
University of California
Santa Barbara

Quasi-Polynomial Time Techniques for Independent

Set and Beyond in Hereditary Graph Classes

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Peter Gartland

Committee in charge:

Professor Daniel Lokshtanov, Chair
Professor Subhash Suri
Professor Eric Vigoda

December 2023

The Dissertation of Peter Gartland is approved.

Professor Subhash Suri

Professor Eric Vigoda

Professor Daniel Lokshtanov, Committee Chair

December 2023

Quasi-Polynomial Time Techniques for Independent Set and Beyond in Hereditary

Graph Classes

Copyright © 2023

by

Peter Gartland

iii

To my family

iv

Acknowledgements

I would like to thank my advisor, Daniel Lokshtanov, for introducing me to many

problems I would pursue during my Ph.D. I am grateful for the technical knowledge he

passed along to me and the insight he provided on these problems. I would also like to

thank my other committee members, Subhash Suri and Eric Vigoda, for giving feedback

on my dissertation and other Ph.D. milestones.

I am grateful to Micha l Pilipczuk for hosting me at the University of Warsaw over

the winter of 2023. During this visit, we, along with Daniel Lokshtanov, Tomáš Masař́ık,

Marcin Pilipczuk, and Pawe l Rzażewski, were able to resolve one of the main results

of this thesis, which appears in Chapter 4. I would also like to acknowledge all those

involved in organizing the 2022 Dagstuhl Seminar on Vertex Partitioning, where we began

our initial discussion on this problem.

v

Curriculum Vitæ
Peter Gartland

Education

2023 Ph.D. in Computer Science (Expected), University of California,
Santa Barbara.

2019 M.A. in Mathematics, University of South Carolina.

2017 B.S. in Mathematics, The Catholic University of America

Publications

1. Maximum Weight Independent Set in Even-Hole-Free Graphs in Quasi-Polynomial
Time. Maria Chudnovsky, Peter Gartland, Daniel Lokshtanov. In Preparation

2. Maximum Weight Independent Set in {Theta, Pyramid}-Free Graphs in Quasi-
Polynomial Time. Maria Chudnovsky, Peter Gartland, Daniel Lokshtanov. In
Preparation

3. On Induced Versions of Menger’s Theorem on Sparse Graphs. Peter Gartland,
Tuukka Korhonen, Daniel Lokshtanov. ArXiv 2023

4. Maximum Weight Independent Set in Graphs with no Long Claws in Quasi-Polynomial
Time. Peter Gartland, Daniel Lokshtanov, Tomáš Masař́ık, Marcin Pilipczuk, Micha l
Pilipczuk, Pawe l Rzażewski. ArXiv 2023

5. Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Sub-
graphs. Peter Gartland and Daniel Lokshtanov. SODA 2023

6. Graph Classes with Few Minimal Separators. II. A Dichotomy. Peter Gartland and
Daniel Lokshtanov. SODA 2023

7. Finding Large Induced Sparse Subgraphs in C>t-Free Graphs in Quasi-Polynomial
Time. Peter Gartland, Daniel Lokshtanov, Marcin Pilipczuk, Micha l Pilipczuk,
Pawe l Rzażewski. STOC 2021

8. Independent Set on Pk-Free Graphs in Quasi-Polynomial Time. Peter Gartland and
Daniel Lokshtanov. FOCS 2020

vi

Abstract

Quasi-Polynomial Time Techniques for Independent Set and Beyond in Hereditary

Graph Classes

by

Peter Gartland

An independent set in a graph G is a collection of vertices with no edge between any two.

The Independent Set problem is a classic NP-Hard problem that takes in a graph G

and the task is to find an independent set in G of maximum size. An induced subgraph

of G is another graph, H, where the vertex set of H is a subset V (H) ⊆ V (G), and the

edge set of H is all edges uv in E(G) where u, v ∈ V (H). A graph is said to be H-free

if it does not contain H as an induced subgraph. Lastly, quasi-polynomial functions

are functions that grow (slightly) faster than polynomial functions by allowing poly-log

terms in their exponents, for example, nlog
2(n) is a quasi-polynomial function.

