
UCSF
UC San Francisco Previously Published Works

Title

Quantitative genetic-interaction mapping in mammalian cells

Permalink

https://escholarship.org/uc/item/0kc2k53t

Journal

Nature Methods, 10(5)

ISSN

1548-7091

Authors

Roguev, Assen
Talbot, Dale
Negri, Gian Luca
et al.

Publication Date

2013-05-01

DOI

10.1038/nmeth.2398
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0kc2k53t
https://escholarship.org/uc/item/0kc2k53t#author
https://escholarship.org
http://www.cdlib.org/


Quantitative genetic-interaction mapping in mammalian cells

Assen Roguev1,2,8, Dale Talbot3,8, Gian Luca Negri4, Michael Shales1,2, Gerard Cagney5,
Sourav Bandyopadhyay6, Barbara Panning3, and Nevan J Krogan1,2,7

1Department of Cellular and Molecular Pharmacology, University of California, San Francisco,
California, USA 2California Institute for Quantitative Biosciences, San Francisco, California, USA
3Department of Biochemistry and Biophysics, University of California, San Francisco, California,
USA 4School of Computer Science and Informatics, Belfield, Dublin, Ireland 5University College
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Abstract
Mapping genetic interactions (GIs) by simultaneously perturbing pairs of genes is a powerful tool
for understanding complex biological phenomena. Here we describe an experimental platform for
generating quantitative GI maps in mammalian cells using a combinatorial RNA interference
strategy. We performed ~11,000 pairwise knockdowns in mouse fibroblasts, focusing on 130
factors involved in chromatin regulation to create a GI map. Comparison of the GI and protein-
protein interaction (PPI) data revealed that pairs of genes exhibiting positive GIs and/or similar
genetic profiles were predictive of the corresponding proteins being physically associated. The
mammalian GI map identified pathways and complexes but also resolved functionally distinct
submodules within larger protein complexes. By integrating GI and PPI data, we created a
functional map of chromatin complexes in mouse fibroblasts, revealing that the PAF complex is a
central player in the mammalian chromatin landscape.

Epistasis is a biological phenomenon in which the phenotype of one gene is modified by the
presence or absence of another gene. Such relationships between genes, broadly termed GIs
or epistatic interactions can be divided into three broad categories: negative (aggravating),
whereby the resulting phenotype is more severe than is expected from the phenotypes
associated with the single mutants; positive (alleviating), where the compound phenotype is
less severe than anticipated; and neutral, where the measured phenotype is as expected1. A
GI profile is a set of GIs for a given gene, and it reports on the functional relationships
between cellular factors. Analyses of large numbers of profiles can reveal how groups of
proteins and complexes work together to carry out higher-level biological functions1.
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Therefore, GIs have been very powerful in uncovering basic, mechanistic biology2,3 as well
as in understanding the underlying causes of human disease4.

To date, the bulk of the available GI data has been generated in the yeast species,
Saccharomyces cerevisiae and Schizosaccharomyces pombe5,6 and several experimental
systems have been developed to generate GI maps in other model organisms, including
Escherichia coli7, Caenorhabditis elegans8 and Drosophila melanogaster9. Large-scale GI
data have been collected in S. cerevisiae using the synthetic genetic array approach initially
qualitatively10 and later also quantitatively11. Building upon the synthetic genetic array
approach, we developed epistatic miniarray profiling to quantitatively assess GIs. The
resulting dataset using this approach, termed an epistatic mini-array profile (E-MAP),
encompasses both positive and negative GIs in focused sets of genes, including those whose
proteins are physically associated2 and/or function in the same process12. Quantitative GI
mapping has revealed fundamentally important relationships between genes and has led to a
better understanding of many biological processes. By analogy, applying it to mammalian
cells will almost certainly reveal insight into human health and disease. We took advantage
of recent developments in high-throughput RNA interference (RNAi) technology to develop
an experimental platform for GI mapping in mammalian cells. We generated an E-MAP
focused on 130 genes functioning in chromatin regulation in mouse fibroblast cells
comprising ~11,000 quantitative GI measurements. By comparing GI data with known PPIs
we found, as in simpler organisms, that GIs are strongly predictive of protein complexes and
pathways. Furthermore, these integrated data allowed us to generate a functional
connectivity map of mammalian protein complexes involved in chromatin regulation.
Ultimately, this platform can be used to genetically interrogate functionally related sets of
genes in a variety of mammalian cell types.

