive in OCaml), so that the kernel

only needs to processes a single character at a time from stdin, which simplifies the

kernel and proofs.

Request from Tab If a tab t is ready for reading, the kernel reads a message m from

the tab using read_msg, and then sends a response which depends on the message. If

the message is GetSoc(host, port), then the tab is requesting that a socket be opened

to the given host/port. We apply the socket policy described in Section 4.2.4, where

domain_suffix t returns the domain suffix of a tab t, and safe_soc(host, domsuf)

applies the policy (which basically checks that host is a sub-domain of domsuf). If the

policy allows the socket to be opened, the kernel uses the send_socket to open a socket

to the host, and sends the socket over the channel to the tab (recall that we use Unix

domain sockets to send open file descriptors from one process to another). Otherwise, it

returns an Error message.

In addition to GetSoc the kernel handles several other cases for tab requests,

which we omit in Figure 4.3. For example, the kernel responds to GetURL by retrieving

a URL and returning the result. It responds to cookie store and retrieve messages by

checking the security policy from Section 4.2.5 and forwarding the message to the

appropriate cookie process (note that for simplicity, we did not show the cookie processes

in Figure 4.3). The kernel also responds to cookie processes that are sending cookie
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results back to a tab, by forwarding the cookie results to the appropriate tab. The kernel

responds to Display messages by forwarding them to the output process.

Monads in Ynot The code in Figure 4.3 shows how Ynot supports an imperative pro-

gramming style in Coq. This is achieved via monads which allow one to encode effectful,

non-terminating computations in pure languages like Haskell or Coq. Here we briefly

show how monads enable this encoding. In the next section we extend our discussion

to show how Ynot’s monads also enable reasoning about the kernel using pre- and

post-conditions as in Hoare logic.

We use Ynot’s ST monad which is a parameterized type where ST T denotes

computations which may perform some I/O and then return a value of type T. To use ST,

Ynot provides a bind primitive which has the following dependent type:

bind : forall T1 T2,

ST T1 -> (T1 -> ST T2) -> ST T2

This type indicates that, for any types T1 and T2, bind will take two parameters:

(1) a monad of type ST T1 and (2) a function that takes a value of type T1 and returns

a monad of type ST T2; then bind will produce a value in the ST T2 monad. The type

parameters T1 and T2 are inferred automatically by Coq. Thus, the expression bind X Y

returns a monad which represents the computation: run X to get a value v; run (Y v) to

get a value v’; return v’.

To make using bind more convenient, Ynot also defines Haskell-style “do”

syntactic sugar using Coq’s Notation mechanism, so that x <- a;b is translated to

bind a (fun x => b), and a;b is translated to bind a (fun _ => b). Finally, the

Ynot library provides a return primitive of type forall T (v: T), ST T (where

again T is inferred by Coq). Given a value v, the monad return v represents the

computation that does no I/O and simply returns v.
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4.4 Kernel Verification

In this section we explain how we verified that QUARK’s kernel implementation

actually satisfies our security properties. First, we specify correct behavior of the kernel

in terms of traces. Second, we prove the kernel satisfies this specification using the full

power of Ynot’s monads. Finally, we prove that our kernel specification implies our

target security properties.

4.4.1 Actions and Traces

We verify our kernel by reasoning about the sequences of calls to primitives (i.e.,

system calls) it can make. We call such a sequence a trace; our kernel specification

(henceforth “spec”) defines which traces are allowed for a correct implementation as

in [67].

We use a list of actions to represent the trace the kernel produces by calling prim-

itives. Each action in a trace corresponds to the kernel invoking a particular primitive.

Figure 4.4 shows a partial definition of the Action datatype. For example: ReadN f n l

is an Action indicating that the n bytes in list l were read from input channel f; MkTab t

indicates that tab t was created; SentSoc t host port indicates a socket was con-

nected to host/port and passed to tab t.

Although traces and actions are part of our spec, we can manipulate them like

any other values in Coq. For example, we can define a function Read c b defined in

terms of ReadN to encode the special case that a single byte b was read on input channel

c. Though not shown here, we also define similar helper functions to build up trace

fragments which correspond to having read or written a particular message to a given

component. For example, ReadMsg t (GetSoc host port) corresponds to the trace

fragment that results from reading a GetSoc request from tab t.
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Definition Trace := list Action.

Inductive Action :=
| ReadN : chan -> positive -> list ascii -> Action
| WriteN : chan -> positive -> list ascii -> Action
| MkTab : tab -> Action
| SentSoc : tab -> list ascii -> list ascii -> Action
| ...

Definition Read c b := ReadN c 1 [c].

Figure 4.4. Traces and Actions. This Coq code defines the type of externally visible
actions our kernel can take. A trace is simply a list of such actions. We reason about our
kernel by proving properties of the traces it can have. Traces are like other Coq values; in
particular, we can write functions that return traces. Read is a helper function to construct
a trace fragment corresponding to reading a single byte.

4.4.2 Kernel Specification

Figure 4.5 shows a simplified snippet of our kernel spec. The spec is an inductively

defined predicate tcorrect over traces with two constructors, stating the two ways in

which tcorrect can be established: (1) tcorrect_nil states that the empty trace

satisfies tcorrect (2) tcorrect_step states that if tr satisfies tcorrect and the

kernel takes a single step, meaning that after tr it gets a request req, and responds with

rsp, then the trace rsp ++ req ++ tr (where ++ is list concatenation) also satisfies

tcorrect. By convention the first action in a trace is the most recent.

The predicate step_correct defines correctness for a single iteration of the

kernel’s main loop: step_correct tr req rsp holds if given the past trace tr and

a request req, the response of the kernel should be rsp. The predicate has several

constructors (not all shown) enumerating the ways step_correct can be established. For

example, step_correct_add_tab states that typing F12 on stdin leads to the creation

of a tab and sending the Render message. The step_correct_socket_true case

captures the successful socket creation case, whereas step_correct_socket_false

captures the error case.
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Inductive tcorrect : Trace -> Prop :=
| tcorrect_nil:

tcorrect nil
| tcorrect_step: forall tr req rsp,

tcorrect tr ->
step_correct tr req rsp ->
tcorrect (rsp ++ req ++ tr).

Inductive step_correct :
Trace -> Trace -> Trace -> Prop :=
| step_correct_add_tab: forall tr t,

step_correct tr
(MkTab t :: Read stdin F12 :: nil)
(WroteMsg t Render)

| step_correct_socket_true: forall tr t host port,
is_safe_soc host (domain_suffix t) = true ->
step_correct tr

(ReadMsg t (GetSoc host port))
(SentSoc t host port)

| step_correct_socket_false: forall tr t host port,
is_safe_soc host (domain_suffix t) <> true ->
step_correct tr

(ReadMsg t (GetSoc host port) ++ tr)
(WroteMsg t Error ++ tr)

| ...

