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'lbree-Dim.ensional Vortei lletb.ods 

Claude A. Greengard 

Abstract 

Three-dimensional vortex methods for the computation of incompressi

ble fluid flow are presented from a unified point of view. Reformulations of 

the tilament method and of the method of Beale and Majda show them to be 

very similar algorithms; in both of them, the vorticity is evaluated by a 

discretization of the spatial derivative of the flow map. The fact that the 

IDament method, the one which is most often used in practice, can be formu

lated as a version of the Beale and Majda algorithm in a curved coordinate 

system is used to give a convergence theorem for the tllament method. 

The method of Anderson is also discussed, in which vor~icity is evaluated 

by the exact differentiation of the approximate velocity tleld. It is shown 

that, in the inviscid version of this algorithm, each approximate vector of 

vorticity remains tangent to a material curve moving with the computed flow, 

with magnitude proportional to the stretching of this vortex line. This 

remains true even when time discretization is taken into account. 

It is explained that the expanding core vortex method converges to a 

system of equations different from the Navier-Stokes equations. 

Computations with the tilament method of the inviscid interaction of two 

vortex rings are reported, both with single tllaments in each ring and with a 

fully three-dimensional discretization of vorticity. The dependence on 

parameters is discussed, and convergence of the computed solutions is 

observed. 
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Introduction. 

Vortex methods have been successfully used over the past ten years for 

the study both of -inviscid -and 'of slightly viscous tlows in two and three 
' ' . . ~ .. . 

dimensions {see, for example,. [1].[3],[9],[19],[23],[24],[34],[36], and the 

review papers [11],[25],[26]). Some co~vergence r~sults have been obtained 

recently as well, including conwrgence proofs. for in~scid tlows in the 

absence of boundaries ([2],[5],[6],[16],[21]), ·and partial results for the 

viscous tlow problem ([ 4],[15],[27]). 

The numerical work has been of t~o distinctly ditferent ki.rids. Most of 

the calculations with vortex methods have involved the simulation of high 
- -

Reynolds number turbulent tlows. Thes~ i'lows depend very sensitively on ini-

tial conditions; that is, slight disturbances are enormously amplified in time. 

Thus, it is impossible to apply numerical approximation procedures to these 

problems and obtain convergence to the exact solutions: Rather, one aims to 

represent successfully some of the large..;scale features of the tlows being 

studied; optimally, one would like to obtain quantitatively correct informa

tion from the calculations. Several experimentcilly measured quantities have 

been very well reproduced by finite vortex simulations,. and the similarity of 

the experimental and numerical visualizations of the development of 

coherent structures in the ftows has been striking ([9],[19]). -

Accurate calculation of the evolution over shorter intervals of ·time of 

less wild ftows has also 'been carried out ([1],[7],[16].'r23],[32]), and the 

numerical work reported here is of this kind. Stich calculations have been 

done both to obtain approximate solutions of the fiuid'mechanical equations 

and as a check on the methods and a study· of their accuracy. The calcula

tions in [1] and [23] show that the absence of artificial dissipativity of vortex 

methods allows detailed structures of interfaces to tie beautifully resolved. 

It is not yet clear how much relevance such · accurate and short time 
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calculations with vortex methods have to large-scale simulations, especially 

in three dimensions. The success of vortex methods in the study of wakes 

behind circular cylinders, for instance, seems to have more to do with the 

properties of the infinite-dimensional dynamical system which is the Navier

Stokes equations with the appropriate boundary conditions than with the fact 

that convergence of particle trajectories can be seen in calculations when 

small regions of vorticity in free space are covered by hundreds of vortex 

blobs. 

Section 1 contains a discussion about the numerical approximation of 

the kind of singular integral encountered in the vorticity form of Euler's 

equations. In Section 2, Euler's equations are introduced and given formula

tions of which the vortex methods introduced in the following section can be 

seen as natural discretizations. 

Two kinds of three dimensional vortex methods are introduced in Sec

tion 3. The first kind, which we call the differential stretching method, 

requires the exact ditterentiation of the computational velocity field for the 

evaluation· of the vorticity. This idea was first suggested by Anderson and 

presented in [2]. A convergence proof has been obtained by Beale ([B]). The 

second kind of algorithm requires the discretization of the spatial derivative 

of the computational tlow map. Reformulations of the tllament method and 

of the method of Beale and Majda {[5]) given in Section 3 show them both to 

be of this kind. We call these algorithms discrete stretching methods. 

The differential and discrete algorithms are contrasted in Section 4. It 

is shown there that, although the differential stretching algorithm appears to 

be noise-producing and hence unattractive, the evaluation of vorticity by the 

other methods is a discretized version of the evaluation of vorticity by this 

method. In fact, this method of evaluating the vorticity is the unique one 

which preserves vortex lines, in the sense discussed in Section 4. 

'' 
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Hald first showed that for two..:dimensional Euler tlow, appropriate 

choices of mollifiers for the kernel lead to vortex methods which converge 

with second-order accuracy in the particle positions {[21]). Beale and Majda 

proved that arbitrarily high orders of accuracy can be obtained, and that 

such convergence in particle. positions can be obtained not only in · two 

dimensions, but also for their three-dimensional algorithm {[5],[6]). 

The filament method can be understood as the method of Be.ale and 

Majda in a curved, periodic (in one direction) coordinate. system. This fact is 

used in Section 5 to extend the theory of Beale and ·Majda. giving a conver-

gence theorem for filament methods. 

- c ' 

Modifications of the vortex methods presented in Section 3 are dis-

cussed in Section 6. First, it is mentioned that losses of resolution due to 

vortex stretching can be somewhat remedied by the interpolation of new par-

ticles. Second, the simulation of viscosity in vortex methods is discussed. It 

is explained that the ·method of random walks ([ 10]) is ·applicable to the 

differential stretching algorithm. The method of core spreading is also dis-

cussed, and it is explained that this method converges to a system of equa

tions different from the Navier-Stokes equations. 

A fascinating example of vortex motion is the interaction of two initially 

coplanar {or slightly inclined toward one another), corotating vortex rings. 

There exist nice experimental visualizations of the ensuing merger of the two 

rings ([31],[33]); numerical calculations have also been carried out on this 

model problem {[24],[35]). The numerical work reported in this thesis 

involves the calculation of the inviscid interaction of the rings. Further calcu

lations of the inviscid and viscous interaction of two rings ate underway and 

will be reported elsewhere. 

Solutions obtained by integration of the ordinary differential equation of 

the vortex method depend on three parameters: the time step At, the spatial 
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discretization parameter h, and the smoothing parameter 6. Solutions 

obtained in the h ,At ... o limit are interpreted in Section 7 as solutions of a 

system of equations called here the E, equations, which depend on a smooth

ing parameter 6 and are obtained by smoothing the kernel in the vorticity 

formulation of Euler's equations. The approach used in our computational 

work was to obtain accurate solutions of the E, equations,· in the sense that 

refinements in h and tlt cause little change in the solution, and to study the 

behavior of these solutions as 6 decreases. 

In Section 9, calculations involving resolution of each of the rings by a 

single filament are discussed. In this case, the solutions depending only on 6 

are interpreted as weak solutions of the desingularized equations. The limit, 

as 6 ... 0, is necessarily singular, but interesting behavior can be seen for finite 

values of 6 the calculation of which requires only seconds on the V~ 11/780. 

