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Development, Implementation and Performance of a
Model Predictive Controller for Packaged Air

Conditioners in Small and Medium-sized Commercial
Building Applications

Donghun Kima,∗, James E. Brauna

aSchool of Mechanical Engineering, Purdue University, West Lafayette, IN, USA

Abstract

Small and medium sized commercial buildings, such as retail stores, restaurants
and factories, often utilize multiple packaged air conditioners, i.e. roof top units
(RTUs), to provide cooling and heating for open spaces. A conventional control
approach for these buildings relies on local feedback control, where each unit is
cycled on and off using its own thermostat. The lack of coordination between
RTUs represents a missed opportunity for operating more efficient units when
there is strong coupling between the spaces they serve and can lead to unnec-
essarily high electrical demand due to the inherent randomness of unit cycling.
This paper presents an overall model-based predictive control (MPC) approach
for RTU coordination that includes a description of the control architecture,
modeling approach, implementation, and assessment. We provide results of
laboratory and field tests that demonstrate the short-term and long-term per-
formance of the MPC solution in terms of energy and demand savings.

Keywords: Model predictive control, MPC, building control, RTU control,
packaged air conditioner

1. Introduction

Over one third of the total number of small (< 464m2, < 5, 000ft2), and
medium-sized (< 4, 640m2, < 50, 000ft2) commercial buildings across the U.S.,
such as banks, retail stores, restaurants and factories, are served by multiple
packaged rooftop units (RTU) for space heating and cooling (DOE, 2009). Most5

of these units are controlled independently using a simple thermostat control
where each RTU is cycled on and off based on its own thermostat. This localized
control can lead to poor coordination among the RTUs and it is very likely that
all of the units within a building would sometimes be operating simultaneously,

∗Corresponding author
Email address: kim1077@purdue.edu (Donghun Kim)

Preprint submitted to Energy and Buildings May 13, 2022



even for part load conditions, resulting in high electric peak demand and short10

cycling. Furthermore, there is often a strong coupling between the spaces served
by RTUs in these types of buildings creating opportunities for preferentially
operating the most efficient units with minimal impact on comfort.

Small and medium-sized commercial buildings (SMCB) have not been a
major focus for building control researchers and developers in the past, mainly15

because they tend not to have building automation systems (BAS) and because
the cost savings opportunities relative to implementation costs have been small.
According to Katipamula et al. (2012), over 90% of small and medium-sized
commercial buildings currently do not have a BAS. However, the situation is
changing because of the availability of low-cost, web-enabled smart thermostats20

and other devices (e.g., smart plugs) that have emerged in the marketplace in
the past few years. Even with this low-cost energy management platform, there
is a need for control approaches that have low implementation requirements and
costs.

Recently, there have been some developments and applications of advanced25

supervisory controller for multiple rooftop packaged units (RTUs) with demon-
strations of significant energy and demand savings opportunities. ? developed
a MPC algorithm and implemented it at a gymnasium having four identical
10-ton RTUs. This coordinator combines a simplified ARX type input-output
model with heuristics and optimization to limit electric peak demand. The30

reduction of peak power consumption was about 15% with respect to a con-
ventional thermostat control for the building. Kim et al. (2015) developed a
MPC algorithm for minimizing energy consumption and electric peak demand
for multiple RTUs especially for open-spaced buildings. The control approach
was designed to minimize sensor and configuration requirements in order to35

enable a more cost effective control implementation for the small/medium com-
mercial building. About 20% building HVAC energy savings and about 30%
peak demand reduction were reported for a small commercial building. Biyik
et al. (2015) developed a RTU coordinator to minimize peak power. The goal
was achieved by assigning different time varying penalties to different RTUs in40

order to prevent all units from operating simultaneously. It is reported that
the peak power reduction with the optimal control strategy was about 20-40%
for existing buildings. Putta et al. (2015) applied dynamic programming to
solve an optimization problem for minimizing energy consumption and reduc-
ing compressor short cycling. In the case study, about 10% energy savings were45

estimated for a building served by 4 RTUs. Zhang et al. (2017) developed a RTU
coordination control algorithm that shaves power usage within a limit during a
demand response event for 90 minutes when triggered by a electric utility, while
minimizing comfort impacts.

Despite these developments, there is a need tor complete and fully validated50

MPC solutions for SMCBs that can be implemented at low cost and are robust
and reliable. So far, the savings were estimated either using simulations or
using short period experiments, from a couple of hours to a couple of weeks.
However, to have increased reliability for successful market penetration, more
demonstrations over a long period at field sites are necessary.55
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This paper presents and demonstrates an MPC solution for coordinating
RTUs in SMCBs that is an extension of the work previously presented by Kim
et al. (2015). There are a number of new contributions. First of all, the cost
function and constraints are modified to accommodate optimal control coordi-
nation when RTUs serve separate spaces that don’t have close thermal coupling60

(e.g., office buildings). These types of buildings have significant opportunities
for demand reduction with some energy savings through optimal coordination
of the cycling patterns. The previous work focused on open spaces served by
multiple RTUs. Second of all, this paper presents a complete control solution
that includes a model identification approach, a MPC algorithm and control65

architecture. The previous work focused on the MPC algorithm. Third of all,
the current work provides a much more complete demonstration and evaluation
of the control approach that includes both laboratory test results and long-
term performance assessments of the MPC implementation at a field site. In
Section 2, characteristics of small and medium-sized commercial buildings and70

some challenges for applying MPC to those buildings are outlined. The over-
all MPC design approach is presented in Section 3 that is focused on handling
unmeasured building heat gains in modeling and control phases for a reliable
MPC implementation. Section 4 shows the performance of the MPC through
experiments performed in both a laboratory setting and field site.75

2. System Description and MPC Challanges

An RTU is a packaged air conditioning unit consisting of a vapor com-
pression cycle, supply air blower, air mixing box and optional economizer and
heating element, i.e. an electric heater or gas burner. In general, a thermostat
is dedicated to an RTU and turns one or more compressor stages on and off80

to maintain a local zone air temperature near a setpoint. The first stage is
typically energized when the thermostat temperature falls below the setpoint
by a deadband. If the temperature continues to decrease and falls below the
setpoint by a 2nd stage deadband, then the 2nd stage compressor is energized.
The supply fan is typically on continuously during the occupied period or can85

cycle with the compressor during unoccupied times. Most RTUs in the field
do not have variable speed compressors or fans controlled by variable frequency
drives.

