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Many data types are used in bioinformatics research, including genomics, transcriptomics, 

proteomics, pathway data, disease network, and gene ontology (GO) data, which are heavily studied in 

disease diagnosis or biomarker detection. The use of newer data types, such as glycomics, fMRI, and facial 

behavior data, is also growing and can provide unique perspectives for disease cell biology. These new data 

types have unique properties that require newly adapted algorithms for precise and granular characterization, 

which is essential before machine learning or statistical models can be confidently used to study disease 

mechanisms or identify biomarkers from large-scale datasets. The newly developed tools can then allow 



 

xiv 

sophisticated evaluations and yield high-quality results. The first part of my thesis introduced GlyCompare, 

a powerful glycomics analysis pipeline. The pipeline corrects for the sparsity and non-independence in 

glycomics data by accounting for the shared biosynthetic network in the data. This new approach makes 

the downstream analyses more interpretable and better powered. 

Then in the second part, a generalizable machine learning platform was developed with 42,840 

models composed of 3570 gene expression feature sets and 12 classification methods. A gene expression 

ASD diagnostic classifier built with this platform had AUC-ROC ≥ 0.8 on both Training and Test sets. Our 

classifier is diagnostically predictive and replicable across different toddler ages, races, and ethnicities; 

outperforms the risk gene mutation classifier; and has potential for clinical translation. 

In the last section, I developed a pipeline to evaluate facial behavior data from toddlers using state-

of-the-art expression analysis software. In certain situations, emotional response is overly intense in ASD 

compared to other toddlers. Our action unit classifier had a sensitivity of 83.3% and a specificity of 67.5% 

in the test dataset (90.1% and 75% in the training dataset). We verified that our classifier was unbiased 

against common confounding factors (age, race, and ethnicity). By combining the action unit classifier and 

Geo-Pref non-social score, we achieved a specificity of 100% and sensitivity of 50% on the training and 

test datasets. The ensemble classifier maintained the high specificity while considerably increasing the 

sensitivity, which provides the potential for screening applications.  

 
 



 

1 
 

INTRODUCTION 

In the first two years, I mainly worked in the glyco-bioengineering field. Glycosylation is a complex 

post-translational modification and it decorates one-fifth to one-half of eukaryotic proteins(Khoury, Baliban, 

and Floudas 2011; Apweiler, Hermjakob, and Sharon 1999). The diversified glycans account for 12-25% 

of dry cell mass and have essential functional and pathological roles(RodrÍguez, Schetters, and van Kooyk 

2018; Gutierrez et al. 2018). Despite their importance, glycans have complex structures that are difficult to 

study. The complex structures of glycans arise from a non-template-driven synthesis through a biosynthetic 

network involving dozens of enzymes. A simple change of a single intermediate glycan or 

glycosyltransferase will have cascading impacts on the final glycans obtained(Gabius et al. 2002; Spahn 

and Lewis 2014). Unfortunately, current data analysis approaches for glycoprofiling and glycomic data lack 

the critical systems perspective to decode the interdependence of glycans easily(Reiding et al. 2014, 2019; 

Doherty et al. 2018; Wohlschlager et al. 2018; Black et al. 2019; Ashwood et al. 2019). It is important to 

understand the network behind the glycoprofiles to understand the behavior of the process better. 

New tools aiding in the acquisition and aggregation of glycoprofiles are emerging, making large-

scale comparisons of glycoprofiles possible. Advances in mass spectrometry now enable the rapid 

generation of many glycoprofiles with detailed glycan composition and structure predictions(Reiding et al. 

2014, 2019; Wohlschlager et al. 2018; Black et al. 2019; Ashwood et al. 2019; Maxwell et al. 2012; Hou et 

al. 2016; Kremkow and Lee 2018; Krambeck et al. 2017; Holst et al. 2017; Angel et al. 2017), exposing the 

complex and heterogeneous glycosylation patterns on lipids and proteins(Reiding et al. 2019; Doherty et al. 

2018; Black et al. 2019; Cummings 2009; Holst et al. 2016; Čaval et al. 2018; Riley et al. 2019). Large 

glycoprofile datasets and supporting databases are also emerging, including GlyTouCan(Aoki-Kinoshita et 

al. 2015), UniCarb-DB(Campbell, Nguyen-Khuong, et al. 2014), GlyGen(York et al. 2019), and 

UniCarbKB(Campbell, Peterson, et al. 2014). 

These technologies and databases facilitate efforts to associate glycans with disease and other 

phenotypes. However, the rapid and accurate comparison of glycoprofiles can be challenging with the size, 

https://paperpile.com/c/hewRpf/sig1H+Wp2Bv
https://paperpile.com/c/hewRpf/sig1H+Wp2Bv
https://paperpile.com/c/hewRpf/Y9bVq+IHLyh
https://paperpile.com/c/hewRpf/Y9bVq+IHLyh
https://paperpile.com/c/hewRpf/WR9IK+pfsES
https://paperpile.com/c/hewRpf/WR9IK+pfsES
https://paperpile.com/c/hewRpf/Z3PgN+AseNH+vIwnM+orVz1+FeO5b+tbrTX
https://paperpile.com/c/hewRpf/Z3PgN+AseNH+vIwnM+orVz1+FeO5b+tbrTX
https://paperpile.com/c/idvjwX/gNKke+mnZw6+Vxr0k+nbbtZ+qgzVd+dXrCQ+85jTW+t4PIW+4BNks+rgpOG+Llk5N
https://paperpile.com/c/idvjwX/gNKke+mnZw6+Vxr0k+nbbtZ+qgzVd+dXrCQ+85jTW+t4PIW+4BNks+rgpOG+Llk5N
https://paperpile.com/c/idvjwX/gNKke+mnZw6+Vxr0k+nbbtZ+qgzVd+dXrCQ+85jTW+t4PIW+4BNks+rgpOG+Llk5N
https://paperpile.com/c/idvjwX/mnZw6+oOnjP+nbbtZ+ogF7m+G1Bcm+oa0Nc+QKG53
https://paperpile.com/c/idvjwX/mnZw6+oOnjP+nbbtZ+ogF7m+G1Bcm+oa0Nc+QKG53
https://paperpile.com/c/idvjwX/Pq64o
https://paperpile.com/c/idvjwX/Pq64o
https://paperpile.com/c/idvjwX/dO9x6
https://paperpile.com/c/idvjwX/UJfWw
https://paperpile.com/c/idvjwX/keN1D
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sparsity and heterogeneity of such datasets(Reiding et al. 2019; Doherty et al. 2018; Black et al. 2019; Holst 

et al. 2016; Čaval et al. 2018; Riley et al. 2019; Yang et al. 2015). A glycoprofile provides glycan structure 

and abundance information, and each glycan is usually treated as an independent entity. Furthermore, in 

any one glycoprofile, only a tiny percentage of all possible glycans may be detected(Reiding et al. 2019; 

Doherty et al. 2018; Black et al. 2019; Holst et al. 2016; Yang et al. 2015). Thus, if there is a significant 

perturbation to glycosylation in a dataset, only a few glycans, if any, may overlap between samples. 

However, these non-overlapping glycans may only differ in their synthesis by as few as one enzymatic step. 

Thus, it requires deliberate manual coding to make them comparable(Reiding et al. 2014, 2019; Doherty et 

al. 2018; Wohlschlager et al. 2018; Black et al. 2019; Ashwood et al. 2019; Holst et al. 2016; Yang et al. 

2015). These properties of glycomics data may not be problematic in the studies of individual glycans and 

their downstream effects on other biological processes. However, this may be a problem in determining the 

sources of changes in glycan abundance by using large amounts of data(Reiding et al. 2019; Doherty et al. 

2018; Yang et al. 2015; Benedetti et al. 2017). Since many methods assume data independence (e.g., t-tests, 

ANOVA, etc.), their application to glycomics can lead to decreased statistical power or erroneous results. 

Previous studies have investigated the similarities across glycans by using glycan motifs. Scientists 

are using glycan fingerprinting to describe glycan diversity in databases(Rademacher and Paulson 2012; 

Bojar et al. 2021), align glycan structures(Hosoda et al. 2018), identify glycan epitopes in 

glycoprofiles(Alocci et al. 2018) and lectin profiles(Khoury, Baliban, and Floudas 2011), deconstruct LC-

MS data to quantify glycan abundance(Klein, Carvalho, and Zaia 2018), or compare glycans in 

glycoprofiles(Sharapov et al. 2018). These tools use information on glycan composition or epitopes. 

However, the accounting of shared biosynthetic steps could provide complete context to all glycan epitopes. 

That context includes connecting all glycans to the enzymes involved in their synthesis, the order of the 

enzyme reactions, and information on competition for glycan substrates. Thus, a generalized substructure 

approach could facilitate the study of large numbers of glycoprofiles by connecting them to the shared 

mechanisms involved in making each glycan.  

In the first chapter, I presented the GlyCompare, a method enabling the rapid and scalable analysis 

https://paperpile.com/c/hewRpf/AseNH+vIwnM+FeO5b+eMATU+L48Kt+bGVoE+YVyXY
https://paperpile.com/c/hewRpf/AseNH+vIwnM+FeO5b+eMATU+L48Kt+bGVoE+YVyXY
https://paperpile.com/c/hewRpf/AseNH+vIwnM+FeO5b+eMATU+YVyXY
https://paperpile.com/c/hewRpf/AseNH+vIwnM+FeO5b+eMATU+YVyXY
https://paperpile.com/c/hewRpf/Z3PgN+AseNH+vIwnM+orVz1+FeO5b+tbrTX+eMATU+YVyXY
https://paperpile.com/c/hewRpf/Z3PgN+AseNH+vIwnM+orVz1+FeO5b+tbrTX+eMATU+YVyXY
https://paperpile.com/c/hewRpf/Z3PgN+AseNH+vIwnM+orVz1+FeO5b+tbrTX+eMATU+YVyXY
https://paperpile.com/c/hewRpf/AseNH+vIwnM+YVyXY+3Z1Il
https://paperpile.com/c/hewRpf/AseNH+vIwnM+YVyXY+3Z1Il
https://paperpile.com/c/hewRpf/mNEeY+OR80e
https://paperpile.com/c/hewRpf/mNEeY+OR80e
https://paperpile.com/c/hewRpf/kDddi
https://paperpile.com/c/hewRpf/Tg0wG
https://paperpile.com/c/hewRpf/sig1H
https://paperpile.com/c/hewRpf/59AD5
https://paperpile.com/c/hewRpf/qrSFZ
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and comparison of multiple glycoprofiles, while accounting for the biosynthetic similarities of each glycan. 

My colleague and I proposed glycan substructures, or intermediates, as the appropriate functional units for 

meaningful glycoprofile comparison since each substructure can capture one step in the complex process 

of glycan synthesis, which accounts for the shared dependencies across glycans. This approach addressed 

current challenges in sparsity and hidden interdependence across glycomic samples and will facilitate 

discovering mechanisms underlying the changes among glycoprofiles. My colleague and I demonstrated 

this approach's functionality and performance with various glycomic analyses, including recombinant 

erythropoietin (EPO) N-glycosylation, human milk oligosaccharides (HMOs), mucin-type O-glycans, 

gangliosides, and site-specific compositional data. Specifically, I analyzed sixteen MALDI-TOF 

glycoprofiles of EPO, where each EPO glycoprofile was produced in a different glycoengineered CHO cell 

line(Čaval et al. 2018; Yang et al. 2015). I also analyzed forty-eight HPLC glycoprofiles of HMO from six 

mothers(Mohammad, Hadsell, and Haymond 2012). By analyzing these glycoprofiles with GlyCompare, I 

quantified the abundance of important substructures, clustered the glycoprofiles of mutant cell lines, 

connected genotypes to unexpected changes in glycoprofiles, and associated a phenotype of interest with 

substructure abundance and flux. My colleagues and I further demonstrated that such analyses gain 

statistical power. Finally, we expanded our studies to include a tumor-normal comparison of mucin-type 

O-glycans, human retinal glycolipids, and site-specific N-glycan compositional data from the mouse brain. 

The analyses of the various N-type and O-type glycan datasets demonstrate that our framework presents a 

convenient and automated approach to elucidate insights into complex patterns in glycobiology. 

After finishing the Glycompare, I started exploring how to apply machine learning techniques in 

the ASD diagnosis study and started closely working with Dr. Courchesne and Dr. Pierce.  

ASD is a prenatal(Courchesne, Gazestani, and Lewis 2020; Courchesne et al. 2019; Gazestani et 

al. 2020; Courchesne et al. 2011; Marchetto et al. 2017; Courchesne and Pierce 2005; Willsey et al. 2013; 

Courchesne et al. 2007; Stoner et al. 2014; Parikshak et al. 2013; Packer 2016; Kaushik and Zarbalis 2016; 

Krishnan et al. 2016; Donovan and Basson 2017; Grove et al. 2019; Satterstrom et al. 2020), highly heritable 

disorder(Bai et al. 2019) that considerably impacts a child’s ability to perceive and react to social 

https://paperpile.com/c/idvjwX/oa0Nc+GPUJx
https://paperpile.com/c/idvjwX/4hrl3
https://paperpile.com/c/idvjwX/oUU9L+CZpID+eTL2n+GlizQ+mrjcV+jINjU+q2j6n+EaNE5+jkwqn+vkkjs+D2VEo+dtCbo+cuzOq+wpT4a+mHCKS+1uSmO
https://paperpile.com/c/idvjwX/oUU9L+CZpID+eTL2n+GlizQ+mrjcV+jINjU+q2j6n+EaNE5+jkwqn+vkkjs+D2VEo+dtCbo+cuzOq+wpT4a+mHCKS+1uSmO
https://paperpile.com/c/idvjwX/oUU9L+CZpID+eTL2n+GlizQ+mrjcV+jINjU+q2j6n+EaNE5+jkwqn+vkkjs+D2VEo+dtCbo+cuzOq+wpT4a+mHCKS+1uSmO
https://paperpile.com/c/idvjwX/oUU9L+CZpID+eTL2n+GlizQ+mrjcV+jINjU+q2j6n+EaNE5+jkwqn+vkkjs+D2VEo+dtCbo+cuzOq+wpT4a+mHCKS+1uSmO
https://paperpile.com/c/idvjwX/N9Qcr
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information(Bal et al. 2019; Bacon et al. 2018, 2019). Despite this prenatal and strongly genetic beginning, 

robust and replicable early-age biological ASD diagnostic markers useful at the individual level have not 

been found. Indeed, ASD diagnosis remains behavior-based and the median age of the first diagnosis 

remains at ~52 months(Autism and Developmental Disabilities Monitoring Network Surveillance Year 

2006 Principal Investigators and Centers for Disease Control and Prevention [CDC] 2009; Baio et al. 2018; 

Christensen et al. 2018; Maenner et al. 2020), which is nearly 5 years after its first trimester origin. The 

long delay between ASD’s prenatal onset and eventual diagnosis is a missed opportunity for treatment. 

Moreover, the heterogeneity of ASD genetics and clinical characteristics impose barriers to identifying 

early-age molecular diagnostics that accurately diagnose the majority of those with this heterogeneous 

disorder(Lombardo, Lai, and Baron-Cohen 2019). Thus, there is a need for early-age molecular diagnostics 

of ASD that robustly surmounts this heterogeneity obstacle. 

Since ASD’s heritability is 81%(Bai et al. 2019), initial attempts have focused on genetics to 

develop clinically useful biomarkers for precision medicine and causal explanations for ASD pathogenesis. 

While syndromic risk mutations have been described for >200 genes in ASD(Satterstrom et al. 2020; 

Feliciano et al. 2019; “Human Gene Module” n.d.), each occurs only rarely in ASD. For 80-90% of patients, 

such mutations are not found. Thus, an estimated 80% or more of ASD individuals are considered 

‘idiopathic’, wherein little is known about the genes and/or environmental factors causing their disorder. In 

this idiopathic majority of ASD, the risk is likely associated with many inherited common and rare risk 

variants in each individual child. Studies of polygenic ASD risk found that the combined effect of genetic 

risk variants in case-control studies accounts for less than 7.5% of the risk variance(Antaki et al. 2022); 

genetic ASD risk scores substantially overlap with controls(Robinson et al. 2016; Clarke et al. 2016; Klei 

et al. 2021; Aguilar-Lacasaña et al. 2022); and, because of this substantial overlap, polygenic risk scores 

are not clinically diagnostic or prognostic for individuals, nor are they explanatory for the majority of ASD. 

Thus, DNA-based mutations or polygenic risk scores may not yet be useful for the many idiopathic ASD 

subjects at the clinical diagnostic level. 

         RNA biomarkers have been sought using blood gene expression in >35 ASD studies since 

https://paperpile.com/c/idvjwX/gN9Xk+hiCNp+RwKEM
https://paperpile.com/c/idvjwX/42YMU+3WTkH+XKiKr+bEas4
https://paperpile.com/c/idvjwX/42YMU+3WTkH+XKiKr+bEas4
https://paperpile.com/c/idvjwX/42YMU+3WTkH+XKiKr+bEas4
https://paperpile.com/c/idvjwX/HrLEs
https://paperpile.com/c/idvjwX/N9Qcr
https://paperpile.com/c/idvjwX/1uSmO+xRyAX+GGqLj
https://paperpile.com/c/idvjwX/1uSmO+xRyAX+GGqLj
https://paperpile.com/c/idvjwX/4igAz
https://paperpile.com/c/idvjwX/rXeUK+3AWTj+1UzK0+ZG2SP
https://paperpile.com/c/idvjwX/rXeUK+3AWTj+1UzK0+ZG2SP
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2006(Pramparo, Lombardo, et al. 2015; Pramparo, Pierce, et al. 2015; Ch’ng et al. 2015; Diaz-Beltran, 

Esteban, and Wall 2016; Tylee et al. 2017; He et al. 2019; Lee et al. 2019; Kong et al. 2012; Gregg et al. 

2008; Enstrom et al. 2009; Ansel et al. 2016), but many studies have been underpowered, older-aged, 

clinically heterogeneous, and/or lacking validation test datasets. Some early genetics researchers rejected 

blood-based biomarkers believing that ASD-relevant dysregulated gene expression must be restricted to the 

brain. Recent ASD genetics have reversed this view: The earliest prenatal drivers of deviant ASD 

development are, in fact, broadly expressed regulatory genes, a large percentage of which are active in non-

brain organs and tissues such as blood leukocytes as well as in the prenatal brain(Courchesne, Gazestani, 

and Lewis 2020; Courchesne et al. 2019; Gazestani et al. 2020; Pramparo, Pierce, et al. 2015; Pramparo, 

Lombardo, et al. 2015; Tylee et al. 2017; Ansel et al. 2016; Hewitson et al. 2021; He et al. 2019). Broadly 

expressed genes that constitute most ASD risk genes are upregulated in early prenatal life and impact 

multiple stages of prenatal brain development from 1st and 2nd trimester proliferation and neurogenesis to 

neurite outgrowth and synaptogenesis in the 3rd trimester. These genes disrupt gene expression in signaling 

pathways such as PI3K-AKT, RAS-ERK, Wnt and insulin receptor pathways, which further disrupt prenatal 

functions(Courchesne, Gazestani, and Lewis 2020; Courchesne et al. 2019; Gazestani et al. 2020; Pramparo, 

Pierce, et al. 2015; Pramparo, Lombardo, et al. 2015; Tylee et al. 2017; Ansel et al. 2016; Hewitson et al. 

2021; He et al. 2019). Thus, leukocyte gene expression holds the potential for the objective identification 

of molecular subtypes of ASD. In analyses of leukocyte gene co-expression, ASD-associated module 

eigengene values were significantly correlated with abnormal early brain growth and enriched in genes 

related to cell cycle, translation, and immune networks and pathways. These gene sets are very accurate 

classifiers of ASD vs. typically developing toddlers (TD)(Pramparo, Pierce, et al. 2015).  

Leukocyte gene expression offers a non-invasive and clinically practicable avenue for 

understanding aspects of ASD cell biology, including those that could be ASD-relevant, ASD-specific, 

robust, and ASD-diagnostic or -prognostic. However, for the clinical translational potential of leukocyte 

transcriptomics to lead to robust and rigorous classifiers, high standards for verifying such classifiers should 

be implemented. 

https://paperpile.com/c/idvjwX/s7hSv+ErQhx+HweW0+359cN+E6UgD+f67hm+6NWYT+QwShe+M6nBG+tU4rR+EVpdE
https://paperpile.com/c/idvjwX/s7hSv+ErQhx+HweW0+359cN+E6UgD+f67hm+6NWYT+QwShe+M6nBG+tU4rR+EVpdE
https://paperpile.com/c/idvjwX/s7hSv+ErQhx+HweW0+359cN+E6UgD+f67hm+6NWYT+QwShe+M6nBG+tU4rR+EVpdE
https://paperpile.com/c/idvjwX/oUU9L+CZpID+eTL2n+ErQhx+s7hSv+E6UgD+EVpdE+yTvvf+f67hm
https://paperpile.com/c/idvjwX/oUU9L+CZpID+eTL2n+ErQhx+s7hSv+E6UgD+EVpdE+yTvvf+f67hm
https://paperpile.com/c/idvjwX/oUU9L+CZpID+eTL2n+ErQhx+s7hSv+E6UgD+EVpdE+yTvvf+f67hm
https://paperpile.com/c/idvjwX/oUU9L+CZpID+eTL2n+ErQhx+s7hSv+E6UgD+EVpdE+yTvvf+f67hm
https://paperpile.com/c/idvjwX/oUU9L+CZpID+eTL2n+ErQhx+s7hSv+E6UgD+EVpdE+yTvvf+f67hm
https://paperpile.com/c/idvjwX/oUU9L+CZpID+eTL2n+ErQhx+s7hSv+E6UgD+EVpdE+yTvvf+f67hm
https://paperpile.com/c/idvjwX/ErQhx
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          In the second chapter, I developed, operationalized, and tested a rigorous analytic pipeline to 

identify molecular diagnostic classifiers for ASD using leukocyte gene expression. Using additional clinical 

data, I verified that our composite gene expression classifier was unbiased against common confounding 

factors (age, race and ethnicity). Using this platform on leukocyte transcriptomics from male ASD and 

typically developing (TD) toddlers at ages 1-4, my colleague and I systematically analyzed the classification 

performance of 42,840 different models composed of 3,570 different feature selection sets and 12 

commonly-used classification methods (Figure 2.1 and Appendix Figure 2.1). Through this, we developed 

a predictive ensemble diagnostic classifier of male ASD toddlers. Additionally, using targeted DNA 

sequencing of the coding regions for sets of ASD and neurodevelopmental disorder risk genes using single-

molecule molecular inversion probes (smMIPs)(Wang et al. 2020; Stessman et al. 2017), my collaborators 

examined the diagnostic classifier value of presence or absence of a subset of ASD risk gene mutations in 

our ASD and TD subjects and whether toddlers with ASD risk gene mutations differ in classifier expression 

from those without such mutations. 

In addition to the ensemble classifier using gene expression data, I also explored the potential 

diagnosis of ASD using facial emotional data. Since ASD was first identified in 1943, two stereotypes 

concerning the emotional lives of children affected by the disorder have prevailed: one in which negative 

emotions dominate and the other in which emotional expressions are muted, particularly positively valenced 

emotions(Cooper and Michels 1988; Harms, Martin, and Wallace 2010; Uljarevic and Hamilton 2013; 

Langdell 1978; Begeer et al. 2008; Kennedy and Adolphs 2012). Not surprisingly, autism research has 

focused on examining either a negative emotionality bias or an attenuation of positive emotion(Castelli 

2005; Atkinson 2009; Philip et al. 2010). Recent evidence, however, shows that autistic individuals may 

not necessarily differ in expression intensity of emotions, nor have negative emotionality bias(Macari et al. 

2018; Trevisan, Hoskyn, and Birmingham 2018; Press, Richardson, and Bird 2010; Deschamps et al. 2015; 

Weiss et al. 2019; Rozga et al. 2013). For example, in a recent study, evoked expressions in response to 

funny videos in ASD adults were rated as more intense, although less natural, than TD expressions(Faso, 

Sasson, and Pinkham 2015). The clustering based on evoked action unit intensity identified an ASD 

https://paperpile.com/c/idvjwX/ZR5MW+HfG12
https://paperpile.com/c/idvjwX/H1YXI+onghf+18o7Z+u13lZ+eDIOm+CW0hu
https://paperpile.com/c/idvjwX/H1YXI+onghf+18o7Z+u13lZ+eDIOm+CW0hu
https://paperpile.com/c/idvjwX/44Uk1+GlytO+rWX8b
https://paperpile.com/c/idvjwX/44Uk1+GlytO+rWX8b
https://paperpile.com/c/idvjwX/bXvKQ+iG7XG+BjqYN+CVo8v+yFrA8+lVZjk
https://paperpile.com/c/idvjwX/bXvKQ+iG7XG+BjqYN+CVo8v+yFrA8+lVZjk
https://paperpile.com/c/idvjwX/bXvKQ+iG7XG+BjqYN+CVo8v+yFrA8+lVZjk
https://paperpile.com/c/idvjwX/hqt9s
https://paperpile.com/c/idvjwX/hqt9s
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subgroup, proposed as an “over-responsive group”, that expresses more intense positive facial expressions 

than the TD group in response to the videos(Bangerter et al. 2020). 

At the same time, research has shown that individuals with ASD sometimes exhibit emotions that 

are incongruent with real-world events, as evidenced by executing atypical expressions patterns(Carpenter 

et al. 2021; Brewer et al. 2016; Faso, Sasson, and Pinkham 2015; Weiss et al. 2019; Rozga et al. 2013). 

Indeed, children and adults with ASD exhibit reduced, atypical, or delayed spontaneous mimicry responses 

to photographs and videos of emotional facial expressions(Zampella, Bennetto, and Herrington 2020a; 

Rieffe, Meerum Terwogt, and Stockmann 2000). Specific facial behaviors, including eye contact, smiling, 

and eyebrow movements, can distinguish ASD subjects from control participants. Such changes are relevant 

to biological hypotheses about abnormalities in the medial prefrontal cortex and an optical network within 

the occipitotemporal cortex(Moore et al. 2018). It suggests that those differences in facial behavior could 

lead to potential phenotypic biomarkers of ASD. 

In order to measure facial behavior objectively and quantitatively, automated facial analysis tools 

have been developed to empower the analysis in different parts of a range of disorders and conditions(Leo 

et al. 2018; LoBue and Thrasher 2014; Sariyanidi et al. 2020; Bangerter et al. 2020; Jacques et al. 2022). It 

enables scientists to measure the facial responses to emotional stimuli in an efficient, granular, and objective 

perspective(Bangerter et al. 2020; Pulido-Castro et al. 2021; Baltrusaitis et al. 2018). However, the efficacy 

of using the automatic facial expression test as an early screening tool for ASD remains 

underexplored(Jacques et al. 2022). Most of the established facial expression tests require the interaction 

between the psychologist and the child(Zampella, Bennetto, and Herrington 2020b). This limits researchers’ 

and clinicians’ ability to assess critical behaviors and measure differences across individuals, contexts, or 

time. Thus, there is a lack of established automatic methods for operationalizing toddlers’ emotional 

reciprocity objectively or granularly. 

         Preferential-looking paradigms have been successfully adopted to identify visual attention 

preferences in ASD(Kaliukhovich et al. 2021; Pierce et al. 2016; Wen et al. 2022). One such preferential-

looking test, the GeoPref test, found that a subset of ASD toddlers strongly preferred geometric images 

https://paperpile.com/c/idvjwX/zMqyj
https://paperpile.com/c/idvjwX/c7EDU+LlAuz+hqt9s+yFrA8+lVZjk
https://paperpile.com/c/idvjwX/c7EDU+LlAuz+hqt9s+yFrA8+lVZjk
https://paperpile.com/c/idvjwX/fnJcd+1RxzY
https://paperpile.com/c/idvjwX/fnJcd+1RxzY
https://paperpile.com/c/idvjwX/7Yrvq
https://paperpile.com/c/idvjwX/HgKWm+efCD8+hXrNT+zMqyj+P52WK
https://paperpile.com/c/idvjwX/HgKWm+efCD8+hXrNT+zMqyj+P52WK
https://paperpile.com/c/idvjwX/zMqyj+Pfy3w+VjmfK
https://paperpile.com/c/idvjwX/P52WK
https://paperpile.com/c/idvjwX/jOdQ8
https://paperpile.com/c/idvjwX/KGYRm+luseC+UVigP
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when presented with social and geometric motion images(Pierce et al. 2016). The toddlers with a higher 

preference for geometric images demonstrated greater symptom severity and fewer gaze shifts at school 

age(Bacon et al. 2020). The success of the GeoPref Test as a symptom severity prognostic tool encourages 

us to study the toddler's facial emotional response to different movie scenes. 

In the third chapter, I leveraged a new eye-tracking test called ‘The Joint Attention Test’ 

(Andreason et al., In preparation) that features a female speaking in a child-friendly, emotionally valent 

voice while engaging with various toys and objects. I utilized freely available software, Openface 

2.0(Baltrusaitis et al. 2018) and Emonet(Toisoul et al. 2021), to analyze webcam images and measure 

faction action unit intensity (Figure 3.1). I then used the corresponding features to train a classifier to 

differentiate between ASD and non-ASD subjects. The classifier was unbiased against common 

confounding factors (age, race, and ethnicity). Further, I tested the combination of the classifiers with the 

GeoPref percent fixation(Wen et al. 2022) on a geometric image score shown to have high specificity and 

good PPV in predicting ASD diagnosis. The final unsupervised clustering analysis, including the classifier 

score, eye-tracking data, and social behavior data, provided further insight into the clinical behavior 

heterogeneity among different subgroups.  

https://paperpile.com/c/idvjwX/luseC
https://paperpile.com/c/idvjwX/Y7OXe
https://paperpile.com/c/idvjwX/VjmfK
https://paperpile.com/c/idvjwX/OPKeU
https://paperpile.com/c/idvjwX/UVigP
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CHAPTER 1: Correcting for sparsity and interdependence in glycomics by accounting for glycan 

biosynthesis 

Abstract 

Glycans are fundamental cellular building blocks, involved in many organismal functions. 

Advances in glycomics are elucidating the essential roles of glycans. Still, it remains challenging to properly 

analyze large glycomics datasets, since the abundance of each glycan is dependent on many other glycans 

that share many intermediate biosynthetic steps. Furthermore, the overlap of measured glycans can be low 

across samples. We address these challenges with GlyCompare, a glycomic data analysis approach that 

accounts for shared biosynthetic steps for all measured glycans to correct for sparsity and non-independence 

in glycomics, which enables direct comparison of different glycoprofiles and increases statistical power. 