Fully three-dimensional vortex ring discretization is discussed in Section 

10. In principle, the solutions of the smoothed equations converge to proper 

solutions of Euler's equations. We have investigated the limiting behavior 

numerically. Convergence in the center of mass and in the overall ring 

shapes can be seen. However, it should be noted that slight increases in 

accuracy require enormous increases in computing time. 
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1. Discretization of Singular Integrals. 

The basis of vortex methods is the discretization of the singular integral 

which expresses an incompressible vector field as a function of its curl. 

Before coming to a discussion of tluid mechanics, we consider the problem of 

discretizing singular integrals in a general setting. Let K:R3 ... 1R be a locally 

integrable function, unbounded at the origin and smooth elsewhere, let 

g:1R3 ... R be bounded and of compact support. and define I:R3 ... R by setting 

I (:z )= f K(:z -a.)g (a.}d.a. • 
R3 

(1.1) 

for x e:JR3. Suppose that one would like to obtain approximations to I given 

finite sets of values of g. Let ~a.1 (h),p1 (h) :j e:J"'J be the set of nodes and 

weights of some integration formula, so that 

(1.2) 

for sufficiently smooth functions F:IR3 ... R of compact support. Fixing :z, set-

ting F(a.)=K(x-a.)g(a.), and assuming known the values g(a.;(h)) for some 

given h, the most obvious approximation to 1 (x )= J F(a.)d.a. is 
Jt3 

l,..(:z)= ~ F(a.;)P;= ~ K(:z-a.;)g(a.;)P; I 

jEJh JEI"' 
(1.3) 

where the dependence on h in the notation has been partially suppressed. 

Unfortunately, the result is a function which, because of the singularity of K, 

and hence of F, diverges at each node point at which g is nonzero. However 

small h may be, I,.. differs infinitely from I in the L • norm and, unless 

Ke:Lfoc, in the L2 norm as well, even though 1 is smooth. One can, however, 

obtain a reasonably accurate approximation to I by replacing K with a 

bounded function close to K except near the origin. For example, let ~ be a 

function of compact support such that J ~= 1, and set 'k=K * ~- Then define 
Rs 
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the approximation ] ,.. to I by setting 

(1.4) 

It is useful to rewrite equations (1.1),(1.3) and (1.4) as convolutions of K 

with the appropriate distributions, in order to understand the approxima

tions better. Let g,.. be the singular distribution g,..(z)= ~ g(a.i)oo(z-ai)Pi• 
jEJh 

where o0 is the Dirac delta distribution concentrat.ed at the origin, and define 

g,..(z )= ~ g (a.i )rp(z -a.1 )Pi· The associativity of the convolution operator 
jEJh 

implies 

/=K•g 

/~a.=K • g,.. 

J,..=K • g,.. . 

The closer the cutoff function 9' is to the Dirac distribution, the more 

singular 1 h. becomes. However, for appropriate one-parameter families of 

cqtoff functions 9'4 approaching the Dirac distribution as o ... o, the approxima-

lions 

~ (K • ~4)(z-a.i(h))g(ai(h))pi(h) 
iEI" 

(1.5) 

approach I (z) uniformly in z as o,h ... o provided that K and g satisfy certain 

conditions, and that h tends to zero more quickly than o. Theorem 1.1 pro-

vides an example. 

The approximation by (1.5) is not sufficiently general to cover the case 

of interest to us in tluid mechanics. For application to the vortex method, 

one would like to approximate 1 accurately given the values of g, not on the 

set of nodes txt of a nice integration formula, but rather on the set of images 

+(a.i) of these nodes under a smooth, measure-preserving transformation 

+:R9 ... R9• Changing variables in the integral in (1.1), we get 
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l(z)= jK(z-+(a))g(+(a))d.a. 
fi3 

' 7 

(1.6) 

Set K4=K,• rp4• The approximation to I analogous to (1.5) is the func-
/ 

tion I O.h defined by 

I M(z)= I; Ko(z--+(a,)) g(+(aJ)) p1 . 
JEJ"' 

(1.7) 

In fact, one can obtain a converging approximation scheme in this way. This 

is the content of Theorem 1.1, which follows ideas in ([2],[5],[17]). In order 

to prove that I O.h is an accurate approximation' to I. it is convenient to 

obtain the approximate identity frp4 ~ from a fixed function rp of integral one 

through the relation 

(1.8) 

A class of functions rp for which the proof of Theorem 1.1 holds is defined 

next. 

Definition. The class M'"' is the collection of functions rpe:C'(1R3) such that 

J rp= 1, which in addition satisfy the following conditions: 
Rs . _.,.,__ 

(i)' J zllrp(z )dz=O, for all multi-indices a such that 1~ I a I~ p -1 
~s 

J I z P' I rp(z) I d:c < 00 

fi3 

(ii) 1 z J 3+1~1 1 D'rp(z) 1 ~ c 
(iii) I z I.P+o I rp(z) I ~c 

for some C, and all P s.t. I PI ~l 

for some constant C 

In the following, when A is a region in 1R9 and F is a real-valued function 

. on A, we use the ·notation 

In Theorem 1.1, we assume that K is one of the functions z,/1 z 13 ,i=1,2, or 



B 

3, although the convergence of the approximation scheme { 1. 7) can be shown 

to hold for a wider class of kernels. 

We restrict our attention now to the trapezoidal rule, obtained by set-

' 
course, the sum in (1.2) is finite since for all but finitely many j, F(h-j)=O. 

It is proved in [2] that for each integer l~4. and all functions Fe:c'{R5) of 

compact support, 

Theorem 1.1 Let D c 1R3 be a bounded region, and assume ge:c'{1R3), with 

su:pp(g) c D. Assume ite:c' {R5), and let f and /u. be defined as in {1.6)

( 1. 7). As~ume further that rpe:ML.P. Then for some constant C which depends 

only on l, I it I w'·•(rl(D)), I g I w'··(D), and the diameter of D, 

Proof: Define 

for x e:1R3. It is shown in [6] that for some constant C, 

All that is left is to estimate /&-IM, which is the error in discretizing the 

integral of the smooth function 

F(a)=K4(x -it(a))g (it( a)) 

by the given integration formula. By repeated application of the chain rule 

and the product rule, it follows that derivatives ofF up to order l are sums 

of derivatives of K 4 up to order l multiplied by derivatives up to order l of + 
and g. Hence, for some constant c·, which depends only on l, 
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Since the integral of K4 over any compact se.t is bounded by a constant mul

tiple of 61-t (see [2]), with the constant depending only on rp and on the diam

eter of the set, 

for some constant C2. Thus, 



2. Euler's Equations. 

The three-dimensional Euler equations in vorticity formulation are 

where K is the matrix 

c.>(z ,0)=77{z) , 

81CJ+(u·V)CJ=(CJ·V)u , 

u=K • CJ, 

0 
zs 

lz Is 

K{z) = -1-
-zs 

0 
411' lz Is 

%2 -zl 

lz 19 lz Is 

-%2 

lz Is 
%1 

lzls 

0 

10 

(2.1) 

Assume that 71 is sufficiently smooth and that [O,T] is a sufficiently short 

interval of time so that a smooth solution to (2.1) exists ([22]). The tlow map 

~:JR3x[O,T] .... R3 is defined by 

We shall use the notation 

~(a,O)=cx, 

8 
8T~(a,t )=u(~(cx,t ),t) . 

