
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Advanced Integration Algorithms for VLSI Circuit Transient Simulation

Permalink
https://escholarship.org/uc/item/0kh0j4r1

Author
Wang, Xinyuan

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0kh0j4r1
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Advanced Integration Algorithms for VLSI Circuit Transient Simulation

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Computer Engineering)

by

Xinyuan Wang

Committee in charge:

Professor Chung-Kuan Cheng, Chair
Professor Li-Tien Cheng
Professor Melvin Leok
Professor Vitaliy Lomakin
Professor Yuan Taur

2020

Copyright

Xinyuan Wang, 2020

All rights reserved.

The dissertation of Xinyuan Wang is approved, and it is

acceptable in quality and form for publication on micro-

film and electronically:

Chair

University of California San Diego

2020

iii

DEDICATION

To my family.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

Acknowledgements . x

Vita . xiii

Abstract of the Dissertation . xiv

Chapter 1 Introduction . 1
1.1 Circuit Simulation . 1
1.2 Outline . 2

Chapter 2 Fundamentals of Circuit Transient Simulation and Numerical Time
Integration Algorithms . 6
2.1 Formulation of Circuit Transient Simulation 6
2.2 Conventional Numerical Time Integration Algorithms 8
2.3 A Matrix Exponential Based Integration Algorithm 11

2.3.1 Time Integration with Matrix Exponential 11
2.3.2 Evaluation of the Matrix Exponential and Vector Products

via Krylov subspace . 13
2.4 Performance of Conventional and Matrix Exponential Based Inte-

gration Algorithms . 19
2.4.1 Computation of MEVP via Invert Krylov Subspace . . . 19
2.4.2 Computation of MEVP via Rational Krylov Subspace . . 20
2.4.3 Performance Comparison of Multiple Krylov Subspace

Methods . 21
2.4.4 Error Distributions of the Numerical Integration Approaches

with a Single Time Step 23
2.5 Summary . 24

Chapter 3 Stability Analysis of Matrix Exponential Based Integration Methods . 28
3.1 Motivation . 28
3.2 Stability of Matrix Exponential Based Integration Methods for

PDN Transient Simulation . 30

v

3.2.1 Formulation of Semi-Explicit DAEs for PDNs 30
3.2.2 Stability Problems and Sensitivity Analysis of Numerical

Integration Methods . 33
3.2.3 Implicit Regularization Approach 40

3.3 A Stability Preserved Arnoldi Algorithm with Structured Orthog-
onalization . 45
3.3.1 An Arnoldi Process with Structured Orthogonalization . 45
3.3.2 Numerical Pruning of Spurious Eigenvalues 48
3.3.3 Numerical Experiments on RC and RLC Networks 50

3.4 Summary . 53

Chapter 4 Numerical Performance of Exponential Integrators on System-Level
PDN Simulations . 56
4.1 Numerical Performance of MEVPs with ϕ Functions 57

4.1.1 Comparison of ϕs Functions on RC and RLC Networks . 61
4.2 Exploration of the Local Optimal Ratio in Rational Krylov Spec-

tral Transformation . 69
4.3 Total Simulation Framework . 71
4.4 Simulation Results . 74

4.4.1 Leap Function for Multiple Frequencies 74
4.4.2 System-Level PDN Transient Simulations with ϕ Functions 78

4.5 Summary . 81

Chapter 5 Novel Integration Algorithms for Nonlinear Circuit Simulation 84
5.1 Motivation . 84
5.2 Solving Nonlinear Systems with Numerical Integration Methods 86

5.2.1 Exponential Integrators in Nonlinear Circuit Simulation . 86
5.2.2 Approximation Theory and Compensation Iteration for

Convergence . 87
5.2.3 Experimental Results . 89

5.3 Parallel-in-time Methods for PDN Transient Simulation with
Nonlinear Load Models . 91
5.3.1 Nonlinear Load Models in PDNs 93
5.3.2 MGRIT method with Linear Step integrators 95
5.3.3 Nonlinear Systems and Adaptive Newton-Raphson Iterations 99
5.3.4 Experimental Results . 100

5.4 Summary . 103

Chapter 6 Conclusions . 105

Bibliography . 107

vi

LIST OF FIGURES

Figure 2.1: Stability regions (shaded) of (a) Forward Euler (FE), (b) Backward
Euler (BE), and (c) Trapezoidal methods in the complex plane. . . . 10

Figure 2.2: A test equation dx
dt

= −x(t), where x(0) = 1.5, h ∈ [0, 10]. Analytical
solution is computed by EXPM x(h) = e−hx(0). 14

Figure 2.3: The ”hump” effect of terms in the Taylor series of the exponential
function in [33]. 15

Figure 2.4: The relative error vs. dimensional m of different Krylov subspace
methods. 22

Figure 2.5: The relative error vs. dimension m of different Krylov subspace methods
with two stiffness numbers. 23

Figure 2.6: RC circuit’s error distribution of the one-step integration results via
different linear integrators with the same initial vector x(0) and different
time step h. (a) Rat vs. FE, BE, and TR; (b) Std and Inv vs. FE, BE,
and TR. 27

Figure 3.1: One tank RLC with R1 = 100µΩ, L1 = 0.5nH,C1 = 0.5nF and R2 <<
R1. 34

Figure 3.2: Simulation results of the one tank RLC. (a) absolute value of the residual
for each variable in x(t); (b) simulation results on v3 with rational Krylov
subspace method as well as TRAP method, exact solution is included
as comparison. 37

Figure 3.3: Slope of increasing residual versus γ = h
2

is well fitting its corresponding
sensitivity D. 40

Figure 3.4: Sensitivity D(1, 1) of one tank RLC versus step size and γ. The red
region shows |D(1, 1)| > 1 and blue region |D(1, 1)| ≤ 1. 41

Figure 3.5: Simulation results of the one tank RLC with implicit regularization. (a)
The absolute residual no longer increase and (b) simulation results well
fit the exact solution. Node voltages v1, v2 are solved algebraically. . . 44

Figure 3.6: RC network with n=100: the absolute error errabs with ϕ0 function is
computed versus h and m with (a) original Arnoldi; (b) Lanczos plus
structured orthogonalization. 52

Figure 3.7: RLC network with size n=507: the absolute error errabs versus h and
m is plotted with (a) original Arnoldi (b) Arnoldi plus structured or-
thogonalization. The reference solution is from the explicit calculation
of underlying ODEs. 54

Figure 4.1: The curves of ϕ0, ϕ1, and ϕ2 functions on the negative real axis. The
magnitude of x is in log scale. 59

Figure 4.2: RC network with n=100: the absolute error errabs versus h and m is
calculated with ϕ1 function using (a) original Arnoldi; (b) Lanczos plus
structured orthogonalization. 62

vii

Figure 4.3: RC network with n=100: the absolute error errabs versus h and m is
calculated with ϕ2 function using (a) original Arnoldi; (b) Lanczos plus
structured orthogonalization. 63

Figure 4.4: RC network with n=100: the eigenvalues of A−1 = −G−1C are plotted
in log-scale. 64

Figure 4.5: RC network with n=100: choices of ϕs functions are plotted with
different colors versus h and m. The zero error of ϕ0 solution is set to
10−30. 66

Figure 4.6: RLC network with n=507: the absolute error errabs versus h and m is
calculated with ϕ1 function using (a) original Arnoldi; (b) Arnoldi plus
structured orthogonalization. The reference solution is from the explicit
calculation of underlying ODEs. 67

Figure 4.7: RLC network with n=507: the absolute error errabs versus h and m is
calculated with ϕ2 function using (a) original Arnoldi; (b) Arnoldi plus
structured orthogonalization. The reference solution is from the explicit
calculation of underlying ODEs. 68

Figure 4.8: RLC network with n=507: choices of ϕs functions are plotted with
different colors versus h and m. 69

Figure 4.9: RLC network with n=507: the eigenvalues of A−1 = −G−1C in log-scale.
Four different step sizes set in MEVPs are compared to the spectrum. 71

Figure 4.10: RLC network with n=507: the ratio h/γopt with minimum relative error
at each m is plotted. 72

Figure 4.11: RLC network with n=507: relative error of MEVP computations errrel
versus m and γ. The local optimal γopt is denoted with red marker. . 73

Figure 4.12: Total framework of PDN transient simulations with matrix exponential
based integration method. 75

Figure 4.13: Off-chip PDN with R1 = 100µΩ, L1 = 333nH,C1 = 2.2mF,R2 =
100µΩ, L2 = 74pH,C2 = 10µF,R3 = 100µΩ, L3 = 6.3nH,C3 =
2.45pF . 76

Figure 4.14: Adaptive step sizes are applied for multiple frequency components of
off-chip PDN in different simulation stages. 77

Figure 5.1: Transient simulation results of a nonlinear circuit by matrix exponential
integration with compensate iteration and BENR method. 91

Figure 5.2: An illustration of the nonlinear load model in PDN. The dynamic
behaviors of macrocells are characterized with voltage dependent current
source and RC in series. 94

Figure 5.3: In PDN transient simulation, step integrators are applied to (1) general
sequential method and (2) MGRIT method with two levels. 96

Figure 5.4: (a) Linear vs Nonlinear Macrocell Model; (b) Nodal waveforms of Seq
and MGRIT-AdapNR (Table 5.6). 101

viii

LIST OF TABLES

Table 2.1: Matrix Exponential Based High Order Integrators using Std, Inv, and
Rat. vs. Low Order Integrators FE, BE and TR. 25

Table 4.1: Computed f(z) = (ez − 1)/z via Different Methods 57
Table 4.2: Design Specifications of PDN Cases. 79
Table 4.3: Application of Optimal ϕ Functions to the MEVPs of PDNs. 79
Table 4.4: Transient Simulation Performance of PDN cases. Tran(s): runtime

of transient simulation excluding the DC analysis; m1,avg and m2,avg:
average dimension m for each MEVP term; m1,peak and m2,peak: maximum
dimension m for each MEVP term; Max Diff(%): maximum relative
difference in percentage compared to reference solution. 83

Table 5.1: Specifications of Analog designs . 90
Table 5.2: Simulation Performance of Rational Krylov Subspace method with Ex-

ponential Integrators . 92
Table 5.3: Design specifications of PDNs . 100
Table 5.4: Experimental results of different #Cores using ibmpg1t-nl with 3ns

simulation time and 900 time steps. 102
Table 5.5: Experimental results of Seq and MGRIT-AdapNR (24 cores), with mul-

tiple combinations of CF and ML using genckt30 test case. Simula-
tion time=6ns. #time steps=410K. Time Grid Ratio=(#Finest Time
Grids)/(#Coarsest Time Grids). 102

Table 5.6: Experimental results of Seq and MGRIT-AdapNR (#Core=24, CF=10
and ML=4). 103

ix

ACKNOWLEDGEMENTS

Foremost, I would like to thank my advisor, Professor Chung-Kuan Cheng, for his

continuous support and research guidance. He provided me the opportunity to explore

the circuit transient simulation algorithms from the perspective of mathematics as well as

real applications. During my Ph.D. period, I have learned how to address a challenging

problem with positive attitude, perseverance, and passion. In addition to being a very

knowledgeable professor, his is considerate for all the students. I would like to express my

special thank to Professor Pengwen Chen. He provided brilliant advice in our research

collaboration, and helped me with kindness and patience on the research. Thank Professors

Li-Tien Cheng, Melvin Leok, Vitaliy Lomakin and Yuan Taur, who serve as my Ph.D.

committee members. I appreciate your advice for my research.

Thank all my colleagues, collaborators and friends at UC San Diego, including but

not limited to Keming Cao, Kunyao Chen, Xirui Chen, Sijie Ding, Chia-Tung Ho, Chester

Holtz, Ilgweon Kang, Daeyeal Lee, Ting-Chou Lin, Dongwon Park, Le Wang, Lutong Wang,

Jun Wang, Wenchuan Wei, Yen-Yi Wu, Yu Xin, Bentao Zhang and Hao Zhuang. Especially

thank Hao for the guidance on the simulation research. Thank Ilgweon for maintaining

the lab servers and sharing the research and life experience. Thank Dongwon for research

collaborations. In addition, I would like to thank my best friends, Gao Deng and Jiaqi Mu,

for their understanding and support during my Ph.D. period.

And in particular, I want to thank my parents, Binfang Wang and Juhong Yu, for

their continuous, selfless love and support.

This work would not have been possible without the support from National Science

Foundation (NSF, CCF-1564302).

Chapter 2 is a reprint of the material in the work: H. Zhuang, X. Wang, Q. Chen,

P. Chen, and C. K. Cheng, ”From circuit theory, simulation to spiceDiego: A matrix

exponential approach for time-domain analysis of large-scale circuits,” IEEE Circuits and

x

Systems Magazine, 16(2):16–34, 2016. The author is one of the primary authors and

investigators of this work.

Chapter 3 is a combination of the material in the following two works: P. Chen, C.

K. Cheng, D. Park, and X. Wang, ”Transient circuit simulation for differential algebraic

systems using matrix exponential,” in Proceedings of the International Conference on

Computer-Aided Design, page 99. ACM, 2018. X. Wang, P. Chen, and C.-K. Cheng,

”Stability and convergency exploration of matrix exponential integration on power delivery

network transient simulation,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2019. The author is the primary author and investigator of the papers.

The chapter also contains the content the work: P. Chen, C.-K. Cheng, and X. Wang,

”Arnoldi algorithms with structured orthogonalization,” arXiv preprint arXiv:2005.14468,

2020. The author is one of the primary authors and investigators of this work.

Chapter 4 is a reprint of the material as it appears in the following two works: P.

Chen, C. K. Cheng, D. Park, and X. Wang, ”Transient circuit simulation for differential

algebraic systems using matrix exponential,” in Proceedings of the International Conference

on Computer-Aided Design, page 99. ACM, 2018. X. Wang, P. Chen, and C.-K. Cheng,

”Stability and convergency exploration of matrix exponential integration on power delivery

network transient simulation,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2019. The author is the primary author and investigator of the

papers.

Chapter 5, in part, is a reprint of the material in the work: X. Wang, H. Zhuang,

and C. K. Cheng, ”Exploring the exponential integrators with krylov subspace algorithms

for nonlinear circuit simulation,” in Proceedings of the 36th International Conference on

Computer-Aided Design, pages 163–168. IEEE Press, 2017. The author is the primary author

and investigator of this work. The chapter also contains the submission for publication

of the material in the work: C.-K. Cheng, C.-T. Ho, C. Jiao, X. Wang, Z. Zeng, and X.

xi

Zhan, ”A parallel-in-time circuit simulator for power delivery networks with nonlinear

load models,” submitted to the 29th Conference on Electrical Performance of Electronic

Packaging and Systems, 2020. The author is one of the primary authors and investigators

of this work.

xii

VITA

2014 B. S. in Microelectronics, Tsinghua University

2020 Ph. D. in Electrical Engineering (Computer Engineering), University
of California San Diego

PUBLICATIONS

H. Zhuang, X. Wang, Q. Chen, P. Chen, and C. K. Cheng. From circuit theory, simulation
to spiceDiego: A matrix exponential approach for time-domain analysis of large-scale circuits.
IEEE Circuits and Systems Magazine, 16(2):16–34, 2016.

X. Wang, H. Zhuang, and C. K. Cheng. Exploring the exponential integrators with
krylov subspace algorithms for nonlinear circuit simulation. In Proceedings of the 36th
International Conference on Computer-Aided Design, pages 163–168. IEEE Press, 2017.

P. Chen, C. K. Cheng, D. Park, and X. Wang. Transient circuit simulation for differential
algebraic systems using matrix exponential. In Proceedings of the International Conference
on Computer-Aided Design, page 99. ACM, 2018.

X. Wang, P. Chen, and C.-K. Cheng. Stability and convergency exploration of matrix
exponential integration on power delivery network transient simulation. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2019.

P. Chen, C.-K. Cheng, and X. Wang. Arnoldi algorithms with structured orthogonalization.
arXiv preprint arXiv:2005.14468, 2020.

C.-K. Cheng, C.-T. Ho, C. Jiao, X. Wang, Z. Zeng, and X. Zhan. A parallel-in-time circuit
simulator for power delivery networks with nonlinear load models. Submitted to the 29th
Conference on Electrical Performance of Electronic Packaging and Systems, 2020.

xiii

ABSTRACT OF THE DISSERTATION

Advanced Integration Algorithms for VLSI Circuit Transient Simulation

by

Xinyuan Wang

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California, San Diego, 2020

Professor Chung-Kuan Cheng, Chair

Efficient and reliable transient simulators are essential for VLSI designs due to the

increasing size and design complexity. In this dissertation, we explore the advanced time

integration algorithms for solving the dynamical systems of VLSI circuits. We aim to reveal

the numerical performance of our proposed simulation framework with matrix exponential

based integration algorithms and illustrate its advantages over the conventional methods.

First, we provide the theoretical background of matrix exponential based integration

with application to circuit transient simulations. To evaluate the matrix exponential and

vector products efficiently, Krylov subspace methods and Arnoldi algorithms are used,

among which the rational Krylov subspace method exhibits faster convergence on stiff

xiv

dynamical systems than standard Krylov subspace method.

Second, we illustrate the stability of matrix exponential based integration algorithms

when applied to the transient simulation of power delivery networks. We propose a stability

guaranteed Arnoldi algorithm with structured orthogonalization to generate the rational

Krylov subspace. The algorithm is verified through theoretical proof and simulation

experiments on general linear systems.

Third, we improve the accuracy and convergence rate of the proposed simulation

framework with multiple techniques. The exponential related ϕ functions are introduced

and fully exploited in the calculation of matrix exponential and vector products. We

choose the appropriate ϕ function to reduce numerical error according to the condition of

exponential operator. The ratio used to shift the spectrum of original system is further

studied for performance improvements. We integrate the advanced techniques into the

simulation framework for general system-level PDNs. The adaptive stepping of matrix

exponential based integration is validated while stable and converged results are achieved

with high accuracy.

Finally, we explore the speedup of nonlinear circuit transient simulations. For

analog designs with higher accuracy requirements, we adopt the explicit matrix exponential

integration method with residual compensation for nonlinear convergence. For PDNs

with nonlinear load models, a parallel-in-time method is prompted to parallelize the total

simulation time and distribute the integration steps into multiple processors.

xv

Chapter 1

Introduction

1.1 Circuit Simulation

Circuit simulation is widely used to in the design flow of VLSI circuits prior to

the manufacturing. Circuit simulators use a transistor level description of circuits and

perform a relatively accurate result [8, 37]. Given a circuit netlist, a circuit simulation

process consist the evaluation of physical device models, formulation of the differential and

algebraic equations, and application of techniques to solve the equations. SPICE was the

first general-purpose circuit simulator framework developed by L. W. Nagel at UC Berkeley

in the early 1970s.

Transient simulation is the key component in SPICE [8,35–37,44]. In the simulation

process, numerical integration algorithms usually decide the efficiency and accuracy of

the simulation results. In modern VLSI, huge circuit sizes with millions of elements, high

stiffness of systems, and tighter design margins make the transient simulation extremely

challenging. High-speed simulation methods with non-degrading accuracy remain in

high demand. There has been a large amount of research to improve the integration

algorithms [11,12,28,31,58,61,63,64].

1

In this dissertation, we focus on the following problems and explore advanced

integration algorithms for the VLSI circuit transient simulations:

• The conventional linear multi-step methods belong to the low order approximation

and bounded by the Dahlquist barrier. Implicit linear multi-step methods, such as

Backward Euler, Trapezoidal and Gear’s schemes, are preferred due to better stability.

However, the step size is limited to reduce the local truncation error, which makes

the simulation of large and stiff systems very time consuming.

• The numerical solution of ordinary differential systems (ODEs) is well studied.

Unfortunately, in general, circuits equations are not ODEs. The stability and accuracy

of the integration algorithms on solving the differential and algebraic equations (DAEs)

remains to be an open problem.

• Matrix exponential based integration algorithms break the limitations of conventional

linear multi-step methods. The Krylov subspace is adopted to solve the matrix

exponential. The performance of the exponential integration method when applied

to the transient simulation of ill-conditioned systems remains to be explored.

• The transient simulation of nonlinear circuit is more difficult to solve. The lineariza-

tion of nonlinear elements and widely used Newton-Raphson iterations cause extra

computations for converged solution. A small enough step is usually required to

ensure the convergence.

1.2 Outline

This dissertation focuses on the matrix exponential based time integration method

and explores its application to circuit transient simulations on ill-conditioned systems with

huge problem size or high stiffness. The matrix exponential based integration overcomes

2

the drawbacks of the conventional low order multi-step approaches. The matrix exponential

solvers have remained to be an interesting topic in decades, which were classified into 19

dubious ways by Moler and Van Loan in 1978 [32]. To best of our knowledge, Saad [47]

was the first to provide the theoretical foundation to solve the matrix exponential with

Krylov subspace, which was clarified as the twentieth approach in [33]. Many works are

reported related to the applications of matrix exponential computed with Krylov subspace

approach [2, 22,23,40,49]. The contributions of this thesis are summarized as follows:

• We illustrate the privilege of using matrix exponential based integration method

compared to the conventional methods in the circuit transient simulations.

• We investigate the stability of the exponential integration for power network analysis.

We propose a new algorithm to generate stable rational Krylov subspaces for the

computation of matrix exponential and vector products (MEVPs). We validate the

algorithm on linear ill-conditioned systems.

• We improve the evaluation of MEVPs by applying different exponential related

formulations and selecting optimal parameters in the construction of rational Krylov

subspace to confine the spectrum of original system.