Using GlyCompare, we study diverse N-glycan profiles from glycoengineered erythropoietin. We obtain 

biologically meaningful clustering of mutant cell glycoprofiles and identify knockout-specific effects of 

fucosyltransferase mutants on tetra-antennary structures. We further analyze human milk oligosaccharide 

profiles and find mother’s fucosyltransferase-dependent secretor-status indirectly impact the sialylation. 

Finally, we apply our method on mucin-type O-glycans, gangliosides, and site-specific compositional 

glycosylation data to reveal tissues and disease-specific glycan presentations. Our substructure-oriented 

approach will enable researchers to take full advantage of the growing power and size of glycomics data. 
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Introduction 

Glycosylation is a complex post-translational modification and it decorates one-fifth to one-half of 

eukaryotic proteins(Khoury, Baliban, and Floudas 2011; Apweiler, Hermjakob, and Sharon 1999). The 

diversified glycans account for 12-25% of dry cell mass and have essential functional and pathological 

roles(RodrÍguez, Schetters, and van Kooyk 2018; Gutierrez et al. 2018). Despite their importance, glycans 

have complex structures that are difficult to study. The complex structures of glycans arise from a non-

template-driven synthesis through a biosynthetic network involving dozens of enzymes. A simple change 

of a single intermediate glycan or glycosyltransferase will have cascading impacts on the final glycans 

obtained(Gabius et al. 2002; Spahn and Lewis 2014). Unfortunately, current data analysis approaches for 

glycoprofiling and glycomic data lack the critical systems perspective to decode the interdependence of 

glycans easily(Reiding et al. 2014, 2019; Doherty et al. 2018; Wohlschlager et al. 2018; Black et al. 2019; 

Ashwood et al. 2019). It is important to understand the network behind the glycoprofiles to understand the 

behavior of the process better. 

New tools aiding in the acquisition and aggregation of glycoprofiles are emerging, making large-

scale comparisons of glycoprofiles possible. Advances in mass spectrometry now enable the rapid 

generation of many glycoprofiles with detailed glycan composition and structure predictions(Reiding et al. 

2014, 2019; Wohlschlager et al. 2018; Black et al. 2019; Ashwood et al. 2019; Maxwell et al. 2012; Hou et 

al. 2016; Kremkow and Lee 2018; Krambeck et al. 2017; Holst et al. 2017; Angel et al. 2017), exposing the 

complex and heterogeneous glycosylation patterns on lipids and proteins(Reiding et al. 2019; Doherty et al. 

2018; Black et al. 2019; Cummings 2009; Holst et al. 2016; Čaval et al. 2018; Riley et al. 2019). Large 

glycoprofile datasets and supporting databases are also emerging, including GlyTouCan(Aoki-Kinoshita et 

al. 2015), UniCarb-DB(Campbell, Nguyen-Khuong, et al. 2014), GlyGen(York et al. 2019), and 

UniCarbKB(Campbell, Peterson, et al. 2014). 

These technologies and databases facilitate efforts to associate glycans with disease and other 

phenotypes. However, the rapid and accurate comparison of glycoprofiles can be challenging with the size, 
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sparsity and heterogeneity of such datasets(Reiding et al. 2019; Doherty et al. 2018; Black et al. 2019; Holst 

et al. 2016; Čaval et al. 2018; Riley et al. 2019; Yang et al. 2015). A glycoprofile provides glycan structure 

and abundance information, and each glycan is usually treated as an independent entity. Furthermore, in 

any one glycoprofile, only a tiny percentage of all possible glycans may be detected(Reiding et al. 2019; 

Doherty et al. 2018; Black et al. 2019; Holst et al. 2016; Yang et al. 2015). Thus, if there is a significant 

perturbation to glycosylation in a dataset, only a few glycans, if any, may overlap between samples. 

However, these non-overlapping glycans may only differ in their synthesis by as few as one enzymatic step. 

Thus, it requires deliberate manual coding to make them comparable(Reiding et al. 2014, 2019; Doherty et 

al. 2018; Wohlschlager et al. 2018; Black et al. 2019; Ashwood et al. 2019; Holst et al. 2016; Yang et al. 

2015). These properties of glycomics data may not be problematic in the studies of individual glycans and 

their downstream effects on other biological processes. However, this may be a problem in determining the 

sources of changes in glycan abundance by using large amounts of data(Reiding et al. 2019; Doherty et al. 

2018; Yang et al. 2015; Benedetti et al. 2017). Since many methods assume data independence (e.g., t-tests, 

ANOVA, etc.), their application to glycomics can lead to decreased statistical power or erroneous results. 

Previous studies have investigated the similarities across glycans by using glycan motifs. Scientists 

are using glycan fingerprinting to describe glycan diversity in databases(Rademacher and Paulson 2012; 

Bojar et al. 2021), align glycan structures(Hosoda et al. 2018), identify glycan epitopes in 

glycoprofiles(Alocci et al. 2018) and lectin profiles(Khoury, Baliban, and Floudas 2011), deconstruct LC-

MS data to quantify glycan abundance(Klein, Carvalho, and Zaia 2018), or compare glycans in 

glycoprofiles(Sharapov et al. 2018). These tools use information on glycan composition or epitopes. 

However, the accounting of shared biosynthetic steps could provide complete context to all glycan epitopes. 

That context includes connecting all glycans to the enzymes involved in their synthesis, the order of the 

enzyme reactions, and information on competition for glycan substrates. Thus, a generalized substructure 

approach could facilitate the study of large numbers of glycoprofiles by connecting them to the shared 

mechanisms involved in making each glycan.  
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In this work we present GlyCompare, a method enabling the rapid and scalable analysis and 

comparison of multiple glycoprofiles, while accounting for the biosynthetic similarities of each glycan. We 

propose glycan substructures, or intermediates, as the appropriate functional units for meaningful 

glycoprofile comparisons, since each substructure can capture one step in the complex process of glycan 

synthesis, which accounts for the shared dependencies across glycans. This approach addresses current 

challenges in sparsity and hidden interdependence across glycomic samples and will facilitate discovering 

mechanisms underlying the changes among glycoprofiles. We demonstrate the functionality and 

performance of this approach with a variety of glycomic analysis, including recombinant erythropoietin 

(EPO) N-glycosylation, human milk oligosaccharides (HMOs), mucin-type O-glycans, gangliosides, and 

site-specific compositional data. Specifically, we analyzed sixteen MALDI-TOF glycoprofiles of EPO, 

where each EPO glycoprofile was produced in a different glycoengineered CHO cell line(Čaval et al. 2018; 

Yang et al. 2015). We also analyze forty-eight HPLC glycoprofiles of HMO from six mothers(Mohammad, 

Hadsell, and Haymond 2012). By analyzing these glycoprofiles with GlyCompare, we quantify the 

abundance of important substructures, cluster the glycoprofiles of mutant cell lines, connect genotypes to 

unexpected changes in glycoprofiles, and associate a phenotype of interest with substructure abundance 

and flux. We further demonstrate that such analyses gain statistical power. Finally, we expand our studies 

to include a tumor-normal comparison of mucin-type O-glycans, human retinal glycolipids, and site-

specific N-glycan compositional data from the mouse brain. The analyses of the various N and O-type 

glycan datasets demonstrate that our framework presents a convenient and automated approach to elucidate 

insights into complex patterns in glycobiology. 
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Results 

Strikingly different glycoprofiles from small genetic changes can be compared with GlyCompare  

Due to the sparsity and interdependence of glycans in each glycoprofile, comparing different 

glycoprofiles can be challenging(Ashwood et al. 2019; Doherty et al. 2018). We demonstrated the core idea 

with three diverse erythropoietin (EPO) profiles made by three glycoengineered CHO cell lines(Čaval et al. 

2018; Yang et al. 2015). EPO produced in the wild type (WT) and two double glycosyltransferase knockout 

(Mgat4a/4b and St3gal3/6) CHO cell lines have very different glycoprofiles that do not share many detected 

glycans (Figure 1.1a). Efforts to identify primary and off-target effects of genetic modifications have 

limited success if relying only on overlapping glycans or on the presence/absence of a set of glycoforms. 

This would drastically limit their analytic power due to the sparsity of comparable consensus glycans 

(Figure 1.1a). The problem is that even glycans differing in only one single monosaccharide will be treated 

as two completely different glycans under conventional glycoprofile analysis methods(Reiding et al. 2019). 

In the end, the glycan abundance cannot be compared directly. This limited overlap between samples gets 

worse in analyzing large glycomics datasets. These challenges prompted us to develop GlyCompare, a 

substructure-based approach to glycan analysis. Glycoprofiles are first decomposed into a substructure 

network that encodes the shared biosynthetic pathways as well as the interdependence among glycans. Then, 

the substructure abundances are aggregated from all glycans to account for activities at each enzymatic step 

(Figure 1.1b). In essence, this shifts the focus of glycoprofile analysis from examining the increase/decrease 

of independent glycans to examining the increase/decrease of a series of glycan substructures (Figure 1.1c). 

This provides insightful information on a similar synthetic process and allows us to mitigate major statistical 

challenges of working with glycan-based glycoprofiles.  
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Figure 1.1 The GlyCompare platform improves glycomics data analysis and interpretation by using 
glycan biosynthetic network data to account for glycan interdependence. a Three example 
glycoprofiles (WT, Mgat4a/4b knockout, and St3gal4/6 knockout profiles), with annotated glycans and 
measured relative glycan abundances, show low overlap despite differing in only a few gene knockouts. b 
The low overlap can be rescued by propagating glycan substructures through the glycan biosynthetic 
network. Then, the glycoprofile is transformed into glyco-motif vectors. The representative substructure is 
generated to represent core glycan substructures of glycoprofiles (see Methods). c Venn diagrams show the 
imperfect overlap of glycans across samples (upper), which is rescued when using GlyCompare to analyze 
glyco-motif substructures (bottom). Source data are provided as a Source Data file. 
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GlyCompare decomposes glycoprofiles to facilitate comparison 

Glycoprofiles can be decomposed into abundances of intermediate substructures. The resulting 

substructure profile has richer information than whole glycan profiles and enables more precise comparison 

across conditions. Since glycan biosynthesis involves long, redundant pathways, the pathways can be 

collapsed to obtain a subset of substructures while preserving the information of all glycans in the dataset. 

We call this minimal set of substructures glyco-motifs. The GlyCompare workflow consists of several steps 

wherein glycoprofiles are annotated and decomposed, glyco-motifs are prioritized, and each glyco-motif is 

quantified for subsequent comparisons (Method). The specific workflow is described as follows.  

First, to characterize one glycoprofile with substructures, all substructures in one glycoprofile are 

identified and occurrence per glycan is quantified (Figure 1.2a-b). Within a glycoprofile, a substructure’s 

abundance is calculated by summing the abundance of all glycans containing the substructure. This 

transformation results in a substructure profile, which stores abundances for all glycan substructures (Figure 

1.2b) in the given glycoprofile. The summation over similar structures asserts that they follow the same 

synthetic paths, which is appropriate for glycosylation wherein synthesis is hierarchical and acyclic(Spahn 

and Lewis 2014). Therefore, a substructure abundance is not simply a sum over similar structures but 

mirrors the activity of the enzymes through biosynthetic pathways. 

 Second, to identify the most informative substructures (i.e., glyco-motifs), substructures are 

prioritized using the substructure network. The substructure network is built by connecting all substructures 

with biosynthetic steps (Figure 1.2d and 1.3c). The network starts from a core structure. An additional 

network level represents one biosynthetic step, adding one of the monosaccharides to the previous level. 

The edges in the network represent enzymatic additions of each monosaccharide, which can be annotated 

with known reactions (Figure 1.4). Redundant substructures are identified when parent-child substructure 

abundances are the same (Figure 1.2d). Substructure network reduction proceeds by collapsing links with 

redundant substructures (connected with a solid arrow in Figure 1.2d) and only retaining the child 

substructure. The remaining substructures are called glyco-motifs (selected-substructures); they describe 

the variance enirely at the substructure level. The abundances of all glyco-motifs are then represented as a 

https://paperpile.com/c/hewRpf/pfsES
https://paperpile.com/c/hewRpf/pfsES
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glyco-motif profile, the minimal subset of meaningful substructure abundances representing glycoprofiles 

(Figure 1.2e). 

For larger datasets, it is necessary to summarize the structure difference and abundance changes by 

clustering glyco-motifs (Figure 1.5). After clustering glyco-motifs, the common structural features of a 

cluster are calculated using the average weight of each monosaccharide (Figure 1.2f, see Method). 

Monosaccharides with a weight larger than 51% are preserved, which illustrates the predominant structure 

in the cluster. This allows one to quickly evaluate the distinguishing structure features that vary across 

samples in any given dataset.  
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Figure 1.2 The core methodology for transforming glycoprofiles to glyco-motif profiles and 
visualizing cluster-representative substructures using GlyCompare. a and b, A glycoprofile with 
structure and relative abundance annotation G is obtained. The glycans are decomposed to a substructure 
set S, and the presence/absence of each substructure is recorded. Presence/absence vectors are weighted by 
the glycan abundance, and are summed into a substructure vector P. c Seven example glycoprofiles are 
transformed to substructure vectors as a and b. d A substructure network is constructed to identify the non-
redundant glyco-motifs that change in abundance from their precursor substructures. e The glycoprofiles 
can then be compared by their glyco-motif vectors M to generate more meaningful clusters. Both 
glycoprofiles and substructures can be clustered for similarity analysis. f Core structure information can be 
visualized from a substructure cluster. For example, four substructures with different weights were aligned 
together, and the monosaccharides with a weight over 51% were preserved. Throughout the manuscript, 
glycan is referred to complete and secreted monosaccharide polymer; a glycan substructure is referred to a 
complete or incomplete monosaccharide polymer observable within at least one secreted glycan; a glycan 
motif (glyco-motif) is referred to an enriched functional glycan substructure for a dataset or biological 
process. Note that both glycan epitopes (typically terminal glycan substructures recognized by lectins) and 
glycan cores (biosynthetic glycan substructures common to select types (e.g. N- or O-glycosylation) or 
modes (e.g. complex or high-mannose) of biosynthesis) are glyco-motifs as they are biologically functional, 
interpretable and will be enriched in datasets selecting for specific glycan presentation of biosynthesis. 
Glycompare core methods are explained at length in the Methods section.  
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Figure 1.3 Substructure-based profile comparison solves the glycan non-independence and sparsity 
challenges, enabling the use of hierarchical clustering on large glycomics datasets. a Clustering of 
unprocessed glycoprofiles. Sixteen glycoprofiles from glycoengineered recombinant EPO were clustered 
based solely on their raw glycan abundances. b Clustering of glyco-motif profiles. The glyco-motif profiles, 
constructed using GlyCompare, were clustered based on the 151 glyco-motifs (see Methods). There are 
four different phenotypic glycoprofiles (based on the glycoengineered glycosylation changes relative to 
wild type): WT-like (yellow), Mild (orange), Medium (red), and Severe (brown). The clusters of 
glycoprofiles and glycan substructures are defined by distance threshold=0.5. In both cases, clustering was 
hierarchical clustering with a complete linkage and correlation-distance using seaborn 0.9.0. c The pan-
network (516 intermediate substructures) that describes the synthesis of all glycans measured on the 16 
glycoengineered recombinant EPO N-glycoprofiles. The glyco-motifs (in larger size) are the minimal set 
of 151 substructures selected by GlyCompare for further multi-glycoprofile comparison. The edges are 
colored by the enzyme family, AsiaT (purple), MgatT (blue), Fut (red), B4galT(orange), iGnt(cyan) and 
the node color according to frequency of existence in 16 glycoprofiles. d The coverage of the entire glycan 
synthetic pathway for 16 glycoprofiles using different structure types: glycan (purple, n=16, Min=0.00589, 
Q1=0.00786, Median=0.0128, Q3=0.0177, Max=0.0236), substructure (gray, n=16, Min=0.005894, 
Q1=0.082515, Median=0.318271, Q3=0.698428, Max=0.954813), and the selected-substructure (orange, 
n=16, Min=0.005894, Q1=0.058448, Median=0.161100, Q3=0.276031, Max=0.290766). e Proportion of 
samples containing a glycan, substructure, or glyco-motif in the 16 samples, and f The associated 
probability distribution. Source data are provided as a Source Data file. 
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Figure 1.4 The substructure network of EPO dataset. The merged substructure network from 16 
glycoprofiles contains 516 synthesizable glyco-substructures. The edges are colored with enzyme family, 
AsiaT (purple), MgatT (blue), Fut (red), B4galT (orange), iGnt (cyan), ManII (green) and the node color is 
according to the existence times in 16 glycoprofiles. 
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Figure 1.5 Robustness of glyco-motifs clusters. This is the cluster of glyco-motif vectors for EPO data. 
The robustness gives the criteria of how many substructure clusters should be generated1. The clusters are 
distinguished if AU (red)=100 (approximately unbiased probability value p<0.01) and then BP (green) 
(Bootstrap Probability) >15. The big block is further breakdown. We get 35 clusters in our EPO data. 
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 The workflow described here will connect all glycoprofiles in a data set through their shared 

intermediate substructures, thus allowing robust analysis of the differences across glycomics samples and 

the evaluation of the associated genetic bases.  

 

GlyCompare accurately clusters glycoengineered EPO samples 

We first apply GlyCompare on the dataset consisting of sixteen glycoprofiles coming from a panel 

of different Erythropoietin (EPO) glycoforms, each produced in different glycoengineered CHO cell lines. 

Clustering glycoprofiles did not adequately recapitulate the severity of glycosylation disruption, wherein 

many neighboring samples were not the most genetically similar mutants (Figure 1.3a and Figure 1.6). This 

inconsistency and poor clustering stem from the inherent sparseness of glycoprofiles, i.e., each glycoprofile 

only has a few observed glycans (Figure 1.3d), and most glycans appear only in a few glycoprofiles (Figure 

1.3e-1.3f). Thus, the matrix of glycan abundances is sparse and incompatible with the glycan synthesis 

assumption. Since glycan composition is not utilized, the clustering is heavily affected by the categorical 

presence or absence of a glycan, rather than structural similarity.  

GlyCompare addresses these problems by exposing hidden similarities between glycans after 

decomposing glycoprofiles to their composite substructures. The sixteen glycoprofiles with 52 glycans in 

total were decomposed into their constituent glycan substructures, resulting in a substructure network with 

613 glycan substructures (Figure 1.3b,c). Furthermore, the known enzymatic rules are annotated to the 

edges and the network is collapsed to include 151 glyco-motifs (Figure 1.3c). By encoding the structure 

information, the glyco-motifs provide richer information than using glycans solely (Figure 1.3d-f). The 

glyco-motif clustering clearly distinguished the samples based on the structural patterns and separated 

profiles into groups more consistently than the raw glycan-based clusters (Figure 1.3b and Figure 1.6-1.8). 
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Figure 1.6 The glycoprofile clustering table with the original glycans. This is the clustering of sixteen 
glycoprofiles based on glycans. Since most of the glycans only exist in a few glycoprofiles, the clustering 
mainly focuses on the presence/absence of the glycans (clusters 3-10), which means the information of 
structural similarity tends to be ignored in the clustering. This would drastically limit their analytic power 
due to the sparsity of comparable consensus glycans. The correlation distance tables are also provided for 
both glycan profiles and glyco-motif profiles. Source data are provided as a Source Data file. 
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Figure 1.6 The glycoprofile clustering table with the original glycans (continued).  
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Figure 1.7 The clustering robustness. The robustness is measured with BP (Bootstrap Probability). BP is 
a measure of the cluster robustness suggesting a significant similarity within clusters and thereby mitigating 
some challenges of clustering reproducibility. Glyco-motifs abundances showed higher BP than clustering 
with whole-glycan abundance profiles. In the whole-glycan profile clusters, wild-type (WT) glycoprofiles 
are closer to the double-knockouts with highly-perturbed glycoprofiles. Double-knockouts are 
predominantly determined to be strongly perturbed and therefore should not cluster with wild-types in a 
biologically meaningful clustering. As such, we believe the glycan clustering (which clusters WT with 
double knockouts) is less interpretable than the glyco-motif clustering which does not include the 
WT/double-knockout grouping.  
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Figure 1.8 Profile matching between the data from Čaval et al. 20182 and GlyCompare. The lightened 
names are the knockouts that do not have MALDI-TOF data published2. The KO name with the same color 
(for example, in brown, yellow, green, red, purple) are the KO profiles that clustered together. While some 
glyco-motif clusters can be seen in the glycoprofile clusters, there are important differences, and the glyco-
motif clusters provide more information and improved cluster stability. Furthermore, the clustering result 
based on the glyco-motif was consistent with the clustering based on the native mass spectrometry, except 
for the Mgat2 knockout and the Fut8 knockout, which considerably changed the glycoprofiles by removing 
many common glycans. The main reason is that GlyCompare accounts for structural differences caused by 
each glycosyltransferase. This allows us to evaluate the magnitude of differences between glycans, whether 
it be between glycans with the same mass but different structural topologies, or subtle structural variations 
due to single changes in monosaccharides. Therefore, we had a better interpretation of the glycan structure 
variants across multiple glycoprofiles. All these results demonstrated the excellent performance of our 
GlyCompare in assessing the structural similarity between different glycoprofiles. 
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The sixteen glycoprofiles clustered into three groups with a few severely modified outliers (Figure 

1.3b). The 151 glyco-motifs were clustered into thirty-five groups, each summarized by representative 

substructures Rep1 – Rep35 (Figure 1.9a and Figure 1.4). The clusters of glycoprofiles are consistent with 

the genetic similarities among the host cells. Specifically, the major substructure patterns cluster individual 

samples into four categories: ‘wild-type (WT)-like’, ‘mild’, ‘medium’ and ‘severe’. The WT-like category 

contains one group, WT and B4galt1/2/3/4 knockouts, which has most of the substructures seen in WT cells. 

The mild group includes the Mgat4b/4a, Mgat4b, and Mgat5 knockouts, where each loses the tetra-

antennary structure, and a St3gal4/6 knockout, which loses the terminal sialylation. The medium category 

is a group that contains knockouts of St3gal4/6 and Mgat4a/4b/5, knockouts of Mgat4a/4b/5 and B3gnt2, 

knockouts of Mgat4a/4a/5 with a knock-in of human ST6GAL1, and knockouts of Mgat4a/4b/5 and 

St3gal4/6. The medium disruption category lost the tri-antennary structure. The ‘severe’ category includes 

three individual glycoprofiles with knockouts for Fut8, Mgat2, and Mgat1, each of which generates many 

glycans not detected in the WT-like, mild or medium categories. While some glyco-motif clusters can be 

seen in the glycoprofile clusters, there are important differences, and the glyco-motif clusters provide more 

information and improved cluster stability (Figure 1.9a, Figure 1.7, 1.8). These results demonstrate that 

standard methods are unfit to cluster glycan abundance from glycomics data in genetically diverse datasets; 

however, computing glyco-motif abundance accounts for the structural similarity of glycans between 

different glycoprofiles and allows one to use standard hierarchical clustering techniques reliably. 

 

GlyCompare summarizes structural changes across glycoprofiles  

GlyCompare helps to more robustly group samples by accounting for the biosynthetic and structural 

similarities of glycans. Further analysis of the representative structures provides detailed insights into which 

structural features vary the most across samples. To accomplish this, we rescaled the representative 

structure abundances and identified significant changes between mutant cells and WT (Figure 1.9a, Figure 

1.10). Analysis of the representative substructure network provides a more precise interpretation of the 
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changes in the St3gal4/6 KO (Figure 1.9b) and the Fut8 KO profiles (Figure 1.11). This interpretation 

highlights the specific structural features of glycans that are impacted when glycoengineering recombinant 

EPO. 

In-depth analysis showed, as expected, in the Mgat1 knockout glycoprofile, only high mannose N-

glycans are seen. Also, in the Mgat2 knockout, the glycan substructure of bi-antennary on one mannose 

linkage significantly increases. The unique structure of bi-antennary LacNac elongated in the N-glycans 

emerges in the St3gal4/6 and Mgat4a/4b/5 knockouts. In the St3gal4/6 knockout profile, the abundance of 

structures with sialylation are zero, while the tetra-antennary and triantennary poly-LacNAc elongated N-

glycan substructure without sialylation significantly increased (Rep24-25: p= 1.3 × 10−3 , Rep31-32: 

p=2.3 × 10−4) (Figure 1.9a-c). Along with expected changes in α-1,6 fucosylation in the Fut8 knockout 

glycoprofile, we also observed an increase in the tetra-antennary poly-LacNac elongated N-glycan without 

fucose, which has not been previously reported (One-sided one-sample Wilcoxon test, Rep28: 

p=2.7 × 10−4, Rep34: p=2.0 × 10−4) (Figure 1.9a). Both the St3gal4/6 and Fut8 knockout profiles have 

increased tri/tetra-antennary poly-LacNac elongated substructure (Rep24, Rep31). It is related to the 

increased conversion ratio of iGNT (Figure 1.9c). Finally, the Mgat4b, Mgat4a/4b and Mgat5 knockouts 

lose all core tetra-antennary substructures (Rep30-35: unscaled abundance=0) (Figure 1.10). While 

triantennary substructures with GlcNac elongation increased significantly for Mgat4b (Rep13-14, 

p=2.6 × 10−3; Rep26-27: p=2.5 × 10−4), the poly-LacNac elongation structure disappeared. Interestingly, 

while both the Mgat4b and Mgat5 knockouts do not have the tri-antennary poly-LacNac elongated N-glycan, 

the Mgat4a/4b mutant keeps a highly abundant poly-LacNac branch (Rep28-29: p= 2.4 × 10−4). Thus, by 

using GlyCompare, we identified the specific glycan features impacted not only in individual 

glycoengineered cell lines but also in features shared by groups of related cell lines. 
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Figure 1.9 Analysis of glycan abundance changes using representative substructures. a The heatmap 
of normalized glycan abundance for the thirty-five substructure clusters from Figure 1.3b. The substructures 
are sorted based on the glycan structure complexity, followed by the number of branches, the degree of 
galactosylation, sialylation, and fucosylation. While comparing to WT, the weighted average abundance of 
each cluster is calculated then z-score standardized by each column. The color denotes the change of glycan 
abundance for the comparison of KO vs. WT of the indicated substructure. b The differential substructure 
representative network for the comparison between the St3gal4/6 knockout profile and the WT profile. The 
z-score rescaled substructure clusters’ abundance in a are visualized on edges with a simplified network. 
The color is defined the same as in a for the changes of glycan abundance. The plot demonstrates the 
changes of the elongation and sialylation. c Differential enzyme activities of α-2,3-sialyltransferase (a3SiaT, 
reaction n=9) and β-1,3-N-acetylglucosaminyltransferase (iGNT, reaction n=28) for the knockout profiles 
(St3gal4/6 and Fut8) and wild type profile in terms of network edge ratio. Specifically, the network edge 
ratio is calculated on the reactions shared by three profiles. The 5 quartile boundaries of the a3SiaT table 
are KO.St3gal4/6, Min=0, Max=0; KO.Fut8, Min=0.795, Q1=0.795, Median=0.795, Q3=1, Max=1; WT, 
Min=0.871, Q1=0.871, Median=0.871, Q3=1, Max=1. The 5 quartile boundaries of the iGNT table are 
KO.St3gal4/6, Min=0.224, Q1=0.224, Median=0.285, Q3=0.314, Max=0.412; KO.Fut8, Min=0.096, 
Q1=0.104, Median=0.161, Q3=0.205, Max=0.205; WT, Min=0.0569, Q1=0.0637, Median=0.0709, 
Q3=0.129, Max=0.129. The one-sided Wilcox tests are performed. For a3SiaT table, KO.St3gal4/6 vs WT 
has p=4.3e−09, KO.Fut8 vs WT has p=0.3. For iGNT table, KO.St3gal4/6 vs WT has p<2.2e−16, KO.Fut8 
vs WT has p=3.2e-14. Source data are provided as a Source Data file. Source data are provided as a Source 
Data file. 
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Figure 1.10 The unscaled cluster abundance related to Figure 1.3a. The heatmap of glycan abundance 
for the thirty-five substructure clusters. The substructures are sorted based on the glycan structure 
complexity, followed by the number of branches, the degree of galactosylation, sialylation, and fucosylation. 
While comparing to WT, the weighted average abundance of each cluster is calculated by each column. 
The color denotes the change of glycan abundance for the comparison of KO vs. WT of the indicated 
substructure. Source data are provided as a Source Data file. 
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Figure 1.11 Representative substructure network for KO.Fut8. The differential substructure 
representative network for the comparison between the Fut8 knockout profile and the WT profile. The z-
score rescaled substructure clusters’ abundance in Figure 1.9a are visualized with a simplified network. The 
color is defined the same as in Figure 1.9a for the fold change of glycan abundance. 
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GlyCompare reveals off-target changes in substructures invisible at the whole-glycan level 

Many secreted and measured glycans are also precursors, or substructures, of larger glycans (Figure 

1.12a). Thus, the secreted and observed abundance of one glycan may not equal the total amount 

synthesized. GlyCompare quantifies the total abundance of a glycan by combining the glycan abundance 

with the abundance of its products. To demonstrate this capability of GlyCompare, we analyzed HMO 

abundance, to test if maternal genetics underlying the secretor status has unexpected off-target effects on 

other HMO features. We obtained forty-seven HMO glycoprofiles from 6 mothers (1, 2, 3, 4, 7, 14, 28 and 

42 days postpartum (DPP)), 4 “secretor” mothers with functioning FUT2 (α-1,2 fucosyltransferase), and 2 

“non-secretor” mothers with non-functional FUT2. With GlyCompare addressing the interdependence of 

HMOs, we could use powerful statistical methods to study trends in HMO synthesis. Specifically, we used 

regression models to predict secretor status and DPP from substructure abundance. 
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Figure 1.12 Analysis of intermediate substructures with GlyCompare elucidates unexpected 
associations in HMO abundance and reaction flux with secretor status, which are missed in the 
standard whole-glycan analysis. a-d Over time (DPP), substructure X62, LSTb, DSLNT, and DSLNH 
show different trends for secretors and non-secretors. Furthermore, the abundance of aggregated X62 shows 
significant positive-correlation with secretor and negative-correlation with non-secretor. GEE models for 
each structure are visualized and approximated using a gaussian-link Generalized Linear Model with 95% 
confidence intervals; Odds Ratio (OR) significance (likelihood OR is non-zero) was measured with a two-
sided Wald-test (a n=47, Coef=-1.37, p=4.3e-7; b n=47, Coef=-1.81, p=3.98e-13; c n=47, Coef=0.16, 
p=3.98e-13; d n=47, Coef=0.382, p=-0.23) e The substructure intermediates for four connected glycans are 
shown here. The synthesis of larger glycans must pass through intermediate substructures that are also 
observed glycans, where the substructures are as associated with measured glycans as follow X40=LNT, 
X62=LSTb, X106=DSLNT, X138=DSLNH. f and g Panels examine the product-substrate ratio for two 
reactions in panel e. X40, the LNT substructure, is a precursor to X62, the LSTb substructure, which is a 
precursor to X106, the DSLNT substructure. We estimate the flux of these conversions from X40 to X62 
and X62 to X106 by examining the product-substrate ratio, i.e., the proportion of the total synthesized 
substrate converted to the product. LSTb/LNT substructure relative abundance ratios are not associated 
with secretor status while DSLNT/LSTb ratios are. Panels f and g show OR corresponding to the ratio 
association with secretor status. (f. n=47, OR=0.99, p=0.55; g. n=47, OR=0.95, p=0.018). See Table 1.1 for 
complete GEE statistics. Source data are provided as a Source Data file. 
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Table 1.1 Complete information on generalized estimating equation models. 
The tables above specify the coefficient summary, confidence intervals, Wald test p-values. We report 
general model statistics including number of observations and groups, and degrees of freedom. We report 
effect size with marginal correlation for gaussian regressions and entropy for logistic regression. Finally, 
for gaussian regressions we report the Shapiro-Wilk’s p-value for normality of a distribution. a. Gaussian 
GEE, predicting motif abundance from secretor status while controlling for DPP b. Gaussian GEE, 
predicting motif abundance from DPP split on secretor status c. Logistic GEE, predicting secretor status 
from estimated flux while controlling for DPP. 
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Table 1.1 Complete information on generalized estimating equation models (continued). 
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We first checked both the glycan-level and substructure-level clustering of the glycoprofile. 