~a(t )=~(cx,t) , 

CJa(t )=CJ(~a(t },t} , 

{2.2) 

for ae:Rs and te:(O,T]. The two different numerical methods we discuss below 

will be motivated by different formulations of the evolution equation for the 

CJa(t). It follows by the chain rule from the second equation in (2.1) that for 

all ex, 

{2.3) 
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An equivalent equation governing vorticity. evolution along particle trajec-
t~-.., ,. I t • ,. 

tories is 

(2.4) 
'- ~ ·, ;~ ':,: 

where DCI~ is the 3x3 ~atrix of partial derivatives of ~ with respect to the 

spatial variables a, and· the dot · de~otes tli~ product of matrix and vector 

(see (14]). 

It follows from the third equation in (2.1) that the fl.ow map is measure-

preserving, and a change of variables yields 

u(z,t)= jK(z-y)r.J(y,t)dy= jK(z-~Cl(t))r.JCI(t)d.a. {2.5) 

U(ir,O](z )= J K(z -+(a))O(a)d.a . {2.6) 

When X is defined on {z,t)e:R3x[O,T], we" shall denote by X(t) the function 

X(t )(z )=X(z ,t ). Then (2.5) can be written in the form 

u(z,t) = U(~(t-),r.J(t)](%). 

Using equations (2.2)-(2.6), we give two Lagrangian formulations of the 

equations of motion, on which the two vortex methods described in the next 

section are based. System A is the set of equations 

~(a,O)=a, 

d. 
dt~Cl(t )=U(~(t ),r.J(t )](~Cl(t)) , 

r.JCI(0)=7J(a) , 

d. 
dtr.JCI(t )=(r.JCI(t )·V)U( ~(t ),r.J(t }](~Cl(t)) , 



12 

and system B is the set of equations 

t{a,O)=a, 

! fla{t)=U(t{t),CJ{t)]{fla{t)), 

CJa{t )= ~at{a,t >l11{a) . · 
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3. Three-Dimensional· Vortex Methods. 

We discretize the systems of equations A and B, in order to compute 

· solutions to Euler's equations, by tracking the positions of a finite number of 

particles {called vortices), and keeping track of vortex stretching along the 

trajectories of these particles. Denote by J" a setby which the vortices are 
" " . . '· 

indexed; h typically represents the distance between neighboring initial vor

tex positions. For each it.J", ~e denote by cxi the initial positi~n of the i"' 

vortex, and by ~!"'(t) and c.>/·"(tfapproximations to ~ac{t) and "'ac{t), respec

tively. Let each initi.ai position Cl.& be assigned a corresponding weight Pi. ·Set 

K4=K • rp4, with rp4 detiried as in {1.8). ln the light of the discussion in S~ction 

1, it seems reasonable to approximate U[~(t),c.>{t)l by UM[~""'{t),c.>M(t)], 

where u.,,~a['lf,O] is the vector field defined for V..O:fa,:it.J"~_.Rs by setting 

U4.~a['lf;O](%)= 2; K4{z-'lf(~))O{adp, . · 
iEJ" 

{3.1) 

There are numerous functions rp {even in the class M1.P) for which the 

modified kernels K4 cart be exhibited explicitly (see (7]); this fact permits 

straightforward implementation of the numerical algorithms discussed 

below. We mention that if rp has support contained within the unit ball, then 

K.,(z )=K(z) for I z I :<!:o; if rp has only radial dependence, then K4(0)=0. We 

describe now two vortex methods, which ditrer only in their evaluations of the 

vortex stretching, and which we call the differential and discrete algorithms. 
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Ditferential stretching method; The system of ordinary differential equations 

t/.A(o) = ~ . {3.2) 

! tiM(t) = Ua.A[t4.h(t),'-'1·"{t)] {t/-"{t)), {3.3) 

"'f.A(o) = 17{~) • {3.4) 

! '-'f.h(f) = {'-'f.h(f}·V)Ua.ll[tM(t),'-'4.h(f)] {tf.h(t)), {3.5) 

is a discretization of system A. and we call it the differential algorithm. The 

approximate vector field Ua.h is exactly differentiated here, the implementa

tion of which procedure requires only ditferentiation of the explicit represen

tation of Ka. This vortex method is presented in [2]. 

Discrete stretching method; Most of the three-dimensional algorithms which 

have been used in practice, although introduced by other authors in a 

different way, can be understood as discretizations of system B. We call these 

methods filament algorithms and discuss them below. One can approximate 

B by coupling equations {3.2)-{3.3) with a formula which determines vortex 

stretching by replacing the spatial derivative of the fiow map in (2.4) with a 

finite difference approximation to this derivative. We discuss two different 

implementations of this idea. 

F'ila.m.ent Algorithms: In these algorithms, vortex structures at time 

t=O are approximated by one or more vortex filaments. Each 

filament is discretized by choosing points ~ along the filaments with 

roughly equal spacings between them. This initialization procedure 

allows the derivative· of the fiow map in the filamental direction to be 

approximated by taking finite differences along the filament. For 

. t . . { ) (a.+l-~-l) t ms ance, approXlmahng 11 a; by ci 2h , one can se 
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(3.6) 

Mesh Algorithms: Alternatively, one can choose the vortices to lie, 
" 

initially, on the nodes of a rectangular grid. In this case, one must 

approximate partial derivatives of the flow map in all three orthogo

nal directions, since the vorticity will in general not be aligned 

exacUy . along the coordinate axes. Recalling that tl.h(t) is an 

approximation to t( eli ,t ), one sets 

(3.7) 

where n: is a finite difference approximation to the spatial deriva-

tive. This turns out to be the algorithm suggested by Beale and 

Majda, though. they define the eJ/.h(t} by coupling to equations (3.2) 

and {3.3) the differential equations 1 

eJf.h(0)=1J(Cli) (3.8) 

! "'f.h(t >=[ n: (UM [ t 6.h(t ),eJ6·h(t)] a tf.h(t)) )-11<~) . (3.9) 

It can easily be checked ~at (3.9} is the derivative in time of (3. 7}. 

The mesh and the filament method each has certain advantages over the 

other. It is' conceptually nicer to have vorticity aligned along ·vortex' lines. 

Moreover, more particle trajectories need to be computed with a· mesh ini-

tialization than with a vortex line initialization, for with a mesh initialization 

all nearest neighbors of all nodes at which the initial vorticity is nonzero 

mu~t be tracked in time in order for the vortex stretching to be evaluated. If 

one starts with a vorticity distribution which is fairly thin, a substantial 

increase in co_mputational work results. On the other hand, given an initial 

vorticity distribution as an arbitrary function of space, the mesh algorithm is 

by far the easier to implement. 
~ 



16 

4. Discrete Stretching Versus .Di11erential Stretching. 

It is well known that the differentiation of interpolated functions is a 

dangerous numerical procedure. Thus, the differential algorithm. which 

requires the differentiation of the interpolated vector field ucS.h• appears at 

first glance to be noisier than the discrete one. In fact, as is shown below, 

the differential and discrete algorithms are surprisingly close to one 

another. 

Given the vortex trajectories (tl.h(t ),t.Jl"(t)) which form the .solution to 

the autonomous ordinary differential equation of either algorithm, we define 

an approximate tlow map t 4.h:JR8x[O,T] .... R8 as the solution of the nonauto

nomous ordinary differential equation 

t 4.h(a,O)=a , 

:t t 6·h(a,t )=UM [ tM (t ),r.>6.h(t)] ( Cll6·h(a,t)) . (4.1) 

This notation is consistent for, as a comparison of equation (3.3) with equa

tion (4.1) reveals, 

Thus, Cll6.h(t) is a measure-preserving fiow which agrees on the Lagrangian 

variables CX( with the approximate particle trajectories of the algorithm. 