• We integrate the advanced techniques in the total simulation framework and applying

the approaches to the system-level PDN transient analysis.

• We explore novel integration methods for the transient simulation of nonlinear systems.

We perform experiments on analog designs and PDNs with nonlinear load models for

different scopes.

In Chapter 2, we introduce the dynamical system from circuits and the conventional

numerical time integration algorithms. We present the matrix exponential based integration

algorithm which breaks the limitation of the Dahlquist barrier. In order to accelerate

3

the computation of MEVPs, different preconditioning methods are applied in the Arnoldi

algorithm to construct the Krylov subspace. Performance is compared among the multiple

integration methods.

In Chapter 3, we investigate the stability of Krylov subspace used to compute

the MEVPs for the PDN transient simulation. A semi-explicit DAE with index one is

formulated for the PDNs and used for stability analysis. We propose a modified Arnoldi

algorithm with structured orthogonalization to resolve the stability issues caused by the

ill-conditioned systems. An error analysis is performed on the evaluation of MEVPs for

general RC and RLC networks, showing significant improvements with the modified Arnoldi

algorithm.

In Chapter 4, we explore the multiple techniques to further improve the accuracy

and convergence rate of our calculations based on the stable results from Chapter 3. The

exponential related ϕ functions are applied to the MEVPs due to numerical accuracy

concerns. Knowing the spectrum of the circuit system and current step size in MEVPs, we

are able to obtain the results using less dimension of Krylov subspace with appropriate

choice of ϕ functions. Besides, the optimal ratio is exploited to confine the spectrum in

rational Krylov subspace. We integrate the devised techniques in the simulation framework

and validate the performance on system-level PDNs.

In Chapter 5, we focus on the transient simulation algorithms for nonlinear circuits.

We apply the matrix exponential based integration to the transient simulation of analog

designs. We propose a residual based compensate iteration for the convergence of results. We

also work on the PDNs with nonlinear load models, where the macarocells are characterized

with linear elements and current sources at different voltage levels. A parallel-in-time method

is adopted to parallelize the sequential time stepping to speedup the whole simulation

process.

In Chapter 6, we summarize our contributions and present a future scope in this

4

area.

5

Chapter 2

Fundamentals of Circuit Transient

Simulation and Numerical Time

Integration Algorithms

2.1 Formulation of Circuit Transient Simulation

In order to transfer a circuit to a simulation program (SPICE), one must specify the

circuit topology and the element constitutive equations. The circuit topology represents

how the circuit elements are connected. The element constitutive equations defines the

relations among node voltages and branch currents. Circuit differential equations are

enforced by conservation laws, which are usually referred to as the Kirchhoff’s current law

(KCL) and voltage law (KVL). The circuit components, such as linear resistors, capacitors

and inductors, as well as nonlinear devices (MOSFETs), are modeled and stamped into a

matrix system via modified nodal analysis (MNA) [21]. The fundamental circuit simulation

theory starts from differential equations as follows.

Given the circuit netlist and device models, the general formulation is shown as

6

follows,

dq(x(t))

dt
+ f(x) = Bu(t), (2.1)

where x(t) ∈ Rn×1 is the vector of nodal voltages and branch currents and n is the size

of unknown variables. The charge/flux is represented by q ∈ Rn×1 and f ∈ Rn×1 contains

the current/voltage terms. The derivative dq
dt

represents the energy storage elements, such

as capacitors or inductors, which have time-dependent effects. Vector u(t) represents all

the external excitations at time t and matrix B inserts the signals to the system. If the

element constitutive equations are linearized, we can represent Eq. 2.1 as,

Cẋ(t) + Gx(t) = Bu(t) + F (x), (2.2)

where matrices C ∈ Rn×n represents the capacitance/inductance elements and G ∈ Rn×n

represents the conductance/resistance, respectively. Vector F (x) is the nonlinear dynamics

evaluated by device model, which is represented as input to the system. The entries are

given by

Ci,j =
∂qi
∂xj

,

and

Gi,j =
∂fi
∂xj

,

where qi and fi represents i-th equation in the system of q and f ;

x ≡

xv
xi

 , u ≡

ui
uv

 , C ≡

C 0

0 L

 , G ≡

 G E

−ET 0

 .

where vector xv represents the node voltages; xi represents the branch currents; vector

ui is the current input; uv is the voltage input. The block matrices C,L represent the

7

capacitance and inductance, respectively. Matrix E is the incident matrix.

Circuit transient simulation involves computing the waveform of x(t) as a function

of time. Linear multi-step methods are commonly used to solve the ordinary differential

equations (ODE) with initial value. With given initial state x(t) and assumption that

the system is unchanged in the step from t to t + h, one-step integration methods such

as Forward Euler (FE), Backward Euler (BE), Trapezoidal (TR) [37] will be discussed in

Chapter 2.2.

2.2 Conventional Numerical Time Integration Algo-

rithms

For simplicity, we start from a linear system as

C dx
dt

= −Gx+Bu(t). (2.3)

With the initial vector x(t) at time t given, we compute the solution x(t+ h) with time

step h. Assume that C is nonsingular, we define the system matrix A := −C−1G.

1. Forward Euler Time Integration (FE): Forward Euler time integration scheme starts

with the approximation

x(t+ h) = x(t) + hẋ(t),

which leads to

C
h
x(t+ h) =

(
C
h
− G

)
x(t) +Bu(t) (2.4)

in the circuit simulation formulation.

8

2. Backward Euler Time Integration (BE): Backward Euler time integration scheme

starts with

x(t+ h) = x(t) + hẋ(t+ h),

which gives

(
C
h

+ G
)
x(t+ h) =

C
h
x(t) +Bu(t+ h). (2.5)

3. Trapezoidal Time Integration (TR):

x(t+ h) = x(t) +
h

2
(ẋ(t) + ẋ(t+ h)),

which gives

(
C
h

+
G
2

)
x(t+ h) =

(
C
h
− G

2

)
x(t) +B

u(t) + u(t+ h)

2
. (2.6)

Methods FE, BE, and TR all belong to linear multi-step method, also known as

the linear one-step method. A-stable linear multi-step methods are favored in circuit

simulation to solve time integration problems, since the numerical error is only caused by

local truncation error (LTE) and would not be amplified by the instability of numerical

integration itself.

Definition 2.2.1 (A-stability). A linear multi-step method is said to be A-stable if its

region of absolute stability includes the whole left half-plane1.

1Another equivalent way to interpretation of A-stable: The numerical integration method is A-stable.
For the linear system dx/dt = Ax with time step h, the solution x(t + h) obtained by the numerical
integration approaches 0, or x(t + h) → 0 when h → ∞ and the real parts of all eigenvalues of A are
negative.

9

𝑹𝒆
𝟏 𝟐

𝟏

-𝟏

𝟎

𝑰𝒎

 𝑹𝒆
−𝟏 𝟎

−𝟏

𝟏

−𝟐

𝑰𝒎

𝑹𝒆

𝑰𝒎

𝟎

(a) (b) (c)

Figure 2.1: Stability regions (shaded) of (a) Forward Euler (FE), (b) Backward Euler
(BE), and (c) Trapezoidal methods in the complex plane.

The stability regions of FE, BE and TR are shown in Fig. 2.1. Method FE has a very

limited stability region, while BE covers the largest region in the complex plane. Time step

h in FE is constrained by min(|λi|−1) (λi: an eigenvalue of matrix A). Electronic circuits

have eigenvalue magnitudes spanning at least several decades, which leads to impractically

tiny time step h for simulation using FE. Circuit systems with a wide range of eigenvalues

are said to be stiff [39]. BE and TR are all A-stable and served as baseline methods in this

work. We keep the other linear multi-step schemes out of this paper, since the numerical

integration in SPICE-like tools usually use linear multi-step methods so that they cannot

exceed the second Dahlquist barrier.

Theorem 2.2.1 (the second Dahlquist barrier). There are no explicit A-stable and linear

multi-step methods. The implicit ones have order of convergence at most 2. The trapezoidal

rule has the smallest error constant amongst the A-stable linear multi-step methods of order

2 [8, 57].

Interested readers can refer to [8, 37,44] for more details of numerical stability in

circuit simulation.

10

2.3 A Matrix Exponential Based Integration Algo-

rithm

2.3.1 Time Integration with Matrix Exponential

We start from the linear circuit ODE in Eq. 2.3 which consists a nonsingular C,

which could be solved analytically with initial value x(t) [8].

x(t+ h) = ehAx(t) +

∫ h

0

e(h−τ)Ab(t+ τ)dτ, (2.7)

where A = −C−1G is the system matrix in MEVPs and b(t) = C−1Bu(t) is the excitation

from input sources.

Suppose that the input u(t) is piece-wise-linear (PWL), the solution in Eq. 2.7 can

be derived as an explicit expression with matrix exponential and vector products (MEVPs)

x(t+ h) = x(t)

+ (ehA − I)A−1g(t)

+ (ehA − hA− I)A−2 b(t+ h)− b(t)
h

, (2.8)

where the vectors are defined as

g(t) = Ax(t) + b(t), (2.9)

and the slope of PWL input

db(t)

dt
=
b(t+ h)− b(t)

h
. (2.10)

To best of our knowledge, all of the numerical integration methods in SPICE-like

11

simulators are from the linear multi-step scheme, which try to approximate the exact

solution via matrix exponential operators [8] in a low order way. To simplify the calculation,

we consider the homogeneous system with u(t) = 0,

dx

dt
= Ax, (2.11)

with solution

x(t+ h) = ehAx(t) =
∞∑
k=0

hkAk

k!
x(t) (2.12)

= x(t) + hAx(t) +
h2A2

2
x(t) +

h3A3

3!
x(t) + · · ·+ hkAk

k!
x(t) + · · · .

The conventional linear one-step integration methods attempt a low order polynomial

approximation of Eq. 2.12.

1. FE method:

x(t+ h) =

(
C
h

)−1(C
h
− G

)
x(t) = (I + hA)x(t) (2.13)

The formulation fits the first two terms of the exact solution. The accuracy order of

FE is O(h).

2. BE method:

x(t+ h) =

(
C
h

+ G
)−1 C

h
x(t) = (I − hA)−1x(t) (2.14)

The formulation also fits the first two terms of the exact solution. The accuracy order

of BE is O(h).

12

3. TR method:

x(t+ h) =

(
C
h

+
G
2

)−1(C
h
− G

2

)
x(t) = (I − hA

2
)−1(I +

hA
2

)x(t) (2.15)

The formulation fits the first three terms of the exact solution. The accuracy order

of TR is O(h2).

Note that the expressions only converge for hA of BE and hA
2

of TR with spectral

radius less than one. Besides, the missing higher order terms introduce the LTE to the

conventional methods, which constrain the time step with respect to the region of Taylor

expansion.

Fig. 2.2 shows a test equation with size n = 1, and is solved directly by function

EXPM as well as FE, BE, and TR. The figure illustrates that mismatched results of FE,

BE, and TR compared to EXPM with different time step h. In other words, if ehA is

used to compute the solution of differential equation system directly, there is no local

truncation error constraint for the time step choice. However, the question is how matrix

exponential and vector product (MEVP) can be computed in an efficient way, since the

size of system could be extremely large which makes the direct computation infeasible. In

addition, Fig. 2.3 describes a ”hump” effect during the computation of the exponential

function [33]. Term Ak/k! of series in Eq. 2.12 may increase before the value can drop

after k > |λ(A)|max. Therefore, we need a high order k to converge the series, which makes

MEVP computation even more challenging.

2.3.2 Evaluation of the Matrix Exponential and Vector Products

via Krylov subspace

One efficient way among different approaches is to compute the MEVPs through

Krylov subspace method [33,47]. The complexity of evaluating the MEVPs can be reduced

13

h

2 4 6 8 10

x
(t

+
h

)

-1

-0.5

0

0.5

1

1.5
EXPM

FE

BE

TR

Figure 2.2: A test equation dx
dt = −x(t), where x(0) = 1.5, h ∈ [0, 10]. Analytical

solution is computed by EXPM x(h) = e−hx(0).

while maintaining a high order polynomial approximation [47].

Definition 2.3.1 (Krylov Subspace). Given a matrix A and a vector v, the Krylov

subspace of order m, denoted by Km(A, v), is defined as the subspace spanned by the

vectors v, Av, · · · , .Am−1v, or

Km(A, v) := span{v,Av, · · · , Am−1v}. (2.16)

It is convenient to work with an orthonormal basis for Km := Km(A, v). Let {vi}mi=1

be an orthonormal basis for Km. Let Vm be the n×m matrix with {vi}mi=1 as its columns.

VmV
>
m is the projection onto Km. Let Hm be the m ×m Hessenberg matrix expressing

A as an operator restricted to Km on the basis {vi}m−1
i=0 , i.e., Hm = V >mAVm. We have v,

14

lo
g(
m
ax

(l
o
g

𝜆
𝑘
/𝑘

!
,1
))

log 𝑘

Figure 2.3: The ”hump” effect of terms in the Taylor series of the exponential function
in [33].

Av ∈ Km, then

Av = (VmV
>
m)A(VmV

>
m)v

= Vm(V >mAVm)V >m v

= VmHmV
T
m v. (2.17)

Similarly, for all i ≤ m− 1,

Aiv = VmH
i
mV

>
m v,

we have p(A)v = Vmp(Hm)V T
m v, for any polynomial p of degree at most m− 1 [47].

Lemma 2.3.1 (Exact Computation with Polynomials. See e.g., [43,47]). Let Vm and Hm be

as defined above. For any polynomial p of degree at most m− 1,

p(A)v = Vmp(Hm)V T
m v. (2.18)

15

Thus, Hm can be used to compute the function p(A)v for any degree m−1 polynomial.

The Lemma 2.3.1 suggests that a candidate for computing f(A)v approximately is via

Vmf(Hm)V >m v. The metric to evaluate the result is the norm of error, such as ‖f(A)v −

Vmf(Hm)V >m v‖ [43]. Let pm−1 be any polynomial of degree ≤ m− 1 approximating f(z),

and define the remainder rm(z) = f(z)− pm−1(z). Then

f(A)v − Vmf(Hm)V >m v = rm(A)v − Vmrm(Hm)V >m v. (2.19)

Therefore, the error is bounded by the value of rm on the eigenvalues of A and Hm. For

details see [47].

Lemma 2.3.2 (Approximation by Best Polynomial. See e.g., [43,47]). Let Vm and Hm be as

defined above. Let f : R→ R be any function such that f(A) and f(Hm) are well-defined.

Then,

‖f(A)v − Vmf(Hm)V >m v‖ (2.20)

≤ min
pm−1∈Σm−1

(max
λ∈Λ(A)

|f(λ)− pm−1(λ)|

+ max
λ∈Λ(Hm)

|f(λ)− pm−1(λ)|).

Hence, Vmf(Hm)V >m v approximates f(A)v as well as the best degreem−1 polynomial

that uniformly approximates f . Arnoldi algorithm (Algorithm 1) is used to construct the

orthonormal basis of Krylov subspace starting from the normalized initial vector [47,58].

The steps from line 4 to 7 of Algorithm 1 form a modified Gram-Schmidt process.

The process above produces an orthonormal basis Vm = [v1, v2, . . . , vm] of the Krylov

subspace Km. The m ×m upper Hessenberg matrix Hm consisting of the hi.j from the

algorithm follows the relation

AVm = VmHm + hm+1,mvm+1e
>
m, (2.21)

16

Algorithm 1: Arnoldi Algorithm

Input: A, v
Output: Vm, Hm

1 v1 = v/‖v‖;
2 for j = 1 : m do
3 w = Avj;
4 for i = 1 : j do
5 hi,j = w>vi;
6 w = w − hi,jvi;
7 end
8 hj+1,j = ‖w‖;
9 vj+1 = w

hj+1,j
;

10 if r(h,m)PASS residue check then
11 m = j;
12 break;

13 end

14 end

where em is the m-th unit vector with dimension m× 1. Then, the MEVP f(A)v = ehAv

is computed via

ehAv ≈ βVme
hHme1. (2.22)

where β = ‖v‖.

For the homogeneous system in Eq. 2.11, the posterior residual-based error term

can be used as termination criteria of Algorithm 1 [3].

‖r‖ = ‖dx
dt
− Ax‖ = ‖βhm+1,mvm+1e

>
me

hHme1‖. (2.23)

However, in circuit theory, we actually solve the system

C
dx

dt
= −Gx,

17

which defines the residual (error) approximation

‖r(m,h)‖ = ‖Cdx
dt

+Gx‖ = ‖βhm+1,mCvm+1e
>
me

hHme1‖ (2.24)

for our circuit simulation problem. This also leads to the solving of

Cw = −Gvj

as described in line 3 of Algorithm 1.

Note that Eq. 2.22 distinguishes approximation method from linear multi-step

methods, which uses non-linear coefficients generated by ehHm . Therefore, the matrix

exponential methods break away from linear multi-step methods and thus are not limited by

the Dahlquist barrier.

For the accuracy of approximation of ehAv, large dimension of Krylov subspace basis

is required, which not only increases the computational complexity but also consumes huge

amount of memory. The reason is that the Hessenberg matrix Hm and subspace Vm of

standard Krylov subspace method tend to approximate the large magnitude eigenvalues

and the corresponding eigenvectors of A [53]. Due to the exponential decay of higher order

terms in Taylor expansion, such components are not the crux of circuit system’s dynamical

behaviors [3, 53].

Dealing with stiff circuits, therefore, needs to gather more vectors into subspace

basis and increases the size of Hm to fetch more useful components, which results in both

memory overhead and computational complexity into the Krylov subspace generations

during time stepping.

To improve the efficiency, we adopt the idea from spectral transformation [3,13,41,53]

to effectively capture small magnitude eigenvalues and corresponding eigenvectors in A,

leading to a fast yet accurate MEVP computation.

18

2.4 Performance of Conventional and Matrix Expo-

nential Based Integration Algorithms

As described in Chapter 2.3, the MEVPs could be calculated with Krylov subspace

generated via Arnoldi algorithm. When applied to circuit transient simulation, standard

Krylov subspace method cannot work efficiently to capture the dominant components of

circuit systems and causes slow convergence. In this section, we introduce the spectral

transformation in the construction of Krylov subspace [3, 13, 41, 53], and compare the

numerical performance of multiple Krylov subspace methods as well as the conventional

integration methods.

2.4.1 Computation of MEVP via Invert Krylov Subspace

Instead of A, we use A−1 as our target matrix to form the Krylov subspace

Km(A−1, v) := span{v, A−1v, · · · , A−(m−1)v}. (2.25)

Intuitively, by inverting A the small magnitude eigenvalues become the large ones in A−1.

The resulting Hm is likely to capture these eigenvalues first. Based on the Arnoldi algorithm,

the invert Krylov subspace has the relation of matrices

A−1Vm = VmHm + hm+1,mvm+1e
>
m. (2.26)

The MEVP can be approximated as

ehAv ≈ βVme
hH−1

m e1. (2.27)

19

The residual approximation follows Eq. 2.24

‖r(m,h)‖ = ‖βhm+1,mGvm+1e
>
mH

−1
m ehH

−1
m e1‖. (2.28)

In line 3 of Algorithm 1, the generation of new basis vector requires solving

Gw = −Cvj.

2.4.2 Computation of MEVP via Rational Krylov Subspace

The shift-and-invert operation [53] is designed to confine the spectrum of A with

the parameter γ. The basis of rational Krylov subspace follows

Km((I − γA)−1, v) := span{v, (I − γA)−1v, · · · , (I − γA)−(m−1)v}. (2.29)

With this operation, the magnitude of all eigenvalues is smaller than one. According

to [3, 53], the shift-and-invert basis for matrix exponential based transient simulation is

not very sensitive to γ, once it is set to around the order near time steps used in transient

simulation. The similar idea has been applied to simple power grid simulation with matrix

exponential method [65,66]. The basis vectors Vm and Hessenberg matrix Hm of rational

Krylov subspace satisfies the relation

(I − γA)−1Vm = VmHm + hm+1,mvm+1e
>
m. (2.30)

The MEVP can be approximated as

ehAv ≈ βVme
h
I−H−1

m
γ e1. (2.31)

20

The residual approximation is derived as

‖r(m,h)‖ = ‖βhm+1,m(G+
C

γ
)vm+1e

>
mH

−1
m eh

I−H−1
m
γ e1‖. (2.32)

Since we don’t directly calculating A−1, the generation of new basis follows

(γG+ C)w = Cvj,

as described in line 3 of Algorithm 1.

2.4.3 Performance Comparison of Multiple Krylov Subspace

Methods

To validate the performance of the standard, invert, and rational Krylov subspace

methods, we generate a RC mesh with size n = 1600. The entries of conductance in G are

in the range [0.01, 100]. Each node is connected by a capacitor to ground, which results in

a diagonal matrix C with range in [8.5× 10−18, 9.9× 10−16]. Both matrices are nonsingular.

The resultant matrix A = −C−1G contains eigenvalues in [−3.98× 1017,−8.49× 1010] with

stiffness

Re(λmin)

Re(λmax)
=
−3.98× 1017

−8.49× 1010
= 4.7× 106,

where λmax and λmin are the maximum and minimum eigenvalues of A, respectively.

