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Impact of High-Level Daptomycin
Resistance in the Streptococcus mitis
Group on Virulence and Survivability
during Daptomycin Treatment in
Experimental Infective Endocarditis

C. Garcia-de-la-Maria,a Y. Q. Xiong,b,c J. M. Pericas,a Y. Armero,a A. Moreno,a

N. N. Mishra,b,c M. J. Rybak,d T. T. Tran,e C. A. Arias,e P. M. Sullam,f A. S. Bayer,b,c

J. M. Miroa

Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spaina; LA Biomedical Research Institute, Torrance,
California, USAb; Geffen School of Medicine at UCLA, Los Angeles, California, USAc; Anti-Infective Research
Laboratory, Wayne State University, Detroit, Michigan, USAd; University of Texas School of Medicine, Houston,
Texas, USAe; Veterans Affairs Medical Center and the University of California, San Francisco, California, USAf

ABSTRACT Among the viridans group streptococci, the Streptococcus mitis group is
the most common cause of infective endocarditis. These bacteria have a propensity to
be �-lactam resistant, as well as to rapidly develop high-level and durable resistance to
daptomycin (DAP). We compared a parental, daptomycin-susceptible (DAPs) S. mitis/S.
oralis strain and its daptomycin-resistant (DAPr) variant in a model of experimental endo-
carditis in terms of (i) their relative fitness in multiple target organs in this model (vege-
tations, kidneys, spleen) when animals were challenged individually and in a coinfection
strategy and (ii) their survivability during therapy with daptomycin-gentamicin (an in
vitro combination synergistic against the parental strain). The DAPr variant was initially
isolated from the cardiac vegetations of animals with experimental endocarditis caused
by the parental DAPs strain following treatment with daptomycin. The parental strain
and the DAPr variant were comparably virulent when animals were individually chal-
lenged. In contrast, in the coinfection model without daptomycin therapy, at both the
106- and 107-CFU/ml challenge inocula, the parental strain outcompeted the DAPr vari-
ant in all target organs, especially the kidneys and spleen. When the animals in the coin-
fection model of endocarditis were treated with DAP-gentamicin, the DAPs strain was
completely eliminated, while the DAPr variant persisted in all target tissues. These data
underscore that the acquisition of DAPr in S. mitis/S. oralis does come at an intrinsic fit-
ness cost, although this resistance phenotype is completely protective against therapy
with a potentially synergistic DAP regimen.

KEYWORDS Streptococcus mitis group, experimental endocarditis, daptomycin,
gentamicin, high-level daptomycin resistance, virulence, fitness

Among the viridans group streptococci, the members of the Streptococcus mitis
group are the most frequent cause of human infective endocarditis (IE) and the

most common cause of the toxic streptococcal bacteremia syndrome seen in immu-
nocompromised hosts (1–8). This organism is often resistant in vitro to �-lactam
antibiotics, including penicillin and ceftriaxone (9–16). Moreover, despite uniform in
vitro susceptibility to vancomycin, patients treated with this agent have had suboptimal
outcomes, likely due to vancomycin tolerance (11). This has raised the notion of using
daptomycin (DAP) for the treatment of invasive S. mitis group infections. Recent studies
have somewhat dampened the enthusiasm for the latter approach, as many S. mitis
group strains have a unique propensity to evolve rapid, durable, and high-level
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daptomycin resistance (DAPr) in vitro, ex vivo, and in vivo (17–19). This study investi-
gated the impact of the acquisition of DAPr upon both the intrinsic fitness and
survivability during treatment with DAP of such strains in a model of IE featuring
coinfection with a DAP-susceptible (DAPs) parental S. mitis/S. oralis strain and its in
vivo-derived DAPr variant.

(This research was presented in part at the American Society for Microbiology
Microbe meeting, Boston, MA, 19 June 2016 [20].)

