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Behavioral/Cognitive

Idiosyncratic Patterns of Representational Similarity in
Prefrontal Cortex Predict Attentional Performance

Jeongmi Lee and X Joy J. Geng
Center for Mind and Brain, University of California, Davis, Davis, California 95618

The efficiency of finding an object in a crowded environment depends largely on the similarity of nontargets to the search target. Models
of attention theorize that the similarity is determined by representations stored within an “attentional template” held in working
memory. However, the degree to which the contents of the attentional template are individually unique and where those idiosyncratic
representations are encoded in the brain are unknown. We investigated this problem using representational similarity analysis of human
fMRI data to measure the common and idiosyncratic representations of famous face morphs during an identity categorization task; data
from the categorization task were then used to predict performance on a separate identity search task. We hypothesized that the
idiosyncratic categorical representations of the continuous face morphs would predict their distractability when searching for each target
identity. The results identified that patterns of activation in the lateral prefrontal cortex (LPFC) as well as in face-selective areas in the
ventral temporal cortex were highly correlated with the patterns of behavioral categorization of face morphs and search performance that
were common across subjects. However, the individually unique components of the categorization behavior were reliably decoded only
in right LPFC. Moreover, the neural pattern in right LPFC successfully predicted idiosyncratic variability in search performance, such that
reaction times were longer when distractors had a higher probability of being categorized as the target identity. These results suggest that
the prefrontal cortex encodes individually unique components of categorical representations that are also present in attentional tem-
plates for target search.

Key words: attentional template; fMRI; individual difference; prefrontal cortex; RSA; visual search

Introduction
Efficiently allocating attention to currently relevant information is
important for the survival of the observer. A consensus among the-
ories of attention is that the contents of the “attentional template,”
the collection of task-related features held in working memory

(Bundesen, 1990; Carlisle et al., 2011), determine the efficiency of
attentional allocation by adjusting sensory gain to distinguish target
features from nontarget features (Wolfe, 1994; Desimone and Dun-
can, 1995; Moore and Egeth, 1998; Martinez-Trujillo and Treue,
2004; Malcolm and Henderson, 2009; Reynolds and Heeger, 2009;
Hout and Goldinger, 2015). Models of attention frequently assume
that target information in the attentional template is accurate and
uniform across individuals and have not addressed how individual
differences in the precision of the attentional template affect selec-
tion. However, the presence of considerable individual differences in
the quality of the attentional template should not be surprising, since
everyone’s representation of the world is uniquely shaped by per-
sonal experiences and preferences (Charest et al., 2014).

Understanding individual variation in the precision of the
template is critical for models of attention, because the precision
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Significance Statement

Everyone’s perception of the world is uniquely shaped by personal experiences and preferences. Using functional MRI, we show
that individual differences in the categorization of face morphs between two identities could be decoded from the prefrontal cortex
and the ventral temporal cortex. Moreover, the individually unique representations in prefrontal cortex predicted idiosyncratic
variability in attentional performance when looking for each identity in the “crowd” of another morphed face in a separate search
task. Our results reveal that the representation of task-related information in prefrontal cortex is individually unique and pre-
served across categorization and search performance. This demonstrates the possibility of predicting individual behaviors across
tasks with patterns of brain activity.
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defines the effective “similarity” of stimuli to the target. Decades
of behavioral research have shown that search performance is
critically dependent on the similarity between objects. For exam-
ple, objects that are physically more similar to the target capture
attention and interfere more with search (Treisman and Gelade,
1980; Duncan and Humphreys, 1989; Nagy and Sanchez, 1990;
Folk et al., 1992). Likewise, objects that share the same category
label with the target are perceived to be more similar and get
prioritized (Nosofsky, 1986; Goldstone et al., 2001; Yang and
Zelinsky, 2009; Althaus and Westermann, 2016). The importance
of considering individually unique representations of similarity is
illustrated by previous results showing that psychological repre-
sentations of similarity are not entirely determined by physical
properties, but are also dependent on idiosyncratic experiences
and preferences (Alexander and Zelinsky, 2011; Kriegeskorte and
Mur, 2012; Mur et al., 2013; Hout et al., 2016). For example, a
previous study by Charest et al. (2014) found individually unique
representational geometries for complex objects in human ven-
tral temporal cortex (VTC) that accounted for idiosyncratic dif-
ferences in the similarity judgments. Interestingly, they found
that individual differences were greater for personally meaning-
ful objects than for unfamiliar objects.

Despite clear evidence for individual differences in repre-
sentations of similarity, the neural substrates of encoding the
individually unique aspects of the attentional template remain
unclear. Previous functional magnetic resonance imaging
(fMRI) studies have found representations for object catego-
ries (Martin et al., 1996; Kanwisher et al., 1997; Haxby et al.,
2001; Peelen et al., 2009) and individual exemplars within the
same category (Kriegeskorte et al., 2007; Kay et al., 2008) in the
ventral temporal cortex. However, more abstract and ad hoc
categorical task representations that are used for behavioral
decisions have been observed in the posterior parietal cortex
and prefrontal cortex (Freedman and Assad, 2006; Feredoes et
al., 2007; Gazzaley and Nobre, 2012; Lee et al., 2013; Sarma et
al., 2016). The different representations presumably reflect
different stages of storage and use of information for task
goals, but it remains unknown which of these brain areas en-
code the idiosyncratic representations that can predict the
degree of competition between objects during search.

Here, we used the representational similarity analysis (RSA) of
fMRI data to test two questions regarding the relationship be-
tween category representations in the brain and attentional
performance: (1) Where in the brain are the common and indi-
vidually unique category representations encoded? (2) Can idio-
syncrasies in the representational geometries of stimuli predict
individually unique variance in an independent search task? We
hypothesized that measurements of the unique and common as-
pects of stimulus representations could be used to predict the
precision of the attentional template and the efficiency of search
performance.

Materials and Methods
Participants
Fourteen subjects (nine females) ranging in age from 19 to 31 (mean age,
22.57) participated in a 2 h session and received monetary compensation.
Data from one participant were excluded from analyses due to poor
behavioral performance [lower than 80% accuracy rate, slower than 1500
ms mean reaction time (RT)], which resulted in a final group of 13
subjects (nine females). All had normal or corrected-to-normal vision
and no neurological or psychiatric history. Informed consent was ob-
tained according to procedures approved by the Institutional Review
Board of the University of California, Davis.

Apparatus
Stimuli were presented on a Dell 2408WFP monitor using Presentation
software (version 16.5; http://neurobs.com). For the identity search task
outside the scanner, participants viewed the monitor from a distance of
60 cm in a dimly lit room. To make sure that participants fixated on the
center throughout the experiment, eye position data were collected using
an Eyelink1000 version 4.56 (SR Research; sampling rate, 500 Hz), initi-
ating each trial only if 100 ms of continuous central fixation was detected.

