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REVIEW

The pleiotropic roles of leptin in metabolism,
immunity, and cancer
Paola de Candia1, Francesco Prattichizzo1, Silvia Garavelli2, Carlo Alviggi3, Antonio La Cava4, and Giuseppe Matarese2,5

The discovery of the archetypal adipocytokine leptin and how it regulates energy homeostasis have represented
breakthroughs in our understanding of the endocrine function of the adipose tissue and the biological determinants of human
obesity. Investigations on leptin have also been instrumental in identifying physio-pathological connections between
metabolic regulation and multiple immunological functions. For example, the description of the promoting activities of leptin
on inflammation and cell proliferation have recognized the detrimental effects of leptin in connecting dysmetabolic conditions
with cancer and with onset and/or progression of autoimmune disease. Here we review the multiple biological functions and
complex framework of operations of leptin, discussing why and how the pleiotropic activities of this adipocytokine still pose
major hurdles in the development of effective leptin-based therapeutic opportunities for different clinical conditions.

Introduction
In 1950, Ingalls et al. (1950) at The Jackson Laboratory described
a mouse that they named ob/ob as its excessive eating made it
become morbidly obese. 15 yr later, another obese and hyper-
phagic mouse was identified in the same laboratories (named
db/db; Hummel et al., 1966). For decades, the existence of a
“satiety factor” was only assumed on the basis of a presumed
absence in obese mice (Coleman, 2010) until the obese (ob) gene
was positionally cloned by Jeffrey Friedman and collaborators
(Zhang et al., 1994). The encoded product was named leptin from
the Greek word λεπτóς (leptòs) that means “lean,” and its re-
ceptor was cloned soon after (Tartaglia et al., 1995). Following a
detailed description of the ob/ob and db/db mouse strains as not
only morbidly obese but also insulin-resistant, infertile, and
lethargic (Chen et al., 1996; Halaas et al., 1995; Pelleymounter
et al., 1995), the field started to grow significantly. Leptin was
found to be a blood-borne hormone produced by the adipose tissue
that communicated the metabolic status to the central nervous
system, modulating appetite through a negative feedback loop cen-
tered in the hypothalamus (Coleman, 2010). The subsequent dis-
covery of leptin receptors (LEPRs) in other brain regions and in
different organs and tissues led to appreciation of broader roles of
leptin in the physiological control of glucose homeostasis, immune
responses, hematopoiesis, angiogenesis, reproduction, and even
mental processes such as memory and learning (Bennett et al., 1996;
Chehab et al., 1996; Ducy et al., 2000; Sierra-Honigmann et al., 1998).

Here we summarize >25 yr of studies on the biology of leptin,
its involvement in physiological and pathological processes re-
lated to metabolism, immunity, and cancer, and its potential use
as a therapeutic target in the numerous studies that flourished
after its identification in the mid-1990s.

Intracellular signaling
Inmice, leptin is encoded by the ob gene, located on chromosome
6, and is a 167–amino acid nonglycosylated protein; in ob/ob
mice, a nonsensemutation in codon 105 blocks protein synthesis
with resulting hyperphagia, early development of gross obesity,
insulin resistance, and infertility (Zhang et al., 1994). The human
OB gene, located on chromosome 7, shares high sequence iden-
tity with the mouse orthologue (Green et al., 1995; Zhang et al.,
1994).

Structurally, leptin is a four-helix bundle characteristic of the
long-chain helical cytokine family, and nonmammalian leptin,
even if dissimilar in primary amino-acidic sequence, appears as
functionally conserved through convergent tertiary structures
(Zhang et al., 1997). The cognate LEPR is a single-transmem-
brane-domain molecule that belongs to the class I cytokine re-
ceptor super-family (which includes the receptors of IL-1, IL-2,
IL-6, and growth hormone). A single transcript produces several
variants of the LEPR protein through alternative splicing: a long-
form containing the cytoplasmic domain (LEPRB) is the only one
capable of transducing downstream signals, four short isoforms,
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and a soluble isoform (Baumann et al., 1996; Bjørbæk et al., 1997;
Frühbeck, 2005; Lee et al., 1996).

Leptin binding to LEPR, unlike other cytokine receptors, does
not promote receptor dimerization but rather a conformational
change that leads to the autophosphorylation and activation of
JAK-2 (which is bound constitutively to the membrane proximal
portion of the LEPR; Kloek et al., 2002). Activated JAK-2 phos-
phorylates three tyrosine residues of LEPRB (Tyr985, Tyr1077,
and Tyr1138), which recruit cytosolic proteins to transduce cell
signaling (Banks et al., 2000). Phospho-Tyr1138 engages STAT-3,
which, upon JAK-2–dependent phosphorylation, translocates to
the nucleus to promote expression of mRNAs, including for
suppressor of cytokine signaling–3 (SOCS-3; Banks et al., 2000;
Bjørbæk et al., 1999; Vaisse et al., 1996). Phospho-Tyr985 acti-
vates the ERK signaling pathway and also serves as a docking site
for the inhibitory activity of SOCS-3 (Banks et al., 2000; Bjørbæk
et al., 1999), while phospho-Tyr1077 promotes recruitment and
activation of STAT-5, which also activates target gene tran-
scription after dimerization (Gong et al., 2007). The pattern of
LEPR-mediated STAT activation is similar to that observed for
IL-6–downstream intracellular events (Sadowski et al., 1993),
although signaling differences exist. While receptor complexes
for the IL-6 family of cytokines share homo- or hetero-dimerization
of glycoprotein (GP130) as a critical component for activation
of associated cytoplasmic tyrosine kinases and signal trans-
duction (Taga and Kishimoto, 1997), LEPR signaling was not
inhibited by blockade of GP130 (Baumann et al., 1996).
Nonetheless, leptin and IL-6 may converge on overlapping
metabolic processes, since IL-6 is expressed both in adipose
tissue and in hypothalamic nuclei and IL-6 knockout mice
developed mature-onset obesity, which was counteracted by
increased energy expenditure upon intracerebroventricular
IL-6 treatment (Wallenius et al., 2002).

LEPR can also activate mitogen-activated protein kinase
(MAPK) signaling cascade either directly or through an SH2-
containing protein tyrosine phosphatase-2–mediated recruit-
ment of growth factor receptor-bound protein-2 (Zhang et al.,
2004). In addition, leptin signaling activates phosphoinositide 3
kinase (PI-3K) through insulin receptor substrate phosphoryla-
tion (Tong et al., 2008). In turn, PI-3K can activate the mecha-
nistic target of rapamycin (mTOR), thus driving intracellular
anabolic pathways (Cota et al., 2006; Hill et al., 2008). Themajor
signaling events downstream of LEPR are depicted in Fig. 1. The
specificity by which these well-delineated molecular pathways
activated by LEPR engagement translate into defined systemic
effects is still a matter of intense investigation.