Start from the initial vector v generated by MATLAB rand function and we choose

the step size h = 0.4ps, the analytical solution of the homogeneous ODE system is calculated

using Eq. 2.22, 2.27 and 2.31. The ratio in rational Krylov method is set as γ = 10−13. The

exact solution is calculated with MATLAB expm function since the matrices are nonsingular,

which serves as the reference solution. Fig. 2.4 shows the relative error reductions along

21

m
10 20 30 40 50 60

R
e

la
ti
v
e

 E
rr

o
r

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Standard Krylov
Invert Krylov
Rational Krylov

Figure 2.4: The relative error vs. dimensional m of different Krylov subspace methods.

the increasing Krylov subspace dimension. The error reduction rate of rational Krylov

subspace is the best, while the one of standard Krylov subspace requires huge dimension to

capture the same level of error. For example, it costs almost 10× of the size to achieve

around relative error 1% compared to invert and rational Krylov subspace methods.

In order to observe the different stiffness effects on Krylov subspace methods, we

modify the values in C and G to increase the stiffness to 4.7× 1010. Fig. 2.5 illustrates the

stable reduction rate of rational Krylov method. The performance of standard and invert

Krylov methods degrades on system with higher stiffness.

22

m
10 20 30 40 50 60

R
e

la
ti
v
e

 E
rr

o
r

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Standard Krylov (4.7e6)
Invert Krylov (4.7e6)
Rational Krylov (4.7e6)
Standard Krylov (4.7e10)
Invert Krylov (4.7e10)
Rational Krylov (4.7e10)

Figure 2.5: The relative error vs. dimension m of different Krylov subspace methods
with two stiffness numbers.

2.4.4 Error Distributions of the Numerical Integration Ap-

proaches with a Single Time Step

To further explore the numerical performance of the integration methods when

applied to circuit transient simulation, the absolute error distribution versus h is plotted in

Fig. 2.6 including the standard, invert, and rational Krylov subspace methods as well as

FE, BE, and TR methods.

Error = ‖f(h)− ehAv‖∞

For rational Krylov subspace, we set γ = h/2. In most of the cases, a Krylov subspace

with higher dimension m could provide more accurate results.

For the case h ≤ min(|λi|−1), Taylor expansion is valid for BE and TR. Thus, the

23

BE method has the error slope following the 2nd order term while TR method following

the 3rd order term. In Fig. 2.6(a), there are some abnormal curves of the rational Krylov

subspace method (Rat) due to the numerical issues, when h is too small, and the matrix

A disappear since (I − h
2
A)−1 → I. In Fig. 2.6(b), the curves of standard Krylov method

(Std) shift to the right as m increases, while the invert Krylov method (Inv) has opposite

trend. Both errors decrease as h becomes smaller until they reach the numerical error floor.

For the case h ≥ max(|λi|−1), the solution attenuates globally. Thus, the absolute

error curves of Krylov subspace methods drop exponentially. The Inv and Rat methods

obtain faster convergence rate compared to Std method. The explanation is that a relatively

small portion of the eigenvalues and corresponding invariant subspaces determines the final

result (vector) when time step h is larger [53], which are efficiently captured by invert and

rational Krylov subspace methods. However, the implicit BE and TR error curves remain

flat due to accuracy limitations. The explicit FE method suffers from large LTE.

For the case that h is between the two bounds, most curves drop as the dimension

m increases. For this circuit, we are interested in the behavior in the nano-second scale.

At this time scale, Inv converges faster than Std as dimension m increases. This summary

of error trend is listed in Table 2.1.

2.5 Summary

In this section, we demonstrate the numerical performance of the matrix exponential

based integrators. Krylov methods for MEVP can alter their orders to improve accuracy,

which is not possible for traditional linear multi-step methods. In general, in a stiff

system, simulation can have time step h much larger than the feasible range of Taylor

expansion. Traditional linear multi-step approach relies on the marching in time to drive

the errors down, while matrix exponential approach can pull down the error by increasing

24

Table 2.1: Matrix Exponential Based High Order Integrators using Std, Inv, and Rat.
vs. Low Order Integrators FE, BE and TR.

Method h ≤ min(|λi|−1) min(|λi|−1) < h < max(|λi|−1) h ≥ max(|λi|−1)

FE 2nd order Diverge Diverge
BE 2nd order Flat Flat
TR 3rd order Flat (worse than BE) Flat

Std (m = 2) 2nd order Flat Drop
Inv (m = 2) 1st order Flat Drop
Rat (m = 2) 1st order Flat Drop
Std (m > 2) >2nd order Curves shift to the right Drop
Inv (m > 2) 1st order Curves shift to the left Drop
Rat (m > 2) * * Drop

*: The curve of Rat depends on γ. For large γ, the curve is similar to Inv. For small γ, the curve is similar

to Std. Otherwise, the shape of curve falls between Std and Inv. Moreover, for m = 2, the curve dips at

h = 2γ. As dimension m increases, the dip point shifts to the right.

the dimension of the Krylov subspace. For transient analysis, the eigenvalues of small

real magnitude are wanted to describe the dynamic behavior. Therefore, for the Krylov

variants, invert (Inv) and rational (Rat) Krylov methods are good choices.

More importantly, exponential based integration schemes with Krylov subspaces

have three distinguished features:

(1) For invert and rational Krylov subspace methods, the larger is time step, the smaller

errors we will have. This phenomenon is consistent with the result of van den Eshof

and Hochbruck in [53].

(2) Invert Krylov subspace method can avoid the factorization of matrix C, so that it

can solve the post-layout simulation when the capacitance/inductance matrix C is

complicated (relatively denser than pre-layout, or strong coupled systems), while the

complexities by standard methods may increase dramatically.

(3) The explicit formulation is stable by matrix exponential operators and Krylov subspace

methods. Thus, for nonlinear system, we can skip the procedures needed in implicit

25

method such as NR iteration.

Chapter 2 is a reprint of the material in the work: H. Zhuang, X. Wang, Q. Chen,

P. Chen, and C. K. Cheng, ”From circuit theory, simulation to spiceDiego: A matrix

exponential approach for time-domain analysis of large-scale circuits,” IEEE Circuits and

Systems Magazine, 16(2):16–34, 2016. The author is one of the primary authors and

investigators of this work.

26

Time Step (s)
10 -20 10 -15 10 -10

Er
ro

r (
V)

10 -50

10 -40

10 -30

10 -20

10 -10

10 0

10 10

FE
BE
TR
Std (m=2)
Std (m=4)
Std (m=6)
Std (m=8)
Std (m=10)
Std (m=30)
Std (m=100)
Inv (m=2)
Inv (m=4)
Inv (m=6)
Inv (m=8)
Inv (m=10)
Inv (m=30)
Inv (m=100)

Time Step (s)
10 -20 10 -15 10 -10

Er
ro

r (
V)

10 -50

10 -40

10 -30

10 -20

10 -10

10 0

10 10

FE
BE
TR
Rat (m=2)
Rat (m=4)
Rat (m=6)
Rat (m=8)
Rat (m=10)
Rat (m=30)
Rat (m=100)

(a)

(b)

Figure 2.6: RC circuit’s error distribution of the one-step integration results via
different linear integrators with the same initial vector x(0) and different time step h.
(a) Rat vs. FE, BE, and TR; (b) Std and Inv vs. FE, BE, and TR.

27

Chapter 3

Stability Analysis of Matrix

Exponential Based Integration

Methods

3.1 Motivation

In modern very large-scale integration (VLSI) designs, the performance of power

deliver network (PDN) has become a critical issue. The power supply from the package

down to on-chip integrated circuits is distributed through metal layers and vias, which

could be modeled as a linear network consisting of resistors, capacitors and inductors [38].

The on-chip circuit modules are simplified as time-varying current sources in PDN analysis.

Due to the shrinking feature size and increasing design complexity, the network could

easily consist of millions to billions of elements which result in an extremely huge system.

Moreover, the values of elements in a system level PDN may vary greatly and the transient

responses include many different scaled time constants. In order to characterize the long

term dynamic behavior, an extended time span at small scaled time steps is necessary

28

and extra computation efforts are required. At the same time, the stiffness of system

is increased which degrades the performance of traditional simulation methods. All the

challenges make a fast and accurate simulator in high demand.

The widely accepted backward Euler (BE) and Trapezoidal (TR) usually serve as

the baseline in traditional linear multi-step integration methods since they are proved to

be A-stable [8, 34,37]. However, solving a linear system is required at each time step and

the performance of the implicit integration methods are impacted by the local truncation

error (LTE).

A matrix exponential based integration method for PDN transient simulation is

considered [6, 66]. Compared to the traditional linear multi-step methods, the matrix

exponential based method is not bounded by the Dahlquist stability barrier thus the

step size breaks the limitation of LTE [57, 66]. It has been explored with the efficient

evaluation of matrix exponential and vector product (MEVP) via Krylov subspace method,

which is considered as a high order polynomial approximation [33, 47]. The stability of

matrix exponential based method when applied to ODEs has been well established in

previous work [58,66]. For general circuit simulation with DAEs, the stability remains an

interesting topic [15, 27, 52, 60]. Numerical stability issues are reported in [6, 55] and reveal

the limitation of MEVP computations with Krylov subspace. Similar problem occurs in the

eigenvalue problems [30,41] and model order reduction for interconnect simulation [45,50]

where Krylov subspace methods are widely used.

The aforementioned studies evoke the exploration of stability ensured algorithms. In

this section, we focus on the stability of solving DAEs for PDN transient simulations. We

adopt the rational Krylov subspace to efficiently capture the dominant dynamical behaviors

of PDNs due to its flexibility to confine the spectrum of ill-conditioned systems [3,13,41,53].

In Section 3.2, numerical stability problems will be reported on a general linear circuit which

is originated from the singularity of system. The formulation of PDN transient simulation

29

provides a special format of DAEs, named as semi-explicit DAEs with index-one [27].

Inspired by the special structure of DAEs, we devise the implicit regularization to handle

the singular matrices.

In Section 3.3, we prompt a modified Arnoldi algorithm with structured orthog-

onalization to construct the Krylov subspace for the calculation of matrix exponential.

The orthonormal basis of Krylov subspace is generated by a quadratic norm with the

capacitance matrix. The condition of original system is preserved which provides stable

computations of MEVPs. Inspired by the structure of semi-explicit DAEs, the implicit

regularization, as demonstrated in Section 3.2.3, is incorporated to handle the singular

systems. Considering some extreme cases, we find that the spurious eigenvalues might

exist in the results of Arnoldi and cause non-negligible error. A numerical pruning step

is applied to eliminate the potential spurious eigenvalues after Arnoldi. The algorithm is

validated with theoretical proof and experimental results.

3.2 Stability of Matrix Exponential Based Integra-

tion Methods for PDN Transient Simulation

3.2.1 Formulation of Semi-Explicit DAEs for PDNs

In Section 2, the formulation of circuit transient simulation is applicable for PDN

transient simulation. The linear system is expressed as Eq. 2.3 which can be solved analyti-

cally with a nonsingular C matrix and PWL input. For a singular C, extra regularization

step will be needed for standard Krylov subspace method [7, 58]. In invert and rational

Krylov methods, the construction of Krylov subspace does not require the computation of

C−1. Instead, we calculate G−1 an (γG + C)−1, respectively. For details see Section 2.4.1

and 2.4.2. We also notice that in Eq. 2.8, the C−1 is canceled by the A−1 in the initial

30

vectors of MEVPs

g̃(t) = A−1g(t) = x(t)− G−1Bu(t), (3.1)

and

d
˜̃
b(t)

dt
= A−2db(t)

dt
= G−1CG−1B

du(t)

dt
. (3.2)

In most cases, the matrix G is invertible. We are able to avoid the extra regularization

of DAEs. Although the different integration methods may not require the computation

of C inverse, whether the formulation can produce the exact solution of DAEs remains

to be explored. Actually, if we can obtain the generalized eigenvalues and corresponding

eigenvectors for matrix pencil (−G, C), the solution can be derived based on [59]

Lemma 3.2.1. Considering a homogeneous system

C dx
dt

= −Gx,

u and λ are the eigenvector and eigenvalues of matrix pencil (−G, C), then

x = etλu

is a solution of the system.

According to the relation in Section 2.3, the Hessenberg matrix contains the dominant

eigenvalues of the system. Our target is to figure out whether the eigenvalues of original

system are accurately captured by the Arnoldi algorithm, and whether there exist any

spurious eigenvalues in the Hessenberg matrix that may cause numerical issues.

For general cases, a regular C matrix cannot always be achieved. The nodes without

31

nodal capacitance or inductance contribute to the algebraic equations of DAEs. The

resulting singular C matrix makes direct computation of its inverse infeasible. However, we

notice that the DAEs of a PDN follow a special structure and the analytical solution is

still accessible. Following the semi-explicit DAEs with differentiation index one [27, 60], we

are able to extract the underlying ODEs from the original Eq. 2.3.

Definition 3.2.1. Semi-explicit DAEs with Index-one. The structure requires

1. an invertible partial capacitance matrix C̃ including all the nonzero capacitance and

inductance

2. invertible G as well as its partial matrix G11,G22

Then we have the semi-explicit DAEs

C̃ 0

0 0

ẋ1

ẋ2

+

G11 G12

G21 G22

x1

x2

 =

U1

U2

 . (3.3)

The state vector x in Eq. 3.3 is separated into the differential part x1 for ODEs and

algebraic part x2. The input sources U(t) = Bu(t) are reformatted in the same way. In

general PDNs, the matrix G is positive semi-definite and invertible, and C is symmetric

and diagonal. Let C = VRC̃V >R be the eigenvalue decomposition of C excluding the singular

values. The whole space is introduced as the composition of the real basis and nullspace

V :=

[
VR, VN

]
, so that the state variables can be decomposed as

x(t) = VRx1(t) + VNx2(t). (3.4)

32

The semi-explicit DAEs in Eq. 3.3 can be transformed to explicit ODEs

C̃ẋ1 + (G11 − G12G−1
22 G21)x1 = U1 − G12G−1

22 U2 (3.5)

G21x1 + G22x2 = U2. (3.6)

The underlying ODEs can be solved analytically with guaranteed stability. The algebraic

equations on the second row can be calculated without accuracy loss. However, the sparsity

of original system is lost. The dense matrices make the explicit ODEs computationally

expansive. Regarded as ill-conditioned systems, the DAEs require appropriate techniques

to generate stable results while preserving the sparsity of original matrices.

3.2.2 Stability Problems and Sensitivity Analysis of Numerical

Integration Methods

We start from a one tank lumped RLC model as shown in Fig. 3.1. A step input

current source IS with rise time TR= 1ps is applied. The DAEs of the one tank RLC

follow the semi-explicit structure as expressed in Eq. 3.7. The node voltages and branch

currents in the state vector are marked in Fig. 3.1.

0

0
C1

L1

v̇1

v̇2

v̇3

˙iL

+

1
R1

+ 1
R2
− 1
R1

− 1
R1

1
R1

1

0 −1
−1 1 0

v1

v2

v3

iL

 =

Ibias

0
−IS

0

 (3.7)

33

Figure 3.1: One tank RLC with R1 = 100µΩ, L1 = 0.5nH,C1 = 0.5nF and R2 <<
R1.

We recall the analytical solution Eq. 2.8 with MEVPs to solve the DAEs.

x(t+ h) = x(t) + term1 + term2,

term1 = ehAg̃(t)− g̃(t),

term2 = ehA
d
˜̃
b(t)

dt
− d
˜̃
b(t)

dt
− hdb̃(t)

dt
, (3.8)

where the input vectors of MEVPs are defined as Eq. 3.1 and Eq. 3.2. The vector db̃(t)
dt

=

A−1 db(t)
dt

= −G−1B du(t)
dt

. We only consider the implementation with matrix exponential

function ehA, which is known as exponential related ϕ0 function [24, 40]. The evaluation of

MEVPs with other ϕ functions will be discussed in Chapter 4.

Rational Krylov subspace is constructed through Arnoldi process in the simulation

to compute the MEVPs, as shown in Algorithm 2. We set the first step h = 1ps for the

input transition stage and use fixed step size for the stable stage. The accuracy of result

x(t+ h) is reflected by the residual

residual(t+ h) = Cẋ(t+ h) + Gx(t+ h)−Bu(t+ h), (3.9)

34

Algorithm 2: Arnoldi algorithm for rational Krylov subspace

Input: C,G, γ,mv
Output: Vm, Hm

1 v1 = v/‖v‖;
2 for j = 1 : m do
3 Solve (γG + C)w = Cvj;
4 for i = 1 : j do
5 hi,j = w>vi;
6 w = w − hi,jvi;
7 end
8 hj+1,j = ‖w‖;
9 vj+1 = w

hj+1,j
;

10 if r(h,m)PASS residue check then
11 m = j;
12 break;

13 end

14 end

where the solution x(t + h) and its derivative dx(t+h)
dt

= d
dt
term1 + d

dt
term2 are based on

Eq. 3.8 and the following approximation

term1 ≈ β1Vm1e
h
I−H−1

m1
γ e1 − g̃(t),

term2 ≈ β2Vm2e
h
I−H−1

m2
γ e1 −

d
˜̃
b(t)

dt
− hdb̃(t)

dt
,

and

d

dt
term1 ≈ β1Vm1

I −H−1
m1

γ
eh

I−H−1
m1
γ e1,

d

dt
term2 ≈ β2Vm2

I −H−1
m2

γ
eh

I−H−1
m2
γ e1 −

db̃(t)

dt
,

where β1 = ‖g̃(t)‖ and β2 = ‖d
˜̃
b(t)
dt
‖. The variables m1 and m2 represent the dimension of

converged Krylov subspace for term1 and term2, respectively. In the Arnoldi process, The

residual r(h,m) used to determine the convergence of MEVPs follows Eq. 2.32.

35

Fig. 3.2 depicts the node voltages and the solution residual in the simulation, showing

that the residual terms on algebraic variables v1 and v2 start to increase at early stage and

generally drive the whole system to an incorrect converging direction. Exact solution is

calculated by PWL response from MATLAB continuous-time transfer function using fixed

step size (100ps for stable input). Trapezoidal (TRAP)1 method results with fixed step

size 100ps are plotted as comparison which show a deviation from exact solution as well.

The local error of one-step integration is accumulated and propagated to later

simulation time. We start from the sensitivity analysis to explore how the origin and

propagation of error. The sensitivity of the multi-step integration methods is defined as

follows.

Remark 3.2.1. Use ε to denote the local error with input vector v, the perturbation of ε to

the object function is approximated with a sensitivity matrix

F (v + ε)− F (v) ≈ Dε (3.10)

where ε ∈ Rn, D ∈ Rn×n is the Jacobian matrix of F on ε.

Sensitivity of Trapezoidal Method

Trapezoidal time integration scheme is an implicit second-order method. If a

numerical error exists in x(t), it is propagated to the integrated result x(t+ h)

(
C
h

+
G
2

)x(t+ h) = (
C
h
− G

2
)(x(t) + ε) +B

u(t) + u(t+ h)

2
. (3.11)

1To distinguish from the input rise time TR, we use TRAP in short of Trapezoidal method.

36

Time (s) #10 -7
1 1.2 1.4 1.6 1.8 2

Ab
so

lu
te

 R
es

id
ue

10 -25

10 -20

10 -15

10 -10

10 -5

10 0
v1
v2
v3
iL

Time (s) #10 -7
1 1.2 1.4 1.6 1.8 2

N
od

e
Vo

lta
ge

 v
3

-1

-0.5

0

0.5

1

1.5 Exact Solution (100ps)
TRAP method (100ps)
Rat Krylov (1ns)

(a)

(b)

Time (s) #10 -7
0 0.2 0.4 0.6 0.8 1

Ab
so

lu
te

 R
es

id
ue

10 -25

10 -20

10 -15

10 -10

10 -5
v1
v2
v3
iL

Time (s) #10 -7
1 1.2 1.4 1.6 1.8 2

N
od

e
Vo

lta
ge

 v
3

-1

-0.5

0

0.5

1

1.5 Exact Solution (100ps)
TR method (100ps)
Rat Krylov (1ns)

(b)

(a)

Figure 3.2: Simulation results of the one tank RLC. (a) absolute value of the residual
for each variable in x(t); (b) simulation results on v3 with rational Krylov subspace
method as well as TRAP method, exact solution is included as comparison.

37

Following the semi-explicit DAEs in Eq. 3.3, the sensitivity of solution at t+h is derived as

Dx(t+ h) = (
C
h

+
G
2

)−1(
C
h
− G

2
) = −

G11 + 2C̃
h
G12

G21 G22

−1G11 − 2C̃

h
G12

G21 G22

=

 −I + 4
h
G−1

+11C̃ 0

4
h
G−1

+22G21(G11 + 2C
h

)−1C̃ −I

 , (3.12)

where the G+ denotes the matrix G + 2C
h

and uses the subscript for its partial matrix. The

upper part of D corresponds to the effects of error on the ordinary differential elements,

while the lower part of D corresponds to the effects on the algebraic elements. We could

tell that if an error exists in previous step, it might increase in the integrated results on x1

and influence the error of x2.