Figure 4.5. Kernel Specification. step_correct is a predicate over triples containing a
past trace, a request trace, and a response trace; it holds when the response is valid for
the given request in the context of the past trace. tcorrect defines a correct trace for
our kernel to be a sequence of correct steps, i.e., the concatenation of valid request and
response trace fragments.
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Axiom readn:
forall (f: chan) (n: positive) {tr: Trace},
ST (list ascii)

{traced tr * open f}
{fun l =>

traced (ReadN f n l :: tr) *
[len l = n] * open f }.

Definition read_msg:
forall (t: tab) {tr: Trace},
ST msg

{traced tr * open (tchan t)}
{fun m =>

traced (ReadMsg t m ++ tr) * open (tchan t)} :=
...

Figure 4.6. Example Monadic Types. This Coq code shows the monadic types for the
readn primitive and for the read_msg function which is implemented in terms of readn.
In both cases, the first expression between curly braces represents a pre-condition and the
second represents a post-condition. The asterisk (*) may be read as normal conjunction
in this context.

4.4.3 Monads in Ynot Revisited

In the previous section, we explained Ynot’s ST monad as being parameterized

over a single type T. In reality, ST takes two additional parameters representing pre- and

post-conditions for the computation encoded by the monad. Thus, ST T P Q represents

a computation which, if started in a state where P holds, may perform some I/O and

then return a value of type T in a state where Q holds. For technical reasons, these pre-

and post-conditions are expressed using separation logic, but we defer details to a tech

report [54].

Following the approach of Malecha et al. [67], we define an opaque predicate

(traced tr) to represent the fact that at a given point during execution, tr captures all

the past activities; and (open f) to represent the fact that channel f is currently open.

An opaque predicate cannot be proven directly. This property allows us to ensure that

no part of the kernel can forge a proof of (traced tr) for any trace it independently

constructs. Thus (traced tr) can only be true for the current trace tr.
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Figure 4.6 shows the full monadic type for the readn primitive, which reads n

bytes of data and returns it. The * connective represents the separating conjunction from

separation logic. For our purposes, consider it as a regular conjunction. The precondition

of (readn f n tr) states that tr is the current trace and that f is open. The post-

condition states that the trace after readn will be the same as the original, but with an

additional (ReadN f n l) action at the beginning, where the length of l is equal to n

(len l = n is a regular predicate, which is lifted using square brackets into a separation

logic predicate). After the call, the channel f is still open.

The full type of the Ynot bind operation makes sure that when two monads are

sequenced, the post-condition of the first monad implies the pre-condition of the second.

This is achieved by having bind take an additional third argument, which is a proof of

this implication. The syntactic sugar for x <- a;b is updated to pass the wildcard “_”

for the additional argument. When processing the definition of our kernel, Coq will enter

into an interactive mode that allows the user to construct proofs to fill in these wildcards.

This allows us to prove that the post-condition of each monad implies the pre-condition

of the immediately following monad in Coq’s interactive proof environment.

4.4.4 Back to the Kernel

We now return to our kernel from Figure 4.3 and show how we prove that it

satisfies the spec from Figure 4.5. We augment the kernel state to additionally include

the trace of the kernel so far, and we update our kernel code to maintain this tr field. By

using a special encoding in Ynot for this trace, the tr field is not realized at run-time, it

is only used for proof purposes.

We define the kcorrect predicate as follows (s.tr projects the current trace out

of kernel state s):

Definition kcorrect (s: kstate) := traced s.tr * [tcorrect s.tr]
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Now we want to show that kcorrect is an invariant that holds throughout execution of

the kernel. Essentially we must show that (kcorrect s) is a loop invariant on the kernel

state s for the main kernel loop, which boils down to showing that (kcorrect s) is

valid as both the pre- and post-condition for the loop body, kstep as shown in Figure 4.3.

As mentioned previously, Coq will ask us to prove implications between the

post-condition of one monad and the pre-condition of the next. While these proofs are

ultimately spelled out in full formal detail, Coq provides facilities to automate a substan-

tial portion of the proof process. Ynot further provides a handful of sophisticated tactics

which helped automatically dispatch tedious, repeatedly occurring proof obligations.

We had to manually prove the cases which were not handled automatically. While we

have only shown the key kernel invariant here, in the full implementation there are many

additional Hoare predicates for the intermediate goals between program points. We defer

details of these predicates and the manual proof process to [54], but discuss proof effort

in Section 3.6.

4.4.5 Security Properties

Our security properties are phrased as theorems about the spec. We now prove that

our spec implies these key security properties, which we intend to hold in QUARK. Fig-

ure 4.7 shows these key theorems, which correspond precisely to the security properties

outlined in Section 4.2.6.

State Integrity The first security property, kstate_dep_user, ensures that the kernel

state only changes in response to the user pressing a “control key” (e.g. switching to

the third tab by pressing F3). The theorem establishes this property by showing its

contrapositive: if the kernel steps by responding with rsp to request req after trace tr

and no “control keys” were read from the user, then the kernel state remains unchanged

by this step. The function proj_user_control, not shown here, simply projects from
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Theorem kstate_dep_user: forall tr req rsp,
step_correct tr req rsp ->
proj_user_control tr = proj_user_control (rsp ++ req ++ tr) ->
kernel_state tr = kernel_state (rsp ++ req ++ tr).

Theorem kresponse_dep_kstate: forall tr1 tr2 req rsp,
kernel_state tr1 = kernel_state tr2 ->
step_correct tr1 req rsp ->
step_correct tr2 req rsp.

Theorem tab_NI: forall tr1 tr2 t req rsp1 rsp2,
tcorrect tr1 -> tcorrect tr2 ->
from_tab t req ->
(cur_tab tr1 = Some t <-> cur_tab tr2 = Some t) ->
step_correct tr1 req rsp1 ->
step_correct tr2 req rsp2 ->
rsp1 = rsp2 \/
(exists m, rsp1 = WroteCMsg (cproc_for t tr1) m /\

rsp2 = WroteCMsg (cproc_for t tr2) m).

Theorem no_xdom_sockets: forall tr t,
tcorrect tr -> In (SendSocket t host s) tr ->
is_safe_soc host (domain_suffic t).

Theorem no_xdom_cookie_set: forall tr1 tr2 cproc,
tcorrect (tr1 ++ SetCookie key value cproc :: tr2) ->

exists tr t,
(tr2 = (SetCookieRequest t key value :: tr) /\
is_safe_cook (domain cproc) (domain_suffix t))

Theorem dom_bar_correct: forall tr,
tcorrect tr -> dom_bar tr = domain_suffix (cur_tab tr).

