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Abstract 

It is well known that any planar graph contains at most 0( n) com­
plete subgraphs. We extend this to an exact characterization: G occurs 
0( n) times as a subgraph of any planar graph, if and only if G is three­
connected. Even more generally, G occurs O(n) times as a subgraph 
of the I<b,cfree graphs, b 2: c, if and only if G is c-connected; G occurs 
0( n) times as a subgraph of the Ka-free graphs if and only if G is 
(a - 1)-connected. Our results use a simple Ramsey-theoretic lemma 
that may be of independent interest. 
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1 Introduction 

It follows from the sparsity of planar graphs that each such graph contains 
at most O(n) complete subgraphs ](3 and K4 [6). All cliques in a planar 
graph can be listed by an algorithm with O(n) worst-case time complexity [3, 
4, 6). Enumeration of subgraphs has a number of uses, including a recent 
application in testing inscribability [5). 

These results naturally raise the question of determining which other 
planar graphs occur 0( n) times as subgraphs of planar graphs. A necessary 
condition is that the subgraph G be 3-connected: otherwise, G can be split 
into two parts A and B by a separating pair of vertices, and by connecting 
many copies of A and B at the same two vertices, we find a family of planar 
graphs in which G occurs D( n2 ) times as a subgraph. 

Our main result is that this is also a sufficient condition. Every three­
connected planar graph can only occur O(n) times as a subgraph of other 
planar graphs. 

We extend this to minor-closed families of graphs. As is well known, 
the planar graphs are exactly those for which neither K 3 ,3 nor Ks is a mi­
nor, and our main result for planar graphs appears as a corollary of this 
generalization. We first investigate graphs for which some complete bipar­
tite graph Kb,c (with b 2:: c) is not a minor. We show that the subgraphs 
occurring 0 ( n) times in this family of graphs are exactly the c-connected 
graphs. We extend this to other minor-closed families of graphs; in partic­
ular the subgraphs occurring O(n) times in the Ka-free graphs are exactly 
the (a - 1 )-connected graphs. Thus in the planar case it is the absense of 
K 3 ,3 rather than Ks which is decisive in our characterization. 

Our proofs use a simple Ramsey-theoretic lemma that may be of inde­
pendent interest. In English, it state~ that if a set is formed as the union 
of a large number of k-tuph~s, then we can find a smaller set of tuples for 
which each member of the set always appears in the same tuple position. 
In the language of graph theory, if many copies of a subgraph occur in a 
larger graph, we can find a smaller number of copies of the subgraph, so 
that among those copies each vertex of the larger graph appears in only one 
way as a vertex of the subgraph. 

Finally, we discuss algorithmic enumeration of subgraphs. In some cases, 
we are able to make our results constructive, so that the copies of a given 
subgraph can be enumerated in 0 ( n) time, matching the previous results 
for cliques in planar graphs. 
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2 A Ramsey-theoretic lemma 

Given a set S,- denote the ordered k-tuples of members of S by Sk. We do 
not allow any tuple to contain the same element in more than one position. 
Each tuple can be interpreted as a function from the integers 1 ... k onto 
the set S, such that for any tuple t, and 1 s i < j s k, t(i) -::j:. t(j). 

Suppose we have a collection T of k-tuples, T C Sk. We say T is 
coherent if each member of S appears in at most a single position of the 
k-tuples. In other words, for any distinct tuples t and t', and for all integers 
1 s i < i' s k' t( i) :/= t' ( i'). 

As we now show, any set of tuples has a large coherent subset. 

Lemma 1. Suppose we are given a set T containing at least k! 2mk k­
tuples. Then there is a coherent subset T' C T containing at least m tuples. 

Proof: We use induction on k. Any set of I-tuples is coherent. 
First assume some element x E S is contained in at least k! 2mk-l /k of 

the k-tuples. Then there is a collection of (k - 1)!2mk-l of those tuples 
for which x always appears in some particular position, say position k. By 
ignoring this shared position, we construct a collection of ( k - 1 )-tu pl es 
which by induction must have a coherent subcollection of size m. Restoring 
the shared positions gives our coherent subset T'. 

Otherwise, each element is in fewer than k! 2mk-l /k of the tuples. Then 
we can repeatedly pick a tuple t, add it to T', and throw away the tuples 
that have an element in common with t. By the time we run out of tuples 
to pick, we will have added m tuples to T'. D 

3 Complete bipartite minors 

We first show that not too many copies of a highly connected subgraph can 
share the same low-degree vertex, unless the graph contains a large complete 
bipartite graph as a minor. The bound on the number of times the subgraph 
can occur will then follow from the sparseness of minor-free graphs. 

Lemma 2. Let G be a c-connected graph with k vertices. Suppose that 
k! 2bk2 dck

2 
copies ofG are subgraphs of some larger graph H, and that some 

vertex x (with degreed in H) is contained in each of these copies ofG. Then 
H contains a complete bipartite graph Kb,c as a minor. -
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Proof: By Lemma 1, we can find bkdck copies of G such that each vertex 
of H is used in at most one way as a vertex of G. We throw away the 
remaining copies of G. 