Identity categorization task
An identity categorization task (Fig. 1A) was performed inside the scan-
ner to obtain each individual’s representational geometries for the task
stimuli. The initial stimuli consisted of four portraits of famous celebri-
ties (two males, two females). The pictures were gray scaled, cropped,
resized into 220 � 250 pixels, and divided into two gender-matched
pairs. The faces in each pair were then morphed into five images
(face100/0, face75/25, face50/50, face25/75, face0/100) that represented gradual
transitions from one original face to the other, in steps of 25% (0 to
100%), using Fantamorph 5.4.5 (Abrosoft). In addition to the face
morphs, two nonface stimuli of the same size were also included in the
stimulus set: an achromatic picture of a house and a scrambled image,
which was created by scrambling 10 � 10 pixel patches of the intact
face50/50 such that no facial features were discernible. Thus, there were
two stimulus sets (the male set and the female set), with each set contain-
ing five face morphs and two nonface stimuli. It was randomly chosen
which stimulus set would be presented to each subject in the identity
categorization task.

On each trial, one image from the stimulus set was shown in the center
of the screen for 1000 ms, followed by a fixation display for a jittered
duration between 2000 and 9000 ms (mean, 4000 ms). Participants clas-
sified the stimulus into three possible categories: Face morphs were
categorized as one identity or the other by pressing button 1 or 2, respec-
tively. A house or a scrambled image was categorized as a nonface by
pressing button 3. Participants held the button box in their right hand
and pressed the three buttons with their index, middle, and ring fingers,
respectively. Each scan contained 28 trials (four repetitions of each of the
seven stimuli) presented in a random order, and a total of 12 scans were
obtained. �-Coefficients were extracted by using a general linear model
and a design matrix that modeled the response to the stimulus onset
event.

We chose a small set of face morphs, instead of a larger set of different
classes of stimuli, for the following reasons: First, our study involved
pinpointing the sources of idiosyncratic variations. Since the RSA calcu-
lates correlation coefficients based on all possible pairs of stimuli, blind to
the particular pairs of stimuli that determine the observed correlation
coefficients, having a large set of stimuli would have made it difficult to
identify the source of individually unique representational variation.
Second, we used the same stimuli in an independent search task as target-
and-distractor pairs. Thus, a large set of stimuli in the categorization task
would have exponentially increased the pairs of stimuli required in the
search task.

Identity search task
An identity search task (Fig. 1B) was performed outside the scanner to
observe how the representational similarity structure obtained in the
identity categorization task influenced the efficiency of attentional selec-
tion. The five face morphs each participant saw in the identity categori-
zation task were used as the target and distractor stimuli. On each trial, a
cue face (one of the two original 100% faces) was presented on the center
of the screen for 1000 ms, followed by a fixation display of 1000 ms.
During this time, the cue face was presumably stored as an attentional
template within working memory. Then, the target and a distractor face
were presented bilaterally for 500 ms, requiring participants to discrim-
inate the two faces and move spatial attention to the location of the target.
The target face was the same face as the cue face, and the distractor face
was one of the other face morphs. The physical similarity of the distractor
face to the target was manipulated by the percentage of the target face
within the morph (75, 50, 20, and 0%). Next, two probes were presented
bilaterally for 100 ms, followed by a fixation display until response. There
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was a hole inside each probe, with four possible states: the hole in the
probe at the cued (target) location was either up or down; the hole in the
distractor probe was either right or left. The task was to report the loca-
tion of the hole in the probe that appeared at the cued location by press-
ing “k” or “m” on a keyboard to indicate up or down, respectively. This
enabled us to make sure that participants’ responses were based on the
characteristics of the probe at the cued location, rather than the probe at
the opposite location, while equating for low-level perceptual effects.
Since the probe was presented very briefly (100 ms), it was difficult to do
the task correctly unless participants covertly attended to the cued loca-
tion in advance. Thus, participants were specifically instructed to move
their attention to the location of the target face while fixating on the
center fixation cross to do the task successfully.

Event-related fMRI
MRI scanning was performed on a 3-Tesla Siemens Skyra scanner with a
32 channel phased-array head coil at the imaging research center at the
University of California, Davis. A T2-weighted echoplanar imaging (EPI)
sequence was used to acquire whole-brain volumes of 60 axial slices of 2.2
mm thickness (TR, 1805 ms; TE, 28 ms). Each scan acquired 86 volumes
(155.2 s) and consisted of 28 experimental trials (jittered interstimulus
interval with a mean of 4000 ms). A total of 12 scans were acquired to
decrease scan specific noise in the analyses. An MPRAGE T1-weighted
structural image (TR, 1800 ms; TE, 2.97 ms; 1 � 1 � 1 mm 3 resolution;
208 slices) was acquired for visualizing the associated anatomy. The
structural image was coregistered to the mean of the EPI images. Image
data were analyzed using SPM12 (Wellcome Trust Centre for Neuroim-
aging). The EPI volumes were spatially realigned and unwarped and then
normalized to a standard MNI reference brain.

Representational similarity analysis
We used RSA (Kriegeskorte et al., 2008; Kriegeskorte and Kievit, 2013) to
obtain behavioral and neural representational geometries of each indi-
vidual. Behavioral representational geometries were measured by con-
structing a representational dissimilarity matrix (RDM) from identity
categorization responses. The value in each cell in the behavioral RDM
was calculated by the absolute difference in mean categorization re-
sponses between each pair of stimuli, with the constraint that the differ-
ence between face and nonface stimuli was normalized to 1. To localize

brain regions whose intrinsic representation structure resembles that of a
behavioral RDM, we did a whole-brain searchlight analysis using the RSA
toolbox (Nili et al., 2014). A spherical searchlight with a radius of 8 mm
(257 voxels) was moved throughout the brain. At each searchlight loca-
tion, the neural activity pattern for each of the seven stimuli were Pearson
product-moment correlated with that for each of the seven stimuli, cre-
ating a 7 � 7 brain RDM. This brain RDM was compared with the
individual’s 7 � 7 behavioral RDM using spearman correlation. The
resulting correlation coefficient was converted to a z-value using Fisher
transformation to conform to the statistical assumptions (normality)
required for second-level parametric statistical tests. The results
formed a continuous statistical whole-brain map reflecting how well
the behavioral model fits in each of the local brain regions. Each
subject’s Fisher-transformed whole-brain map was submitted to a
second-level one-sample t test to identify voxels in which the corre-
lation value was greater than zero. The resulting statistical map was
thresholded at the cluster level of p � 0.05, FWE corrected for whole-
brain for multiple comparisons.