Samples with same secretor status and days postpartum (DPP) were successfully grouped (Figure 1.13, 

1.14). Further examination of the glyco-motif abundance (i.e., the total amount of substructure synthesized) 

revealed phenotype-related trends invisible on the glycan profile level. One observation of interest was that 

secretor status, defined by glycan fucosylation, significantly impacts the sialylation of non-fucosylated 

HMOs over time. While the relative abundance of both LSTb substructure (X62) and secreted LSTb was 

elevated in non-secretor milk (Wald p = 4 × 10−7and Wald p = 3.98 × 10−13; Figure 1.12a, b), only X62 

showed a strong interaction between time and secretor status. At an adjusted sample size of 6, the time-

dependent decrease in non-secretor X62 is significant (Wald p = 0.002). In contrast, the time-dependent 

decrease is only marginally significant for secreted LSTb (Wald p = 0.03). Previous work has already 

described an LSTb elevation at 3-4 months postpartum(Azad et al. 2018). Here, a substructure-analysis of 

X62 suggests that while the secreted LSTb is elevated in non-secretor milk, total LSTb produced (and 

consumed as the substrate for other sugars) may decrease over time.  

 

  

https://paperpile.com/c/hewRpf/Zn57K
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Figure 1.13 HMO substructure network with dependent substructure removed. All the glyco-motifs 
are shown, and redundant nodes are merged. This is a directed-acyclic-graph and the direction goes from 
top to bottom. An edge with black color is an important edge after merging that indicates the abundance 
changes. An edge with blue color is an edge that exists before merging that indicates the abundance 
variation between two substructures.  
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Figure 1.14 HMO dataset, the clustering of HMO by glycan using Pearson correlation distance. At 
the glycan-level, 2-fucosyllactose (2’ FL) is the most abundant HMO in secretor mothers while Lacto-N-
tetraose (LNT) and LNFPI are the most abundant HMOs in non-secretor mothers. The second major source 
of variance, DPP, shows a decrease in non-secretor LNFPI. At the substructure level, the clustering 
recapitulated the results from the raw HMO profiles and the α-1,2 fucosylated substructures were 
significantly associated with secretor status. The 2’FL substructure (X35) and the LNFPI substructure (X65) 
are significantly more abundant in secretor milk (Wald p=2.35x10-25, Wald p=5.1x10-12 respectively). The 
substructure abundance successfully reproduces the strongest effects known to be associated with secretor 
status. Source data are provided as a Source Data file. 
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Examining other secreted HMOs containing the X62 substructure (DSLNT and DSLNH), we see 

no significant secretor-status-dependent elevation (Wald p > 0.2; Figure 1.12a-d). Unlike X62, DSLNT 

shows no significant change over time (Coef=-0.39, Wald p = 0.17; Table 1.1a). Finally, DSLNH shows a 

significant increase over time (Wald p = 2.91x10-8 ; Table 1.1a). The secretor-specific trends in total LSTb 

are only clearly visible by examining the X62 substructure abundance (Figure 1.12a-d). Thus, while secretor 

status is expected to impact HMO fucosylation, GlyCompare reveals associations with non-fucosylated 

substructures. Viewing substructure abundance as total substructure synthesized provides a fundamental 

measure to the study of glycoprofiles (Figure 1.15); it also creates an opportunity to explore trends in 

synthesis.  
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Figure 1.15 HMO substructure general estimate equation coefficient and p-value plot. Summary of 
regressions predicting either glycan or motif abundance from Days Postpartum (DPP) and Secretor status. 
The horizontal axis indicates the coefficient associating either DPP or secretor status with abundance and 
the vertical axis indicates the significance of that coefficient using the Wald test. Regression models were 
fitted using Generalized Estimating Equations (GEE) with an exchangeable covariance structure to control 
for dependency structures within mothers. Colors indicate the identification of the glycan or glycan motif, 
size indicates the significance of the coefficient and shape indicates if the coefficient was attributed to DPP 
or secretor status. Models fit to predict glycan abundance (left) were of the form: GEE(z(log(S+ 𝜖)))  ~ DPP 
+ secretor, while models to predict motif abundance were of the form: GEE(z(log(S+ 𝜖)))  ~ DPP + secretor. 
Where, z(x) is a z-score normalization to center and standardize abundance and 𝜖 = 0.001 . This link 
function was chosen because it fit a normal distribution (Table 1.1a) and allowed for comparisons between 
regressions. There are some notable consistencies between the motif and glycan level results. As expected, 
2’FL and its motif, X35, are both strongly and significantly enriched in secretor status. As are LNFPI and 
its motif, X65, are also strongly and significantly enriched with secretor status. Conversely, LSTb and X62 
are negatively associated with secretor status. DPP has some significant but small negative associations 
with LSTc, 3’SL, and DSLNT. The 3’SL motif, X34 showed a consistent small negative significant 
association and the DSLNT motif. Most notably, X1, the sialic acid motif, was strongly negatively 
associated with DPP suggesting sialylation decreased in these samples over time. Source data are provided 
as a Source Data file. 
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Flux estimation from GlyCompare identifies reaction responsible for an unexpected change in 

sialylation 

The identification of a non-fucosylated substructure that is associated with differences in secretor 

genotype raised the question of which reactions are responsible. Thus, we used GlyCompare to estimate 

enzyme fluxes to identify the reaction responsible for the unexpected change in HMOs . To do this, we 

estimate the flux for each biosynthetic reaction by quantifying the abundance ratio of products and 

substrates from parent-child pairs of glycan substructures. Thus, we could study changes in HMO synthesis 

through the systematic estimation of reaction flux across various conditions.  

Although the fucosyltransferase-2 genotype defines secretor status, not all secretor-associated 

reactions were fucosylation reactions. We further explored the secretor-X62 association using the product-

substrate ratio to estimate flux. Specifically, we examined the upstream reaction of LNT (X40) to LSTb 

(X62) and the downstream reaction of LSTb (X62) to DSLNT (X106) (Figure 1.12e). We estimated the 

flux of the upstream reaction of LNT converting to LSTb, using the X62/X40 ratio over time. However, no 

significant change was observed to secretor status (Figure 1.12f; Wald p=0.55). In the conversion of LSTb 

to DSLNT, we found a secretor-specific increase in reaction flux. Specifically, the X106/X62 ratio was 

significantly higher (Wald p=0.018) in secretor mothers (Figure 1.12g; Table 1.1c). In the average non-

secretor mother, 52.3% (s.d. 15.1%) of LSTb is converted to DSLNT. Meanwhile, in secretors, on average, 

81.8% (s.d. 7.2%) is converted. The LSTb to DSLNT conversion rate appears higher in secretors, while 

conversion from the LSTb precursor, LNT, appears unchanged (Figure 1.12f). Any changes in sialylation 

are intriguing, considering that secretor status is associated with genetic variation of a fucosyltransferase. 

A secretor-elevated conversion rate from LSTb to DSLNT is consistent with observing elevated X62 and 

secreted LSTb in non-secretor milk (Figure 1.12a-b)(Azad et al. 2018); if non-secretors consume less LSTb 

as a DSLNT substrate, more of the synthesized LSTb (X62) will remain LSTb through secretion. Examining 

the product-substrate ratio has revealed a phenotype-specific reaction propensity, thus providing insight 

into the condition-specific synthesis. 

https://paperpile.com/c/hewRpf/Zn57K
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GlyCompare increases the statistical power of glycomics data 

GlyCompare successfully provides insights by accounting for shared biosynthetic routes of 

measured oligosaccharides. Since it includes information on the similarities between different glycans, we 

wondered how our approach impacts statistical power in glycan analysis. Thus, to quantify the benefit of 

the glyco-motif analysis, we constructed many regression models associating either glyco-motif abundance 

or glycan abundance, with a DPP and secretor status (see Methods). We found that regressions trained with 

glyco-motif abundance are more robust than those trained on whole glycan abundance, as indicated by the 

increased coefficient magnitude (Wilcoxon p = 0.0047, Figure 1.16a) and decreased standard error 

(Wilcoxon p = 0.033, Figure 1.16b). An increase in the stability of a statistic can result in an increased 

effect size. Consistent with the increased coefficient magnitude and decreased standard error, the effect size 

also increased, as measured by the marginal R2 (mR2) of glyco-motif-trained regressions (Wilcoxon p=0.04, 

Figure 1.16c). These effects were confirmed with a bootstrapping t-test; bootstrapping p-values were less 

than or equal to Wilcoxon p-values within 0.001. Increases in statistical magnitude, statistical stability, and 

effect size are all expected to increase analysis power. Using the median, 1st quartile, and 3rd quartile of 

observed mR2, we estimated the expected power of glyco-motif-trained and glycan-trained regressions at 

various sample sizes. The expected power of a glyco-motif-trained regression reaches 0.8 at 36 samples 

and 0.9 at 57 samples. In contrast, a glycan-trained regression requires more than double the sample size to 

reach a comparable power (Figure 1.16d). GlyCompare provides additional power for discovering glycan-

phenotypic associations. 
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Figure 1.16 Glyco-motif level statistics require half as many samples to reach the same level of 
statistical power as analysis with raw glycans. a, b The use of glyco-motifs improves measures of 
regression robustness. The coefficient magnitude and Standard Error indicate the magnitude of the 
measured effect and the confidence with which a coefficient can be estimated. In a, the boxplot illustrates 
25th, 50th, and 75th percentiles for regression coefficients using glycan data (Min=0.5094, Q1=0.7206, 
Median=0.8416, Q3=1.2706, Max=1.7166, n=35) or glyco-motif data (Min=0.5094, Q1=0.8365, 
Median=1.1403, Q3=1.5106, Max=2.8357, n=74). Distributions were compared using one-sided Wilcoxon 
tests (p=0.0047). In b, the boxplot again illustrates the 25th, 50th and 75th percentiles for regression 
Standard Error trained on glycan data (Min=0.0182, Q1=0.1631, Median=0.2446, Q3=0.2832, 
Max=0.4518, n=35) or glyco-motif data (Min=0.0053, Q1=0.1508, Median=0.2047, Q3=0.2747, 
Max=0.5398, n=74). Distributions were compared using a one-sided Wilcoxon test (p=0.033). c The R2 
describes the effect size of a regression; we used marginal R2 (mR2) because it was appropriate for the 
regression models used(Halekoh et al. 2006). Distributions for mR2 of regression models trained on glycan 
data (Min=0.128, Q1=0.183, Median=0.331, Q3=0.441, Max=0.737, n=20) and glyco-motif data 
(Min=0.0949, Q1=0.3185, Median=0.46, Q3=0.686, Max=0.764, n=40) were compared using a one-sided 
Wilcoxon test (p=0.04). d We predicted power for a range of sample sizes (n=5-200) given the median 
effect size (solid line) within the interquartile range (shaded region) for glyco-motif-trained regressions 
(mR2: Q1=0.31, Median=0.45, Q3=0.68) and the median effect size for glycan-trained regressions (mR2: 
Q1=0.18, Median=0.33,Q3=0.44). Here, the use of GlyCompare and glyco-motif (grey-blue color) 
abundances required approximately half the number of samples to achieve equivalent power as standard 
glycan (red color) measures. Source data are provided as a Source Data file.  

https://paperpile.com/c/hewRpf/3ocm8
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To further probe the increased statistical power, we compared our approach to another statistically-

driven network approach. Benedetti et al. 2017 demonstrated that novel glycan biosynthetic reactions could 

be resolved using partial correlation(Benedetti et al. 2017). Using the Benedetti data, we computed partial 

correlation for glycan abundance and with GlyCompare-computed linkage-specified substructure 

abundance. We compared the partial correlation between glycans or substructures across true-positive, 

known reactions and false-positive, uncharacterized reactions (as specified in the Benedetti supplement). 

Partial correlations across known reactions between GlyCompare-computed substructures were 

significantly higher than partial correlations between corresponding glycan abundances (Figure 1.17). 

Partial correlation across known reactions was elevated for substructure abundance in all IgG isoforms 

(One-sided t-test, p<0.0039), and responses performed by B4GALT1 and ST6GAL1 (One-sided t-test, 

p<1.1x10-4). Interestingly, the lowest partial correlations across true-positive reactions between 

substructures were substantially higher than corresponding glycan correlations. The higher floor for 

substructure correlations suggests that substructure abundances may increase positive predictive value 

(Figure 1.17). Finally, while correlation increased between true-positive associated substructures, 

correlations across uncharacterized reactions were close to zero and indistinct from glycan correlations 

across the same reactions. Thus, using GlyCompare for glyco-motif-level analysis can substantially 

increase the robustness and statistical power in glycomics data analysis since it allows for comparing 

different glycans who share biosynthetic steps. 

  

https://paperpile.com/c/hewRpf/3Z1Il
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Figure 1.17 Partial correlation between known and unknown biosynthesis reactions in N-
glycosylation. Glycan abundance data (MALDI-TOF) from Benedetti et. al. 20173 was realized to compute 
partial correlation between glycan abundance (as in the original paper, blue) and glycompare-computed 
linkage-specified substructure abundance (red). Partial correlations were stratified by prior knowledge, 
those known and previously characterized were designated the true-positive (T) reactions, while the other 
uncharacterized reactions were designated false-positive (F). The detailed information about the quartile 
boundary is provided in the Table 1.2. a A panel shows partial correlations that are split by IgG isoforms. 
The one-sided T.test are performed between the glycan abundance and substructure abundance (IgG1, F 
p=0.068, T p=0.0039; IgG2, F p=0.27, T p=2.1e-07; IgG4, F p=0.6, T p=4.1e-09); b A panel shows partial 
correlations split by related glycosyltransferases (B4GALT, T p=1.1e-04; IgG2, T p=1.8e-07). Source data 
are provided as a Source Data file. 
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Table 1.2 Information for Figure 1.17. 
a provides the quartile information and sample size (n) of the Figure 1.17a and b provides the quartile 
information and sample size (n) of the Figure 1.17b. 

a 

IgG truth type min Q1 median Q3 max Sample(n) 

1 F motif -0.5384 -0.0983 -0.0055 0.0887 1 1252 

1 F glycan -0.4874 -0.0783 -0.0109 0.0597 1 1384 

1 T motif 0.202 0.3331 0.4048 0.5074 0.8055 192 

1 T glycan -0.0646 0.255 0.4214 0.522 0.8079 216 

2 F motif -0.5248 -0.0928 -0.0077 0.0759 1 1252 

2 F glycan -0.6265 -0.0729 -0.008 0.0603 1 1384 

2 T motif 0.1666 0.3502 0.4574 0.5381 0.71 192 

2 T glycan -0.3031 0.1798 0.3843 0.5445 0.7704 216 

4 F motif -0.6441 -0.1928 -0.0998 0.1218 1 220 

4 F glycan -0.6354 -0.2092 -0.0582 0.0333 1 280 

4 T motif 0.3385 0.4713 0.5495 0.6628 0.7642 104 

4 T glycan -0.3013 0.1305 0.4522 0.5826 0.7783 120 

 

b 

Enzyme Truth Type min Q1 median Q3 max Sample(n) 

B4GALT T motif 0.1666 0.4417 0.4889 0.5958 0.8055 40 

B4GALT T glycan -0.1309 0.2322 0.4051 0.4771 0.7369 40 

ST6GAL1 T motif 0.202 0.3443 0.4566 0.5547 0.7642 80 

ST6GAL1 T glycan -0.3031 0.043 0.2707 0.5355 0.7315 80 
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Additional statistical power reveals tumor-depleted mucin-type O-glycans 

To explore the broad applicability of GlyCompare, we used our method to calculate substructure 

abundance for mucin-type O-glycans(Jin et al. 2017) (Figure 1.18), glycolipids(Sibille et al. 2016) (Figure 

1.19), and site-specific compositional N-glycosylation(Riley et al. 2019) (Figure 1.20). In a re-examination 

of the mucin-type O-glycans from tumor and normal samples, glycan abundance and motif abundance were 

compared (Figure 1.18a, b). We found zero whole-glycan structures significantly distinguished between 

tumor and normal following multiple-test correction (FDR<0.1, Figure 1.18a). Yet, after substructure 

decomposition using Glycompare, we found five significantly depleted (FDR<0.1) mucin-type glycan 

motifs in gastrointestinal cancer (Figure 1.18b)(Jin et al. 2017). We found a substantial depletion in the 

tumor samples of five core 2 structures. These structures included three fucosylated and two with I-branches. 

The largest structures were over 30-fold depleted in tumors (FDR<0.03, Figure 1.18c). The core 2 depletion 

was noted as a nonsignificant trend in the original publication; we identified the specific core 2-type 

substructure depleted in tumors using substructure decomposition. Though this dataset contains few 

subjects and therefore may not be robustly generalizable, we demonstrate the increase in statistical power 

when using substructures. Additionally, a later study also found significant depletion of multiple bi-GlcNAc 

core 2 and I-branched structures(Jin et al. 2017). Also consistent with the decrease in bi-GlcNAc core-2 

structures in gastric cancer, low expression of B3GNT3 in stomach cancer is significantly associated with 

decreased overall survival(Sibille et al. 2016). B3GNT3 is necessary for adding the second GlcNac to core 

2 structure(Koda et al. 1996) and therefore upstream of all significantly depleted structures (Figure 1.18); 

B3GNT3 depletion could explain the observed differential glycosylation. The observation of significantly 

distinct substructures suggests GlyCompare provided increased statistical power to detect these 

distinguishing condition-enriched structures, and further showed continuity across similar structures was 

not evident in the original study. 

https://paperpile.com/c/hewRpf/qw1QC
https://paperpile.com/c/hewRpf/zqEI8
https://paperpile.com/c/hewRpf/bGVoE
https://paperpile.com/c/hewRpf/qw1QC
https://paperpile.com/c/hewRpf/qw1QC
https://paperpile.com/c/hewRpf/zqEI8
https://paperpile.com/c/hewRpf/AxauZ
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Figure 1.18 Increased power for identifying diagnostic markers is shown through a re-analysis of 
mucin-type O-glycans from normal, tumor-proximal and gastrointestinal cancer biopsies, 
transformed to motif abundance. a and b Welch Two Sample t-test P-value and False Discovery Rate 
(FDR) distributions for glycan abundance and glyco-motif abundance. c We found multiple core 2 
substructures depleted in gastrointestinal cancer relative to normal tissue. Not all linkages are specified, 
only those relevant to the substructure definition. The information of log fold changes (logFC) and the FDR 
are presented next to each substructure. Source data are provided as a Source Data file. 
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Figure 1.19 A re-analysis of ganglioside glycolipid abundance pooled across various ceramide types. 
Glycolipid and substructure abundance from a lactose root clarified distinct glycosylation in the retina4. a, 
Retinal GD3 substructure abundance is enriched in retina across nearly all ceramide species while the same 
effect is not visible at the whole glycan level. b, Retinal GM2 is depleted relative to the proximal ciliary 
body but the effect is only visible at the substructure level. Ceramide groupings include more than 42 or 
fewer than 35 Carbons (C>42, C<35), either 1 or 2 unsaturated bonds (1 unsat., 2 unsat), or groups of specific 
ceramides with X:Y carbons and unsaturated bonds (e.g. 34:1, (36:1+38:1), or (40:1+40:2). The subjects 
N=7 for all boxplots. The quartiles information is recorded on the Table 1.3. Source data are provided as a 
Source Data file. 
  



 

66 
 

Table 1.3 Information for Figure 1.19. 

 Tissue Min Q1 Median Q3 Max 

GD3 

Retina 0.06 0.095 0.18 0.43 0.87 

Brain 0.02 0.05 0.09 0.47 0.91 

Plasma 0.1 0.3 0.33 0.435 0.67 

GD3-Substr 

Retina 0.56 0.603 0.646 0.747 0.836 

Brain 0.367 0.385 0.438 0.574 0.69 

Plasma 0.348 0.387 0.508 0.522 0.647 

GM2 
Retina 0 0.01 0.03 0.49 0.99 

Ciliary.Body 0.17 0.245 0.26 0.355 0.83 

GM2-Substr 
Retina 0.119 0.267 0.4 0.549 0.783 

Ciliary.Body 0.529 0.589 0.744 0.7778 0.904 
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Figure 1.20 A reanalysis of site-specific N-glycosylation in mouse brains. Biclustered heatmaps of 
compositional a site-specific N-glycan data from mouse brain5. b The same compositional data was 
substructure-decomposed to calculate substructure abundances presented in another biclustered heatmap. c, 
d The Pearson correlation coefficient was calculated for the compositional and composition substructure 
abundance for each glycosylation site across proteins. Biclustered heatmaps of the resulting correlation 
coefficients are present as biclustered heatmaps. Biclustering used a complete agglomerative approach. See 
Appendix Method for detail.  
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Re-analysis of ganglioside glycolipid abundance pooled across various ceramide types 

When ganglioside and substructure abundance was pooled by ceramide types, we found the GD3 

substructure enriched in retina relative to brain and plasma, while the GD3 ganglioside abundance showed 

no coherent effect (Figure 1.19a). Similarly, the GM2 substructure was enriched across several ceramide 

types in the Ciliary-body relative to the retina, while the GM2 ganglioside showed no coherent effect 

(Figure 1.19b). By aggregating over subtypes, we can account for confounding biosynthetic complexity 

thereby simplifying analyses and making crucial insights more accessible. 

 

Re-analysis of site-specific N-glycosylation in mouse brains 

Examining site-specific N-glycan compositional data from rat brain, we found that the 

decomposition of composition abundance into composition substructure abundance reveals additional 

potential signal. As previously shown, the sparsity of the abundance matrix decreases, and the comparability 

of profiles is improved when glycan data is aggregated over substructures (Figure 1.20a, b). Further, the 

correlation structure of substructure aggregated abundance (Figure 1.20d) appears more robust than its 

compositional counterpart (Figure 1.20c); there are more clusters with clearer borders, multiple clear off-

diagonal clusters and the median R2 is approximately doubled. While it is possible that the higher 

correlation is indicative of an increased background, that is unlikely considering the increase in visible 

correlation is structured, not randomly distributed through the background. 

Discussion 

Glycosylation has generally been studied from the whole-glycan perspective using mass 

spectrometry and other analytical methods. From this perspective, two glycans that differ by only one 

monosaccharide are distinct and are not directly comparable. Thus, the comparative study of glycoprofiles 

has been limited to changes between glycans shared by multiple glycoprofiles or small manually curated 

glycan substructures(Rademacher and Paulson 2012). GlyCompare sheds light on the hidden biosynthetic 

between glycans by integrating the structural similarity into the comparison. Glycoprofiles are converted 

https://paperpile.com/c/hewRpf/mNEeY
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to glyco-motif profiles; wherein each substructure abundance represents the cumulative abundance of all 

glycans containing that substructure. In another word, substructure abundance is automatically transformed 

from the upstream data; motif selection simply allows the user to focus on the least substructures necessary 

to understand their dataset. This quantification of substructures can be easily scaled up to compare more 

glycoprofiles in large datasets. Thus, it brings several advantages and different perspectives, with some 

important limitations, to enable the systematic study of glycomics data.  

Like any analytical pipeline, GlyCompare is sensitive to upstream analysis (e.g., mass spectrometry 

methods measure the mass-to-charge ratios of glycans and their fragments, and thus require expert 

annotation to assign structures). Therefore, GlyCompare will continue to improve with advances in 

glycoprofile structure annotation quality. Going forward, we hope to include multiple methods for 

aggregating abundance over substructures, including aggregation using multiple functions (besides addition) 

over fully or partially specified biosynthetic networks. While summing abundance for all subsumed 

substructures works well, manual reaction specification can help avoid information loss when biosynthesis 

is not hierarchical and acyclic or glycans are not increasing in size. When these limitations are 

acknowledged, the current version of glycompare has demonstrated some exciting capabilities.  

 First, the GlyCompare platform computes a glyco-motif profile (i.e., the abundances of the minimal 

set of glycan substructures) that maintains the information of the original glycoprofiles, while exposing the 

shared intermediates of measured glycans. These glyco-motif profiles more accurately quantify similarities 

across glycoprofiles. This is made possible since glycans that share substructures also share many 

biosynthetic steps. If the glycan biosynthetic network is perturbed, all glycans synthesized will be impacted 

and the nearest substructures will directly highlight where the change occurred. For example, in EPO 

glycoprofiles studied here, the tetra-antennary structure is depleted in the Mgat4a/4b/5 knockout group and 

the downstream sialylated substructure depleted when St3gal4/6 were knocked out. Such structural patterns 

emerge in GlyCompare since the tool leverages shared intermediate substructures for clustering, thus 

identifying common features across diverse samples.  
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 Second, trends in glycan biosynthetic flux become visible at the substructure level. For example, 

in the HMO data set, multiple glycans are made through a series of steps from LNT to DSLNH (Figure 

1.9a). Only when the substructure abundances and product-substrate ratios are computed can we observe 

the secretor-dependent temporal differences in the abundance of the LSTb substructure, X62. This is 

particularly interesting. Though changes in α-1,2 fucosylation define secretor status, we see additional 

secretor-dependent effect on sialylated structures with no fucose. The biosynthetic interpretation of root-

based substructures was applied to ocular gangliosides(Sibille et al. 2016) to identify tissue-specific 

glycolipid substructures (Figure 1.19). These are the systemic effects invisible without a systems-level 

perspective due to the interconnected nature of glycan synthesis; this disparity underlines the power of this 

method. 

 Third, the sparse nature of glycomic datasets and the synthetic connections between glycans make 

glycomic data unfit for many common statistical analyses. However, the translation of glycoprofiles into 

substructure abundance provides a framework for a more statistically powerful and robust analysis of 

glycomic datasets. These methods can enrich both structural (Figure 1.3a) and compositional (Figure 1.20) 

thereby increasing the interpretability and structure of the dataset. Single sample perturbations, such as the 

knockouts in the glycoengineered EPO, can be compared to wild-type; all substructure data can be 

normalized and rigorously distinguished from the control using a one-sample Wilcoxon-test. Furthermore, 

conditions or phenotypes with many glycoprofiles, such as the secretor status in the HMO dataset, can be 

compared using various statistical methods to evaluate the association between the phenotypes and 

glycosylation. For example, in HMO data, we revealed that the α-1,2 fucose substructure is enriched in 

secretor status, consistent with previous studies(Koda et al. 1996; Kudo et al. 1996; Viverge et al. 1990). 

Because the substructure approach includes comparisons of glycans that are not shared across the different 

samples but share intermediates, GlyCompare decreased sparsity and increased statistical power. We 

demonstrate the increase in statistical power and observable differences between HMO (Figure 1.16) and 

the tumor-proximal mucin-type O-glycan presentation (Figure 1.18). Thus, one can obtain richer glycan 

comparisons of representative substructures, total synthesized abundance, and flux. 

https://paperpile.com/c/hewRpf/zqEI8
https://paperpile.com/c/hewRpf/AxauZ+FXnyt+JFgBR
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Finally, in combination with the substructure network, we can systematically study glycan 

synthesis. The product-substrate ratio provides an estimation of flux through the glycan biosynthetic 

pathways. Using the HMO dataset, we demonstrated the power of this perspective by showing that more 

LSTb is converted to DSLNT in the secretor mother. The perspectives made available through GlyCompare 

are not limited to Wilcoxon-tests and regression models. Because the substructure-level perspective 

minimizes biosynthetic dependency between glycans, glyco-motif abundances can be used with nearly any 

statistical model or comparison demanded by a dataset. We have accommodated the sparse and non-

independent nature of glycoprofiles, thereby making countless comparisons analyses possible. 

Methods 

The overview of the pipelines 

The Figure 1.21 showed a summary of GlyCompare workflow. The GlyCompare workflow consists of 

several steps wherein glycoprofiles are annotated and decomposed, glyco-motifs are prioritized, and each 

glyco-motif is quantified for subsequent comparisons with or without specific phenotype data. 
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Figure 1.21 The workflow of the pipeline. This flowchart provides a basic overview of the glycompare 
platform. Glycomics data which contain the glycan structure (or compositional) information and abundance 
information, are fed into the pipeline. The green boxes are the main pipeline function in the glycompare 
platform. The glycan structures are loaded as glypy.Glycan object at the initialization step. Then, the glyco-
motif vectors are generated with the help of the glycan abundance. After that, glycol-motif profiles are 
delivered to the clustering analysis and statistical analysis modules. 
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Supplementary Figure 14 | The workflow of the pipeline. Glyco-motif profile go through the 

clustering analysis and statistical analysis. The detailed step will be introduced in the method 

section. 
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N-glycosylation of EPO glycoprofile collection for re-analysis 

N-glycosylation data were previously published(Yang et al. 2015). Upon retrieving these data from the 

study, we picked 16 glycoprofiles that are used again in their follow-up study(Čaval et al. 2018) and further 

processed the data as follows. All measurements were taken from distinct samples.  