The· following result shows that the relationship between the ftow map 

and vorticity that holds in Euler ftow holds also in the differential algorithm. 

In particular, vortex lines are preserved by the tlow of the differential algo

rithm, in the sense that the vorticity calculated in the algorithm is always 

tangent to the same material curve in the ftuid, and the magnitude of the 

vorticity is always in proportion to the stretching of this "vortex line". 
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Proposition 4.1 Let tf.h be a tlow map of the differential algorithm. Then for 

each i, 

(4.2) 

Proof: Define 

Then 

=(DaU4.h( tM (t ),c.>6.h(t )](tM(tl(,t ))] ·f](tli) 

= ({[Dat4·h(a,,t)]-1J(tl())·V) (Uu,[tM(t),c.>4.h(t)]) (tf.h(t)) 

Moreover, since 

and since 

t, and c.>/.h satisfy the same ordinary differential equation and hence are 

identical. 



lB 

We summarize by displaying the Lagrangian vortex stretching formulas 

for the Euler equations and for the discrete and differential vortex methods: 

Euler: 

Difterential: 

Discrete: 

Thus, we see that although the systems of ordinary differential equations 

that constitute the differential and discrete methods appear very different, 

the transformation of vorticity by the approximate ftow map in the discrete 

algorithm differs from that in the differential algorithm only in that a discre

tized version of the spatial derivative of ~4·", rather than the real derivative, 

is applied to the initial vorticity. This is why we have chosen to call the 

methods discrete and differential, rather than Lagrangian and Eulerian, 

respectively. 

Proposition 4.1 can be strengthened. For, the analogous result holds 

even when the ordinary differential equations are replaced by difference 

approxiJ::nations. Proposition 4.2 is the statement of this fact for Euler's 

method of integration in time; similar statements hold for the other Runge

Kutta methods. 

For each vortex index i, denote by ~l.h.n and c.>/·"·" the particle positions 

and vorticity values, respectively, of the i"'-particle at time nM obtained by 

solving the system of equations (3.2)-(3.5) by Euler's method with time steps 

of size At. The natural tlow map which agrees with the vortex trajectories is 

defined at discrete times by setting 
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(4.3) 

and, recursively, 

. . 

Proposition 4.2 For each integer n., let t4.h·":R3~1R3 be the transformation 

defined by (4.3)-(4.4). Then . 

(4.5) 

Proof: The proof is by induction. The case n=O of (4.5) is true by definition. 

Let n be an integer for which (4.5) holds. Then 

(oatM.n+l(ai)) ·?J(eli)= (oatM.n (eli)] ·?J(eli)+ (oa(t'·"·"+ 1(ctd-t4·"·"(eli)) )-?J(eli) 

=r.>f·"·"+ (Da(~t U,,ll[ tM.n ,CJM.n ](t/.h·"))] ·?](eli) 

• 

=CJ/·"·"+~t (([Da14.h.n (eli>] ·17(~ ))·V)U,.h[t4.h.n ,CJ4.h.n ](I/·"·") 

=r.>f·"·"+~t (CJ/.h·"·V)U,.h[tM.n ,CJI.h.n ](t/.h·") 
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5. Convergence of mament llethod 

In this section, we extend the convergence theorem of Beale and Majda, 

which applies to the mesh algorithm, and show that filament methods con-

verge with high orders of accuracy. 

We assume that smooth solutions to Euler's equations exist on some 

interval of time [0, T]. We denote by A the support of the initial vorticity TJ, 

which we assume is compact. 

In order to prove that filament methods converge, one needs to show 

that one can obtain both an accurate integration formula and an accurate 

discrete approximation to the spatial derivative when computational ele-

ments are placed initially along curves rather than on the nodes of rectangu-

lar grids. This can be accomplished by transforming a rectangular coordi

nate system to a curved coordinate system, with straight lines parallel to one 

of the axes of the rectangular coordinate system mapped to vortex filaments. 

We introduce now some more notation. Let ~a.1 (h),p1 (h),je:.J"'j be an 

integration formula for a region D' C 1R3, as in (1.2). We define the discrete 12 

norm for regions D C D' and functions g defined on the set of eli e:.D, by set-

ting 

The dependence of eli and p( on h shall be suppressed occasionally in the 

notation. 

Before discussing convergence theory for filament methods, we review 

the theorem of Beale and Majda ([5],[6]) and sketch their proof (with a slight 

improvement). 

Thus, we restrict our attention for the moment to the mesh algorithm. 

Set J"'=723, and ~(h)= h·i = h·(i 1,i2,i3), p;,(h)=h3, for all ie:.J"'. Let D :::>A 
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. be a bounded, open set, and let n: be a finite difference operator of r"' order 

accuracy. The system of ordinary differential equations which constitutes 

the mesh algorithm is 

tf.h(o) = CX-& • 

! t{"(t) = U.s.h(tM(t ),C.,4;"(t )) (tf.h(t)) , 

for i €.Jh such that CX-& €.D, wh~re U4.h is defined so that 
(. 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

for CXi €.A. a finite difference operator of r"' order acc_uracy. The reason for 

the inclusion of initial particle positions Cli outside of A, which consequently 
,.·. . 

carry no vorticity, is that the evaluation of the vorticity by {5.4) requires 
.. ·_,, ' . ,\ ~ . 

knowledge of the positions of particles which, at time t =0, are neighbors of 
. . . . . . ~ .. ~; ; . . ' : . ~· 

node points ai €.A. 

Consistency: 

Let U be defined as in {2.6) and suppose that the cutoff function rp€.M1J', 

with l~4. It follows from Theorem 1.1 that 

Thus, the error~ in velocity due to the replacement of the integral over a 

smooth vorticity field by a finite summation can be made arbitrarily small by 

letting' h. and IS tend to zero, keepil'lg IS sufficientiy larger than h. 

In' order to prove that the vortex method converges, it is conveni~nt to 

convert th~· estimate (5.5) into an ·!l norm 'estimate. si~c~ D is a bounded 
,. 

' '. . 
region, LP norms on D are bounded by constants times Vl norms for p < q. 
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The corresponding fact also holds for the discrete norms, and in particular, 

for any function g on D, 

{5.6) 

where diam (D) is the diameter of D. Define the Lagrangian vector fields 

V[+.O]{a)=U[+,O]{+{a)) and v,-"[+,O]{a)=U,-"[+,O]{+{a)) . 

It follows from {5.5) and {5.6) that for some constant C independent of h and 

d, and for all sufficiently small h, 

Stability: 

The convergence proof also requires that the approximation of the velo

city by u,,h be stable. The original proof of the stability of vortex methods is 

due to Hald {[21]), who showed that in two dimensions, perturbations in 

induced velocity are bounded by perturbations in particle positions. Beale 

arid Majda proved the stability of three-dimensional vortex methods, showing 

that errors in velocity are bounded by errors in particle positions and in vor-

ticity. In order to state their stability result, we need to introduce a discre

tized version of the Sobolev w-1.2 norm. Let g be defined on the set of CXj 

contained in D. Then we set 

where the supremum is over all functions "1 defined on Jh, and Dt denotes 

the forward difference operator in the ku.. direction. Beale and Majda show 

that there is a constant C such that for all tE[O,T], all +:J" .... R3 such that 

I +-~{t) I LlCD) ~ h 3 , and all O:J" .... R3, 
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(5.6) 

IV,.~&[t(t).~(t)].;..;v,J&[+.OliLlcD>~ c(l t(t)...:+lllcD> + l~(t)-Oiw"ucA>). 