RESULTS
A pipeline for mapping of epistasis in mammalian cells

Our platform for the generation and quantification of GIs in mammalian cells (Fig. 1) is
based on RNAi-mediated depletion of gene function in a pairwise fashion and measurement
of the resulting phenotypic consequences. The availability of genome-wide RNAi libraries
(small interfering RNA (siRNA), small hairpin RNA (shRNA) and endonuclease-prepared
siRNA (esiRNA)) for higher organisms has enabled high-throughput genetic screens to be
routinely performed in an arrayed or pooled setting13. Pooled approaches are based on
monitoring the enrichment or depletion of specific sequence barcodes from a starting pool as
a proxy for cell fitness14. In this study, we developed a platform in which the phenotypic
effects of pairwise knockdowns can be quantified in a systematic manner. The measurement
of every combination in the array is central in the subsequent data analysis.

esiRNA are siRNAs generated by enzymatic cleavage of a long double-stranded RNA
(dsRNA), resulting in a heterogeneous mixture of siRNA sequences that all target the same
mRNA sequence15. This reagent has several properties that make it preferable over other
approaches that rely on chemically synthesized siRNA and shRNA. Because any single
siRNA sequence is present at an extremely low concentration, esiRNAs exhibit less off-
target effects (and noise) than commonly associated with single siRNAs and shRNAs16. In
addition, the number of pairs to test (and hence the amount of reagent required) grows
quadratically with the number of genes to be interrogated, rendering the cost of siRNA or
shRNA reagents prohibitive in an arrayed format. Conversely, large quantities of esiRNAs
can be produced inexpensively in a high-throughput manner (Online Methods).

In our study, we used cell count as a measure of cell proliferation capacity or fitness. A
conceptually similar readout (such as colony size) has been used in yeast and bacteria5,7,17.
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Data from these simpler systems suggests that strong GIs are rare10,12; therefore a general
phenotype such as proliferation capacity, influenced by many different genes and pathways,
is likely to uncover GIs. Finally, this phenotype is relatively easy to monitor with
unsophisticated and affordable instrumentation.

To generate E-MAPs in mammalian cells, we dispensed unique esiRNAs into a 96-well or
384-well microplate (the array), and, using a custom-built liquid handler (Supplementary
Fig. 1), a single constant esiRNA was overlaid (the query) to produce all pairwise
combinations with the given query (Fig. 1). We transfected mouse fibroblast cells
engineered to express a nuclear marker (histone macroH2A-EGFP), and allowed them to
proliferate for 72 h. We assessed cellular proliferation by counting the number of cells
containing fluorescent nuclei in each well using high-throughput fluorescence cytometry
with an Acumen eX3 plate cytometer (TTP Labtech). We chose the microplate format over a
cell spot microarray–based method18 as it allows many more cells to be monitored
(thousands rather than dozens), thus allowing for the detection of more subtle phenotypes.
We tailored protocols that allowed us to perform high-throughput knockdown experiments
with a screening Z factor19 of 0.57 and >90% knockdown of EGFP as positive control
(Supplementary Fig. 2a). As confirmation that GIs are indeed rare, addition of the query did
not on average result in large deviations from the number of cells expected from single
esiRNAs alone (Supplementary Fig. 2b), and we clearly observed fitness defects associated
with particular queries when combined with the esiRNA array (Supplementary Fig. 2c).

We scored raw data using a GI score (termed S score) based on a neutral interaction model
centered at zero (a neutral gene pair) and developed to capture a continuous spectrum of
phenotype strengths20 (Fig. 1). We processed the data using a similar statistical framework
similar to the one developed for yeast and bacterial GI mapping (Online Methods; http://
sourceforge.net/projects/emap-toolbox/)17,20. A different GI scoring system, termed the π
score, based on similar assumptions as the S score had been developed for analysis of
RNAi-based GI data derived from D. melanogaster9. Using our mammalian data, we found
that GIs obtained using the two methods were very similar (Supplementary Fig. 3a).
However, based on our data, the S score was slightly more reproducible (Fig. 2a and
Supplementary Fig. 3b), allowed for rational selection of score cutoffs based on a neutral
interaction model and facilitated comparisons to other organisms for which similar data have
been obtained, and therefore we used it to define our GIs.