In this thesis, we will provide a quasi-polynomial time algorithm for Independent

Set on Pk-free graphs [1], where Pk denotes a path with k vertices. We will later

extend this result in multiple ways. First, we give a quasi-polynomial time algorithm for

Independent Set as well as related problems, such as Feedback Vertex Set on

C>k-free graphs [2], which are graphs that do not contain induced cycles with more than k

vertices. Additionally, we will give a quasi-polynomial time algorithm for Independent

Set on H-free graphs where H is a forest of paths and subdivided claws [3]. A subdivided

claw is a graph formed by taking three paths of any desired length along with a vertex v

that is a neighbor of exactly one end vertex in each of the three paths. This last result

resolves an open problem first investigated by Alekseev [4] in 1982.

In a seemingly different research thread, we will characterize graph classes with few

vii

minimal separators [5, 6]. A minimal separator is a set S such that there are two vertices

u, v in different components of G − S and for any proper subset S ′ ⊂ S, u and v are in

the same component of G − S ′. A class F of graphs is called tame if every graph in F

on n vertices contains at most nO(1) minimal separators, quasi-tame if every graph in F

on n vertices contains at most nlogO(1)(n) minimal separators, and feral if there exists a

constant c > 1 so that F contains n-vertex graphs with at least cn minimal separators

for arbitrarily large n. The classification of graph classes into (quasi) tame or feral has

numerous algorithmic consequences and has recently received considerable attention. In

particular, Independent Set and related problems can be solved in polynomial time

on tame graph classes and quasi-polynomial time on quasi-tame graph classes [7].

An essential tool that both our characterization of quasi-tame graph classes and our

quasi-polynomial time algorithms depend on are dominated balanced separators, which

are vertex sets S of a graph G that are dominated by a constant number of vertices, and

no component of G − S has over, say, half of G’s vertices. In the introductory chapter

of this thesis, we give a conjecture on dominated balanced separators that we refer to as

the Induced Grid Minor Conjecture. If true, it would unify many of the results in this

thesis and give efficient algorithms for Independent Set and related problems on many

graph classes for which such algorithms have long been sought with no success, such as

even-hole-free graphs. Additionally, if this conjecture is true, we believe it could serve as

a building block for additional interesting theorems for hereditary graph classes.

viii

Contents

Curriculum Vitae vi

Abstract vii

1 Introduction 1
1.1 Literature Survey . 2
1.2 Independent Set . 12
1.3 Minimal Separators . 33
1.4 Induced Grid Minor Conjecture . 42
1.5 Organization of Chapters . 52

2 Preliminaries 53
2.1 Extended strip decompositions. 55
2.2 Graph minors . 59
2.3 Treewidth and tree decompositions . 60
2.4 MSO2 and MSO2 types . 61

3 Independent Set on Pk-Free Graphs in Quasi-Polynomial Time 66
3.1 Introduction . 68
3.2 Preliminaries . 76
3.3 Quasi-Polynomial Time Algorithm for Pk-Free Graphs 76
3.4 Disconnected Forbidden Induced Subgraphs 89
3.5 Conclusion . 100

4 Independent Set in Graphs with no Long Claws in Quasi-Polynomial
Time 101
4.1 Introduction . 102
4.2 Preliminaries . 121
4.3 The Algorithm . 124
4.4 Extended Strip Lemma . 162
4.5 Conclusion . 199

ix

5 Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial
Time 201
5.1 Introduction . 202
5.2 Overview . 207
5.3 Preliminaries . 225
5.4 Branching framework . 226
5.5 Branching strategies: choosing pivots in Pt-free and C>t-free graphs . . . 240
5.6 C>t-free graphs of bounded degeneracy have bounded treewidth 259
5.7 MSO2 and C>t-free graphs . 265
5.8 A simple technique for approximation schemes 278

6 Graph Classes with Few Minimal Separators. I. Finite Forbidden In-
duced Subgraphs 285
6.1 Introduction . 286
6.2 Overview . 297
6.3 Preliminaries . 307
6.4 A k-Creature-Free Feral Graph Family 308
6.5 k-Creature and k-Skinny-Ladder Induced Minor Free Graphs 311
6.6 Finite Forbidden Induced Subgraphs . 332
6.7 Long Cycle-free Graphs . 355
6.8 Graph With Bounded Clique Size . 356
6.9 Conclusion . 359