RESULTS
In vitro susceptibility testing. The DAP, penicillin, and gentamicin (GEN) MICs for

the two test strains were as follows: the DAPs strain had a DAP MIC of 0.5 �g/ml and
was not high-level GEN resistant (GENr; MIC � 8 �g/ml) but was resistant to penicillin
and ceftriaxone (MICs � 8 �g/ml and 4 �g/ml, respectively). The DAPr strain exhibited
high-level DAPr (MIC � 256 �g/ml), was not high-level GENr (MIC � 8 �g/ml), and
showed intermediate resistance to penicillin and susceptibility to ceftriaxone (MICs �

0.5 �g/ml and 1 �g/ml, respectively). Of interest, a �-lactam–DAP MIC seesaw effect
was observed, paralleling the findings of other studies of DAPr Gram-positive patho-
gens (21). For example, in the DAPs parental strain, the penicillin MIC was 8 �g/ml, but
this decreased to 0.5 �g/ml in the DAPr strain; similarly, the ceftriaxone MIC decreased
from 4 in the DAPs parental strain to 1 �g/ml in the DAPr strain.

In time-kill synergy studies, only the combination of DAP at 1� MIC plus GEN at
either 1/2� MIC or 1� MIC synergistically killed the DAPs parental strain (Fig. 1A). For
the DAPr strain, there was no synergistic killing observed with any of the antibiotic
combinations (Fig. 1B).

IE coinfection model. The results of the IE coinfection model with a challenge with
an inoculum of 2 � 106 CFU/ml are shown in Table 1. In the absence of antibiotic
therapy, both strains induced IE, although the DAPs parental strain was significantly
more competitively fit. For example, in terms of vegetation counts, there was a mean
difference of �4 log10 CFU/g favoring the DAPs parental strain. This difference was even
more magnified in terms of kidney and spleen counts, where the DAPr strain was
apparently unable to hematogenously seed and/or proliferate within these organs.

This reduced competitive fitness was also mirrored when animals were individually
challenged with the DAPr strain at the same 2 � 106-CFU/ml inoculum (Table 2). In this
scenario, vegetation seeding occurred in all animals, although the median achievable
counts were still �1.5 log10 CFU/g below the count for the parental strain (Table 1).
Similarly, seeding to and proliferation within kidneys and spleen occurred with the
individual challenge with the DAPr strain, although this seeding was not uniformly
detected in all challenged animals (40% and 60%, respectively).

To examine the impact of the challenge inoculum on competitive fitness, catheter-
ized animals were cochallenged in parallel with an intravenous (i.v.) inoculum of 2 �

107 CFU/ml of the DAPs and DAPr strains. As seen in Table 3, we saw an outcome very
similar to that achieved with the 106-CFU/ml coinfection model described above. Thus,
the DAPr strain did infect cardiac vegetations, although it did so at a significantly
reduced level compared to that for the DAPs strain. Moreover, even though both the
kidneys and the spleen were seeded by the DAPr strain in most rabbits, tissue counts
were significantly below those of the DAPs strain.

Table 1 also details the outcome of combined DAP-GEN therapy in animals coin-
fected with the DAPs and DAPr strains at a 2 � 106-CFU/ml inoculum. After 48 h of
combined treatment, DAPs parental colonies were completely cleared from all target
tissues, leaving only DAPr colonies surviving in the three target tissues. All DAPr variants
isolated from these target tissues maintained stable, high-level DAPr at the time of
sacrifice, as determined by Etest.

DISCUSSION

Garcia-de-la-Maria et al. have previously shown that S. mitis group strains have a
unique capacity to evolve stable, high-level DAPr both in vitro and in vivo (17). For
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example, in a study of 92 S. mitis group clinical isolates, this phenotype was identified
in �27% of isolates upon DAP passage in vitro (17). We have recently demonstrated
that the genetic mechanisms for the development of DAPr in S. mitis/S. oralis involve
the acquisition of loss-of-function single nucleotide polymorphisms (SNPs) within the
cdsA and pgsA loci of the organism (22, 23). These genes encode enzymes which are
critical in the biosynthetic pathway for cardiolipin (CDP-diacylglycerol-glycerol-3-phosphate
3-phosphatidyl-synthetase and CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyl-
transferase, respectively). These mutations are associated with a complete loss of cardiolipin
and phosphatidylglycerol production (22, 23). Given the critical roles of both cardiolipin
and phosphatidylglycerol in the mechanism of action of DAP (24, 25), it is plausible that
the mutations in the loci mentioned above are the principal drivers of DAPr in our strain
after in vivo passage. Of interest, this mechanism of DAPr differs substantially from the