Sensitivity of Rational Krylov Method

Consider the stage when u(t) is stable after the rise time, we only check MEVP

term1 in the solution because the term2 is nonzero only in the first time step. The residual

increases exponentially versus integration steps. The target function is approximated by

F (v1) = ehAv1 ≈ Vme
h
I−H−1

m
γ e1, (3.13)

where v1 is the normalized input vector so that β = 1. Based on the orthogonalization

process in Arnoldi algorithm, we have the relation between two neighboring basis vectors

hj+1,jvj+1 = Mvj − Σj
i=1hi,jvi, (3.14)

where M(γ) = (γG + C)−1C is used to construct the rational Krylov subspace. Assume the

local error ε exists in v1, it will be propagated to the whole subspace based on the relation

38

(3.14). For the one tank RLC circuit, the perturbation mainly contributes to the subspace

basis Vm. We assume that the change of elements in Hm is negligible compared to that in

Vm after introducing the error ε. The dimension m is at most 2 because it cannot exceed

the rank of system, so we have

Vm =

[
v1 v2

]
, Hm =

h11 h12

h21 h22

and

h21v2 =
(
M(γ)− h11I

)
v1. (3.15)

The derivation provides the sensitivity of rational Krylov subspace to the input local error ε

Dε =

[
ε h−1

21 (M(γ)− h11I)ε

]
exp(h

I −H−1
m

γ
)e1. (3.16)

Finally we denote the matrix exponential Exp = exp(h I−H
−1
m

γ
), the sensitivity matrix is

given as

D = Exp,11I + Exp,21h
−1
21 (M(γ)− h11I). (3.17)

If the magnitude of D diagonal terms is larger than 1, the perturbation of ε cannot

be suppressed in later integration steps. Fig. 3.3 shows a well fitting of the sensitivity

analysis and experimental phenomenon. For the one tank RLC circuit, the matrix D is

diagonal dominant with the diagonal elements D(1, 1) = D(2, 2). The slope in log-scale

(over integration steps) of increasing residual is measured from simulation results under

multiple choices of step sizes. We choose γ = h/2 so the slope is plotted as a function of γ.

To illustrate the effects of simulation parameters on the sensitivity analysis, Fig. 3.4

39

gamma ×10
-10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

s
lo

p
e
 v

s
.
s
te

p
s

0

0.05

0.1

0.15

0.2

0.25

0.3

slope of residue
log(D(1,1))

Figure 3.3: Slope of increasing residual versus γ = h
2 is well fitting its corresponding

sensitivity D.

shows the distribution of D(1, 1) where the parameters h and γ are set as independent

variables. The region where |D(1, 1)| > 1 is plotted in red color. The first sensitivity term

in Eq. (3.17) from the original local error in v1 is determined by the matrix exponential

versus h. The second term in Eq. 3.17 is affected by the exponential term and γ. Once a

relatively smaller γ is used, M is close to an identity matrix so the coefficient h11
h21

becomes

extremely large. For larger PDNs, the sensitivity analysis becomes more complicated and

the Arnoldi process should be operated carefully to avoid the stability issues.

3.2.3 Implicit Regularization Approach

From the observations on ill-conditioned system from DAEs, the numerical error

occurs in the calculation of algebraic variables and could result in stability issues in later

simulation stage. For the linear systems of PDNs, C and G are positive semi-definite. The

matrix C consisting of the ground capacitance and inductance is usually diagonal and

symmetric. To eliminate the error in the nullspace N (G−1C) = N (C), the algebraic variables

40

10-5

h (s)
10-10

10-10

.

0

500

-1000

-500

1000
Se

ns
iti

vi
ty

 D
(1

,1
)

!

h (s)
10-12 10-10 10-8 10-6 10-4

.
10-12

10-11

10-10

10-9

10-8

!

Figure 3.4: Sensitivity D(1, 1) of one tank RLC versus step size and γ. The red region
shows |D(1, 1)| > 1 and blue region |D(1, 1)| ≤ 1.

are set to zero in the Arnoldi process. The technique is called implicit regularization [6]

v =

vR
vN

⇒ v ∗ IR =

vR
vN

I 0

0 0

 =

vR
0

 . (3.18)

where vR corresponds to the variables in the underlying ODEs and vN corresponds to the

algebraic variables. The factor IR only contains an identity matrix for the differential

variables and zeros for the algebraic variables, similar to the separation of state vector in

Eq. 3.3. The approach forces the computations in the range of C, which is equivalent to

solving the underlying ODEs implicitly.

Remark 3.2.2. The implicit regularization approach constitutes the solution of ODEs for

41

nonsingular variables x1 in Eq. 3.3. Let P = VRV
>
R be the orthogonal projection on the

range of C,

PG−1
(
Cẋ+ Gx

)
= PG−1Bu

⇒

(G−1)11C̃ẋ1

0

+

x1

0

 =

G−1
11 U1 − G−1

11 G12G−1
22 U2

0

 , (3.19)

where (G−1)11 = (G11 − G12G−1
22 G21)

−1 is partitioned matrix from G−1 and its inverse also

serves as the conductance matrix of ODEs. The equation is equivalent to Eq. 3.5.

Proof. Applying G−1 on the original DAEs yields one range consistency constraint on x(t)

that the input vector of MEVP term1 g̃(t) = x(t) − G−1Bu(t) must lie in the range of

G−1C2. So we have the intermediate equation

G−1Cẋ+ x = G−1Bu.

By applying the implicit regularization, we project the vector in the range of C which

is equivalent to multiplying P to the above equation and we get the another format of

Eq. 3.5. Actually, the factor IR in the implicit regularization is a special case of P when C

is diagonal.

Next we need to prove that with the projected input vector, the rational Krylov

subspace method still composes the approximation of exact solution of ODEs. In the

2Notice that the other input vector in term2 is also in the range of G−1C.

42

construction of rational Krylov subspace, we multiply (γG + C)−1C to input vector and get

(γG + C)−1Cv =

γG11 + C̃ γG12

γG21 γG22

−1C̃ 0

0 0

vR
vN

=

(γG̃ + C̃)−1 ∗

∗ ∗

C̃vR

0

 =

(γG̃ + C̃)−1C̃vR

∗

 . (3.20)

The partial conductance matrix G̃ = G11 − G12G−1
22 G21 and differential variables in vR

compose the exactly same ODEs to Eq. (3.5). By setting the algebraic variables to zeros in

vN ∈ N (C) in the Arnoldi process, the computation with original system is still valid.

The updated Arnoldi with implicit regularization is shown in Algorithm 3. The

extra matrix and vector multiplications don’t increase the computation complexity of

original algorithm. The algebraic variables in x2(t) could be solved algebraically. All the

calculations are based on the original system and preserve the sparsity. Extraction of the

underlying ODEs is unnecessary for solving DAEs of PDN transient simulation, and we

avoid the computation of dense matrices after the explicit regularization.

Lemma 3.2.2. The regularized Arnoldi process excludes the calculation of x2 and maintains

the sparsity of original system.

Simulation results of the one tank RLC with implicit regularization are shown in

Fig. 3.5, which fit the exact solution. Residuals of v3 and iL remain at a low level (≈ 10−15)

when the input current is stable. The other variable are solved algebraically and the system

no longer suffers from the stability problem.

43

Time (s) #10 -7
0 0.5 1 1.5 2

Ab
so

lu
te

 R
es

id
ue

10 -20

10 -18

10 -16

10 -14

10 -12

10 -10

v3
iL

Time (s) #10 -7
1 1.2 1.4 1.6 1.8 2

N
od

e
Vo

lta
ge

 v
3

-1

-0.5

0

0.5

1

1.5
Exact Solution (100ps)
TRAP method (100ps)

(b)

(a)

Figure 3.5: Simulation results of the one tank RLC with implicit regularization. (a)
The absolute residual no longer increase and (b) simulation results well fit the exact
solution. Node voltages v1, v2 are solved algebraically.

44

Algorithm 3: Arnoldi algorithm for rational Krylov subspace with implicit
regularization

Input: C,G, γ,m, v
Output: Vm, Hm

1 v1 = v ∗ IR/‖v ∗ IR‖;
2 for j = 1 : m do
3 Solve (γG + C)w = Cvj;
4 Set w = w ∗ IR;
5 for i = 1 : j do
6 hi,j = w>vi;
7 w = w − hi,jvi;
8 end
9 hj+1,j = ‖w‖;

10 vj+1 = w
hj+1,j

;

11 if r(h,m)PASS residue check then
12 m = j;
13 break;

14 end

15 end

3.3 A Stability Preserved Arnoldi Algorithm with

Structured Orthogonalization

In this section, we introduce a new Arnoldi scheme with structured orthogonalization

to generate one stable Krylov subspace and to compute the MEVPs. The orthogonality is

based on the positive semi-definite matrix C. The C semi-inner product plays a fundamental

role in enforcing the numerical range of the operator in the left half plane, which satisfies

the stability condition.

3.3.1 An Arnoldi Process with Structured Orthogonalization

The rational Krylov subspace were originally developed for computing eigenvalues

and eigenvectors of large matrices [46]. The method is a very promising manner in

computing the MEVP ehAv, which can converge geometrically when the range of A is in

45

the left half complex plane [9]. Typically, the Krylov subspace approximation does not

completely lie in the left half plane.

Recall the computation of MEVPs with rational Krylov subspace, as shown in

Section. 2.4.2. By multiplying the transpose of orthonormal basis V >m to the left of the

relation (2.30), we have

V >m (γG + C)−1CVm = Hm. (3.21)

The spectrum of system is confined with γ and then inverted to produce eigenvalues with

nonnegative real parts. The slow decaying and oscillation components become dominant

in the rational Krylov subspace and can be quickly approximated. In the computation of

MEVPs, the approximated eigenvalues are recovered by the operation on the Hessenberg

matrix I−H−1
m

γ
. PDNs contain positive semi-definite C and G matrices, then a positive

semi-definite system (γG + C)−1 is generated according to Lemma 3.3.1 [50].

Lemma 3.3.1. If a real matrix A is positive semi-definite and B is symmetric, then BAB is

positive semi-definite. Furthermore, if A is nonsingular then its inverse A−1 is also positive

semi-definite. Apply to negative semi-definite matrices as well.

However, the whole system (γG+C)−1C doesn’t necessarily be positive semi-definite.

In order to generate stable results, firstly a positive semi-definite Hm should be ensured for

the rational Krylov subspace. Otherwise, after the recovery operation potential positive

eigenvalues may exist in the matrix exponential and cause stability issues. A new Arnoldi

process is proposed in Algorithm 4, where we use C for the inner products to normalize the

vectors in Vm. The implicit regularization is operated for singular matrices for semi-explicit

DAEs.

46

Algorithm 4: Arnoldi algorithm with structured orthogonalization
and implicit regularization

Input: C,G, γ, v, h,m
Output: Hm, Vm

1 Set v = v ∗ IR;

2 v1 = v
‖v‖C where ‖v‖C =

√
v>Cv and v>1 Cv1 = 1 ;

3 for j = 1 : m do
4 Solve (γG + C)w = Cvj ;
5 Set w = w ∗ IR;
6 for i = 1 : j do
7 hi,j = w> ∗ C ∗ vi;
8 w = w − hi,jvi;
9 end

10 hj+1,j = ‖w‖C ;
11 vj+1 = w

hj+1,j
;

12 if r(h,m)PASS residue check then
13 m = j;
14 break;

15 end

16 end

The semi-inner product with C orthogonality is defined as

‖v‖C =
√
v>Cv, (3.22)

which provides the relation following the same expression to Eq. 2.30

(γG + C)−1CVm = VmHm + hm+1,mvm+1e
>
m, (3.23)

with V >m CVm = I. To illustrate the property of the corresponding subspace, we multiply

V >m C to the left of Eq. 3.23

V >m C(γG + C)−1CVm = Hm. (3.24)

From Lemma 3.3.1, the generation of rational Krylov subspace is performed with a positive

47

semi-definite matrix C(γG + C)−1C. Theorem 3.3.1 indicates that the passivity property of

system with C,G are preserved in the Hessenberg matrix Hm [42, 50].

Theorem 3.3.1. Given A such that A+ A> is negative semi-definite, Arnoldi algorithm

is used to construct the Krylov subspace Vm and Hessenberg matrix Hm

V >mAVm = Hm, (3.25)

then passivity of original matrix is preserved.

In rational Krylov subspace, the spectrum of A is shifted and inverted to be positive with

ratio γ. It could be proved that the Hm generated by Algorithm 4 preserves the positive

semi-definiteness. The Algorithm 4 improves the performance of Hm on approximating the

dominant eigenvalues and prevent the results from the contamination of ill-conditioned

system. Although the construction of Krylov subspace is implicitly projected to the range

of (γG + C)−1C where the nullspace vector is eliminated, the nonzeros in the input vector

are introduced through the orthogonalization. So the implicit regularization step is still

necessary. Compared to the original Arnoldi, the quadratic norm with C costs no extra

computation because the matrix and vector multiplication is already calculated and can be

reused, as described in line 4 of Algorithm 4. The implicit regularization takes an extra

multiplication in each iteration and totally extra mN2 computations. The computation cost

of the new Arnoldi algorithm is similar to the original Arnoldi process, which is O(mN2).

3.3.2 Numerical Pruning of Spurious Eigenvalues

With structured orthogonalization, a guaranteed positive semi-definite Hm is created.

However, in some corner cases the recovery of original spectrum with I−H−1
m

γ
encounters

numerical issues. It is observed that spurious eigenvalues might exist in Hm if C is ill-

conditioned. It is necessary to figure out the situation before the error contaminates the

48

results.

We decompose Hm into the Jordan canonical form

Hm = U

Σ 0

0 N

U−1. (3.26)

We define λ as the nonzero eigenvalues of the matrix pencil (−G, C). The diagonal

matrix Σ includes the nonzero eigenvalues which tend to approximate 1
1+γλ

. The spectrum

of the Hessenberg matrix Hm does not necessarily lie in the shifted and inverted range of

λ
(
(γG + C)−1C

)
. Assume θ is an eigenvalue of Hm and w is the corresponding eigenvector,

we multiply w to the relation Eq. 3.23

(I − γA)−1Vmw = VmHmw + hm+1,mvm+1e
>
mw

= θVmw + hm+1,mw(m)vm+1. (3.27)

where w(m) denotes the mth element of the vector. If the residual term hm+1,mw(m)vm+1

is small enough, then θ and Vmw are the eigenvalue and corresponding eigenvector of matrix

(γG + C)−1C. The exact eigenvalues of the system are interpolated by Arnoldi process.

Once the residual is not negligible, we need to be careful using Hm.

The other part N , known as nil-potent, corresponds to the spurious eigenvalues

that will contaminate the results. Besides, if the range of matrix pencil (G, C) is briefly

approximated in advance, upper and lower bounds could be set to avoid huge deviation in

the eigenvalues of Hm. The spurious eigenvalues in N are set to zeros, we call this process

pruning of eigenvalues. After pruning, Drazin inverse is applied to evaluate H−1
m [51].

Definition 3.3.1. Drazin Inverse of a Singular Matrix If we have a matrix that is

decomposed into Jordan canonical form, as shown in Eq. 3.26. Then its Drazin inverse H†m

49

is computed with

H†m = U

Σ−1 0

0 0

U−1. (3.28)

Therefore, the calculation of MEVPs takes Drazin inverse of Hm instead of exact matrix

inverse. Previous work [51] proves the analytical solution with ODEs is applicable to

ill-conditioned C if and only if the input vector lies in the range of system matrix. With

the implicit regularization techniques, the space spanned by basis vectors is in the range of

system matrix.

3.3.3 Numerical Experiments on RC and RLC Networks

To validate the new Arnoldi algorithm with structured orthogonalization, we adopt

a general RC mesh as well as an RLC network and operate a one step integration with

rational Krylov subspace for the transient simulation of both cases. The properties of the

circuits and design of experiments are discussed in detail in this section. The test cases

will be used in later explorations for potential performance improvements.

Case 1: performance on RC network

We start from a general 10 × 10 RC mesh consisting of 100 resistors and 100

capacitors. Each node in the RC network is connected by a self capacitor to ground. The

matrices C,G are positive definite, symmetric and nonsingular. The eigenvalues of G−1C lie

in the range of [10−18, 10−11].

Given a zero initial state x(0) under all zeros input at time t = 0, we assume that

the input source keeps increasing within the simulation time with unchanged slope. The

analytical solution with MEVPs is valid for a one step integration to get the results x(h)

with step size h. The transient response of the RC mesh only MEVP term2 as derived

50

from Eq. 3.8

x(h) = ehA˜̃v − ˜̃v − hṽ ≈ βVme
h
I−H−1

m
γ e1 − ˜̃v − hṽ, (3.29)

where the input vector ˜̃v is an abbreviated notation of vector
˜̃
b(t)
dt

in Eq. 3.2. The full

expression is equivalent to the MEVP term2. Notice that the norm in structured orthogo-

naliazation is expressed as β = ||˜̃v||C.
The ratio γ is set as h/2 empirically. Benefiting from the symmetry of the original

system matrices and structured orthogonalization, the Lanczos algorithm is used to save

computations [53]. The MEVP in solution is evaluated at different step sizes with increasing

dimension of Krylov subspace. Exact solution is computed with the explicit matrix A using

MATLAB expm function as reference. Fig. 3.6 includes the absolute error distribution of

results using Algorithm 4 (implemented as Lanczos) and the original Arnoldi.

errabs =
∣∣∣∣βVmeh I−H−1

m
γ e1 − ehAv

∣∣∣∣. (3.30)

In Fig. 3.6 (a) the region with spurious eigenvalues is plotted in red color where the error

could grow extremely high with original Arnoldi algorithm, while the issue is resolved by

the structured orthogonalization.

Case 2: performance on RLC network

We introduce a PDN circuit constructed by 260 resistors, 160 capacitors and 160

inductors, which leads to a singular C and nonsymmetric G matrices with size n = 507. The

spectrum of G−1C lies in the range of −[10−16, 10−8]. The existence of inductors introduce

complex eigenvalues with conjugate pairs to the system.

Same experiment is operated on the RLC network. The computation of MEVPs is

concluded in Eq. 3.29. Implicit regularization technique is used to handle the singularity.

51

m

0

10

20

30
10-510-10

h

10-1510-20

1010

100

10-10

10-20

Ab
so

lu
te

 E
rro

r

Region with stable system
Region with spurious eigenvalues

m

0

10

20

30
10-510-10

h

10-1510-20

1010

100

10-10

10-20

Ab
so

lu
te

 E
rro

r

Region with nonzero error
Region with zero error

(a)

(b)

Figure 3.6: RC network with n=100: the absolute error errabs with ϕ0 function
is computed versus h and m with (a) original Arnoldi; (b) Lanczos plus structured
orthogonalization.

52

The exact solution is computed by explicitly solving the ODEs according to Eq. 3.5. The

discontinuity in Fig. 3.7 is from the NaN result suffering from numerical issues. Compared

to the original Arnoldi, structured orthogonalization improves the stability of results

significantly, as shown in Fig. 3.6. When the step size is relatively small, the results are

dominated by the numerical precision errors. In case of any spurious eigenvalues in the

simulation of RLC network, a numerical pruning process is implemented to clean the

unwanted spurious eigenvalues as explained in Section 3.3.2.

More error analysis on the computation of MEVPs can be found in Sec. 4.1.1.

3.4 Summary

In this chapter, we apply the matrix exponential based integration method to the

PDN transient simulation. The MEVPs are evaluated with rational Krylov subspace

and the numerical stability issues are observed with the ill-conditioned systems of PDNs.

Considering the structure of semi-explicit DAEs with index one, an implicit regularized

Arnoldi algorithm is devise to handle the singular matrices and solve the underlying ODE

system anylytically. The sparsity of original matrices is preserved. We propose a stability

guaranteed Arnoldi algorithm with structured orthogonalization, where the orthogonality

is induced from the singular system matrix C. The We validate the performance of the new

algorithm on typical power grids (RC and RLC networks) transient simulation and observe

significant improvements with error analysis.

Chapter 3 is a combination of the material in the following two works: P. Chen, C.

K. Cheng, D. Park, and X. Wang, ”Transient circuit simulation for differential algebraic

systems using matrix exponential,” in Proceedings of the International Conference on

Computer-Aided Design, page 99. ACM, 2018. X. Wang, P. Chen, and C.-K. Cheng,

”Stability and convergency exploration of matrix exponential integration on power delivery

53

m

0

10

20

3010-510-10

h

10-1510-20
10-30

10-20

10-10

100

1010

1020
Ab

so
lu

te
 E

rro
r

Region with stable system
Region with spurious eigenvalues

m

0

10

20

3010-510-10

h

10-1510-20
10-30

10-20

10-10

100

1020

1010

Ab
so

lu
te

 E
rro

r

Region with stable system
Region with spurious eigenvalues

(a)

(b)

Figure 3.7: RLC network with size n=507: the absolute error errabs versus h and m
is plotted with (a) original Arnoldi (b) Arnoldi plus structured orthogonalization. The
reference solution is from the explicit calculation of underlying ODEs.

54

network transient simulation,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2019. The author is the primary author and investigator of the papers.

The chapter also contains the content the work: P. Chen, C.-K. Cheng, and X. Wang,

”Arnoldi algorithms with structured orthogonalization,” arXiv preprint arXiv:2005.14468,

2020. The author is one of the primary authors and investigators of this work.

55

Chapter 4

Numerical Performance of

Exponential Integrators on

System-Level PDN Simulations

Based on the stable rational Krylov subspace generated by the Arnoldi algorithm

with structured orthogonalization, we are able to apply the new method to the transient

simulation framework of PDNs. In this chapter, we further improve the accuracy and

convergence rate of the MEVPs by exploring the exponential related ϕ functions. Besides,

the ratio γ which is used to confine the spectrum of original system is further studied. We

integrate the advanced techniques into the total framework for general system-level PDNs

and report the simulation results.