The resulting clusters from the group analysis served as candidate
brain regions for encoding task-relevant representations. To select re-
gions of interest (ROIs) that best reflect each individual’s idiosyncratic
patterns of activity, we used each of the clusters as a mask and did a
second searchlight analysis for each subject, moving a spherical search-
light with a radius of 8 mm looking for a location inside the mask that had
the highest correlation with the individual’s behavioral RDM with only
five face stimuli (5 � 5 behavioral RDM). We used the behavioral RDM
with only face stimuli, since we were interested in identifying each indi-
vidual’s anatomical locations that best reflected the individual’s dissoci-
ations between two identities, rather than dissociations between face
versus nonface stimuli. As a result, each individual had an ROI with
varying center coordinates within a group cluster, from which brain
RDMs were constructed. It is possible that selection of the ROIs was
driven mostly by variation between faces and nonfaces, rather than vari-
ation between identities, since the face stimuli were more similar to each
other than to nonfaces. The more specific hypothesis that the individual
ROIs would reflect identity categorization was tested separately by cor-
relating behavioral and brain RDMs with only five face stimuli within
and between subjects (see “Statistical analyses” below).

Figure 1. Experiment design. A, Sequence of events and time course of a trial in the identity categorization task. Participants categorized each stimulus as identity 1, identity 2, or nonface. In each
stimulus set, there were five face morphs gradually changing from one identity to another in steps of 25% and two nonface stimuli (a house and a scrambled image). The original photo information
is as follows: identity 1 is from https://www.flickr.com/photos/smithsoccasional/1459959152/in/photolist-3e1EZw-31r2eh-fPRHKv-eboNeN-5sme2p-fLrc1j-3a7DcH-eWW4G4-dx3n1K-5ArYqi-
6sXPNu-ebi7SH-4eU7HD-eoeKLj-akQ3Gz-dE3aNz-avwXBU-dVJQXS-cde57w-8kyVuH-59Wna-9rT5Q5-nPUdVa-fPRGBD-dBoD5d-rmPfSB-9AN59Z-afGzLV-EKfYa-bVH3L5-2j5zJE-bjqWAK-5nQ6NB-
an64PA-zLxuH-5RE5cg-AJieAU-65VcvS-633FZc-bsBeUu-ETb4c-yW7Htq-6jFfEJ-jEEjs-dVtkCQ-BtpV5c-7GZaSi-pBoGyj-9qpQj5-gLpqq (creator, L. Smith; license, https://creativecommons.org/
licenses/by-nc-sa/4.0/); identity 2 is from an online album from drcliffordchoi (no longer available online); the house is from https://www.flickr.com/photos/broc7/108307858/in/photolist-
az79S-6r3VGD-roUZGa-6QqrGr-3ZyA9Z-bx5XyL-9sQguK-3QCa4u-5V6wGp-zcDiE-985Pt-wpxDu3-3esBRD-5zP8Fs-526AeC-esSkc6-aDLALm-7gSC7c-zcCeq-cpY1u-ssdB8-J8Mz6-cbDxXE-bDKDbK-
7jVNww-qSLfw6-az6ti-5PEfWv-5Ka4cT-2dVD5F-2h3HD-cLn3Q-egipk-4RSTvn-zcCCC-2jvxd-C1Jij-4G4Wen-8vK2id-4Dev4z-4w6DEo-e2Gg1-6WF6PP-jvHAy-ck1ou-6xaYD-6UPaWx-r2vJV5-3Nzkt-
3kftpX (creator, broc7; license, https://creativecommons.org/licenses/by-nc-sa/4.0/). All images were gray scaled, cropped, resized to 220 � 250 pixels, and then morphed (Fantamorph 5.4.5,
Abrosoft). B, Sequence of events and time course of a trial in the identity search task. The face morphs each participant saw in the identity categorization task were used as the target and distractor
stimuli. The physical similarity of the distractor face to the target was manipulated by the percentage of the target face within the morph (75, 50, 20, or 0%). The task was to pay attention to the target
face (cued face, identity 1 or 2) and report the location of the hole inside the probe that appeared on the target side. ISI, interstimulus interval.
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Statistical analyses
Testing the significance of within- and between-subject correlations. To
quantify the unique aspects and the shared variance of the RDMs, within-
and between-subject correlations between RDMs were calculated
(Charest et al., 2014). When comparing an RDM (5 � 5) with the identity
search efficiency matrix (ISEM; 2 � 4), cells in the RDM that corre-
sponded to the identical stimulus pairs in the ISEM were extracted and
used for calculating correlations. First, a subject similarity matrix was
constructed, by comparing each subject’s one RDM of interest (e.g.,
behavioral RDM) with another RDM of interest (e.g., brain RDM) using
the Pearson correlation. Thus, the diagonal entries of the subject similar-
ity matrix indicate the within-subject correlations, and the off-diagonal
entries indicate the between-subject correlations. Then, we computed
the average within-subject and between-subject correlations between the
two RDMs of interest. To control for the stimulus-set dependencies, the
average of between-subject correlations was restricted to pairs of subjects
who had viewed the identical stimulus set (female or male set). The
significance of the within-subject and between-subject correlations was
tested by a permutation test with randomized stimulus labels. Specifi-
cally, under the null hypothesis that all stimuli elicited the same response
patterns, we rearranged one of the two RDMs of interest in a randomly
permuted stimulus order for each subject, constructed a randomized
subject similarity matrix correlating each subject’s randomized RDM
with another RDM of interest, and computed the average within-subject
and between-subject correlations from the randomized subject similarity
matrix. This step was repeated 10,000 times, creating a distribution of
permuted within-subject and between-subject correlations under the
null hypothesis that the two RDMs of interest were not related. We
estimated the p values of the actual within- and between-subject correla-
tions as the rank of the actual correlation in the permuted distribution.
For instance, if the actual within-subject correlation was greater than any
of the 10,000 permuted within-subject correlations, then the p value was
estimated as p � 0.0001. We rejected the null hypothesis of unrelated
RDMs if the actual correlations were higher than any of the top 500
permuted correlations ( p � 0.05). For correlations between RDMs in-
volving brain ROIs, p values were Bonferroni corrected for four tests for
the four ROIs.