FIG 1 (A) Results of time-kill experiments for DAPs strain S.MIT/ORALIS-351 incubated with DAP plus GEN at concentrations of
0.5� MIC and 1� MIC for both antibiotics. (B) Results of time-kill experiments for the DAPr variant incubated with DAP plus
GEN at concentrations of 64 �g/ml and 128 �g/ml for DAP and 4 �g/ml and 8 �g/ml for GEN. The numbers in the keys are
concentrations (in micrograms per milliliter).

TABLE 1 S. mitis/S. oralis competition in vivo in an experimental coinfection model of endocarditisa

Study group, strain

Vegetations Kidney Spleen

IRb

Median (IQR) log10

no. of CFU/g tissue IR
Median (IQR) log10

no. of CFU/g tissue IR
Median (IQR) log10

no. of CFU/g tissue

Rabbits not treated with antibiotics and
sacrificed at 24 h

DAPs strain 5/5 (100) 10.1 (9.4–10.2) 5/5 (100) 3.2 (2.7–4) 5/5 (100) 5.3 (4.5–5.6)
DAPr strain 4/5 (80) 6.6 (5.7–6.9) 0/5 (0) 0 (0–0) 0/5 (0) 0 (0–0)f

P value 1.000 .008 .008 .008 .008 0.008

Rabbits receiving DAP-GEN and sacrificed
after 48 h of treatment

DAPs strain 0/6 (0) 0 (0–0) 0/6 (0) 0 (0–0) 0/6 (0) 0 (0–0)
DAPr strain 6/6 (100) 8.5 (6.3–9) 5/6 (83) 2.4 (2–2.5) 3/6 (50) 1 (0–3.4)

P value 0.002 0.002 0.015 0.015 0.182 0.180
aCompetition was between DAPs and DAPr strains given at an inoculum of 2 � 106 CFU/ml.
bIR, infection rate, given as the number of animals with infected valve vegetations, kidney, and spleen/total number of animals (percent).
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mechanisms involved in DAPr in S. aureus (charge repulsion) (26–28) and enterococci
(antibiotic diversion for Enterococcus faecalis and charge repulsion for E. faecium) (29,
30). However, little is known about the impacts of DAPr on innate pathogenicity and the
antimicrobial response profiles in the S. mitis group.

Many studies have suggested that the acquisition of antibiotic resistance comes
with a metabolic fitness cost for the organism (31, 32). This is usually reflected by lower
growth rates and/or lower growth yields in vitro for such resistant strains compared
with those for their respective antibiotic-susceptible parental strains. However, docu-
mentation of the fitness costs of antibiotic resistance using in vivo virulence experi-
ments in terms of its impact on the organism’s (i) transmissibility, (ii) persistence and
proliferation within target host tissues, or (iii) ability to evade and survive innate or
adaptive immune host defenses is relatively infrequent in the literature (31–33). The
current study was designed to quantify the effects of the acquisition of DAPr in S.
mitis/S. oralis on both intrinsic virulence and survivability during DAP exposures, using
a discriminative model of endovascular infection, IE.

A number of interesting observations emerged from this investigation. First, it seems
clear that acquisition of genetic perturbations related to DAPr does impact the in vitro
and intrinsic in vivo virulence of the DAPr strain in our model of endovascular infection.
Of note, the reduction in the in vivo fitness of the DAPr strain was manifest in all target
organs in the IE model, although it was particularly evident in kidneys and spleen. This
may reflect an enhanced susceptibility of the DAPr strains to neutrophil-based host
defenses that are replete in the latter organs and accompany abscess formation.
Alternatively, this reduced virulence may imply a defect in the seeding of distant target
organs by the DAPr strain, i.e., a perturbation in hematogenous spread from vegeta-
tions to these distant organs by non-neutrophil-based mechanisms, such as the elab-
oration of platelet antimicrobial peptides within cardiac vegetations (34, 35). Second,
the apparent in vivo fitness defect of the DAPr strain could not be overcome by merely
increasing the challenge inoculum from 106 to 107 CFU/ml. This suggests that the
impact of the DAPr strain on intrinsic fitness represents a homogeneous and not a
heterogeneous population effect. Third, although the DAPr strain was intrinsically less
fit than its parental strain in vivo, DAPr provided the strain with uniform protection
against treatment with a combination of DAP-GEN, which synergistically killed the
parental isolate.