Figure 4.7. Kernel Security Properties. This Coq code shows how traces allow us to
formalize QUARK’s security properties.

the trace all actions of the form (Read c stdin) where c is a control key. The function

kernel_state, not shown here, just computes the kernel state from a trace. We also

prove that at the beginning of any invocation to kloop in Figure 4.3, all fields of s aside

from tr are equal to the corresponding field in (kernel_state s.tr).

Response Integrity The second security property, kresponse_dep_kstate, ensures

that every kernel response depends solely on the request and the kernel state. This

delineates which parts of a trace can affect the kernel’s behavior: for a given request req,

the kernel will produce the same response rsp, for any two traces that induce the same
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kernel state, even if the two traces have completely different sets of requests/responses

(recall that the kernel state only includes the current tab and the set of tabs, and most

request responses don’t change these). Since the kernel state depends only the user’s

control key inputs, this theorem immediately establishes the fact that our browser will

never allow one component to influence how the kernel treats another component unless

the user intervenes.

Note that kresponse_dep_kstate shows that the kernel will produce the same

response given the same request after any two traces that induce the same kernel state.

This may seem surprising since many of the kernel’s operations produce nondeterministic

results, e.g., there is no way to guarantee that two web fetches of the same URL will

produce the same document. However, such nondeterminism is captured in the request,

which is consistent with our notion of requests as inputs and responses as outputs.

Tab Non-Interference The second security property, tab_NI, states that the kernel’s

response to a tab is not affected by any other tab. In particular, tab_NI shows that if in

the context of a valid trace, tr1, the kernel responds to a request req from tab t with

rsp1, then the kernel will respond to the same request req with an equivalent response

in the context of any other valid trace tr2 which also contains tab t, irrespective of what

other tabs are present in tr2 or what actions they take. Note that this property holds in

particular for the case where trace tr2 contains only tab t, which leads to the following

corollary: the kernel’s response to a tab will be the same even if all other tabs did not

exist.

The formal statement of the theorem in Figure 4.7 is made slightly more compli-

cated because of two issues. First, we must assume that the focused tab at the end of tr1

(denoted by cur_tab tr1) is t if and only if the focused tab at the end of tr2 is also

t. This additional assumption is needed because the kernel responds differently based

on whether a tab is focused or not. For example, when the kernel receives a Display
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message from a tab (indicating that the tab wants to display its rendered page to the user),

the kernel only forwards the message to the output process if the tab is currently focused.

The second complication is that the communication channel underlying the cookie

process for t’s domain may not be the same between tr1 and tr2. Thus, in the case that

kernel responds by forwarding a valid request from t to its cookie process, we guarantee

that the kernel sends the same payload to the cookie process corresponding to t’s domain.

Note that, unlike kresponse_dep_kstate, tab_NI does not require tr1 and

tr2 to induce the same kernel state. Instead, it merely requires the request req to be

from a tab t, and tr1 and tr2 to be valid traces that both contain t (indeed, t must be

on both traces otherwise the step_correct assumptions would not hold). Other than

these restrictions, tr1 and tr2 may be arbitrarily different. They could contain different

tabs from different domains, have different tabs focused, different cookie processes, etc.

Response Integrity and Tab Non-Interference provide different, complimentary

guarantees. Response Integrity ensures the response to any request req is only affected

by control keys and req, while Tab Non-Interference guarantees that the response to a

tab request does not directly leak information to another tab. Note that Response Integrity

could still hold for a kernel which mistakenly sends responses to the wrong tab, but Tab

Non-Interference prevents this. Similarly, Tab Non-Interference could hold for a kernel

which allows a tab to affect how the kernel responds to a cookie process, but Response

Integrity precludes such behavior.

It is also important to understand that tab_NI proves the absence of interference

as caused by the kernel, not by other components, such as the network or cookie processes.

In particular, it is still possible for two websites to communicate with each other through

the network, causing one tab to affect another tab’s view of the web. Similarly, it is

possible for one tab to set a cookie which is read by another tab, which again causes

a tab to affect another one. For the cookie case, however, we have a separate theorem
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about cookie integrity and confidentiality which states that cookie access control is done

correctly.

Note that this property is an adaptation of the traditional non-interference property.

In traditional non-interference, the program has "high" and "low" inputs and outputs;

a program is non-interfering if high inputs never affect low outputs. Intuitively, this

constrains the program to never reveal secret information to untrusted principles.

We found that this traditional approach to non-interference fits poorly with our

trace-based verification approach. In particular, because the browser is a non-terminating,

reactive program, the "inputs" and "outputs" are infinite streams of data.

Previous research [17] has adapted the notion of non-interference to the setting

of reactive programs like browsers. They provide a formal definition of non-interference

in terms of possibly infinite input and output streams. A program at a particular state

is non-interfering if it produces similar outputs from similar inputs. The notion of

similarity is parameterized in their definition; they explore several options and examine

the consequences of each definition for similarity.

Our tab non-interference theorem can be viewed in terms of the definition

from [17], where requests are “inputs” and responses are “outputs”; essentially, our

theorem shows the inductive case for potentially infinite streams. Adapting our definition

to fit directly in the framework from [17] is complicated by the fact that we deal with

a unified trace of input and output events in the sequence they occur instead of having

one trace of input events and a separate trace of output events. In future work, we hope

to refine our notion of non-interference to be between domains instead of tabs, and

we believe that applying the formalism from [17] will be useful in achieving this goal.

Unlike [17], we prove a version of non-interference for a particular program, the QUARK

browser kernel, directly in Coq.

Same Domain Suffix Socket Creation The third security property, no_xdom_sockets,
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ensures that the kernel never delivers a socket bound to domain d to a tab whose domain

does not match d. This involves checking URL suffixes in a style very similar to the

cookie policy as discussed earlier. This property forces a tab to use GetURL when

accessing websites that do not match its domain suffix, thus restricting the tab to only

access publicly available data from other domains.

Same Domain Suffix Cookie Access The fourth security property states cookie integrity

and confidentiality. As an example of how cookies are processed, consider the following

trace when a cookie is set:

SetCookie key value cproc ::

SetCookieRequest tab key value :: ...

First, the SetCookieRequest action occurs, stating that a given tab just re-

quested a cookie (in fact, SetCookieRequest is just defined in terms of a ReadMsg

action of the appropriate message). The kernel responds with a SetCookie action (de-

fined in terms of WroteMsg), which represents the fact that the kernel sent the cookie

to the cookie process cproc. The kernel implementation is meant to find a cproc

whose domain suffix corresponds to the tab. This requirement is given in the theorem

no_xdom_cookie_set, which encodes cookie integrity. It requires that, within a correct

trace, if a cookie process is ever asked to set a cookie, then it is in immediate response to

a cookie set request for the same exact cookie from a tab whose domain matches that of

the cookie process. There is a similar theorem no_xdom_cookie_get, not shown here,

which encodes cookie confidentiality.