Role of leptin in metabolism
Two milestone studies described how leptin tunes appetite and
energy expenditure, thus regulating body weight (Halaas et al.,
1995; Pelleymounter et al., 1995). Expressed and released by the
white adipose tissue proportionally to its mass, leptin levels
increase upon food intake (Ahima et al., 1996; Lönnqvist et al.,
1995); differently from the broad diurnal quantitative variations
of other hormones like ghrelin, though, the steadier levels of
leptin appear to mirror the overall availability of energy to the
host rather than acute changes in energy balance, thus reflecting

states of malnutrition and obesity rather than hunger and satiety
(de Candia and Matarese, 2018; Korbonits et al., 1997; Serrenho
et al., 2019). Albeit there is no consensus on the underlying
mechanisms, it is believed that leptin, once released in the
bloodstream, can cross the blood–brain barrier through multiple
routes including the fenestrated capillaries in the median emi-
nence and/or endothelial and choroid plexus cells expressing the
LEPR (Balland et al., 2014; Di Spiezio et al., 2018; Harrison et al.,
2019; Sinha et al., 1996).

LEPR is expressed in many areas of the brain, and is partic-
ularly abundant in the arcuate and ventromedial nuclei of the
hypothalamus, where it controls feeding by acting on multiple
neuronal populations and by modulating both orexigenic and
anorexigenic peptides (Burguera et al., 2000; Klok et al., 2007).
The central activity of leptin is believed to derive from the
concerted activation of pro-opiomelanocortin (POMC)-express-
ing neurons and the inhibition of neuropeptide Y/agouti-related
peptide–expressing neurons in the arcuate nucleus of the
hypothalamus (Friedman, 2019). While the leptin-mediated
mechanism(s) of POMC depolarization of neurons remains to
be unveiled, the hyperpolarization of the hypothalamic neurons
seems to be mediated by an ATP-sensitive potassium channel
that fosters an outward potassium current (Spanswick et al.,
1997; Takahashi and Cone, 2005) leading to the neuronal regu-
lation of appetite (Andermann and Lowell, 2017; Atasoy et al.,
2012; Wu et al., 2009b). In addition to the adipose tissue, leptin is
produced in low quantities by organs/tissues such as the pla-
centa, skeletal muscle, brain, P/D1 cells in the stomach (which
also produce ghrelin), and T cells (Bado et al., 1998; Chan et al.,
2006; De Rosa et al., 2007; Maymó et al., 2011; Wang et al., 1998;
Wiesner et al., 1999). LEPR expression in the white and brown
adipose tissues, skeletal muscle, and pancreas, and its capability
to promote β-oxidation and lipolysis while inhibiting insulin
secretion, suggest the existence of a brain-independent regula-
tion of peripheral energy expenditure by leptin (Friedman, 2019;
Muoio and Lynis Dohm, 2002).

The paradoxical role of leptin in obesity
The critical role of leptin in energy homeostasis was enshrined
by two observations: (1) human subjects with homozygous in-
activating leptin or LEPR mutations were extremely hyper-
phagic and morbidly obese, with a metabolic imbalance closely
resembling that of ob/ob and db/db mice (Clément et al., 1998;
Montague et al., 1997); and (2) the administration of recombi-
nant leptin to the above mutant mice and humans normalized
food intake and substantially reduced body weight (Farooqi
et al., 1999; Halaas et al., 1995). Intriguingly, only the very
small proportion of obese individuals with a genetic deficiency
of leptin suffers from leptin loss; the other majority displays
elevated concentrations of circulating leptin and, when treated
with the methionyl-recombinant leptin (r-metHuLeptin) ana-
logue, these obese individuals only show limited weight loss
(Chou and Perry, 2013). This apparent paradox, considering that
elevated leptin levels should maintain metabolic homeostasis
(Considine et al., 1996; Heymsfield et al., 1999; Maffei et al., 1995;
Ravussin et al., 1997), demonstrates that leptin resistance rep-
resents the main obstacle to broader advantageous effects from
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leptin supplementation (DePaoli et al., 2018; Gruzdeva et al.,
2019; Heymsfield et al., 1999). Mechanistically, leptin resis-
tance in animal models of obesity and hyperleptinemia (Halaas
et al., 1997; Knight et al., 2010) relies on the induction of the key
leptin signaling rheostat SOCS-3, which attenuates the capabil-
ity of leptin to induce STAT-3 phosphorylation and POMC ac-
tivation and to decrease food intake and body weight (Buettner
et al., 2006; Gao et al., 2004; Mori et al., 2004; Reed et al., 2010).
STAT-3 phosphorylation and the hypothalamic response to
leptin are also inhibited by fatty acid/TLR-induced low-grade
inflammation, in a fashion similar to the insulin resistance in
the adipose tissue and the liver (Prattichizzo et al., 2018). Ad-
ditional mechanisms of reduction of leptin signaling are the
induction of matrix metalloproteinase–2 in the hypothalamus of
obese rodents (which promotes LEPR degradation; Mazor et al.,
2018) and the saturable nature of leptin transport across the
blood–brain barrier (Halaas et al., 1997; Schwartz et al., 1996).

In sum, although leptin agonism can exert beneficial effects
by restraining food intake and promoting metabolic homeostasis
and weight loss, these effects can be canceled in most obese
patients by hyperleptinemia-induced leptin resistance.

The role of leptin in immunity
Leptin-dependent induction of immune functions
Even before leptin was identified, it was recognized that ob/ob
and db/db mice had altered immune competence, hypotrophic
thymus and spleen, and markedly reduced cytotoxic responses

and antibody production when compared with lean mice
(Chandra, 1980; Fernandes et al., 1978). After the discovery of
leptin, it was demonstrated that multiple types of immune cells
express detectable levels of LEPR, and features of the immune
system dysregulation present in both ob/ob and db/dbmice were
thoroughly described (Lord et al., 1998; Lord et al., 2001;
Procaccini et al., 2012b). Importantly, it was demonstrated that
the impaired immunity associated with undernutrition, which
predisposed mice to infectious diseases, was directly linked to
low body weight–dependent reduction of leptin, and the ad-
ministration of exogenous leptin, reversed the immunosup-
pressed phenotype and thymic atrophy in those mice (Howard
et al., 1999; Lord et al., 1998). The key role of leptin in sup-
porting a normal immune function was further confirmed by
the finding that a large percentage of obese individuals with
homozygous missense leptin mutation succumbed to infections
during childhood (Ozata et al., 1999).