Garcia-de-la-Maria et al. (17) have previously demonstrated that, in the model of
experimental endocarditis caused by strain S.MIT/ORALIS-351, addition of GEN to DAP

TABLE 2 DAPr S. mitis/S. oralis fitness in vivo during challenge in an experimental model
of endocarditisa

Vegetations Kidney Spleen

IRb

Median (IQR) log10

no. of CFU/g tissue IR
Median (IQR) log10

no. of CFU/g tissue IR
Median (IQR) log10

of CFU/g tissue

5/5 (100) 8.6 (7.6–8.9) 2/5 (40) 1.4 (0–2.6) 3/5 (60) 2.4 (0–3.2)
aThe DAPr S. mitis/S. oralis strain was given at an individual inoculum of 2 � 106 CFU/ml. Rabbits were not
treated with antibiotics and were sacrificed at 24 h postinfection.

bIR, infection rate, given as the number of animals with infected valve vegetations, kidney, and spleen/total
number of animals (percent).

TABLE 3 Competitive fitness of DAPs and DAPr strains in vivo during coinfection challenge in an experimental model of endocarditisa

Strain

Vegetations Kidney Spleen

IRb

Median (IQR) log10

no. of CFU/g tissue IR
Median (IQR) log10

no. of CFU/g tissue IR
Median (IQR) log10

no. of CFU/g tissue

DAPs strain 5/5 (100) 8.5 (8.4–8.6) 5/5 (100) 5.0 (4.4–5.4) 5/5 (100) 4.8 (4.8–4.9)
DAPr strain 5/5 (100) 6.9 (6.7–7.1) 3/5 (60) 1.7 (0.6–1.8) 4/5 (80) 1.6 (1.5–2.0)

P value 0.008 0.492 0.008 1.0 0.008
aThe challenge inoculum was 2 � 107 CFU/ml. Rabbits were not treated with antibiotics and were sacrificed at 24 h postinfection.
bIR, infection rate, given as the number of animals with infected valve vegetations, kidney, and spleen/total number of animals (percent).
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not only significantly increased the number of vegetations sterilized after 48 h of
treatment compared to the number sterilized by DAP alone but also prevented the
development of DAPr in 21 of 23 treated rabbits (91%). Although the mechanisms of
DAPr in the S. mitis group seem to differ substantially from those involved in DAPr in
Staphylococcus aureus and enterococci, as explained above, there is an interest for
future study to look into whether combinations of DAP plus �-lactams, such as
ampicillin or ceftriaxone, are synergistic against S. mitis and could prevent the devel-
opment of DAPr. To this point, Yim et al. (19) recently showed that the combination of
DAP plus ceftaroline was synergistic and bactericidal against two prototypic S. mitis/S.
oralis strains (S.MIT/ORALIS-351 and SF100) in an ex vivo model of simulated endocar-
dial vegetations (SEVs) and also prevented the development of DAPr in both strains.