7 Graph Classes with Few Minimal Separators. II. A Dichotomy 361
7.1 Introduction . 362
7.2 Preliminaries . 370
7.3 Overview . 373
7.4 Finding A Generalized ω-Creature . 385
7.5 Extracting Critters from Generalized Creatures 454
7.6 Families with Creatures or Critters are Feral 536

Bibliography 551

x

Chapter 1

Introduction

Many of the techniques used in this thesis build off tools developed in previous papers

by other researchers. Additionally, many methods used in later chapters build off those

developed in earlier chapters. So, for the reader to “get into our heads” and better

understand how the fundamental ideas of this thesis were developed, in later sections of

this introductory chapter, we will delve more into the techniques developed in previous

works by other researchers as well as those that we create ourselves in this thesis in such

a way that the reader may gain some understanding of how these tools came about.

Readers who want more intuition and “story” behind this thesis can (and should) skip

Section 1.1 and jump to Section 1.2 as much of what is said in Section 1.1 will appear in

later sections of this chapter, with a more in-depth description. Readers who only wish

to read a literature survey that merely describes the problems we resolve in this thesis

and related publications on these problems only need to read Section 1.1.

1

Introduction Chapter 1

1.1 Literature Survey

Independent Set An independent set (also known as a stable set) in a graph G is a

vertex set S such that no two distinct vertices in S are adjacent in G. In the Indepen-

dent Set problem the input is a graph G and an integer k, the task is to determine

whether G contains an independent set S of size at least k. Up to polynomial time over-

head, this task is equivalent to finding an independent set of maximum size in G, and we

will often treat these two problems as equivalent. Independent Set is a well-studied

and fundamental graph problem which is NP-complete [8, 9] and has a central role as a

hard problem in many areas of computational complexity. One of the most well-known

hardness results for Independent Set is that it was one of the very first problems

shown to be NP-Hard to approximate [10, 11]; in fact, it is hard to approximate within

a factor of n1−ε [12]. The Maximum Weight Independent Set problem represents

a natural extension of this problem where the input graph is endowed with weights (real

numbers) on its vertices. In this variant, the objective is to identify an independent set

with maximum total weight. While our introductory chapter primarily concentrates on

Independent Set, it’s noteworthy that nearly all concepts discussed here readily apply

to Maximum Weight Independent Set with only minor adjustments.

In light of the aforementioned complexity challenges of solving Independent Set

on general graphs, researchers naturally focus on graph classes where solving the Inde-

pendent Set problem becomes more manageable. Significant effort has been dedicated

to identifying classes of graphs for which polynomial time algorithms exist for Inde-

pendent Set. Some of the noteworthy results in this pursuit include polynomial time

algorithms for Independent Set on Perfect Graphs [13], P5-free graphs [14], and the de-

velopment of a polynomial time approximation scheme for Independent Set on planar

graphs [15] (Independent Set remains NP-Hard on planar graphs [8]).

2

Introduction Chapter 1

Due to the vast and complex nature of all possible graph classes, which would include

numerous peculiar and artificial counterexamples, it is necessary to impose restrictions on

the classes considered to develop a rich theory regarding the computational complexity

of Independent Set across these graph classes. A particularly interesting problem

in this context, which has captivated the algorithmic graph theory community and will

serve as a central theme in this thesis, revolves around the complexity of Independent

Set on H-free graphs. H-free graphs are graphs that do not contain H as an induced

subgraph, where an induced subgraph of a graph G is another graph, G′, where the

vertex set of G′ is a subset V (G′) ⊆ V (G) and the edge set of G′ is all edges uv in E(G)

where u, v ∈ V (G′). We will also be concerned with the slightly more general problem,

Independent Set onH-free graphs. Here, H is a finite set of graphs, andH-free graphs

are graphs that do not contain H as an induced subgraph for all H ∈ H.