A chromatin-centered E-MAP in mouse fibroblasts
We used our epistasis-mapping pipeline to genetically interrogate factors involved in
chromatin regulation in mice. We targeted 130 genes involved in chromatin or chromosome
regulation using pairwise combinations of esiRNAs in mouse fibroblast cells (Online
Methods). A common concern when using RNAi is that only partial phenotypes may be
observed from incomplete knockdowns. However, hypomorphic (DAmP) alleles, which
reduce protein levels of essential genes in yeast12,21, frequently yield rich and biologically
meaningful GI profiles, suggesting that partial gene-product depletion produced by RNAi
can be informative. We verified the efficiency of mRNA knockdown and determined that
the transcripts for ~60% of the selected genes were inhibited by more than 60% (Fig. 2b and
Supplementary Table 1). We found that knockdown efficiencies correlated with expression
levels of the target in this cell line (Fig. 2c). Furthermore, we observed that efficient
knockdown of individual genes occurred when two different esiRNAs were present
(Supplementary Figs. 4 and 5). We generated a data set covering ~11,000 pairwise
combinations (Supplementary Data 1 and 2) and the final data is of high quality as judged
by internal consistency based on correlating S scores derived from independent biological
replicates (Fig. 2a). Using an empirical cutoff for the S score, which reflects a high
confidence of bona fide GIs20 (Supplementary Fig. 6), we uncovered 929 positive (S ≥ 2)
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and 611 negative (S ≤ −2) GIs (Supplementary Table 2). Finally, to assess potential off-
target effects and help address the overall quality of the data set, we generated independent
esiRNAs for five of the genes on the E-MAP (Cnot1, Cnot2, Cnot3, Paf1 and Leo1;
Supplementary Table 3) and found that the genetic profiles they generated were highly
correlated with the profiles from the original esiRNA constructs (ranging from r = 0.61 to r
= 0.84; Supplementary Fig. 7). The data from these experiments were averaged and
integrated into the final data set (Supplementary Data 2).

Comparison of mammalian GI and PPI data
Epistasis mapping is a powerful tool for unbiased discovery of protein complexes, larger
functional modules and pathways. Data from simpler systems, including S. cerevisiae and S.
pombe, suggest that genes in functional modules exhibit two important characteristics: (i)
their phenotypic signature or profile of GIs tend to be highly correlated; and (ii) the
corresponding genes are enriched for positive (suppressive) GIs1. We observed similar
trends in the mammalian data set using a set of known protein complexes and pathways
(Supplementary Table 4). Indeed, pairs of genes whose products function together or are in
the same complex were likely to interact positively (Fig. 3a) and have highly correlated
phenotypic signatures (Fig. 3b). We also found that GI scores and profiles were strongly
predictive of pairs of genes that are involved in the same functional module using an
unbiased set of interactions based on probabilistic functional gene networks (HumanNet) at
a range of cutoff values22 (Supplementary Fig. 8).

We observed enrichment for strongly negative GIs and PPIs between pairs of factors (Fig.
3a). These trends could be due to the fact that RNAi often only partially disables the
function of a given protein. In these cases, an additional perturbation of another protein in
the same module could result in complete abolishment of its function, and therefore a
negative GI would be observed. Consistent with this reasoning is the observation that GIs in
yeast derived from hypomorphic alleles of essential genes were more likely to produce
negative GIs when the corresponding proteins are physically associated3,11,23. Alternatively,
these genetic relationships could correspond to non-essential genes whose proteins function
in essential complexes. Additional data will need to be collected on a more global scale to
study these relationships between PPI and GIs in more complex organisms. Finally, we
observed a strong relationship between the fitness defect associated with a single gene
knockdown and the number of GIs associated with that gene (Fig. 3c)5,24,25, suggesting that
genes with functional interactions with many other genes have the most dramatic effect on
proliferative phenotypes. This is an important observation as it suggests that initial single
RNAi screens could enable the design of more cost-effective, signal-rich E-MAPs.

A chromatin module map derived from the E-MAP
GI data from the E-MAP allow for the identification of individual functional modules at the
level of individual S scores or by hierarchical clustering of GI profiles. For example, the five
members of the PAF complex (encoded by Paf1, Leo1, Ctr9, Cdc73 and Rtf1), involved in
transcriptional elongation and chromatin modification26,27, display similar GI profiles and
positive GIs with each other (Fig. 4a). In addition, Supt16h, a component of the FACT
complex, a chromatin-specific elongation factor28, was also in this functional module,
consistent with the previous findings that the PAF complex is physically and functionally
connected to FACT in budding yeast27.