To formulate the control problem for supervising the stages of multiple
RTUs, let n ∈ N be the number of thermostats or equivalently the number90

of RTUs. The measured outputs (or controlled variables) are the thermostat
temperatures, denoted as y ∈ Rn. The control inputs (or manipulated variables)
are RTU compressor stages, denoted as u ∈ Zn, and we assume the informa-
tion of the outdoor air temperature, To ∈ R, is available. Let [uT , To]

T be the
measured inputs having the size of m where m = n + 1. The dynamics of the95

system, namely Gu : u 7→ y,GTo : To 7→ y, in nature is very complex, because
it involves a refrigerant cycle, the heat exchange between ventilation air and
the refrigerant, inter-zonal air flows that could vary depending on the combina-
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Figure 1: A conceptual schematic of a control architecture for implementing MPC for
small/medium sized buildings

tion of the supply fan modes and air duct systems, and the time constants of
thermostats.100

The control objective is to maintain y within a temperature bound while
minimizing energy consumption and electric peak demand associated with u.
A significant challenge arises in applying an optimal control approach to small
and medium-sized commercial buildings because of the lack of a BAS. This
implies the need for a low-cost control architecture that can be retrofit in exist-105

ing small/medium building applications. The overall solution should include a
set of hardware and software to monitor space temperatures and control RTU
operations that allows implementation of an advanced control algorithm with
minimal sensor and configuration requirements.

For SMCB applications, only limited sensor information is available, e.g. y,110

u and To. This means heat gains that drive building dynamics (e.g., occupancy
gains, lights, plug loads, in/exfiltration) represent significant unmeasured dis-
turbances in a model-based control solution. It is well known that unmeasured
disturbances create challenges for both modeling and control. Solving this issue
is critically important in enabling a reliable MPC solution for real applications.115

3. Construction of MPC for Coordinating RTUs

3.1. Proposed Control Architecture for Small/Medium Building Applications

A compact version of a BAS for small commercial building applications that
was implemented in this work is shown in Fig. 1. At the bottom of the figure,
web-enabled thermostats and a wifi-router are installed in each building. The120

web-enabled thermostats monitor and send building system operation data that
include thermostat temperatures (y), ON/OFF stage or run times of RTU com-
pressors (u), and user setpoints and schedules to a thermostat server via the
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internet. The server records the measurements from all buildings in a database.
The outdoor air temperature for each building is obtained from a weather sta-125

tion. The centralized MPC-server located at the upper left corner in the figure
receives the status of all buildings in real time by communicating to the stat
server, and calculates optimal decisions for each building. These decisions feed
back to each thermostat via the internet.

Since the configuration of each building in the proposed control infrastruc-130

ture is modular, the structure is able to accommodate a number of buildings
in a scalable manner. In addition, it allows ease of management and updating
an advanced control algorithm and reduces capital costs for control implemen-
tation because each building does not need to purchase a computer. All case
study results presented in this paper are based on this control infrastructure135

with commercially available web-enabled thermostats.

3.2. Modeling: System Identification

3.2.1. Identification Problem and Challenge

In the proposed cost control architecture, u, To, and y are available mea-
surements for modeling. It is assumed that measurements are collected under140

closed-loop operation. In other words, u is determined by a thermostat con-
trol loop. The limited sensor information implies that there are unknown but
possibly significant heat gains (e.g., solar radiation and internal gains) that
influence the IO data and model identification. Therefore, the modeling ob-
jective becomes to estimate Gu and GTo without information of unmeasured145

disturbances. In addition, the closed-loop operation implies control inputs u
are correlated to the disturbances since thermostat feedback controllers have
to reject the unknown heat gains. The existence of unknown inputs and the
strong correlation to control inputs in an estimation dataset cause a significant
challenge in modeling, and can result in a poor model (Forssell and Ljung, 1999;150

Van den Hof, 1998; Ljung and McKelvey, 1996; Van Overschee and De Moor,
1997). Intuitively speaking, this is because an estimated model from the dataset
should explain the input and output relationships without knowledge of unmea-
sured heat gains.

3.2.2. Identification Approach to Alleviate Effect of Unmeasured Heat Gains155

A methodology termed the lumped output disturbance modeling approach
has been developed to resolve the modeling issue associated with unmeasured
heat gains in building thermal systems (Kim et al., 2016, 2018). The identifica-
tion approach aims at extracting an improved RC network building model from
data under the presence of unknown heat gains. The approach is adopted for160

developing models for MPC in this work, and its key concept is outlined in this
section.

A discretized thermal network model for our applications can be expressed
as the following general form.

y(k) = Gu(z)u(k) +GTo
(z)To(k) +Gg(z)Q̇g(k) (1)
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Q̇g(k) represents the unmeasured input disturbances [kW], e.g. occupancy165

gains, lighting loads and transmitted solar radiation, and Gg is the correspond-

ing transfer function that maps Q̇g to y, which depends on building dynamics.
From (1), one can see the difficulty to accurately extract Gu and GTo from
u, To, y without Q̇g.

In the lumped output disturbance modeling approach, only the signal of170

v(k), namely lumped output disturbances defined as v(k) := Gg(z)Q̇g(k)1, is
of interest, and it tends to model the process v as a stochastic process. A
key observation is that v is a low pass filtered signal through the slow building
dynamics of Gg, although input disturbances could have a variety of frequency
contents. This suggests that v could be modeled as175

v(k) = H(z)e(k) (2)

with a low pass filter H. e(·) is a white noise process in the equation.
Therefore, the building system we wish to identify has the following form.

y(k) = Gu(z)u(k) +GTo
(z)To(k) +H(z)e(k) (3)

A state space model structure for (3) is

T̂ (k + 1) = A(θ)T̂ (k) +Bu(θ)u(k) +BT,o(θ)To(k) (4)

y(k) = C(θ)T̂ (k) + v̂(k)

ζ̂(k + 1) = F(ρ)ζ̂(k) + G(ρ)ε(k)

v̂(k) = ζ̂(k) + ε(k)

θ and ρ represent parameters for a semi-physical model that consists of
thermal resistances and capacitances, and parameters for the low pass filter180

to characterize v, respectively. A(θ), Bu(θ) and BTo
(θ) are defined by a RC

network model and discretization scheme, e.g. the zero-order hold. T̂ contains
estimated states (temperatures of zones and walls in a RC network), v̂ is an

estimation of true output disturbances, and ζ̂ is the internal state appearing in
converting the transfer function description of the output disturbances (3) to185

the state space description (4). For a precise definition for each term, see Kim
et al. (2018).