56

4.1 Numerical Performance of MEVPs with ϕ Func-

tions

In previous sections, we try to solve the solution with MEVPs expressed with the

matrix exponential ehA. However, we notice that the MEVPs in the Eq. 2.8 contain the

format of (ehA − I)A−1 which may suffer from rounding errors [20]. Consider a simple

function

f(z) = (ez − 1)/z =
∞∑
i=0

zi/(i+ 1)!, (4.1)

where z is a real number. The direct calculation of f(z) suffers severe cancellation when

|z| � 1. We implement the computation of f(z) with different methods in MATLAB. As

shown in the second column of Table. 4.1, the direct method cannot provide an accurate

evaluation for z ≈ 0 in floating point precision.

Table 4.1: Computed f(z) = (ez − 1)/z via Different Methods

z Direct Method Augmented ϕ Method
10−5 1.000005000006965 1.000005000016667
10−6 1.000000499962184 1.000000500000167
10−7 1.000000499962184 1.000000050000002
10−8 0.999999993922529 1.000000005000000
10−9 1.000000082740371 1.000000000500000
10−10 1.000000082740371 1.000000000050000
10−11 1.000000082740371 1.000000000005000
10−12 1.000088900582341 1.000000000000500
10−13 0.999200722162641 1.000000000000050
10−14 0.999200722162641 1.000000000000005
10−15 1.110223024625156 1.000000000000000
10−16 0 1.000000000000000

Here we introduce another method with the definition of exponential related ϕ

57

functions [24,40,49]

ϕs(z) =

∫ 1

0

e(1−θ)z θs−1

(s− 1)!
dθ, s ≥ 1. (4.2)

where the different order of ϕs functions follow the recursive relation

ϕ0(z) = ez

ϕs(z) =
ϕs−1(z)− 1

(s−1)!

z
, s ≥ 1. (4.3)

Previous work [49] provides an augmented matrix method to cheaply compute the

MEVPs with ϕs functions.

Theorem 4.1.1. An augmented matrix is used to compute the MEVPs with different orders

of ϕ functions. Given a vector c ∈ Cm and a matrix Hm ∈ Cm×m, the augmented matrix is

constructed

H̃m =

Hm ceT1

0 E

 ∈ C(m+p)×(m+p), E =

eT2
...

eTp

0

∈ Cp×p,

where e1, e2, . . . , ep are unit vectors with es(s) = 1 for s = 1, . . . , p. Then

exp(τH̃m) =

ϕ0(τHm) F

0 eτE

 . (4.4)

For MEVP with any order of ϕ functions 1 ≤ s ≤ p

F (1 : n, s) = τ sϕs(τHm)c. (4.5)

58

-10|x|
-15 -10 -5 0

0

0.2

0.4

0.6

0.8

1
!"($)
!&($)
!'($)

Figure 4.1: The curves of ϕ0, ϕ1, and ϕ2 functions on the negative real axis. The
magnitude of x is in log scale.

The function follows the definition of ϕ functions as f(z) = ϕ1(z), which could

be calculated with the augmented matrix method as described in Theorem 4.1.1. We

implement the matrix exponential with MATLAB expm function on the vector c = [1] and

set other parameters as τ = 1. The results are shown in the third column of Table 4.1,

where the numerical precision problem does not exist.

The performance of ϕ functions on the computation of MEVPs are closely related to

the range of exponent. The passive systems of PDNs contain eigenvalues with negative real

parts. In Fig. 4.1, the curves of multiple orders of ϕ functions are plotted on the negative

real axis. The ϕs functions become smoother as s increases. The properties of ϕs functions

will be used for error analysis when applied to the evaluation of MEVPs.

In order to avoid the potential numerical errors, we reformat the MEVPs in Eq. 2.8

59

with ϕs functions [24,40,56]

⇒ x(t+ h) = x(t) + hϕ1(hA)g(t) + h2ϕ2(hA)
db(t)

dt
, (4.6)

where the input vectors are defined in Eq. 2.9 and 2.10. Following the relations in Eq. 4.3,

we have alternative ways to evaluate the MEVPs. Notice that in Section 3.2 Eq. 3.8 we

adopt the ϕ0 function for both MEVP terms, we summarize the ϕs functions usage in the

computations as

term1 = hϕ1(hA)g(t)

= ϕ0(hA)g̃(t)− g̃(t), (4.7)

term2 = h2ϕ2(hA)
db(t)

dt

= hϕ1(hA)
db̃(t)

dt
− hdb̃(t)

dt

= ϕ0(hA)
d
˜̃
b(t)

dt
− ˜̃b(t)− hdb̃(t)

dt
, (4.8)

with the expressions of input vectors recalled from previous sections

g(t) = Ax(t) + C−1Bu(t),

g̃(t) = x(t)− G−1Bu(t),

db(t)

dt
= C−1B

du

dt
,

db̃(t)

dt
= −G−1B

du

dt
,˜̃

b(t)

dt
= G−1CG−1B

du

dt
.

Therefore, the MEVP term1 can be calculated with either ϕ1 or ϕ0 function. The MEVP

term2 can be calculated with ϕ2, ϕ1 or ϕ0 function. After the stable rational Krylov

60

subspace is constructed by Arnoldi in Algorithm 4, we adopt the augmented method on

the Hessenberg matrix Hm and calculate the MEVPs with different ϕs functions. Since the

formulation of MEVPs is modified, the residual r(h,m) used in the Arnoldi process need

to be changed. For the formulation with ϕ1 function which is in the format of hϕ1(hA)v,

the residual follows

r(h,m, ϕ1) = hβhm+1,m(G +
C
γ

)vm+1e
>
mH

−1
m ϕ1(h

I −H−1
m

γ
)e1. (4.9)

For the formulation h2ϕ2(hA)v, the residual follows

r(h,m, ϕ2) = h2βhm+1,m(G +
C
γ

)vm+1e
>
mH

−1
m ϕ2(h

I −H−1
m

γ
)e1. (4.10)

4.1.1 Comparison of ϕs Functions on RC and RLC Networks

With symmetric and nonsingular matrices, the RC network in Sec. 3.3.3 is used

to characterize the numerical performance of ϕs functions. Same experimental settings

are used while the MEVP term2 is evaluated with higher order ϕ functions. Fig. 3.6

illustrate the numerical error distribution of the MEVP with ϕ0 function. Absolute errors

of the results with ϕ1 and ϕ2 functions are computed with reference to the exact solution

and plotted in Fig. 4.2 and 4.3. To validate the stability of the Arnoldi algorithm with

structured orthogonalization, we also include the absolute error of result via the original

Arnoldi.

We plot the eigenvalues λ(−A−1) of the RC network in Fig. 4.4 to better understand

the performance of ϕs functions. The error reduces quickly with all ϕs functions by

increasing the dimension of rational Krylov subspace, and the slope becomes sharper with

larger m. Once the error reaches the lower bound, it cannot be significantly reduced with

a larger subspace. When h is large compared to the spectrum of A−1, solution calculated

61

m

0

10

20

3010-510-10

h

10-1510-20
10-30

10-20

10-10

1010

100

Ab
so

lu
te

 E
rro

r

Region with stable system
Region with spurious eigenvalues

m

0

10

20

3010-510-10

h

10-1510-20

1010

100

10-10

10-20

10-30

Ab
so

lu
te

 E
rro

r

Region with nonzero error
Region with zero error

(a)

(b)

Figure 4.2: RC network with n=100: the absolute error errabs versus h and m is
calculated with ϕ1 function using (a) original Arnoldi; (b) Lanczos plus structured
orthogonalization.

62

m

0

10

20

3010-510-10

h

10-1510-20
10-30

10-20

10-10

100

1010

Ab
so

lu
te

 E
rro

r

Region with stable system
Region with spurious eigenvalues

m

0

10

20

3010-510-10

h

10-1510-20

1010

100

10-10

10-20

10-30

Ab
so

lu
te

 E
rro

r

Region with nonzero error

(a)

(b)

Figure 4.3: RC network with n=100: the absolute error errabs versus h and m is
calculated with ϕ2 function using (a) original Arnoldi; (b) Lanczos plus structured
orthogonalization.

63

real part in log-scale
-18 -16 -14 -12 -10

im
ag

 p
ar

t i
n

lo
g-

sc
al

e

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
Eigenvalues of A-1= -G-1C

Figure 4.4: RC network with n=100: the eigenvalues of A−1 = −G−1C are plotted in
log-scale.

with ϕ0 function achieves the best accuracy. At the same time, solutions with ϕ1 and ϕ2

don’t show any improvement. If the h is much smaller than the spectrum, the error with

ϕ1 and ϕ2 drops proportional to h.

The behaviors of ϕs functions in each region could be explained with the properties

of Krylov subspace methods. Dimension m approximations with Krylov subspace are

equivalent to the degree-m polynomial of the exponential term [47]. Here we use v as an

abbreviation of the original notation db(t)/dt.

• For ϕ2 function h2ϕ2(hA)v =

h2(
I

2!
+ · · ·+ (hA)m

(m+ 2)!
+O(hmAm))v.

64

• For ϕ1 function hϕ1(hA)ṽ − hṽ =

h(
hA
2!

+ · · ·+ (hA)m

(m+ 1)!
+O(hmAm))ṽ.

• For ϕ0 function ϕ0(hA)˜̃v − ˜̃v − hṽ =

(
(hA)2

2!
+ · · ·+ (hA)m

m!
+O(hmAm))˜̃v.

where the input vectors v, ṽ, ˜̃v denote the normalized input vectors, which are derived from

the relation in Eq 4.8.

Therefore, we can get the following conclusions.

1. When h is small compared to the spectrum of A−1, Taylor expansion of h is valid. The

local truncation error is approximated by term O(hmAm), which is multiplied with h

for ϕ1 solution and h2 for ϕ2 solution. Knowing that the new vectors constructed

could introduce noise and cannot further improve the accuracy if we keep increasing

m, the truncation error is dominated by factor of h which explains the floor in Fig. 3.6,

4.2, and 4.3.

2. When h is beyond the spectrum of A−1, Taylor expansion of h−1 is valid. By using a

large step size the dynamic behavior of RC circuit is dominated by the slow decaying

component, the solution is well approximated with a small m.

3. When h lies in the range of the eigenvalues of A−1, increasing m could significantly

improve accuracy so the error follows the polynomial term with m.

With given h and approximated eigenvalue spectrum of the system, we could choose

the appropriate ϕs function to obtain higher accuracy and improve convergence rate.

Different colors in Fig. 4.5 denote the choices of ϕs functions with lowest error.

65

m

0

10

20

30
10-5

h

10-1010-1510-20
10-30

10-20

1010

100

10-10

Ab
so

lu
te

 E
rro

r

Choose solution
Choose solution
Choose solution

!"!#!$

Figure 4.5: RC network with n=100: choices of ϕs functions are plotted with different
colors versus h and m. The zero error of ϕ0 solution is set to 10−30.

We apply the evaluations of MEVPs with ϕs functions to the RLC network as

well. Experiments in Sec. 3.3.3 are operated on the same test case. Fig. 3.7 illustrates

the performance of ϕ0 function. The absolute errors of ϕ1 and ϕ2 functions are plotted in

Fig. 4.6 and Fig. 4.7, respectively. The limited application of ϕ functions with singular C

matrix could be resolved with implicit regularization. The original Arnoldi process comes

across more severe stability problems with higher order ϕs functions, which are the cause

of discontinuities on the figures. The spectrum of the eigenvalues lies in the complex plane

with negative real part, as shown in Fig. 4.9. The choices of ϕs functions on the RLC are

plotted in Fig. 4.8, which is consistent to the observation on RC network.

66

m

0

10

20

3010-510-10

h

10-1510-20
10-30

10-20

10-10

100

1010

1020
Ab

so
lu

te
 E

rro
r

Region with stable system
Region with spurious eigenvalues

m

0

10

20

3010-510-10

h

10-1510-20

1020

1010

100

10-10

10-20

10-30

Ab
so

lu
te

 E
rro

r

Region with stable system
Region with spurious eigenvalues

(a)

(b)

Figure 4.6: RLC network with n=507: the absolute error errabs versus h and m is
calculated with ϕ1 function using (a) original Arnoldi; (b) Arnoldi plus structured
orthogonalization. The reference solution is from the explicit calculation of underlying
ODEs.

67

m

0

10

20

3010-510-10

h

10-1510-20

1020

1010

100

10-10

10-20

10-30

Ab
so

lu
te

 E
rro

r

Region with stable system
Region with spurious eigenvalues

m

0

10

20

3010-510-10

h

10-1510-20

100

10-10

10-20

10-30

1010

1020
Ab

so
lu

te
 E

rro
r

Region with stable system
Region with spurious eigenvalues

(a)

(b)

Figure 4.7: RLC network with n=507: the absolute error errabs versus h and m is
calculated with ϕ2 function using (a) original Arnoldi; (b) Arnoldi plus structured
orthogonalization. The reference solution is from the explicit calculation of underlying
ODEs.

68

m

0

10

20

30
10-5

h (s)

10-1010-1510-20
10-30

1020

1010

100

10-10

10-20ab
so

lu
te

 e
rro

r

Choose!" solution

m

0

10

20

30
10-5

h

10-1010-1510-20
10-30

10-20

10-10

100

1010

Ab
so

lu
te

 E
rro

r

Choose solution
Choose solution
Choose solution
Choose!# solution
Choose!$ solution

Figure 4.8: RLC network with n=507: choices of ϕs functions are plotted with different
colors versus h and m.

4.2 Exploration of the Local Optimal Ratio in Ratio-

nal Krylov Spectral Transformation

The convergence rate of rational Krylov subspace is closely related to the spectrum

of system and could be improved by choosing appropriate ratio γ to confine the spectrum.

The dominant eigenvalues to characterize the dynamical behaviors of circuits are found in

the first several iterations of Arnoldi process. It is proved that the optimal choice of γ is

inversely proportional to the dimension of Krylov subspace [53]. A step size h is given in

the matrix exponential as a coefficient of recovered system matrix, the γ is empirically set

at the same scale of h.

Lemma 4.2.1. The local optimal result of computing MEVPs with rational Krylov subspace

69

is achieved by choosing γ ≈ h
m

, where h is the given step size and m is the dimension of

Krylov subspace.

The RLC network in Sec. 3.3.3 is used to validate the statement. We adopt the

Arnoldi algorithm with structured orthogonalization and implicit regularization to calculate

the MEVPs. To preclude the different numerical performances of ϕs functions, we only

calculate the MEVPs in expression of ϕ0. The target function is as follows

f(h,m, γ) = ehAv ≈ βVme
h
I−H−1

m
γ e1. (4.11)

The distribution of eigenvalues is plotted in Fig. 4.9 and four sample points of h are selected.

We increase the dimension m of Krylov subspace from 2 to 30 and set γ proportional to h

with different ratios. For each given h and m, the optimal γ with respect to m is found by

computing the absolute error of f(h,m, γ)

γopt(h,m)⇐ minγ||f(h,m, γ)− fref (h)||, (4.12)

where fref (h) is the reference solution by solving the underlying ODEs explicitly. Fig. 4.10

plots the ratio between γopt and h versus m at each selected h. The relation in Lemma 4.2.1

is observed when h is close to the majority of the eigenvalues of A−1. When h = 3× 10−13s,

the eigenvalues corresponding to this range are not well separated so that a larger dimension

of Kyrlov subspace could significantly improve the results. Similar phenomenon can be

found for h = 10−11s, which converges faster since there are less dominant eigenvalues in

this range. In other cases when h is close to the borders of eigenvalues, solution can converge

at a small m. There is not much potential of improvements by setting an appropriate

γ. The total error distributions versus m and h
γ

of the selected step sizes are plotted in

Fig. 4.11, where the minimum error at γopt is plotted with red marker. The relative error is

70

real part in log-scale
-18 -16 -14 -12 -10 -8

im
ag

 p
ar

t i
n

lo
g-

sc
al

e

-25
-20
-15
-10

-5
0
5

10
15
20
25

Eigenvalues of A-1= -G-1C
Selected h

Figure 4.9: RLC network with n=507: the eigenvalues of A−1 = −G−1C in log-scale.
Four different step sizes set in MEVPs are compared to the spectrum.

calculated with

errrel = ||f(h,m, γ)− fref (h)||/||fref (h)||. (4.13)

Once the error reaches the floor (flat region), which means numerical rounding error

becomes dominant, a larger m doesn’t help to improve the accuracy. Then the accuracy of

results no longer relies on the choice of γ.

4.3 Total Simulation Framework

The proposed techniques are integrated to the multi-step integration framework for

PDN transient simulation, as shown in Figure 4.12. The DAEs in Eq. 2.2 are constructed

via MNA. The whole simulation time is discretized into the time grids T = [0, t1, t2, . . . , tn]

depending on the breakpoints of input sources, which provide the maximum allowable step

sizes for circuit transient simulations. The time interval between any two time points is

71

m
0 5 10 15 20 25 30

h/
.

op
t

0

5

10

15

20

25

30
h=10-15s
h = 3# 10-13s
h = 10-11s
h = 10-8s

Figure 4.10: RLC network with n=507: the ratio h/γopt with minimum relative error
at each m is plotted.

computed with h = tk+1 − tk. Flexible steps could be used to simulate the intermediate

state between any two time points of interest, in our framework the maximum stepping

scheme is adopted to speed up the analysis. The transition activities of PDNs’ load models

are characterized by the pulse/PWL input sources. The different step sizes are saved in the

set Sh = {h1, h2, . . . , hs}, where s is usually much smaller than the total number of time

grids n or input sources.

In the Matrix Preparation step, LU decomposition is performed on matrices G

and γG + C. The results will be used in the DC and transient analysis. The performance

of MEVPs is affected by the spectrum of system and the current step size h. We adopt

the rational Krylov subspace method and choose γ to shift the original system in order to

capture the dominant eigenvalues. Empirically γ is set proportional to h [6] and results

could be optimized with the best ratio. We define a group of initial ratio in Sγ for each

different hl ∈ Sh, l = 1, 2,

72

0
10

h/.
20

3030
20m

10
0

100

10-5

10-10

10-15

Error of MEVP vs. m and .
.opt

0
10

h/.
20

3030
20m

10
0

100

10-2

10-4

10-6

Error of MEVP vs. m and .
.opt

0
10

h/.
20

3030
20m

10
0

10-6

10-4

10-2

100

Error of MEVP vs. m and .
.opt

0
10

h/.
20

3030
20m

10
0

100

10-5

10-10

Error of MEVP vs. m and .
.opt

! = #$%#&' ! = (×#$%#('

! = #$%##' ! = #$%*'

Figure 4.11: RLC network with n=507: relative error of MEVP computations errrel
versus m and γ. The local optimal γopt is denoted with red marker.

DC Analysis provides the initial solution x(0) for transient simulation where the

linear system is directly solved with LU(G). A single integration step in transient analysis

is described afterwards. In step MEVP Settings, the devised techniques are implemented

as follows,

• Set ϕ functions for each MEVP term. The step size h is read from the time grids in

T . Together with the approximated spectrum of system, h is used to determine the

appropriate ϕ function for the evaluation of MEVPs.

• Set γ ≈ γopt ∈ Sγ and reuse the results of LU(γoptG+C) from the Matrix Preparations

73

step.

Sec. 4.1 demonstrates the performance of ϕ functions. The decomposed (γG + C) matrices

are reused with the optimal approximated γopt for the construction of rational Krylov

subspace. Details of the optimal ratio are covered by Sec. 4.2.

Algorithm 4 implements the Arnoldi with structured orthogonalization to evaluate

the MEVPs with stability preserved results. The key operations include

• replacing all the normalization steps by a semi-inner product with C,

• applying implicit regularization if C is singular.

When the solution of current step satisfies the convergence check, the process proceeds to

the next time step until the whole time span is covered. Consider some corner cases with

ill-conditioned systems, a Numerical Pruning process is performed on the approximation

of MEVPs.

4.4 Simulation Results

The simulation framework is implemented in MATLAB and uses UMFPACK package

for LU decomposition. We perform the experiments on a Linux server with Interl(R)

Xeon(R) CPU E5-2640 v3 2.60GHz and 125 GB memory.

4.4.1 Leap Function for Multiple Frequencies

We use the off-chip PDN with board, package and chip [48] consisting multiple

resonant frequencies for transient simulation. The schematic circuit is shown in Fig. 4.13

as a three tanks RLC model. Usually for the off-chip PDN with high stiffness, it is hard

to capture all the oscillation components in the transient simulation. The high order

polynomial approximation with Krylov subspace of the MEVPs breaks the limitation of

74

Initial ! 0 = !$%$&
step	' = 0

MNA Circuit Netlist

DAEs
-), +,,, -(/)
- Spectrum approximation

- Time span 1 =
[0, /3,… , /%]

- Step sizes 67=
{ℎ3,ℎ:, … ,ℎ;}

Our Proposed Framework

Results of TransientAnalysis

DC Analysis

Arnoldi with Structured
Orthogonalization

- Construct rational Krylov subspace
- Structured orthogonalization =) =

=>)=
- With singular), apply implicit

regularization = = = ∗ @A
- Error estimation with residual ⇒C7D

Matrix Preparations
- LU(+)
- 6E = {ℎF/C$%$&} for	ℎF ∈ 67,
C$%$& is	a	group	of	predefined	values
- LU(I++)) for I ∈ 6E

Update	result	
! /KL3 = ! /K +ℎ
at	/KL3 = /K + ℎ

Convergence Check

MEVP Settings
- Current step size ℎ = ℎF ∈ 67⇒ choose

M function for each MEVP

- Choose I ≈ ℎF/C, default C = 2; optimal

C = C7D at previous step ℎ = ℎF

Numerical Pruning
- Especially for corner cases

' = ' + 1

/K +ℎ < 1

Transient	Analysis

Figure 4.12: Total framework of PDN transient simulations with matrix exponential
based integration method.