This problem was first investigated by Alekseev [4] in 1982. Alekseev observed a

simple reduction that shows that Independent Set remains NP-Hard on H-free graphs

as long as H does not contain a graph H that is a forest of paths and subdivided claws

(see Figure 1.1). The standard claw graph comprises of an independent set of size three

and an additional vertex adjacent to the three independent vertices. A subdivided claw

extends this concept, allowing for the three edges of the standard claw to be subdivided

some number of times. The question of whether Independent Set on H-free graphs,

where H contains a graph H that is a forest of paths and subdivided claws, possesses a

polynomial time algorithm for Independent Set has remained an open problem, which

we conjecture to be true. It is straightforward to show that to prove this conjecture, it

is both necessary and sufficient to show that H-free graphs possess a polynomial time

algorithm for Independent Set when H is a forest of paths and subdivided claws. In

light of this, we will now restrict our concern to the complexity of Independent Set

on H-free graphs (where H is just a single graph, not a set of graphs). This thesis will

3

Introduction Chapter 1

make substantial progress toward resolving this longstanding problem. In particular, we

prove the following theorem in Chapter 3.

Theorem 1.1.1 ([16]). For every positive integer k, there is an algorithm for Indepen-

dent Set on Pk-free graphs running in quasi-polynomial time.

Here, quasi-polynomial means poly-log functions are allowed in the exponent instead

of just constants as in polynomial functions, for instance, nlog
2(n) is a quasi-polynomial

function. In Chapter 4, we extended the result of Theorem 1.1.1 to obtain the following

theorem.

Theorem 1.1.2 ([3]). For every graph H that is a forest of paths and subdivided claws,

there is an algorithm for Independent Set on H-free graphs running in quasi-polynomial

time.

Our quasi-polynomial time algorithms have two significant implications. First, given

the widespread belief that NP is not a subset of quasi-polynomial time (QP), our algo-

rithms, under this assumption, imply that Independent Set on H-free graphs is not

NP-Hard when H is a forest of paths and subdivided claws. Second, it is commonly

observed that the discovery of a quasi-polynomial time algorithm often leads to the dis-

covery of a polynomial time algorithm. Therefore, our quasi-polynomial time algorithms

strongly support the conjecture that Independent Set on H-free graphs admits a

polynomial time algorithm when H is a forest of paths and subdivided claws. Before

we discuss these results further, let us look at previous work that has been done for this

problem.

It has been known since 1980 that Independent Set is polynomial-time solvable

in S1,1,1-free graphs, by St,t,t we mean a subdivided claw where each arm has t vertices

(See Figure 1.1), so S1,1,1 is just the standard claw graph. Around the same time, it

4

Introduction Chapter 1

was shown that the class of P4-free graphs, where Pt denotes a path with t vertices

(see Figure 1.1), has powerful structural properties, thus allowing for efficient algorithms

for Independent Set and many other combinatorial problems. Apart from results by

Alekseev [17] (for the unweighted case) and Lozin and Milanič [18] (for the weighted

case) extending the S1,1,1-free case to S1,1,2-free graphs the progress on polynomial time

algorithms for Independent Set on H-free graphs where H is a forest of paths and

subdivided claws was limited to various subclasses of Pt-free graphs and St1,t2,t3-free

graphs for small values of t, t1, t2, t3 (for instance P7, K3-free graphs [19]). (see [20, 19,

21, 22, 23, 24, 25, 26, 27, 19, 28, 29, 30, 31, 32] for older and newer results of this kind)

until around a decade ago.

Research in this area has gained significant momentum over the last decade, and

progress can be categorized into two main threads. The first thread centers on the

concept of potential maximal cliques, introduced by Bouchitte and Todinca [33]. This

thread aims to devise polynomial-time algorithms for Pt-free graphs for small values of

t. A groundbreaking result in this line of research is credited to Lokshtanov, Vatshelle,

and Villanger [14], who were the first to demonstrate the effectiveness of the potential

maximal clique framework in the context of Pt-free graphs by presenting a polynomial-

time algorithm for Independent Set in P5-free graphs. Subsequent extensions include

algorithms for P6-free graphs [34] and related graph classes [35].