 Glycan substructures were extracted from the observed glycans. Substructure abundance was 

calculated from the glycan abundance of all glycans containing the substructure. The substructure network 

identifies a minimal set of 151 glyco-motif substructures to compare the mutants. Finally, representative 

substructures were extracted to pool abundance and summarize the structural changes across mutants. Each 

of these operations is further specified below. 

 

HMO glycoprofile collection and analysis 

HMOs were analyzed as de-identified samples previously for an independent study(Mohammad, Hadsell, 

and Haymond 2012; Mohammad and Haymond 2013) at Baylor College of Medicine. Following 

Institutional Review Board approval (Baylor College of Medicine, Houston, TX), lactating women 

provided written informed consent. Women with diabetes or impaired glucose tolerance, anemia, or renal 

or hepatic dysfunction were excluded from the study. Women were 18-35 years of age, had uncomplicated 

singleton pregnancies with vaginal delivery at term (>37 weeks) and pregnancy Body Mass Index (BMI) 

remained <26kg m-2. Infants were healthy and exclusively breastfed. Forty-eight milk samples were 

collected from 6 human mothers (1, 2, 3, 4, 7, 14, 28, and 42 days postpartum (DPP)). More information 

on subject selection, exclusion, study design, and breast milk collection has already been 

published(Mohammad, Hadsell, and Haymond 2012; Mohammad and Haymond 2013). 

Glycan composition and abundance were measured by high-performance liquid chromatography (HPLC) 

following fluorescent derivatization with 2-aminobenzamide (2AB, CID: 6942)(Bode et al. 2012; Alderete 

et al. 2015). Raffinose (CHEBI:16634, CID:439242), a non-HMO oligosaccharide, was added to each milk 

sample as an internal standard at the beginning of sample preparation to allow for absolute quantification. 

Of the 300-500 predicted HMO, the 16 most abundant HMO were detected based on retention time 

https://paperpile.com/c/hewRpf/YVyXY
https://paperpile.com/c/hewRpf/L48Kt
https://paperpile.com/c/hewRpf/XM8U9+etQW3
https://paperpile.com/c/hewRpf/XM8U9+etQW3
https://paperpile.com/c/hewRpf/XM8U9+etQW3
https://paperpile.com/c/hewRpf/NkbUr+8Bnvd
https://paperpile.com/c/hewRpf/NkbUr+8Bnvd
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comparison with commercial standard oligosaccharides and mass spectrometry analysis, including 2-

fucosyllactose (2'FL), 3-fucosyllactose (3'FL), 3-sialyllactose (3'SL), lacto-N-tetraose (LNT), lacto-N-

neotetraose (LNnT), lacto-N-fucopentaose (LNFP1, LNFP2 and LNFP3), sialyl-LNT (LSTb and LSTc), 

difucosyl-LNT (DFLNT), disialyllacto-N-tetraose (DSLNT), fucosyl-lacto-N-hexaose (FLNH), difucosyl-

lacto-N-hexaose (DFLNH), fucosyl-disialyl-lacto-N-hexaose (FDSLNH) and disialyl-lacto-N-hexaose 

(DSLNH). GlyTouCan IDs for each glycan are listed in Table 1.4.  
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Table 1.4 HMO abbreviations. 

HMO abbreviations are specified in this table. Complete GlycoCT structures and GlyTouCan accession, 
for all HMO and EPO glycans used in this study, can be accessed 
at https://github.com/LewisLabUCSD/GlyCompare/blob/master/example_data/Glycan_Structures.comple
te.xlsx. 

HMO Abbreviation GlyTouCan Accession 

LNT Lacto-N-tetrose G45827GY 

LNnT Lacto-N-neotetrose G48059CD 

2’FL 2’-fucosylactose G10422IZ 

3FL 3-fucosylactose G06210XB 

3’SL 3’-sialyllactose G91237TK 

LNFPI Lacto-N-fucopentose I G01650PH 

LNFPII Lacto-N-fucopentose II G98173LG 

LNFPIII Lacto-N-fucopentose III G83916HL 

LSTb LS-tetrasaccharide b G19017MP 

LSTc LS-tetrasaccharide c G72506RN 

DSLNT Disialyllactose-N-tetrose G38710SX 

DFLNT Difucosyllacto-N-tetrose G70115XG 

FLNH Fucosyllacto-N-hexose G24504JY 

DSLNH Disialyllacto-N-hexaose G47928KI 

DFLNH Difucosyllacto-N-hexaose G63053GR 

FDSLNH Fucodisialyllacto-N-hexaose N/A 

https://github.com/LewisLabUCSD/GlyCompare/blob/master/example_data/Glycan_Structures.complete.xlsx
https://github.com/LewisLabUCSD/GlyCompare/blob/master/example_data/Glycan_Structures.complete.xlsx
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HMO measurements by HPLC were quantified using Chromeleon 7.2(Greco et al., n.d.). 

Technicians were blinded to metadata associated with each sample. No samples were excluded. The HPLC 

failed to quantify HMO in the day 1 sample collected from subject L6, therefore, no data from this sample 

could be included. Samples were analyzed in a random order to mitigate batch effects. In addition to 

absolute concentration of each glycan wi, the proportion of each glycan per total glycan concentration (sum 

of all integrated glycans) was calculated and expressed as relative abundance (% of the total, 𝑤𝑖/𝛴𝑤∗). The 

presence of 2-FL defines secretor status. Absolute abundance of HMO is determined by a well-

characterized low-noise method(Bode et al. 2012; Alderete et al. 2015) using HPLC analysis(McGuire et 

al. 2017). Therefore, no technical replicates were necessary. 

 HMO abundance profiles were treated similarly to the N-glycans. We identified and quantified 26 

glyco-motifs from 121 substructures. We compared glyco-motif abundance and their abundance ratios 

directly to secretor status along with the log of days postpartum. 

Computing glycan substructure profiles from glycoprofiles  

Three procedures were used for preprocessing the studied glycoprofiles (Figure 1.1c). First, 

glycoprofiles are parsed into glycans with abundance. In each glycoprofile, the glycans are manually drawn 

and exported with GlycoCT format using the GlyTouCan Graphic Input tool(Aoki-Kinoshita et al. 2015). 

GlycoCT formatted glycans are loaded into Python (version 3+) and initialized as glypy.glycan objects 

using the Glypy (version 0.12.1)(Klein and Zaia 2019). Assuming we have a glycoprofile i, the 

corresponding abundance of each glycan j in glycoprofile i is represented by 𝑔𝑖𝑗 . For example, the relative 

m/z peak in the mass spectrum or the abundance value in an HPLC trace, is calculated relative to the total 

abundance of glycans in this glycoprofile 𝑔𝑖𝑗/𝛴𝑔𝑖∗. Glycans with ambiguous topologies are handled by 

assuming they belong to every possible structure with equal probability, thereby creating all possible n 

structures, still, with 𝑔𝑖𝑗/𝑛𝛴𝑔𝑖∗ abundance of each. Second, glycans are annotated with glycan substructure 

information, and this information is transformed into the substructure vector. Substructures within a glycan 

https://paperpile.com/c/hewRpf/yGl2a
https://paperpile.com/c/hewRpf/NkbUr+8Bnvd
https://paperpile.com/c/hewRpf/Snwj7
https://paperpile.com/c/hewRpf/Snwj7
https://paperpile.com/c/hewRpf/Bx7Ze
https://paperpile.com/c/hewRpf/vhHG2


 

77 
 

are exhaustively extracted by breaking down each linkage or a combination of linkages of the studied glycan. 

Note that this method cannot currently deal with cyclic glycans. All substructures extracted are merged into 

a substructure set S. Substructures are sorted by the number of monosaccharides and duplicates are removed. 

Then, each glycan is matched to the substructure set S, producing a binary glycan substructure presence (1) 

or absence (0) vector, 𝑥𝑖𝑗 . Lastly, a substructure (abundance) vector is calculated as Pi= 𝛴𝑥𝑖𝑗𝑔𝑖𝑗/𝛴𝑔𝑖∗ 

representing the abundance of the substructures s in this glycoprofile, where Pi= (𝑠1𝑖, . . . , 𝑠𝑛𝑖). Third, a 

substructure network is built based on the substructure vectors. The substructure network is a directed 

acyclic graph wherein each node denotes a glycan substructure. Given the substructure set S, the root node 

starts from the monosaccharides or a defined root core structure, and a child node is a substructure with 

only one monosaccharide added to its parent node. We note that one child node might have multiple parent 

nodes and vice versa. The child node depends on its parent node(s) since it cannot exist without any parent 

node. The edges in the substructure network were annotated with known synthetic rules for further analysis. 

Substructure networks were visualized by networkx (version 2.1; https://networkx.org/). and cytoscape 

(version 3.8.2)(Shannon et al. 2003).  

 

Selecting glyco-motifs from the substructure network  

A larger subset of the substructure network is necessary to uniquely describe a more diverse set of 

glycoprofiles, while fewer substructures are needed to describe more similar glycoprofiles sufficiently. 

Comparisons become more focused when only examining these variable substructures. To simplify the 

substructure network, the parent/child substructure pair that have the same abundance can be merged 

without any information loss. As illustrated in Figure 1.2d, a parent-child substructure pair with the same 

abundance (solid arrow) can be merged. If they have the same abundance, we can conclude that the addition 

of the specific monosaccharide is not perturbed across all glycoprofiles, which means they carry the same 

information. Thus, the parent node can be pruned without information loss. All remaining nodes, namely, 

the glyco-motifs, are used to cluster the glycoprofiles.  

https://paperpile.com/c/hewRpf/4dgyL
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After selecting the glyco-motifs (Figure 1.2d), we use the “monosaccharides weight” to track whose 

parent node is merged. All node weights are initialized as 1. When a node is removed, the weight is equally 

divided and distributed to child nodes that have the same abundance as the removed node. Since this method 

redistributes weight from the root to leaves, the descendant substructure node starting having different 

abundance from the parent node will gain the most weight. The weights W are used later for generating the 

representative substructures. 

 

Substructure based clustering of glycoprofiles 

After generating the glyco-motifs, the Pearson correlation and ‘complete’ distance are used to 

cluster the glycoprofiles and substructures (Figure 1.2e). The elbow method is used to determine the cluster 

numbers. To identify the representative glycan substructures, a set of glycan substructures with weights W 

is first aligned (Figure 1.2f). Then, we calculate the sum of monosaccharide weights for each glycan 

substructure. The representative substructure is thus defined as the glycan substructures with their summed 

monosaccharide weights greater than 51% (a heuristic and flexible parameter to facilitate user-controlled 

clarity) of the total weight of glycan substructures. Lastly, the averaged abundances of the representative 

substructures are generated to assess their differential expressions between different glycoprofiles.  

 

Substructure cluster abundance comparison and network edge-based ratio comparison  

We use the representative substructures to summarize and analyze the structural and quantitative 

changes across glycoprofiles. For the abundance of a representative substructure in a glyco-motif cluster, 

we combine the substructure abundance and the substructure monosaccharide weights to generate the 

weighted average of substructure abundance. Since the abundance range of representative substructures 

across different glycoprofiles is different, we re-centralized the representative substructure abundance 

based on WT and scaled them with standard deviation. There are many representative substructures 

significantly deviating from the WT’s abundance. Since the abundance distributions are not normally 

distributed, we used a one-sided 1-sample Wilcoxon test to test if the abundance of a representative 
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substructure in a glycoprofile is significantly divergent. Effect size, r, was calculated as z/sqrt(N)(Rosenthal 

and Rubin 1991). A Bonferroni correction (n=16) was used to correct for multiple testing, so p=0.0031 is 

used as criteria, and effect sizes are all above 0.68. 

For those network edges annotated with enzyme information, we further test if an enzyme has the 

same efficacy in two glycoprofiles. Every edge has a parent/child abundance ratio. All edges annotated with 

the same enzyme consist of an abundance ratio distribution in one glycoprofile (Figure 1.3c). The Wilcoxon 

test is used to compare the ratio distribution for the same enzyme in two glycoprofiles.  

To have a concise view of the representative substructure network, we further generate a simplified 

network. The nodes from the substructure network are merged based on the substructure clustering. The 

edges connecting the original nodes are merged to connect the new nodes. Lastly, the derived representative 

substructure network represents the merged nodes and the edges annotated by enzymatic rules (Figure 1.9b). 

 

Phenotype-associated substructure detection 

For revealing the phenotype-associated substructures, we estimated the influence of secretor status 

on glycan and glyco-motif abundance for revealing the phenotype-associated substructures using a 

generalized estimating equation (GEE, R3.6::geepack(Yan and Fine 2004; Halekoh et al. 2006)). GEE 

models account for resampling bias in longitudinal measurements(Zeger and Liang 1986); other regression 

models, like generalized linear models, overestimate the sample size and power by ignoring this bias. 

Unlike mixed effect models, which can account for resampling bias, GEE allows non-linear relations 

between the outcome and covariates, while accounting for correlation among repeated measurements from 

the same subject. Here we used GEE with an exchangeable correlation structure (assuming the within-

subject correlation between two time-points is ρ). We log and z-score standardized each glycan and glyco-

motif measurement to stabilize the variance and equalize the range. We also used the log of days postpartum 

(DPP) to linearize the relationship over time. The Wald test was used to measure the significance of Secretor 

status contribution. For additional information and diagnostic statistics for specific regressions, see Table 

1.1a and 1.3b. All regression results can be found in Figure 1.15. 

https://paperpile.com/c/hewRpf/Bd06a
https://paperpile.com/c/hewRpf/Bd06a
https://paperpile.com/c/hewRpf/WJPIL+3ocm8
https://paperpile.com/c/hewRpf/XEiEG
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Product-substrate ratio as a proxy for flux and estimating flux-phenotype associations 

To further isolate glyco-motif-specific effects from biosynthetic biases, we explored methods to 

control for the product-substrate relations. First, we extract the relative abundance of parent-child pairs of 

glyco-motifs in the substructure network; these are product-substrate relations like LNT and LSTb (Figure 

1.9e). Glyco-motif abundance represents the total substructure synthesized; therefore, when we examine 

the product-substrate ratio, we measure the total amount of the substrate substructure converted to the 

product substructure in the sample. Thus, the product-substrate ratio is a proxy for flux. Using logistic GEE 

regression modeling, similar to the approach used for testing substructure-phenotype associations, we can 

measure the influence of estimated flux between two glycans on secretor status; here we predicted secretor 

status from the estimated flux log(DPP). For additional information and diagnostic statistics, see Table 1.1c. 

 

Glyco-motif Abundance Robustness and Power Analysis 

Similar to those used in Figure 1.14, GEE models were trained using either glyco-motif or whole 

glycan relative abundance. To stabilize the variance, equalize the range, and make the regressions 

comparable, we used a square root and z-score normalization on each glycan and glyco-motif measurement. 

Glyco-motif or relative glycan abundance was predicted from either DPP alone, Secretor status alone, DPP 

+ Secretor status, or DPP + Secretor status + DPP:Secretor. To avoid biasing the analysis with misfit or 

uninformative models, models with small coefficients (|coef|<0.5) or non-normal abundance distributions 

(Shapiro-Wilks p < 0.001) were removed. Model robustness measures including, coefficient magnitude 

(nglycan-stats=39, nmotif-stats=86), standard error (nglycan-stats=39, nmotif-stats=86) and marginal R2 (nglycan-stats=21, 

nmotif-stats=47) were used to compare model performance. Robustness measures from glycan-trained and 

glyco-motif-trained models were compared using a one-sided Wilcoxon rank sum test with continuity 

correction. We validated these findings using a 10,000 iteration one-sided, two-sample bootstrapping t-tests 

(Rv3.6::nonpar::boot.t.test); bootstrapping p-values were less than or equal to Wilcoxon rank sum p-values 
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within 0.001. Finally, using the Rv3.6::pwr::pwr.r.test v1.2.2 package, statistical power was predicted 

between n=5 and n=200 for the median and interquartile range of effect sizes observed in glyco-motif-

trained and glycan-trained models.  

 

Substructure decomposition of published IgG N-glycosylation to distinguish known and unknown 

biosynthetic reactions  

We re-analyized structural N-glycan data from IgG (Benadetti_2017)(Benedetti et al. 2017). IgG 

N-glycans were measured using liquid chromatography coupled with electrospray mass spectrometry (LC-

ESI-MS). Pre-processing of these data was restricted to reformatting for input into Glycompare-compatible 

abundance matrix and structure annotation. Glycoprofiles were normalized to relative abundance. 

Substructure abundances and motif extraction were performed using an N-glycan thereby focusing analysis 

on biosynthetic motifs.  

 Using the IgG N-glycan data, we estimated partial correlation(Opgen-Rhein et al. 2007) between 

glycan abundances or between motif abundances. Previously, glycan abundance partial correlation was 

used to identify previously uncharacterized N-glycan biosynthetic reactions(Benedetti et al. 2017). Here, 

we used motif abundance partial correlation and compared predicted power. Edges (partial correlations 

between glycans or motifs) were filtered for direct relations (structures differing by only one 

monosaccharide), split into known (True) and unknown (False) reactions. Partial correlation distributions 

were stratified by prior knowledge (True vs False), structure type used for partial correlation (glycan vs 

motif), IgG isoform (1, 2, or 4), and reaction type (B4GALT or ST6GALT1; manually annotated). A one-

sided t-test was used to determine if motif abundance calculated partial correlations were higher than those 

calculated from glycan abundance in either previously known or unknown reactions. 

 

Substructure decomposition of published mucin-type O-glycans to clarify tumor-specific glycan 

epitopes 

https://paperpile.com/c/hewRpf/3Z1Il
https://paperpile.com/c/hewRpf/UwIo8
https://paperpile.com/c/hewRpf/3Z1Il
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We re-analyzed structural mucin-type O-glycan abundance (Table 1.5)(Jin et al. 2017). Mucin-type 

O-glycans were originally measured by Liquid Chromatography and Mass Spectrometry (LC-MS), 

structures were manually annotated using empirical masses from Unicarb-DB(Campbell, Nguyen-Khuong, 

et al. 2014). Pre-processing of these data was restricted to reformatting for input into Glycompare-

compatible abundance matrix and structure annotation. Formatted data were normalized using probabilistic 

quotient normalization(Benedetti et al. 2020). Substructure abundances and motif extraction were 

performed using a monosaccharide core for thereby focusing analysis on epitope motifs.  

 Using the mucin-type O-glycan data, we examined both the original glycan abundance data and the 

motif-level abundance decomposition. Glycan and motif structure abundance was compared across cancer 

and non-cancer samples using two-sample t-tests; p-values were multiple-test corrected using False 

Discovery Rate(Benjamini and Hochberg 1995). 

  

https://paperpile.com/c/hewRpf/qw1QC
https://paperpile.com/c/hewRpf/Wf4Te
https://paperpile.com/c/hewRpf/Wf4Te
https://paperpile.com/c/hewRpf/C4mSn
https://paperpile.com/c/hewRpf/1l9og
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Table 1.5 Glossary of analyses terms. 

Substructures types examined in each section. 

Results section Substructure Explanation 

GlyCompare decomposes glycoprofiles 

to facilitate glycoprofile comparison 

Glyco-motif EPO clustering was done with glyco-motif 

abundance 

GlyCompare decomposes glycoprofiles 

to facilitate glycoprofile comparison 

All  Overview of methods discusses every 

substructure type.  

GlyCompare accurately clusters 

glycoengineered EPO samples 

Glyco-motif EPO clustering was done with glyco-motif 

abundance 

GlyCompare summarizes structural 

change across glycoprofiles 

Representative 

substructure 

EPO clusters were examined for enrichment 

and depletion of representative substructures 

GlyCompare reveals phenotype-

associated substructures and trends 

invisible at the whole glycan level 

Substructure All HMO substructures were used to avoid 

merging substructure matching known 

HMOs. This was necessary to allow 

comparison to know structures 

GlyCompare identifies condition-

specific synthesis dynamics 

Substructure All HMO substructures were used to avoid 

merging substructure matching known 

HMOs. This was necessary to allow 

comparison to know structures 

GlyCompare increases statistical power 

of glycomics data 

Glyco-motif Just HMO glyco-motifs were used to avoid 

artificially overpowering the analysis.  
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Substructure decomposition of ganglioside glycolipids to compare abundance across tissues 

We re-anaylized structural ganglioside glycolipid abundance (Sibille et al. 2016). Published 

abundance was pooled (summation) within ceramide types, from mouse eye, brain and blood. Glycosides 

abundance was originally measured by Hydrophilic Interaction Liquid Chromatography stratified Mass 

Spectrometry (HILC-MS), and HPLC with glycoside standards for structural identification. Pre-processing 

of these data was restricted to reformatting for input into Glycompare-compatible abundance matrix and 

structure annotation. Formatted data were normalized using probabilistic quotient normalization(Benedetti 

et al. 2020). Substructure abundances and motif extraction were performed using a lactose core thereby 

focusing analysis on biosynthetic motifs. 

We examined abundance from two gangliosides (GD3 and GM2) and their corresponding lactose-

based substructure abundance. Ceramide groupings include more than 42 or fewer than 35 Carbons (C>42, 

C<35), either 1 or 2 unsaturated bonds (1 unsat., 2 unsat), or groups of specific ceramides with X:Y carbons 

and unsaturated bonds (e.g. 34:1, (36:1+38:1), or (40:1+40:2). Due to limited sample size, trends rather 

than formal statistics were used to compare abundance. 

 

Substructure decomposition of site-specific N-glycan compositions to enrich correlation structure 

We re-anaylized compositional site-specific N-glycan abundance (Table 1.5)(Riley et al. 2019). 

Intact site-specific N-glycan composition was measured using Activated-ion electron transfer dissociation 

(AI-ETD), the log of localized spectra count for each site-specific composition was used to represent 

abundance. Pre-processing of these data was restricted to reformatting for input into Glycompare-

compatible abundance matrix and structure annotation. Formatted data were normalized using probabilistic 

quotient normalization(Benedetti et al. 2020). Substructure abundances and motif extraction were 

performed using compositional monosaccharides thereby focusing analysis on epitope motifs.  

 Examining site-specific N-glycan compositional data from rat brain, we used a slightly modified 

method to compute compositional substructure abundance from compositional abundance. To calculate 

https://paperpile.com/c/hewRpf/zqEI8
https://paperpile.com/c/hewRpf/C4mSn
https://paperpile.com/c/hewRpf/C4mSn
https://paperpile.com/c/hewRpf/bGVoE
https://paperpile.com/c/hewRpf/C4mSn
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compositional substructure, we sum over larger and subsuming structures in a compositional network. 

Consider the compositional abundance of a structure: HexNac(p)Hex(q)Fuc(r). Instead of abundance of 

HexNAc=p, Hex=q, and Fuc=r, we examine the compositional abundance for all measurements where 

HexNAc>=p, Hex>=q, and Fuc>=r. The network structure can be constrained to provide additional insight 

(e.g. Glyconnect Compozitor(Robin, Mariethoz, and Lisacek 2020)), currently, the aggregation criteria 

remains simple. In analyzing these data, we explored trends in correlation between observed compositional 

vs compositional-substructure abundance. 
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Data Availability 

The EPO N-glycan, IgG, glycolipid, mucin, and site-specific N-glycan abundance data reformatted 

and re-analyized for this study as well as the HMO abundance data generated in this study have been 

deposited in the Zenodo database under accession code doi.org/10.5281/zenodo.5083029. The data 

supporting this work is made available under a CC-BY 4.0 licence.  

Code Availability 

We provide the Glycompare python library (v1.1.3) described in this work and example code used 

to perform analysis and generate figures are available through Github: doi.org/10.5281/zenodo.5083029. 

In addition to the Glycompare python library, we provide jupyter notebooks to generate our figures and 

analysis. Finally, we give a dockerized environment that supports Glycompare and all EPO and HMO 

analyses in the manuscript: doi.org/10.24433/CO.9148600.v1. The glycompare python package and 

examples are made available under an MIT licence. 
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CHAPTER 2: A Predictive Ensemble Classifier for the Gene Expression Diagnosis of ASD at Ages 1 to 4 

Years 

 

Abstract 

Autism Spectrum Disorder (ASD) diagnosis remains behavior-based and the median age of diagnosis is 

~52 months, nearly 5 years after its first-trimester origin. Accurate and clinically-translatable early-age 

diagnostics do not exist due to ASD genetic and clinical heterogeneity. Here we collected clinical, 

diagnostic, and leukocyte RNA data from 240 ASD and typically developing (TD) toddlers (175 toddlers 

for training and 65 for test). To identify gene expression ASD diagnostic classifiers, we developed 42,840 

models composed of 3,570 gene expression feature selection sets and 12 classification methods. We found 

that 742 models had AUC-ROC ≥ 0.8 on both Training and Test sets. Weighted Bayesian model averaging 

of these 742 models yielded an ensemble classifier model with accurate performance in Training and Test 

gene expression datasets with ASD diagnostic classification AUC-ROC scores of 85-89% and AUC-PR 

scores of 84-92%. ASD toddlers with ensemble scores above and below the overall ASD ensemble mean 

of 0.716 (on a scale of 0 to 1) had similar diagnostic and psychometric scores, but those below this ASD 

ensemble mean had more prenatal risk events than TD toddlers. Ensemble model feature genes were 

involved in cell cycle, inflammation/immune response, transcriptional gene regulation, cytokine response, 

and PI3K-AKT, RAS and Wnt signaling pathways. We additionally collected targeted DNA sequencing 

smMIPs data on a subset of ASD risk genes from 217 of the 240 ASD and TD toddlers. This DNA 

sequencing found about the same percentage of SFARI Level 1 and 2 ASD risk gene mutations in TD (12 

of 105) as in ASD (13 of 112) toddlers, and classification based only on the presence of mutation in these 

risk genes performed at a chance level of 49%. By contrast, the leukocyte ensemble gene expression 

classifier correctly diagnostically classified 88% of TD and ASD toddlers with gene mutations. Our 

ensemble ASD gene expression classifier is diagnostically predictive and replicable across different toddler 

ages, races, and ethnicities; out-performs a risk gene mutation classifier; and has potential for clinical 

translation.  
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Introduction 

ASD is a prenatal(Courchesne, Gazestani, and Lewis 2020; Courchesne et al. 2019; V. Gazestani 

et al. 2020; Courchesne et al. 2011; Marchetto et al. 2017; Courchesne and Pierce 2005; Willsey et al. 2013; 

Courchesne et al. 2007; Stoner et al. 2014; Parikshak et al. 2013; Packer 2016; Kaushik and Zarbalis 2016; 

Krishnan et al. 2016; Donovan and Basson 2017; Grove et al. 2019; Satterstrom et al. 2020), highly heritable 

disorder(Bai et al. 2019) that considerably impacts a child’s ability to perceive and react to social 

information(Bal et al. 2019; Bacon et al. 2018, 2019). Despite this prenatal and strongly genetic beginning, 

robust and replicable early-age biological ASD diagnostic markers useful at the individual level have not 

been found. Indeed, ASD diagnosis remains behavior-based and the median age of the first diagnosis 

remains at ~52 months(Autism and Developmental Disabilities Monitoring Network Surveillance Year 

2006 Principal Investigators and Centers for Disease Control and Prevention (CDC) 2009; Baio et al. 2018; 

Christensen et al. 2018; Maenner et al. 2020), which is nearly 5 years after its first trimester origin. The 

long delay between ASD’s prenatal onset and eventual diagnosis is a missed opportunity for treatment. 

Moreover, the heterogeneity of ASD genetics and clinical characteristics impose barriers to identifying 

early-age molecular diagnostics that accurately diagnose the majority of those with this heterogeneous 

disorder(Michael V. Lombardo, Lai, and Baron-Cohen 2019). Thus, there is a need for early-age molecular 

diagnostics of ASD that robustly surmount this heterogeneity obstacle. 

Since ASD’s heritability is 81%(Bai et al. 2019), initial attempts have focused on genetics to 

develop clinically useful biomarkers for precision medicine and causal explanations for ASD pathogenesis. 

While syndromic risk mutations have been described for >200 genes in ASD(Satterstrom et al. 2020; 

Feliciano et al. 2019; “Human Gene Module” n.d.), each occurs only rarely in ASD. For 80-90% of patients, 

such mutations are not found. Thus, an estimated 80% or more of ASD individuals are considered 

‘idiopathic’, wherein little is known about the genes and/or environmental factors causing their disorder. In 

this idiopathic majority of ASD, the risk is likely associated with many inherited common and rare risk 

variants in each individual child. Studies of polygenic ASD risk found that the combined effect of genetic 

risk variants in case-control studies accounts for less than 7.5% of the risk variance(Antaki et al. 2022); 

https://paperpile.com/c/zZr81D/iIVzK+cpxuh+hil52+GHZwn+tTBoe+vcUMM+OpczF+QHZ6n+FCIIe+zMIc9+wVVo5+ajQ8p+hVIt1+KPseH+7J0ko+g6bfy
https://paperpile.com/c/zZr81D/iIVzK+cpxuh+hil52+GHZwn+tTBoe+vcUMM+OpczF+QHZ6n+FCIIe+zMIc9+wVVo5+ajQ8p+hVIt1+KPseH+7J0ko+g6bfy
https://paperpile.com/c/zZr81D/iIVzK+cpxuh+hil52+GHZwn+tTBoe+vcUMM+OpczF+QHZ6n+FCIIe+zMIc9+wVVo5+ajQ8p+hVIt1+KPseH+7J0ko+g6bfy
https://paperpile.com/c/zZr81D/iIVzK+cpxuh+hil52+GHZwn+tTBoe+vcUMM+OpczF+QHZ6n+FCIIe+zMIc9+wVVo5+ajQ8p+hVIt1+KPseH+7J0ko+g6bfy
https://paperpile.com/c/zZr81D/s1sOU
https://paperpile.com/c/zZr81D/dsuUK+0jMrG+KxbDB
https://paperpile.com/c/zZr81D/tPsGd+UPt2z+RfhZ8+Wn7Sh
https://paperpile.com/c/zZr81D/tPsGd+UPt2z+RfhZ8+Wn7Sh
https://paperpile.com/c/zZr81D/tPsGd+UPt2z+RfhZ8+Wn7Sh
https://paperpile.com/c/zZr81D/gESUh
https://paperpile.com/c/zZr81D/s1sOU
https://paperpile.com/c/zZr81D/g6bfy+63TyO+YjNip
https://paperpile.com/c/zZr81D/g6bfy+63TyO+YjNip
https://paperpile.com/c/zZr81D/3MSIw
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genetic ASD risk scores substantially overlap with controls(Robinson et al. 2016; Clarke et al. 2016; Klei 

et al. 2021; Aguilar-Lacasaña et al. 2022); and, because of this substantial overlap, polygenic risk scores 

are not clinically diagnostic or prognostic for individuals, nor are they explanatory for the majority of ASD. 