Multiple lines of experimental evidence have demonstrated
that leptin activates innate responses to infection. In neu-
trophils, leptin sustains IL-1β, intracellular adhesionmolecule-1,
and chemokines that promote their chemotaxis at infection sites
(Rummel et al., 2010) and stimulate the oxidative burst that is
necessary for effective bacterial killing (Bruno et al., 2005;
Caldefie-Chezet et al., 2001; Caldefie-Chezet et al., 2003; Park
et al., 2009). Neutrophils are known to express the short form
of the LEPR, which is unable to stimulate the JAK-STAT signal-
ing, but instead is sufficient to activate the MAPK pathway and

Figure 1. Leptin-dependent regulation of immune homeostasis and function. In a näıve CD4+ T cell, the LEPR-dependent intracellular signaling enhances
the differentiation toward pro-inflammatory Th1/Th17 cells while inhibiting the proliferation of FOXP3+ T reg cells. Furthermore, at absent/low levels of leptin
the growth and function of Th1/Th17 is impaired, while T reg cells expand more efficiently and release more regulatory-type cytokines. The opposite occurs
when leptin levels are aberrantly high and enhance Th1/Th17 differentiation and growth on one side and inhibit T reg cell proliferation on the other. This
different cellular response to leptin depends on the different sensitivity of Th1/Th17 and T reg cells to either physiologically fluctuating LEPR-mTOR activation
(low/normal leptin) or consistent hyperstimulation of the same pathway (high leptin). The two opposite situations are correlated with either higher sus-
ceptibility to infections (low leptin: effector arm inefficient, elevated immune suppression) or enhanced susceptibility to autoimmunity (high leptin: effector
arm hyperactive, inefficient immune regulation). Schematic figures were created with images adapted from Smart Servier Medical Art (http://www.servier.fr/
servier-medical-art). P, phosphorylated.
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prevent apoptosis (Bjørbæk et al., 1997; Zarkesh-Esfahani et al.,
2004). In macrophages, leptin promotes phagocytic function,
pro-inflammatory cytokine secretion, and leukotriene synthesis
with a resulting increase in host survival, as shown in a mouse
model of pulmonary bacterial infection with Streptococcus pneu-
moniae (Gainsford et al., 1996; Loffreda et al., 1998; Mancuso
et al., 2002; Mancuso et al., 2011). Leptin-induced macrophage
activation seems to mostly depend on PI-3K activity, which links
a sensing of systemic leptin to macrophage lipid metabolism
through the activation of mTOR (Maya-Monteiro et al., 2008).
Leptin also regulates natural killer cell differentiation and cy-
totoxic activity, as exemplified by severely reduced numbers and
markedly increased apoptotic rate of these cells in the bone
marrow of db/db mice (Lo et al., 2009; Tian et al., 2002). In
human natural killer cells, both long and short isoforms of LEPR
are functional and, through the STAT signaling pathway, lead to
the activation of IL-2 and perforin gene expression (Zhao et al.,
2003). Finally, the leptin-mediated release of TNF-α from
monocytes able to activate neutrophils shows the capability of
leptin to stimulate the cross-cellular communication among the
innate immune cells (Zarkesh-Esfahani et al., 2004).

The observations that LEPR is significantly up-regulated on
mouse CD4+CD8+ T cells and B cells upon activation and
leptin signaling promotes lymphocyte survival and function
(Papathanassoglou et al., 2006) indicate a role for leptin in the
adaptive immune response as well. Lack of responsiveness to
leptin in db/db mice associates with reduced CD4+ T cell pro-
liferative responses (Papathanassoglou et al., 2006) and B cell
hypo-responsiveness in terms of IgM production and differ-
entiation into effector B cells (Jennbacken et al., 2013). The
presence of detectable LEPRmRNA in B cells has indicated that,
besides indirect effects through the activation of cellular im-
munity, leptin may also exert a direct effect on these lympho-
cytes (Busso et al., 2002). When circulating leptin levels are
low, such as in undernutrition or during fasting, CD4+ T helper
17 (Th17) cells produce less inflammatory cytokines (i.e., IFN-γ
and IL-17) and are less glycolytic, with decreased lactate pro-
duction and mitochondrial respiration, compared with Th17
cells from ad libitum–fed mice (Gerriets et al., 2016; Saucillo
et al., 2014). The administration of leptin to fasting animals
rescues T cell functional and metabolic defects by cell-intrinsic
mechanisms (Gerriets et al., 2016; Saucillo et al., 2014). Fur-
thermore, leptin modulates the cross-talk between innate and
adaptive immunity by affecting dendritic cell number, matu-
ration, cytokine production, and capacity to induce CD4+ T cell
proliferation (Macia et al., 2006; Moraes-Vieira et al., 2014).

Experimental evidence directly implicates leptin in the re-
cruitment of immune cells to the adipose tissue. Leptin is indeed
a potent chemoattractant for monocytes and macrophages, with
leptin-mediated chemotaxis necessitating the presence of full-
length LEPRs and the functional activation of JAK/STAT, MAPK,
and PI-3K pathways in migrating cells (Gruen et al., 2007). In
both ob/ob and db/db mice, the degree of adipose macrophagic
infiltration was lower than expected due to their obesity, ad-
vocating leptin participation in recruitment of immune cells to
the adipose tissue (Weisberg et al., 2003; Xu et al., 2003).
Obesity due to high-fat diet in mice was shown to substantially

increase the number of adipocytes in the bonemarrow, resulting
in an uptick of leptin, but not other cytokines and growth fac-
tors, expression. This leptin dysregulation possibly fostered the
increase in the proportion of lymphocytes in marrows from
obese compared with lean animals, suggesting that adipocyte-
derived paracrine leptin can unbalance immune cells also out-
side the adipose tissue (Trottier et al., 2012). It will be relevant to
identify the participation of paracrine leptin in the depot func-
tion of the bone marrow for the physiological maintenance of
memory T cell survival and/or homeostatic proliferation (Di
Rosa, 2016).

In sum, leptin plays a relevant role in activating an efficient
and coordinated innate and adaptive immune response and
normal leptin levels are necessary for an efficient clearance of
infection (Fig. 1). Leptin influences on both the innate and the
adaptive immune systems are summarized in Table 1.