Since n: is a of r"'-order accuracy, 

Consistent difference operator approximations to the derivative yield 

bounded operators from Ll to whu (see [5]) .. Hence, . 

I (n:t(t) ]-11-~:t'J&(t >)-'71-.ril.acA> ~ c· I n:(t(t )-t'J&(t )) lwiuCA> · (s.to) 

. !C c I t(t)-t4.h,(t) I IlCD). 

Thus, 

(5.11) 

IV a .A[ t(t ),c.>(t )]-Va,h[t6·h(t ).~6" (t)] I L,f(D) ~ C( I t(t )-tM(t) I L,f(D)+hr) . 

The convergence of the particle trajectories of the v6rtex method to the 

exact trajectories can be proved using (5.7) and (5.11), as is done in [2] (with 

only slight changes from [5]). Convergence estimates for the vortex me~hod 

integrated in time by 1• or 2"" order Runge-Kutta methods are obtained in 

[2]. 

In order to prove convergence of the tnam~nt method, we consider 

Sobolev spaces on subsets of JR3 which are periodic in one direction. Set 

S=JR2x[0,2n]. For each h=2n/n, where n is an integer, we set 

a,(h)=h·(i~oi2,is) and jJ,(h)=h3• The restriction on h and the identification 

of the edges R2xiOJ and JR2x~2nJ makes it clear how to define the Wh1 space 

for the s)et S. Moreover, if Df is any difference operator on JR3, one can 

define it near the endpoints of the cylinder S by periodicity and in this way 

obtain an accurate difference operator on S. 
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Let B c 1R2 be compact and let X:E~A be a diffeomorphism from the 

compact set E=Bx[0,211'] c D onto the support of the vorticity field at time 

t=O. We denote by I D~rX(a) I the Jacobian of X at the point &'=(b.~). Set 

J'-=~ie::zlS:a',(h)e:EJ. We obtain an integration formula on A, inherited from 

that given on E. by setting CX(=X{ai) and.Pi= I n.x(a,) l·p,, for ie:J'-. 

Although the convergence theorem stated below holds for more general 

transformations X, the exposition is simplified. and the cases of practical 

interest are covered, by supposing that for each b e:B, the image of the circle 

f(b .~):~e:[0,21r]J is a vortex filament in A. We denote again by 1'J the vorticity 

field at time t =0, and define c :A ~R so that for each ae:A, 

c (a)= l17(a) II I8,X{X-1{a)) I . 

where 8, denotes differentiation in the~ direction. Thus, by hypothesis, 

i_ 
17(a)=c (a)a,x(x-1(a)) . 

:Let a:·be a discrete approximation to a,. These two operators can be pushed 

forward from E to A by defining, for functions ir:A~1R3, 

As a COJ?Sequence of the above definition. we note that 



r.>11(t )= (nat(t )(a)) ·11(a) 

=c (a)(D11t(t )(a)) ·B.,X(x-•(a}) 

=c (a)[~at(t )(a)): ~.x(x-•(a})) ·~ 

=c (a)[D.(t(t) oX}(X-" 1(a})]-~ 

=c (a)(B,(t(t) oX){X'-l(a))) 

=B.,t(t )(a) , 

where ~ denotes the unit vector in the ~-direction. 
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The filament method. whose convergence is stated in Theorem 5.1 con

sists of the system of or~nary dit!erential equations 

tf.A(o) = Cl.( • (5.12) 

! tf.h(t) = l: K4(tf.h(t )-t/.h(t}) r.>/-"(t) Pi , 
JEJit. . 

(5.13) 

'. l .·; 

where 

' (5.14) 

· Convergent filament methods which discretize sets of finitely many 

smooth, disjoint, vortex structures, each con~isting of closed vortex 

filaments, can be obtained in this way. 

Example: Consider a set of k vortex rings A 1, ••• , J\t, with cross-sections 

iden:titled with the pairwise dfsjoint·'sets B 1, ••• , Bt c R2• The vortex rings 

may be unlinked or linked, knotted or not .Denote by X( the natural 

identification Set 
I& 

A=u.t'\. 
i=l 

and 

It: 
X= u:E=Bx[0,2n]-.A. Observe that I n.x(/J) I= IB,X(a') I For simplicity in 

i=l 

notation, we assume that a:(+)(a,)= +;.+I~+;.~t , although the proof of 



26 

Theorem 5.1 in fact requires that a difference method of higher order accu

racy be employed. We have 

r.>f.h(t )p, =BltM(t )(a.) I Da-X(a,) I jJ, 

= I !~7:1~~ I a:(t6·"(t) oX)( a,) I n.x(a,) I h 3 

= t/A,(t)-t#t,(t) r". 
2h 

where r"=17(a")h3• Thus, suppressing h and 6 in the superscripts, equation 

(5.13) is transformed into the more familiar looking equation 

Theorem 5.1 Assume that a: is an r"'-order accurate centered difference 

operator. Let h, 6, and !lt be sufficiently small, with h sufficiently smaller 

than 6, and assume L~4. r~4. Then the solutions of the system (5.12)-(5.14) 

converge to the exact particle trajectories, and when integrated in time by a 

Runge-Kutta method of order m.=1 or m.=2, the error can be estimated by 

where e (t )(a, )=iac(t )-tl-"(t ). 

Sketch of Proof: This theorem can be proved in the same way as convergence 

of the mesh algorithm is proved, once stability and consistency estimates 

have been obtained. 

As a preliminary, we define the following Lagrangian functions on the 

variables cr. For +.O:A ~R3, set 

V[+.O](a) = U[+oX,OoX](+(X(a))), 
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Consistency: 

Observe that the integration formula on A is, of the same order of accu

racy as the integration formula on E from which it is inherited. For, if 

F:A-+ R is a smooth function, then 

I jF(a)d.a-l: F(~)p, I = I [F(X(a))( I DaXI (a))d.a 
A i£JA . E 

- l: F(X(a,)) ( 1 DaX) I (a,)) p, I 
iEJA 

= 1 f G(a)d.a- l: G(a,)p, 1 
g i£1A 

where G=(F aX)·I DaX 1. By Theorem 1.1, we have 

(5.15) 

It follows from (5.15) and the boundedness of E that for some constant C, 

(5.16) 

Stability: 

The stability result (5.2) of Beale and Majda can be extended to the present 

. case. Thus, 

I v,"'[t(t ),c.>(t )]-V '"'[ +.0] I ~(E)~ C( I t(t) aX-+ oX I J.l(E) 

+ lc.>(t)-Oiw,;-U(E)) · 

(5.17) 

for + and 0 sufficiently close to t(t) and c.>(t ), respectively. We omit the 

' details. In order to obtain an J..l(E) norm estimate for 

VM[t(t),c.>(t)]-VM[t""(t),c.>4·"(t)], we observe that 
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I r.>/.h(t )-r.>l/li(t) I = I a~".h(t )(~}-a~t".h(t )(cx.d I 

= I c (a,) I I a:(t6.h(t) oX)(ad-B"(t(t) 0 X)(a'i) I 

~ I c (~)I (I B:(tM(t) oX)(a'i)-a:(t(t) oX)(ai) I 

+ I a:(t(t) oX)(a'.&)-a,(t(t) oX)(a'i) I) . 

Since t(t) oX is a smooth function with a. priori. bounds on its derivatives for 

~t~T. 

Furthermore, it follows from the stability of the difference operator a: that 

1 a:( ( t 4
·" (t) o X}-(t(t) oX)) lw,;-•.ecE> ~ c 1 ( 416

·" o X)-(t(t) oX) I LICE> . 