Our method also can be used to resolve functionally distinct modules in complexes. For
example, members of the CNOT complex, involved in mRNA deadenylation and chromatin
modification29, form two distinct groups: a highly correlated, positively interacting module
comprising products of Cnot1, Cnot2 and Cnot3 (CNOT core) and an uncorrelated group
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containing products of Cnot4, Cnot6, Cnot7 and Cnot8 (Fig. 4b). Consistent with this
observation, a recent report demonstrated that Cnot1, Cnot2 and Cnot3 gene products
behave as a functionally and physically distinct submodule within CNOT complex and the
other components, including products of Cnot4, Cnot6 and Cnot8, bind to it in a
dynamically regulated fashion30. These results confirm that mammalian GI maps have the
ability to dissect larger, functionally disparate complexes, as has been observed in simpler
eukaryotic organisms2.

Based on our manually curated set of protein complexes and pathways, we created a map
depicting the genetic cross-talk between different functional modules represented in the E-
MAP (Fig. 4c and Supplementary Tables 4 and 5). Contained within this map are modules
corresponding to the INO80 chromatin remodeling complex31; the transcriptional regulator
Integrator32; the MCM DNA replication complex; and cohesin and condensin33–35

complexes, involved in chromatin segregation and condensation. Notably, the PAF complex
occupies a central position on the map, interacting strongly, both positively and negatively,
with many other functional modules. For example, we observed strong positive GIs between
the PAF complex and modules corresponding to CNOT and the RUVBL ATPase
subcomplex (encoded by Ruvbl1, Ruvbl2 and Actl6a), which is part of several chromatin-
remodeling complexes36 (Fig. 4d). Furthermore, we observed negative interactions between
components of the PAF complex and the PARP (encoded by Parp1 and Parp2) and
condensin (encoded by Smc2 and Smc4) modules (Fig. 4d). To explore the genetic
relationship between the PAF complex and PARP modules, we treated cells that are
depleted for PAF complex function (using RNAi-mediated knockdown of Rtf1) with the
PARP inhibitor, Veliparib (ABT-888)37 (Supplementary Fig. 9). We observed a dose-
dependent inhibition of growth specifically in the context of Rtf1 knockdown, consistent
with the negative GIs we observed between PAF complex members and PARP
(Supplementary Fig. 9). These data demonstrate that synthetic epistatic interactions can be
leveraged to identify parallel pathways, which can be targeted using small molecules.

Additional investigation of the molecular basis of these individual connections will improve
our understanding of how interactions among chromatin machines control the program of
gene expression in mammals.

Validation of GIs using an orthogonal phenotypic readout
Phenotypic readouts that use growth rate to enumerate the proliferative capacity of a cell
have been used in many GI screens5,7,17. However, E-MAPs can potentially be constructed
using any phenotype that can be observed by microscopy, including subtle effects on cell
morphology or structure. Because the impact of one gene on another may differ depending
on which pathways influence the phenotype being measured, E-MAPs generated using
different readouts may not necessarily be similar to each other but are highly complementary
in understanding gene function38. However, we would expect partial overlap with our
proliferation-based E-MAP and other phenotypic readouts because many different genes and
pathways impinge on cells’ proliferation capacities. As the PAF complex is highly
connected in the module map (Fig. 4c), we asked whether its epistatic interactions with other
modules might be maintained when using alternate readouts. Using high-content
microscopic interrogation, we observed that depletion of individual PAF-complex
components leads to a very specific morphology phenotype in which cells display elongated
nuclei (Fig. 5). This nuclear elongation may be due to disrupted regulation of the chromatin
modification landscape as the PAF complex is required for normal histone H3 methylation
at lysines 4, 36 and 79 (ref. 39).