Testing the significance of the individuation index. To test for the indi-
vidually unique relationships between two RDMs of interest, an individ-
uation index (i-index) was calculated by the difference between the
average within-subject correlation and average between-subject correla-
tion (Charest et al., 2014). The significance of the actual i-index was
tested by a permutation test with randomized subject labels. Under the
null hypothesis that the representational geometry was the same for all
subjects, the subject labels of the vertical dimension of the subject simi-
larity matrix were randomized, such that the label match between vertical
and horizontal dimensions of the subject similarity matrix was destroyed.
To control for the stimulus-set dependencies, the subject-label random-
ization was restricted to groups of subjects who had viewed the identical

stimulus set (female or male set). From the randomized subject similarity
matrix, the average within- and between-subject correlations were com-
puted, and the difference between the two correlations was stored as a
randomized i-index. This step was repeated 10,000 times, creating a dis-
tribution of randomized i-indices under the null hypothesis that the
relationship between the two RDMs of interest is the same regardless of
subject labels. The p value of the actual i-index was estimated as the rank
of the actual i-index in the randomized i-index distribution. For instance,
if the actual i-index was greater than any of the 10,000 randomized
i-indices, then the p value was estimated as p � 0.0001. We rejected the
null hypothesis of no individually unique relationships if the actual
i-index was higher than any of the top 500 randomized i-indices ( p �
0.05). For i-indices involving brain ROIs, p values were Bonferroni cor-
rected for four tests for the four ROIs.

Results
Representational geometry in the identity categorization task
To obtain each individual’s representational geometries for task
stimuli, we measured brain activity using fMRI while participants
performed an identity categorization task (Fig. 1A). The stimulus set
included five face morphs that represented gradual transitions from
one famous identity to another in steps of 25% (face100/0, face75/25,
face50/50, face25/75, face0/100) and two nonface stimuli (a house, a
scrambled image). There were two stimulus sets (the male set, the
female set), and it was randomly chosen which stimulus set would be
presented to each participant. Participants categorized each stimulus
as one identity or the other, or as a nonface.

Behavioral representational geometry
Preliminary analysis revealed no effect involving the stimulus set
(male and female sets), and we therefore collapsed the data across
this factor. The mean identity categorization responses for each
of the seven stimuli are shown in Figure 2A. A repeated-measures
ANOVA with stimulus as a within-subject factor and categoriza-
tion response as the dependent measure revealed a significant
main effect of stimulus (F(1.86, 22.36) � 474.99, p � 0.0001, Green-
house–Geisser corrected). Pairwise comparisons showed signifi-
cant differences between all pairs (p values � 0.0001), except for
between face100/0 and face75/25, face25/75 and face0/100, and the
house and scrambled image. This result indicates that the identity
categorization of face stimuli did not change linearly, even
though the five face morphs represented linear physical transi-
tions from one original face to another. Confirming this, re-
sponse profiles for the five face morphs fit by polynomial
regression revealed a significant cubic component (F(1,12) �
94.52, p � 0.0001), which captured a sigmoidal function, in ad-

Figure 2. Representational geometry in the identity categorization task. A, Mean identity categorization response for each stimulus averaged across participants. Error bars represent the SEM.
B, Sigmoidal function fitted to each participant’s identity categorization responses for the face morphs. C, Behavioral RDM averaged across participants.
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dition to a linear component (F(1,12) � 682.50, p � 0.0001). The
observed nonlinear pattern in the response suggests that facial
identity has a categorical representation, which is consistent with
previous studies of the neural representation of faces (Rotshtein
et al., 2005).

To closely examine each participant’s response pattern, we
fitted the following sigmoidal function to each subject’s re-
sponses to the five face morphs: y � 1 � 1/(1 � e�[ (x � � )/ � ]). In
the sigmoidal function, � indicates the point at which the stimu-
lus is categorized as identity 1 or 2 with 50% probability, and �
indicates the steepness of the slope of the function. The fitting
results (Fig. 2B) indicated that each subject’s mean categorization
response (blue dots) for the most ambiguous face morph
(face50/50) was widely dispersed between 1 and 2, causing big
individual differences in the shape of the fitted sigmodal function
(red lines) for each participant’s responses. Upon further exam-
ination, we found that the between-subjects variance in categori-
zation for face50/50 was much greater (SD, 0.31) than those for
other stimuli (average SD, 0.08). Indeed, the Mauchly’s test of
sphericity indicated that the assumption of sphericity was vio-
lated (��20�

2 � 96.01, p � 0.0001), indicating that the variances
were not equal. Unlike the other stimuli, there was disagreement
about whether face50/50 should be categorized as identity 1 or 2:
about half of individuals categorized face50/50 as identity 1 more
often, whereas the other half categorized it as identity 2 more
often.

Next, we quantified the representational distance between

each pair of stimuli by constructing a representational dissimilar-
ity matrix for each subject. The RDM is a symmetric matrix with
a diagonal of zeroes and off-diagonal values that represent the
dissimilarity in categorization responses for each pair of stimuli
(Kriegeskorte et al., 2008; Fig. 2C). For instance, the representa-
tional dissimilarity between face100/0 and face50/50 was calculated
as the absolute difference between the individual’s mean catego-
rization responses for face100/0 and face50/50. The group RDM
(Fig. 2C) averaged across individuals showed distinctive clusters
for identity 1 (face100/0 and face75/25), identity 2 (face25/75 and
face0/100), and nonface stimuli (house, scrambled), but face50/50

did not consistently cluster with either identity.

Brain representational geometry
Since there was no a priori hypothesis regarding the brain regions
that encode the categorical representations of task stimuli, we
first conducted a whole-brain searchlight analysis (Nili et al.,
2014) for each subject using the 7 � 7 behavioral RDM of each
subject as a model. The searchlight identified brain regions in
which the neural activity pattern similarity for each pair of stimuli
was highly correlated with the behavioral RDM. The group anal-
ysis identified four significant brain regions located in the left and
right fusiform gyrus [including the fusiform face area (FFA)], as
well as in the left (lLPFC) and right lateral prefrontal cortex
(rLPFC; encompassing parts of dorsolateral and ventrolateral
prefrontal cortices; Fig. 3A). Statistics and the MNI coordinates
of the peak voxels in the four clusters are reported in Table 1.