Thus, 

where C is independent of h and 6. 

Hence, 

(5.18) 

I v.,,ll[ t(t ),r.>(t )]-V.,,n[ t 6·"(t ),r.>6.h(t )] I Ll(E) ~ C( I t(t )-tM(t) I J.l(E)+hr) . 

Equations (5.16) and (5.18) yield, just as in the convergence proof for 

the mesh algorithm, that for some constant C and all t e::[O,T], 
I 

Finally, 

I e(t) I J.l(A) ~ I (I D~rX I) I t•(E) I e(t)oX I J.l(E), 

which completes the proof. 

Remark: The theorem as stated above assumes that the integration formula 
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used in each "cross-section" is the trapezoidal rule. In fact, any sufficiently 

accurate planar integration formula. in combination with the trapezoidal rule 

applied in the tilamental direction, yields a convergent vortex method . 
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8. lfodi1lcations of the lfethods. 

In this section, we discuss modifications of the di.fierential and discrete 

algorithms which attempt to remedy the loss of resolution due to vortex 

stretching and to incorporate the effects of viscosity. 

After a reasonably short length of time has passed in a nontrivial tluid 

tlow, material pieces of the fluid will have undergone stretching in some 

directions and contractions in others. Stretching of the fluid in the direction 

of the vorticity causes a decrease in resolution of the vorticity when vortex 

structures are resolved by finite numbers of vortices. Thus, a procedure is 

needed in vortex methods to add new vortices in places where the original 

ones have become too widely separated 

In the algorithms in which vorticity is determined by finite differences of 

the flow map, the interpolation of new vortices is straightforward. In those 

versions of the method in which filaments are tracked, one merely needs to 

choose a parameter which governs the maximum permitted inter-particle 

separation along the filament. Then, when the separation of any two neigh

boring particles exceeds this parameter, a new particle can be interpolated, 

by any reasonable interpolating procedure, between the two separated parti

cles. In the mesh algorithm, similarly, new particles can be interpolated 

between too widely separated pairs of particles which were neighbors in any 

coordinate direction on the original mesh. In both cases, the finite 

di.fierence operator governing the evaluation of vorticity can easily be 

modified, though high order accuracy may be lost. 

In the differential algorithm, even if one assumes no knowledge of rela

tive changes in position of nearby vortices, computations can also be refined 

through the addition of new vortices, though in a less natural and less accu

rate way. Once a value of vorticity c.>/"(t) has become sufficiently large, 
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which suggests that the vortex filament to which (.)f.h(t) is tangent has 

become stretched, one can replace the vortex (~f.h(t ),r.J;.M(t)) by the two vor

tices (~l'h.±r, * ~·h.(t)), where r is spme parameter. 

In 1973 ([10])~ Chorin suggested solving the NaVier-Stokes equations in 

two dimensions by adding to the convective motion of the vortices a random 

jump of variance 2vM at each time step, where 6t is the size of the time step 

and v is the viscosity. In order to extend this idea to the calculations of 

three-dimensional vortex motion, Chorin ([11]) has suggested a discrete

update vortex. method which can incorporate the effect of viscosity in this 

way .. In his method, independent vortex segments are tracked. Each seg

ment is determined by the positions of the particles at each of its two end

points, and the vorticity is taken to be centered at the midpoint of the seg

ment~ with direction parallel to the segment, and with strength proportional 

to the length of the segment. Thus, vorticity is evaluated in the discrete 

stretching way. At each time step, in addition to the .convective motion of 

the two ends of each segment, the segment as a whole makes a random 

jump. 

It is pointed out in [2] that the same modeling of diffusion can be com

bined with the differential algorithms. At every time step, each vortex is con

vected by the velocity field due to all of the other vortices, and in addition 

makes a. random jump. This viscous differential method differs from Chorin's 

method in that one only needs one fiuid particle to resolve each piece of vor

ticity in the differential algorithm. Nevertheless, the computational work is 

roughly the same in the two methods, since the evaluation of the stretching 

term in the differential method requires as much computation as does the 

evaluation of the velocity, whereas the evalu~tion of the stretching in the 

finite difference methods requires an insignificant amount of work. 
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The simulation of diffusion by expansion of vortex cores, with charac-

teristic core radius growing in time according to the solution of the linear 

heat equation, has also been proposed. Even in two dimensions, the core 

spreading algorithm can converge to the Navier-Stokes equations only for 

very special initial conditions. In three dimensions, core spreading is beset 

by additional difficulties. 

Random walking can converge because the vortices, once diffused by 

their random jumps, continue to be convected by the velocity field. In cores 

spreading, on the other hand, there is no mechanism for the diffused vorti-

city to be correctly convected. 

Let 1] be a two-dimensional vorticity distribution at time t =0, and 

assume the viscosity v=l. The core spreading algorithm converges, under 

appropriate smoothness conditions, to the system of equations 

where 

l{a,O)=a 

:t l (a,t )=u{l(a,t ),t) 

U(t)=K • (Gt •. t(t)) 

t<¥ca.t ),t )=fJ(a) 

K(z}=(-z2.z 1)/ I z 12 

G,{z)= _1_e_e/4C 
4nt 

Set fJ=Vxu. It can be checked by the reader that whereas the vorticity field 

given by the solution of the Navier-Stokes equation satisfies the equations 

r.>{a,O)=fJ(a} 

f:) satisfies 
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c:3'(a,0)=7J(a) 

ac:s =6c.>'-Gt •(u·Vt) 
8t . 

Thus, though the ditfusion in the core spreading method is correct, the 

vorticity is convected not· by the local velocity field, as it is in the Navier

Stokes equations, but- by an averaged velocity. More details will be given 

elsewhere . 
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7. Desingularized Euler Equations 

It is useful for the interpretation of the numerical results, and a better 

understanding of vortex methods, to introduce at this point a system of 

equations less singular than Euler's equations, obtained by modifying the 

relationship that holds between incompressible vector fields and their curls. 

Given one-parameter families of kernels K4 as before, we call the system of 

equations 

~(z ,0)=77{%) 

8c ~+{u · V)~={ ~· V)u 

u=K4 • CJ 

{7.1) 

the E4 equations. There is a two-dimensional version of these equations 

{which have the same form as {7.1) except that the right-hand-side of the 

second equation is zero) for which it is easy to construct an existence theory 

following McGrath's existence theorem for Euler's equations based on the 

vorticity formulation {[26]). Moreover, as 6 .... 0. solutions of the modified 

equations converge to solutions of Euler's equations. In three dimensions, it 

is harder to construct solutions using the vorticity formulation, and I don't 

know how to prove existence of solutions to the E4 equations. We shall 

assume, as is presumably true, that for all 6>0, unique solutions to the sys

tem {7.1) exist on the time interval [O,T], and that they converge, as 6 .... 0, to 

solutions of Euler's equations. 

Denote by t 4 the tiow map t 4:1R.3x[O,T] .... R3, uniquely determined by the 

equations 
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Burmt8.l§Wt!l11 ftlflqQBf!U Jmlt§.l~ft.l'lml~i)l'(3;13)l~~~ .I0Jlil dtil8111dljMthe 

-UO~,~!(a>pt4,h',tezif=11\b~aiel§bi¥JiQ~tD8rEftWl~~dJOt. to 

auobl§l ~Mottl~ cSI'c1uWPillifiR'II1lJ>:Mll~:ijb8Q:J1Hll~lmltilnb~on

l'e!l\18#llftil nlBft4!1t·P~~~.G&rMUMil110((0J'~~~0i(II;!~Cietlclthltlb 0. 