Effects of leptin on immunological self-tolerance
The expression of the long form of LEPR on T lymphocytes
(particularly in CD4+ Th cells) strongly suggests the capability to
activate the JAK-STAT pathway (Kim et al., 2010; Lord et al.,
1998). Notwithstanding the general ability to promote prolifer-
ation in these cells, though, the engagement of the leptin path-
way may result in different outcomes depending on the specific
T cell subset. On the one hand, leptin promotes the proliferation
and differentiation of pro-inflammatory CD4+CD25−FOXP3−

conventional T cells (Lord et al., 2002; Yu et al., 2013), while on
the other, it hampers the proliferation and homeostasis of
CD4+CD25+FOXP3+ regulatory T (T reg) cells (De Rosa et al.,
2007; Reis et al., 2015). Leptin levels have indeed been in-
versely correlated with T reg cell number in autoimmune dis-
ease (Wang et al., 2017) and in nonclassical autoimmune
inflammatory conditions, such as chronic obstructive pulmo-
nary disease (Bruzzaniti et al., 2019).

A very recent study has demonstrated that the intensity of
leptin-dependent STAT-3 phosphorylation is significantly
higher in CD4+CD25− effector T cells than in T reg cells, asso-
ciated with a marked down-regulation of the cell cycle inhibitor
p27 kIP1 in the former but not in the latter cells (Marrodan et al.,
2021). As described above, mTOR is also activated by leptin and
differently controls T cell responsiveness and survival, FOXP3
expression, and de novo differentiation of T reg cells (Delgoffe
and Powell, 2009; Haxhinasto et al., 2008). The differences in
response to leptin among the T cell subsets can actually be as-
cribed to the dynamic differences in dependence on mTOR
signaling in these cells. In pro-inflammatory T effector cells,
leptin-dependent mTOR activation impinges on the signaling
pathways and transcriptional signatures involved in cell acti-
vation and growth, and leptin blockade super-imposes a tran-
scriptional and biochemical response over rapamycin treatment
(Procaccini et al., 2012a). On the other hand, the hypo-responsive
state of the T reg cells in vitro depends on an elevated activity of the
mTOR pathway. Treatment with rapamycin or leptin blockade
imparts an oscillatory phenomenon characterized by early down-
regulation of the LEPR-mTOR pathway followed by an increased
activation of mTOR that is necessary for the T reg cells to expand
(MacIver et al., 2013; Procaccini et al., 2010).
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T reg cells represent a relevant fraction of the CD4+ T cells
resident in the murine adipose tissue, and the release of anti-
inflammatory mediators may directly affect the tissue micro-
environment (Feuerer et al., 2009): resident T reg cells were
actually shown to ameliorate inflammation in the adipose tissue,
but also liver fat accumulation, blood glucose, and insulin re-
sistance (Eller et al., 2011; Ilan et al., 2010). Consistently, in
human samples, there exists a correlation between body mass
index and the drop in T reg cells in omental fat (Deiuliis et al.,
2011; Feuerer et al., 2009). Since T reg cells express high levels of
LEPR and also release leptin, they are exposed to high concen-
trations of the adipokine in the adipose tissue, especially in
obesogenic conditions (Barbi et al., 2013; De Rosa et al., 2007;
MacIver et al., 2013; Matarese et al., 2014; Wang and Green,
2012). The dysregulated leptin levels may thus fuel local and
systemic inflammation by also further inhibiting the function of
adipose-resident T reg cells.

The increase of adipose-resident conventional CD4+ and CD8+

T cells showing an activated pro-inflammatory phenotype is
consistently observed in both obesity and aging (Bapat et al.,
2015; Lumeng et al., 2011). Intriguingly, while adipose-resident
T reg cells are decreased in obesity, as discussed above, they
instead constantly rise during aging and demonstrate an en-
hanced expression of a set of transcripts that may promote the
local adaptation of these cells to the lipophilic, hypoxic adipose
tissue (Bapat et al., 2015; Cipolletta et al., 2015; Feuerer et al.,
2009; Kohlgruber et al., 2018). In fact, T reg cells in aged adipose
tissue seem to have lost their ability to curb inflammation: their
depletion indeed stimulated insulin sensitivity compared with
control mice, suggesting a detrimental role of adipose-resident T
reg cells in age-associated insulin resistance (Bapat et al., 2015;
Feuerer et al., 2009). The identification of a differential cell
response to leptin (which is increased in both obesity and aging)
as a driving factor for the accumulation and phenotypes of T reg
cells in adipose tissue during aging may help to better elucidate

the pathological bases of age-related dysmetabolic and inflam-
matory conditions.

In all, these data show that dysregulated increases of leptin
favor exaggerated inflammatory responses by licensing the functional
activation of pro-inflammatory T effector cell subsets while inhibiting
T reg cells, and thus implicate that leptinmay significantly perturbate
immunological self-tolerance and foster autoimmunity (Fig. 1).

Leptin-dependent susceptibility to autoimmune diseases and
allergic responses
The hypothesis that leptin may promote autoimmune diseases
has found repeated experimental confirmations. First of all,
mouse genetic deficiency of leptin inhibited the induction and
progression of experimental autoimmune encephalomyelitis
(EAE, a model of human multiple sclerosis [MS]; Constantinescu
et al., 2011) and reduced production of autoantibodies and renal
disease by increasing T reg cell frequency in systemic lupus
erythematosus (SLE; Fujita et al., 2014; Lourenço et al., 2016).
Consistently, in NZB/W lupus-prone mice, fasting-induced hy-
poleptinemia ameliorated the inflammatory state by inducing T
reg cell expansion, a phenomenon reversed by leptin replace-
ment (Liu et al., 2012). On the other hand, the severity of
autoimmune diseases in mouse models have been closely
associated with the systemic levels of leptin in those animals.
Leptin administration skewed CD4+ T cell phenotypes and
cytokines and restored susceptibility to EAE in ob/ob mice
(Matarese et al., 2001a; Matarese et al., 2001b; Sanna et al.,
2003). Moreover, it increased EAE and SLE severity by en-
hancing T cell autoreactive responses in wild-typemice (Amarilyo
et al., 2013; De Rosa et al., 2006; Galgani et al., 2010; Lourenço
et al., 2016; Sanna et al., 2003; Yu et al., 2013). In SLE, leptin
may also favor disease progression by stimulating phagocy-
tosis of apoptotic cells by macrophages, which results in an
increased availability of self-antigens promoting autoimmune
responses (Amarilyo et al., 2014).