In conclusion, the acquisition of the DAPr phenotype affects the virulence of S.
mitis/S. oralis in experimental IE in terms of a reduction in its in vivo fitness in all target
organs, especially kidneys and spleen. However, DAPr variants were able to induce IE,
with their survival being amplified in the presence of DAP-GEN combination therapy.
Further studies are needed to identify other possibly effective DAP combination
therapies that can either prevent the emergence of or enhance the treatment of DAPr

S. mitis group variants.

MATERIALS AND METHODS
Microorganisms. We studied a clinically derived parental DAPs S. mitis/S. oralis bloodstream isolate

(SMIT-351) from a patient with IE. This strain is virulent in the experimental IE model (17), and it was
identified to be an S. mitis strain on the basis of standard biotyping and 16S RNA sequencing. Recently,
we have had the results of genome sequencing for this strain, and we discovered that this strain is more
likely a member of the closely related species S. oralis, on the basis of average nucleotide identity (ANI)
analysis of the whole-genome sequence. The strain has therefore been renamed S.MIT/ORALIS-351 and
is so listed in GenBank. We also studied a stably high-level DAPr variant strain (strain D6-6; DAP MIC �
256 �g/ml) isolated from the vegetations of a rabbit with experimental IE after 48 h treatment with DAP
alone once daily at 6 mg/kg of body weight/day i.v. (17). According to both determination of the optical
density at 600 nm by spectrophotometry and formal counts of the number of CFU per milliliter, the
mutant strain (DAPr) was less fit than the parent strain (DAPs) over a 24-h time frame in vitro in terms of
growth kinetics and yield (data not shown).

Antibiotics. DAP powder for in vitro testing and animal treatment was supplied by Cubist Pharma-
ceuticals (Lexington, MA). USP-grade penicillin and gentamicin (GEN) were purchased from Sigma (St.
Louis, MO).

In vitro susceptibility assays. DAP, penicillin, and GEN MICs were determined using the broth
microdilution method, according to standard recommendations (36). Susceptibility to DAP was tested in
Mueller-Hinton broth supplemented with 50 �g/ml of calcium chloride (CAMHB). Streptococcus pneu-
moniae ATCC 49619 served as the quality control strain. DAP MICs were also determined in selected
studies by using the Etest method following the manufacturer’s recommendations (bioMérieux S.A.,
Marcy l’Etoile, France).

Time-kill studies. The time-kill methodology was used to test the activity of DAP plus GEN against
S.MIT/ORALIS-351 and its DAPr variant, D6-6, according to previously described criteria (37). A final
inoculum of between 5 � 105 and 7 � 105 CFU/ml was used. Prior to inoculation, each tube of fresh
CAMHB plus lysed horse blood at a final concentration of 5% was supplemented with DAP alone or in
combination with GEN. For the DAPs parental strain, the antibiotic concentrations tested were 1/2� MIC
and 1� MIC for both DAP (0.25 and 0.5 �g/ml, respectively) and GEN (4 and 8 �g/ml, respectively). For
the DAPr strain (DAP MIC � 256 �g/ml), DAP concentrations were adjusted to 64 �g/ml and 128 �g/ml.
A tube without antibiotics was used as a growth control. Viability counts were performed at 0, 4, and 24
h as described by Isenberg (38). Drug carryover was addressed by serial dilution plate counting.
Bactericidal synergy was defined as a �2-log10 decrease in the number of CFU per milliliter between the
combination antibiotic and the most active agent alone after 24 h; moreover, the number of surviving
organisms in the presence of the combination had to be �2 log10 CFU/ml below the starting inoculum.
At least one of the drugs had to be present at a concentration that did not significantly affect the growth
curve of the test organism when used alone. Bactericidal activity was defined as at least a 3-log10

reduction in the number of CFU per milliliter at 24 h in comparison with the initial inoculum.
In vivo studies. (i) Animal models. New Zealand White rabbits (body weight, �2.5 kg) obtained

from local breeding sources were housed in the animal facilities located at the Faculty of Medicine from
the University of Barcelona and at LA Biomedical Research Institute. They were provided food and water
ad libitum. This research project fulfills the requirements stipulated in Spanish Royal Decree 223/1988 on
the protection of animals used in experiments, and it was approved by the Ethical Committee on Animal
Research of the University of Barcelona. In addition, parallel studies performed at the LA Biomedical
Research Institute were approved by its Animal Use Committee (IACUC).

(ii) Human pharmacokinetic simulation studies. The antibiotics were administered to animals with
IE using a computer-controlled infusion pump system designed to simulate human-equivalent serum
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levels following the administration of DAP at the FDA-approved dose for S. aureus bacteremia (6 mg/kg)
(39) and GEN at the recommended synergistic dose for enterococcal IE (1 mg/kg i.v. every 8 h) (40).