The second thread attempts at treating Pt-free or St,t,t-free graphs in full generality,

but relaxing the requirements on either the running time (by providing subexponential

or quasi-polynomial-time algorithms) or the accuracy (by providing approximation al-

gorithms, such as approximation schemes). Here, the starting point is the theorem of

Gyárfás [36] (see also [37]).

Theorem 1.1.3. [Gyárfás Path Growing Argument [36], [37]] Every vertex-weighted

5

Introduction Chapter 1

graph G contains an induced path Q such that every connected component of G−N [V (Q)]

has weight at most half of the weight of G.

Since induced paths in a Pt-free graph have less than t vertices, a Pt-free graph

admits a balanced separator (in the sense of Theorem 1.1.3) consisting of the neighbor-

hood of at most t − 1 vertices. Chudnovsky et al. [38] observed that this easily gives a

quasi-polynomial-time approximation scheme (QPTAS) for MWIS in Pt-free graphs, and

they designed an elaborate argument involving the celebrated three-in-a-tree theorem of

Chudnovsky and Seymour [39] to extend the result to the St,t,t-free case and H-free case

where H is a forest of paths and subdivided claws. Abrishami et al. [40] also used the

three-in-a-tree theorem to obtain a polynomial-time algorithm for MWIS for St,t,t-free

graphs of bounded degree.

In Chapter 3, we show how to use Theorem 1.1.3 to design an exact quasi-polynomial

time algorithm of Theorem 1.1.1. This algorithm was later simplified by Pilipczuk,

Pilipczuk, and Rzażewski [41]. Chapter 4, where Theorem 1.1.2 is proven, provides

the pinnacle of this thread of research by showing that Independent Set is quasi-

polynomial time solvable on H-free graphs for all open cases, that is, when H is a forest

of paths and subdivided claws.

Our last result in the direction of solving Independent set on some hereditary graph

class will come in Chapter 5, the work in this chapter originally appeared in [2]. There,

we will provide an algorithm that extends Theorem 1.1.1 in two ways. First, it broadens

the graph class that it can run on from Pk-free graphs to C>k-free graphs, C>k-free graphs

being graphs with no induced cycle of length more than k. Second, the algorithm can solve

an extensive set of problems, which includes Independent Set, but also many other

interesting problems such as Feedback Vertex Set, Maximum Weight Induced

Planar Subgraph, Maximum Length Induced Path, and 3-Coloring. This

6

Introduction Chapter 1

(substantially) generalizes a question asked by Pilipczuk, Pilipczuk, and Rzażewski [41],

which asks if there exists a quasi-polynomial time algorithm for Feedback Vertex

Set on Pk-free graphs. This additionally generalizes a paper of Abrishami et al. [35],

which showed that C>4-free graphs admit polynomial time algorithms for the same set

of problems.

We now turn our attention to a different set of problems, in particular, we will be

concerned about certain graph structures called minimal separators. At first, it will seem

like we are dealing with a very different set of problems than we were in this subsection.

But, in Section 1.4, we propose a conjecture which shows, in some sense, that these are

really two different subproblems of the same underlying problem.

Minimal Separators In the last two chapters of this thesis, Chapters 6 and 7, we turn

our attention to minimal separators. These two chapters correspond to the papers [5]

and [6]. In a graph G with vertices u and v, a subset S ⊂ V (G) is called a u, v-separator

if u and v exist in different components of G−S. The set S is a u, v-minimal separator if

no proper subset of S is a u, v-separator. S is a minimal separator if it is a u, v-minimal

separator for some pair of vertices u, v ∈ G. A graph class F is called tame if there

exists a polynomial function p such that for all G ∈ F , G has at most p(|G|) minimal

separators. F is called quasi-tame if there exists a quasi-polynomial function p such that

for all G ∈ F , G has at most p(|G|) minimal separators. On the other hand, a graph class

is called feral if there exists a constant c > 1 such that for arbitrarily large graphs G ∈ F ,

G contains at least c|G| minimal separators. A graph class is feral when an exponential

bound on the number of minimal separators is the best possible. Despite the existence

of functions with growth rates between (quasi) polynomial and exponential, in Chapter

7, we formally prove that the large majority of typical graph classes fall into either the

(quasi) tame or feral category.