Table 1. Biological effects of leptin on the different cell populations of the innate and the adaptive immune system

Cell type Effect of leptin Reference

Innate immune system

Neutrophils Stimulation of chemotaxis and release of oxygen radicals, inhibition of apoptosis;
indirect activation via monocyte-derived TNF-α

Caldefie-Chezet et al., 2003; Bruno et al., 2005;
Zarkesh-Esfahani et al., 2004

Macrophages Activation of phagocytosis, secretion of pro-inflammatory cytokines and leukotriene
synthesis

Loffreda et al., 1998; Mancuso et al., 2002

Natural killer
cells

Control of differentiation, proliferation and cytotoxicity Tian et al., 2002

Dendritic cells Enhancement of cell maturation, cytokine production and ability to induce CD4+

T cell proliferation
Moraes-Vieira et al., 2014

Adaptive immune system

B cells Induction of differentiation and IgM production Papathanassoglou et al., 2006; Jennbacken et al., 2013

Näıve T cells Stimulation of proliferation and release of pro-inflammatory cytokines Lord et al., 2002

Memory T cells Growth inhibition Lord et al., 2002

Th1/Th17 Promotion of cell proliferation, survival, and cytokine release Papathanassoglou et al., 2006

T reg Inhibition of proliferation and homeostasis De Rosa et al., 2007
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For humans, the unprecedented increase of obesity in
Western countries has been paralleled by upticks in autoim-
mune diseases in the past few decades (De Rosa et al., 2017). The
literature provides strong evidence that obese subjects are at
increased risk of developing MS, psoriasis, rheumatoid and
psoriatic arthritis, type 1 diabetes (T1D), inflammatory bowel
disease, and thyroid autoimmunity, and suggests leptin in-
volvement in obesity-dependent disease and response tomedical
treatment (Versini et al., 2014). In obese MS patients, for ex-
ample, elevated leptin levels were predictive of a worsened
disease progression (Carbone et al., 2014; Emamgholipour et al.,
2013; Lanzillo et al., 2017; Lock et al., 2002; Matarese et al., 2005;
Stampanoni Bassi et al., 2020), while leptin decreases due to
metformin or pioglitazone treatments were associated with re-
duced disease activity (Negrotto et al., 2016). Similarly, in pa-
tients with rheumatoid arthritis (RA), leptin was recognized as
parameter of high disease activity index (Cao et al., 2016), and
beneficial effects from low caloric intake in RA patients could be
linked to fasting-induced reduction of pro-inflammatory CD4+

T cell activity associated with a drop of circulating leptin (Lago
et al., 2007). Elevated levels of leptin were suggested to partic-
ipate in the pathology of cartilage, synovium, and bone in RA
(Gómez et al., 2011; Olama et al., 2012; Otero et al., 2006) and the
formation of inflammatory infiltrates in psoriatic patients
(Johnston et al., 2008). Human studies, consistently with mice
observations, connect this pathogenic role of leptin with its ca-
pability to induce immune effector cells and pro-inflammatory
mediator release and thus enhance the auto-immune disease
(Johnston et al., 2008; Wang et al., 2018).

The increased susceptibility to allergic asthma in obese in-
dividuals was also linked to a leptin-dependent increase of Th2
cell proliferation, activation, and survival (Zheng et al., 2016),
and elevated circulating leptin correlated with pro-allergic Th2
cell cytokine signatures and Th2 cell imbalance in children with
allergic rhinitis and in patients with allergic asthma (Dias et al.,
2019; Zeng et al., 2018). The key immunopathological role of
leptin in allergic reactions has also been linked to its effect on
human eosinophils in which the engagement of the LEPR acti-
vates MAPK-dependent pathways, hampers the caspase cascade
and cell death, and induces release of pro-inflammatory cyto-
kines and chemokines (Conus et al., 2005; Wong et al., 2007).

To recapitulate, by linking the nutritional status with a
plethora of immunological activities, leptin is able to create a
pathogenic systemic circuit that connects metabolic dysregula-
tion with aberrant immune responses (Abella et al., 2017; Tsigalou
et al., 2020).

Leptin signaling at the intersection of metabolic, immune, and
vascular regulation
Leptin-mediated production of cytokines by immune cells
(Faggioni et al., 2000; Shen et al., 2005; Tsiotra et al., 2013) and
C-reactive protein by hepatocytes (Chen et al., 2006), in addition
to endogenous and exogenous pro-inflammatory mediators of
leptin release that include IL-1β and the endotoxin LPS (Faggioni
et al., 1998; Landman et al., 2003), suggest a positive feedback
loop between increased leptin levels and systemic low-grade
inflammation, which has been suggested to aggravate leptin

resistance (Chen et al., 2006). Taking into consideration the
central role of low-grade inflammation in promoting the de-
velopment of metabolic diseases such as type 2 diabetes (T2D;
Donath and Shoelson, 2011) and cardiovascular diseases (CVDs;
Libby, 2006; Prattichizzo et al., 2020), it is conceivable that
chronic leptin elevation can play a deleterious role in those
contexts. Indeed, elevated longitudinal leptin levels predict de-
velopment of T2D, even when adjusted for adiposity parameters
(McNeely et al., 1999; Wannamethee et al., 2007; Welsh et al.,
2009). However, the relationship between leptin and CVDs is
less straightforward. Increased levels of leptin have been asso-
ciated with the development of atherosclerosis (Spiroglou et al.,
2010) and, by triggering the extrinsic coagulation cascade, leptin
may also be involved in thrombotic effects in hyperleptinemic-
associated clinical disorders (Rafail et al., 2008).

To better understand the intersection of the metabolic and
the immunological effects of leptin, we need to dissect central
leptin resistance compared with leptin resistance in immune
cells. The expression of both the short and the long isoforms of
LEPR was found reduced in human peripheral blood mononu-
clear cells from obese compared with normal-weight individuals,
suggesting a differential action of circulating leptin on these
cells in dysmetabolic conditions (Tsiotra et al., 2000). A recent
study in diet-induced obesity mice shed more light on this is-
sue. While the injection of leptin in high-fat diet–fed mice was
not able to reduce food intake or glycemia compared with
saline-injected controls, demonstrating the loss of the hypo-
thalamic actions of leptin (i.e., central leptin resistance), im-
mune cells instead maintained their responsiveness to leptin
stimulation in these obese animals, confirming the persistence
of peripheral leptin signaling in the immune cell compartment
(Souza-Almeida et al., 2020). Consistent results were obtained
in obese rats, strengthening the evidence that obesity impairs
the hypothalamic branch of leptin signaling, but not for the
peripheral immune–metabolic one (Haas et al., 2008). While
the biological mechanisms behind this phenomenon needs to be
further elucidated, it is conceivable that leptin may keep fuel-
ing the inflammatory status in obesity, thus further exacer-
bating dysmetabolic conditions and the development of CVDs.