To retrieve θ and ρ from measurements of u, To, y, the prediction error
method is used based on the state space form that minimizes a norm of the
innovation process of ε in (4). In this paper, the nonlinear least square prob-190

lem was solved with matlab lsqcurvefit which uses the Levenberg-Marquardt
algorithm. To handle the non-convexity of the optimization problem, the opti-
mization algorithm was repeated at multiple starting points.

The uniqueness of this approach compared with other grey-box modeling
approaches in the building science (Andersen et al., 2000; Braun et al., 2001;195

1Note from (1) that output disturbance v has the unit of [oC] while the input disturbance
Q̇g has that of [kW ].
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Chen et al., 2015; Dong et al., 2011; Fraisse et al., 2002; Harb et al., 2016;
Reynders et al., 2014; Rogers et al., 2014; Širokỳ et al., 2011) is that building
disturbances are not treated as white noise, and are modeled with a grey-box
model structure rather than a black box structure. Compared with disturbance
modeling approaches on black-box model structures, the additional state ζ̂ is200

augmented to the physical state T̂ , and the dynamics associated with them
are completely decoupled. This provides flexibility in our disturbance model
H(ρ) for fitting H with a smaller number of parameters. For example, ARX,
ARMAX or model structures of subspace identification methods (Ljung, 1999;
Söderström and Stoica, 1988) have constraints such that dynamics of a system205

and disturbance have shared poles while our disturbance model structure does
not need to. In this sense, the proposed model structure (4) is a grey-box version
of the Box-Jenkins model structure.

The identification approach has been validated for a single zone building
and multi-zone building using both simulations and experiments, and resulted in210

significantly better models compared with a conventional grey-box identification
approach. For the results, refer to Kim et al. (2016, 2018).

In this paper, it is assumed that only To is a measured disturbance. If other
measurements, e.g. solar irradiation, are available, the treatment of unmeasured
disturbances are the same, i.e. to model unmeasured disturbances as (2) and to215

estimate both θ and ρ. However, the RC model structure should be modified
to include the additional disturbance inputs. An example of the lumped output
disturbance modeling approach when both To and solar irradiation are available
can be found in Kim et al. (2016). A technical challenge of having additional
disturbance inputs is in the selection of an estimation dataset. To correctly220

capture input and output relationships across the various inputs, it is necessary
to have data where cross correlations between inputs are small. As the number
of measured disturbances increases, the decorrelation requirement becomes more
challenging because disturbances are not controllable. See (Kim et al., 2018)
for more detailed discussions.225

3.3. Control Approach

Since a conventional thermostat control approach does not consider overall
building performance, it is natural to design a controller targeting reduction
of energy consumption and peak demand in a centralized manner. Previously,
authors developed and demonstrated a MPC algorithm coordinating multiple230

RTUs (Kim et al., 2015) that has minimal sensor requirements, but the control
approach is limited to buildings where several RTUs serve a big open space area,
like a gymnasium. However, certain types of small and medium-sized buildings
have predominantly separate zones served by different units, e.g. office buildings.
In this section, we present a generalized and extended version of the MPC that235

can handle general types of SMCBs. The algorithm details are explained in this
section.

7



3.3.1. Problem Formulation

The control optimization involves determining a trajectory of all RTU stages
for a relatively short prediction horizon (e.g., 30 minutes) that minimizes a cost240

function that includes terms for energy use, peak demand, and deviation from
comfort bounds. The control objective at a current time step k is:

min
u(k+j)∈Zn,δ∈R+,Γl∈R+,Γu∈R+

( Np∑
j=1

n∑
i=1

piui(k + j)
)

+ d · δ + cl · Γl + cu · Γu (5)

s.t. Tl − Γl ≤ E(y(k +Np)|Gk) ≤ Tu + Γu (6)
n∑
i=1

piui(k + j) ≤ δ (∀j ∈ {0, · · · , Np − 1})

where pi is the rated power for ith unit2, and hence the first term in the control
objective represents a energy consumption over a predicted horizon, Np. E(y(k+245

Np)|Gk) is the optimal Np-step prediction for y given available measurements
and candidate future control inputs of Gk = {y(k− 1), y(k− 2), · · · , u(k+Np−
1), u(k + Np − 2), · · · , u(k − 1), u(k − 2), · · · }. Tu, Tl (∈ Rn) are temperature
upper and lower bounds, respectively. cl, cu (∈ R+) and d (∈ R+) are weights
on optimization variables of Γl,Γu (∈ R+) and δ(∈ R+).250

For any given prediction horizon, the optimal controller tries to determine
the RTU stages that would minimize power consumption. The staging is as-
sumed to be fixed over the prediction horizon (no cycling) and thus it is ap-
propriate to use an estimate of the steady-state power consumption for the
current conditions, However, in order to eliminate the need for collecting in-255

dividual RTU power consumption data (from measurements or manufacturers’
performance maps) for identifying a model, rated powers for the individual RTU
stages are used in the optimization. Rated power is readily available from the
RTU nameplate and technical specification manual, thus requiring minimal ef-
fort for configuration. The use of rated power in the optimization would be exact260

if RTU power didn’t depend on outdoor and indoor temperatures. However, it
works works well because the different units have nearly identical indoor and
outdoor conditions and the effects of variations in these boundary conditions
from rating conditions on power have very similar trends for different RTUs.
For more detailed discussion on the assumption of using rated power in place of265

measured power, refer to Kim et al. (2015).
From the last constraints of (6), it can be seen that δ is an upper bound

on each instantaneous electric demand over the prediction horizon. Therefore

2For a multistage unit, it is assumed that the rated power for each unit behaves linearly
mainly for simplicity of the problem formulation. When the stage powers are significantly
different, the control formulation should be modified by replacing n with the number of stages
and by defining pi as the rated power for ith stage not ith unit. Refer to Kim et al. (2015)
for a clearer formulation.
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minimizing δ will naturally lower an electric peak demand over a prediction
horizon. In addition, note that δ is dependent on all sequences of stages of270

n-units. Therefore, it is clear that the control problem supervises all units. Γl
and Γu are used for upper and lower bound comfort violations from the first
constraint of (6).