We now have a one-to-many correspondence between the vertices of G 
and those of H. Suppose each vertex of G corresponds to fewer than bdc 
different vertices of H. Each copy of G could then be found by choosing one 
such vertex of H for each of the k vertices of G, so there would be fewer than 
(bdc)k possible copies of Gin the coherent set, a contradiction. Therefore we 
can find some vertex y of G that corresponds to at least (~) ( b - 1) + 1 < bdc 
vertices of H. 

Since G is c-connected, we can find c vertex-disjoint paths in G from y 
to x. Partition the remaining copies of G into equivalence classes according 
to the edges in H adjacent to x used by these paths. There are (~) such 
classes, so some class uses at least b copies of vertex y. Unless b = 1, y 
will not be adjacent to x in G; if b = 1 the lemma is trivially solved by the 
neighbors of any vertex. We select the copies of a in this class, and throw 
away the remaining copies. 

We then form a minor of H by removing all edges not corresponding 
to portions of these vertex-disjoint paths, and contracting all remaining 
edges except those adjacent to x or to copies of y. Because the paths are 
vertex-disjoint in G, and because we have selected a coherent collection of 
subgraphs, the images of the paths in II are also vertex-disjoint. Thus the 
contraction process described above finds a minor in which x is connected 
to c vertices, which are also each connected to b - 1 copies of y. This gives 
us Kb,c as a minor of H. D 

Theorem 1. Let Fb,c be the family of graphs in which K b,c does not occur 
as a minor, and let G E Fb,c be c-conp.ected. Then there is some constant 
K = K( G) such that, for any n-vertex graph H E Fb,c, there can be at most 
Kn copies of G as a subgraph in H. 

Proof: Since Fb,c is a minor-free family of graphs, the graphs in Fb,c are 
sparse (any such graph has 0( n) edges). Thus we can find a vertex x in H 
which has degree at most some constant d = 0(1). By Lemma 2, there are 
at most 0(1) copies of G as a subgraph of H containing vertex x. Let k 

denote this number of copies. Then by induction there are at most K.( n - 1) 
copies of G in the graph H' formed by removing x from H. Thus there are 
at most Kn copies in all. D 
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4 Other forbidden minors 

We now extend this characterization to more general minor-closed families 
of graphs. 

Theorem 2. Let S be a set of c-connected graphs containing some com­
plete bipartite graph Kb,c· Denote by Fs the family of graphs not containing 
any member of Sas a minor. Then a graph GE Fs occurs O(n) times as a 
subgraph of members of Fs if and only if G is c-connected. 

Proof: If G is c-connected, the result follows from Theorem 1 and the fact 
that Fs is a subset of Fb,c. 

If G is in Fs but not c-connected, it can be separated by some ( c - 1 )­
tuple of vertices. Let A and B be two components of the separated graph. 
Without loss of generality, A, B, and G - A- B are all connected (otherwise 
we could find a smaller separating set). Then we can form a family of graphs 
in which G occurs n( n2 ) times, by connecting many copies of A and B to 
the same ( c - 1)-tuple. Any c-connected minor M of a graph in this family 
can contain vertices from only one of A, B, or G - A - B. Thus M consists 
of a minor of A, B, or G - A - B, together with possibly some extra edges 
connecting vertices in the (c - 1)-tuple. But any such graph is also a minor_ 
of G, and hence cannot be in S. D 

Corollary 1. Let Fa be the family of graphs in which the complete graph 
Ka does not occur as a minor. Then a graph G E Fa occurs 0( n) times as 
a subgraph of members of Fa if and only if G is (a - 1)-connected. 

Proof: Let c =a - 1, let b = (~) + 1, and let S = {Fa,Fb,c}· Then Ka is 
a minor of Kb,c, so Fa = Fs and the result follows from Theorem 2. D 

Corollary 2. An outerplanar graph G occurs O(n) times as a subgraph of 
all outerplanar graphs if and only if G is biconnected. 

Proof: Apply Theorem 2, with S = {K2,3, K4}. D 

Corollary 3. A planar graph G occurs 0( n) times as a subgraph of all 
planar graphs if and only if G is 3-connected. 

Proof: Apply Theorem 2, with S = {K3
1
3, ](5}. D 
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5 Algorithms 

We now discuss algorithms for enumerating the occurrences of a given sub­
graph. Clearly, for any fixed subgraph G, there is a polynomial time algo­
rithm for enumerating its occurrences: if there are k vertices in G, simply 
test all G) = O(nk) possible choises for those vertlces. We are interested in 
situations in which the occurrences can be listed more efficiently, in linear 
tirrie (matching our bounds on the occurrences of G). 

Such algorithms were already known for enumerating copies of the com­
plete graphs K3 and K4 as subgraphs of planar graphs. More generally, in 
any family of graphs with bounded arboricity, all clique subgraphs can be 
listed in linear time (3, 4). 

The family of Ki,b-free graphs is also relatively easy. Since these graphs 
have maximum vertex degree b - 1, there are fewer than bk vertices within 
distance k' of any given vertex. The occurrences of any connected subgraph 
G can therefore be enumerated in time O(bkn) = O(n). 