Thus, DNA-based mutations or polygenic risk scores may not yet be useful for the many idiopathic ASD 

subjects at the clinical diagnostic level. 

 RNA biomarkers have been sought using blood gene expression in >35 ASD studies since 

2006(Pramparo, Lombardo, et al. 2015; Pramparo, Pierce, et al. 2015; Ch’ng et al. 2015; Diaz-Beltran, 

Esteban, and Wall 2016; Tylee et al. 2017; He et al. 2019; Lee et al. 2019; Kong et al. 2012; Gregg et al. 

2008; Enstrom et al. 2009; Ansel et al. 2016), but many studies have been underpowered, older-aged, 

clinically heterogeneous, and/or lacking validation test datasets. Some early genetics researchers rejected 

blood-based biomarkers believing that ASD-relevant dysregulated gene expression must be restricted to the 

brain. Recent ASD genetics have reversed this view: The earliest prenatal drivers of deviant ASD 

development are, in fact, broadly expressed regulatory genes, a large percentage of which are active in non-

brain organs and tissues such as blood leukocytes as well as in the prenatal brain(Courchesne, Gazestani, 

and Lewis 2020; Courchesne et al. 2019; V. Gazestani et al. 2020; Pramparo, Pierce, et al. 2015; Pramparo, 

Lombardo, et al. 2015; Tylee et al. 2017; Ansel et al. 2016; Hewitson et al. 2021; He et al. 2019). Broadly 

expressed genes that constitute most ASD risk genes are upregulated in early prenatal life and impact 

multiple stages of prenatal brain development from 1st and 2nd trimester proliferation and neurogenesis to 

neurite outgrowth and synaptogenesis in the 3rd trimester. These genes disrupt gene expression in signaling 

pathways such as PI3K-AKT, RAS-ERK, Wnt and insulin receptor pathways, which further disrupt prenatal 

functions(Courchesne, Gazestani, and Lewis 2020; Courchesne et al. 2019; V. Gazestani et al. 2020; 

Pramparo, Pierce, et al. 2015; Pramparo, Lombardo, et al. 2015; Tylee et al. 2017; Ansel et al. 2016; 

Hewitson et al. 2021; He et al. 2019). 

  In ASD 1 to 4 year-olds, leukocyte gene expression in these pathways is significantly 

dysregulated(V. H. Gazestani et al. 2019). The degree of pathway dysregulation was correlated with ASD 

social symptom severity and were validated in ASD neural progenitors and neurons(V. H. Gazestani et al. 

https://paperpile.com/c/zZr81D/ZNj36+7hRUv+kStAx+NPQAC
https://paperpile.com/c/zZr81D/ZNj36+7hRUv+kStAx+NPQAC
https://paperpile.com/c/zZr81D/jJeic+8KIMK+3Nj6u+5ml74+KeWp2+Xybvx+Ts33x+NO9Zn+dAZmB+8wCha+wJSys
https://paperpile.com/c/zZr81D/jJeic+8KIMK+3Nj6u+5ml74+KeWp2+Xybvx+Ts33x+NO9Zn+dAZmB+8wCha+wJSys
https://paperpile.com/c/zZr81D/jJeic+8KIMK+3Nj6u+5ml74+KeWp2+Xybvx+Ts33x+NO9Zn+dAZmB+8wCha+wJSys
https://paperpile.com/c/zZr81D/iIVzK+cpxuh+hil52+8KIMK+jJeic+KeWp2+wJSys+C2PiQ+Xybvx
https://paperpile.com/c/zZr81D/iIVzK+cpxuh+hil52+8KIMK+jJeic+KeWp2+wJSys+C2PiQ+Xybvx
https://paperpile.com/c/zZr81D/iIVzK+cpxuh+hil52+8KIMK+jJeic+KeWp2+wJSys+C2PiQ+Xybvx
https://paperpile.com/c/zZr81D/iIVzK+cpxuh+hil52+8KIMK+jJeic+KeWp2+wJSys+C2PiQ+Xybvx
https://paperpile.com/c/zZr81D/iIVzK+cpxuh+hil52+8KIMK+jJeic+KeWp2+wJSys+C2PiQ+Xybvx
https://paperpile.com/c/zZr81D/iIVzK+cpxuh+hil52+8KIMK+jJeic+KeWp2+wJSys+C2PiQ+Xybvx
https://paperpile.com/c/zZr81D/7TK71
https://paperpile.com/c/zZr81D/7TK71
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2019). Broadly expressed genes in leukocytes from ASD toddlers are also associated with hypoactive brain 

responses to language and atypical cortical patterning, dysregulation of ASD and language relevant genes, 

and poor language outcomes(Michael V. Lombardo et al. 2018; M. V. Lombardo et al. 2021). Thus, 

leukocyte gene expression holds the potential for the objective identification of molecular subtypes of ASD. 

In analyses of leukocyte gene co-expression, ASD-associated module eigengene values were significantly 

correlated with abnormal early brain growth and enriched in genes related to cell cycle, translation, and 

immune networks and pathways. These gene sets are very accurate classifiers of ASD vs. typically 

developing toddlers (TD) (Pramparo, Pierce, et al. 2015). Studies and reviews of the ASD blood gene 

expression literature (Pramparo, Lombardo, et al. 2015; Pramparo, Pierce, et al. 2015; Ch’ng et al. 2015; 

Diaz-Beltran, Esteban, and Wall 2016; Tylee et al. 2017; He et al. 2019; Lee et al. 2019; Kong et al. 2012; 

Gregg et al. 2008; Enstrom et al. 2009; Ansel et al. 2016; V. H. Gazestani et al. 2019) show dysregulated 

gene expression in a number of pathways and processes, including PI3K-AKT-mTOR, RAS signaling 

pathways, ribosomal translation signal, cell cycle, neurogenesis, gastrointestinal disease, 

immune/inflammation, interferon signaling, and the KEGG natural killer cytotoxicity pathway. 

Leukocyte gene expression offers a non-invasive and clinically practicable avenue for 

understanding aspects of ASD cell biology, including those that could be ASD-relevant, ASD-specific, 

robust, and ASD-diagnostic or -prognostic. However, for clinical translational potential of leukocyte 

transcriptomics to lead to robust and rigorous classifiers, high standards for verifying such classifiers should 

be implemented. 

   Thus, we developed, operationalized, and tested a rigorous analytic pipeline to identify molecular 

diagnostic classifiers for ASD using leukocyte gene expression. Using additional clinical data, we verified 

that our composite gene expression classifier was unbiased against common confounding factors (age, race 

and ethnicity). Using this platform on leukocyte transcriptomics from male ASD and typically developing 

(TD) toddlers at ages 1-4 years old, we systematically analyzed the classification performance of 42,840 

different models composed of 3,570 different feature selection sets and 12 commonly-used classification 

methods (Figure 2.1 and Appendix Figure 2.1). Through this, we developed a predictive ensemble 

https://paperpile.com/c/zZr81D/7TK71
https://paperpile.com/c/zZr81D/ueTse+MiGHP
https://paperpile.com/c/zZr81D/8KIMK
https://paperpile.com/c/zZr81D/jJeic+8KIMK+3Nj6u+5ml74+KeWp2+Xybvx+Ts33x+NO9Zn+dAZmB+8wCha+wJSys+7TK71
https://paperpile.com/c/zZr81D/jJeic+8KIMK+3Nj6u+5ml74+KeWp2+Xybvx+Ts33x+NO9Zn+dAZmB+8wCha+wJSys+7TK71
https://paperpile.com/c/zZr81D/jJeic+8KIMK+3Nj6u+5ml74+KeWp2+Xybvx+Ts33x+NO9Zn+dAZmB+8wCha+wJSys+7TK71
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diagnostic classifier of male ASD toddlers. Additionally, using targeted DNA sequencing of the coding 

regions for sets of ASD and neurodevelopmental disorder risk genes using single-molecule molecular 

inversion probes (smMIPs) (Wang et al. 2020; Stessman et al. 2017), we examined the diagnostic classifier 

value of presence or absence of a subset of ASD risk gene mutations in our ASD and TD subjects and 

whether toddlers with ASD risk gene mutations differ in classifier expression from those without such 

mutations. 

 

 

 

 

  

https://paperpile.com/c/zZr81D/SagN2+WQWMe
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Figure 2.1 Overview of the analysis platform. The total gene expression dataset was split into a Training 
set with 175 subjects and a Test set with 65 subjects. Our platform tested 42,840 different models, with 
each model a combination of 1 feature filtration method, 1 feature selection method, 1 feature reduction 
method and 1 classification method (total different combinations = 5 x 102 x 7 x 12 = 42,840 models). 
Models processed the input datasets and returned classification scores. 742 models had classification 
scores >0.8 AUC-ROC in both Training and Test sets were used to build the final ensemble classifier model.  
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Methods 

Participant recruitment and clinical evaluation 

Participants in this study included 240 male toddlers ages 1 to 4 years (Table 2.1). About 70% of 

toddlers were recruited from the general population using an early screening, detection, and diagnosis 

strategy called the Get SET Early procedure(Pierce et al. 2021). Using this approach, toddlers who failed a 

broadband screen, i.e., the CSBS IT Checklist(Wetherby et al. 2002), at 12, 18 or 24 month well-baby visits 

in the general pediatric community settings, were referred to our center for a comprehensive diagnostic and 

psychometric evaluation. The remaining subjects were obtained by general community referrals and 

evaluated in the identical way. Median ages were ASD 2.3 years and TD 1.4 years. All toddlers received a 

battery of standardized psychometric tests by experienced Ph.D.-level psychologists, including the Autism 

Diagnostic Observation Schedule (ADOS; Module T, 1 or 2)(Lord 2012), the Mullen Scales of Early 

Learning(Mullen n.d.), and the Vineland Adaptive Behavior Scales(Sparrow, Balla, and Cicchetti, n.d.). 

Testing sessions routinely lasted 4 hours in one day or occurred across 2 separate days. Toddlers younger 

than 30 months upon initial clinical evaluation were followed longitudinally approximately every 9-12 

months until final confirmation diagnosis at ages 2 to 4 years; Table 2.1 shows demographic and subject 

characteristics at final confirmation ages. 127 toddlers were diagnosed ASD, and 113 were TD. Research 

procedures were approved by the Institutional Review Board of the University of California, San Diego. 

Parents of subjects underwent Informed Consent Procedures with a psychologist or study coordinator at the 

time of their child’s enrollment.  

https://paperpile.com/c/zZr81D/dIyI7
https://paperpile.com/c/zZr81D/2ZFZe
https://paperpile.com/c/zZr81D/pxaYI
https://paperpile.com/c/zZr81D/Gnsic
https://paperpile.com/c/zZr81D/NtsCc
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Table 2.1 Subjects demographics. 

ADOS, Autism Diagnostic Observation Schedule; ASD, autism spectrum disorder; CoSo, Communication 
Social Score; M/F, male/female; RRB, Restricted and Repetitive Behavior; SA, Social Affect. 

  Training set Test set 

  ASD TD 
ASD vs 
TD p 
Value 

ASD TD 
ASD vs 
TD p 
Value 

Number of Subjects 93 82 0.406 34 31 0.71 

Age of last Visit in 
50.8 ± 28.8 34.5 ± 8.4 <0.001 47.4 ± 28.0 39.2 ± 15.3 0.144 

months 

Mullen Scales of Early Learning 

Visual Reception 40.1 ± 13.3 60.3 ± 10.9 <0.001 38.8 ± 15.4 55.1 ± 9.2 <0.001 

Fine Motor 34.8 ± 11.4 54.4 ± 9.5 <0.001 36.9 ± 13.9 52.8 ± 8.9 <0.001 

Receptive Language 32.2 ± 13.1 53.3 ± 8.1 <0.001 29.0 ± 16.6 52.4 ± 7.6 <0.001 

Expressive Language 30.7 ± 15.8 54.4 ± 9.6 <0.001 28.5 ± 16.8 49.8 ± 8.1 <0.001 

Early Learning 
Composite 

73.6 ± 18.5 111.1 ± 13.3 <0.001 71.9 ± 21.0 
105.0 ± 
11.1 

<0.001 

Vineland Adaptive Behavior Scales 

Communication 82.0 ± 17.5 104.9 ± 10.5 <0.001 79.5 ± 17.8 100.4 ± 9.6 <0.001 

Daily Living 83.7 ± 12.8 103.0 ± 10.2 <0.001 84.0 ± 13.0 99.9 ± 10.6 <0.001 

Socialization 80.5 ± 13.0 106.3 ± 10.9 <0.001 79.1 ± 9.8 99.4 ± 11.0 <0.001 

Motor Skills 87.8 ± 10.9 103.1 ± 10.4 <0.001 88.5 ± 10.5 98.8 ± 8.5 <0.001 

Adaptive Behavior 80.8 ± 13.0 105.0 ± 9.7 <0.001 79.9 ± 11.6 99.2 ± 10.3 <0.001 
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Table 2.1 Subjects demographics (continued). 

Autism Diagnostic Observation Schedule 

ADOS SA/CoSo Score 14.3 ± 3.4 2.2 ± 2.0 <0.001 13.3 ± 4.3 2.8 ± 1.9 <0.001 

ADOS RRB Score 3.8 ± 1.5 0.3 ± 0.6 <0.001 3.1 ± 1.5 0.5 ± 0.6 <0.001 

ADOS Total Score 18.1 ± 4.1 2.4 ± 2.1 <0.001 16.4 ± 4.7 3.3 ± 2.2 <0.001 
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Targeted sequencing data from ASD and TD subjects 

For 112 of the 127 ASD and 105 of the 113 TD study subjects, we also had targeted sequencing 

data by smMIPs from prior studies aimed at detecting rare severe mutations in autism and 

neurodevelopmental disorder risk genes; that study was from our Center’s collaboration with the Eichler 

Lab (Wang et al. 2020; Stessman et al. 2017). Two sets of neurodevelopmental disorders and ASD risk 

genes were used for targeted sequencing. The ASD significant variants in our ASD toddlers had been 

previously reported, but here we additionally report ASD significant variants in our TD toddlers. More than 

87% of the ASD toddlers (83 out of 93 and 29 out of 34 ASDs in the Training and Test datasets, 

respectively), and 92% of the TD toddlers (74 out of 82 and all 31 TDs in the Training and Test datasets, 

respectively) were tested for mutations. Rare (MAF < 0.01%) severe missense mutation with a combined 

annotation-dependent depletion (CADD) score ≥30 (MIS30) and likely gene-disruptive (LGD, including 

splicing donor or acceptor, frameshift, and stop-gained) mutations were considered for further analysis. 

Among the 105 TD toddlers, 12 had SFARI Level 1 or 2 ASD risk gene mutations and among the 112 ASD 

toddlers, 13 had such mutations. One of these ASD had two ASD risk gene mutations. Thus, among the 

217 subjects, a total of 25 subjects carried ASD risk gene mutations (26 genes). The two-sided independent 

T-test was performed to test the ensemble score distribution difference between subjects with or without 

mutations. 

 

Blood sample collection for gene expression analyses 

Blood samples were collected from each subject during clinical evaluation visits. To monitor health 

status, the temperature of each toddler was taken using an ear digital thermometer immediately preceding 

the blood draw. When the temperature was higher than 99 Fahrenheit, the blood draw was re-scheduled for 

a later visit. Moreover, the blood draw was not taken if a toddler had some illness (e.g., cold or flu), as 

observed by us or stated by parents. We collected four to six milliliters of blood into 

ethylenediaminetetraacetic-coated tubes from all toddlers. Leukocytes in the blood samples were captured 

https://paperpile.com/c/zZr81D/SagN2+WQWMe
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and stabilized by LeukoLOCK filters (Ambion) and were immediately placed in a −20°C freezer. Total 

RNA was extracted following standard procedures and manufacturer’s instructions (Ambion). 

 

Summary of main steps in design and analyses of the RNA data from the 240 study subjects 

Figure 2.1 outlines the main design and analysis steps, and Appendix Figure 2.1 provided details 

of the feature engineering. The 240 subjects were divided into a Training dataset of 175 subjects and a Test 

set of 65 subjects. The training dataset was used to build gene expression classifiers and the Test set was 

held out and later used to test the classifiers. High-performing classifiers evaluated by the Test set were 

used to build a single, final ensemble classifier, which was a Bayesian averaging model of all top-

performing classifiers. The performance of this ensemble classifier was then measured on Training and Test 

subjects; DE genes underlying its accurate performance were identified and pathway and process 

enrichment determined; and clinical characteristics across classifier scores were examined. Lastly, post hoc 

exploratory analyses were performed to test whether including specific social behavioral and prenatal 

features might improve overall performance.  

 

Microarray data processing 

Gene expression of subject RNA samples was assayed using the Illumina HT-12 platform. Arrays 

were scanned with the Illumina BeadArray Reader and read into Illumina GenomeStudio software (version 

1.1.1). Raw Illumina probe intensities were converted to expression values using the lumi package(Du, 

Kibbe, and Lin 2008). We employed a three-step procedure to filter for probes with reliable expression 

levels. First, we only retained probes that met the detection p < 0.05 cut-off threshold in at least 3 samples. 

Second, we required probes to have expression levels above the 95th percentile of negative probes in at least 

50% of samples. The probes with detection p > 0.1 across all samples were selected as negative probes and 

their expression levels were pooled together to estimate the 95th percentile expression level. Third, for genes 

represented by multiple probes, we considered the probe with the highest mean expression level across our 

dataset, after quantile normalization of the data. These criteria led to the selection of 14,312 coding genes 

https://paperpile.com/c/zZr81D/Gg4mg
https://paperpile.com/c/zZr81D/Gg4mg


 

105 
 

as expressed in our leukocyte transcriptome data, which highly overlaps with the reported estimate of 

14,555 protein-coding genes (chosen based on unique Entrez gene IDs) for whole blood by the GTEx 

consortium(Ardlie et al. 2015).  

 

Building the classifier platform on the training dataset 

The pipeline ran five-fold cross-validations. At the beginning of each iteration, the pipeline held 

out 20% of samples and used the remaining 80% of samples for hyper-parameter selection, feature selection, 

and classifier training. In the first step (Appendix Figure 2.1), feature filtration, five methods were used, 

including no (no action), cov (remove 50% of features with the smaller coefficient of variation), var (remove 

50% of features with smaller variance), cov_var (remove 50% of features with the smaller coefficient of 

variation and then remove 50% of features with smaller variance in the rest), varImportance (keep only the 

25% of features with the highest variance).  

The second step, feature selection, included 102 methods, which were composed of seven groups; 

although conceptually similar, each using different approaches. These seven groups are no (no action), 

grn(Meyer, Lafitte, and Bontempi 2008) (genetic regulatory network), z-score, selectV(Antonio Pedro 

Duarte Silva <psilva@porto.ucp.pt> 2015), svm(“penalizedSVM: Feature Selection SVM Using Penalty 

Functions” n.d.), GSEA(Subramanian et al. 2005), DE-analysis(Ritchie et al. 2015) (see Appendix Method 

1).  

The third step was feature reduction. Seven methods were used: no (no feature reduction), 

WGCNA(Langfelder and Horvath 2008), logisticFwd, SIS(Saldana and Feng 2018), principal component 

regression (PCR)(Mevik and Wehrens 2015), partial least squares regression (PLSR)(Wehrens and Mevik 

2007), canonical powered partial least squares (CPPLS)(Wehrens and Mevik 2007) (see Appendix Method 

1). After three steps, up to 1320 gene routes were created that can be used in the classification step. 

The classification step exploited 12 classifiers, including reg (linear model), logReg(Ripley 2002) 

(logistic regression), lda(Ripley 2002) (Linear Discriminant Analysis), qda(Ripley 2002) (Quadratic 

Discriminant Analysis), ridgeReg(Friedman, Hastie, and Tibshirani 2010) (GLM with ridge regularization), 

https://paperpile.com/c/zZr81D/8lQRZ
https://paperpile.com/c/zZr81D/GjqDl
https://paperpile.com/c/zZr81D/T1RDD
https://paperpile.com/c/zZr81D/T1RDD
https://paperpile.com/c/zZr81D/ASPc6
https://paperpile.com/c/zZr81D/ASPc6
https://paperpile.com/c/zZr81D/3JH87
https://paperpile.com/c/zZr81D/fkJ71
https://paperpile.com/c/zZr81D/0gKvm
https://paperpile.com/c/zZr81D/bP9ej
https://paperpile.com/c/zZr81D/KiZXv
https://paperpile.com/c/zZr81D/b8pqf
https://paperpile.com/c/zZr81D/b8pqf
https://paperpile.com/c/zZr81D/b8pqf
https://paperpile.com/c/zZr81D/LSQQ5
https://paperpile.com/c/zZr81D/LSQQ5
https://paperpile.com/c/zZr81D/LSQQ5
https://paperpile.com/c/zZr81D/wbof4
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lassoReg(Friedman, Hastie, and Tibshirani 2010) (GLM with lasso regularization), ridgeLogReg(Friedman, 

Hastie, and Tibshirani 2010) (logistic regression with ridge regularization), lassoLogReg(Friedman, Hastie, 

and Tibshirani 2010) (logistic regression with lasso regularization), elasticNetLogReg(Friedman, Hastie, 

and Tibshirani 2010) (logistic regression with elastic net regularization), boosting(Ridgeway 2007) 

(Generalized Boosted Regression Modeling with Bernoulli distribution), randomForest(Liaw, Wiener, and 

Others 2002) (random forest) and bagging(Liaw, Wiener, and Others 2002) (random forests with bagging 

to reduce the complexity). After training a classifier, the diagnostic ability was evaluated by AUC-PR 

(precision-recall) curve and AUC-ROC (Receiver operating characteristic) curve(Grau, Grosse, and 

Keilwagen 2015; Robin et al. 2011).  

For every possible combination of the 5 feature filtration, 102 feature selection, 7 feature reduction, 

and 12 classification routes, we made a total of 42,840 different classifier models. 

 

Label permutation data 

To generate the randomized background, we shuffled the diagnostic label of the Training dataset 

and randomly separated the data into training/validation segments (85%/15%). Then we performed the 5-

fold cross-validation on the permuted dataset. 

 

Bayesian model averaging to create a single transcriptomic ensemble classifier 

The training models that had 0.80 or higher AUC-ROC scores were tested on the Test dataset. Then, 

the models that had an AUC-ROC ≥0.80 were used with Bayesian Model Averaging (BMA) to create a 

single ensemble classifier. The ensemble score was the sum of weighted predictions of selected models. 

The weight was the mathematical average of the square of (AUC-ROC value minus 0.7). In a model 

selection, we used training data D to select a good model M (according to a score) to predict a targeted 

outcome T of interest based on patient features X, namely, P(T | X, M). BMA was based on the notion of 

averaging over a set of possible models and weighting the prediction of each model according to its 

probability given training data D, as shown in equations. 

https://paperpile.com/c/zZr81D/wbof4
https://paperpile.com/c/zZr81D/wbof4
https://paperpile.com/c/zZr81D/wbof4
https://paperpile.com/c/zZr81D/wbof4
https://paperpile.com/c/zZr81D/wbof4
https://paperpile.com/c/zZr81D/wbof4
https://paperpile.com/c/zZr81D/wbof4
https://paperpile.com/c/zZr81D/3x4g2
https://paperpile.com/c/zZr81D/rf5nO
https://paperpile.com/c/zZr81D/rf5nO
https://paperpile.com/c/zZr81D/rf5nO
https://paperpile.com/c/zZr81D/EbllU+Jxb4E
https://paperpile.com/c/zZr81D/EbllU+Jxb4E
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● p(T|X) = ∑ p(Mi|X)p(T|X, Mi)mi   

M is the model, T is the prediction and X is the data. 

● p(Mi|X) = AUC_ROCi−0.7
∑ (AUC_ROCi−0.7)j

 

The ensemble scores of the independent dataset are calculated based on the same model built. The scores 

are then rescaled to 0 and 1. 

● ensembleScorei = ensembleScorei−min(ensembleScore) 
max(ensembleScore) −min(ensembleScore) 

 

 

Adjust the averaging weights using the adapted Thresholdout algorithm 
 

In addition to using AUC-ROC score as weights in BMA method for the ensemble model, an 

adapted Thresholdout weight(Dwork et al. 2015) is implemented to mitigate the overfitting issue for 

reusing the holdout Test dataset. Since we used 5-fold cross-validation to evaluate each model i on the 

Training set, we calculated the mean of the AUC-ROC score and related standard deviation. We 

calculated the mean of the standard deviation for all methods which is 0.041. Thus, we set T=0.041, 𝜁 = 

0.041.  

trainScorei = mean(trainAUC-ROCi) 

testScorei = testAUC-ROCi 

If abs(testScorei-trainScorei)<=T 

adjustedWeightsi = trainScorei  

If abs(testScorei-trainScorei)>=T 

adjustedWeightsi = testScorei + laplacian(0, 𝜁 ) 

adjustedWeightsi = pmax(0,pmin(1, adjustedWeightsi)) 

We sampled the adjusted weights 1000 times and calculated the mean final AUC-ROC scores 

for the ensemble models. 

 

 

https://paperpile.com/c/idvjwX/52ke
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Biological processes enriched by differentially expressed genes  

We additionally conducted differential expression (DE) analysis on ASD subjects with ensemble 

scores below-the-mean vs. all TD subjects. The Limma package(Smyth 2005; Ritchie et al. 2015) was then 

applied on quantile-normalized data for differential expression analysis in which moderated t-statistics were 

calculated by robust empirical Bayes methods. We used adjusted p < 0.01 (Benjamin–Hochberg) and log 

Fold Change > 0.1 to select genes and generate the volcano plot. The Gene Ontology (GO) enrichment was 

conducted using g:Profiler(Raudvere et al. 2019) (https://biit.cs.ut.ee/gprofiler/gost) with 12695 protein-

coding genes (12695/14132 gene features) as background (g:Profiler, advanced option/statistical domain 

scope: Custom; custom over annotated genes). We only checked the “GO biological process” and KEGG 

terms of size 15-1500 in the biological process. The threshold was “Significance threshold: B-H FDR < 

0.1”. Then the terms were clustered with REVIGO(Supek et al. 2011), ordered with p (http://revigo.irb.hr/). 

The connections across terms were visualized by the Cytoscape 3.8.2(Su et al. 2014). 

 

Post-hoc analysis on common confounding factors 

The post-hoc analysis further verified that the classifier scores were stable across different age 

groups. The optbin R package was used to determine optimal age breakpoints for ASD and TD groups; age 

bins were [0,20], [20,31], and [31,49]. Games-Howell test(“Rstatix” n.d.) was performed to compare the 

classifier score between TD or ASD groups in each of the three age bins (FDR adjusted p-value <0.05).  

The one-way ANOVA test(Chambers and Hastie, n.d.) was conducted to test if statistically 

significant differences existed across three ethnicities and seven race groups for ASD subjects. For ethnicity, 

toddlers from ASD and TD were labeled as ‘Hispanic or Latino’, ‘Not Hispanic or Latino’ and ‘Unknown’. 

For races, toddlers from ASD and TD were labeled as ‘Caucasian’, ‘Caucasian/Asian’, ‘African American’, 

‘Asian’, ‘Pacific Islander’, ‘Other’, ‘Unknown’.  

  

Results 

ASD risk gene mutation-based diagnostic classification of ASD vs TD 

https://paperpile.com/c/zZr81D/IgvMk+fkJ71
https://paperpile.com/c/zZr81D/Vk2g7
https://biit.cs.ut.ee/gprofiler/gost
https://paperpile.com/c/zZr81D/Dgs7n
https://paperpile.com/c/zZr81D/Ptrx9
https://paperpile.com/c/zZr81D/CoBny
https://paperpile.com/c/zZr81D/KQciK
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Targeted sequencing by smMIPs was performed on 217 (112 ASD and 105 TD) out of the 240 (127 

ASD and 113 TD) toddlers in this study (see Methods). Analyses found 12 TD toddlers with missense or 

LGD mutations in SFARI (https://gene.sfari.org/) Level 1 or 2 ASD risk genes including: ANK3, 

CACNA2D3, CLCN4, CTTNBP2, CUL7, DIP2A, DLG4, HECTD4, LRP2, LZTR1, MYH9, and NAV2. 

Analyses found 13 ASD toddlers with missense or LGD mutations in SFARI (https://gene.sfari.org/) Level 

1 or 2 ASD risk genes: CACNA2D3, CHD2, DIP2A, DSCAM, KATNAL2, LRP2, MYH9, NCKAP1, NTNG1, 

PHF2, RELN, STXBP5, UNC80, and ZC3H4 (one subject had two mutations). To assess the power of using 

this mutation information alone in discriminating ASD from TD, we did a classification according to the 

presence/absence of the missense or LGD mutations in SFARI Level 1 or 2 ASD risk genes. More precisely, 

ASD toddlers with and without mutations were considered as true positive and false negative, respectively; 

and TD toddlers with and without mutations were considered as false positive and true negative, 

respectively. This mutation-based classification performed at a chance level, 49% (50% being chance), with 

precision (positive predictive value) of 52%, and recall (sensitivity) of 10%. In this mutation-based 

classification, a small number of TDs were falsely called ASD and a large number of ASD toddlers were 

falsely called TD.  

 

Development of a robust transcriptomic classifier platform with diverse feature engineering and 

classification methods 

Next, we used blood transcriptomic data from the 240 ASD and TD study toddlers to develop a 

diagnostic classifier. To identify potential transcriptome biomarkers in a Training sample of 175 of the 240 

ASD and TD toddlers (Table 2.1), we developed a platform that examined the classification power of the 

blood transcriptomic data by systematically exploring the performance of 42,840 possible models 

composed of 3570 different feature selection routes, followed by 12 classification methods (see Methods). 