We next tested the positive GIs that we had observed using the fitness-based readout
between PAF complex components and the RUVB module. Combining a Ctr9 knockdown
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with knockdown of Ruvbl1, Ruvbl2 or Actl6a suppressed the elongated-nuclei phenotype
(Fig. 5a,b), consistent with the positive interactions observed in our E-MAP (Fig. 4c,d). We
did not see suppression of this specific phenotype when knockdown of Ctr9 was combined
with knockdowns of other non-interacting factors, including Morf4l1 (Fig. 5 and data not
shown), arguing there is a unique interaction between the PAF complex and the RUVBL
module components. Although additional work will be required to understand why depletion
of the PAF complex results in elongated nuclei and how absence of the RUVBL module
suppresses this effect, these data demonstrate that we could recapitulate GIs with an
orthogonal phenotypic readout.

DISCUSSION
Development of high-throughput epistasis-mapping technologies has made it possible to
interrogate complex biological phenomena. Although methodologies for mapping PPIs are
currently more widely used, these networks are still limited in that they only report on gene
products that interact physically. GIs, in contrast, illuminate functional relationships
between genes including, but not limited to, physical interactions of their gene products.
They often reveal how groups of proteins and complexes work together to carry out
biological functions and can describe the cross-talk between pathways and processes1.
Therefore, GI networks are a natural complement to PPI maps and integrating these two
types of information has proven to be extremely powerful in understanding complex biology
in a variety of systems2,3,23.

Our platform, together with similar strategies developed for flies and worms8,9, is a great
addition to the tools available to study higher eukaryotes, one that is easily adaptable to
different mammalian cell types. By combining this platform with recent developments in
high-content microscopy, one can exploit multidimensional (multifeature) phenotypes40,
which will undoubtedly be of great utility in detailed dissection of various processes in
mammalian cells. Ultimately, these data sets can be generated under different conditions to
create differential E-MAPs24 to widen the GI space and deepen the interrogation of specific
pathways and processes. Our platform can also be used to characterize aberrant pathways
associated with different disease states, such as cancer, using specific, mutated cell lines.
Finally, our approach can be exploited to generate GI data sets to interrogate sets of genes
known to be targeted by a pathogen during infection. The E-MAPs can then be generated in
the presence or absence of the pathogenic organism (where different phenotypic
characteristics of both the pathogen and host can be monitored) in an effort to gain a deeper
understanding of how the host machinery is hijacked and rewired during the course of
infection.

ONLINE METHODS
Tissue culture

Standard media formulations were used throughout. Experiments were performed in 96- or
384-well tissue-culture plates (Greiner).

Cell lines
A mouse fibroblast cell line stably expressing nuclear-localized histone macroH2A-EGFP
construct was used41,42.
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cDNA preparation
cDNA used for esiRNA preparation was prepared from mouse cells from RNA purified
using Trizol (Invitrogen) and standard protocols. First-strand synthesis was primed with
oligo(dT).

esiRNA preparation
esiRNA was prepared essentially as described previously15. Oligo sequences are listed in
Supplementary Table 3. Below is a detailed description as this is a multistep process and
some of the steps were optimized for 96-well format preparations.

First-round PCR—We used first-strand cDNA from target cells as a template for first-
round PCR (35 cycles). Primers for first round must begin with T7 ‘anchor’ sequence: 5′-
GGGCGGGT-3′ to which the T7 Anchor primer will anneal in the second round. One
microliter of 1/20 dilution of first PCR per 50 μl reaction is used as template for second-
round PCR to incorporate T7 promoters. Cycling conditions were as follows: 94 °C, 2 min,
35 × (94 °C, for 30 s, 55 °C for 45 s, 72 °C for 1 min), 72 °C for 5 min, hold at 4 °C.

Second-round PCR—A pair of T7 anchor primers (5′-
TAATACGACTCACTATAGGGAGACCACGGGCGGGT-3′) was used to attach T7
promoter sequences used in the subsequent in vitro transcription (IVT). Cycling conditions
were as follows: 94 °C for 2 min, 5 × (94 °C for 30 s, 42 °C for 45 s, 72 °C for 1 min), 30 ×
(94 °C for 30 s, 60 °C for 45 s, 72 °C for 1 min), 72 °C for 5 min, hold at 4 °C.