Note also that we only want to regulate the Np-step ahead predicted temper-
atures within a temperature bound and not each of the predicted temperatures275

for less than the Np-steps. This is acceptable because our prediction horizon,
Np, is relatively short, e.g. 30 min to 1 hour. The Np-step temperature regula-
tion reduces the large number of inequality constraints that would be necessary
if all of the predicted temperatures were constrained.

The original RTU Coordinator presented by Kim et al. (2015) utilized a280

somewhat different cost function that didn’t include the peak demand limit
(second term) and deviations from upper and lower temperature bounds (third
and fourth terms) in (5). The addition of the second term in (5) along with the
second constraint of (6) improves the performance of the algorithm in terms of
peak demand reduction when applied to buildings that don’t have spaces that285

are closely coupled (e.g., office spaces). The addition of the third and fourth
terms in (5) along with their use in the first constraint of (6) provides additional
freedom for trading off power consumption and comfort.

3.3.2. Control Challenge and Augmentation of a Disturbance Model

Unmeasured disturbances can deteriorate performance of a controller, if290

those are not treated appropriately. To handle the problem, we adopt a well-
known method, the internal model principle (Francis and Wonham, 1976) which
is applied in various control fields, e.g. adaptive controls (Åström and Witten-
mark, 2013) and process controls (Maeder et al., 2009; Muske and Badgwell,
2002; Pannocchia and Rawlings, 2003). The idea is fundamentally the same as295

the treatment of unmeasured disturbance in modeling, saying ”Include a dis-
turbance model internally to handle (or reject) disturbances”. More precisely,
the method augments a system model with a disturbance model to compensate
for the modeling error and disturbances. In our case, it has the following form.[

T (k + 1)
ζ(k + 1)

]
=

[
A Bd
0 I

] [
T (k)
ζ(k)

]
+

[
Bu
0

]
u(k) + w(k) (7)

y(k) =
[
C Cd

] [T (k)
ζ(k)

]
+ ν(k), (8)

where w and ν are white noise processes having covariance matrices of Q,R,300

respectively. A,Bu, C are estimated from the identification approach (see (4)).
The integrating mode, ζ, which is not controllable but observable, represents the
unknowns. In general, the parameters of (Bd, Cd) have to be adjusted depending
on the system of interest.

With the assumption of slowly varying output disturbances, we chose a sim-305

ple but widely used solution (Muske and Badgwell, 2002) that can be achieved
by letting Bd = 0 and Cd = I. For a stable system, as in our building system,
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the constant output disturbance model removes steady state offset caused by
the model mismatch and the unmodeled disturbances (Qin and Badgwell, 2003).

For notation simplicity,310

Aa :=

[
A 0
0 I

]
, Ba :=

[
B
0

]
, Ca :=

[
C I

]
, xa :=

[
T
ζ

]
. (9)

If (A,C) is detectable3, then the augmented system (Aa, Ca) is detectable
since the integrating mode ζ is always ’recorded’ in y. Furthermore since (A,C)
is observable, the augmented system is automatically detectable. With the as-
sumption of stabilizability of (Aa,

√
Q), the detectabilty ensures that a steady

Kalman filter exists and is stable (See Anderson and Moore (2012) for the315

proof). Then the Kalman gain, denoted as Ka, for the augmented system, can
be obtained by solving the following algebraic Ricatti equation.

P = ATa (P − PCTa (R+ CaPC
T
a )−1CaP )Aa +Q (10)

Therefore our final model for MPC is

x̂a(k + 1) = Aax̂a(k) +Bau(k) +Kae(k)

y(k) = Cax̂a(k) + e(k). (11)

where Ka = AaPC
T
a (R+ CaPC

T
a )−1 and e(k) = y(k)− ŷ(k|k − 1).

3.3.3. Control Algorithm320

With the modified model (11) to handle disturbances, the optimization prob-
lem of (5) and (6) can be now formulated in an implementable form as follows.

min
U,δ,Γl,Γu

~PTU + dδ + clΓl + cuΓu (12)

 P̃ −~1
M −~1
−M ~1



U
δ
Γl
Γu

 =

 ~0
Tu −Ox̂a(k|k − 1)
−Tl +Ox̂a(k|k − 1)

 (13)

Ul ≤ U ≤ Uu (14)

0 ≤ δ ≤
n∑
i=1

pi (15)

0 ≤ Γl (16)

0 ≤ Γu (17)

where ~p = [p1, · · · , pn]T , ~P = [~pT , · · · , ~pT ]T , P̃ = INp
⊗ ~pT , U = [u(k)T , u(k +

1)T , · · · , u(k+Np−1)T ]T , O = CaA
Np
a andM = [CaA

Np−1
a Ba, CaA

Np−2
a Ba · · · , CaBa].

3We say the pair (A,B) is stabilizable if (A,B) has no uncontrollable and unstable hidden
modes. Similarly, the pair (A,C) is said detectable if (A,C) has no unobservable and unstable
hidden modes (Callier and Desoer, 1991).
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Figure 2: Basic structure of Unit Coordinator

x̂a(k|k − 1) is the estimated state at k through the Kalman filter for the aug-325

mented system in (11).
The optimal control problem has been converted to the standard linear pro-

gramming form, and hence can be solved by a mixed integer linear programming
solver (note that u is a vector of integers while the auxiliary variables are positive
real numbers).330

3.4. Summary of Supervisory Controller and Further Discussions

A basic control structure is shown in Fig. 2 which has a standard form of the
model based controller. The parameter estimator was explained in Section 3.2
and (11) is the state observer in this figure. The observer provides an estimated
state, i.e. x̂a, and allows the optimizer to solve the control objective from (12) to335

(17). The parameter estimator was implemented off-line on a prepared dataset
(one or two weeks of data), while the other algorithms were implemented on-line
to handle model uncertainties and real-time disturbances.