Role of leptin in cancer
Leptin effect on tumor progression
Mounting evidence supports the notion that obesity increases
the risk of developing cancer and hampers therapeutic efficacy
in the clinic (Calle et al., 2003; Font-Burgada et al., 2016).
Pathological accumulation and dysfunction of adipose tissue,
and chronic inflammation—characteristics of obesity—are
well-recognized mediators of cancer. Dysmetabolic conditions
such as hyperglycemia and insulin resistance further promote
tumor growth (Deng et al., 2016). In addition, adipocyte-
secreted proinflammatory factors, including leptin, regulate
the expression of genes associated with cancer progression
(adhesion, invasion, angiogenesis, signal transduction, and
apoptosis), suggesting that adipocytes present in the tumor
microenvironment directly support its growth (Carter and Church,
2012; Cascio et al., 2008). LEPR is highly abundant in many tumors
as compared with normal tissues, e.g., leptin-responsive mammary
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carcinoma and gastrointestinal malignancies (Howard et al., 2010;
Ishikawa et al., 2004), and leptin signaling also synergizes with a
plethora of different oncogenes, cytokines, and growth factors that
impinge on the same signaling pathways (i.e., JAK-2/STAT, MAPK/
ERK1/2, and PI-3K/AKT-1; Sánchez-Jiménez et al., 2019).

Significant research effort has been dedicated to unveiling
the involvement of leptin in breast cancer (leptin involvement in
the pathogenesis of other cancer types has been reviewed else-
where; Garofalo and Surmacz, 2006). After correcting for body
weight differences, females have higher leptin levels than males
(premenopausal higher than post-menopausal), possibly related
to estrogen and androgen regulation (Rosenbaum et al., 1996).
The pronounced proliferative/anti-apoptotic response induced
by leptin entangled with the estrogen pathway highlights obesity-
associated hyperleptinemia as a risk factor for breast cancer
(Dubois et al., 2014). Notably, the association of leptin levels with
breast cancer risk persists after adjustment for obesity indices,
suggesting that leptin may exert an independent role in breast
tumorigenesis (Wu et al., 2009a).

Leptin expression in breast cancer, proposed as a relevant
biomarker for grade, stage, lymph node involvement, relapse,
and prognosis (Khabaz et al., 2017), was shown to regulate key
pathways of proliferation and inhibition of apoptosis, tumor
neo-angiogenesis, and invasion (Gonzalez et al., 2006; Knight
et al., 2011; Mauro et al., 2007; Nepal et al., 2015; Saxena et al.,
2008; Saxena et al., 2007; Fig. 2). This pro-tumorigenic action of
leptin, which reflects its general role as mitogenic and pro-
inflammatory factor, would make it a useful therapeutic target
in cancer if leptin did not exert important parallel effects on
anti-tumor immunity.

Leptin effects on tumor-infiltrating lymphocytes: Impact on
immunotherapy
Since leptin has a recognized role in activating effector immune
responses, it is reasonable to speculate that its action may en-
hance anti-cancer immunity. When oncolytic viruses (which
replicate in tumor cells and induce cellular lysis/death and im-
mune priming) were engineered to express leptin, their utili-
zation resulted in complete tumor clearance in tumor-bearing
mice, explained with the capability of leptin to reprogram
tumor-infiltrating T cell metabolism and effector function
(Rivadeneira et al., 2019). Leptin overexpression at the tumor
site was able to increase mitochondrial capacity and cellular
activation and induce an effector memory gene expression sig-
nature in tumor-infiltrating CD8+ T cells that was reflected in
successful tumor rejection upon rechallenge of tumor-bearing
survivors (Rivadeneira et al., 2019). These results underline the
validity of leptin up-regulation as a promising strategy for the
stimulation of anti-cancer T cell fitness and immunity (Harjes,
2019; Kroemer and Zitvogel, 2019; Fig. 2). However, conflicting
results showed that leptin is likewise linked to an impairment of
anti-tumor efficacy by up-regulation of programmed cell death
(PD)-1 on CD8+ T cells and subsequent decreased proliferation
and functional exhaustion in the tumor environment (Wang
et al., 2019; Zhang et al., 2020). Across multiple species and
tumor models, obesity-dependent leptin signaling appeared to
be involved in higher PD-1 expression and T cell aging on one

side, and augmented response to anti–PD ligand-1 checkpoint
blockade on the other. The observation provides a mechanism
by which this therapeutic strategy appears more efficient for
obese compared with nonobese cancer patients, augmenting
both their progression-free and overall survival (Wang et al.,
2019).

To summarize, while important information has been gained,
the balance of leptin effects on either immune anti-tumor ac-
tivity or cell exhaustion and the response to anti–PD ligand-1
therapeutics in different tumor types and/or contexts (such as
the patient’s metabolic background) still remain elusive.

Leptin-based therapeutics
Leptin agonism in genetic and acquired leptin deficiencies
The discovery of the hormone leptin was welcomed as a cure for
obesity (Campfield et al., 1995), especially since the proof of
concept of regulation of appetite and the correction of obesity
following daily injections of recombinant leptin in a child with
leptin deficiency (Farooqi et al., 1999). Subsequent administra-
tion of leptin to additional patients with congenital leptin defi-
ciency resulted in an increased ability to curb the wanting
response to well-liked foods and not only exerted beneficial ef-
fects on appetite, fat mass, metabolic parameters, and pubertal
development timing but also reversed T cell numeral and phe-
notypic abnormalities (Farooqi et al., 2007; Farooqi et al., 2002).

Besides genetic leptin deficiency, other conditions that war-
rant leptin replacement therapy are the lipodystrophy syn-
dromes. In both genetic and acquired lipodystrophies, the
pathological loss of adipose tissue leads to leptin reduction,
which in turn results in hyperphagia and metabolic dysregula-
tion (Garg, 2004). In these patients, the administration of
r-metHuLeptin significantly lowered daily caloric intake and
triglyceride levels while improving glycemic control (Diker-
Cohen et al., 2015; Oral et al., 2002). Recombinant leptin can
also come to the aid of women with hypothalamic amenorrhea
whose reproductive cycles have been interrupted by strenuous
exercise, eating disorders, or other social, environmental, and
psychological abnormalities (Yen, 1993). Leptin treatment was
shown to not only reactivate the menstrual cycle and correct
neuroendocrine abnormalities but also stimulate CD4+ T cell
survival and proliferation and thus sustain immune recon-
stitution, demonstrating a better recovery than that obtained
by changes in lifestyle (Chou et al., 2011; Matarese et al., 2013;
Welt et al., 2004).

While a note of caution comes from a study that reported
aggravation of concurring Crohn’s disease in a patient with ac-
quired generalized lipodystrophy upon leptin replacement
(Ziegler et al., 2019), other observations revealed instead that
this therapy did not sensibly alter the clinical course of auto-
immune disease or clinical efficacy of immunosuppressive
treatments (Lebastchi et al., 2015). Furthermore, the develop-
ment of T cell lymphoma in patients with lipodystrophy has
been associated with the higher risk for lymphoma in those
patients, rather than with the use of exogenous leptin (Brown
et al., 2016; Brown et al., 2018).