Figure 3. Brain representational geometry in the identity categorization task. A, Brain maps showing the clusters identified in the 7 � 7 whole-brain searchlight analysis, located in the left and
right LPFC as well as in the left and right fusiform gyrus. B, Brain RDMs averaged across subjects in the left LPFC, right LPFC, left FFA, and right FFA. C, Mean within-subject correlation between the
5 � 5 behavioral RDM and the 5 � 5 brain RDM constructed from all the data, or on either half of the data in each of the four group clusters. The significance of the correlations was assessed by
randomization of the stimulus labels. *****p � 0.0005 (Bonferroni corrected for four tests for the four ROIs). Error bars represent the SEM, estimated by bootstrap resampling of subjects. D, Mean
within-subject correlation between the 5 � 5 behavioral RDM and the 5 � 5 brain RDM constructed from all the data, or on either half of the data in each of the four control areas (lEVC, rEVC, lSPL,
and rSPL).
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To select ROIs that best reflect each individual’s idiosyncratic
patterns of activity, we used each of the four clusters as a mask
and did a second searchlight analysis for each subject. A spherical
searchlight with a radius of 8 mm was moved inside the mask,
looking for the location that had the highest correlation with the
individual’s behavioral RDM with only five face stimuli. We used
the behavioral RDM with only face stimuli, since we were inter-
ested in identifying the brain locations that best reflected the
individual’s dissociations between two identities, rather than be-
tween face versus nonface stimuli. The resulting locations served
as each individual’s ROIs, from which brain RDMs were con-
structed (Fig. 3B). Similar to the behavioral RDM, the brain
RDMs also showed roughly two clusters for the two face identities
and another cluster for nonface stimuli.

To confirm that the selected individual ROIs contained mean-
ingful information regarding variation between two identities, we
performed a split-half cross-validation procedure. We split the
fMRI data into halves (even and odd runs) and did a second
searchlight analysis for each subject looking for a location inside
the group mask that had the highest correlation with the individ-
ual’s 5 � 5 behavioral RDM, separately for each half of the data.
In this way, we obtained two ROIs per cluster for each subject: an
ROI that showed the best correlations with the data in even runs
and another that showed the best correlations with the data in
odd runs. Next, we constructed the brain RDM within each ROI
with the activation patterns in the other half of the data. If the
selected ROIs that best correlated with the one half of the data
contained only ranked noise, then the brain RDMs constructed
with the other half of the data would not have meaningful rela-
tionships with the behavioral RDMs. We tested this by calculating
within-subject correlations between the behavioral and brain
RDMs, separately for RDMs constructed based on even, odd, or
total data. The results revealed that there were significant positive
correlations between each individual’s behavioral and brain
RDMs in all of the four areas (Fig. 3C). The only exception was a
statistically marginal (p � 0.1) correlation observed in the left
lateral prefrontal cortex RDM constructed based on the data in
even runs, which indicated the existence of variability between
runs. However, the consistent pattern of correlation results ob-
served across all four brain regions argues against the possibility
that the individually selected ROIs contained only sorted noise.

As further test of the reliability of the previous analysis, we
selected four “control” areas in the left early visual cortex (lEVC),
right early visual cortex (rEVC), left superior parietal lobe (lSPL),
and right superior parietal lobe (rSPL). These control areas were
created to be similar in size to the original clusters obtained in the
7 � 7 group searchlight analysis. These control areas were then
treated identically to the data within the main group clusters (i.e.,
individual ROIs that best correlated with the individual’s behav-
ioral RDM were selected, behavioral and brain RDMs were cor-
related using all the data or with either the odd or even half of the
data). The results indicated that in all of the four control areas, the

correlations between the behavioral RDMs and brain RDMs were
not significant, regardless of whether the RDM was based on all
the data or on either half of the data (Fig. 3D). This is in stark
contrast to the significant correlations observed in the ROIs se-
lected from the group clusters [lLPFC, rLPFC, left FFA (lFFA),
and right FFA (rFFA)] and argues against the possibility that the
ROIs selected from the group clusters contained only sorted
noise. Having consistently observed the validity of the individual
ROIs selected from the group clusters, we used the RDMs based
on all the data (total RDM) in subsequent analyses, rather than
the RDMs based on either half of the data, for statistical power
and simplicity.

To examine the specificity of the relationship between behavioral
and brain representational geometries within and across subjects, we
constructed a subject similarity matrix, which compares each sub-
ject’s 7 � 7 behavioral RDM with each subject’s 7 � 7 brain RDM
using the Pearson correlation (Fig. 4A). The diagonal entries of the
subject similarity matrix indicated the within-subject correlations
between behavioral RDMs and brain RDMs, and the off-diagonal
entries indicated the between-subject correlations. The significance
of within- and between-subject correlations was tested using a stim-
ulus-label randomization test, by randomly permuting stimulus or-
der for each subject 10,000 times, creating a distribution of permuted
within-subject and between-subject correlations under the null hy-
pothesis that the two RDMs of interest were not related (see Materi-
als and Methods). This was done separately for each ROI. The results
indicated that behavioral RDMs and brain RDMs were significantly
correlated in all four brain ROIs (Fig. 4B) both within subjects
(lLPFC, r � 0.38, p � 0.0005; rLPFC, r � 0.58, p � 0.0005; lFFA, r �
0.58, p � 0.005; rFFA, r � 0.54, p � 0.005) and between subjects
(lLPFC, r � 0.34, p � 0.001; rLPFC, r � 0.50, p � 0.005; lFFA,
r�0.53, p�0.005; rFFA, r�0.53, p�0.005). This indicates that the
shared variance in the behavioral categorization of the seven task
stimuli was also reflected in the brain representational geometries,
confirming that these four brain regions encode the generic categor-
ical representations of the task stimuli.

To quantify the individually unique relationships between be-
havioral and brain representational geometries, we compared the
within-subject correlations with the between-subject correla-
tions (Fig. 4B). If there is an individually unique component to
the relationship between behavioral and brain RDMs, then
within-subject correlations should be higher than between-
subjects correlations. Thus, an individuation index was calcu-
lated by the difference between within-subject correlation and
between-subject correlation (average within-subject r value mi-
nus average between-subject r value; Charest et al., 2014). The
significance of the i-index was tested using a subject-label ran-
domization test by randomly permuting the subject labels of the
vertical dimension of the subject similarity matrix 10,000 times,
creating a distribution of randomized i-indices under the null
hypothesis that the relationship between the two RDMs of inter-
est is the same regardless of subject labels (see Materials and
Methods). Among the four ROIs, the i-index was significant only
in rLPFC (i-index � 0.08, p � 0.05), indicating that the relation-
ship between behavioral and brain representational geometries
was individually unique in rLPFC. Considering that the biggest
source of individual differences in behavioral representational
geometry was categorization of face50/50, this suggested that
rLPFC contained a unique representation of the task stimuli that
reflected an individual’s decision bias to categorize the most am-
biguous face as either identity.