Handling unmeasured building heat gains is focused on designing a reliable
MPC by rejecting disturbances in the modeling phase and by considering them340

in the control phase. We call the complete MPC solution the Unit Coordinator
(UC).

To is included in the identification process to provide measured disturbance
information but is excluded in the control phase due to narrow prediction hori-
zon. The use of only thermostat outputs as input measurements for the coor-345

dination algorithm is an important feature that enables a scalable and low-cost
implementation. However, due to the lack of other disturbance information,
only a short prediction horizon, say less than an hour, is feasible. The short
prediction horizon restricts an active usage of the building’s thermal mass and
it is a limitation of the controller.350
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Figure 3: Examples of unit power profiles for 2 days (1 min sampling time)

4. Site Performance of a MPC for RTU coordination

The presented MPC has been implemented at existing buildings, and exam-
ple results are shown in this section. In Section 4.2, test results for a laboratory
environment are presented which clearly show benefits of the MPC compared
with a conventional thermostat control. In Section 4.3, site performance of the355

MPC for a small retail store is presented.

4.1. Measurement Setup

Thermostat temperatures, humidities, unit run times (over a 5 min interval)
were recorded using web-enabled thermostats with a 5 min sampling time for
the laboratory set up and a small retail store. The thermostat employed for360

experiments provides the compressor run time(s) over a 5 min interval rather
than the instantaneous stage(s). Therefore, the unit stage was estimated by
dividing the thermostat run time data by 5 min resulting in a real number
rather than an integer. The estimation error should be negligible for most times,
since both RTUs and thermostats have anti-cycling clocks (≈ 5min) to prevent365

a significant short cycling that is harmful for compressors. The outdoor air
temperature was obtained from a NOAA (National Oceanic and Atmospheric
Administration) website.

It should be mentioned that it was not possible to install power measure-
ments for the RTUs at the field site. Instead, rated powers from manufacturers’370

data and measured run time were used to estimate energy consumption for each
RTU. To test the reliability of the simple power estimation approach, current
transducers (CT) were installed to measure currents for two packaged units in
the laboratory environment and measurements were compared with the simple
estimation approach. They convert true RMS 10/20/50 amps, depending on375

the selection of a range jumper, to 0-5 VDC for a single phase AC power. The
accuracy is ±1 % of 10 amps. The data is recorded through an Arduino board
for every 1 min. Unit powers were estimated using the CT with an assumption
that the power factors and RMS voltage are reasonably constant.

12



Figure 4: Case study building (supply air diffuser 1 and return vent 1 are not shown)

Fig. 3 displays the power behavior for each unit (denoted as U1 and U2)380

individually for example days. Once the compressor is ON, the unit power
stabilizes quickly (< 1 min) to a relatively constant value that doesn’t vary much
over the course of the day with changing indoor and outdoor conditions. Thus,
the power is primarily correlated with the compressor status. These results
support the validity of the simple approach for estimating power consumption385

of fixed speed units.

4.2. Case 1: Laboratory Environment

4.2.1. Building Description

To test the overall MPC approach in terms of both the modeling and control
algorithms, a cooling system for a conference room (about 15 m long, 7 m wide390

and 3.5 m high) in the Ray W. Herrick Laboratories at Purdue University,
IN, U.S. (see Fig. 4) was retrofitted. Two packaged air conditioners (termed
U1 and U2) having different cooling capacities were installed and the air duct
system was reconfigured accordingly. U1 is a 1-ton single stage unit with an
energy efficiency ratio (EER) 9 and U2 is a 2-ton single stage unit with 10 EER.395

Thermostats, supply and return vents associated with the two units are shown
in Fig. 4 and Fig. 5. In this system, we have 2 thermostat temperature outputs
and 3 measured inputs that are the unit stages and outdoor air temperature.
Note that there is a strong coupling between the two sub-zones (or thermostats),
and hence the operation of one unit can influence both thermostat temperatures.400

Unmeasured heat sources are lighting gains (around 1.5 kW), loads from electric
appliances (a small freezer and one laptop computer), infiltration/exfiltration
and solar gains though windows. The lights were turned ON and OFF by
occupant random behavior.
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Figure 5: Floor plan with locations of thermostats, supply and return vents (Purdue Herrick
Laboratory)

4.2.2. Experiment Setup405

During the experiments, supply fans were cycled on and off with compres-
sor stages (auto fan mode) for the two units. The sampling time for control
implementation was 5 minutes and the prediction horizon was set to 1 hour.
Thermostat setpoints were set to 22.2 oC (72 oF ) for both thermostats for all
times. The setpoints were used for the upper bound (Tu) in (6) with a temper-410

ature band of 2.22 oC (4 oF ), i.e. Tl = Tu − 2.22 (oC). For the penalty terms
of δ and (Γl,Γu), 100 and 1000 values were assigned in this experiment. These
weights were determined through iteration and were found to work well for all
of the demonstration sites in terms of minimizing demand while maintaining
thermostat temperatures near their setpoints. The MPC was implemented on415

the control platform shown in Fig. 1.