In vitro transcription and annealing—In IVT reactions, we used the second-round
PCR product as template. Annealing was done using the same program immediately after
the IVT reactions. Transcription-annealing program was as follows: 37 °C for 5.5 h, 90 °C
for 3 min, ramp (0.1 °C s−1) to 70 °C, 70 °C for 3 min, ramp (0.1 °C s−1) to 50 °C, 50 °C for
3 min, ramp (0.1 °C s−1) to 25 °C, 25 °C for 3 min, hold at 4 °C. Products were frozen at
−20 °C or were purified on Qiagen RNeasy column (or Invitrogen PureLink Micro-to-Midi
purification column). The dsRNA products were relatively small and may not be
quantitatively precipitated with ‘standard’ purification procedures. If products are < 250
base pairs, ethanol concentration for precipitation was increased to 50%, and we advise
skipping any washes with low ethanol (that is, wash buffer 1). Products were eluted off of
columns with 2 or 3 serial elutions, and we extended elution times of 5 min or more per
elution. Concentration of esiRNAs was quantified with Nanodrop. We ran 1 μl of the
products on a 1% agarose gel to determine whether the band appeared as a single band
rather than as a smear. Yield is directly proportional to the amount of template, that is, poor
yield of secondary PCR results in bad IVT yield. We confirmed robust second-round PCR
before IVT.

RNase III digestion and esiRNA purification—Purified dsRNA was digested in 100-
μl reactions as below using NEB ShortCut RNase III (use ~1.3 U – 1.6 U per μg purified
dsRNA). Digestion conditions were 37 °C for 30 min, then reactions were placed on ice,
1/10th volume 0.5 M EDTA was added. Purification was done immediately after RNase III
digestion over two columns (first to remove undigested dsRNA and secondary PCR product
(33% ethanol final), second to concentrate esiRNA (75% ethanol final)). Either RNeasy
(Qiagen) columns or PureLink Micro-to-Midi (Invitrogen) purification columns can be used.
As this is a critical step, a detailed purification protocol assuming a 100 μl RNase III digest
is given below. Wash volumes are given per 96-well plate. We added 110 μl lysis buffer and
mixed the reactions; then we added 110 μl 100% ethanol (33% ethanol final), mixed and
loaded the reaction onto a first mini column. Next we centrifuged the reaction for 30 s at
8,000 r.p.m. in a standard Eppendorf benchtop centrifuge, collected flow-through, added 583
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μl 100% ethanol to flow-through, mixed (final ethanol was 75%) and loaded the reaction
onto a second column, which we centrifuged 30 s at 8,000 r.p.m. Next we washed the
column with 750 μl wash buffer II or RPE (to have 80% ethanol final), centrifuged for 1
min at 8,000 r.pm., washed column with 500 μl wash buffer II or RPE and centrifuged spin
column at maximum speed for 2 min. The column was transferred to a collection tube and
air-dried ~2 min. Column was eluted with 3 × 50 μl H2O with extended elution time (>15
min), and product was quantified with Nanodrop. We ran 1 μl of the product on a
nondenaturing 15% acrylamide gel (0.5 or 1× TBE). A distribution of the product between
two bands was usually seen: about two-thirds of the RNA within a band of ~25–27 bp and
about one-third within a 12–15 bp band. This lighter band did not elicit knockdown but did
not interfere with knockdown either. Often a small smearing up to about 30 bp was
observed, but it was usually minimal. The digestion was dependent on dsRNA:enzyme ratio
and time. Extended digestion reduced yield considerably. Typical yield was 50–70% of
input.

Array preparation
We dispensed 7.5 ng of an array of 96 esiRNAs at 0.75 ng/μl in 384-well tissue-culture
plates in quadruplicate using a Biomek FX liquid handler. Then, 7.5 ng of the query esiRNA
was dispensed into each well using a Multidrop Nano (Thermo) liquid dispenser attached to
a custom-built liquid handler (Supplementary Fig. 1). The plates were vacuum-dried and
could be stored without apparent loss of activity until transfected.

Transfection of X3 macroH2A-EGFP cells
Lipid-based transfection using Lipofectamine RNAi MAX (Invitrogen) was used. For 384-
well format tissue-culture plates 750–1,000 cells/well were transfected with 15 ng (7.5 ng
each) esiRNA using 0.1 μl transfection reagent per well. Lipid-RNA complexes were
reconstituted in OptiMEM for 15–30 min before cell addition. Cells were added in
antibiotic-free DMEM supplemented with 10% FBS and incubated overnight. Before we
sealed the plates, fresh DMEM supplemented with penicillin, streptomycin and 10% FBS
was added.