In conclusion, leptin replacement mostly causes adverse ef-
fects consistent with the biological function of the hormone such

de Candia et al. Journal of Experimental Medicine 7 of 17

Immunometabolism of leptin https://doi.org/10.1084/jem.20191593

https://doi.org/10.1084/jem.20191593


as weight decrease, hypoglycemia, and decreased appetite
(Brown et al., 2018; Oral et al., 2019), but it is very efficacious in
restoring conditions of leptin deficiencies. In addition, the con-
sistent and long-lasting decrease in food intake and weight loss
after leptin injection, not only in ob/ob but also in wild-type
animals (Pelleymounter et al., 1995), suggested the use of lep-
tin also to regulate weight in individuals without leptin-related
genetic disorders.

Leptin agonism in obesity
A very recent study has reported that short-term leptin ad-
ministration decreased food intake after fasting, while long-
term leptin treatment was able to reduce fat mass and body
weight and modulated levels of circulating free fatty acids in
lean normo- or mildly hypo-leptinemic individuals (Chrysafi
et al., 2020). However, unlike in leptin-deficient subjects, lep-
tin therapy failed to be a panacea in fighting obesity in subjects
with normal genes for leptin and its receptor but with high
leptin levels and leptin resistance. The significant increase of
serum leptin after r-metHuLeptin treatment in obese subjects
promoted the generation of anti-leptin antibodies and did not
lead to weight loss beyond that achieved by hypocaloric diet alone
(Shetty et al., 2011). Also, in the presence of obesity and T2D,
r-metHuLeptin reduced hemoglobin A1c albeit only marginally,
but did not modulate body weight or circulating inflammatory
markers, possibly due to the saturable nature of leptin signaling
pathways (Moon et al., 2011).

This emerging knowledge has prompted the use of leptin-
pathway modulators to overcome leptin resistance, such as is-
let amyloid polypeptide (IAPP or amylin), a pancreatic peptide
cosecreted with insulin, shown to restore leptin-dependent
STAT-3 phosphorylation in the hypothalamus (Roberts et al.,
1989; Roth et al., 2008), and glucagon-like peptide-1 receptor

agonists, able to promote leptin sensitivity and enhance leptin-
induced weight loss in mice (Clemmensen et al., 2014). None-
theless, more studies are needed to design optimal therapeutic
strategies to ameliorate the anorexic effects of leptin in obese
subjects.

Leptin modulation in T1D
T1D, characterized by insulin deficiency due to the autoimmune
destruction of pancreatic β-cells (Eisenbarth, 1986), is the pro-
totypical disease in which the contrasting beneficial and detri-
mental effects of leptin pleiotropy coexist. On the one side, a
spontaneous single-base mutation in the Lepr of nonobese dia-
betic (NOD) mice (designated as NOD/db-5J) resulted in obesity
and metabolic disturbances resembling a T2D syndrome but also
drastically hampered intra-islet insulitis, thus down-regulating
T1D autoimmunity and causing diabetic remission (Lee et al.,
2006; Lee et al., 2005). In these mice, the genetic blockade of
leptin signaling has an effect on disease onset andmostly reveals
the pro-inflammatory nature of leptin in NOD/wild-type mice.
Consistently, leptin administration early in life to prediabetic
NOD females significantly augmented IFN-γ production by T
cells and accelerated immune-mediated pancreatic destruc-
tion (Matarese et al., 2002).

On the other side, experimentally induced hyperleptinemia
in NOD mice blocked hyperglucagonemia, improved glucose
utilization in skeletal muscle, normalized hemoglobin A1c, re-
duced plasma and tissue lipids, and reversed insulin deficiency,
rescuing animals from ketoacidosis and death, since leptin is
very powerful in allowing glucose entrance in tissues (Wang
et al., 2010; Yu et al., 2008). The pleiotropic effects of leptin
on T1D onset and progression are depicted in Fig. 3, and the
summary of leptin-based therapeutic results is reported in
Table 2.

Figure 2. Divergent effects of leptin on tumor progression. In breast cancer, both circulating and paracrine leptin have a pro-tumor effect by enhancing cell
transformation, proliferation, neo-angiogenesis, epithelial-to-mesenchymal transformation (EMT), and metastatic evolution. At the same time, leptin is able to
activate the anti-tumor immune response by stimulating a metabolic switch and functional enhancement (secretion of cytokines and granzymes) of tumor-
infiltrating CD8+ T cells, able to kill tumor cells and hamper tumor progression. Schematic figures were created with images adapted from Smart Servier
Medical Art (http://www.servier.fr/servier-medical-art).
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The capability of leptin to correct metabolic imbalance in the
NOD mouse model led to consideration of this molecule in T1D
therapy (Buettner, 2010). Recently, r-metHuLeptin was re-
ported to reduce body weight and the daily insulin dose, al-
though modestly, but failed to improve glycemic control in
patients with T1D (Vasandani et al., 2017). The small number of
patients in this pilot study (five female and three male patients)
warrants studies of larger cohorts to draw more definitive
conclusions.

Leptin antagonism: Lights and shadows
In specific pathological conditions, antagonizing leptin signaling
can represent a therapeutic strategy to block leptin-mediated
detrimental enhancement of autoreactive immune cells (auto-
immune diseases) or tumor progression (Zabeau et al., 2014). In
1997, a prototypical antagonistic molecule, able to bind the re-
ceptor but knock out the signaling, led to a progressive increase
of body weight in wild-type mice, and was proposed as po-
tentially useful in the treatment of anorexia and cachexia
(Verploegen et al., 1997). Optimized antagonistic leptin mole-
cules have then been shown to attenuate inflammation and
clinical severity in mouse models of chronic liver fibrosis
(Elinav et al., 2009), chronic experimental colitis (Singh et al.,
2013), RA (Otvos et al., 2011b), EAE (De Rosa et al., 2006), and
SLE (Yu et al., 2013). Administration of a LEPR antagonist
peptide significantly extended the average survival time in a
mouse xenograft model of aggressive breast cancer (Otvos et al.,
2011a), while in rats with transplanted acute myelocytic leukemia,
a neutralizing anti-LEPR antibody halved the number of bone
marrow leukemic cells and significantly blocked tumor angio-
genesis (Iversen et al., 2002), demonstrating beneficial effects of
leptin-antagonistic approaches also in models of cancer.