75

Figure 4.13: Off-chip PDN with R1 = 100µΩ, L1 = 333nH,C1 = 2.2mF,R2 =
100µΩ, L2 = 74pH,C2 = 10µF,R3 = 100µΩ, L3 = 6.3nH,C3 = 2.45pF .

Dahlquist barrier [8, 57, 64], and enables the simulation with adaptive step sizes while

obtaining the accurate results. After applying the structured orthogonalization and implicit

regularization in the Arnoldi algorithm, stable Krylov subspace is generated. An adaptive

stepping scheme is implemented in our framework. In order to capture the oscillation curve

with low frequency and finish the simulation in a short time, a large step size is chosen to

skip the higher frequency components. The details between any two time points could be

computed with a smaller step size. MEVPs with Krylov subspace methods provide the

flexible choice of step sizes and accurate results.

The bias Ibias is set to zero. The PWL input IS start to increase from zero at

t = 0 with rising time TR= 1ps and keeps stable in the following stage. We apply the

simulation framework in Fig. 4.12 to calculate the transient response of the off-chip PDN.

Adaptive step sizes are used in different simulation stages to capture the dominant resonant

frequencies. Exact solution is calculated as reference for the whole system by PWL response

from MATLAB continuous-time transfer function. To observe all the frequency components,

the simulation time T = 1.5ms is taken. Fig. 4.14 shows the simulation results on node

voltage v5, where different step sizes are used to approximate the oscillation waveforms of

certain frequencies.

• In Fig. 4.14 (a), the low frequency component fl = 5.88kHz is reflected in a long

simulation time T = 1.5ms. Large step size h = 1.8× 10−5s is chosen to capture the

76

Low Frequency in T = [0, 1.5] ms #10-3
0 0.5 1 1.5

N
od

e
Vo

lta
ge

#10-3

-1.5

-1

-0.5

0

0.5

1

1.5
v5 with h = 1.8e-5 s
v5 exact solution with h = 1ns

Mid Frequency in T = [0, 6] us #10-6
0 1 2 3 4 5 6

N
od

e
Vo

lta
ge

#10-4

-3
-2
-1
0
1
2
3 v5 with h = 1.8e-5 s

v5 with h = 1.7e-8 s
v5 exact solution with h = 1ps

High Frequency in T = [0.115, 0.145] us #10-7
1.2 1.25 1.3 1.35

N
od

e
vo

la
ta

ge

#10-4

2.1

2.2

2.3

2.4 v5 with h = 1.7e-8 s
v5 with h = 1.8e-10 s
v5 exact solution with h = 1fs

(a)

(c)

zoomin
to (c)

(b)

zoomin
to (b)

Figure 4.14: Adaptive step sizes are applied for multiple frequency components of
off-chip PDN in different simulation stages.

low frequency efficiently and skip the higher frequency components.

• In Fig. 4.14 (b), the medium frequency component fm = 5.86MHz decays in the

early simulation stage T = 6us. A relatively smaller step h = 1.7× 10−8s is used to

capture the oscillations. The results calculated with larger step sizes are included to

show the adaptive stepping scheme.

• In Fig. 4.14 (c), the high frequency component fh = 1.28GHz could be accurately

captured with a even smaller step h = 1.8× 10−10s, which cannot be observed with

the larger step sizes.

77

Results show consistence to exact solution with different step sizes, showing that our

results could achieve high accuracy. The maximum absolute error is 0.9µV for result with

h = 1.8 × 10−5s, 6.04nV for h = 1.7 × 10−8s and 2.49nV for h = 1.8 × 10−10s. In the

earliest simulation stage when the input is not stable, the step sizes are limited by the

breakpoints of input sources in all the simulations. In the following stable stage, the step

sizes grow gradually until they reach the maximum step limitation.

4.4.2 System-Level PDN Transient Simulations with ϕ Functions

The system-level PDNs are constructed by connecting the on-chip PDNs to the

off-chip system, which is modeled as the three tank RLC in Fig. 4.13. We adopt the IBM

power grid benchmarks [38] as well as general 3D PDNs. Table 4.2 displays the design

specifications of the test cases of which size ranges from 45K to 7M. For the ibmpg1t to

ibmpg6t, the time grids are determined by interleaving the breakpoints of input sources.

We adopt the maximum allowable step sizes between any two time grids. Most of the IBM

power grids have 141 breakpoints, so 140 integration steps are performed in the transient

simulation. The total simulation time interval is divided into 44 steps for ibmpg4t. The

general PDNs contain more inductors with only one supply voltage source and one current

source. The simulation of pdn1 to pdn4 includes 10 pulse cycles of the input current source

with 40 steps.

We operate transient simulations on the system-level PDNs with our proposed

framework and advanced techniques. According to the adaptive stepping scheme, we could

have the step sizes at distinct values. The time intervals in ibmpg1t to ibmpg6t vary

from 10ps to 0.59ns. In the pdn1 to pdn4, the step sizes are depending on the rising

(TR= 100ps) and falling (TF= 100ps) time, the pulse width (PW= 200ps), and the period

(T= 0.1ms). As described in Sec. 4.1, the numerical performance of matrix exponential

is affected by the spectrum of system and current step size, which can be improved by

78

Table 4.2: Design Specifications of PDN Cases.

Design #Node #R #C #L #I #V

ibmpg1t 54K 41K 11K 277 11K 14K
ibmpg2t 165K 245K 37K 330 37K 330
ibmpg3t 1.0M 1.6M 201K 955 201K 955
ibmpg4t 1.2M 1.8M 266K 962 266K 962
ibmpg5t 2.1M 1.6M 473K 277 473K 539K
ibmpg6t 3.2M 2.4M 761K 381 761K 836K

pdn1 45.7K 23K 15K 15K 1 1
pdn2 688K 349K 229K 229K 1 1
pdn3 2.9M 1.47M 965K 965K 1 1
pdn4 7.4M 3.75M 2.47M 2.47M 1 1

using appropriate ϕs functions. Knowing the system spectrum and step sizes in advance,

we are able to determine the range of MEVPs and choose an appropriate ϕs function. In

Table 4.3, the spectrum of G−1C is approximated by measuring the dominant eigenvalues.

We provided the choice of ϕs functions for each MEVP term with certain step size. The

expressions of MEVPs are given in Eq. 4.8.

Table 4.3: Application of Optimal ϕ Functions to the MEVPs of PDNs.

Design Group Approx. spectrum Step Sizes (s) MEVP Choices of ϕ

ibmpg 1t to 6t 2× 10−9
[1, 4, 5]× 10−11 term1 ϕ1

term2 ϕ2

5.90× 10−10 term1 ϕ0 or ϕ1

term2 ϕ1 or ϕ2

ibmpgfast 1t to 6t 2× 10−9

1× 10−13 term1 ϕ1

4.99× 10−11 term2 ϕ2

5.99× 10−10 term1 ϕ0 or ϕ1

term2 ϕ1 or ϕ2

pdn 1 to 4
[
10−7, 10−16

] [1, 2]× 10−10 term1 ϕ0

term2 ϕ1

1× 10−3 term1 ϕ0

term2 ϕ0

pdnmid 1 to 4
[
10−7, 10−16

] [0.5, 1]× 10−11 term1 ϕ0

term2 ϕ0 or ϕ1

1× 10−3 term1 ϕ0

term2 ϕ0

pdnfast 1 to 4
[
10−7, 10−16

] [1, 2]× 10−13 term1 ϕ0 or ϕ1

term2 ϕ1 or ϕ2

1× 10−3 term1 ϕ0

term2 ϕ0

To further explore the performance of our framework, we modify the input source

79

waveforms to provide different time grids. The transition time of input sources shrinks

to different scales while the total simulation time remains unchanged. The eigenvalues of

IBM power grids are mostly close to a certain value. We shrink the transition time of the

pulse waveforms from 10ps to 0.1ps and denote the new test cases with subscript fast. The

general PDNs are very stiff with more oscillation components, experiments are designed by

setting the transition time of inputs in range [10−13, 10−10]. The new test cases are denoted

by pdnmid and pdnfast to describe the response to input.

In the framework describe by Fig. 4.12, the LU decomposition of G and (γG + C)

is performed prior to the transient simulation, where the ratio γ is selected according to

the study in Sec. 4.2. The optimal setting γopt is around h/m when h lies in the range of

G−1C. After parsing the input sources (with PWL waveforms) and get the time grids, a

set of minit are chosen to approximate the dimension of Krylov subspace. The optimal

ratio γ = hl/minit is calculated for each possible step size hl. In the first integration,

we use the default γ = h/2 and save the converged dimension mh as criteria for later

calculations. Actually, there only exist a few distinct step sizes so that the computation

cost is affordable and worthy for simulation efficiency. In our simulation framework, we

choose minit = {2, 4, 8, 16} empirically and update the optimal ratio as

γopt = h/minit ⇐ minminit≤mhmh −minit.

The simulation performance is summarized in Table. 4.4. The dimensions of Krylov

subspaces for MEVPs are marked as m1 and m2. The average is computed among all

the nonzero values. The maximum dimension is included as mpeak. Experiments using

the default ratio γ = h/2 and optimal ratio γopt are performed to show the improvement

on convergence rate. Simulation results are compared to the reference solution with

TRAP method, which adopts much smaller step sizes. The relative difference of solution is

80

computed with ||xmevp−xref ||∞/||xref ||2. Since same tolerances are used for the convergence

of Arnoldi process, the results with default ratio and optimal ratio achieve similar accuracy.

We only provide the relative difference with optimal ratio in Table 4.4.

For the ibmpg1t to ibmpg6t with a narrow spectrum, the calculation of MEVPs

converges faster and a smaller Krylov subspace is used to generate accurate results. The

improvement with optimal ratio is slight. With a relatively large step size like 1ms, the

Arnoldi process could converge faster because only the smallest frequency is dominant

to characterize the response. The improvement in the stiff pdn cases is significant with

optimal ratio, where a larger Krylov subspace is required in the simulation to characterize

the dynamical behaviors. The fastest transition time lies on the border of the system’s

spectrum, the computation of MEVPs converges very fast and the default ratio provides the

optimal results. The transient simulations of pdnfast are completed in a shorter time. The

performance of pdnmid is in between. Simulation results on the stiff PDNs are consistent

to the observations in Sec. 4.2.

4.5 Summary

We further explore the exponential related ϕ functions which enable the multiple

computation methods for MEVPs. With given system spectrum and step sizes, an appro-

priate choice of ϕ function could resolve the potential numerical error and increase the

accuracy. We also figure out the optimal ratio in rational Krylov subspace, which is used

to confine the spectrum of original system and helps to capture the dominant eigenvalues

more efficiently. The techniques are integrated in our simulation framework and applied to

the PDN simulation tasks.

For system-level PDNs, adaptive stepping scheme is adopted to speed up the transient

simulation. Stable results with Krylov subspace are generated through the Arnoldi algorithm

81

with structured orthogonalization and implicit regularization. Appropriate choices of ϕ

functions and ratio γ improve the convergence of MEVPs. Results with maximum allowable

step sizes show high accuracy, showing that our matrix exponential based integration

method could achieve efficient and accurate performance for transient simulation of large-

scale PDNs. The application to general large dynamical systems are worth exploring for

further improvement.

Chapter 4 is a reprint of the material as it appears in the following two works: P.

Chen, C. K. Cheng, D. Park, and X. Wang, ”Transient circuit simulation for differential

algebraic systems using matrix exponential,” in Proceedings of the International Conference

on Computer-Aided Design, page 99. ACM, 2018. X. Wang, P. Chen, and C.-K. Cheng,

”Stability and convergency exploration of matrix exponential integration on power delivery

network transient simulation,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2019. The author is the primary author and investigator of the

papers.

82

T
a
b
le

4
.4

:
T

ra
n
si

en
t

S
im

u
la

ti
o
n

P
er

fo
rm

a
n
ce

o
f

P
D

N
ca

se
s.

T
ra

n
(s

):
ru

n
ti

m
e

o
f

tr
a
n
si

en
t

si
m

u
la

ti
o
n

ex
cl

u
d
in

g
th

e
D

C
a
n
a
ly

si
s;

m
1
,a
v
g

a
n

d
m

2
,a
v
g
:

av
er

a
g
e

d
im

en
si

on
m

fo
r

ea
ch

M
E

V
P

te
rm

;
m

1
,p
ea
k

an
d
m

2
,p
ea
k
:

m
ax

im
u

m
d

im
en

si
on

m
fo

r
ea

ch
M

E
V

P
te

rm
;

M
a
x

D
iff

(%
):

m
a
x
im

u
m

re
la

ti
ve

d
iff

er
en

ce
in

p
er

ce
n
ta

ge
co

m
p

ar
ed

to
re

fe
re

n
ce

so
lu

ti
on

.

D
ef

au
lt

R
a
ti

o
O

p
ti

m
a
l

R
a
ti

o
D

es
ig

n
T

ra
n

(s
)

m
1
,a
v
g

m
2
,a
v
g

m
1
,p
e
a
k

m
2
,p
e
a
k

T
ra

n
(s

)
m

1
,a
v
g

m
2
,a
v
g

m
1
,p
e
a
k

m
2
,p
e
a
k

M
a
x

D
iff

(%
)

ib
m

p
g1

t
42

.9
2.

39
2.

6
2

7
3

4
1
.9

2
.2

7
2
.6

2
5

3
2
.6

4
×

1
0
−
5

ib
m

p
g2

t
17

9.
3

2.
36

2.
6
2

7
3

1
6
8
.8

2
.2

3
2
.5

5
5

3
3
.5

5
×

1
0
−
5

ib
m

p
g3

t
16

75
.6

2.
34

2.
4
6

7
3

1
6
7
5
.3

2
.2

4
2
.4

6
6

3
8
.6

6
×

1
0
−
5

ib
m

p
g4

t
75

3.
7

3.
63

2.
4
6

9
3

7
2
7
.5

3
.2

4
2
.4

6
9

3
1
.9

9
×

1
0
−
4

ib
m

p
g5

t
23

66
.0

2.
36

2.
4
6

7
3

2
3
3
7
.0

2
.2

3
2
.4

6
5

3
4
.2

7
×

1
0
−
5

ib
m

p
g6

t
37

44
.0

2.
32

2.
4
6

7
3

3
7
0
9
.6

2
.2

3
2
.4

6
5

3
2
.6

6
×

1
0
−
5

ib
m

p
g1

t f
a
s
t

44
.5

2.
82

2.
6
2

7
3

3
7
.9

2
.6

4
2
.6

2
5

3
2
.3

5
×

1
0
−
5

ib
m

p
g2

t f
a
s
t

17
3.

3
2.

34
2.

6
2

7
3

1
7
1
.5

2
.2

1
2
.6

2
5

3
5
.4

7
×

1
0
−
5

ib
m

p
g3

t f
a
s
t

17
98

.7
2.

36
2.

5
9

7
3

1
7
7
0
.9

2
.2

5
2
.5

9
6

3
6
.9

9
×

1
0
−
5

ib
m

p
g4

t f
a
s
t

99
4.

2
3.

49
2.

5
4

9
3

8
2
9
.5

3
.1

0
2
.5

4
9

3
4
.0

6
×

1
0
−
4

ib
m

p
g5

t f
a
s
t

24
08

.0
2.

45
2.

4
6

7
3

2
3
3
7
.1

2
.3

2
2
.4

6
5

3
5
.0

3
×

1
0
−
5

ib
m

p
g6

t f
a
s
t

36
82

.7
2.

36
2.

4
6

7
3

3
6
8
1
.2

2
.2

3
2
.4

6
5

3
4
.3

3
×

1
0
−
5

p
d

n
1

27
.2

7
9.

67
17

1
9

1
7

1
6
.5

8
6
.7

0
1
1
.3

0
1
2

1
1

2
.0

8
×

1
0
−
4

p
d

n
2

69
9.

9
9.

67
17

1
9

2
1

4
3
0
.5

6
.7

0
1
1
.3

0
1
2

1
1

2
.2

5
×

1
0
−
4

p
d

n
3

27
14

.6
9.

67
13

1
9

1
3

2
3
4
2
.8

6
.7

0
1
2
.0

5
1
2

1
2

2
.6

3
×

1
0
−
4

p
d

n
4

11
63

5
11

.3
3

17
2
4

1
7

9
1
5
5
.4

8
.1

0
1
3
.2

5
1
4

1
3

1
.5

9
×

1
0
−
4

p
d

n
1 m

id
14

.6
3

6.
67

9
1
0

9
1
2
.9

2
5
.5

0
8
.0

5
9

8
5
.0

6
×

1
0
−
4

p
d

n
2 m

id
32

2.
6

7
9

1
1

9
2
6
6
.5

5
.5

3
8
.0

5
9

8
4
.8

4
×

1
0
−
4

p
d

n
3 m

id
18

65
.2

7.
73

9
1
3

9
1
3
4
2
.4

5
.5

3
8
.0

5
9

8
4
.7

6
×

1
0
−
4

p
d

n
4 m

id
64

57
.3

8
9

1
4

9
5
4
8
9
.0

6
.6

3
9

1
0

9
4
.6

6
×

1
0
−
4

p
d

n
1 f

a
s
t

8.
67

2.
67

5
4

5
S

a
m

e
to

D
ef

a
u

lt
R

a
ti

o
1
.9

5
×

1
0
−
3

p
d

n
2 f

a
s
t

14
4.

8
2.

67
4

4
4

S
a
m

e
to

D
ef

a
u

lt
R

a
ti

o
1
.2

5
×

1
0
−
2

p
d

n
3 f

a
s
t

76
5.

0
2.

67
4

4
4

S
a
m

e
to

D
ef

a
u

lt
R

a
ti

o
1
.0

9
×

1
0
−
2

p
d

n
4 f

a
s
t

27
98

.2
2.

67
4

4
4

S
a
m

e
to

D
ef

a
u

lt
R

a
ti

o
1
.2

2
×

1
0
−
2

83

Chapter 5

Novel Integration Algorithms for

Nonlinear Circuit Simulation

5.1 Motivation

With the existence of nonlinear elements, the circuits are formulated as nonlinear

equations. The conventional implicit integration methods, such as BE and TRAP, are

preferred because of the stability in the transient simulation. Newton-Raphson iterations

are applied to obtain the converged solution at each time step. In each iteration, the

nonlinear elements are linearized and the linear system is solved [8, 34,37]. Therefore, the

implicit integration methods are more computationally expensive compared to the explicit

integration methods. However, the results of conventional methods have limited accuracy.

To ensure the accuracy while improving the convergence rate, we devise the explicit matrix

exponential based integration for the nonlinear circuit transient simulation.

In Sec. 5.2, we apply the matrix exponential based integration method to the

transient simulation of analog designs. The contributions of this section include:

• We generate the rational Krylov subspace method for the computation of MEVPs due

84

to its flexibility on stiff systems and fast convergence rate. We apply the exponential

related ϕ functions to improve the numerical accuracy of MEVPs.

• We exclude the Newton-Raphson iterations in the explicit matrix exponential based

integration method. The convergence of the solution is checked by compensation

iteration with an correction term evaluated by results from Krylov subspace.

• We devise the simulation framework which only solves the linear system once at each

time step.

In modern VLSI designs, the power integrity becomes a critical issue to ensure the

reliability and performance of designs. The challenges of power integrity analysis arise from

the tighter noise margin with reducing power supply voltage, higher resistance on metal

wires due to scaling, and strong coupling noise between the active devices.

The simulation of power integrity analysis encounters the problems from the increas-

ing size of power delivery networks (PDN) as well as the accuracy of load models. Due

to the increasing design complexity, the PDNs could be extremely huge and stiff, which

makes the simulation a critical task. To simplify the system-level power integrity analysis,

the on-chip macrocells are usually characterized as independent current sources with linear

elements. However, the accuracy of power grid analysis is lost and the results could be far

from the real cases. An efficient simulation framework is in high demand to handle the

issues.

In Chapter 3.2 and Chapter 4, we have discussed in detail about the advantages

of matrix exponential based integration methods for the transient simulation of linear

PDNs. Adaptive stepping scheme can be used to speedup the simulation while maintaining

the stability and accuracy. However, the performance of the framework is limited by the

nonlinearity of systems. In Sec. 5.3, we propose a nonlinear macrocell model to capture the

dynamic behavior of PDNs and we take advantage of the recent progress in the parallel-

85

in-time approach, such as Parareal (Parallel in Real time) [29] and MGRIT (Multigrid

Reduction in Time) [14], and applied the idea to the PDN transient simulations. The main

contributions are listed as follows

• We adopt a nonlinear voltage-dependent macrocell model in the PDN simulation

framework to characterize the dynamic behaviors of whole systems.

• We apply the parallel-in-time method to parallelize the conventional sequential time

stepping of the PDN transient simulation.

• We use the adaptive Newton-Raphson (NR) method to solve the nonlinear system

efficiently in the iterations of step integrations.