Quantitative reverse transcription–PCR
cDNA was prepared using CellSure cDNA kit (Bioline) per manufacturer’s instructions.
Quantitative reverse transcription (RT)-PCR was carried out using SensiFAST SYBR lo-
ROX master mix (Bioline) on a MX4000 qPCR instrument (Stratagene).

Raw-data collection
Cell counting was done using an Acumen eX3 plate cytometer (TTP Labtech) using 384-
well tissue culture plates. Data were collected in batches of more than 20 screens each.

Scoring of GIs
Raw data were scored using a published software toolbox20. Individual batches were
normalized and scored separately, thus minimizing systematic experimental biases and
batch-to-batch variation.

Detailed explanation of the S score
Normalization of cell numbers—Raw cell numbers were normalized to correct for
differences in growth conditions. The normalizations used here were multiplicative
normalizations. We tried other normalization methods as well (including a logarithmic
normalization) and found them to be less effective. For each plate, a value referred to as the
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plate middle mean (PMM) was computed as the mean of the cell numbers ranked in the 40th
to 60th percentile of the cell number on the plate, excluding the outermost two rows and
columns on the plate. The number of cells in the outermost two rows and columns were then
scaled such that the median number of cells of each such row or column was equal to the
PMM. Cell numbers in the outermost rows and columns were treated as a special case
because the data there tended to be noisier than in the center of the plate, and this extra
variation tended to be consistent across each such row and column (that is, the entire top row
might uniformly be unusually large or small).

Batch-to-batch variability has been noted in previous GI screens, where the typical cell
number estimated for one group of screens completed at approximately the same time using
the same set of reagents differ from the values estimated for another group of screens
completed at a different time (perhaps weeks or months apart). To remove this batch
variability, we processed each set of screens done on the same date (>20 screens) as a subset
as we have done previously17. When the data were processed and analyzed without taking
into account batch correction, the internal correlation of independent biological replicates
was reduced from 0.50 to 0.30 (data not shown). The S scores from each individual subset
were combined to create the larger, final data set. In the case of duplicate S scores (that is,
from duplicate screens in different batches), S scores were averaged.

A natural question is then how many different screens need to be included in a batch, such
that the estimated expected values will be reliable? Experience from previous E-MAPs in
yeast suggests that as increasingly many screens are completed in the same batch, the error
in estimates of expected cell numbers decreases (data not shown). There can be substantial
error if a batch includes fewer than 20 screens. On the other hand, each additional screen
beyond about the 40th gives only marginal improvement (data not shown).

Scoring GIs—Double knockdowns were scored as to the magnitude and sign of the
observed GI. We wanted a score that would reflect both our confidence in the presence of
GIs as well as the strengths of interactions, and so we chose to use a modified t-value score
(S). A standard t value is computed as:

where

where μExp is the mean of normalized cell numbers for the double knockdown of interest;
varExp is the variance of the normalized cell number for the double knockdown of interest;
nExp is number of measurements; μCont is the mean of normalized cell numbers for the
control array single knockdown corresponding to the double knockdown of interest; varCont
is the variance of the normalized cell numbers for this control knockdown; and nCont is the
number of measurements for the control knockdown. The S score is constructed in the same
way:

where
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but with the following modifications: μCont is median of normalized cell numbers for all
double knockdowns containing a particular esiRNA; varExp is the maximum of the variance
of normalized cell number for the double knockdown of interest or a minimum bound
described below; varCont is the median of the variances in normalized cell numbers
observed for all double knockdowns containing the esiRNA of interest or a minimum bound
described below; and nCont = 4 (this was the median number of experimental replicates
over all the experiments).

Minimum bound on varExp—A minimum bound was placed on the experimental s.d.
(and hence on the variance) because we observed that occasionally, by chance, repeated
measurements would give an unusually small s.d., resulting in a large score, but these large
scores did not seem to be reproducible, nor did they reflect strong GIs. We therefore placed
a minimum bound on this s.d. equal to the expected s.d. in normalized cell numbers for a
double knockdown derived from esiRNA with similar growth phenotypes. The expected s.d.
was calculated by measuring the observed standard errors in measurement as a function of
cell numbers typical for one or the other esiRNA knockdown.

Minimum bound on varCont—For similar reasons as for varExp and because it
improved the reproducibility of computed S scores, a lower bound was also placed on
varCont. This lower bound was equal to μCont multiplied by the observed median relative
error (standard deviation divided by mean cell number) for all measurements in the data set.