4.2.3. Test Results of MPC in a Laboratory Environment

Validation results associated with the modeling approach are presented in
Kim et al. (2018), and hence we provide only a brief summary and a concluding
result in this paper. The primary focus is on performance of the MPC.420

The data sets for model training were generated by perturbing setpoints
using a pseudo random binary signal (PRBS). The magnitude of the setpoint
perturbation level was bounded to 2.22oC (4oF ) for daytime and 4.44oC (8oF )
for nighttime. The information of outdoor air temperature was obtained from
NOAA (National Oceanic and Atmospheric Agency) weather data with a one425

hour sampling time. The hourly outdoor air temperature data was interpolated
for the 5-minute sampling time. A grey-box model was developed using the
proposed identification algorithm. To validate the result, several step tests were
performed and are compared with the predicted step response using the model.
Fig. 6 shows the comparison result. The two figures at the left hand side describe430

how the two thermostat temperatures of the two units (U1 and U2) drop when
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Figure 6: Model comparisons with experimental step test results (1 step = 5min)

U1 tunes on for an hour. The dotted lines represent experimental step tests
(averaged) and the blue solid lines indicate the model responses. The middle
figures show responses under U2, and the right figures indicate how temperatures
increase when To increases for 1oC.435

The estimated model matches experiments reasonably well, despite the lack
of heat gain measurements as inputs. For more comprehensive descriptions and
results, and for comparisons to a conventional grey-box identification approach,
refer to Kim et al. (2018).

The model was applied in the MPC algorithm after the augmentation dis-440

cussed in Section 3.3.2. Fig. 7 shows sample responses of thermostat tempera-
tures (second), relative humidities (third), unit staging (fourth) and total HVAC
power (last) associated with conventional control and the MPC (Unit Coordi-
nator, UC) for the laboratory testing. The testing involved switching between
the Unit Coordinator (UC) and conventional control at irregular intervals as in-445

dicated in the bottom sub-figure. The unit stages were estimated by scaling the
measured compressor run times over a 5 min sampling period. At the middle of
Sep/16 in the second subfigure, there is a slight temperature jump associated
with the UC (see the blue arrow). This is because of a small modification of a
control parameter Tu at the time. Note that averaged zone temperatures of the450

UC before the time are up to 1 oC lower than those of the conventional control
(Sep/15). This is because the conventional thermostat control regulates tem-
peratures around the setpoints (22.2 oC) while the UC regulates temperatures
below the 22.2 oC upper bound. This mean temperature bias could underes-
timate performance of the UC and so the parameter Tu was slightly adjusted455

(< 1oC) to have similar mean temperatures.
Note that there are clear distinct behaviors of the two controllers in terms of

the electric demand shown in the last sub-figure. Note also that both controllers
maintain zone temperatures near the setpoints (22.2 oC) in the first sub-figure.
The conventional thermostat control caused high electric demands for most460
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Figure 7: Profiles of thermostat temperatures and humidities, unit cyclings and total HVAC
power for conventional and the MPC at a laboratory environment

16



times, due to simultaneous operation of the two units as shown in the third
sub-figure. This high correlation of operation of the two units is caused by the
significant inter-zonal coupling through the open area (See Fig. 5). On the other
hand, the proposed MPC (UC) reduced electric demands significantly (over 50 %
for most times) compared with the conventional case despite the strong coupling.465

It demonstrates that the MPC properly captures the dynamics of the building
system.

From the experimental results, it is also clear that a conventional thermostat
control algorithm causes an unnecessarily high demand even under significantly
low part load conditions. This can be confirmed for the data on September 18470

and 19. Note that the MPC utilized only U1 (1-ton unit) during the day time
on Sept 18 (see the third sub-figure), while the conventional control used both
units (totally 3-ton) for both day time and night time on Sept 19.

Fig. 7 shows the conventional control led to a significantly short unit cycling
(see the last sub-figure) due to the strong inter-zonal interaction, while the475

UC led to less cycling due to a clear tendency to utilize U14. Short cycling
can lead to over cooling of a space due to minimum compressor run times and
increased total energy consumption due to decreased efficiency associated with
more on/off cycling (cyclic degradation phenomena (Henderson et al., 2000;
Katipamula and O’Neal, 1992)). The relative energy savings of the UC for the480

test period is about 14 %. Therefore, the performance of the MPC is superior
to that of the conventional control in terms of energy consumption, life of the
compressors, and electric peak demand.

Although relative humidity is not a controlled variable and the MPC does
not account for it, it is important to mention that the MPC had similar relative485

humidities (at the thermostats) with the conventional control.

4.3. Case 2: Performance of MPC at a Site

4.3.1. Strategy to Evaluate Performance of MPC

A fair comparison of performance between two controllers over a long period
of time on an existing building is challenging, because the controller performance490

highly depends on the building loads that can vary significantly from day to
day. Recall that internal gains, which are stochastic, account for a significant
portion of the total building load for commercial buildings. Our strategy to
fairly compare performance between the proposed MPC and a conventional
thermostat control is to switch back and forth between the two controllers on495

a daily basis. That is, one controller was enabled on even days while the other
controller was run on odd days. The switching process was repeated at the
test sites for a long time period and, for each day, daily RTU energy usage and
electric peak demand were obtained.

4The preference of the UC may be explained from the estimated model and rated powers
specified in the MPC objective function. Note that the UC thinks the two temperatures can
be dropped to similar magnitudes using U1 (compare step responses of U1 and U2 for the
model in Fig 6) but with smaller energy.
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Figure 8: Profiles of thermostat temperatures and humidities, RTU cyclings and total HVAC
power for the conventional and MPC at a field site

4.3.2. Building Description and Experimental Setup500

A small retail store (floor area around 1,400 m2, 15, 000ft2) is a demon-
stration site located in Florida. The building has 4 RTUs where three of them,
named RTU1-3, serve a main open service area and one RTU, named RTU4,
serves a storage room. RTU1, RTU2 and RTU3 are 18, 15 and 8-ton two-stage
units respectively, and RTU4 is a 5-ton single-stage unit. Each of the RTUs has505

its own thermostat that controls a local zone. For this project, the original ther-
mostats were replaced with web-enabled thermostats that have an open API.
The experimental setup is described in Section 4.1. The MPC and conventional
controller were implemented using the control architecture of Fig. 1 with the
MPC server located in Pennsylvania.510

The same configurations for controllers described in Section 4.2.2 were used
for this demonstration, except that thermostat setpoints were adjusted by fixed
schedules for night setup: 22.8 oC (73 oF ) for an occupied period and 26.6 oC
(80 oF ) for an unoccupied period. Users were allowed to turn the schedule mode
on or off or to override the scheduled setpoints.515
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4.3.3. Short-term Evaluation Results

A sample comparison for the small retail store building from experiments
is shown in Fig. 8. The control strategy was toggled from the conventional
thermostat control (Apr/19, Tuesday) to the MPC unit coordinator (Apr/20,
Wednesday). Fig. 8 shows responses of thermostat temperatures and humidities,520

RTU staging and total estimated HVAC power for the site associated with
conventional control and the MPC coordinator for the two different days having
similar ambient conditions (marked as purple line).