( 1) ,F\)J4'e~~aD~ ¥fd'UMa)lltl!lf~WtltBilStQ\IS~IJ NliQs~ll(Q. 1). 

Unfortunately, the approximation of t(t) IP¥t t"' -"(t) is difficult ~umerically, 
• ( 1)1t =( 1) 11•1t wn . 

because the ordinary ditf~rential equations are stitr when h is just slightly 
l'eQ.l .M.oqs 

smaller than IS, and henc~ (as the experience of various workers mdicates) 
01 pandd"e aq u"eo spo~naw xal.IOA .IOJ .A.Ioaql aoua!.IaAuoo aq1 JO SlUal.l!nS~ 

unreasonably small values of h may be needed to obt&n. approXJ.mabons 
attl h'~t' suon"enba JO wa1s.As aqlJO suon"ezna.Iosw l'e.Inl"eU a.I"e E uorpas.u! 

~ t) close to ~{t). The naturcil procedure to carry out in computmg 1s 

pa1uasa.1d a.Ia.M. qo1q.M. spoq1aw I"eO!.Iawnu aq1 '9 paxg .IOJ 'l"eql aA.Iasqo 
lim lim lim t'-"·"(t) = t(t). 

'{[El] aas 'Uo!ssnoswfg~d'Jfattm .IaAo dn pnnq lOU saop AlP!l.IOA JO Su! 

-.I"e~t~~(\1$~)".pfag ~~~aqllaq~~~~l&~'!Cf>t:hn~pltq>sCqntil 

pa~i\tcis'(1116~)3il )J'i' .. anpiicaq~Jts~n:¥I(iidly. jfpen tpm..uq~e~~cmdiiiAq' is 

pa~Put":P.d~"~aAt~ilq'f!D&uas.atfi~)Qa>J[ile.dlectlra~e&:\1D11:10capP'tcp~em._Jd.s a 

lU"e~~t~ijnm"~~~ l!liqpf•tltly.Ieidtil~aiepitlla&i;uglsS.<pm}~'Jr h 

-uoUicJ\~sfms·4Jb tFDC11PP~1t1u:t8~tal)i IIJ!lcBmtrltiJOI'ISaitreqoipmt for 

P1ni4J\tt ju>~pp~atu td:&s ~It-pogmimit.I1JIIIL1Bow~~a1i1Jgrone is 

-"en'bbl0jtgqcfqo l:llllle)!\~~t:aej.mc~~a ~.F.\YatDBmi"e6 is 

s-eqrp8olwit1'fbliqb~.:IJP.P11liJH tp.b~CJDl'l'B9P9tJlipt.larngJJGidl~qGDataisedn"enba 

1:3: aq1 'P8R~ui!tdteBl?[fli/Ro6f;Wi~Safflf'lsnm\1i€n~ %1\HY\WRU1Idf.erlJ-als, one 

. can compute t 4(t) accur~ely for ~ small eno~h so that one can observe 
(E'L.) . (~}U· {f~),tDa =(f{f~),t)<" 

computationally pointwise onverge ce to t(t) ([20]). In general, this cannot 

be done for more complicated tlows. Howeve~1·t4h~o 88l!irwat'W!~ln!i'(hat 

{ 
. iQ.sight ca~ngt be, &.'\!ned. fr9ro, ~~mp~t~t\on~gof !;4 )V. t.be.stfcfiows. An exampl~ 

Z LJ 9'P (1 \11/Jg~)<" \\19Jg~-\1 ~J,tJ 'J/j =\1 'D)g'P-p: 

9£ 

is provided by Anderson's calculations ([1]) of an interface between tluids of 
~=(O'~),t . 

slightly different densities, with vorticity smoothed by two-dimensional core 

·," 
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functions depending on a parameter 6. Although he was unable to observe 

pointwise convergence in 6 -everywhere, very interesting behavior was 

observed for a sequence of values of 6, with convergence occurring pointwise 

over a larger and larger part of the fluid. Moreover, the nature of the numeri

cal solutions for the range of values of 6 over which Anderson computed sug

gests fascinating, intricate behavior of the limiting (6=0) solution. 
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8. Ring llerger. 

We consider now the the short time evolution of vorticity which is ini-

tially concentrated in two identical, axisymmetric vortex rings of the same 

sign and lying in a common plane. The initial distribution of vorticity is deter-

mined by the radius PR of the rings, the separation Ps of the ring centers, 

and the core shape (:[O,pc] .... R which describes the initiill vorticity strength 

in each ring cross-section as a function of distance from the center of the 

core CPc denotes the core radius, and we assume that Pc<<pR). Thus, each 

ring is a translate of the vortex ring centered at the origin, with central core 

lying in the {z ,y )-plane, and defined by the initial vorticity function 

where 

'l)=arct~( lL) 
% 

We assume that the coordinate axes are so chosen that the ring centers are 

equidistant from the origin on they-axis, at the positions c+=(O.~p.,O) and 

c -= -c +· Thus, the initial distribution of vorticity is the vector field '7, where 

?J(% )='7+{% )+?J-{%) 

=?Jo(z -c +)+?Jo{z -c _) 

We call the corresponding rings R+ and R_. 

Let z be a point in one of the two rings, say R +· The velocity field at z at 

time t=O is 

(K • ?J)(z )={K • '7+)(z )+(K • '7-)(z) . 

The term (K • '7+){z), for zER+, is close to being a sum of a uniformly down-

ward velocity and a rotation about the core. Thus, over a reasonably short 
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interval of time, and in the absence of the neighboring ring, the vorticity in . 

R + is translated downward, for the rotational component of the tlow does not 

change the distribution of vorticity. The other term K *1J- imparts an 

upward component of- velocity to R +· This velocity is of course not uniform 

over the entire ring; the effect is most_ pronounced on the edge of R + closest 

to R -· Hence, after the initial instant of time, the rings become distorted 

and are no longer planar. The upward tilt of the nearby edges of the rings 

creates a compt?nent of velocity in the direction joining the two rings, and 

they move close. together. J'he velocity field due to the vorticity in .the near 

edges of the two ~ings, which are almost tangent to one another (see the first 

column in figures 9.1-9.3) and of opposite circulation, is negligible except 

very near these edges, for the two opposite lines of vorticity contribute velo-

cities which cancel each other .. Each edge, however, imparts an u~ward com

ponent of velocity to the other. The remaining vorticity forms essentially 

one vortex ring (though a nonplanar one), which we call the merged ring. 

From a side view {see, for example, the second column of figures 9.1-9.3) this 

ring forms almost an upside-down V-sbape, with the two halves of the V com

ing from the two original rings. This V-shaped structure bas a fairly stroog 

self induced motion away from the center. of the two-ring structure (that is, 

in the :e -direction). Thus, the adjacent ring sections become stretched by 

large factors and hence come even closer together. One result of this 

stretching is that a substantial amount of the vorticity is now occupied by a 

very small portion of the original vortex rings. When viscosity is consider

able, the nearby edges will diffuse into one another and the vorticity in this 

part of the tluid will be very much diminished. 

Calculations of the inviscid interaction of two rings are described in the 

next two sections. We have taken the rings to be not coplanar, but rather· 
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inclined toward one another by 15" (as in the Schatzle experiments {[33]). 