Domain Bar Integrity and Correctness The fifth property states that the domain bar is

equal to the domain suffix of the currently selected tab, which encodes the correctness of

the address bar.
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Table 4.1. QUARK Components by Language and Size.

Component Language Lines of code
Kernel Code Coq 859
Kernel Security Properties Coq 142
Kernel Proofs Coq 4,383
Kernel Primitive Specification Coq 143
Kernel Primitives Ocaml/C 538
Tab Process Python 229
Input Process Python 60
Output Process Python 83
Cookie Process Python 135
Python Message Lib Python 334
WebKit Modifications C 250
WebKit C/C++ 969,109

4.5 Evaluation

In this section we evaluate QUARK in terms of proof effort, trusted computing

base, performance, and security.

Proof Effort and Component Sizes QUARK comprises several components written in

various languages; we summarize their sizes in Table 4.1. All Python components share

the “Python Message Lib” for messaging with the kernel. Implementing QUARK took

about 6 person months, which includes several iterations redesigning the kernel, proofs,

and interfaces between components. Formal shim verification saved substantial effort:

we guaranteed our security properties for a million lines of code by reasoning just 859.

Trusted Computing Base The trusted computing base (TCB) consists of all system

components we assume to be correct. A bug in the TCB could invalidate our security

guarantees. QUARK’s TCB includes:

• Coq’s core calculus and type checker

• Our formal statement of the security properties

• Several primitives used in Ynot

• Several primitives unique to QUARK
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• The OCaml compiler and runtime

• The underlying Operating System kernel

• Our chroot sandbox

Because Coq exploits the Curry-Howard Isomorphism, its type checker is actually

the “proof checker” we have mentioned throughout the paper. We assume that our

formal statement of the security properties correctly reflects how we understand them

intuitively. We also assume that the primitives from Ynot and those we added in QUARK

correctly implement the monadic type they are axiomatically assigned. We trust the

OCaml compiler and runtime since our kernel is extracted from Coq and run as an

OCaml program. We also trust the operating system kernel and our traditional chroot

sandbox to provide process isolation, specifically, our design assumes the sandboxing

mechanism restricts tabs to only access resources provided by the kernel, thus preventing

compromised tabs from commuting over covert channels.

Our TCB does not include WebKit’s large code base or the Python implementation.

This is because a compromised tab or cookie process can not affect the security guarantees

provided by kernel. Furthermore, the TCB does not include the browser kernel code,

since it has been proved correct.

Ideally, QUARK will take advantage of previous formally verified infrastructure

to minimize its TCB. For example, by running QUARK in seL4 [60], compiling QUARK’s

ML-like browser kernel with the MLCompCert compiler [1], and sandboxing other

QUARK components with RockSalt [73], we could drastically reduce our TCB by elim-

inating its largest components. In this light, our work shows how to build yet another

piece of the puzzle (namely a verified browser) needed to for a fully verified software

stack. However, these other verified building blocks are themselves research prototypes

which, for now, makes them very difficult to stitch together as a foundation for a realistic
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Figure 4.8. QUARK Performance. This graph shows QUARK load times for the Alexa
Top 10 Websites, normalized to stock WebKit’s load times. In each group, the leftmost
bar shows the unoptimized load time, the rightmost bar shows the load time in the final,
optimized version of QUARK, and intermediate bars show how additional optimizations
improve performance. Smaller is better.

browser.

Performance We evaluate our approach’s performance impact by comparing QUARK’s

load times to stock WebKit. Figure 4.8 shows QUARK load times for the top 10 Alexa

Web sites, normalized to stock WebKit. QUARK’s overhead is due to factoring the browser

into distinct components which run in separate processes and explicitly communicate

through a formally verified browser kernel.

By performing a few simple optimizations, the final version of QUARK loads

large, sophisticated websites with only 24% overhead. This is a substantial improvement

over a naïve implementation of our architecture, shown by the left-most “not-optimized”

bars in Figure 4.8. Passing bound sockets to tabs, whitelisting content distribution

networks for major websites, and caching cookie accesses, improves performance by

62% on average.

The WebKit baseline in Figure 4.8 is a full-featured browser based on the Python
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bindings to WebKit. These bindings are simply a thin layer around WebKit’s C/C++

implementation which provide easy access to key callbacks. We measure 10 loads of

each page and take the average. Over all 10 sites, the average slowdown in load-time is

24% (with a minimum of 5% for blogger and a maximum of 42% for yahoo).

We also measured load-time for the previous version of QUARK, just before

rectangle-based rendering was added. In this previous version, the average load-time

was only 12% versus 24% for the current version. The increase in overhead is due to

additional communication with the kernel during incremental rendering. Despite this

additional overhead in load time, incremental rendering is preferable because it allows

QUARK to display content to the user as it becomes available instead of waiting until an

entire page is loaded.

Security Analysis QUARK provides strong, formal guarantees for security policies which

are not fully compatible with traditional web security policies, but still provide some of

the assurances popular web browsers seek to provide.

For the policies we have not formally verified, QUARK offers exactly the same

level of traditional, unverified enforcement WebKit provides. Thus, QUARK actually

provides security far beyond the handful policies we formally verified. Below we discuss

the gap between the subset of policies we verified and the full set of common browser

security policies.

The same origin policy [90] (SOP) dictates which resources a tab may access.

For example, a tab is allowed to load cross-domain images using an img tag, but not

using an XMLHttpRequest.

Unfortunately, we cannot easily verify this policy since restricting how a resource

may be used after it has been loaded (e.g., in an img tag vs. as a JavaScript value)

requires reasoning across abstraction boundaries, i.e., analyzing the large, complex tab

implementation instead of treating it as a black box.
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The SOP also restricts how JavaScript running in different frames on the same

page may access the DOM. We could formally reason about this aspect of the SOP

by making frames the basic protection domains in QUARK instead of tabs. To support

this refined architecture, frames would own a rectangle of screen real estate which they

could subdivide and delegate to sub-frames. Communication between frames would be

coordinated by the kernel, which would allow us to formally guarantee that all frame

access to the DOM conforms with the SOP.

We only formally prove inter-domain cookie isolation. Even this coarse guarantee

prohibits a broad class of attacks, e.g., it protects all Google cookies from any non-Google

tab. QUARK does enforce restrictions on cookie access between subdomains; it just

does so using WebKit as unverified cookie handling code within our cookie processes.

Formally proving finer-grained cookie policies in Coq would be possible and would not

require significant changes to the kernel or proofs.