It is possible that the selected ROIs could have been driven
mostly by variation between face and nonfaces rather than vari-

Table 1. Brain regions in which the neural activity pattern similarity was
significantly correlated with the behavioral RDM in the whole-brain searchlight
analysis

Anatomical regions x y z # of voxels z-value

Left fusiform gyrus �38 �70 �14 317 6.93
Right fusiform gyrus 42 �58 �20 181 6.05
Left lateral prefrontal cortex �44 8 26 16 5.63
Right lateral prefrontal cortex 46 20 24 76 5.62

Coordinates (x, y, and z) are reported in MNI space.
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ation between identity 1 and identity 2, since face morphs were
physically more similar to each other than to nonfaces. If the
ROIs did not contain information about the variation of identi-
ties, then it should be impossible to find significant correlations
between behavioral categorization pattern and neural activation
patterns for the five face morphs. We directly tested this hypoth-
esis by correlating the behavioral RDMs (5 � 5) and the brain
RDMs (5 � 5) with only five face stimuli (Fig. 4C). The results
indicated that behavioral RDMs and brain RDMs were signifi-
cantly correlated in all four brain ROIs (Fig. 4D) both within
subjects (lLPFC, r � 0.44, p � 0.0005; rLPFC, r � 0.56, p �
0.0005; lFFA, r � 0.79, p � 0.0005; rFFA, r � 0.70, p � 0.0005)
and between subjects (lLPFC, r � 0.31, p � 0.0005; rLPFC, r �
0.46, p � 0.05; lFFA, r � 0.64, p � 0.0005; rFFA, r � 0.55,
p � 0.05). This strongly indicates that the selected brain ROIs
encoded not only the variation between faces and nonfaces, but
also the variation across face morphs. To quantify the individu-
ally unique relationships between the 5 � 5 behavioral and brain
representational geometries, the i-index in each of the four ROIs
was calculated using the same procedure described before. The
i-index was significant in all four ROIs (lLPFC, i-index � 0.13,
p � 0.05; rLPFC, i-index � 0.09, p � 0.05; lFFA, i-index � 0.15,
p � 0.0005; rFFA, i-index � 0.16, p � 0.005), indicating that the
relationship between behavioral and brain representational ge-
ometries with the five face stimuli was individually unique in all
four ROIs (Fig. 4D). Particularly, the idiosyncratic components

of the categorization behavior were reliably decoded in rLPFC
across different analyses (7 � 7 and 5 � 5 RDMs), suggesting that
rLPFC plays a key role in encoding unique categorical represen-
tations. In summary, the shared and unique variances in the
behavioral representational geometry were encoded in stimulus-
specific perceptual areas as well as in the prefrontal cortex. We
next examined whether the idiosyncratic difference in represen-
tational geometry would predict the contents of the attentional
template during an identity search task; if the categorization
RDM is replicated in the attentional template, we would expect
face morphs to compete with the target for attention commen-
surate with their probability of being categorized as the target
identity.

Identity search task
An identity search task (Fig. 1B) was performed outside the
scanner to observe how the representational geometry ob-
tained in the identity categorization task influenced the effi-
ciency of attentional selection. The five face morphs each
participant saw in the identity categorization task were used as
the target and distractor stimuli. The target (one of the two
original 100% faces) was cued on each trial, and therefore the
contents of the attentional template changed between identity
1 or 2 on a trial-by-trial basis. The distractor face was one of
the other face morphs. Although the physical similarity of the
distractor face to the target was manipulated (75, 50, 20, and

Figure 4. The relationship between the behavioral RDM and the brain RDM in each of the four ROIs. A, Each subject’s 7 � 7 behavioral RDM was correlated with each subject’s 7 � 7 brain RDM.
Blue arrows indicate within-subject correlations, and red arrows indicate between-subject correlations. B, Mean within-subject correlation, between-subject correlation, and i-index, between the
7 � 7 behavioral RDM and the 7 � 7 brain RDM in each of the four ROIs. The significance of the within- and between-subject correlations was assessed by randomization of the stimulus labels. The
significance of the i-index was assessed by randomization of the subject labels. *p � 0.05; ***p � 0.005; ****p � 0.001; *****p � 0.0005 (Bonferroni corrected for four tests for the four ROIs).
Error bars represent the SEM, estimated by bootstrap resampling of subjects. C, Each subject’s 5 � 5 behavioral RDM (only the five face morphs) was correlated with each subject’s 5 � 5 brain RDM.
Blue arrows indicate within-subject correlations, and red arrows indicate between-subject correlations. D, Mean within-subject correlation, between-subject correlation, and i-index between the
5 � 5 behavioral RDM and the 5 � 5 brain RDM in each of the four ROIs.
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0%), we hypothesized that the psychological similarity would
be predicted by the representational geometry from the cate-
gorization task. The task was to report a property of a probe
stimulus that appeared at the same location of the target face
(see Materials and Methods).

To combine the effects in RT and accuracy rate, the inverse
efficiency (IE; correct RT/accuracy rate) was calculated for each
condition and subject (Townsend and Ashby, 1983). The identity
search data were analyzed in two stages: First, we examined the
overall behavioral pattern across individuals using ANOVA with
target face and distractor similarity as fixed effects. Second, we
constructed a identity search efficiency matrix for each individual
that characterized the distractability of each face morph for each
target, which could be compared with the categorization RDMs
of each individual.

The data were entered into a repeated-measures ANOVA
with target face (identity 1, identity 2) and distractor similarity to
the target (75, 50, 25, and 0%) as within-subject factors and IE as
the dependent measure (Fig. 5A). The analysis revealed a signif-
icant main effect of distractor similarity to the target (F(3, 36) �
15.30, p � 0.0001), with the mean IE decreasing as the distractor
similarity to the target decreased. Specifically, pairwise compari-
sons revealed significant differences between all pairs of distrac-
tors (p values � 0.05), except for between the distractors with 25
and 0% similarity to the target. This result is consistent with the
previous results where the similarity between targets and nontar-
gets plays an important role in determining search efficiency
(Duncan and Humphreys, 1989; Nagy and Sanchez, 1990;
Becker, 2011). Notably, the 25 and 0% distractor faces were uni-
formly categorized as a different identity from the target face in
the categorization task. Thus, the lack of difference in search IEs
between 25 and 0% distractor faces suggests the possibility that
distractors interfere with search uniformly regardless of physical
similarity, once they cross a categorical boundary. The main ef-
fect of target face and the interaction between target face and
distractor similarity were not significant (F values � 1).

To compare the identity search data with the categorization
RDMs, the IE data from each individual were transformed into an
ISEM (Fig. 5B). Each cell of the ISEM contained the IE data for
a single target– distractor face pair multiplied by �1, such that

values closer to 0 represent more efficient search. Thus, the
value in each cell reflected the efficiency of search with the
given pair of target and distractor faces. We hypothesized that
the greater the dissimilarity value in the categorization RDM
for a given pair of stimuli, the greater the search efficiency
value would be in the ISEM for that pair of target and distrac-
tor faces.