The platform started with removing genes with low variation across samples. Next, features that 

differentiate between ASD and TD subjects at expression or co-expression levels were selected using a 

suite of 102 feature selection methods. Third, to avoid overfitting, we reduced the number of features by 

https://gene.sfari.org/
https://gene.sfari.org/
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collapsing expression data from the correlating genes. Finally, we trained 12 different classifiers for each 

selected feature set. To evaluate the performance of each of the 3570 feature selection routes and the 12 

classification methods, we iterated the process 5 times while holding out 20% of samples and using the 

remaining 80% of samples for hyper-parameter selection, feature selection, and classifier training. Thus, 

each of the 42,840 models started with a “route” that consisted of 1 filtration method, 1 selection method, 

1 reduction method, and ended with 1 classification method, and all possible combinations of the 5 filtration, 

102 selection, 7 reduction and 12 classification methods were used. The platform reports the average 

performance of each of the 42,840 models across the 5 held-out folds as measured by area under the receiver 

operating characteristic curve (AUC-ROC) and area under the precision-recall curve (AUC-PR). 

  

Diverse pipelines successfully classify ASD vs TD 

Since the feature selection methods depended on the characteristics of training transcriptome 

datasets, some routes were not able to find qualified features in all five iterations of the validation. Therefore, 

the platform successfully classified the data in 15,840 out of 42,840 different ways, including 1320 different 

routes out of 3570 for feature selection and 12 different classification methods (Appendix Figure 2.2). From 

15,840 trained models, 1822 (11.5%) models showed classification AUC-ROC > 0.8 with the max AUC-

ROC of 0.856. Moreover, 1508 of the 1822 models also exhibited an AUC-PR > 0.8. 

These 1822 models performed well due to their feature routes and were robust to variations in the 

data or the model. For example, we observed a subset of 175 feature routes (colored with a brown band in 

Figure 2.2a) that performed consistently well across different classifiers with a mean AUC-ROC of 0.81. 

Additionally, these 1822 high-performing models worked similarly well across all five held-out datasets 

with a mean range of 0.13 and variance of 0.02 (Appendix Figure 2.3). Furthermore, different models that 

largely overlapped in their feature selection routes also worked well across different classifier methods 

(Appendix Figure 2.5). 
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Figure 2.2 A classification platform was developed to robustly identify the biomarkers for the early 
diagnosis of ASD. (a) AUC-ROC classifier scores were computed for each of the 42,840 model results 
from the Training dataset. The AUC-ROC values were based on the average performance of each model 
across 5 iterations, with 20% of samples being held out each time. (b) 1,822 models with AUC-ROC 
scores >0.80 were then tested on the held out Test dataset. Permuting the sample labels (i.e., ASD and TD) 
further supported the validity of the signal.  
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To further verify that the performance of these 1822 models was not due to chance alone, we 

generated five separate randomized datasets by shuffling the sample labels (i.e., ASD or TD) from the 

Training dataset. We next ran the platform on each of the five datasets independently (see Methods). 

Importantly, the platform identified zero models out of 1822 with AUC-ROC and AUC-PR > 0.8 across 

the five datasets, respectively, suggesting that the accurate performance of the 1822 models was not due to 

chance. 

We evaluated the performance of the 1822 high-performing models on the Test dataset of N=65 

ASD and TD toddlers. Of the 1822 models with AUC-ROC > 0.8 in the Training dataset, 742 models (40%; 

Fisher's Exact Test p < 2.2x10-16) also had an AUC-ROC > 0.8 for the Test dataset. These 742 

heterogeneous predictive models involved 125 different feature routes and 2,721 gene features (Figure 2.3a, 

see Appendix Result 1-2). 
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Figure 2.3 Blood transcriptome ASD subtypes were identified by our classification platform. 
(a) The clustering table of subjects in Training and Test dataset based on the 742 models classification score 
similarity (distance=’Euclidean’ and method=’ward.2d’). ASD and TD subjects showed distinct 
classification patterns. The red, orange and black bars on the sides represented above-the-mean ASD, 
below-the-mean ASD and TD subjects, respectively (the mean is the dashed line in Figure 2.3c). The orange 
and purple colors represented the gradient of dissimilarity between subjects based on their classification 
scores. (b) The AUC-ROC results on the ensemble classification model generated by the Bayesian model 
averaging approach. (c) Ensemble classifier model scores for ASD and TD individuals in Training and Test 
datasets. The ASD group mean was 0.723 and the TD group mean was 0.359. (d) and (e) The differential 
expression analysis of 2721 protein-coding feature genes. The volcano plots showed the adjusted p-value 
(cutoff=0.01) vs. log fold changes (cutoff=0.1) of genes in the above-the-mean to TD subjects and below-
the-mean subjects to TD subjects in the Training dataset and Test dataset.   
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Randomized data can be erroneously “classified” at reasonable AUC-ROC levels 

There were 1822 models that reached a high AUC-ROC value in the Training dataset. However, 

the question remained whether this range was significantly different from the AUC-ROC values that one 

could obtain from trying to classify subjects after randomizing their final diagnosis. To test this, we 

permuted the sample labels (i.e., ASD and TD) for all subjects in our Training set and ran the pipeline to 

test all feature engineering and classification methods. Importantly, we tested all 42,840 candidate models 

and found the median AUC-ROC score was 0.5101 with the 95th CI (0.42-0.65) on the randomized samples. 

As expected, only rare chance instances of good “classification” occurred. The fact that chance alone could 

lead to a rare “good classification” score for a single model, was a cautionary signal that literature reports 

of unvalidated and unreplicable single high-performance classifiers could be due to chance (see Methods, 

Figure 2.2b).  

  

Bayesian model averaging of the 742 predictive models to create a single transcriptomic ensemble 

classifier  

To build a single composite model that combined the 742 models that had AUC-ROC values of 

0.80 on both Training and held-out Test sets, we used Bayesian model averaging (BMA). The ensemble 

model produced a single composite classification score by calculating weighted predictions from 742 

models (see Methods). Scores ranged from 0 to 1 with 0 being the highest certainty in TD status and 1 being 

the highest certainty in ASD status. With this ensemble model, the AUC-ROC score was 84.67% and 89.18% 

for Training and Test datasets, respectively (Figure 2.3b) and AUC-PR was 84.33% and 92.11% for the 

Training and Test datasets, respectively. These values were significantly higher than the naive Random 

Forest baseline model (see Appendix Result 3) with 72.32% AUC-ROC (ROC.test p < 10-44).  

Since the model selection method mentioned above required repeated exposure to the hold-

out Test test, we leveraged the idea from Thresholdout algorithm(Dwork et al. 2015; “How to Double 

Dip into Your Holdout Set” 2017) to adjust the weights on the AUC-ROC weighted prediction for 742 

models (see Method). With sampled ensemble models, the mean AUC-ROC score was 82.47% and 

https://paperpile.com/c/idvjwX/52ke+49F5
https://paperpile.com/c/idvjwX/52ke+49F5
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81.16% for the Training and Test datasets, respectively, and AUC-PR was 83.73% and 82.11% for the 

Training and Test datasets, respectively. These values were significantly higher than the naive 

Random Forest baseline model (see Appendix Result 3) with 72.32% AUC-ROC (ROC.test p < 10-44). 

We calculated the mean of ensemble classification scores for all ASD toddlers in the Training and 

Test datasets. The overall ASD group median classifier score was 0.781 and the overall TD group median 

score was 0.303. To test for group differences in scores and possible age effects, we used multiple linear 

regression. The independent variables were diagnosed group, age and their interaction. The dependent 

variable was the ensemble classification score. Based on the coefficients in the model, we found a 

significant effect of group (coefficient, p = 0.0011) but non-significant effects of age (coefficient, p = 0.056) 

and group by age interaction (coefficient, group:age, p = 0.76).  

 

Classifier scores not significantly affected by age, ethnicity, race differences 

To further examine possible bias toward the age effects on group classification, we stratified 

subjects into three age bins ([0,20], [20,31], and [31,49]) and compared the classifier prediction 

performance on different bins (see Method, Figure 2.4). Game-Howell test(“Rstatix” n.d.) showed there 

was no significant difference between classification scores for TD or ASD groups in each of the three age 

bins, and classification scores were significantly different only in the ASD vs. TD diagnostic group 

comparisons (FDR adjusted p-value < 0.05) (Figure 2.4). This further verified that potential confounding 

effects of age were excluded in the analysis.  

 

 

 
 
  

https://paperpile.com/c/zZr81D/CoBny
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Figure 2.4 The distribution of classification scores. 240 subjects were partitioned into 6 groups. 
Games-Howell tests were performed to compare the group difference and only significant comparisons 
were shown. The classification scores were significantly different only in the ASD vs TD diagnostic 
group comparison. 
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Post-hoc examination of classifier scores in ASD groups showed there was no significant difference 

across three ethnicity groups (‘Hispanic or Latino’, ‘not Hispanic or Latino’, ‘unknown’; one-way ANOVA, 

F = 0.899, p = 0.409) (Table 2.2). However, the differences appeared in TD groups (F = 3.7, p = 0.021). 

The same analysis was also conducted on races. Toddlers were labeled as ‘Caucasian’, ‘Caucasian/Asian’, 

‘African American’, ‘Asian’, ‘Pacific Islander’, ‘Other’, ‘Unknown’. No significant difference of means 

was found across all race groups (One-way ANOVA test, F = 1.151, p = 0.337) (Table 2.3). The differences 

appeared in the TD group (F = 5.25, p = 9.03e-05) and seemed likely due to the small number of individuals 

in different race categories. Both ethnicity and race analysis indicated that ASD molecular pathology is 

being consistently detected by our classifier. 
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Table 2.2 Statistics of ASD and TD’s classifier score for Hispanic/non-Hispanics. 

Ethnicity ASD TD 

 Size Mean (Std) Size Mean (Std) 

Not Hispanic Latino 64 0.700 (0.253) 82 0.396 (0.248) 

Hispanic and Latino 29 0.723 (0.197) 18 0.273 (0.220) 

Unknown 34 0.765 (0.187) 13 0.245 (0.138) 
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Table 2.3 Statistics of ASD and TD’s classifier score for races. 

Race ASD TD 

  Size Mean (Std) Size Mean (Std) 

Caucasian 65 0.675 (0.253) 73 0.364 (0.240) 

Unknown 40 0.755 (0.180) 19 0.284 (0.175) 

Caucasian/Asian 4 0.861 (0.150) 5 0.358 (0.212) 

African American 5 0.799 (0.221) 4 0.508 (0.288) 

Asian 8 0.789 (0.212) 9 0.421 (0.314) 

Pacific Islander 3 0.795 (0.090) 2 0.185 (0.088) 

Other 2 0.797 (0.005) 1 0.592 (null) 
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Classifier scores not significantly affected by the presence or absence of ASD risk gene mutations 

There was no significant difference in the ensemble classifier scores between ASD toddlers with 

and without mutations (median = 0.738 vs 0.784, mean = 0.715 vs. 0.724, Welch t-test p = 0.875) (Figure 

2.5); 11 of the 13 ASD toddlers with risk mutations were correctly classified by the ensemble model. 

However, there was a difference in the ensemble classifier scores between TD toddlers with and without 

ASD risk gene mutations; in fact, TDs with mutations had lower composite scores than the other TDs 

(median = 0.229 vs 0.340, mean = 0.223 vs. 0.375, Welch t-test p = 0.007) and robustly differed from the 

ASD composite score, median = 0.303 vs 0.781 (Figure 2.5). Thus, the presence of ASD risk gene mutations 

conferred no liability on the composite score of TD toddlers, and 11 out of 12 TDs with mutations in risk 

genes were correctly classified as typical by our gene expression classifier. The ensemble classifier 

correctly differentially diagnosed 88% of the ASD and TD toddlers with ASD risk gene mutations. 
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Figure 2.5 Comparison of ASD with and without ASD risk gene mutations and TD with and without 
ASD risk gene mutations. Shows (a) ensemble classifier gene expression scores, (b) ADOS scores (higher 
scores are more severe ASD symptoms), (c) Vineland adaptive behavior scores (average is 100 + 15), and 
(d) the Mullen T-scores for Expressive and (e) Receptive language (average is 50 + 10) as well as (f) the 
Mullen overall Developmental Quotient scores (average is 100 + 15). There were no significant differences 
in any scores between toddlers with and without SFARI Level 1 or 2 ASD risk gene mutations for ASD 
toddlers and for TD toddlers. Thus, the presence of an ASD risk gene mutation conferred no clinical liability 
or difference in gene expression diagnostic score for ASD toddlers. TD toddlers with ASD gene mutations 
had slightly better cognitive scores than other typically developing toddlers without mutations, but 
differences were not significant. Red dots are the means and dark lines medians.   
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In addition, TD subjects with and without SFARI Level 1 or 2 gene mutations did not differ 

significantly on any clinical test (ADOS, Vineland, Mullen), and, similarly, ASD subjects with and without 

gene mutations did not differ significantly on any clinical test (Figure 2.5; Appendix Figure 2.7).  

 

Biological processes enriched by differentially expressed (DE) genes in ASD with higher vs. lower 

ASD ensemble classifier scores 

DE gene analyses (see Methods) found 1,186 DE genes for ASD toddlers with ensemble scores at 

or above the ASD group mean of 0.723, but no DE genes for those below the group mean (Figure 2.3d and 

e). Of the 1,186 DE genes, 394 were in the top 500 feature genes selected by the 125 feature routes, and 

700 of the 1,186 DE genes were in the first 1000 feature genes. This indicated that DE genes were strong 

drivers of successful ASD classification. Enrichment analyses of GO biological processes (see Methods) 

of these 1,186 DE genes found Gene Ontology terms associated with mitotic cell cycle, 

inflammation/immune response, transcriptional gene regulation, and response to cytokine. Analyses of 

KEGG pathways using g:Profiler(Raudvere et al. 2019; Kanehisa and Goto 2000) of these 1,186 DE genes 

found significant pathways included cell cycle (KEGG:hsa04110), PI3K-AKT (KEGG:hsa04151), RAS 

signaling pathways (KEGG:hsa04014), and Wnt signaling pathways (KEGG:hsa04310), which was 

consistent with our previous finding(V. H. Gazestani et al. 2019). 

 

Clinical characteristics associated with higher vs. lower ASD ensemble classifier scores  

We compared clinical scores on the ADOS, Mullen, and Vineland for ASD toddlers with ensemble 

classifier scores at or above the ASD mean of 0.723 to the ASD toddlers with classifier scores below that 

mean. Diagnostic and psychometric scores were not significantly different between ASD subjects above 

and below this mean (Appendix Figure 2.8).  

Next, we stratified ASD toddlers based on ADOS CoSo Total symptom severity and Mullen scores. 

Ensemble scores for ASD subjects above vs. below the group average ADOS severity and the group average 

Mullen means were not practically different (p = 0.59). 

https://paperpile.com/c/zZr81D/Vk2g7+q6Xgb
https://paperpile.com/c/zZr81D/7TK71
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We also performed analogous stratifications within the TD Training group and found no ADOS or 

Mullen differences between higher or lower than the TD mean ensemble classifier score, nor differences in 

the ensemble scores of TD toddlers with high vs. lower diagnostic and psychometric scores.  

 

Prenatal characteristics associated with higher vs. lower ASD ensemble classifier scores  

Among 127 ASD subjects, 124 had complete prenatal records. We selected the “hospitalization 

during trimester”, “surgery during trimester” and “confined to bed during trimester” as the risk factors; 

“nausea during trimester”, “morning sickness during trimester” and “swelling during trimester” as the 

control prenatal events. Fisher’s t-tests were used to compare the prenatal risk factors across ASD toddlers 

with ensemble scores at or above the ASD group mean, below that mean, and TD toddlers. ASD toddlers 

with classifier scores at or above the ASD group mean of 0.718 had significantly fewer prenatal 

neurodevelopmental risk events, while ASD toddlers below the mean had disproportionately more prenatal 

risk scores than TD toddlers (Table 2.4 and 2.5). We tested if there was a different ratio of severe prenatal 

events that could potentially impact ASD development between these two ASD subgroups(Creagh et al. 

2016; Atladóttir et al. 2010; Gardener, Spiegelman, and Buka 2009). We found a similar rate of prenatal 

events between TD subjects and above-the-mean ASD subjects (Odds Ratio: 0.88, Fisher's Exact Test p = 

0.84). However, there was a significant enrichment of prenatal events among the below-the-mean ASD 

subjects compared to TD subjects (Odds Ratio: 2.78; Fisher's Exact Test p = 0.013). As a negative control, 

prenatal events that are unlikely to affect ASD development were not enriched among ASD subjects with 

below the ASD mean ensemble score(Gardener, Spiegelman, and Buka 2009). These results suggest the 

possible existence of different underlying etiological factors between ASD subjects with above vs. below 

the mean ASD ensemble classifier scores.   

https://paperpile.com/c/zZr81D/6HoDS+2c7xp+XUZ4i
https://paperpile.com/c/zZr81D/6HoDS+2c7xp+XUZ4i
https://paperpile.com/c/zZr81D/XUZ4i
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Table 2.4 Distribution of Prenatal Events Among the Three Groups. 

ASD above-the-mean: autism spectrum disorder with ensemble score over 0.714; ASD below-the-mean: 
below 0.714; TD: typical development. 

Severe prenatal events 

ASD 

Above-the-mean 

ASD Below-the-

mean TD 

Total subjects (n) 79 45 107 

Hospitalizations during pregnancy 5 5 6 

Surgery during pregnancy 1 3 4 

Confinement to bed during pregnancy 8 8 9 

General Anesthesia during delivery 10 11 10 

Total (%) 19 (24.1) 20 (44.4) 24 (22.4) 

Negative control events    

Nausea 4 2 12 

Morning sickness 42 18 64 

Swelling 23 10 26 

Total (%) 52 (65.8) 24 (53.3) 70 (65.4) 
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Table 2.5 Statistical Differences between the Three Groups. 

P value is calculated by the two-sided Fisher’s exact test. 
 Odds ratio p value 

ASD above-the-mean vs. TD 0.914 0.861 

ASD below-the-mean vs. TD 2.746 0.0102 

ASD below-the-mean vs. above 2.506 0.027 
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In the post hoc exploratory analysis, we tested whether adding prenatal features and social behavior 

scores into models increases model performance. The Bayesian model AUC-ROC increased from 84.67% 

to 88.20% for the Training dataset, and increased from 89.18% to 91.48% for the Test dataset. (Appendix 

Result 4). 

 

Discussion 

Despite its high heritability and prenatal beginnings(Courchesne, Gazestani, and Lewis 2020; 

Courchesne et al. 2019; V. Gazestani et al. 2020; Courchesne et al. 2011; Marchetto et al. 2017; Courchesne 

and Pierce 2005; Willsey et al. 2013; Courchesne et al. 2007; Stoner et al. 2014; Parikshak et al. 2013; 

Packer 2016; Kaushik and Zarbalis 2016; Krishnan et al. 2016; Donovan and Basson 2017; Grove et al. 

2019; Satterstrom et al. 2020), ASD diagnosis remains behavior-based and the median age of the first 

diagnosis is about 52 months. Partially due to its genetic and clinical heterogeneity, no single genetic, 

behavioral or imaging diagnostic marker has been found that can accurately and reproducibly diagnose 

more than a small subset of affected children. Even among those capable of highly accurately diagnosing 

subsets of ASD infants and toddlers(Pierce et al. 2016), few have proven clinically useful, cost-effect, 

and/or practical at the ages when early detection and diagnosis are most needed and could be most important 

for the child and family. 

To approach this dilemma, we addressed ASD genetic and clinical heterogeneity with classifier 

heterogeneity. That is, since we expected heterogeneity in classifier gene expression features, we designed 

a classifier pipeline using 42,840 models generated from 3,570 gene expression feature routes and 12 

classification methods to classify ASD at ages 1 to 4 years, and applied it to both a Training sample and a 

held-out Test sample. Then, rather than selecting and reporting a single “best” performing model, we report 

there are hundreds of good to excellent models and that they can be combined using Bayesian model 

averaging to bring together 742 “heterogeneous” predictive models involving 125 different feature routes 

and 2,721 gene expression features. The smMIPs analyses detected 25 TD and ASD subjects with severe 

https://paperpile.com/c/zZr81D/iIVzK+cpxuh+hil52+GHZwn+tTBoe+vcUMM+OpczF+QHZ6n+FCIIe+zMIc9+wVVo5+ajQ8p+hVIt1+KPseH+7J0ko+g6bfy
https://paperpile.com/c/zZr81D/iIVzK+cpxuh+hil52+GHZwn+tTBoe+vcUMM+OpczF+QHZ6n+FCIIe+zMIc9+wVVo5+ajQ8p+hVIt1+KPseH+7J0ko+g6bfy
https://paperpile.com/c/zZr81D/iIVzK+cpxuh+hil52+GHZwn+tTBoe+vcUMM+OpczF+QHZ6n+FCIIe+zMIc9+wVVo5+ajQ8p+hVIt1+KPseH+7J0ko+g6bfy
https://paperpile.com/c/zZr81D/iIVzK+cpxuh+hil52+GHZwn+tTBoe+vcUMM+OpczF+QHZ6n+FCIIe+zMIc9+wVVo5+ajQ8p+hVIt1+KPseH+7J0ko+g6bfy
https://paperpile.com/c/zZr81D/iIVzK+cpxuh+hil52+GHZwn+tTBoe+vcUMM+OpczF+QHZ6n+FCIIe+zMIc9+wVVo5+ajQ8p+hVIt1+KPseH+7J0ko+g6bfy
https://paperpile.com/c/zZr81D/8PIqW


 

127 
 

mutations in SFARI Level 1 or 2 ASD risk genes: mutation-based classification resulted in chance ASD 

detection performance, whereas the Bayesian gene expression model correctly classified 22 (88%) of those 

25 subjects. The presence of ASD risk gene mutations in typically developing toddlers suggests that the 

mutations detected here in these specific SFARI genes are neither necessary nor sufficient to cause ASD, 

are not alone explanatory of autism, and apparently are not clinically diagnostically useful.  

Post-hoc Game-Howell tests demonstrated the ensemble gene expression classifier is unbiased 

towards age differences. The one-way ANOVA test indicated the classifier scores for the ASD group were 

similar across Hispanic and non-Hispanic subjects and different races. This suggests the classifier is 

accurately detecting a gene expression pathology common across toddler ages, races and ethnicities in ASD, 

subjects with and without risk gene mutations, and thus points to common core molecular pathobiology in 

ASD. 

This approach enabled the generation of a composite Bayesian “ensemble” model that is 

diagnostically predictive and replicable across different toddler ages, races, and ethnicities; performs 

accurately across the ASD spectrum from more affected to less affected; and has potential for clinical 

translation. Moreover, this composite ensemble model incorporates both differentially expressed (DE) 

genes and non-DE genes. This may be relevant to the known complexity of ASD genetics, which may 

involve common and rare variants and any one or more of >200 different ASD risk gene mutations in 

different individuals. Non-genetic heterogeneity was also detected here insofar as those with ASD classifier 

scores below the overall ASD mean tended to have more prenatal risk events in their history than those 

ASD toddlers with above the mean scores. This opens the important potential to utilize these ASD ensemble 

classifier scores in future research to identify ASD subtypes that are more driven by genetic versus subtypes 

more driven by a combination of non-genetic and genetic factors. 

Our ensemble features include genes involved in PI3K-AKT, RAS-ERK, and Wnt signaling 

pathways, immune/inflammation, response to cytokines, transcriptional regulation, and mitotic cell cycle, 

which are among the pathways and processes found across diverse studies on ASD blood gene 
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expression(Pramparo, Lombardo, et al. 2015; Pramparo, Pierce, et al. 2015; Ch’ng et al. 2015; Diaz-Beltran, 

Esteban, and Wall 2016; Tylee et al. 2017; He et al. 2019; Lee et al. 2019; Kong et al. 2012; Gregg et al. 

2008; Enstrom et al. 2009; Ansel et al. 2016; V. H. Gazestani et al. 2019). This overlap is notable despite 

the fact that (1) some previous studies did not actively account for race- and ethnicity-related, age-related 

or clinical-symptom heterogeneity as moderating factors; (2) 84% of 35 previous ASD blood gene 

expression studies had fewer than 100 ASD subjects and averaged only 28 ASD subjects/study; and (3) 

many studies focused on older ASD children and adults and only few on ASD toddlers(Pramparo, 

Lombardo, et al. 2015; Pramparo, Pierce, et al. 2015; Ch’ng et al. 2015; Diaz-Beltran, Esteban, and Wall 

2016; Tylee et al. 2017; He et al. 2019; Lee et al. 2019; Kong et al. 2012; Gregg et al. 2008; Enstrom et al. 

2009; Ansel et al. 2016). 

PI3K-AKT, RAS-ERK and Wnt signaling pathways may be pivotal to ASD prenatal neural 

maldevelopment. Recently, in a large sample study, we discovered that ASD toddlers had significant 

upregulation of PI3K-AKT, RAS-ERK and Wnt signaling pathways in both leukocytes and iPSC-derived 

prenatal neural progenitors and neurons(V. H. Gazestani et al. 2019). This leukocyte dysregulation in 1-4 

year old ASD toddlers correlated with ASD social symptom severity(V. H. Gazestani et al. 2019; Michael 

V. Lombardo et al. 2018). Moreover, these pathways in leukocytes are downstream targets of regulatory 

risk ASD genes(V. H. Gazestani et al. 2019; V. Gazestani et al. 2020). Leukocyte gene expression also has 

an potential for understanding molecular correlates of brain size in ASD(Pramparo, Lombardo, et al. 2015) 

and of atypical cortical patterning subtypes in ASD toddlers with poor language outcome outcomes(Michael 

V. Lombardo et al. 2018; M. V. Lombardo et al. 2021). Leukocyte expression also relates to hypoactivation 

response to affective speech in ASD toddlers with poor language outcome(Michael V. Lombardo et al. 

2018). Finally, multivariate leukocyte expression signatures can predict trajectories of response to early 

intervention treatment(Michael V. Lombardo et al. 2021), which underscores the mechanistic relevance of 

leukocytes to ASD and clinically important phenomena that can be individualized to specific patients. Thus, 

extensive literature, meta-analyses, and the predictive diagnostic discoveries in the present study, all point 
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to the importance of leukocyte cell biology as clinically informative in ASD and show that ASD-relevant 

dysregulated gene expression is not restricted to the brain but is also present in other tissues and organs.  

Here we developed an innovative and accurate ASD gene expression classifier in ASD toddlers 

with heterogeneous gene features designed to address early-age ASD genetic and clinical heterogeneity. 

This predictive classifier in ASD male toddlers aged 1 to 4-year-olds opens the possibility of further refining 

ASD molecular classifiers optimized for race, ethnicity, and age and with potential for clinical utility. It far 

outperformed a risk gene-mutation classifier tested in the same toddlers primarily because a significant 

proportion of TD toddlers have ASD risk gene mutations as well. The ensemble gene expression ASD 

classifier reported here is enriched in gene expression features involved in ASD prenatal and postnatal 

pathobiology, and as such, it appears to succeed because of this. Thus, it is more than a signature capable 

of ASD diagnostic prediction; it is additionally a marker of the underlying pathobiological bases of the 

disorder in a majority of affected toddlers. It has implications for future research targeting early-age ASD 

detection and treatment-relevant mechanisms. 
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CHAPTER 3: Examination of automatic facial action unit measurement as a mechanism to differentiate 

ASD vs non-ASD toddlers 

 

Abstract 

Historically, children with autism have been characterized as having challenges with emotional 

reactivity, most often under-reactivity, a profile that is central to both DSM-5 criteria as well as diagnostic 

tests such as ADOS. A less well-known finding is that in certain situations, emotional responding has been 

shown to be overly intense in ASD. The purpose of the current study was to determine if differences exist 

in emotional reactivity between toddlers with ASD and other toddlers using state of the art expression 

analysis software, and to determine if differences, if found, could be used as a diagnostic marker of ASD.  

Methods 

A cohort of 184 toddlers (129 ASD, 55 non-ASD) watched an 87-second movie, ‘The Joint 

Attention Test’, in which a female is telling stories and playing with toys across several scenes. The point 

of gaze was collected using an eye-tracking machine. Toddlers’ facial expressions were recorded using a 

standard webcam, and the intensity scores of the facial action unit (FACS) and the coexpression score were 

measured using OpenFace 2.0 and Emonet. A machine learning classifier was trained (n = 154 toddlers) 

and tested (n = 30 toddlers) to distinguish ASD from non-ASD toddlers.  

Results 

Overall, children with ASD displayed more intense expressions in reaction to some portions of the 

video, particularly within the brow lowerer, chin raiser, and lip dimpler facial action units. Our action unit 

classifier had a sensitivity of 83.3% and a specificity of 67.5% in the test dataset (90.1% and 75% in the 

training dataset). We verified that our classifier was unbiased against common confounding factors (age, 

race, and ethnicity). By combining the action unit classifier and Geo-Pref non-social score, we achieved a 

specificity of 100% and sensitivity of 50% on the training and test datasets. The ensemble classifier 
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maintained the high specificity while considerably increasing the sensitivity, which provides the potential 

for screening applications. 
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Introduction 

ASD is a prenatal, highly heritable disorder that considerably affects a child’s ability to perceive 

and react to social information(Courchesne, Gazestani, and Lewis 2020; Courchesne et al. 2019, 2011; 

Packer 2016; Kaushik and Zarbalis 2016; Bal et al. 2019; Bonnet-Brilhault et al. 2018). With early 

screening using parent report tools and detection programs such as Get SET Early (Pierce et al. 2021), 

toddlers can be quickly and inexpensively screened and many are diagnosed with ASD as early as 12 

months, with stable diagnoses across toddler and early childhood(Pierce et al. 2011, 2019). Although 

reliable early diagnosis is possible, most ASD children are not diagnosed until around age 4(Maenner et al. 