Notwithstanding the encouraging results in animals, the
problematic drawback of the use of leptin antagonism to treat

autoimmune diseases and cancer (Ray and Cleary, 2010) is that it
also impacts the beneficial metabolic effects of leptin, mainly at
the central level of the hypothalamus, with an inevitable, un-
desired weight gain. Moreover, in the case of cancer, addi-
tional studies are necessary to reveal the balance between
the beneficial effects of leptin antagonism on slowing tumor
growth and the detrimental effects possibly exerted on anti-
tumor immunity.

Concluding remarks
Leptin may have been positively selected evolutionarily to
prompt the pursuit of food during periods of famine, and to
provide a defense against pathogens. As such, it may convey an
evolutionary advantage and/or promote fertility/reproduction
(Prentice et al., 2008). As for other pleiotropic genes, this se-
lective force may have worked for leptin-dependent advantages
at a young age irrespective of the disadvantages at older ages
(Williams, 1957). The current increase in human lifespan,
mainly attributable to the widespread availability of multiple
therapeutics, antibiotics, vaccines, and hygiene measures, has
uncovered the long-term deleterious effect of leptin on aging,
inappropriate feeding states, and the development of metabolic
diseases. Furthermore, the contemporary abundance of food
and the alarming obesity epidemic in the Western world have
further promoted the detrimental action of leptin on the de-
velopment of autoimmune diseases and cancer. While leptin
administration remains the gold standard therapy for leptin-
deficient individuals, its success as a weight-regulator drug in
obesity is dramatically hampered by leptin resistance. Fur-
thermore, leptin pleiotropy makes it a powerful molecule on a
biological perspective but a hurdle for its therapeutic modula-
tion; all leptin modulation strategies will thus need to dissect its
beneficial versus detrimental effects in the specific pathological
contexts.

Figure 3. Leptin as pro-inflammatory molecule but able to reduce hyperglycemia in T1D. In NOD mice (disease model for human T1D), both circulating
and paracrine leptin have a pro-autoimmune detrimental function, since they are able to stimulate the growth and the function of pancreatic islet infiltrating
T cells, fueling local inflammation and β-cell destruction. In NOD mice at later stages of diabetic progression, the beneficial metabolic effects of leptin (en-
hancement of glucose entrance and utilization by peripheral tissues and decrease of liver gluconeogenesis) may take over, thus reducing hyperglycemia.
Schematic figures were created with images adapted from Smart Servier Medical Art (http://www.servier.fr/servier-medical-art).

de Candia et al. Journal of Experimental Medicine 9 of 17

Immunometabolism of leptin https://doi.org/10.1084/jem.20191593

http://www.servier.fr/servier-medical-art
https://doi.org/10.1084/jem.20191593


Acknowledgments
G. Matarese is supported by Fondazione Italiana Sclerosi Mul-
tipla (grants 2016/R/18 and 2018/S/5), Progetti di Rilevante In-
teresse Nazionale (2017 K55HLC 001), and the ItalianMinistry of
Health (RF-2019-12371111). P. de Candia is funded by Fondazione
Italiana Sclerosi Multipla (grant 2018/R/4). This work has
also been supported by the Italian Ministry of Health Ricerca
Corrente to Istituto di Ricovero e Cura a Carattere Scientifico
MultiMedica.

Author contributions: G. Matarese conceived the original
idea, wrote the initial draft, provided oversight and leadership
responsibility for this paper, and edited the manuscript. P. de
Candia collected the literature to be cited, wrote the manuscript,
and prepared the figures. A. La Cava substantially edited the
manuscript and gave key advice. F. Prattichizzowrote part of the
initial draft, contributed with useful discussions, and reviewed

the final manuscript. S. Garavelli helped with preparing the
tables and the figures and revised the final draft. C. Alviggi
contributed to the initial draft and revised the final manu-
script. All authors gave consent to the final version of the
work.

Disclosures: C. Alviggi reported personal fees from Merck out-
side the submitted work. G. Matarese reported grants from
Merck, personal fees from Merck, grants from Biogen, personal
fees from Biogen, personal fees from Roche, personal fees from
Novartis, and grants from IBSA outside the submitted work. No
other disclosures were reported.

Submitted: 18 December 2020
Revised: 10 March 2021
Accepted: 11 March 2021

Table 2. Effects of exogenous leptin replacement or leptin antagonism in animal models and in human diseases

Leptin agonism

Background Features Clinical outcome Reference

Mouse

ob/ob Obesity, excessive food intake, infertile Decrease of body weight, food intake, serum insulin
and glucose level; normalization of body fat
percentage; increase of total activity and lean mass

Pelleymounter et al.,
1995; Halaas et al., 1995

db/db Obesity, excessive food intake, infertile,
hyperglycemia

Not responding Halaas et al., 1995;
Farooqi et al., 1999

Human

Congenital leptin
deficiency

Early-onset obesity, hyperphagia, alteration of the
immune function

Weight loss, decreased basal metabolic rate, increased
physical activity level, increased basal and stimulated
serum gonadotropin concentration

Farooqi et al., 1999

Acquired leptin
deficiency
(lipodystrophy)

Generalized lack of body fat, insulin resistance,
hypertriglyceridemia, polycystic ovary syndrome

Decreased average triglyceride level, glycosylated
hemoglobin, and plasma glucose level; improved
metabolic control

Oral et al., 2002; Santos
and Cortés, 2020

Mutation in the LEPR
gene

Early-onset obesity, hyperphagia, impaired
pubertal development, reduced secretion of
growth hormone and thyrotropin

Not responding (other possible therapies: bariatric
surgery or setmelanotide treatment)

Clément et al., 1998

General obesity Dysmetabolic syndrome, leptin resistance Not responding

Leptin antagonism (rodent studies only)

Pathology Antagonizing molecule Clinical outcome Reference

Inflammation and Autoimmunity

Chronic liver fibrosis Mutated leptin Reduced IFN-γ levels, attenuated liver fibrosis,
improved survival

Elinav et al., 2009

Chronic experimental
colitis

Mutated leptin Reduced systemic and mucosal pro-inflammatory
cytokines and clinical severity; increased T reg cell
number

Singh et al., 2013

EAE Neutralizing leptin antibody or soluble LepR
chimera

Slowed disease progression, reduced relapses,
FOXP3+CD4+ T cell induction and pro-inflammatory
T cell proliferation blockade

De Rosa et al., 2006

SLE Neutralizing leptin antibody Hampered pro-inflammatory Th17 cell response Yu et al., 2013

Cancer

Aggressive breast
cancer

LepR antagonist Increased average survival time Otvos et al., 2011a

Acute myelocytic
leukemia

Neutralizing LepR monoclonal antibody Decreased leukemic cell number and angiogenesis
within the bone marrow

Iversen et al., 2002
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