Note concerning normalization using the PMM and scoring using the median
values—Both of these measures may be biased if the frequency of synthetic interactions is
significantly greater or smaller than the frequency of alleviating interactions for a particular
gene. However, we have observed this bias to be relatively small (data not shown), and we
include in our Matlab toolbox an alternative strategy to estimate the typical cell number on
an experimental plate or for a given esiRNA knockdown. The alternative strategy, which
uses a Parzen window approach to estimate the most common cell number, is less sensitive
to skewed distributions of cell numbers.

Data processing using E-MAP toolbox
To launch the graphical user interface, “emapGUI” was typed at the command prompt in
Matlab. The software offers several different preprocessing and normalization options. We
used the options menu to set those. The following were used for processing the raw data:
normalization method, Parzen; control size method: Parzen; preprocessing option: no
preprocessing; threshold for removing frequently missing data: 0.15; filter data with missing
neighbors: no filter. We used the ‘File’ --> ‘load raw data’ command to load data from
source files (see the included example files for templates for making the necessary
coordinate and file name maps). We used ‘Data processing … score data’ to generate
unaveraged S scores. We used ‘File’ --> ‘Save as MAT file’ to save the analysis. Individual
batches were scored separately, and the resulting score tables (scoremat structure in the .mat
file) were then merged to create the final score matrix. Data for replicate screens that
correlated at ≤ 0.1 were removed from the dataset.

HCS microscopy
A Cell Insight Personal Image Cytometer (Thermo) with a 10× objective was used to collect
microscopy data. Image analysis was performed using the Cellomics vHCS Discovery
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Toolbox (Thermo). Nuclear shape in Figure 5 was defined as a length to width ratio for each
cell.

Module map
Curated protein complexes and pathways were integrated withS scores from this study.
Between-module interactions were assessed by comparison of the average S score of GIs
between two modules to 10,000 sets of random interactions of the same size as in ref. 23.
Displayed edges had P < 0.01.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
An overview of the mammalian E-MAP pipeline. Flowchart of the experimental setup:
esiRNAs to a set of genes are arrayed in a pairwise fashion (in quadruplicate) in tissue
culture plates. Reverse transfection is then performed, and the resulting fitness defects are
observed using high-content imaging. Raw data are scored and phenotypic signatures are
derived for each gene.
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Figure 2.
Characteristics and quality control of GI data set. (a) GI scores derived from independent
biological replicate experiments. Each data point represents a GI score (S score) for the
same pairwise knockdown derived from independent experiments. (b) Knockdown
efficiencies as measured by quantitative reverse transcription PCR. (c) Relationship between
knockdown efficiency and expression: data were split into five groups and plotted against
gene expression relative to that of a housekeeping gene.
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Figure 3.
Comparison of GI and PPI data sets. (a,b) Comparison of individual S scores (a) and GI
profiles (b) to the likelihood of the corresponding pairs of proteins being physically
associated. (c) Fitness after single gene knockdown versus the number of genetic
interactions associated with the same gene. Raw cell counts were used as a proxy for fitness,
and a cutoff of S ≥ 2 and S ≤ −2 was used to define informative GIs on the y axis.
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Figure 4.
A module map of chromatin-related genes. (a) GIs (left) and profile Pearson correlations
(right) for members of the PAF transcriptional elongation complex. (b) GIs (left) and profile
Pearson correlations (right) for members of the CNOT complex. S scores and profile
Pearson correlations were used in a and b. (c) A module map based on a manually curated
set of protein complexes (Supplementary Table 4). Modules and inter-module GI bundles
are colored according to the enrichment of the observed GIs, with gray signifying no
enrichment of a particular interaction type was observed (Supplementary Table 5). (d)
Examples of positive and negative GI bundles corresponding to particular edges on the
module map.
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Figure 5.
Validation of observed GIs with an orthogonal phenotypic readout. (a) Micrographs derived
from mouse embryo fibroblast cells depleted for Ctr9 in combination with knockdowns of
Ruvbl1, Ruvbl2, Actl6a or Morfl1. Scale bars, 20 μm. (b) Phenotype strength represented as
a fraction of cells with elongated nuclei (longer bars represent more extreme phenotype).
Error bars, s.d. based on 100 random samples of 10% of the data in each experiment.
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