5.2 Solving Nonlinear Systems with Numerical Inte-

gration Methods

5.2.1 Exponential Integrators in Nonlinear Circuit Simulation

Consider the nonlinear system after linearization in Eq. 2.2, we use k as the subscript

notation for the variables at the kth time point tk. With the initial variable xk at tk and

step size h, we need to solve xk+1 at tk+1 = tk + h which satisfies Eq. 2.2. Solving such

nonlinear systems is not trivial, instead we solve the linearized equation

Ckẋk+1 + Gkxk+1 = Bu(tk + h) + Fk. (5.1)

Since the nonlinear elements in Ck,Gk, and Fk are evaluated from the device models

according to xk, we can use the integration methods discussed in previous sections to solve

the equations. MEVPs calculated with Krylov subspace provide a high order polynomial

86

approximation of the solution in Eq. 2.8 and the stability is preserved [4, 47,64]. Notice

that the term Fk is included in the input vectors but does not affect the whole formulation.

To improve the performance on stiff systems, we adopt the rational Krylov sub-

space [3,13,41,53]. The exponential related ϕ functions are included to express the MEVPs

for numerical concerns [4, 25, 49]. The derivations and algorithms can be found in Sec. 2.4

and Sec. 4.1.1.

5.2.2 Approximation Theory and Compensation Iteration for

Convergence

The original Eq.2.2 enforces KCL and KVL laws at time tk and tk+1. In order

to evaluate the undershoot or overshoot, a term ∆xk+1 is used to express the difference

between the approximated solution xk+1 from Eq. 5.1 and the real solution. With the extra

correction term, the solution aims to satisfy

Ck+1(ẋk+1 + ∆ẋk+1) + Gk+1(xk+1 + ∆xk+1) = Fk+1 +Bu(tk + h), (5.2)

which is equivalent to the following relation

Ck+1∆ẋk+1 + Gk+1∆xk+1 = −Ck+1ẋk+1 − Gk+1xk+1 + Fk+1 +Bu(tk + h). (5.3)

which forms the DAEs of variable ∆xk+1. So ∆xk+1 could be calculated similarly with

MEVPs. The right hand side of the above equation is defined as the negative residual rk+1

of Eq. 2.2. If we treat the term as part of the ramp input [56],

∆u(tk + h) ≈ −1

h
rk+1, (5.4)

87

then ∆xk+1 will be added to original solution as a compensation term

xk+1 = xk+1 + ∆xk+1

≈ xk+1 + h2ϕ2(hA)C−1
k ∆u(tk + h). (5.5)

The process is repeated until the solution converges. All the parameters with

subscript k+1 in above derivation are evaluated by device models according to the updated

xk+1. Since xk converges at tk, the residual of Eq.5.1 should be negligible (below tolerance).

We can find that rk+1 updates the solution due to change of nonlinear system

rk+1 ≈ ∆Ck+1ẋk+1 + ∆Gk+1xk+1 −∆Fk+1, (5.6)

where ∆Ck+1 = Ck+1 − Ck, ∆Gk+1 = Gk+1 − Gk and ∆Fk+1 = Fk+1 − Fk. Therefore, the

compensation term is the response to the change of the system’s nonlinear elements from

stage xk to xk+1. Algorithm 5 provides an iteration process showing how the correction

term works to achieve convergence.

The LU decomposition is performed on (γGk + Ck) for rational Krylov subspace.

The MEVPs in solution are evaluated with appropriate ϕ functions. Lines 6-10 show the

compensation iteration for circuit nonlinear elements. The residue term rk+1 is element-

wisely compared to an error bound Err. Once the relation rk+1 ≤ Err is not satisfied,

compensation term is computed and added to xk+1 until solution converges.

The framework also incorporates an adaptive step strategy. If the solution cannot

converge within Itermax iterations, the time step h is shrunk and the solution has to be

recalculated. IF the solution converges in a small number of iterations, the step size h will

be increased for the next time step to accelerate the simulation process.

88

Algorithm 5: Integration Kernel for rational Krylov subspace using Com-
pensation Iteration

Input: Circuit netlist, input sources, xk at time tk and expected time step h
Output: solution xk+1 at tk + h

1 Load the device models and update Ck, Gk, Fk with xk;
2 Perform LU decomposition on required matrices;

3 Apply the Arnoldi algorithm to compute the MEVPs and get the solution x
(0)
k+1;

4 Compute the stating residual r
(0)
k+1;

5 Set iteration number i = 0;

6 while r
(i)
k+1 > Err not converged and i < Itersmax do

7 Compute compensation term in Eq. 5.3; Update x
(i+1)
k+1 = x

(i)
k+1 + ∆xk+1;

8 Load the device models and compute ri+1
k+1 with x

(i+1)
k+1 ;

9 Set i = i+ 1;

10 end

11 if r
(i)
k+1 > Err then

12 i = 0; h = µh; // Computed solution xk+1 is rejected. Shrink h by

µ < 1 and redo from line 3.

13 end
14 else
15 x(tk + h) = xik+1; t = t+ h; k = k + 1;

// Solution xk+1 is converged.

16 if i ≤ Itersmin then
17 h = αh; // i is small, h is increased by α > 1 to accelerate the

process.

18 end

19 end

5.2.3 Experimental Results

In this section, we apply our proposed explicit matrix exponential based integration

with compensate iterations to the transient simulation of analog circuits. Table 5.1 provides

the specification of the nonlinear test cases from industry. We define γ = h/2 as default

value and restrict the maximum allowed step within 1ns. In order to verify the numerical

difference among MEVPs with ϕ functions, all test cases are stiff designs with nonsingular

C. No regularization process is needed for the ODEs. Size of the test cases varies from 43 to

40k, represented by #Node. #Dev is the number of MOSFETs in each circuit. The nonzero

89

elements of system matrices are included, we can find that D4 - D6 have relatively denser

matrices. T is the total simulation time. Same tolerance is set in the simulation framework

to all experiments. Convergence of nonlinear system is achieved using the compensation

iteration with a correction term. The MEVPs are evaluated with ϕ0, ϕ1 and ϕ2 functions

separately. Implementations can be found in Sec. 4.1.1.

Table 5.1: Specifications of Analog designs

Index Design #Node #Dev nnz(C) nnz(G) T (s)
D1 voter25 43 74 345 345 1× 10−6

D2 counter 93 220 0.7k 0.7k 1× 10−7

D3 fadd32 161 288 1.1k 1.1k 1× 10−7

D4 add20 521 958 7.2k 3.6k 1.6× 10−7

D5 memplus 2.8k 7.4k 35k 26k 4.75× 10−7

D6 ram2k 4.8k 13.8k 47.6k 47.6k 6× 10−7

D7 Inv. chain 11k 24 63k 34k 1× 10−9

The simulation results are listed in Table 5.2. DC represents the DC analysis time

of each test case. Average dimension of rational Krylov subspace is denoted as ma, which

includes the computations of solution and residual term in compensation iteration. Total

time steps and runtime are displayed as well. Iteravg is the average number of iterations,

which reflects the convergence rate of circuits. Designs with more complex matrices tend

to have larger Iteravg, like D4 - D6. Relatively high m for Krylov subspace is observed for

those cases. For all the test cases, ϕ0 method costs the shortest running time with smallest

ma. To achieve same accuracy, smaller m of Krylov subspace and less computation is

required with ϕ0. The reason is that the step sizes in the simulation lies in the spectrum of

G−1C or larger than the spectrum.

In Fig. 5.1, the waveform of D4 is extracted to compare with the traditional BE

method with NR iteration (BENR). Smaller time step (0.1ps) is applied to BENR to

calculate the reference solution. Solution computed with our proposed algorithm well fits

the reference.

90

time (s) ×10
-7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

V
o

lt
a

g
e

 (
V

)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Rat 1ns
BENR 0.1ps

Figure 5.1: Transient simulation results of a nonlinear circuit by matrix exponential
integration with compensate iteration and BENR method.

We implement the algorithms for circuit transient simulation in MATLAB 2014a

and use UMFPACK package for matrix factorization. The experiments are performed on a

Linux server with Intel(R) Xeon(R) CPU E5-2640 v3 2.60GHz and 125 GB memory. Device

evaluation and matrix stamping are done in C/C++ with BSIM3 model for MOSFET. The

interactions are through MATLAB Executable (MEX) external interface with GCC 4.4.7.

5.3 Parallel-in-time Methods for PDN Transient Sim-

ulation with Nonlinear Load Models

To improve the accuracy of PDN transient simulations, we propose a nonlinear

power load model to characterize the variations of the dynamic cell behaviors. The transient

91

T
a
b
le

5
.2

:
S

im
u

la
ti

on
P

er
fo

rm
a
n

ce
o
f

R
at

io
n

al
K

ry
lo

v
S

u
b

sp
ac

e
m

et
h

o
d

w
it

h
E

x
p

on
en

ti
al

In
te

gr
at

or
s

D
es

ig
n

D
C

(s
)

ϕ
0

m
et

h
o
d

ϕ
1

m
et

h
o
d

ϕ
2

m
et

h
o
d

m
a

S
te

p
T

ra
n

(s
)

I
te
r a

v
g

m
a

S
te

p
T

ra
n

(s
)

I
te
r a

v
g

m
a

S
te

p
T

ra
n

(s
)

I
te
r a

v
g

D
1

0.
01

24
.3

38
96

4
5
.3

1
.9

3
3
4
.1

3
8
9
6

6
3
.6

1
.9

3
3
7
.7

3
8
9
1

7
2
.3

1
.9

2
D

2
0.

28
23

.7
34

4
4
.4

0
.7

8
3
1
.0

3
4
4

6
.9

0
.7

9
3
2
.0

3
4
4

6
.9

0
.7

9
D

3
0.

02
25

.0
84

4
1
4
.3

2
.2

4
3
3
.5

8
4
4

1
9
.9

2
.2

4
3
7
.9

8
4
4

2
1
.2

2
.2

4
D

4
0.

33
31

.2
73

4
3
6
.1

3
.2

2
4
2
.3

7
3
4

4
2
.8

3
.2

2
5
5
.5

7
3
3

5
3
.6

3
.1

7
D

5
1.

39
24

.9
18

53
49

6
.7

1
.8

9
3
3
.1

1
8
5
9

5
6
8
.7

1
.8

6
4
6
.4

1
8
6
1

7
0
3
.6

1
.9

1
D

6
1.

75
29

.1
32

65
1
6
3
3

1
.8

8
4
0
.3

3
1
9
1

1
9
7
5

1
.9

4
4
7
.1

3
1
6
8

2
0
7
1

1
.9

7
D

7
0.

13
13

.9
18

0
6
0
.2

1
.1

2
2
0
.4

1
8
0

9
8
.3

1
.1

2
1
8
.2

1
8
0

8
6
.3

1
.1

2

92

simulation is more challenging.

Most of the previous parallel simulation works relies on the distributed matrix

solvers, e.g. Xyce [54]. The integration in transient simulation is still operated in series.

The solution at time t+ h with step size h has to wait until the solution at previous time

t is ready. The parallel-in-time method approximates the solution on coarse time grids

and refines the solution with fine grid approximations which are performed in parallel.

Compared to the conventional sequential stepping scheme, the proposed parallel method

obtains speed up on wall time but uses more iterations globally.

5.3.1 Nonlinear Load Models in PDNs

In general, linear current source model [5] is used in power integrity analysis due

to the complexity of millions to billions devices. However, the variation of instance

switching current caused by dynamic IR drop in PDN can not be ignored. We propose

a nonlinear macrocell load model to include the effects of Dynamic Voltage Drop (DvD)

in the PDNs [19,26,62]. A voltage dependent current source Iload(t, vsup) with series RC,

Rload(vsup) and Cload(vsup), are used to model the current fluctuation caused by DvD at the

power supply node (i.e., vsup), as shown in Fig. 5.2. Our nonlinear load model provides the

fixed pivot points information, which enable us to determine the simulation time points in

advance.

The nonlinear load models are generated at different supply voltages (i.e., Vj).

During the transient simulation, the values of elements can be interpreted based on vsup at

93

𝒄𝒍𝒐𝒂𝒅 𝒗𝒔𝒖𝒑

𝒗𝒔𝒖𝒑

𝒈𝒍𝒐𝒂𝒅 𝒗𝒔𝒖𝒑
𝑰𝒍𝒐𝒂𝒅 𝒕, 𝒗𝒔𝒖𝒑

Current waveform with 𝑽𝒋+𝟏 supply voltage

Current waveform with 𝑽𝒋 supply voltage

𝒊𝒋(𝒕)

𝒊𝒋+𝟏(𝒕)

𝑰𝒍𝒐𝒂𝒅 𝒕, 𝒗𝒔𝒖𝒑

(b) An illustration of calculating 𝑰𝒍𝒐𝒂𝒅 𝒕, 𝒗𝒔𝒖𝒑

time

(a) Nonlinear load model (Macrocell)

𝑽𝒋 ≤ 𝒗𝒔𝒖𝒑 ≤ 𝑽𝒋+𝟏

I (A)

Figure 5.2: An illustration of the nonlinear load model in PDN. The dynamic behaviors
of macrocells are characterized with voltage dependent current source and RC in series.

t as

Iload(t, vsup) = ij(t) +
(ij+1(t)− ij(t))

(Vj+1 − Vj)
(vsup − Vj)

gload(vsup) = gj +
(gj+1 − gj)
(Vj+1 − Vj)

(vsup − Vj)

cload(vsup) = cj +
(cj+1 − cj)
(Vj+1 − Vj)

(vsup − Vj) (5.7)

where vsup lies between two supply voltages [Vj, Vj+1] and the coefficients i, g, c represent

the element values at each supply voltage in the macrocell model.

We revisit the DAE formulation of PDNs with the nonlinear macrocell models.

C(x)ẋ(t) + G(x)x(t) = Bu(x, t), (5.8)

where the elements in system matrices C,G, and the input u(t) are functions of variable x.

94

5.3.2 MGRIT method with Linear Step integrators

We propose a parallel-in-time method for nonlinear PDN transient simulations with

the MGRIT method [14] and adaptive Newton-Raphson techniques, named as MGRIT-

AdapNR. Firstly, we discuss the application of the MGRIT method to circuit simulation

in this section. In the next Sec. 5.3.3, we introduce the adaptive NR method to solve the

nonlinear equations.

Parareal was first presented as a numerical method to solve evolution problems [29]

and extended to PDEs with many follow up works [14,16], which enrich the field. Consider

the DAEs in Eq. 5.8, BE integration starts from

x(t+ h) = x(t) + hẋ(t+ h), (5.9)

which gives

(C(x)

h
+ G(x)

)
x(t+ h) =

C(x)

h
x(t) +Bu(x, t+ h), (5.10)

where we can define the operator M =
(C(x)

h
+ G(x)

)−1
on the rhs of equation at t. The

DAEs can be solved with linear step integration method with NR iterations.

Fig. 5.3 demonstrate (1) the general sequential integration method and (2) the two

level MGRIT method. For MGRIT method, we define the fine and coarse time grids. We

assume the fine time grids have uniform step size h. Each time interval in the coarse time

grid equals multiple steps of the fine time grids with H = Mh. We define two integrators

on the two levels. Let ML(Tn+1, Tn, xn) denote the long step integration on the coarse

time grid from Tn to Tn+1, where Tn = tMn. Let MS(Tn+1, Tn, xn) denote the short step

integration on the fine grid which takes M steps from Tn to Tn+1. The MGRIT method

95

⋯ "#"$

⋯⋯ "
#%#$ #&

⋯	"(&)(*+"(&)+

⋯⋯ "#%#$ #& #&)+ #&),

#&)+ #&),

"(& "(%

"+ ", "- 			⋯

(1) Sequential Method

(2) MGRIT Method (Two levels)

Fine

Coarse

V-cycle
45(78)9,78,;8)

4=(78)9,78,;8) 4=(78)>,78)9,;8)9)

45(78)>,78)9,;8)9)

Figure 5.3: In PDN transient simulation, step integrators are applied to (1) general
sequential method and (2) MGRIT method with two levels.

performs k iterations and approximates the next approximation with the formulation:

x
(k+1)
n+1 = ML(Tn+1, Tn, x

(k+1)
n) +MS(Tn+1, Tn, x

(k)
n)−ML(Tn+1, Tn, x

(k)
n). (5.11)

Note that in Eq. 5.11, the first long step integration includes the solution xk+1
n . Therefore,

it has to be performed sequentially in order to get the initial condition in current iteration.

The second and the third term only depends on results from the previous iteration, the

integrations in MS(Tn+1, Tn, x
(k)
n) and ML(Tn+1, Tn, x

(k)
n) between any time interval can be

operated in parallel.

In [18], the Parareal algorithm is illustrated as a multigrid in time method when

reduced to two levels. The long and short step integrators are defined on coarse and fine

time grids, respectively. We apply the ideas from works [14,17] to generalize the parallelism

96

to multiple temporal levels.

To illustrate the MGRIT as a time-multigrid method, we consider a nonlinear system

on the fine grid

Ah(xh) = b. (5.12)

To clarify the notations on two grids, we use xhm to denote the solution on fine grid with

index m, where the fine time grids are [t0, t1, . . . , tMN] with step size h. While the solution

on coarse grid is denoted with XH
n on [T0, T1, . . . , TN], where Tn = tMn and XH

n ≈ xhMn.

Similarly, the coarse grid problem is characterized by

AH(XH) = B. (5.13)

The two grid full approximation storage(FAS) multigrid method is written as Algorithm

6. The algorithm solves the time series of approximations xhm for m = 1, 2, . . . , starting

Algorithm 6: Two Grid FAS Algorithm for MGRIT

1 while norm of residual is not small enough do

2 Smooth/Relax on the fine grid: Ah(xhm) = bm with m = 1, 2, . . . ,MN .

3 Compute the residual: rhMn = bMn − Ah(xhMn).

4 Restrict the residual to coarse grid: fHn = IHh r
h
Mn.

5 Solve the coarse grid problem: AH(XH
n) = AH(IHh x

h
Mn) + fHn .

6 Compute the correction on coarse grid: eHn = XH
n − IHh xhMn.

7 Update the fine grid solution: xhMn = xhMn + IhHe
H
n .

8 end

from a given initial x0. The residual and the approximation on fine grid are transferred

to the coarse grid with the restriction operator IHh . Then, a correction term is calculated

97

based on the coarse grid problems, which is used to fix the solution on coarse grid with the

prolongation operator IhH .

The operators Ah and AH can be expressed with single step integrators used on fine

an coarse grids, respectively. We define the single step integration method for the fine grid

approximation,

xhm = φm(xhm−1) + bm,m = 1, 2, . . . ,MN, (5.14)

and for the coarse grid approximation,

XH
n = Φn(XH

n−1) +Bn, n = 1, 2, . . . , N. (5.15)

The short step integrator includes M steps of Eq. 5.14 from xhnM to xh(n+1)M ,

MS(Tn+1, Tn, X
H
n) := xh(n+1)M where XH

n = xhnM . (5.16)

The long step integrator includes one step of Eq. 5.15,

ML(Tn+1, Tn, X
H
n) := Φn+1(XH

n) +Bn+1. (5.17)

For a linear system, the Eq. 5.12 can be written as a matrix format,

Ah =

I

−φ1 I

.

−φMN I

, xh =

x0

x1

. . .

xMN

, b =

b0

b1

. . .

bMN

, (5.18)

which can be used for the coarse grid problem as well.

98

The interpretation of Parareal/MGRIT as a time multigrid method is well illustrated

in previous work, detailed proof can be found in [18]. The iteration in MGRIT is consistent

with the fine grid problem and the algorithm follows the linear convergence of multigrid

methods [10,17,18].

5.3.3 Nonlinear Systems and Adaptive Newton-Raphson Itera-

tions

For a nonlinear system, the implicit formulation Eq. 5.8 requires NR iterations to

achieve a converged solution. We define the residual of the system at t as

r(x) ≈ Bu(x, t)− C(x)ẋ(t)− G(x)x(t). (5.19)

Based on the Taylor expansion around the current approximation x(k), the next approxi-

mation x(k+1) satisfies

0 = r(x(k+1)) ≈ r(x(k)) + J(x(k))(x(k+1) − x(k)), (5.20)

where J(x) is the Jacobian matrix with Jij(x) = ∂ri
∂xj

. In practical circuit simulation, the

J(x) is given by the nonlinear elements and choice of multi-step method. The NR iterations

follow the relation

x(k+1) = x(k) − J(x(k))−1r(x(k)). (5.21)

The corresponding Jacobian is updated at each iteration according to x(k). Either the

residual r(x(k+1)) is below given tolerance or the change of solution from x(k) to x(k+1) is

small enough the iterations are terminated.

Unlike the traditional method where NR iterations are used at each step, adaptive

99

NR (adap. NR) method skips the NR iterations if the change of x at t+ h satisfies

‖∆x(0)‖∞ ≤ ∆th, (5.22)

where ∆x0 = x(0)(t+ h)− x(t) and ∆th is the given threshold. Considering the nonlinear

macrocell model is less sensitive to its voltage than transistors, we can set larger ∆th to

improve the performance.

5.3.4 Experimental Results

The MGRIT-AdapNR is implemented via the open source software library Xbraid [1]

in C++. All experiments are performed on a 1.8GHz Intel Xeon 24-CPUs server.

Table 5.3 shows the statistics of PDNs with size ranges from thousands to millions,

where the design ”genckt30” is created based on the specifications in [38] and used for

optimum parameter exploration. For ibmpg1t-nl, ibmpg2t-nl, and ibmpg3t-nl, we extend

the original power loads to nonlinear load models with the guidance from industry and use

the original PDNs of ibmpg1t, ibmpg2t, and ibmpg3t [38]. The nonlinear load models are

updated using Eq. 5.7 in the transient simulations. We compare MGRIT-AdapNR with

Sequential solver (Seq) using NR iterations at each time step. The maximum absolute

error emax and average absolute error eavg are calculated from the probing nodes of each

design and reported in the following experiments. The runtime represents the wall time.