The first interesting cases are the families of K 2,b-free graphs. Theo­
rem 1 shows that in any such family, the subgraphs appearing 0( n) times 
are the biconnected graphs. The biconnected K 2,2-free graphs are simply 
the triangles, which can be enumerated using the clique algorithms cited 
above. We next consider K 2,3-free graphs. The biconnected components of 
these graphs are either outerplanar graphs, or copies of K 4 • Thus we can 
enumerate any biconnected subgraph of such a graph, if only we can do so 
for outerplanar graphs. 

Theorem 3. Let G be biconnected. Then there is a linear-time algorithm 
which enumerates the occurrences of Gin any outerplanar graph. 

Proof: Any biconnected outerplanir graph is Hamiltonian, and adding 
extra edges to a graph only makes it easier to enumerate its occurrences, so 
we can assume without loss of generality that G is a simple cycle Ck. Let 
H be an outerplanar graph with n vertices, for which we are to enumerate 
the occurrences of G as a subgraph. 

Any occurrence of G consists of the vertices in a union of cycles of H. 
To find an occurrence of G, we proceed as follows. We start by choosing a 
single cycle in H. Then as long as the current subgraph is a cycle shorter 
than G, we choose an edge of the subgraph and replace it by the adjacent 
cycle. There are at most k edges to be replaced at each step, and each 
step increases the cycle length by at least one, so there are O(kk) ways to 
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augment the initially chosen cycle into an occurrence of G. Thus the total 
time to enumerate the occurrences of G is O(kkn) = O(n). D 

Corollary 4. Let G be biconnected. Then there is a linear-time algorithm 
which enumerates the occurrences of G in any K2,3-free graph. D 

Corollary 5. Let G be a wheel Wk. Then there is a linear-time algorithm 
which enumerates the occurrences of G in any K1,2,3-free graph, and in 
particular in any K3

1
3-free or planar graph. 

Proof: Wk consists of a single "hub" vertex connected to each vertex of 
a cycle Ck. Let H be a K1,2,3-free graph. We independently enumerate, for 
each vertex x of H, the occurrences of Wk for which x corresponds to the 
hub. This can be done by finding all occurrences of Ck in the neighbors 
of x. But the induced graph of these neighbors must be K 2,3-free, as any 
K 2 ,3 minor together with the hub vertex would form a K 1,2,3 in the original 
graph. So by Corollary 4 we can find all such occurrences in time linear in the 
number of neighbors. The time to find all occurrences of Wk is proportional 
to the sum of the degrees of each vertex of H, which is 0 ( n). D 

This result generalizes the enumeration of cliques in planar graphs, since 
the only such cliques that can occur are K 3 and K 4 , which can alternately 
be interpreted as wheels W 2 and W3. , 

We would like to be able to extend our results further, at least to the 
enumeration of all 3-connected planar subgraphs. We have been unable to 
achieve such a result. However Corollary 5 is promising, as wheels figure 
prominently in Tutte's characterization of triconnected graphs [7]. 

6 Conclusions 

We have described a number of Circumstances in which some subgraph oc­
curs 0( n) times in the graphs of a minor-closed family. We have also de­
scribed algorithrn'.s that, in a more limited class of situations, can efficiently 
enumerate the occurrences of a given subgraph. 

A number of directions for possible generalization suggest themselves. 
First, we would like to extend our algorithms so that we can enumerate 
the occurrences of a subgraph G whenever G is guaranteed to have 0( n) 
occurrences. This would entail a new, constructive proof of Theorem 1. 
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Second, we would like to characterize the subgraphs occurring few times 
in minor-closed families other than those described in Theorem 2. In par­
ticular, it seems the forbidden minors for graphs of bounded genus include 
graphs that are not 3-connected, so our characterization does not apply to 
these families. 

Third, perhaps we should investigate families of graphs that are not 
closed under minors. Any family of sparse graphs (more precisely, graphs 
with bounded arboricity) will contain only O(n) cliques. But perhaps some 
other subgraphs occur few times. For instance, what are the subgraphs 
occurring few times in the k-page graphs [2]? 

Finally, it might be interesting to characterize graphs occurring a num­
ber of times which is a non-linear function of n. For the families for which 
Theorem 2 applies, we can demonstrate a gap in the possible such functions: 
ariy subgraph G occurs n(n) times, and the theorem tells us that G either 
occurs O(n) or f2(n2) times. For other families, there may be graphs that 
occur only 0(1) times (indeed, if F excludes a minor consisting of k disjoint 
copies of G, then G occurs at most k - 1 times in graphs of family F). If G 
is a tree with k leaves (other than a single edge), then it occurs 0( nk) times 
as a subgraph in other trees. Perhaps for planar graphs, a similar charac­
terization can be described in terms of the tree of triconnected components. 
For sparse graphs (graphs with O(n) edges) there can be at most O(n312) 

triangles [1], and more generally 0( nc/2) complete subgraphs Kc· Are there 
minor-closed families, and subgraphs iri those families, such that the func­
tion describing the number of occurrences is similarly non polynomial? 
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