It can be seen that the highest electric demand occurred from 8 to 9 AM
for both controllers. This is because of the night setup schedule which abruptly525

changes setpoints for all thermostats as shown in the temperature plot. This
peak was removed by adding a low pass filter, e.g. a moving average filter, to
the setpoint schedule signals for both controllers and the corresponding results
are shown in the following section.

Consider the conventional control results at around 4 PM, marked with a530

dashed box, where RTUs 1, 2, and 4 were all operating at their maximum stages.
As a result of this, a high electric peak demand occurred at this time. On the
other hand, there is a clear tendency that the MPC coordinates the RTUs so
that not all units operate at the same time. It can be checked by comparing
stages of RTU1 and RTU3 (RTU1 and RTU3 were operating at different times).535

This results in electric peak demand reduction of about 50% (from around
40kW to around 20 kW) if we do not count the HVAC power peaks for the
returning period of night setup. It is important to mention that temperatures
were regulated at around the setpoint and relative humidities were also in a
reasonable range for both controllers.540

The total HVAC energy consumption for the day with the UC operation
is significantly lower for the example results in Fig. 8. However, since this is
only a short-term comparison, there could be significant differences in heat gains
(e.g. plug and lighting loads, occupancy, and transmitted solar radiation). More
definitive energy savings results for longer term tests are presented in Section545

4.3.4.

4.3.4. Long-term Evaluation Results

Experimental results over a month (June) are shown in Fig. 9. First of
all, the first sub-figure shows both controllers regulated temperatures in a rea-
sonable range for the experimental period. Table 1 summarizes the mean and550

standard deviation of each thermostat temperature during the occupied period
for the June test. There were no discernible differences in zone temperatures
between the days under the Unit Coordinator (UC) and conventional control.
This demonstrates robustness of the proposed algorithm with respect to un-
known disturbances and changes of setpoints (remember that the demonstra-555

tion site is a retail shop and thus has a highly stochastic internal gain profile,
and user(s) could randomly change setpoints). Although the temperature of
RTU4 that serves a storage (marked with sky color) is away from the setpoint
(22.7 oC, 73 oF during an occupied period), it is because RTU4 was undersized
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Figure 9: Profiles of thermostat temperatures, RTU cyclings and total HVAC power for the
conventional and MPC at a field site
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Figure 10: Histograms of daily peak demand for the June test period for a small retail store

Controller metric RTU1 RTU2 RTU3 RTU4
Conv mean 23.0 23.4 23.0 25.4
UC mean 23.4 23.9 23.4 25.4

Conv std 0.2 0.2 0.3 1.1
UC std 0.5 0.5 0.6 1.2

Table 1: Mean and standard deviation [oC] of thermostat temperatures during occupied period
for the June test

(see the operating stage of RTU4) and hence the temperature violations were560

unavoidable for both controllers.
From the last figure, as expected, the conventional control led to much higher

electric demands compared with the UC. For a clearer image of how the MPC
differs from the conventional control, histograms of the peak power over a day
for both controllers are shown in Fig. 10. For the calculation of the daily peak565

power, a 15-min moving average was applied to the HVAC power under the
assumption of the 15-min demand interval, and then the maximum value for
each day was calculated. The daily peak powers for the conventional and MPC
controls distribute around 50 kW and 35 kW, respectively.

There are two points where the MPC caused peak demands of about 50570

kW (see arrowed points in Fig. 9). However, this was caused by users’ abrupt
temperature setpoint changes that can be confirmed from the temperature pro-
files at those points. In general, the conventional thermostat control leads to
unnecessarily high electric demand compared to the MPC even under part-load
conditions. At part-load, the high electrical demand for conventional control is575
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Controller RTU1 RTU2 RTU3 RTU4
Conv 68.1 4.1 48.8 40.7
UC 40.3 5.8 23.1 45.1

Table 2: Number of compressor stage changes (daily avergaed) for the June test period for a
small retail store

Apr May June July
Energy Savings 12.6 13.8 12.8 12.6
Demand Savings 3.7 18.2 16.8 19.1

Table 3: Summary of relative savings [%] over a 4-month test period for a small retail store

a result of compressor short cycling. The number of unit stage changes (daily
averaged) for each unit, i.e. how frequently unit stage is switched for a day, is
shown in Table 2. Since the compressor run time over a 5 min is available rather
than the compressor ON/OFF status, the run time was rounded to count the
number of cycles. Overall, significant reductions of mode changes through the580

MPC are confirmed from the table. As discussed in the laboratory test section,
energy savings for the UC with reduced short cycling and runtimes is expected.

Although relative humidity is not a controlled variable and the MPC does
not account for it, it is important to mention that the MPC has similar relative
humidities as the conventional control (at the thermostat locations).585

Table 3 summaries the monthly savings of electrical energy and peak de-
mand over a 4-month (Apr-July) test period. The strategy switched between
the UC and conventional control each day over this entire period. The elec-
tric demand savings for each month was determined by comparing the peak
HVAC power consumption determined from a 15-minute moving-average5 for590

days under UC control with the peak for conventional control. Recall that it
is possible to have unnecessarily high peak demands because of users’ abrupt
setpoint changes. Outliers for this site occurred on a few days for each month
but tend to bias the savings in a random manner if they are included in the
monthly peak demand calculation. Therefore, we neglected outliers due to user595

setpoint changes in calculating demand savings for each month. The issue of
users’ abrupt setpoint change was resolved by using the same moving average
approach discussed in section 4.3.3, but the results presented in this paper did
not include this improvement.

The MPC provided consistent energy savings at around 12% and demand600

savings around 18%. During the April, the demand savings were much lower
than the other months. This is because of the night-setup issue discussed in

5It is typical in U.S. that the demand bill is calculated from averaged power over a demand
interval (5, 10 and 15 min are common) rather than an instantaneous power. Therefore,
the demand savings calculated from the 15-moving average could underestimate those with
shorter demand intervals.
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Section 4.3.3. Once a moving average was added to the night-setup schedule,
the issue was resolved and consistent demand savings were achieved.