Table 5.3: Design specifications of PDNs

PDN #R #C #L #Loads #Size #Probing Nodes

genckt30 2.6K 1.4K 0 720 1.6K 90
ibmpg1t-nl 54K 11K 277 11K 40K 24
ibmpg2t-nl 245K 37K 330 37K 165K 20
ibmpg3t-nl 1.6M 201K 955 201K 1M 20

100

(b) Seq vs MGRIT-AdapNR (Table IV)

Max IR Drop
0.13 V

Max IR Drop
0.25V

(a) Linear vs Nonlinear Macrocell Model with ibmpg1t PDN

Figure 5.4: (a) Linear vs Nonlinear Macrocell Model; (b) Nodal waveforms of Seq and
MGRIT-AdapNR (Table 5.6).

Study I: Linear vs Nonlinear Load Model

Fig. 5.4(a) shows the simulation results of a nodal waveform from ibmpg1t with

linear load models and ibmpg1t-nl with nonlinear load models. The simulation time is 3ns

with 900 time steps. The maximum IR drop with nonlinear load models is 92% larger,

which is underestimated by the linear models. The nonlinear load model is essential for

power integrity analysis.

Study II: Optimum Parameter Exploration

We perform multiple experiments on #Cores, Coarsening Factor (CF), and Maximum

Level (ML) of MGRIT-AdapNR to find the optimum settings in terms of runtime and

accuracy.

#Cores: Table. 5.4 shows the MGRIT-AdapNR runtime with 4, 8, 16, and 24 cores.

Compared to the Seq, MGRIT-AdapNR with 24 cores achieves 2× speedup and the max

error is 3mV . Besides, the difference in max and avg errors of different #Cores is less than

1%. MGRIT-AdapNR is robust with various #Cores.

Coarsening Factor (CF) and Maximum Level (ML): We use ”genckt30” with 410K

time steps to explore the optimum CF and ML to fully leverage the parallel-in-time advan-

tage. Table 5.5 shows the results of Seq and MGRIT-AdapNR with various combinations

101

Table 5.4: Experimental results of different #Cores using ibmpg1t-nl with 3ns simula-
tion time and 900 time steps.

#Cores emax (mV) eavg (mV) Runtime (s) Speedup (X)
Seq 1 - - 4790.61 1

MGRIT-AdapNR

4 3.00 3.82E-3 6882.63 0.70
8 3.00 3.83E-3 4250.47 1.13

16 3.00 3.84E-3 3092.15 1.55
24 3.00 3.84E-3 2493.53 1.92

of CF and ML. We select CF=2, 6, and 10. Then, we increase the ML from 2 to 10 with

increment 2 until the time grids cannot be coarsened any more. From the results, CF=10

and ML=4 achieves the best performance. The max error is less than 1mV.

Table 5.5: Experimental results of Seq and MGRIT-AdapNR (24 cores), with multiple
combinations of CF and ML using genckt30 test case. Simulation time=6ns. #time
steps=410K. Time Grid Ratio=(#Finest Time Grids)/(#Coarsest Time Grids).

Method CF ML
Time Gird

Ratio
emax
(mV)

eavg
(mV)

Runtime
(s)

Speedup
(X)

Seq - - 1 - - 1289.07 1

MGRIT-AdapNR

2

2 2 0.01 4.11E-4 1967.61 0.66
4 8 0.06 5.86E-3 1011.81 1.27
6 32 0.16 1.02E-2 793.43 1.62
8 128 0.22 1.02E-2 730.05 1.77

10 512 0.22 1.04E-2 710.14 1.82

6
2 6 0.04 5.75E-3 938.4 1.37
4 216 0.36 5.84E-3 445.83 2.89
6 1296 1.10 2.91E-2 426.2 3.02

10
2 10 0.07 7.70E-3 730.18 1.77
4 1000 0.14 1.10E-2 390.74 3.30
6 100000 5.60 2.86E-1 387.27 3.33

Main Results

Table 5.6 shows our main results on PDNs in Table 5.3. The simulation time of

ibmpg1t-nl, ibmpg2t-nl, and ibmpg3t-nl are 3ns, 3ns, and 2ns with 900, 960, and 630 time

steps, respectively. The MGRIT-AdapNR multigrid cycles of all three cases are 3. The

102

MGRIT-AdapNR multigrid cycles and Adap. NR reduce the #NewtonIters up to 30%.

Compared to Seq, MGRIT-AdapNR achieves more than 2× speedup with less than 5mV

max error. The MGRIT-AdapNR successfully captures the transient waveform of nonlinear

PDNs, as shown in Fig. 5.4(b).

Table 5.6: Experimental results of Seq and MGRIT-AdapNR (#Core=24, CF=10 and
ML=4).

emax
(mV)

eavg
(mV)

#NewtonIters Runtime (s) Speedup
(X)Seq Proposed Seq Proposed

ibmpg1t-nl 3.00 3.84E-3 1982 1521 4790.61 2493.53 1.92
ibmpg2t-nl 3.40 8.24E-2 2304 1662 17882.07 7947.37 2.25
ibmpg3t-nl 2.54 3.12E-2 1824 1256 102683.35 43430.18 2.36

5.4 Summary

In Sec. 5.2, we propose an efficient algorithmic framework for the nonlinear circuit

time domain simulation using exponential integrators. The MEVPs are computed by

rational Krylov subspace. In order to reduce the number of LU decomposition operations,

we exclude the Newton-Raphson iterations with the explicit integration method. A residual

based compensation iteration is devised to maintain the convergence. The ϕ functions are

applied to the MEVPs of nonlinear circuits. Sec. 5.2.3 shows that by choosing appropriate

ϕ functions for the computation of MEVPs we can achieve low computation cost while

ensuring accuracy.

In Sec. 5.3, we develop the MGRIT-AdapNR for the transient analysis of PDNs with

nonlinear load models, where the time integration is parallelized. Compared to the Seq,

MGRIT-AdapNR achieves 3× speedup on long simulation time (410K time steps) and 2×

speedup on the PDNs from 40K to 1M size. Without the limitation of maximum #Cores

on our server, we expect that MGRIT-AdapNR can achieve more speedups. The future

research directions include (i) exploring the performance improvement of MGRIT-AdapNR

103

with more cores and (ii) improving the convergence rate using advance integrators such as

Matrix Exponential [55].

Chapter 5, in part, is a reprint of the material in the work: X. Wang, H. Zhuang,

and C. K. Cheng, ”Exploring the exponential integrators with krylov subspace algorithms

for nonlinear circuit simulation,” in Proceedings of the 36th International Conference on

Computer-Aided Design, pages 163–168. IEEE Press, 2017. The author is the primary author

and investigator of this work. The chapter also contains the submission for publication

of the material in the work: C.-K. Cheng, C.-T. Ho, C. Jiao, X. Wang, Z. Zeng, and X.

Zhan, ”A parallel-in-time circuit simulator for power delivery networks with nonlinear

load models,” submitted to the 29th Conference on Electrical Performance of Electronic

Packaging and Systems, 2020. The author is one of the primary authors and investigators

of this work.

104

Chapter 6

Conclusions

This chapter summarizes the contributions of this thesis and presents a future scope

for the advanced transient simulation algorithms of VLSI circuits.

Chapter 2 introduces the formulation of circuit transient simulations and the linear

multi-step integration methods. The matrix exponential based integration method is

proposed evaluated by standard, invert, and rational Krylov subspace. The numerical

performance of the matrix exponential integration is compared with the conventional

integration methods, which demonstrate its advantages for circuit transient simulation.

Chapter 3 focuses on the stability of matrix exponential based integration algorithms

when used to solve the DAEs in PDN transient simulations. We prompt a modified Arnoldi

algorithm with structured orthogonalization to produce stable results of rational Krylov

subspace. The singular capacitance matrix is used to induce the orthogonality as well as

implicitly regularize the DAEs by excluding the algebraic equations. Significantly improved

stability and accuracy have been observed on general RC and RLC networks.

Chapter 4 presents the total simulation framework with matrix exponential based

integration methods. The exponential related ϕ functions are investigated to improve the

computation of MEVPs. In the construction of rational Krylov subspace, we also explore

105

the optimal ratio to confine the spectrum of original system. With the stable Aronoldi

algorithm and the devised techniques, we apply adaptive stepping strategy to the transient

simulation of system-level PDNs. Simulation results on general PDN cases are consistent

to our experiments.

Chapter 5 presents the simulation techniques for nonlinear system with different

scopes. First, we apply the explicit matrix exponential based integration to the analog

designs with strong nonlinearity. We remove the Newton-Raphson iterations to avoid

extra matrix factorization in the simulation, instead, a residual based compensate iteration

is introduced for convergence. Second, we explore the parallel-in-time methods to the

transient simulation of PDNs with nonlinear load models, which breaks the conventional

sequential time stepping scheme and provides a promising direction for speedup of nonlinear

systems.

There are many open problems to be explored in the future.

• The general applications of matrix exponential to simulation of circuits in mixed

signal analysis, logic synthesis, power and timing analysis, thermal analysis, etc.

• Speedup of the transient simulation with nonlinear system remains to be an interesting

topic. The performance of parallel-in-time method on circuit simulation is not fully

explored.

• Explore more advanced technologies from other areas to the circuit simulation.

106

Bibliography

[1] Xbraid: Parallel multigrid in time. http://llnl.gov/casc/xbraid.

[2] A. H. Al-Mohy and N. J. Higham. Computing the action of the matrix exponential,
with an application to exponential integrators. SIAM journal on scientific computing,
33(2):488–511, 2011.

[3] M. A. Botchev. A short guide to exponential krylov subspace time integration for
maxwell’s equations. Dept. of Applied Mathematics, Univ. of Twente, 2012.

[4] M. Caliari and A. Ostermann. Implementation of exponential rosenbrock-type integra-
tors. Applied Numerical Mathematics, 59(3-4):568–581, 2009.

[5] H. H. Chen and D. D. Ling. Power supply noise analysis methodology for deep-
submicron vlsi chip design. In Proceedings of the 34th annual Design Automation
Conference, pages 638–643, 1997.

[6] P. Chen, C. K. Cheng, D. Park, and X. Wang. Transient circuit simulation for differ-
ential algebraic systems using matrix exponential. In Proceedings of the International
Conference on Computer-Aided Design, page 99. ACM, 2018.

[7] Q. Chen, S.-H. Weng, and C. K. Cheng. A practical regularization technique for
modified nodal analysis in large-scale time-domain circuit simulation. IEEE TCAD,
31(7):1031–1040, 2012.

[8] L. O. Chua and P.-M. Lin. Computer Aided Analysis of Electric Circuits: Algorithms
and Computational Techniques. Prentice-Hall, 1975.

[9] W. Cody, G. Meinardus, and R. Varga. Chebyshev rational approximations to e- x
in [0,+) and applications to heat-conduction problems. Journal of Approximation
Theory, 2(1):50–65, 1969.

[10] V. Dobrev, T. Kolev, N. A. Petersson, and J. B. Schroder. Two-level convergence
theory for multigrid reduction in time (mgrit). SIAM Journal on Scientific Computing,
39(5):S501–S527, 2017.

107

[11] W. Dong and P. Li. Parallelizable stable explicit numerical integration for efficient
circuit simulation. In Proceedings of IEEE/ACM Design Automation Conference, 2009.

[12] W. Dong, P. Li, and X. Ye. Wavepipe: Parallel transient simulation of analog and
digital circuits on multi-core shared-memory machines. In Proc. IEEE/ACM Design
Autom. Conf., pages 238–243, 2008.

[13] T. Ericsson and A. Ruhe. The spectral transformation lanczos method for the numerical
solution of large sparse generalized symmetric eigenvalue problems. Mathematics of
Computation, 35(152):1251–1268, 1980.

[14] R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder.
Parallel time integration with multigrid. SIAM Journal on Scientific Computing,
36(6):C635–C661, 2014.

[15] R. W. Freund. Krylov-subspace methods for reduced-order modeling in circuit simula-
tion. Journal of Computational and Applied Mathematics, 123(1-2):395–421, 2000.

[16] S. Friedhoff and B. S. Southworth. On ”optimal” h-independent convergence of parareal
and mgrit using runge-kutta time integration. arXiv preprint arXiv:1906.06672, 2019.

[17] M. J. Gander and E. Hairer. Nonlinear convergence analysis for the parareal algorithm.
In Domain decomposition methods in science and engineering XVII, pages 45–56.
Springer, 2008.

[18] M. J. Gander and S. Vandewalle. Analysis of the parareal time-parallel time-integration
method. SIAM Journal on Scientific Computing, 29(2):556–578, 2007.

[19] H. Harizi, R. HauBler, M. Olbrich, and E. Barke. Efficient modeling techniques
for dynamic voltage drop analysis. In 2007 44th ACM/IEEE Design Automation
Conference, pages 706–711. IEEE, 2007.

[20] N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

[21] C. Ho, A. Ruehli, and P. Brennan. The modified nodal approach to network analysis.
IEEE TCAS, 22(6):504–509, 1975.

[22] M. Hochbruck and C. Lubich. On krylov subspace approximations to the matrix
exponential operator. SIAM Journal on Numerical Analysis, 34(5):1911–1925, 1997.

[23] M. Hochbruck, C. Lubich, and H. Selhofer. Exponential integrators for large systems
of differential equations. SIAM Journal on Scientific Computing, 19(5):1552–1574,
1998.

[24] M. Hochbruck and A. Ostermann. Exponential integrators. Acta Numerica, 19:209–286,
2010.

108

[25] M. Hochbruck, A. Ostermann, and J. Schweitzer. Exponential rosenbrock-type methods.
SIAM Journal on Numerical Analysis, 47(1):786–803, 2009.

[26] P.-Y. Hsu, C.-H. Yao, Y. Wang, and C.-K. Cheng. Adaptive sensitivity analysis
with nonlinear power load modeling. In 2018 ACM/IEEE International Workshop on
System Level Interconnect Prediction (SLIP), pages 1–6. IEEE, 2018.

[27] A. Ilchmann and T. Reis. Surveys in differential-algebraic equations II. Springer, 2014.

[28] P. Li. Parallel circuit simulation: A historical perspective and recent developments.
Foundations and Trends in Electronic Design Automation, 5(4):211–318, 2012.

[29] J.-L. Lions, Y. Maday, and G. Turinici. A parareal in time discretization of pde’s. In
C.R. Acad. Sci. Paris Ser. I Math, pages 661–668, 2001.

[30] K. Meerbergen and A. Spence. Implicitly restarted arnoldi with purification for the shift-
invert transformation. Mathematics of Computation of the American Mathematical
Society, 66(218):667–689, 1997.

[31] Q. Mei, W. Schoenmaker, S.-H. Weng, H. Zhuang, C. K. Cheng, and Q. Chen. An
efficient transient electro-thermal simulation framework for power integrated circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
35(5):832–843, 2016.

[32] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a
matrix. SIAM review, 20(4):801–836, 1978.

[33] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later. SIAM review, 45(1):3–49, 2003.

[34] L. Nagel. SPICE2: A computer program to simulate semiconductor circuits. Ph.D.
dissertation, 1975.

[35] L. Nagel and R. Rohrer. Computer analysis of nonlinear circuits, excluding radiation
(CANCER). IEEE Journal of Solid-State Circuits, 6(4):166–182, 1971.

[36] L. W. Nagel and D. O. Pederson. SPICE: Simulation program with integrated circuit
emphasis. Electronics Research Laboratory, College of Engineering, University of
California, 1973.

[37] F. N. Najm. Circuit simulation. Wiley, 2010.

[38] S. R. Nassif. Power grid analysis benchmarks. In Design Automation Conference,
2008. ASPDAC 2008. Asia and South Pacific, pages 376–381. IEEE, 2008.

[39] K. Nichols, T. Kazmierski, M. Zwolinski, and A. Brown. Overview of spice-like circuit
simulation algorithms. IEE Proceedings-Circuits, Devices and Systems, 141(4):242–250,
1994.

109

[40] J. Nissen and W. M. Wright. a krylov subspace algorithm for evaluating the phi
function appearing in exponential integrators. ACM Transactions on Mathematical
Software, 38(3):1–21, 2012.

[41] B. Nour-Omid, B. N. Parlett, T. Ericsson, and P. S. Jensen. How to implement the
spectral transformation. Mathematics of Computation, 48(178):663–673, 1987.

[42] A. Odabasioglu, M. Celik, and L. T. Pileggi. Prima: Passive reduced-order interconnect
macromodeling algorithm. In Proceedings of the 1997 IEEE/ACM international
conference on Computer-aided design, pages 58–65. IEEE Computer Society, 1997.

[43] L. Orecchia, S. Sachdeva, and N. K. Vishnoi. Approximating the exponential, the
lanczos method and an o (m)-time spectral algorithm for balanced separator. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages
1141–1160, 2012.

[44] L. T. Pillage, R. A. Rohrer, and C. Visweswariah. Electronic circuit and system
simulation methods. McGraw-Hill New York, 1995.

[45] J. Rommes and N. Martins. Exploiting structure in large-scale electrical circuit and
power system problems. Linear Algebra and its Applications, 431(3-4):318–333, 2009.

[46] A. Ruhe. Rational krylov sequence methods for eigenvalue computation. Linear
Algebra and its Applications, 58:391–405, 1984.

[47] Y. Saad. Analysis of some krylov subspace approximations to the matrix exponential
operator. SIAM J. Numer. Anal., 29(1):209–228, 1992.

[48] Y. Shi and L. He. Modeling and design for beyond-the-die power integrity. In
Proceedings of the International Conference on Computer-Aided Design, pages 411–416.
IEEE Press, 2010.

[49] R. B. Sidje. Expokit: A software package for computing matrix exponentials. ACM
Transactions on Mathematical Software, 24(1):130–156, 1998.

[50] L. M. Silveira, M. Kamon, I. Elfadel, and J. White. A coordinate-transformed
arnoldi algorithm for generating guaranteed stable reduced-order models of rlc circuits.
Computer Methods in Applied Mechanics and Engineering, 169(3-4):377–389, 1999.

[51] B. Simeon, C. Führer, and P. Rentrop. The drazin inverse in multibody system
dynamics. Numerische Mathematik, 64(1):521–539, 1993.

[52] M. Takamatsu and S. Iwata. Index characterization of differential–algebraic equations
in hybrid analysis for circuit simulation. International Journal of Circuit Theory and
Applications, 38(4):419–440, 2010.

[53] J. van den Eshof and M. Hochbruck. Preconditioning Lanczos approximations to the
matrix exponential. SIAM J. Sci. Comput., 27(4):1438–1457, 2006.

110

[54] J. Verley, E. R. Keiter, and H. K. Thornquist. Xyce: Open source simulation for
large-scale circuits. Technical report, Sandia National Lab.(SNL-NM), Albuquerque,
NM (United States), 2018.

[55] X. Wang, P. Chen, and C.-K. Cheng. Stability and convergency exploration of
matrix exponential integration on power delivery network transient simulation. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019.

[56] X. Wang, H. Zhuang, and C. K. Cheng. Exploring the exponential integrators with
krylov subspace algorithms for nonlinear circuit simulation. In Proceedings of the
36th International Conference on Computer-Aided Design, pages 163–168. IEEE Press,
2017.

[57] G. Wanner. Dahlquist’s classical papers on stability theory. BIT Numerical Mathe-
matics, 46(3):671–683, 2006.

[58] S.-H. Weng, Q. Chen, and C. K. Cheng. Time-domain analysis of large-scale circuits
by matrix exponential method with adaptive control. IEEE TCAD, 31(8):1180–1193,
2012.

[59] J. H. Wilkinson. Kronecker’s canonical form and the qz algorithm. Linear Algebra
and its Applications, 28:285–303, 1979.

[60] R. Winkler. Stochastic differential algebraic equations of index 1 and applications in
circuit simulation. Journal of computational and applied mathematics, 157(2):477–505,
2003.

[61] X. Ye, W. Dong, P. Li, and S. Nassif. Maps: Multi-algorithm parallel circuit simulation.
In Proceedings of IEEE/ACM International Conference on Computer-Aided Design,
pages 73–78, 2008.

[62] X. Zhang, Y. Liu, R. Coutts, and C.-K. Cheng. Power distribution network design
optimization with on-die voltage-dependent leakage path. In 2013 IEEE 22nd Con-
ference on Electrical Performance of Electronic Packaging and Systems, pages 87–90.
IEEE, 2013.

[63] Z. Zhu, H. Peng, C. K. Cheng, K. Rouz, M. Borah, and E. S. Kuh. Two-stage Newton-
Raphson method for transistor-level simulation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 26(5):881–895, 2007.

[64] H. Zhuang, X. Wang, Q. Chen, P. Chen, and C. K. Cheng. From circuit theory,
simulation to spiceDiego: A matrix exponential approach for time-domain analysis of
large-scale circuits. IEEE Circuits and Systems Magazine, 16(2):16–34, 2016.

[65] H. Zhuang, S.-H. Weng, J.-H. Lin, and C. K. Cheng. MATEX: A distributed framework
of transient simulation of power distribution networks. In Proc. IEEE/ACM Design
Autom. Conf., pages 43.3.1–6, 2014.

111

[66] H. Zhuang, W. Yu, S.-H. Weng, I. Kang, J.-H. Lin, X. Zhang, R. Coutts, and C. K.
Cheng. Simulation algorithms with exponential integration for time-domain analysis
of large-scale power delivery networks. IEEE TCAD, 35(10):1681–1694, 2016.

112