There is a good reason for this nonplanar choice of initial condition in compu

tational experiments, for the interaction between the two rings occurs much 

more quickly when they are already rri.oving toward one another at time t =0, 

and a higher proportion of the computational labor can be used to resolve 

the interaction process. There is some sensitivity to the choice of initial 

angle of inclination, but the qualitative development is the same. 

In the computations reported in Sections 9 and 10, the centers of the 

two rings were separated by 0.23, the initial radius of each ring was .088, and 

the weights of the vortices were scaled so that the total vorticity {11 norm) of 

each ring was 20. 

The filament method of the type described in Section 3 was used, with a 

second-order centered difference to evaluate the vorticity, and a third

degree polynomial interpolation procedure to introduce new particles 

between pairs of particles which have become too widely separated. The 

cutotf function used is the characteristic function of the unit ball, scaled 

appropriately. The ordinary differential equations were integrated in time by 

a second-order Runge-Kutta method. 

.. 
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9. Computations with Single mam.ents. 

Interesting features of the ring merger process can be gleaned from cal

culations which require very little computing time. The set of· numerical 

experiments described in this section involves representation of the vorticity 
. . 

in each of the two rings by a single discretized tuament. The cutoff functions 

used are three-dimensiomil and radially symmetric. Since singular lines of 

vorticity have infinite self-induced velocities, one cannot look at the c5=0 

limit. Rather, we investigate the behavior of the rings over a range of 

moderate values of 6. Whereas singular tuaments have infinite velocities in 

Euler's equations; the velocities ih E., of singular filaments are finite. 

With fixed 15, as the resolution along the two filaments is increased, the 

computed solution converges to a weak solution of the E., system. The 

·filament configurations displayed in figures 9.1-9.3 are accurate approximate 

weak solutions of the E, system; refinements in the size of the time steps and 

in the number of particles followed in each tllament cause negligible changes 

in the solution. 

The pictures displayed . are perspective views, from four different per-
I . . 

spectives, of the vortex rings. The arrows pictured in the last two columns 

are the velocity vectors emanating from the vortex positions, and in each of 

these last two columns, one . of the rings has been suppressed. Both the 

arrows and the filaments are drawn by projection of these objects onto a 

plane between a viewer and the objects. With coordinate 'axes defined so that 

the rings lie initially in the {.z ,y)-plane, with centers on the y:..axis, the 

viewers of the five columns are initially at the positions {1st column: ;, 2nd 

column:%, 3rd and 4th columns: z +y +z, 5th column: y), and move with the 

center of mass of the ring system. Here% denotes the unit vector in the .z.-
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direction, etc. 

It is unenlightening in the singular tllament calculation to compare com

puted solutions corresponding to different values of 6 at the same instant of 

time. For, since the speeds of the rings increase greatly with decreasing 6, 

similar events occur much sooner with smaller values of 6. Thus, .we can only 

compare the qualitative developments of the ring structures. 

Even the qualitative development depends sensitively on the value of 6. 

The outer part of the rings induces a downward component of velocity on the 

adjacent edge pair which varies little with 6. However, the self-induced 

upward motion of the parallel pair of oppositely circulating vortex lines 

increases sharply as 6 decreases. This effect is clearly discernible in figures 

9.1-9.3. 

In all of the runs, however, it can be seen that ring merger takes place 

in the followl.ng sense: the adjacent edges come so close together that their 

effect on distant portions of the ring structure is negligible. The remaining 

vorticity forms, with two small breaks, a {non-planar) ring of vorticity. 

The mechanism by which ring merger occurs in viscous tlow can perhaps 

already be deduced from these c~culations. We see that the tremendous 

strain imposed on the adjacent edges, which is also observed in physical 

experiments {[33]), does not need viscosity or any specific vorticity distribu

tion in the ring cores in order to take place. This strain could bring the 

edges sufficiently close together that viscosity can eliminate a large part of 

the vorticity there. 
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Figure 9.2 

6=.035 6t =.00015 

steps: 5,10,15,20,25 

times: 0.00075, 0.0015, 0.00225, 0.003, 0.00375 

number of vortices: 24,26,31,37,44 
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10. Computations with Full Cores. 

The computations discussed in the previous section yielded convergent 

weak solutions of the E1 equations. In this section, smooth solutions of the E, 

equations are provided. Unlike the singular filament case, solutions of the E, 

equations with cores of finite width do converge to solutions of Euler's equa

tions on sufficiently short intervals of time. 

The computations discussed here were carried out using the same 

tllament method as in the last section, except that several filaments were 

used to resolve the cross-sections of the vortex rings. The ring radius and 

separation were as in Section 9; the core radius was .022 and the core func

tion ~:[0,.022] .... R (defined in Section B) was given by t(z)=..J(.022-z)/ .022. 

Figures 10.1-10.4 are perspective views from the positions (1st column: 

z, 2nd column: %, 3rd and 4th columns: % +y +z) and the viewer, as in the 

previous section, is moving with the center of mass of the ring system. Only 

the central filament of each ring is drawn in the 3rd column, and the central 

filament of only one of the rings, with velocity field on that ring, is depicted 

in the 4th column. The figures are depictions of accurate solutions of the E4 

equations; refinements in the size of the time steps and increases in spatial 

resolution yield negligible changes, not only in the overall shape of the rings, 

but also in the position of the central filament and even in the velocity field 

at the central filament of the ring core. 

Convergence of these solutions of the E, equations to solutions of Euler's 

equations is harder to see. We do obtain reasonable convergence in the 

center of mass, and the positions of the central filament of each ring also 

appear to converge. The central filaments in the 6=.02 and 6=.015 runs 



47 

d.it!er very little. The point in a ring cross-section at . which the cross

sectional· component of velocity is zero is not at the center of tpe cross

section. The display of the velocity vectors in the final column of figure 10.4 

shows a slight rotation of the central filament. This motion becomes observ

able only for sma116. 

A rapidly increasing amount of computation is requir:ed to obtain accu~ 

rate solutions of the E, equations 'as 6 decreases. In fact, the computation· 

depicted iri figure 10.1 required less than five minutes on the VAX 11/780, 

while that in figure 10.4 took several minutes on the Cray 1. Of course, these 

computations can be continued to smaller values of 6, without drastic 

increases in expense, through improvements in efficiency of the algorithms 

(eliminating the square of the number of vortices operation count). 

'';';'·.?: 
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Figure 10.1 

cS=.045 At =.0002 

5 tUaments per ring 

steps: 5,7,9,11 

times: 0.001, 0.0014, 0.0016, 0.0022 

number of vortices: 22~. 24B, 2~B. 291 

centers of mass: -.0311. -.0462, -.0~92, -.0737 
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_ Figure 10.2 

.. , . cS=.025 41=.0001 

21 ftlaments per ring 

steps: 10,14,18,22 

times: 0.001, 0.0014, 0.0018, 0.0022 

number of ~ortices: 684, 708, 738, 819 

centers of mass: -.0420, -.0568, -.0693, -.0787 
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6=.02 ~t =.00005 

29 filaments per ring 

steps: 20,28.36.44 

limes: 0.001, 0.00:4, 0.001 B. 0.0022 

number or vortices: 1121. 1183. 1288. 153(: 

centers or mass: -.0.;55, -.0596, -.0702, -.07?' 
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Figure 10.4 

15=.015 &=.00005 

29 tllaments per ring 

steps: 20,28,36,44 

times: 0.001, 0.0014, 0.0018, 0.0022 

number of vortices: 1129, 1194, 1353, 1689 

centers of mass: -.0475, -.0611, ·.0712, -.0777 
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