Unfortunately, Quark does not prevent all cookie exfiltration attacks. If a subframe

is able to exploit the entire tab, then it could steal the cookies of its top-level parent tab,

and leak the stolen cookies by encoding the information within the URL parameter of

GetURL requests. This limitation arises because tabs are principles in Quark instead of

frames. This problem can be prevented by refining Quark so that frames themselves are

the principles.

Our socket security policy prevents an important subset of cross-site request

forgery attacks [14]. Quark guarantees that a tab uses a GetURL message when requesting

a resource from sites whose domain suffix doesn’t match with the tab’s one. Because our

implementation of GetURL does not send cookies, the resources requested by a GetURL

message are guaranteed to be publicly available ones which do not trigger any privileged

actions on the server side. This guarantee prohibits a large class of attacks, e.g., cross-site

request forgery attacks against Amazon domains from non-Amazon domains. However,
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this policy cannot prevent cross-site request forgery attacks against sites sharing the same

domain suffix with the tab, e.g., attacks from a tab on www.ucsd.edu against cse.ucsd.edu

since the tab on www.ucsd.edu can directly connect to cse.ucsd.edu using a socket and

cookies on cse.ucsd.edu are also available to the tab.

Compatibility Issues QUARK enforces non-standard security policies which break com-

patibility with some web applications. For example, Mashups do not work properly

because a tab can only access cookies for its domain and subdomains, e.g., a subframe in

a tab cannot properly access any page that needs user credentials identified by cookies if

the subframe’s domain suffix does not match with the tab’s one. This limitation arises be-

cause tabs are the principles of Quark as opposed to subframes inside tabs. Unfortunately,

tabs are too coarse grained to properly support mashups and retain our strong guarantees.

For the same reason as above, Quark cannot currently support third-party cookies.

It is worth noting that third-party cookies have been considered a privacy-violating feature

of the web, and there are even popular browser extensions to suppress them. However,

many websites depend on third party cookies for full functionality, and our current

Quark browser does not allow such cookies since they would violate our non-interference

guarantees.

Finally, Quark does not support communications like “postMessage” between

tabs; again, this would violate our tab non-interference guarantees.

Despite these incompatibilities, Quark works well on a variety of important sites

such as Google Maps, Amazon, and Facebook since they mostly comply with Quarks’

security policies. More importantly, our hope is that in the future Quark will provide a

foundation to explore all of the above features within a formally verified setting.

In particular, adding the above features will require future work in two broad

directions. First, frames need to become the principles in Quark instead of tabs. This

change will require the kernel to support parent frames delegating resources like screen

www.ucsd.edu
cse.ucsd.edu
www.ucsd.edu
cse.ucsd.edu
cse.ucsd.edu
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region to child frames. Second, finer grained policies will be required to retain appropriate

non-interference results in the face of these new features, e.g. to support interaction

between tabs via “postMessage”. Together, these changes would provide a form of

“controlled” interference, where frames are allowed to communicate directly, but only in

a sanctioned manner. Even more aggressively, one may attempt to re-implement other

research prototypes like MashupOS [44] within Quark, going beyond the web standards

of today, and prove properties of its implementation.

There are also several other features that Quark does not currently support, and

would be useful to add, including local storage, file upload, browser cache, browser

history, etc. However, we believe that these are not fundamental limitations of our

approach or Quark’s current design. Indeed, most of these features don’t involve inter-tab

communication. For the cases where they do (for example history information is passed

between tabs if visited links are to be correctly rendered), one would again have to refine

the non-interference definition and theorems to allow for controlled flow of information.

4.6 Discussion

In this section we discuss lessons learned while developing QUARK and verifying

its kernel in Coq. In hindsight, these guidelines could have substantially eased our efforts.

We hope they prove useful for future endeavors.

Formal Shim Verification Our most essential technique was formal shim verification.

For us, it reduced the verification burden to proving a small browser kernel. Previous

browsers like Chrome, OP, and Gazelle clearly demonstrate the value of kernel-based

architectures. OP further shows how this approach enables reasoning about a model of

the browser. We take the next step and formally prove the actual browser implementation

correct.
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Modularity through Trace-based Specification We ultimately specified the browser’s

correct behavior in terms of traces and proved both that (1) the implementation satisfies

the spec and (2) the spec implies our security properties. Splitting our verification

into these two phases improved modularity by separating concerns. The first proof

phase reasons using monads in Ynot to show that the trace-based specification correctly

abstracts the implementation. The second proof phase is no longer bound to reasoning in

terms of monads – it only needs to reason about traces, substantially simplifying proofs.

This modularity aided us late in development when we proved address bar cor-

rectness (Theorem dom_bar_correct in Figure 4.7). To prove this theorem, we only

had to reason about the trace-based specification, not the implementation. As a result, the

proof of dom_bar_correct was only about 300 lines of code, tiny in comparison to the

total proof effort. Thus, proving additional properties can be done with relatively little

effort over the trace-based specification, without having to reason about monads or other

implementation details.

Implement Non-verified Prototype First Another approach we found effective was to

write a non-verified version of the kernel code before verifying it. This allowed us to

carefully design and debug the interfaces between components and to enable the right

browsing functionality before starting the verification task.

Iterative Development After failing to build and verify the browser in a single shot, we

found that an iterative approach was much more effective. We started with a text-based

browser, where the tab used lynx to generate a text-based version of QUARK. We then

evolved this browser into a GUI-based version based on WebKit, but with no sockets or

cookies. Then we added sockets and finally cookies. When combined with our philosophy

of “write the non-verified version first”, this meant that we kept a working version of

the kernel written in Python throughout the various iterations. Just for comparison, the

Python kernel which is equivalent to the Coq version listed in Figure 4.1 is 305 lines of
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code.

Favor Ease of Reasoning When forced to choose between adding complexity to the

browser kernel or to the untrusted tab implementation, it was always better keep the

kernel as simple as possible. This helped manage the verification burden which was the

ultimate bottleneck in developing QUARK. Similarly, when faced with a choice between

flexibility/extensibility of code and ease of reasoning, we found it best to aim for ease of

reasoning.
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Chapter 5

Related Work

5.1 Securing JavaScript via Dynamic Information Flow
Tracking

Information Flow. Information flow [32] and non-interference [39] have been

used to formalize fine-grained isolation for nearly three decades. Several static techniques

guarantee that certain kinds of inputs do no flow into certain outputs. These include

type systems [108, 82], model checking [102], Hoare-logics [9], and dataflow analyses

[61, 94]. Of these, the most expressive policies are captured by the dependent type system

of [75], which allows the specification and (mostly) static enforcement of rich flow and

access control policies including the dynamic creation of principals and declassification

of high-security information. Unfortunately, fully static techniques are not applicable in

the setting of JavaScript, as parts of the code only become available (for analysis) at run

time, and as they often rely on the presence of underlying program structure (e.g., a static

type system).