2021; Autism and Developmental Disabilities Monitoring Network Surveillance Year 2006 Principal 

Investigators and Centers for Disease Control and Prevention [CDC] 2009; Baio et al. 2018; Christensen et 

al. 2018) and thus misses valuable opportunities associated with early treatment engagement (Gabbay-

Dizdar et al. 2021). As such, the discovery of objective, biologically-based markers of ASD that can 

increase the pace of diagnosis and reduce the requirement for highly-trained professionals (J. McPartland, 

Dawson, and Webb 2004; Frazier et al. 2021; J. C. McPartland et al. 2020) are needed. The development 

of computer vision technology is now supporting a surge in research that is designed to measure ASD 

subjects' facial behavior responding to social information in a subjective and quantitative way (Macari et 

al. 2018; Trevisan, Hoskyn, and Birmingham 2018; Press, Richardson, and Bird 2010; Deschamps et al. 

2015; Weiss et al. 2019; Rozga et al. 2013; Faso, Sasson, and Pinkham 2015; Bangerter et al. 2020). 

Since ASD was first identified in 1943, two stereotypes concerning the emotional lives of children 

affected by the disorder have prevailed: one in which negative emotions dominate and the other in which 

emotional expressions are muted, particularly positively valenced emotions (Cooper and Michels 1988; 

Harms, Martin, and Wallace 2010; Uljarevic and Hamilton 2013; Langdell 1978; Begeer et al. 2008; 

Kennedy and Adolphs 2012). Not surprisingly, research in autism has focused on examining either a 

negative emotionality bias or an attenuation of positive emotion.(Castelli 2005; Atkinson 2009; Philip et al. 

2010). Recent evidence, however, shows that autistic individuals may not necessarily differ in expression 

intensity of emotions, nor have negative emotionality bias (Macari et al. 2018; Trevisan, Hoskyn, and 

https://paperpile.com/c/NHvRvL/gKWyS+Q4V6h+CzPML+HZPM6+xXw4r+uJmg2+AJWuB
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https://paperpile.com/c/NHvRvL/w8h5z+CjbNj+xY3fF+3BgPH+RECtN+3iT19+TuyFu+d2CQq
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Birmingham 2018; Press, Richardson, and Bird 2010; Deschamps et al. 2015; Weiss et al. 2019; Rozga et 

al. 2013). For example, in a recent study evoked expressions in response to funny videos in ASD adults 

were rated as more intense, although less natural, than TD expressions(Faso, Sasson, and Pinkham 2015). 

The clustering based on evoked action unit intensity identified an ASD subgroup, proposed as an “over-

responsive group,” that expresses more intense positive facial expressions than the TD group in response 

to the videos (Bangerter et al. 2020). 

At the same time, research has shown that individuals with ASD sometimes exhibit emotions that 

are incongruent with real-world events, as evidenced by executing atypical expressions patterns(Carpenter 

et al. 2021; Brewer et al. 2016; Faso, Sasson, and Pinkham 2015; Weiss et al. 2019; Rozga et al. 2013). 

Indeed, children and adults with ASD exhibit reduced, atypical, or delayed spontaneous mimicry responses 

to photographs and videos of emotional facial expressions (Zampella, Bennetto, and Herrington 2020a; 

Rieffe, Meerum Terwogt, and Stockmann 2000). Specific facial behaviors, including eye contact, smiling, 

and eyebrow movements, can distinguish ASD subjects from control participants. Such changes are relevant 

to biological hypotheses about abnormalities in the medial prefrontal cortex and a visual network within 

the occipitotemporal cortex (Moore et al. 2018). It suggests those differences in facial behavior could lead 

to potential phenotypic biomarkers of ASD. 

In order to measure facial behavior objectively and quantitatively, automated facial analysis tools 

have been developed to empower the analysis in different parts of a range of disorders and conditions (Leo 

et al. 2018; LoBue and Thrasher 2014; Sariyanidi et al. 2020; Bangerter et al. 2020; Jacques et al. 2022). It 

enables scientists to measure the facial responses to emotional stimuli in an efficient, granular, and objective 

perspective (Bangerter et al. 2020; Pulido-Castro et al. 2021; Baltrusaitis et al. 2018). However, the efficacy 

of using the automatic facial expression test as an early screening tool for ASD remains underexplored 

(Jacques et al. 2022). Most of the established facial expression tests require the interaction between the 

psychologist and the child (Zampella, Bennetto, and Herrington 2020b). This limits researchers’ and 

clinicians’ ability to assess critical behaviors and measure differences across individuals, contexts, or time. 

https://paperpile.com/c/NHvRvL/w8h5z+CjbNj+xY3fF+3BgPH+RECtN+3iT19
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Thus, there is a lack of established automatic methods for operationalizing toddlers’ emotional reciprocity 

objectively or granularly. 

 Preferential looking paradigms have been successfully adopted as a method for identifying visual 

attention preferences in ASD (Kaliukhovich et al. 2021; Pierce et al. 2016; Wen et al. 2022). One such 

preferential looking test, the GeoPref test found a subset of ASD toddlers strongly preferred geometric 

images when presented with social and geometric motion images (Pierce et al. 2016). The toddlers with a 

higher preference for geometric images demonstrated greater symptom severity and fewer gaze shifts at 

school age (Bacon et al. 2020). The success of the GeoPref Test as a symptom severity prognostic tool 

encourages us to study the toddler's facial emotional response to different movie scenes.  

In this study, we leveraged a new eye-tracking test called ‘The Joint Attention Test’ (Andreason et 

al., In preparation) that features a female speaking in a child-friendly, emotionally valent voice while 

engaging with various toys and objects. We utilized freely available software, Openface 2.0 (Baltrusaitis et 

al. 2018) and Emonet (Toisoul et al. 2021), to analyze webcam images and measure faction action unit 

intensity (Figure 3.1). We then used the corresponding features to train a classifier to differentiate between 

ASD and non-ASD subjects. We verified that our classifier was unbiased against common confounding 

factors (age, race, and ethnicity). Further, we tested the combination of our classifiers with the GeoPref 

percent fixation (Wen et al. 2022) on geometric image score that has been shown to have high specificity 

and good PPV in predicting ASD diagnosis. The final unsupervised clustering analysis including the 

classifier score, eye-tracking data, and social behavior data provided further insight into the clinical 

behavior heterogeneity among different subgroups.  
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146 
 

 

Figure 3.1 An analysis workflow of this study. After the videos were time-synchronized, the videos went 
through two open-source models for action unit detection and valence/arousal estimation. The manual 
coding validated the overall measurement result. The output data were first analyzed to quantify correlation 
and co-expression and then aggregated into 19 scenes to extract the features such as maximum, mean, and 
variance. The machine learning methods were then used to select features and train the final model.  
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Methods 

Participants 

Subjects were recruited through general community referral or through a population-based 

screening method known as Get SET Early(Pierce et al. 2021). Following the screening, toddlers were 

referred to the University of California, San Diego Autism Center of Excellence for an in-depth diagnostic 

evaluation and eye-tracking. Subjects were invited for repeat testing every ~12 months until age 3. Toddlers 

were assessed by licensed Ph.D.-level clinical psychologists blind to eye-tracking results using the Mullen 

Scales of Early Learning (Mullen n.d.), the Autism Diagnostic Observation Schedule (Module 1, or Module 

2, or Toddler Modules) (Lord 2012), and the Vineland Adaptive Behavior Scales (Sparrow, Balla, and 

Cicchetti, n.d.). Parents were given diagnostic feedback and toddlers were referred for treatment as 

appropriate. 

Only subjects with continuous, full-face visibility and high-quality video recordings were included. 

Among 423 toddlers who completed the eye tracking test, 209 recordings were excluded because the 

subjects’ faces (the mouth area) were covered with hands for more than 60% of the time; subjects were 

wearing a face mask; the subjects were eating during testing. We further excluded 30 videos that had low 

eye-gazing time on screen, no face detected, or the subjects were age outliers. The final dataset used for 

analysis included 129 ASD (123 ASD, 6 ASD Features) and 55 non-ASD subjects (22 typically developing 

[TD], 16 language delay [LD], 10 Other, 4 typical toddlers [TD] with an ASD sibling [TypSibASD] and 3 

developmental delay [GDD]). 

 

The Joint Attention Test 

‘The Joint Attention Test’ is an 87.5-second-long video in which an actress sits at a table and speaks 

in an emotionally intense, child-friendly voice while engaging with various toys and objects (Figure 3.2). 

The actress uses a series of 19 joint attention bids to direct the child’s attention to different items in the 

room. Each joint attention bid involves the actress using speech cues to direct the child’s attention overtly 

(e.g., “Look at this comb”), directing the child to look toward it, and then looking and/or pointing at the 

https://paperpile.com/c/NHvRvL/RFqB9
https://paperpile.com/c/NHvRvL/r8Ioc
https://paperpile.com/c/NHvRvL/xxrVs
https://paperpile.com/c/NHvRvL/aeEfJ
https://paperpile.com/c/NHvRvL/aeEfJ
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object before finally interacting with it (Andreason et al., in preparation). This particular eye-tracking video 

was selected for the current study given its high emotional tone and the strong emotional response observed 

in toddlers during its development. 

  

Eye-tracking and facial expression data collection 

Eye-gaze data was collected using the Tobii Pro Spectrum (Tobii, Stockholm, Sweden; 

www.tobii.com; 600 Hz sampling rate; 1280 × 1024) while toddlers watched ‘The Joint Attention Test. To 

ensure that only the toddler’s gaze was tracked and free from parent influence, standardized instructions 

were read out explicitly to parents prior to the eye-tracking test that requested that they looked at a dot 

placed ~3ft above the eye-tracking machine. A five-point calibration was then performed using animated 

cartoon ducks with sounds, and data were only used if calibration results, fell within manufacturer-reported 

parameters (accuracy, 0.5 degrees). For a subset of toddlers, a flashing star with a chime appeared for 5.00 

sec prior to the start of the experiment to ensure toddlers was fixated on the screen. 

Gaze data were processed in Tobii Pro Lab using a built-in fixation filter (Tobii IV-T fixation filter, 

velocity threshold: 30 degrees/second). Dynamic areas of interest (AOIs) were drawn in Tobii Pro Lab 

frame by frame and grouped on a scene-by-scene basis. Background AOIs included the white space that 

made up the background of every scene and the empty table space not occupied by objects present in the 

scene.  

Gaze data were exported and analyzed offline. First, timestamp information obtained from Tobii 

Pro Lab “raw data exports” was used to match webcam participant recordings to gaze data processed by 

Pro Lab. After grouping AOIs into Social vs. NonSocial categories, all scenes were collapsed together and 

AOI hit information from raw data exports was used to determine percent fixation within Social and 

NonSocial AOIs across the entire duration of ‘The Joint Attention Test’. For this, a value of -1 indicates 

the AOI was inactive; a 0 indicates the AOI was active but gaze data did not overlap with an AOI; and a 1 

indicates an AOI was active and the toddler’s gaze overlapped with the AOI coordinates. The Social AOI 

group included the Face AOI, while the NonSocial AOI group included all target and distractor objects 
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present across all scenes except the Background_Wall AOI. For example, across all 2,625 frames, if a 

toddler spent 678 of those frames gazing at the Face_AOI, 110 of those frames gazing at the 

Background_Wall and Background_Table, and his total gazing captured by eye tracker is 2,300 frames, 

then the total Social percent fixation would be 33.9% (678/[2,300-110]) and the total non-Social percent 

fixation would be 60.6% ([2,300-110-678]/[2,300-110]).  
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Figure 3.2 A sample setup for the Spinner scene from the 87.6 sec (19 scenes) “The Joint Attention Test”. 
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Facial expression data collection and video data processing  

A Logitech HD Pro Webcam C920 (1080p, Carl Zeiss, Newark, CA) was installed beneath the 

Tobii Pro Spectrum eye tracker and stimulus presentation screen was used to record toddler facial 

expressions throughout the duration of ‘The Joint Attention Test’ (webcam resolution: 1920x1080, 30 

frames per second). While participant videos had a range of total frames (between 2700 – 3500), 2625 of 

the total frames make up the duration of ‘The Joint Attention Test’.  

The 87.5-second long video contained 2,625 frames (30 frames per second). The length of raw 

videos recorded by Tobii Pro Eye tracking System ranges from 2,700 to 3,000 frames. The timestamp from 

the Tobii data file (exported from Tobii pro lab) is used to match the recorded face video with the test 

videos.  

 

Facial expression recognition 

Action unit detection was conducted using OpenFace 2.0 GUI (Baltrusaitis et al. 2018). We chose 

the Multi-task Convolutional Neural Network (MTCNN) (K. Zhang et al. 2016) for face detection and CE-

CLM for action unit estimation (Baltrušaitis, Mahmoud, and Robinson 2015; Baltrusaitis et al. 2018). The 

absolute measurement of the action unit (static mode) and personal-adjusted measurement (dynamic mode) 

were both tested (Baltrušaitis, Mahmoud, and Robinson 2015; Baltrusaitis et al. 2018). For the arousal and 

valence index, the fan model recorded the facial landmarks (Bulat and Tzimiropoulos 2017) and fed them 

into emonet (Toisoul et al. 2021). The emonet model outputs the valence and arousal index. The index was 

further adjusted to remove the baseline (Haque n.d.; Z.-M. Zhang, Chen, and Liang 2010). Since a video 

has 2,625 frames, the raw data has 19 action units x 2,625 frames for each subject (Figure 3.3a). 

 

Eye-tracking data analysis 

The eye-gazing data were exported from Tobii-Prolab. The AOI was manually drawn and included 

a wall, table actress’ Face, Spinner, Box, Comb, Teddy, Scarf, Cup, Hand, and Bow. Excluding the 

https://paperpile.com/c/NHvRvL/DNlkA
https://paperpile.com/c/NHvRvL/hHP8A
https://paperpile.com/c/NHvRvL/8GnkW+DNlkA
https://paperpile.com/c/NHvRvL/8GnkW+DNlkA
https://paperpile.com/c/NHvRvL/ybqIE
https://paperpile.com/c/NHvRvL/a6oCr
https://paperpile.com/c/NHvRvL/LUXMP+cHKyO
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background, the actress's face was categorized as the social AOI and the other subjects were categorized as 

the non-social AOI. The eye-gazing data were matched to 2,625 frames and the proportion of time spent on 

AOIs was calculated. Then, the time difference between social AOI and non-social AOI was calculated for 

a subject. The independent t-tests were performed to compare the time difference distribution (between 

social AOIs and non-social AOIs) between the two groups (Figure 3.4 a-d). 161 subjects have ‘Geo-Pref’ 

non-social fixation score and we compare them with non-social fixation time on ‘The Joint Attention Test' 

(Figure 3.4e). 

 

Examination of levels of fixation within each AOI and action unit intensity score 

 For each subject, we calculated the average intensity of social and non-social AOIs for all action 

units. We find action units’ intensity has no significant difference between social and non-social AOIs using 

the independent T-test. 

 

Manual Coding 

To validate the expression intensity measured by the algorithms, 20 webcam recordings (13 ASD, 

7 non-ASD) were randomly selected and manually coded for the overall facial muscle movement intensity. 

For the validation, we first examined if the algorithm captured the action unit movements against the neutral 

face baseline. Second, we tested if the action unit intensity value aligned with the overall expression level 

such as neutral, mild, normal, and extreme big expression coded by the coder.  

We examined if the facial muscle was actively engaged and coded the arousal part of facial 

expression. Arousal (or intensity) is the level of autonomic activation that an event creates and ranges from 

calm 0 (or low) to excited 3 (or high). The neutral face is scored as 0; a mild arousal face as 1; a moderate 

arousal face as 2; an intense arousal face as 3. The independent coders watched the videos and recorded 

scores for every 5 seconds windows. The following action units were observed: cheek raiser, chin raiser, 

inner brow raiser, outer brow raiser, dimpler, lips part, lip corner depressor, lip corner puller, upper lip 

raiser, lip stretcher, lid tightener, and upper lid raiser (Farnsworth 2019).  

https://paperpile.com/c/NHvRvL/HFbG3
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A neutral face 0 is a neutral baseline that has no action units movement mentioned above. It is okay 

to ignore the mouth closeness (no matter whether closed or opened) since some neutral face conformations 

have the mouth open. A 1-score moderate face can be any sudden arousal expression. The clues are at least 

one “actively” involved action unit related to the chin, eyebrow, lip, and lid action units mentioned above. 

‘Actively’ means one can see that part of the muscle is working and has increased the tension. The muscle 

movements in face 1 are gentle and fade quickly. For example, the subject might slightly pull the lip corner 

or stretch the lip. Another example can be a subject opening his mouth slightly larger than the baseline and 

then relaxing it or closing it without any other movement. Face 2’s expression can be easily observed. The 

clue can be a single action unit activity or multiple action units that work together. For example, a child 

might pull the lip corner to make his lip stretch 1.5x the baseline or raise the chin to show happiness while 

the mouth is still closed. The signals can also be a combination of chin drop, eyebrow raiser, lip stretcher, 

and eyelid raise as mentioned above. Furthermore, a child who uses an eyelid and eyebrow muscle to frown 

can be associated with confusion. The big smiley/sad face above the normal expression is scored as 3. Many 

action units can work together with strong signals. For example, the big happy face might include a 

combination of an intense mouth open, lip corner puller, cheek raiser, and lid tightener.  

 

Comparing Open Face action unit scores to manual coding 

Randomly selected 20 videos with hidden diagnosis information were manually coded by 

independent research assistants with the coding instructions mentioned above. Three assistants coded 8 

videos. Reliability between coders was 82% within each of the coding scores. Then two assistants coded 

the rest of the 12 videos. The consistency between the two coders was 87%. The scores were compared 

with the action unit score to see if the trends of both matched. Further, we compared the mean coding scores 

between ASD and non-ASD subjects by independent T-tests. 

 

Correlation analysis 
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Spearman correlation coefficients (normality tests rejected) for 171 action unit pairs were 

calculated. The Mann-Whitney-U test (normality tests rejected) was used to test if the ASD (or non-ASD) 

group correlations were different from the zeros (B-H FDR correction α<0.05, p<0.05). The Mann-

Whitney-U test (normality tests rejected) was used to compare if the correlations were different between 

the ‘ASD’ and ‘non-ASD’ groups.  

 

Aggregating the action unit intensity score 

The videos included 19 scenes, "01_HiSweetie", "02_Teddy", "03_Bow", "04_Box", "05_Comb", 

"06_PointyComb", "07_MessyHair", "08_GreatHair", "09_Wind", "10_Spinner", "11_Scarf", 

"12_GreatScarf", "13_WarmCozy", "14_Thirsty", "15_DrankWhole", "16_GoHome", "17_LookTruck", 

"18_TeddyDrive", and "19_ByeBye". The length of scenes ranged from 66 frames to 363 frames. The 

2,625-frame video was separated into 19 scenes (Figure 3.3a). The maximum values of each action unit 

were collected within each bin, and the variance was calculated. The subject has binned intensity data for 

19 scenes (Figure 3.3c). For each action unit, the mean of maximum values between two groups was 

calculated in each scene (Figure 3.5). Then, the paired t-test (with B-H FDR correction) was used to 

compare the difference between the means (of maximum values) for 19 scenes.  

 

Co-expression analysis and correlation score 

To test the correlation network activity in two groups, we selected 97 correlation pairs that have 

Pearson correlation significantly larger than zero (p-value>0.05) (Figure 3.6e). Among the non-ASD group, 

the mean of each correlation was used as the background. For each subject, the correlation of these 97 pairs 

was compared with the background distribution using the dependent t-test (normality test accepted) in the 

scipy package (Virtanen et al. 2020). The co-expression level was defined as the z-score from the dependent 

T-test. Positive scores imply that at least some interacting action unit pairs were significantly higher than 

chance and hence parts of the network were potentially active.  

 

https://paperpile.com/c/NHvRvL/fGqkC
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Model building 

The 184 subjects were split into training (108 ASD and 46 non-ASD) and test datasets (21 ASD 

and 9 non-ASD). To check the age effect, the optbin R package (“Optbin: Optimal Binning of Data” n.d.) 

was used to find the optimal age breakpoint (Figure 3.3f). An Independent T-test was used to check if there 

was a difference between groups. 

 

Feature generation 

The first step was to remove the action units that had low signal detection. The action units with 

low signal and low variance were removed. The action unit signal with 66% of subjects not detected (score 

lower than 0.1) was thus removed. 25 features were selected that contained 17 action units and 5 variances 

('var_1_Inner Brow Raiser', 'var_17_Chin Raiser', 'var_23_Lip Tightener', 'var_25_Lips part', ‘var_26_Jaw 

Drop') and 3 emotion statues (arousal, valence, and var_valence) across 19 scenes (19x25=475 features in 

total). The data were scaled by each feature with StandardScale from scikit-learn (Trappenberg 2019). Then, 

the 97 correlation features were incorporated (Figure 3.3e). 

 

Feature selection and cross-validation 

Five-fold cross-validation was performed on the training set with 154 samples (108 ASD and 46 

non-ASD). The dataset was shuffled and separated into six folds. Five folds of data were used for training, 

and one fold was left out for the test. The feature selection methods include linearSVC (penalty=’l2’) and 

ElasticNet. The feature numbers were forced to be less than the sample size. SVM with the linear kernel 

was used as a final classifier. For each training fold, the ROC score and a set of coefficient weights for 

selected features were recorded. After five-fold training, the average ROC score was used to select the top 

model. Then, the recorded five sets of feature weights were accumulated, and the first 70% of ranked 

features were selected as the final feature set. We were able to obtain a 0.86-0.90 AUC-ROC score. We 

also validated with the LogisticRegression classifier that the final model reaches 0.85-0.88 AUC-ROC 

scores on the training set, demonstrating the model behavior's consistency.  

https://paperpile.com/c/NHvRvL/IYoO
https://paperpile.com/c/NHvRvL/yUbN5
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Results 

Data analysis overview  

Figure 3.1 outlined the main design and analysis steps, and Figure 3.3 provided details of data 

engineering for machine learning classification. After the experiment, the data were exported from the Tobii 

and webcam software, and timestamps for 19 scenes were tabulated for each subject (Figure 3.3a). The 

action units were measured for 2,625 frames and had an individual baseline adjusted with OpenFace 2.0 

(Baltrušaitis, Mahmoud, and Robinson 2015; Mavadati et al. 2013; Jeni et al. 2013; Baltrušaitis, Robinson, 

and Morency 2016). The valence and arousal index were measured with emonet (Toisoul et al. 2021) and 

also had baseline removed (Z.-M. Zhang, Chen, and Liang 2010) (see Methods). The correlation and co-

expression of the eighteen action units and two valence/arousal scores were analyzed to generate 

correlation-related features (correlation and co-expression scores) (Figure 3.3b, d). Then, the action unit 

and valence/arousal were aggregated into 20 scenes and the means and variances were calculated (Figure 

3.3c). We then selected 97 correlation-related and 475 intensity-related features and prepared these as 

subject features for feature selection and model training (Figure 3.3e). Meanwhile, the manual coding 

instruction was designed to validate if the automatic action unit detection could capture the action unit 

movement.  

 

Data quality 

 We tested first for group (129 ASD and 55 non-ASD) differences in age, gender, race (white and 

non-white), ethnicity (Hispanic/Latino and not Hispanic/Latino), and clinical scores. There were no 

significant group differences in age (two-sample independent T-test, t-statistic=1.606, p=0.110), reported 

gender (Fisher exact test, ratio=0.832, p=0.5969), reported race (Fisher exact test, ratio=0.821, p=0.617) or 

ethnicity (171/184 collected, Fisher exact test, ratio=1.303, p=0.501). (Table 3.1 and Table 3.2) 

 

 

  

https://paperpile.com/c/NHvRvL/8GnkW+jLdnC+ztzXU+Q30TN
https://paperpile.com/c/NHvRvL/8GnkW+jLdnC+ztzXU+Q30TN
https://paperpile.com/c/NHvRvL/a6oCr
https://paperpile.com/c/NHvRvL/cHKyO


 

157 
 

Table 3.1 Demographic information table for age and clinical scores.  

  ASD non-ASD T-statistic p-value 

Age 28.6 (7.94) 26.46 (9.05) 1.606 0.109966 

Ados_CoSoTot 13.55 (4.23) 4.25 (3.65) 14.203 2.69E-31 

Ados_RRTot 5.57 (1.83) 1.58 (1.77) 13.659 1.07E-29 

Ados_CoSoTotRRTot 19.12 (5.3) 5.84 (4.98) 15.833 4.59E-36 

Vine_ComTotal_DomStd 78.31 (18.9) 94.49 (10.1) -5.989 1.1E-08 

Vine_DlyTotal_DomStd 83.07 (14.11) 94.15 (8.89) -5.378 2.29E-07 

Vine_SocTotal_DomStd 82.97 (14.81) 94.73 (9.07) -5.461 1.54E-07 

Vine_MtrTotal_DomStd 91.12 (13.43) 93.69 (20.8) -0.998 0.319617 

Vine_AdapBehav_DomStd 80.26 (13.39) 92.67 (9.18) -6.268 2.58E-09 

Vine_DomStdTotal 335.24 (51.36) 378.62 (36.99) -5.665 5.66E-08 

Mullen_VRT 35.17 (13.43) 46.44 (12.73) -5.289 3.51E-07 

Mullen_FMT 35.16 (11.8) 46.93 (11.56) -6.227 3.21E-09 

Mullen_RLT 29.37 (16.68) 44.89 (13.28) -6.119 5.63E-09 

Mullen_ELT 26.16 (15.51) 43.22 (15.85) -6.787 1.56E-10 

Mullen_ELC_Std 67.35 (22.18) 91.91 (20.07) -7.069 3.22E-11 

 

 

 

  



 

158 
 

 

Table 3.2 Contingency table for gender, race and ethnicity.  

 ASD non-ASD Ratio p-value 

Gender         

Female 35 17 

0.8323 0.5969 Male 94 38 

Hispanian or Latino       

HL 51 19 

1.303 0.5006 non-HL 68 33 

Race         

White 81 37 

0.8209 0.6168 non-white 48 18 
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Figure 3.3 Feature preparation pipelines. a Sample raw data with scene timestamps annotated. b 
Correlations of each action unit pair through the whole experiment. c Raw action unit values were 
aggregated into 19 scenes. d Selected correlation pairs. e The input features consist of action unit intensity 
features and correlation features. f Subjects were partitioned into young and old age groups. g The 
stratification sampling based on age (<27.5 months, light purple;>27.5, dark purple) and diagnosis labels 
(non-ASD, cream; ASD, brown) helps to split the training (blue) and test (red) groups. The models were 
trained and selected based on the 5-fold cross-validation and finally evaluated by the final test group.   
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Manually coded arousal muscle movement 

An in-house manual coding system was designed to investigate if the tools used could capture facial 

muscle movement. Our coders are trained to code the overall arousal muscle movements in 4 levels (see 

Methods). 20 out of 184 subjects were randomly selected for manual coding (13 ASD and 7 non-ASD). 

Three different coders checked 8 out of 20 videos to guarantee consistency of the coding instruction—all 

three raters agreed upon 80% of codings. Two coders evaluated the remaining 12 of the 20 videos. The 

toddlers generally express happiness-related emotions but might express non-happy-related emotions, such 

as negative surprise, shock, and sadness. Based on the manual coding, the children have more action unit 

movement in the ASD group than the non-ASD group (two-sample independent t-test, p-value=0.014). The 

overlaps between manually coded facial expression intensity scores and computer-vision-based intensity 

peaks were matched. The results validated that the computer-vision-based algorithm can capture facial 

muscle movement from toddlers (See Methods).  

 

Visual preference on the area of interests (AOIs) 

Although our analysis focused on facial emotional behavior, the eye-tracking data provide valuable 

information about subjects' visual behavior on quality control steps (See Methods). The subject's eye-gazing 

on 12 AOIs was recorded. The AOIs on the videos were categorized as social (actress's face), non-social 

(Table, Box, Shirt, Spinner, Truck, Teddy, Bow, Comb, Scarf, Cup and Hand), and background (Wall and 

Table) AOIs (Figure 3.2). In Figure 3.4a, non-ASD have more fixation time on the screen (social, non-

social) (Failed normality test, p-value=1.012e-10; Wilcoxon rank-sum test, p-value=0.0102). The ASD 

group spent more time than the non-ASD group on the target AOI (Two-sample independent T-test, p-

value=2.6e-06), while the non-ASD group spent more time on social AOI than the ASD group (Two-sample 

independent T-test, p-value=2.6e-06) (Figure 3.4 a,b). The paired comparison of social AOI and non-social 

AOI provided the same result (Two-sample independent T-test, p-value=2.6e-06, Cohen's d=0.8205) 

(Figure 3.4 d). The Games Howell Post-hoc Tests (“RPubs-Games-Howell Nonparametric Post-Hoc Test” 

n.d.) on differences of AOI were also conducted on the optimal partitioned age groups (Figure 3.3f) to 

https://paperpile.com/c/NHvRvL/tiIHk
https://paperpile.com/c/NHvRvL/tiIHk
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validate that the age effect was insignificant over different age groups. The result was consistent with our 

prior findings on the ‘GeoPref’ experiment (See Method; Figure 3.4e, r=0.51). Part of ASD subjects 

preferred non-social objects to social objects(Wen et al. 2022).  

 

Group differences in action unit intensity 

After the 2,625 frames were binned into 19 scenes (see Methods), within each bin, the maximum 

values of each action unit were collected and the variance was calculated. The descriptive statistics of 

maximum value were provided. Across 19 scenes, 16 out of 17 action units in the ASD group had higher 

mean intensity than non-ASD groups (two-sided dependent T-test and B-H FDR correction) (Table 3.3 and 

Figure 3.5). Additionally, the ASD group has higher valence (p=3.841e-08) and arousal (p=8.580e-09) 

scores (two-sided dependent T-test). 

 

Group differences in action units co-expression patterns 

Video-based action units (including valence and arousal index) correlation was calculated and the 

correlation network activities were evaluated. 171 pair-wise correlation (named as c-pair) values were 

calculated for each subject (see Methods) (Figure 3.6a,b). 89 out of 171 c-pairs from the ASD group were 

significantly larger than zero (Figure 3.6c). 68 out of 171 c-pairs from the non-ASD group were 

significantly larger than zero (Figure 3.6d). 65 c-pairs were larger than zero in both ASD and non-ASD 

groups (Figure 3.6e). Within both groups, the action units such as Brow Lowerer, Cheek Raiser, Eyelid 

Tightener, Nose Wrinkler, Upper Lip Raiser, Lip Corner Puller, Dimpler, and Lip stretcher were correlated 

with each other and formed a hub in the correlation network. Correlation tables and volcano plots showed 

that, among the significant c-pairs, the correlation values from the ASD group were numerically larger than 

that of non-ASD groups (Figure 3.6c,d). Ten c-pairs have significant p-values (Mann-Whitteny-U with B-

H FDR correction).  