Representational geometry predicts search performance
To investigate whether the categorical representational geometry
can predict search performance, we compared behavioral and
brain RDMs from the identity categorization task with the ISEM
(Fig. 6A,C). To match the ISEM data to the categorization RDM,
cells in the RDM that corresponded to the identical stimulus pairs
in the ISEM were extracted and used for calculating correlations.
For both data from brain and behavior, a subject similarity
matrix was constructed, which compared each subject’s catego-
rization RDM with each subject’s ISEM using the Pearson
correlation. The significance of within- and between-subject cor-
relations was tested using a stimulus-label randomization test
(see Materials and Methods).

The results indicated that behavioral RDMs and ISEMs were
highly correlated both within subjects (average r � 0.67, p �
0.001) and between subjects (average r � 0.59, p � 0.005; Fig.
6B). Similarly, the brain RDMs and ISEMs were significantly cor-
related in all four ROIs (Fig. 6D) both within subjects (lLPFC,
average r � 0.29, p � 0.05; rLPFC, average r � 0.36, p � 0.05;
lFFA, average r � 0.38, p � 0.05; rFFA, average r � 0.29, p � 0.05)
and between subjects (lLPFC, average r � 0.22, p � 0.01; rLPFC,
average r � 0.24, p � 0.05; lFFA, average r � 0.42, p � 0.0005;
rFFA, average r � 0.35, p � 0.01). The representational geometry
from behavior and all four brain ROIs could predict the shared
variances in the identity search performance, indicating that
greater representational dissimilarity between two stimuli in the
categorization RDM predicted more efficient search when one
was the target and the other the distractor.

To test whether the within-subject correlation between
representational geometry and identity search efficiency was signif-
icantly greater than the between-subjects correlations, we calculated
an i-index that reflects the degree to which the relationship between

Figure 5. Results in the identity search task. A, Search inverse efficiency for each target (identity 1, identity 2) as a function of the distractor similarity (75, 50, 25, or 0%) to the target. Error bars
represent the SEM. B, ISEM in which the value in each cell indicates search IE multiplied by �1 for each pair of target and distractor faces.
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representational geometry and identity search efficiency is unique to
individuals, and tested the significance of the i-index using the same
methods described before. The i-index was significant for the behav-
ioral RDM and ISEM (i-index � 0.09; p � 0.05), indicating that the
individually unique aspects of behavioral categorization successfully
predicted idiosyncratic elements of identity search performance
(Fig. 6B). In the brain, on the other hand, the i-index was significant
only in rLPFC (i-index � 0.12; p � 0.05) among the four ROIs (Fig.
6D). This indicates that the representational geometry in rLPFC re-
flects the individually unique aspects of categorization, and it can
also predict idiosyncratic variance of identity search performance.

The most likely source of the individually unique relationship
between the representational geometry and identity search effi-
ciency was the categorization of face50/50, the most ambiguous
morph. Recall that we previously found categorization of face50/50

to be the most variable among subjects, suggesting that individ-
uals had different biases to categorize face50/50 as either identity 1
or identity 2. Therefore, the representational geometry of
face50/50 provided a window of opportunity to discover how in-
dividual difference in brain representational similarity is related
to the contents of individual’s target template. To test whether
the variance in categorization predicted distractability during
target search, we correlated each individual’s categorization bias
with face50/50 distractability (i.e., how much face50/50 interfered
with search for each target identity). We hypothesized that indi-
viduals with a greater bias to categorize face50/50 as identity 1
should also be more distracted by face50/50 when searching for
identity 1 compared to identity 2.

The categorization bias for face50/50 was calculated by sub-
tracting each individual’s mean categorization response for
face50/50 from 1.5 (the point of no bias), with positive values
indicating bias toward identity 1 and negative values toward
identity 2. Face50/50 distractability was calculated by subtracting
each individual’s mean IE on trials with identity 2 targets from the
mean IE for identity 1 targets, when the distractor was face50/50.

Hence, positive values indicated more distraction by face50/50

when searching for identity 1 compared to identity 2, and nega-
tive values indicated the reverse. The correlation between each
individual’s behavioral categorization bias and face50/50 distracta-
bility (Fig. 7A) was significant and positive (r � 0.73, p � 0.005),
indicating that the degree of behavioral categorization bias
for face50/50 predicted the extent of interference caused by
face50/50 for different target identities: as hypothesized, indi-
viduals with a greater bias toward identity 1 were more dis-
tracted by face50/50 when searching for identity 1 versus identity 2
and vice versa.

We next used the same approach using the activity patterns in
rLPFC to calculate the brain categorization bias for face50/50. Each
individual’s brain categorization bias for face50/50 was calcu-
lated by subtracting the representational dissimilarity between
face50/50 and face100/0 from that of face50/50 and face0/100. Thus,
positive values indicated bias toward identity 1, and negative val-
ues toward identity 2. The direct relationship was examined by
correlating each individual’s brain categorization bias and the
face50/50 distractability in the identity search task (Fig. 7B). There
was a significant positive correlation (r � 0.57, p � 0.05), indi-
cating that the extent to which face50/50 interfered with search was
predicted by each individual’s unique brain representational ge-
ometry for face50/50 in rLPFC: individuals who had more similar
brain representations for face50/50 and identity 1 were also more
distracted by face50/50 when searching for identity 1 versus iden-
tity 2 and vice versa. This replicates the results observed with the
behavioral categorization bias, further confirming the close rela-
tionship between behavior and neural representational geometry
in rLPFC.

Discussion
Previous studies have shown that the representation of task-
related information determines the speed of attentional selection
and distractor suppression (Duncan and Humphreys, 1989;

Figure 6. The relationship between representational geometries and visual search efficiency. A, Each subject’s behavioral RDM was correlated with each subject’s ISEM. Blue arrows indicate
within-subject correlations, and red arrows indicate between-subject correlations. B, Mean within-subject correlation, between-subject correlation, and i-index between the behavioral RDM and
the ISEM. The significance of the within- and between-subject correlations was assessed by randomization of the stimulus labels. The significance of the i-index was assessed by randomization of
the subject labels. C, Each subject’s brain RDM was correlated with each subject’s ISEM. D, Mean within-subject correlation, between-subject correlation, and i-index between the ISEM and the brain
RDM in each of the four ROIs. *p � 0.05; **p � 0.01; ***p � 0.005; ****p � 0.001; *****p � 0.0005 (Bonferroni corrected for four tests for the four ROIs). Error bars represent the SEM, estimated
by bootstrap resampling of subjects.
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Wolfe, 1994; Becker, 2011; Hout and Goldinger, 2015). Although
the task-relevant representations were observed in multiple re-
gions of the brain, including stimulus-specific perceptual areas
and higher cognitive areas (Kanwisher et al., 1997; Epstein and
Kanwisher, 1998; Freedman et al., 2001; Haxby et al., 2001; Sarma
et al., 2016), most of the prior studies were interested in the
common representational structure across individuals, leaving
the neural substrates of individually unique representations un-
known. Here, we tested where in the brain the idiosyncratic and
the common portions of the task-relevant representations are
encoded and how individual differences in the representational
geometry affect efficiency in attentional allocation. The results
demonstrated that the activity patterns in the rLPFC reflected the
unique aspects as well as the common portion of the representa-
tional geometry and, moreover, predicted the individual vari-
ances in target search. This result suggests that the rLPFC plays a
crucial role in encoding individually unique representations and
that idiosyncrasies in the perception of objects influence the effi-
ciency of attentional allocation.