The computer-assisted program procedure has three steps: (i) estimation of antibiotic parameters in
the rabbit, (ii) application of a mathematical model to determine the infusion rate required for repro-
ducing human-like pharmacokinetics in animals, and (iii) collection of serum samples to check that the
antibiotic levels actually achieved in the animals mimic the desired human pharmacokinetic profiles.
These studies have been done previously and reported on elsewhere (37, 39).

(iii) In vivo experimental IE model. Experimental aortic valve IE was induced as described previously
(41). In brief, an indwelling polyethylene catheter was inserted through the right carotid artery into the
left ventricle in anesthetized animals to induce aortic valve trauma; in addition, two catheters for
administration of antibiotics were placed into the inferior vena cava through the jugular vein and
tunneled subcutaneously to the interscapular region. The external portion of each jugular catheter was
connected to a swivel and then to a computer-controlled infusion pump as previously described (41).

At 24 h after placement of the intracarotid catheter, animals were infected via the marginal ear vein
with (i) an inoculum of either DAPs or DAPr strain at 2 � 106 CFU/ml for assessment of fitness, (ii) a mixed
inoculum (ratio, �1:1) of both strains at 2 � 107 CFU/ml for assessment of fitness at a higher inoculum,
or (iii) a mixed inoculum (ratio, �1:1) of both strains at 2 � 106 CFU/ml for assessment of antibiotic
treatment. One milliliter of blood was obtained at 24 h after infection from animals in all groups plus
immediately before the initiation of antimicrobial therapy from animals in the treatment groups to
confirm the presence of persistent bacteremia (to indicate the successful induction of IE). A group of
nontreated infected animals was sacrificed concurrently, and the bacterial densities in vegetations,
kidney, and spleen were calculated (see below). The remainder of the animals underwent antibiotic
therapy with DAP-GEN, administered for 48 h via the computer-controlled infusion pump system through
the indwelling jugular catheter.

After the completion of treatment, six half-lives (t1/2s) of both antibiotics (DAP and GEN) were allowed
to lapse before the animals were sacrificed in order to avoid antibiotic carryover effects from blood to
tissue. This translates to 48 h for DAP (t1/2 � 8 h) and 9 h for GEN (t1/2 � 1.5 h). Given the longer half-life
of DAP, GEN infusions were continued during the first 15 h. Rabbits were then humanely sacrificed; the
heart, spleen, and kidneys were surgically removed; and target tissue samples were obtained: aortic valve
vegetations from the heart and tissue samples from the spleen and kidney (41).

Analysis of infected tissues. Target tissue samples were serially diluted and processed for quanti-
tative culture as described before (17). Tissue homogenates were seeded in parallel on plain brain heart
infusion agar (BHIA; Oxoid Ltd., Hampshire, England) plates, as well as on BHIA plates containing DAP (8
�g/ml) to individually quantify surviving DAPs versus DAPr colonies. Colonies recovered from DAP-
containing BHIA plates were also retested in parallel using the DAP Etest to ensure retention of the DAPr

phenotype. Target tissue bacterial counts were expressed as the median and interquartile range (IQR) of
the log10 number of CFU per gram of each target tissue. If there was no growth on the quantitative
culture plates with tissue homogenates but there was growth in the qualitative culture (for which the rest
of the tissue homogenate was cultured in tryptic soy broth for 7 days), that target tissue sample was
assigned a value of 2 log10 CFU/g. If there was no growth either in the initial quantitative plate cultures
or from the homogenates qualitatively cultured for 7 days, that target tissue sample was assigned a value
of 0 and the tissue was considered sterile.

Statistical analysis. The Fisher exact test was used to compare the rates of sterile target tissues
between tissues from animals infected with the DAPr and DAPs strains. The Mann-Whitney rank sum test
was used to compare the values of the log10 number of CFU per gram of target tissues between the
different treatment groups. P values of �0.05 were considered significant.
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