Dynamic Taint Tracking. Several authors have investigated the use of dynamic

taint propagation and checking, using specialized hardware [97, 105], virtual machines

[21], binary rewriting [80], and source-level rewriting [22, 65]. In the late nineties, the

JavaScript engine in Netscape 3.0 implemented a Data Tainting module [38], that tracked

126
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a single taint bit on different pieces of data. The module was abandoned in favor of signed

scripts (which today are rarely used in Web 2.0 applications), in part because it led to too

many alerts. Our results show that, due to the prevalence of privacy-violating flows in

popular Web 2.0 applications, the question of designing efficient, flexible and usable flow

control mechanisms should be revisited. Recently, Vogt et al. [107] modified Firefox’s

JavaScript engine to track a taint bit that determines whether a piece of data is sensitive

and report an XSS attack if this data is sent to a domain other than the page’s domain, and

Dhawan and Ganapathy [34] used similar techniques to analyze confidentiality properties

of JavaScript browser extensions for Firefox. Our approach provides a different point in

the design space. In particular, our policies are more expressive, in that our framework

can handle both integrity and confidentiality policies, and more fine-grained, in that our

framework can carry multiple taints from different sources at the same time, rather than

just a single bit of taint. On the downside, our approach is implemented using a JavaScript

rewriting strategy rather than modifying the JavaScript run-time, which results in a

larger performance overhead. Dynamic rewriting approaches for client-side JavaScript

information flow have also been investigated in a theoretical setting [22, 65]. Our

work distinguishes itself from these more theoretical advances in terms of experimental

evaluation: we have focused on implementing a rewriting-based approach that works on

a large number of popular sites, and on evaluating the prevalence of privacy-violating

flows on these websites.

JavaScript Security. One way to ensure safety on the client is to disallow un-

known scripts from executing [57]. However, this will likely make it hard to use dynamic

third-party content. Finally, Yu et al. [114] present a formal semantics of the interaction

between JavaScript and browsers and builds on it a proxy-based rewriting framework for

dynamically enforcing automata-based security policies [59]. These policies are quite

different from information flow in that they require sparser instrumentation, and cannot
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enforce fine-grained isolation.

History Sniffing. The possibility of history sniffing was first raised in the aca-

demic community a decade ago [37]. The original form of history sniffing used timing

difference between retrieving a resource that is cached (because it has previously been

retrieved) and one that is not. In general, many other forms of history sniffing are possi-

ble based on CSS link decoration, some of which (for example, setting the background

property of a visited link to url(...)) work even when JavaScript is disabled. This,

together with the genuine user-interface utility that visited link decoration provides, is

the reason that history sniffing is so difficult to address comprehensively in browsers

(cf. [50] for a proposed server-side solution, [49] for a proposed client-side solution

and [13] for the fix recently deployed by the Firefox browser.) The potential of history

sniffing has been recently proven to be enormous [51]. However, since to date there has

been no public disclosure regarding the use of history sniffing, and no publicly available

tools for detecting it, we expect that, today, many malicious sites will prefer the simple,

robust approach of querying and exfiltrating link computed style. Accordingly, it is this

data flow that we focus on; if there are sites that use other approaches, we will not have

detected them. Our goal in this paper is to draw attention to the use of clandestine history

sniffing at popular, high-traffic sites, which means that false negatives are acceptable.

5.2 Securing C++ Virtual Function Calls

The research community has developed numerous defenses to increase the cost of

mounting low-level attacks that corrupt control data, steadily driving attackers to discover

new classes of exploitable programming errors like vtable hijacking. In this section we

survey the existing defenses most relevant to vtable hijacking, consider their effectiveness

at mitigating such attacks, and compare them to SAFEDISPATCH.

Reference Counting. Reference counting [25, 89, 64] is a memory management
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technique used in garbage collectors and complex applications to track how many ref-

erences point to an object during program execution. When the number of references

reaches zero, the object may safely be freed. Use-after-free errors can be avoided using

reference counting by checking that an object has a non-zero number of references

before calling any methods with the object. While this may help increase the attack

complexity of vtable hijacking attacks mounted by exploiting use-after-free bugs, ref-

erence counting can have a non-trivial run-time overhead, and it also makes reclaiming

cyclic data-structures complicated. Most importantly, however, reference counting cannot

fundamentally prevent such attacks. In reference counting, the number of references

to an object is stored in the heap, and thus an adversary capable of corrupting vtable

pointers would also be able to corrupt reference counts, thereby circumventing any

reference counting based defense. In contrast, SAFEDISPATCH instrumentation is placed

in the program binary which resides in read-only memory and thus is not susceptible to

corruption by an attacker.

Memory Safety. Programs written in memory safe languages are guaranteed, by

construction, to be free of exploitable, low-level memory errors. This kind of memory

safety guarantee is clearly stronger than the guarantee that SAFEDISPATCH provides.

However, unfortunately programs written in such languages often suffer significant

performance overhead from runtime checking to ensure that all memory operations are

safe. This overhead is sufficient to preclude the use of memory safe languages in many

performance critical applications. In contrast, SAFEDISPATCH provides strong security

guarantees without any assumptions about memory safety and incurs only minimal

overhead.

There has also been extensive research on C compilers which insert additional

checks or modify language features to ensure memory safety, for example CCured [78,

27], Cyclone [56], Purify [112], and Deputy [26]. While these techniques can help
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prevent vtable hijacking, they often require some amount of user annotations, and even

if they don’t, their run-time overheads are bigger than SAFEDISPATCH, especially on

large-scale applications like Chrome.

Control Flow Integrity. Control flow integrity (CFI) is a technique that inserts

sufficient checks in a program to ensure that every control flow transfer jumps to a

valid program location [7]. Recent advances have greatly reduced the overhead of CFI,

in some cases to as low as 5%, by adapting efficient checks for indirect targets [117],

using static analysis [116], harnessing further compiler optimizations from a trustworthy

high-level inline-reference monitor representation [115], or incorporating low-level

optimizations [118]. The main difference between our work and these previous CFI

approaches lies in the particular point in design space that we chose to explore. Broadly

speaking, previous CFI approaches are designed to secure all indirect jumps whereas

we focus specifically on protecting C++ dynamic dispatch, which has become a popular

target for exploits. In this more specific setting, we provide stronger guarantees than

recent CFI approaches while incurring very low performance overhead.

VTable Hijacking Prevention. The GCC compiler has recently been extended

with a promising new “vtable verification” feature developed by Google [104, 103],

concurrently and indenpendently from SAFEDISPATCH. The GCC approach compiles

each C++ source file to an object file extended with local vtable checking data, and the

local checking data is combined at load-time into a program-wide checking table. Each

virtual method call site is then instrumented with a call to a checking function which

uses the program-wide table to determine if the control-flow transfer should be allowed.