The current study provides two important novel findings that
elucidate the underlying neural mechanisms of how task-relevant
representations are encoded and influence the individual’s effi-
ciency in attentional selection. First, the individually unique as-
pects of the representational geometries of task stimuli were
reflected in behavioral categorization, and the unique encoding
consistent with the behavioral responses was observed in the
lateral prefrontal cortex as well as in the stimulus-specific percep-
tual area (FFA). In the categorization task, all participants com-
monly demonstrated categorical representations for the two
identities, but there were individual differences in the shape of the
sigmoidal function, based on whether the most ambiguous face
morph was classified as identity 1 or 2 more often. This difference
in the inclusiveness of face50/50 within the representation of iden-
tity 1 or 2 can be thought of as the width of a representational
tuning curve for each identity. Patterns of activation in the LPFC
as well as in face-selective areas in the ventral temporal cortex
were highly consistent with the categorical representation of face
identity, in line with the previous studies showing the common
representational structure across individuals in stimulus-specific
perceptual areas and higher cognitive areas (Martin et al., 1996;
Gauthier and Tarr, 1997; Kanwisher et al., 1997; Freedman and
Assad, 2006; Crowe et al., 2013). Most importantly, the RDMs in
LPFC and FFA had individually unique relationships with the be-
havioral RDMs, suggesting that these areas also encode the unique
aspects of representational geometries. In particular, the individually

unique components of the categorization behavior were reliably de-
coded in rLPFC across different analyses (7 � 7 and 5 � 5 RDMs).

Second, idiosyncrasies in the representational geometries pre-
dicted the variance in the efficiency of search for a face identity.
The behavioral and brain representational geometries were
highly correlated with the search performance, indicating that the
common patterns of categorization responses could predict the
shared variance in the search performance. This replicates previ-
ous research that search becomes inefficient as the similarity be-
tween target and nontargets increases (Neider and Zelinsky,
2006; Zelinsky, 2008; Hwang et al., 2009; Becker, 2011). In addi-
tion to the shared variance in the identity search performance,
representational geometries in rLPFC also had individually
unique relationships with the search performance: the extent to
which a distractor interfered with search was predicted by each
individual’s unique brain representational geometry for the most
ambiguous face morph in rLPFC. This is consistent with the re-
sults that the individually unique aspects of the behavioral re-
sponse were reliably reflected only in rLPFC and provides a novel
insight that the extent to which a distractor interferes with search
is not only dependent on the physical similarity to the target, but
also dependent on each individual’s unique representational ge-
ometry. Our data suggest that rLPFC plays a key role in encoding
the unique aspects of the task-relevant representations and also in
modulating the efficiency of attentional allocation based on its
similarity structure.

Our data indicated that although both LPFC and the stimulus-
specific perceptual areas in the ventral temporal cortex encoded
individually unique aspects of identity categorization, only LPFC
predicted the idiosyncratic variance in performance during the
attentionally demanding identity search task. This result appears
on the surface to conflict with a previous study by Charest et al.
(2014) that demonstrated activity patterns in ventral temporal
cortex correlated with the individually unique object similarity
judgments. However, the results are likely due to the many dif-
ferences in the characteristics of the stimuli and the task demands
between studies. First, Charest et al. (2014) had a priori hypoth-
eses regarding the brain locations that encode idiosyncratic ob-
ject representations and restricted their analyses to the ventral
temporal cortex and early visual cortex. On the other hand, we
performed a whole-brain searchlight analysis first to look for all
the brain regions that significantly correlated with the behavioral
categorization and identified both LPFC and a subregion of VTC.
Second, Charest et al. (2014) used a large VTC ROI that encom-
passed brain regions specialized for encoding different classes of

Figure 7. A, A scatter plot (with best-fitting regression line) illustrating the relationship between the magnitude of behavioral categorization bias for face50/50 and the difference in distraction
by face50/50 for target identity 1 versus identity 2. B, A scatter plot (with best-fitting regression line) illustrating the relationship between the magnitude of brain categorization bias for face50/50 in
rLPFC and the difference in distraction by face50/50 for target identity 1 versus identity 2.
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stimuli (e.g., FFA, PPA, EBA, etc.), which was appropriate for
their large set of heterogeneous objects (faces, places, bodies,
etc.), but we focused on smaller ROIs that were more appropriate
for our interest in individual differences in response to a limited
set of homogeneous face stimuli. Finally, unlike their similarity
judgment task, our task required identity categorization, which
added a decision component to stimulus processing. This could
explain the greater sensitivity of rLPFC to our task.

This raises the interesting possibility that representations in
LPFC reflect task-general categorical representations necessary
for action and identity selection (Gottlieb, 2007; Avidan and
Behrmann, 2009; Thomas et al., 2009; Bichot et al. 2015; Sarma et
al., 2016) that are absent in the long-term semantic representa-
tions of objects in ventral temporal cortex. Therefore, we con-
clude that rLPFC is at least an important part of the neural
mechanisms that maintain unique categorical representations,
and moreover, the same representation is instantiated as the at-
tentional template in working memory during target search. This
suggests that the “tuning” of the target template is composed of
individually unique category representations. This conclusion is
consistent with the biased competition model of attention (Desi-
mone and Duncan, 1995) in which the contents of the target
template held in working memory is the source of the attentional
bias instantiated within sensory cortex (Peelen et al., 2009;
Schafer and Moore, 2011). Here, we extend those results by
demonstrating that individually unique category representa-
tions decoded from rLPFC can predict performance in an inde-
pendent search task, suggesting that the contents of the
attentional template reflect the categorical structure of informa-
tion that is specific to an individual.

Together, our results provide clear evidence that task-relevant
representations encoded in the prefrontal cortex reflect idiosyn-
crasies in the person’s perceptual experiences and also predict the
unique portion of the variance in attentional selection. This work
demonstrates that subtle individual differences in the represen-
tational structure can be captured using fMRI and RSA, and con-
tributes to understanding the neural mechanisms underlying the
relationship between categorical representations and attentional
allocation at the level of individuals.
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