5. Discussion and Conclusions605

Despite the large number of SMCBs in this country, few advanced control
algorithms have been developed for packaged air conditioners that are typically
used in these applications. The challenge is that low cost control solutions are
needed that don’t have significant configuration requirements. This paper pre-
sented and demonstrated a complete MPC solution for coordinating multiple610

packaged air conditioners at a given site that has the potential for implementa-
tion at low cost. It includes an identification algorithm, control algorithm, and
control infrastructure. Experimental results were presented for both a labora-
tory environment and field site. The controller only requires inputs from the
thermostats and handles unknown disturbances caused by lack of sensor points615

using a lumped disturbance model. The reliability of the controller has been
demonstrated through implementation and testing at a field site for 4 months.
The controller consistently showed about 12% HVAC energy savings and about
18% HVAC peak demand reduction compared with a conventional thermostat
algorithm.620

A cloud-based implementation for the RTU controller, such as the one pre-
sented in this paper, would seem to be at logical commercialization approach for
retrofit in many SMBCS because of the widespread availability of web-enabled
thermostats. This type of solution is particularly attractive for individual small
commercial buildings that don’t have a building automation system (BAS),625

which is much of the small commercial buildings world. If the process of learn-
ing models were automated, then the primary costs for implementation of the
coordinator would be retrofitting thermostats with web-enabled versions and
connecting them to the cloud through existing WiFi. An alternative approach
could involve integration of the RTU coordination software within hardware630

that is connected between thermostats and the RTUs at the site. This would
eliminate the need for an internet connection and would be widely applicable to
small commercial buildings that don’t have a BAS. The algorithms could also
be embedded at the factory within smart RTU controllers as long as individual
RTU controllers could talk to each other at a site. For enterprise solutions (e.g.,635

national chains), the solution could be implemented on top of or within existing
BASs. The overall economics could be quite favorable for large national chains
with standardized BAS solutions because once implemented the RTU coordi-
nator could be delivered at a large scale across many installations. This is an
attractive initial application for this control algorithm. In the longer term, the640

RTU coordinator could be implemented as a standard application within BASs.
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7. NOMENCLATURE

SMCB: small and medium-sized commercial buildings

UC : unit coordinator

BAS: building automation system650

RTU: rooftop unit

IO: inputs and outputs

NOAA: national oceanic and atmospheric administration

CT: current transducer

RMS: root mean squares655

EER: energy efficiency ratio

HVAC: heating, ventilating, and air conditioning

n : number of RTUs

y : vector of thermostat temperatures

u : vector of RTU compressor stages660

To : outdoor air temperature

m : number of measured inputs

Gu : dynamic system that maps u to y

GTo : dynamic system that maps To to y

Q̇g : unmeasured heat gains665

v : lumped output disturbances

H : dynamics of lumped output disturbances

e : white noise

θ : physical parameters consisting of thermal resistances and capacitances

ρ : parameters that constructs dynamics of lumped output disturbances, i.e. H670

(A(·), Bu(·), BTo(·), C(·)) : a state space model structure that maps θ to build-
ing dynamics, i.e. Gu and GTo
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(F(·),G(·)) : a state space model structure that maps ρ to lumped disturbance
dynamics , i.e. H

(Aa, Ba, Ca) : aggregated dynamic system matrices675

Ka : Kalman gain

k : current time step

j : prediction time step

Np : prediction horizon

δ : an upper bound of instantaneous power680

(Γl,Γu) : temperature violations from lower and upper temperature bounds

(Tl, Tu): lower and upper temperature bounds

(cl, cu): weights on optimization variables for (Γl,Γu)

d : weight on optimization variables for δ

ζ: internal state of lumped output disturbances685

x̂a: aggregated state that includes building temperatures and internal state of
disturbances

e: one step ahead prediction error

ui: i
th unit stage

pi: i
th unit power690

~1: a column vector whose components are the unity.
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Söderström, T., Stoica, P., 1988. System identification. Prentice-Hall, Inc.785

Van Overschee, P., De Moor, B., 1997. Closed loop subspace system iden-
tification, in: Decision and Control, 1997., Proceedings of the 36th IEEE
Conference on, IEEE. pp. 1848–1853. URL: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=657851.

Zhang, X., Pipattanasomporn, M., Rahman, S., 2017. A self-learning algorithm790

for coordinated control of rooftop units in small-and medium-sized commercial
buildings. Applied Energy 205, 1034–1049.

28

http://onlinelibrary.wiley.com/doi/10.1002/aic.690490213/abstract
http://onlinelibrary.wiley.com/doi/10.1002/aic.690490213/abstract
http://onlinelibrary.wiley.com/doi/10.1002/aic.690490213/abstract
http://www.sciencedirect.com/science/article/pii/S0967066102001867
http://www.sciencedirect.com/science/article/pii/S0967066102001867
http://www.sciencedirect.com/science/article/pii/S0967066102001867
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=657851
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=657851
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=657851

	Introduction
	System Description and MPC Challanges
	Construction of MPC for Coordinating RTUs
	Proposed Control Architecture for Small/Medium Building Applications
	Modeling: System Identification
	Identification Problem and Challenge
	Identification Approach to Alleviate Effect of Unmeasured Heat Gains

	Control Approach
	Problem Formulation
	Control Challenge and Augmentation of a Disturbance Model
	Control Algorithm

	Summary of Supervisory Controller and Further Discussions

	Site Performance of a MPC for RTU coordination
	Measurement Setup
	Case 1: Laboratory Environment
	Building Description
	Experiment Setup
	Test Results of MPC in a Laboratory Environment

	Case 2: Performance of MPC at a Site
	Strategy to Evaluate Performance of MPC
	Building Description and Experimental Setup
	Short-term Evaluation Results
	Long-term Evaluation Results


	Discussion and Conclusions
	ACKNOWLEDGMENTS
	NOMENCLATURE
	REFERENCES