In many respects, the GCC approach is roughly equivalent to our unoptimized vtable

checking approach. In this light, our work extends GCC’s approach in the following

ways: (1) we explore and empirically evaluate not only vtable checking, but also method

checking (2) through this evaluation, we discover and propose a new optimization
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opportunity in the form of a hybrid approach and (3) we inline common checks. In our

implementation, vtable checking without inlining (which is roughly what GCC does)

leads to an overhead of about 25%. Through optimizations 2 and 3 above, we reduce

the overhead to only 2%. On the other hand, the GCC approach supports separate

compilation much more easily than our approach, which requires whole program analysis

and profiling.

Another technique for preventing vtable hijacking is VTGuard [85], a feature of

the Visual Studio C++ compiler. This approach inserts a secret cookie into each vtable

and checks the cookie before the vtable is used at runtime. While this approach has very

low performance overhead, it is less secure than ours: the attacker can still overwrite a

vtable pointer to make it point to any vtable generated by the compiler, something we

prevent. Moreover, if the secret cookie is revealed through an information disclosure

attack, then the VTGuard protection mechanism can be circumvented.

Memory Allocators and Dynamic Heap Monitoring. Dynamic heap moni-

toring, like that used in Undangle [18] and Valgrind [79], can help discover memory

errors during testing, but are not suitable for deployment as they can impose up to 25x

performance overhead, which is unacceptable for the applications we aim to protect.

The DieHard [16, 81] custom memory manager has proven effective at providing proba-

bilistic guarantees against several classes of memory errors, including heap-based buffer

overflows and use-after-free errors by randomizing and spreading out the heap. While

DieHard overhead is often as low at 8%, it demands a heap at least 2x larger than

what the protected application would normally require, which is unacceptable for the

applications we aim to protect. Furthermore, large applications like a browser often use

multiple custom memory allocators for performance, whereas DieHard requires the entire

application to use a single allocator.

Data Execution Prevention (DEP). After an adversary has compromised pro-
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gram control flow, they must arrange for their attack code to be executed. DEP [70] seeks

to prevent an attacker from writing malicious shellcode directly to memory and then

jumping to that code. Conceptually every memory page is either writable or executable,

but never both. DEP can mitigate vtable hijacking after the attack has been mounted by

preventing the attacker from executing code they’ve allocated somewhere in memory.

However, attackers can still employ techniques like Return Oriented Programming [93]

(ROP) to circumvent DEP after control flow has been compromised from a vtable hijack-

ing attack. DEP is also often disabled for JIT. While DEP tries to mitigate the damage

an attacker can do after compromising control flow, SAFEDISPATCH seeks to prevent a

class of control flow compromises (those due to vtable hijacking) from arising in the first

place.

Address Space Layout Randomization (ASLR). Like DEP, ASLR [100] seeks

to severely limit an attackers ability to execute their attack code after control flow has

been compromised. It does this by randomly laying out pages in memory so that program

and library code will not reside at predictable addresses, making it difficult to mount ROP

and other attacks. Unfortunately, for compatibility, many prevalent, complex applications

are still forced to load key libraries at predictable addresses, limiting the effectiveness

for ASLR in these applications. SAFEDISPATCH helps secure such applications by

preventing vtable-hijacking-based control flow compromises from arising in the first

place.

5.3 Formal Verification for Kernel-based Browsers

This section briefly discusses both previous efforts to improve browser security

and verification techniques to ensure programs behave as specified.
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Kernel-based Browser Architecture. As mentioned in the Introduction, there is a rich

literature on techniques to improve browser security [15, 110, 42, 99, 69, 20, 19]. We

distinguish ourselves from all previous techniques by verifying the actual implementation

of a modern Web browser and formally proving that it satisfies our security properties, all

in the context of a mechanical proof assistant. Below, we survey the most closely related

work.

Previous browsers like Google Chrome [15], Gazelle [110], and OP [42] have

been designed using privilege separation [83], where the browser is divided into com-

ponents which are then limited to only those privileges they absolutely require, thus

minimizing the damage an attacker can cause by exploiting any one component. We

follow this design strategy.

Chrome’s design compromises the principles of privilege separation for the

sake of performance and compatibility. Unfortunately, its design does not protect the

user’s data from a compromised tab which is free to leak all cookies for every domain.

Gazelle [110] adopts a more principled approach, implementing the browser as a multi-

principal OS, where the kernel has exclusive control over resource management across

various Web principals. This allows Gazelle to enforce richer policies than those found

in Chrome. However, neither Chrome nor Gazelle apply any formal methods to make

guarantees about their browser.

The OP [42] browser goes beyond privilege separation. Its authors additionally

construct a model of their browser kernel and apply the Maude model checker to ensure

that this model satisfies important security properties such as the same origin policy and

address bar correctness. As such, the OP browser applies insight similar to our work, in

that OP focuses its formal reasoning on a small kernel. However, unlike our work, OP

does not make any formal guarantees about the actual browser implementation, which

means there is still a formality gap between the model and the code that runs. Our formal
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shim verification closes this formality gap by conducting all proofs in full formal detail

using a proof assistant.

Formal Verification. Recently, researchers have begun using proof assistants to fully

formally verify implementations for foundational software including Operating Sys-

tems [60], Compilers [63, 1], Database Management Systems [66], Web Servers [67],

and Sandboxes [73]. Some of these results have even experimentally been shown to to

drastically improve software reliability: Yang et al. [113] show through random testing

that the CompCert verified C compiler is substantially more robust and reliable than its

non-verified competitors like GCC and LLVM.

As researchers verify more of the software stack, the frontier is being pushed

toward higher level platforms like the browser. Unfortunately, previous verification

results have only been achieved at staggering cost; in the case of seL4, verification took

over 13 person years of effort. Based on these results, verifying a browser-scale platform

seemed truly infeasible.

Our formal verification of QUARK was radically cheaper than previous efforts.

Previous efforts were tremendously expensive because researchers proved nearly every

line of code correct. We avoid these costs in QUARK by applying formal shim verification:

we structure our browser so that all our target security properties can be ensured by a very

small browser kernel and then reason only about that single, tiny component. Leveraging

this technique enabled us to make strong guarantees about the behavior of a million of

lines of code while reasoning about only a few hundred in the mechanical proof assistant

Coq.

We use the Ynot library [77] extensively to reason about imperative programming

features, e.g., impure functions like fopen, which are otherwise unavailable in Coq’s pure

implementation language. Ynot also provides features which allow us to verify QUARK
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in a familiar style: invariants expressed as pre- and post-conditions over program states,

essentially a variant of Hoare Type Theory [76]. Specifically, Ynot enables trace-based

verification, used extensively in [67] to prove properties of servers. This technique entails

reasoning about the sequence of externally visible actions a program may perform on any

input, also known as traces. Essentially, our specification delineates which sequences

of system calls the QUARK kernel can make and our verification consists of proving

that the implementation is restricted to only making such sequences of system calls. We

go on to formally prove that satisfying this specification implies higher level security

properties like tab isolation, cookie integrity and confidentiality, and address bar integrity

and correctness. Building QUARK with a different proof assistant like Isabelle/HOL

would have required essentially the same approach for encoding imperative programming

features, but we chose Coq since Ynot is available and has been well vetted.