 

  

https://paperpile.com/c/NHvRvL/V6hoX
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Figure 3.4 Time spent on Area of Interests. a The total time spent on the screen. b-c Proportion of the 
fixation time over the ‘social’, and ‘non-social’ targets. d The time difference between the ‘social’ and 
‘non-social’ areas. e scatter plot for ‘Geo-Pref’ non-social fixation score vs non-social fixation time on ‘The 
Joint Attention Test”. 
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Derived co-expression z-score among ASD and non-ASD groups 

We further investigated the subjects' action units' co-expression patterns. We selected 97 c-pairs 

whose mean values were significantly larger than zero in either the ASD or non-ASD group. The 97 c-pair 

values from a subject were compared against the background’s 97 c-pairs using the dependent T-test 

(normality test not rejected) (see Methods). The resulting z-score was then used to represent a subject's 

action unit co-expression level. The ASD group has a higher co-expression score than the non-ASD group 

(p=0.00834, Cohen's d=0.45) (Figure 3.5f).  

 

A machine learning model differentiates ASD vs. non-ASD toddlers 

A classifier was built to differentiate the ASD and non-ASD groups. Four hundred and seventy-

five action unit intensity features (19 scenes of 25 action unit intensity features) and 98 whole-video 

correlation features were used as the input feature for classification (Figure 3.3a-e). The 184 subjects were 

split into six batches. During the data splitting, the age effect was considered. The optimal two age bins 

were (12, 27.5) and (27.5, 48) (Figure 3.3f). The StratifiedKFold from scikit-learn(Pedregosa, Varoquaux, 

and Gramfort, n.d.) that considers age groups and diagnosis labels was used for data splitting (Figure 3.3g). 

The five-sixth of 184 subjects were used to train models with five-fold cross-validation, and the remaining 

subjects were isolated as an untouched test set to evaluate the model performance. 

The final model used ElasticNet as the feature selection method and used SVM with the linear 

kernel (a=0.1) as the final classifier (See Methods). The model reached an average accuracy of 86% (0.91 

AUC-ROC scores, 0.95 AUC-PR scores) in 5-fold cross-validation analysis (Figure 3.7a,b) and an accuracy 

of 77% on the test dataset (0.75 AUC-ROC scores, 0.78 AUC-PR ) in the test set. The prediction scores 

from both training and test datasets were provided (Figure 3.7e). There were 80 features selected as the 

final feature set. To evaluate the feature importance, these 80 features were binned into the action unit 

category and scenes category (Figure 3.6c, d). The top features that accounted for half of the weights were 

the inner brow raiser, lip tightener, the variance of the valence score, jaw drop, upper lid raiser, lip stretcher,  

  

https://paperpile.com/c/NHvRvL/aul4T
https://paperpile.com/c/NHvRvL/aul4T
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Table 3.3 The statistical descriptive value of the maximum action unit intensity score across 19 scenes.  

  ASD non-ASD stats p-value adj p-value Cohen's d 

1_Inner Brow Raiser 0.564 (0.279) 0.467 (0.254) 3.893 9.777E-04 1.161E-03 0.363 

2_Outer Brow Raiser  0.345 (0.235) 0.257 (0.198) 6.262 5.174E-06 9.831E-06 0.403 

4_Brow Lowerer 0.171 (0.08) 0.076 (0.06) 10.664 1.851E-09 1.172E-08 1.347 

5_Upper Lid Raiser 0.194 (0.135) 0.184 (0.12) 1.484 1.542E-01 1.542E-01 0.077 

6_Cheek Raiser 0.279 (0.127) 0.206 (0.114) 8.121 1.341E-07 3.640E-07 0.600 

7_Lid Tightener 0.485 (0.173) 0.407 (0.166) 6.492 3.208E-06 6.773E-06 0.462 

9_Nose Wrinkler 0.262 (0.161) 0.223 (0.155) 4.464 2.663E-04 3.373E-04 0.247 

10_Upper Lip Raiser 0.13 (0.097) 0.083 (0.062) 4.810 1.217E-04 1.652E-04 0.580 

12_Lip Corner Puller 0.265 (0.131) 0.17 (0.112) 8.803 3.935E-08 1.246E-07 0.779 

14_Dimpler 0.332 (0.154) 0.176 (0.112) 11.138 9.032E-10 8.580E-09 1.159 

15_Lip Corner Depressor 0.499 (0.24) 0.393 (0.19) 5.110 6.227E-05 9.859E-05 0.488 

17_Chin Raiser 0.938 (0.263) 0.727 (0.191) 9.601 1.011E-08 3.841E-08 0.917 

20_Lip stretcher 0.377 (0.192) 0.311 (0.179) 7.308 6.252E-07 1.485E-06 0.354 

23_Lip Tightener 0.465 (0.291) 0.36 (0.239) 3.734 1.407E-03 1.486E-03 0.394 

25_Lips part 0.805 (0.286) 0.671 (0.241) 5.240 4.665E-05 8.058E-05 0.506 

26_Jaw Drop 0.82 (0.284) 0.688 (0.214) 4.889 1.019E-04 1.489E-04 0.524 

45_Blink 0.551 (0.248) 0.454 (0.2) 3.833 1.121E-03 1.253E-03 0.429 

smoothed_valence_mean 0.262 (0.07) 0.206 (0.069) 9.665 9.093E-09 3.841E-08 0.801 

smoothed_arousal_mean 0.277 (0.073) 0.227 (0.061) 11.506 5.249E-10 8.580E-09 0.748 
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Figure 3.5 Action unit intensities across 19 scenes. Each radar plot showed one action unit’s mean 
maximum intensity score for 19 scenes. The red one is the non-ASD group and the blue one is the ASD 
group.   
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Figure 3.6 Action unit correlations show co-varying features. The correlation p-value table for a ASD 
and b non-ASD groups. The volcano plot of 171 correlation pairs for c ASD and d non-ASD groups. e 
Venn diagram for 97 correlation pairs positively correlated in either ASD or non-ASD group. f The 
distribution of derived correlation score (see Methods) between ASD and non-ASD groups.  
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Figure 3.7 The model result. The a ROC and b PR curves of 5-fold cross validation. c The selected features’ 
weights were aggregated by action units. d The selected features’ weights were aggregated by senses. e The 
subject's predictive scores from training and test groups.  
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blink, and chin raiser. The top senses that accounted for half of the weight were 09_Wind, 03_Bow, 

01_Hisweetie, 14_Thirsty, 10_Spinner, and 07_MessyHair.  

 

Classifier scores unaffected by age, ethnicity, and race differences 

To examine possible bias toward the age effects on group classification, we tested the Pearson 

correlation between age and classifier score on ASD and non-ASD subjects independently (ASD in Train, 

r = 0.174, p = 0.072; non-ASD in Train, r = 0.106, p = 0.481; ASD in Test, r = -0.040, p = 0.863; non-ASD 

in Test, r = 0.217, p=0.574). This further verified that potential confounding effects of age were excluded 

in the analysis.  

The examination of classifier scores on ASD and non-ASD groups showed no significant difference 

across ethnicity groups (‘reported Hispanic and Latino’, ‘reported not Hispanic or Latino’; independent T-

test) (Table 3.4). The same analysis was also conducted on gender. No significant difference was found 

between the male and female groups (independent T-test) (Table 3.5).  

Post-hoc examination of age, ethnicity, and gender analysis indicated that the classifier has no bias 

against those common confounding factors. 

 

Ensemble classifier combining GeoPref non-social score significantly improved sensitivity 

We had 161 out of 184 subjects with GeoPref test non-social fixation score(Wen et al. 2022). The 

subjects who were identified as GeoPref subtype (Wen et al. 2022; Pierce et al. 2016) were 100% correctly 

labeled as ASD by the action unit classifier (Figure 3.8a). Taking ASD as the true label, our action unit 

classifier has 83.3% sensitivity and 67.5% specificity in the test dataset (90.1% and 75% in the training 

dataset). The identifier solely based on the GeoPref test had 95% specificity and 23% sensitivity. By 

combining the action unit classifier and GeoPref classifier, we adjusted the threshold (GeoPref score: 30% 

to 41% and action unit classifier predictive score=0.3) to achieve tentative 100% specificity and 45-50% 

sensitivity. The ensemble classifier preserves the high specificity while drastically increasing the sensitivity 

which provides a high potential for wide screening applications.  

https://paperpile.com/c/NHvRvL/V6hoX
https://paperpile.com/c/NHvRvL/V6hoX+lvKp4
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Figure 3.8 analysis across classifier score, social/communication ability and GeoPref non-social test 
score. a the classifier score vs GeoPref score. The left is the training dataset and the right is the test dataset. 
The lack of horizontal b the classifier score vs ADOS and Mullen scores. 
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Table 3.4 The statistical descriptive value of gender and ethnicity separately. 

Diagnosis Group Gender Mean Std Count T-statistic P-value 

ASD Test F 0.8671 0.2160 5 
0.9412 0.3584 

ASD Test M 0.7186 0.3283 16 

ASD Train F 0.8702 0.2011 30 
0.2585 0.7965 

ASD Train M 0.8586 0.2111 78 

non-ASD Test F 0.5293  1 
- - 

non-ASD Test M 0.4617 0.3434 8 

non-ASD Train F 0.3469 0.2721 16 
0.5225 0.6039 

non-ASD Train M 0.2986 0.3112 30 

        

Diagnosis Group Ethics Mean Std Count T-statistic P-value 

ASD Test HL 0.6790 0.4073 5 
-0.7662 0.4555 

ASD Test non-HL 0.8058 0.2671 12 

ASD Train HL 0.8933 0.1582 46 
1.5655 0.1206 

ASD Train non-HL 0.8280 0.2439 56 

non-ASD Test HL 0.7422 0.3320 2 
1.4504 0.1902 

non-ASD Test non-HL 0.3912 0.2965 7 

non-ASD Train HL 0.3470 0.3276 17 
0.4232 0.6744 

non-ASD Train non-HL 0.3066 0.2917 26 
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Table 3.5 The Pearson’s correlation coefficient between the classifier score and social/communication 
ability. 

ADOS Communication Social Score (CoSoTot), restricted and repetitive behaviors severity scores (RRTot), 
Mullen visual reception (VRT), Fine motor (FMT), Receptive language (RLT), Expressive language (ELT), 
Early learning composite (ELC). 
 

 Training dataset (n=154) Test dataset (n=30) 

 r-value p-value r-value p-value 

Ados_CoSoTot 0.5012 5.572E-11 0.4786 8.633E-03 

Ados_RRTot 0.5164 1.142E-11 0.4809 8.272E-03 

Ados_CoSoTotRRTot 0.5361 1.298E-12 0.4992 5.834E-03 

Mullen_VRT -0.2292 4.646E-03 -0.4561 1.289E-02 

Mullen_FMT -0.3403 1.905E-05 -0.4400 1.691E-02 

Mullen_RLT -0.3541 8.161E-06 -0.3749 4.507E-02 

Mullen_ELT -0.3983 4.088E-07 -0.3961 3.340E-02 

Mullen_ELC_Std -0.3970 4.495E-07 -0.4561 1.289E-02 
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Post Hoc exploratory analysis across classifier score, social/communication ability and GeoPref non-

social test score 

We further investigated correlations between classifier score and social and communication 

abilities. The results showed significant correlations between the classification score and ADOS variables, 

including ADOS social affect, ADOS restricted and repetitive variables, and ADOS total. The results also 

showed significant correlations between the classification score and five Mullen variables, including 

Mullen fine motor, Mullen receptive language, Mullen visual reception, Mullen expressive language and 

Mullen early learning composite.  

We selected the ADOS total, Mullen early learning composite, non-Social preference score and 

classifier score for the unsupervised clustering analysis. The hierarchical clustering (metric=’euclidean’, 

method=’average’) with distance=2.6 was used and we identified 4 subgroups (Figure 3.9a). The Games 

Howell Post-hoc Tests was conducted to derive descriptive statistics (Figure 3.9b-e). Cluster 1 (45 ASD) 

had the highest classifier score, highest ADOS total score and lowest Mullen early learning composite, and 

all of the GeoPref subtypes (Wen et al. 2022). Meanwhile, cluster 2 (51 ASD, 7 non-ASD) had the second 

highest classifier score, but lower ADOS total compared to Clusters 1 and 3. Cluster 3 (10 ASD, 4 non-

ASD) with a classifier score of lower than 0.5 had no difference from cluster 1 in ADOS total and Mullen 

early learning composite scores. Cluster 4 (3 ASD and 41 non-ASD) with classifier scores lower than 0.5 

had the lowest ADOS total scores and highest Mullen early learning composite scores.   

https://paperpile.com/c/NHvRvL/V6hoX
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Figure 3.9 Clustering analysis using classifier scores, ADOS_CoSoTotRRTot, Mullen_ELC_Std and 
GeoPref non-social test score. a The hierarchical clustering (metric=’euclidean’, method=’average’) with 
distance=2.6. b-e The Games Howell Post-hoc Tests analysis on classifier scores, ADOS_CoSoTotRRTot, 
Mullen_ELC_Std and GeoPref non-social test score.   
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Discussion 

In this study, we determined that in certain situations, emotional responding is overly intense in 

ASD and the differences can be used as a potential diagnostic marker of ASD by using state of the art 

expression analysis software. We introduced a highly elicit experiment ‘The Joint Attention Test’ and 

tracked the toddler’s natural facial expressions while watching the video. With the help of open-source 

analysis packages (OpenFace 2.0 and Emonet), we measured the action unit intensity on 2,625 frames of 

video and trained the model based on the action unit intensity. Instead of the raw action unit intensity, we 

used two sets of features. One set is the action unit intensity against the baseline and the other set is the 

correlation between action unit pairs across the whole experiment. The model reached an average accuracy 

of 86% (0.91 AUC-ROC, 0.95 AUC-PR) in the 5-fold cross-validation analysis and an accuracy of 77% on 

the test dataset (0.75 ROC score). Pearson correlation tests demonstrated the classifier was not correlated 

with age. The independent t-test indicated classifier scores did not differ between the Hispanic versus non-

Hispanic subjects or between males and females within ASD and non-ASD groups independently, 

suggesting the classifier scores independent of toddlers’ age, gender, and ethnicity. 

 

Taking ASD as the true label, our action unit classifier has a sensitivity of 83.3% and a specificity 

of 67.5% in the test dataset (90.1% and 75% in the train dataset). The identifier solely based on the GeoPref 

test had a specificity of 95% and sensitivity of 23%. By combining the action unit classifier and GeoPref 

classifier, we adjusted the threshold (GeoPref score: 30% to 41% and action unit classifier predictive 

score=0.3) to achieve a tentative specificity of 100% and sensitivity of 45-50%. The ensemble classifier 

preserves the high specificity while drastically increasing the sensitivity, which provides high potential for 

wide screening application. 

 

It is believed that the ASD and non-ASD groups had different facial behaviors(Carpenter et al. 

2021; Brewer et al. 2016; Faso, Sasson, and Pinkham 2015; Weiss et al. 2019; Rozga et al. 2013; Zampella, 

Bennetto, and Herrington 2020b; Rieffe, Meerum Terwogt, and Stockmann 2000). Here, we found this 

https://paperpile.com/c/NHvRvL/8JHh2+fdX08+TuyFu+RECtN+3iT19+48eQ7+3BSIh
https://paperpile.com/c/NHvRvL/8JHh2+fdX08+TuyFu+RECtN+3iT19+48eQ7+3BSIh
https://paperpile.com/c/NHvRvL/8JHh2+fdX08+TuyFu+RECtN+3iT19+48eQ7+3BSIh
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difference can be captured by the action unit measurement quantitatively and qualitatively. Specifically, a 

subgroup of ASD subjects were facially over-responsive to the videos, whereas the majority of non-ASD 

subjects were under-responsive to the videos. This observation is consistent with manual coding. 

Additionally, the ASD group had no statistical difference in action unit intensity when they were looking 

at the social and non-social objectives. We also found the ASD group had a higher correlation among certain 

action unit pairs than non-ASD group (need more detail). It supports that the ASD group has heterogeneous 

facial expressions patterns and those facial expressions differences captured by the classifier as the top-

ranked features had higher value among the ASD groups (need more details).  

 

To gain a comprehensive understanding of social processing and emotional activity, we leveraged 

eye-tracking and clinical data. We first validated that the subject's non-social preference in the ‘The Joint 

Attention Test’ and the ‘GeoPref’ experiment was consistent (Figure 3.4e). Then, we found that facial 

expression was highly associated with social and language abilities (Figure 3.8b). Using the data-driven 

clustering approach, we identified 4 clusters. The predictive score plays an important role in separating 

clusters 1 and 2 versus 3 and 4. We found subjects in cluster 1 (45 ASD) had distinctive high non-social 

fixation scores that included all GeoPref subtypes (whose geo-pref non-social score was > 69%) while the 

rest of the clusters have lower non-social scores and no statistical difference. This might imply the GeoPref 

subtype has the abnormal facial expression. Cluster 1 also has the highest-responsive facial behavior and 

the worst social and language skills compared to toddlers in cluster 4 (41 non-ASD, 3 ASD) who have the 

least-responsive facial behavior and highest social and language skills. Clusters 2 and 3 are intermediate. 

Cluster 2 (51 ASD and 7 non-ASD) represents a group of toddlers that were highly responsive to the video 

but have low non-social preference phenotypes. However, we find that cluster 3 (10 ASD and 4 non-ASD) 

represents a subgroup of toddlers that has facial behavior under-responsive to video but has 2nd worst social 

and language skills. This cluster represents a very different ASD subgroup that cannot be correctly 

classified using facial expression detectors even if they have high social and language skills deficits. Overall, 

the action unit classifier score, eye-tracking score, and clinical score are all important features in clustering. 
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The clustering result provides a unique perspective to understand the variability within each group. This 

also gives us new evidence that there might be “over-responsive” and “under-responsive” ASD subgroups 

with different action unit intensity and clinical scores (Bangerter et al. 2020).  

 

There are a few limitations worth noting. As this study was foundational and exploratory, future 

work will have to ascertain the reliability and reproducibility of the current results. Another limitation is 

that the sample sizes in ASD and non-ASD groups (including TD, DD, GDD, LD, etc.) are imbalanced. 

Since the data were collected during the COVID-19 pandemic period, we were not able to recruit enough 

TD toddlers in this study and thus included children with TD and delays (e.g., DD, GDD, LD, etc) as the 

non-ASD group. It is possible that the other neurodevelopmental disorders may be confounding the 

classification. In fact, we also had to remove more than half of the subjects as their facial movement data 

are unavailable (wearing masks, covered by hand, eating) during the experiment. The unequal sample size 

in ASD and non-ASD groups might bias the range of display of AUs associated with ASD. The limited 

sample size also hampered the model development. The raw data collected by video frames produced 

2,625x19 features in a time series manner. However, since we only collected 184 subjects, we have to 

control the feature size to avoid the overfitting of our model. Although we used the OpenFace and Emonet 

packages to measure the action unit intensity—these open source and publicly well-known packages may 

help replicate the findings here, in the future, it would be necessary to develop more sophisticated toddler 

focused facial expression models to ensure the measurement quality. In addition, the experiment has some 

disadvantages, although the ‘The Joint Attention Test’ experiment is the most arousal experiment in our 

inventory. The social and non-social subjects are close to each other, and toddlers tend to shift their attention 

(eye gazing target) across multiple AOIs on a millisecond scale. Those fast AOI shits make spontaneous 

emotional analysis on AOI infeasible since the other studies might use a 3-7 seconds window to track the 

associated emotional response(Riehle, Kempkensteffen, and Lincoln 2017; Zampella, Bennetto, and 

Herrington 2020b). We also have a disproportion of social and non-social targets. Thus, we cannot conduct 

https://paperpile.com/c/NHvRvL/d2CQq
https://paperpile.com/c/NHvRvL/88SXq+48eQ7
https://paperpile.com/c/NHvRvL/88SXq+48eQ7
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sophisticated analyses to identify whether the majority of under-responsive non-ASD is the result of the 

disproportionate-small social area (Wen et al. 2022). 

 

In conclusion, the use of automatic facial recognition software enabled us to obtain data on facial 

expression from a relatively larger group of toddlers with ASD (n = 129) in an unobtrusive, accurate, and 

efficient way. Further, it allowed us to identify clusters or subgroups within the ASD group that differ from 

each other. These findings provide valuable evidence that the differences in facial expressions help 

delineate the heterogeneity of ASD with the help of the eye-tracking and clinical data. 

Identifying subgroups within ASD may help explain some of the conflicting findings reported in 

previous studies (Faso, Sasson, and Pinkham 2015; Zane et al. 2018) that may display behavioral 

differences that are independent of the severity of the diagnosis. It may also provide a standardized and 

high-throughput way to parse some of the heterogeneity within ASD and enhance understanding of the 

complex relationship between differences in these subgroups and caregiver reported observations. Our 

results support the notion of multiple dimensions of observable behavior that contribute to the autism 

phenotype, and the need to look at behaviors that go beyond the diagnostic criterion to consider profiles of 

skills across dimensions. This could lead to the personalized interventions and a closer link to the causal 

pathways associated with ASD phenotypes. 

 

  

https://paperpile.com/c/NHvRvL/V6hoX
https://paperpile.com/c/NHvRvL/TuyFu+YrIMU
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Appendix 

Appendix Result 1 

Sanity check for 1,822 high-performance model. 

First, we evaluated the performance of the 1,822 high-performing models on a Longitudinal dataset of 18 

ASD and 15 TD samples from toddlers who were included in the Discovery dataset. Out of 1,822 models 

with AUC-ROC of above 0.8, 1,656 (90.8%, odds ratio 76.89514, 95% confidence interval [64.74134, 

91.39221], two-sided Fisher's Exact Test P < 2.2e-16) of the models showed AUC-ROC above 0.8 in the 

Longitudinal dataset.  

 

Appendix  Result 2 

Validation of Independent Replication dataset 

To test the sensitivity, the models were trained on the Discovery dataset (175 subjects together) 

and then tested on the dataset with 34 ASD and 31 TD. The AUC-ROC values were used to evaluate the 

performance of the selected 1,822 high-performing models. 1,076 models (59.0%) had an AUC-ROC value 

greater than 0.75. The two-sided Fisher's Exact Test calculated the odds ratio 5.133581 (95% confidence 

interval [4.688261, 5.620152]) with P < 2.2e-16.  

In terms of the diagnostic specificity, the models were trained on the discovery dataset (175 subjects 

together) and then tested on the independent Replication dataset (55 subjects, 31 TD, and 24 LD). From 

1,822 models with AUC-ROC or AUC-PR values greater than 0.8, none had an AUC-ROC value of above 

0.8 in this LD vs TD dataset. The two-sided Fisher's Exact Test calculated the odds ratio 0 (95% confidence 

interval [0, 0.01765617]) with P < 2.2e-16. 26 methods had an AUC-ROC value of above 0.8 in this LD vs 

TD dataset. The two-sided Fisher's Exact Test calculated the odds ratio 0.1240666 (95% confidence interval 

[0.08055236, 0.18305634]) with P < 2.2e-16.  

We also assessed the diagnostic specificity of the models by comparing performance of the 1,822 

models in separating a Diagnostic Specificity dataset of 24 language delayed (LD) toddlers from the ASD 

samples. From 1,822 models with AUC-ROC or AUC-PR above 0.8, 26 (1.42%; odds ratio 0.1113861, 95% 
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confidence interval [0.07231532, 0.16436198]), two-sided Fisher's Exact Test P < 2.2e-16) have an AUC-

ROC above 0.75 in this LD vs TD dataset. 

 

Appendix Result 3 

Result and parameter setting on the baseline Random Forest model 

Number of top variables are chosen from results based on the validation data, over a grid of (10, 

100, 500, 1,000). On this grid, 500 genes are chosen as optimal. Importances are generated from 100 rounds 

of evaluations of Random Forest, averaged. Final test results using these top 500 genes have the accuracy: 

73.33%, sensitivity: 85.71%, specificity: 62.50%, AUC-ROC: 72.32%.   
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Appendix Figure 1 The detail workflow of the feature engineering pipeline.  
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Appendix Figure 2 The distribution of AUC-ROC scores of 12 classifiers against the AUC-ROC mean 
score of 1320 routes. The distribution of AUC-ROC generated by 1,320 routes within each of 12 classifiers 
in a. the discovery dataset and b. the independent dataset. The distribution of AUC-ROC generated by 
1,320 routes vs the mean of AUC-ROC of each route in b. the discovery dataset (with +- 0.0514 95% 
confidence interval) and d. the distribution in the independent dataset (with +- 0.0514 95% confidence 
interval). In the variance of AUC-ROCs generated by 12 classifiers of 1,320 routes, the x-axis is the mean 
of AUC-ROC of each route in e. the main dataset and f. in the test dataset. 
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Appendix Figure 3 The AUC-ROC score of 1,320 models trained on Discovery dataset. a. The score 
distribution of 1,822 models that have AUC-ROC score above 0.8 in the discovery dataset in 5 iterations. 
b. The score-difference distribution of 1,822 models in 5 iterations.  
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Appendix Figure 4 The relation between the similarity of gene routes and the 12 classifiers behavior. 
The correlation of 12-classifier score vs the distance between routes and models. The distance is measured 
by the -log2 of the geneset similarity on the first 500 genes (see Methods). The  
slope=-0.03806252570865483, intercept=0.4443827187728834, rvalue=-0.25294548575900266, 
pvalue=1.35416223411553e-265, and stderr=0.001075187710703305. 
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Appendix Figure 5 The overall data processing workflow. The workflow lists the processes of running 
main training test on Discovery dataset, validation test on independent Replication dataset, reproducibility 
test on longitudinal dataset and background test on randomized permutation dataset. 
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Appendix Figure 6 The geneset similarity distance among 191 routes. The distance score (see Methods) 
is measured by the top 500 genes that are used by 191 routes and then clustered by ‘average’ method. The 
data of the table is in eTable 6.  
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Appendix Figure 7 Illustration of the updated model that combines the composite model with geo-
fixation model. The updated model was tested on 132 of 175 Discovery dataset subjects and 41of 65 
Replication dataset subjects who had available Geo-Fixation data (e.g., moderate or good data quality, total 
looking time > 50%). By directly classifying the subjects who had percent fixation on non-social 
images >69% as ASD (GeoPref-subtype). A. The composite score vs geo-fixation percentage score in 
discovery dataset. B. The updated score vs geo-fixation percentage score for discovery dataset. C. The 
composite score vs geo-fixation percentage score for the independent dataset. D. The updated score vs geo-
fixation percentage score for independent dataset.  
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Appendix Figure 8 Diagnostic vs psychometric scores. Diagnostic and psychometric scores were not 
significantly different between ASD toddlers above (easy-to-classify) and below the mean composite 
classifier scores (hard-to-classify). a-b discovery dataset r= 0.5310815, Two sided t.test P = 4.011e-14; c-
d independent dataset r= 0.4871145, Two sided t.test P = 3.873e-05.  
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CONCLUSION 

 
As bioinformaticians, we keep leveraging new methodologies from wet and dry labs to increase 

our capabilities understanding complicated biological mechanisms.  Because of the inherent complication 

of biological processes, applying new analyses or evaluating new data is often full of assumptions both 

explicit and implicit. A better approach to presenting data usually brings new insight and makes data more 

interpretable. In the chapter 1, the glycomics data are transformed using the synthesis network knowledge 

which makes the interdependent relationship between individual glycans self-explanatory. In the chapter 3, 

the measurement of an action unit through whole videos (2,625 frames) produces a time series with 2,625 

values. However, the maximum measure in 19 scenes is selected to represent data that help shrink the total 

feature space. Then, careful consideration of the methods applied to our data is paramount, as seemingly 

arbitrary choices in the hyperparameters of our analysis (e.g. the method for data transform, the minimum 

depth for clustering, the threshold for model selection, and precise cutoff frequencies of a filter) can have 

large impacts on the results and ultimate conclusions. For example, in chapter 2, the machine learning 

pipeline that analyzes gene expression data requires the specific consideration of the interaction between 

gene expression. Simply using the current AutoML pipeline which lacks the knowledge of gene-gene 

interaction, gene coexpression pattern, and gene pathway will result in a low discovery power to 

discriminate the positive signal from the control. Further, the possible confounding factors in clinical data 

require a strict examination to defend a diagnostic-related conclusion. In chapter 2 and 3, when I am 

splitting the data into training and test groups, I am required to ensure the patient's age (gender), ethnicity, 

and race profile are carefully balanced (or tested in post-hoc analysis) to remove the implicit biases caused 

by the general confounding factors. In-depth knowledge of the biological/clinical background enables us to 

test our model's result and assure the validity of our conclusions. 

Specifically for chapter 3, the current analysis has limitations due to the foundational and 

exploratory nature of the work. The analysis is based on an established ‘The Joint Attention Test’ 

experiment. Future work will have to ascertain the reliability and reproducibility of the current results and 
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there are a lot of room to make the experiment better. One limitation is that the sample sizes in ASD and 

non-ASD groups (including TD, DD, GDD, LD, etc.) are imbalanced. Since the data were collected during 

the COVID-19 pandemic period, we could not recruit enough TD toddlers in this study and thus included 

children with TD and delays (e.g., DD, GDD, LD, etc) as the non-ASD group. The other 

neurodevelopmental disorders may confound the classification. We also had to remove more than half of 

the subjects as their facial movement data were unavailable (wearing masks, covered by hand, eating) 

during the experiment, which was not a big problem before the facial emotional data became appreciated. 

In the future when the facial behavior data is pilled up, we are able to customize the facial model specifically 

for toddlers, instead of the OpenFace and Emonet packages, to give a better measurement of the action unit 

intensity. In addition, the experiment has some disadvantages, although the ‘The Joint Attention Test’ 

experiment is the most arousal experiment in our inventory. The social and non-social subjects are close to 

each other, and toddlers tend to shift their attention (eye gazing target) across multiple AOIs on a 

millisecond scale. We are not able to distinguish emotional behavior when toddlers look at Social and non-

social AOI separately.  

In conclusion, using emerging technics to facilitate the current study provides us the unique 

opportunity to make discoveries and regeneratively give us more feedback about the study as a whole (a 

spiral-up process). As a bioinformatician, it was a fun journey in my life to develop our data analysis 

technics and expand our knowledge in both glycan analysis and ASD diagnosis. 
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