Our approach is fundamentally different from previous verification tools like

ESP [30], SLAM [12], BLAST [43] and Terminator [28], which work on existing code

bases. In our approach, instead of trying to prove properties about a large existing code

base expressed in difficult-to-reason-about languages like C or C++, we rewrite the

browser inside of a theorem prover. This provides much stronger reasoning capabilities.



Chapter 6

Conclusions and Future Work

In this dissertation, we proposed techniques for retrofitting programming language

runtimes for JavaScript and C++, and restructuring a browser with a browser kernel

formally verified in Coq.

First, we proposed a rewriting-based information flow framework for JavaScript

and evaluated the performance of an instantiation of the framework. Our evaluation

showed that the performance of our rewriting-based information flow control is accept-

able given our engineering and optimization efforts, but it still imposes a perceptible

running-time overhead. We also presented an extensive empirical study of the preva-

lence of privacy-violation information flows: cookie stealing, location hijacking, history

sniffing, and behavior tracking. Our JavaScript information flow framework found many

interesting privacy-violating information flows including 46 cases of real history sniffing

over the Alexa global top 50,000 websites, despite some incompleteness.

Second, we addressed the growing threat of vtable hijacking with SAFEDISPATCH,

an enhanced C++ compiler to ensure that control flow transfers at method invocations via

dynamic dispatch are valid at runtime according to the static C++ semantics. SAFEDIS-

PATCH first performs class hierarchy analysis (CHA) to determine, for each class c in the

program, the set of valid method implementations that may be invoked by an object of

static type c, according to C++ semantics. SAFEDISPATCH then uses the information

136
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produced by CHA to instrument the program with checks, ensuring that, at runtime, all

method calls invoke a valid method implementation according to C++ dynamic dispatch

rules. To minimize performance overhead, SAFEDISPATCH performs optimizations to

inline and order checks based on profiling data and adopts a hybrid approach which com-

bines method checking and vtable checking. We were able to reduce runtime overhead

to just 2.1% and memory overhead to just 7.5% in the first vtable-safe version of the

Google Chromium browser which we built with the SAFEDISPATCH compiler.

Third, we demonstrated how formal shim verification can be used to achieve

strong security guarantees for a modern Web browser using a mechanical proof assistant.

We formally proved that our browser provides tab noninterference, cookie integrity and

confidentiality, and address bar integrity and correctness. We detailed our design and

verification techniques and showed that the resulting browser, QUARK, provides a modern

browsing experience with performance comparable to the default WebKit browser. For

future research, QUARK furnishes a framework to easily experiment with additional web

policies without re-engineering an entire browser or formalizing all the details of its

behavior from scratch.

We believe that these results are solid first steps towards securing browsers

by hardening each layer of browsers ranging from JavaScript into core security logic

implementation of browsers. Our work provides a good foundation for future exploration

as we explain them in the rest of the chapter.

Dynamic Information Flow for JavaScript. Recently, browsers have been com-

peting with each other to achieve a better performance to accommodate the demanding

workload of HTML5 JavaScript web applications. Thus the most important direction for

future work is to optimize the performance of dynamic information tracking frameworks.

Although our rewriting-based approach makes our flow policy language very flexible,

information flow tracking logic must be deeply incorporated in JIT compilation that all
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modern JavaScript have adopted for realistic performance. We may attempt to achieve a

better performance by incorporating off-line static analysis of each JavaScript function.

Each JavaScript function without eval could be statically and precisely analyzed and

then a JIT-based JavaScript information flow framework can harness the result to apply a

more aggressive compile-time optimization to emit more efficient code.

Another direction for future work is to explore flow policies capturing the mali-

cious behavior of various JavaScript attacks in the wild. In many web applications, there

are other sources of private information such as user credentials, social security numbers,

and credit card numbers. Finding out many private information sources and securing

them can be challenging due to complicated interactions between many websites.

Securing C++ Virtual Function Calls. The current prototype of SAFEDIS-

PATCH does not support either separate compilation nor dynamic-link libraries. For

future work, SAFEDISPATCH will be able to support separate compilation by emitting

partial CHA information into for each compilation unit into an object file and a linker can

gather them up at linking time later. This approach also allows to support dynamic-link

libraries if we also incorporate the CHA information stored in them.

Another direction for future work is to perform dynamic profiling of virtual calls

and dynamically apply the result for inlining optimization. Dynamic profiling will free

developers from obtaining representative profiling data offline. However, dynamically

applying inlining optimization will require the code section to be temporarily writable,

which can be exploited by the attacker. One possible direction to resolve this security

concern would be to adapt the secure self-modifying code technique introduced by the

Google Native Client [10]. For each virtual call site, SAFEDISPATCH will emit a place-

holder initially filled with checks that always fail, leading the execution to the general

check function call. At runtime, check function call will gather profile information

and fill out those checks with frequently used method pointers. When applying inlining
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dynamically, check can first guard the placeholder with a halt instruction, and atomically

update only inlined method pointers at a virtual callsite as proposed in Native Client.

Formally Verifying Browser Kernel. One important direction for future work is

to refine the principles of QUARK to resolve the current compatibility issues and provide

stronger security guarantees. For future work, frames must become the principles in

QUARK instead of tabs. This change will support Mashups with multiple cross-domain

subframes in one tab. The kernel will be required to support parent frames delegating

resources like screen region to child frames. Finer grained policies will also be required

to retain appropriate non-interference results in the face of these new features, e.g. to

support interaction between tabs via "postMessage". Together, these changes would

provide a form of "controlled" interference, where frames are allowed to communicate

directly, but only in a sanctioned manner.

Even more aggressively, one may attempt to provide formal guarantees for the

same origin policy. Enforcing SOP will require the QUARK kernel to control how cross-

domain resources (e.g., image resources) are used in an HTML renderer, and this seems

quite challenging in terms of engineering efforts.

Another direction for future work is to support various features of the modern

browsers for QUARK. These might include local storage, file upload, browser cache,

browser history, etc. However, we believe that these are not fundamental limitations of

our approach or QUARK’s current design. Indeed, most of these features don’t involve

communications between tabs. For the cases where they do (e.g., history information

is passed between tabs if visited links are to be correctly rendered), one would again

have to refine the non-interference definition and theorems to allow for controlled flow

of information.
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