7

Introduction Chapter 1

A sequence of noteworthy results, starting with a paper by Bouchitte and Todinca

[33] and concluding with a paper by Fomin et al. [7], established that a large number

of problems, the most interesting of which being Independent Set and Feedback

Vertex Set, can be solved in time polynomial in the number of minimal separators in

the graph. This proves that tame graph classes admit a polynomial time algorithm for

these problems, while quasi-tame graph classes admit a quasi-polynomial time algorithm

for the same problems. Numerous extensively studied graph classes fall into the category

of tame graphs, including chordal graphs, permutation graphs, interval graphs, and P4-

free graphs (also known as cographs). These results on minimal separators contribute to

a unified theory explaining why these graph classes exhibit polynomial time algorithms

for problems like Independent Set and Feedback Vertex Set.

Recently, researchers have shown an interest in acquiring a broader understanding of

the factors that force a graph class to be tame or feral. Milanic and Pivac undertook

the initial systematic exploration of tame versus feral graph classes [42], where they

systematically categorized all graph classes defined by forbidden induced subgraphs of

size four or less into tame and feral classes. Another significant contribution in this

direction was made by Abrishami et al. [43], who demonstrated that graphs avoiding

structures known as thetas, prisms, pyramids, and turtles as induced subgraphs fall

into the category of tame graphs. In their study, Abrishami et al. [43] identified the

significance of the presence or absence of structures termed k-creatures in determining

whether a graph class is tame or feral. Due to the pivotal role of k-creatures in explaining

our results on this problem, we present the definition here.

Definition 1.1.4 (k-creatures (see Figure 1.3)). A graph G is said to be a k-creature

if its vertices can be partitioned into sets A, X = {x1, x2, . . . , xk}, Y = {y1, y2, . . . , yk},

and B satisfying the following conditions:

8

Introduction Chapter 1

1. G[A] and G[B] are connected.

2. A and Y ∪ B are anti-complete (i.e. N [A] ∩ (Y ∪ B) = ∅) and B and A ∪ X are

anti-complete.

3. A dominates X (every vertex in X has a neighbor in A) and B dominates Y .

4. xiyj is an edge if and only if i = j.

If a graph G does not contain an induced subgraph that is a k-creature, then we say

that G is k-creature-free.

In a k-creature, it is easy to see that for a vertex a ∈ A and b ∈ B, there are precisely

2k minimal separators disjoint from A and B. Such a separator must pick precisely one

vertex from each of {xi, yi}, and it can make each one of these k choices independently.

The aforementioned previous works essentially give different sufficient conditions for

a graph to only have polynomially many minimal separators. This naturally leads to

the question is there a “right” sufficient condition for tameness? That is - a condition

that, on the one hand, is easy to state and verify, while on the other hand, captures all

interesting tame graph classes. Abrishami et al. [43] conjectured that for every integer k,

there exists a k′ such that if an n-vertex graph G is k-creature-free, then G has at most

nk
′

minimal separators. It turns out, we will show in Chapter 6 that this conjecture is

false: for arbitrarily large n there exist n-vertex graphs that exclude 10-creatures and yet

have 2Ω(n) minimal separators. Let us discuss, though, for a moment, why it would have

been the “right” sufficient condition for polynomially many minimal separators if it had

been true.

With only very weak assumptions, which the vast majority of interesting graph classes

satisfy (which we formally describe in Chapter 7), we can show that if F is a graph class

that satisfies these conditions and for arbitrarily large integers k, there is a G ∈ F

such that G contains a k-creature, then for every k there is a graph G′ ∈ F such that G′

9

Introduction Chapter 1

contains a k-creature and |G′| = O(k). It follows that G′ contains 2Ω(k) = 2Ω(|G′|) minimal

separators. Hence, F is feral. Thus, if the conjecture of Abrishami et al. were true, we

would be able to say that if there exists a positive integer k such that no graph in F

contains a k-creature, then F is tame, otherwise F is feral. In some sense, k-creatures

would be the underlying reason graph classes are tame or feral.

As previously mentioned, we show in Chapter 6 that the conjecture of Abrishami et

al. is false. In the same chapter, we show that a weaker version of the conjecture of

Abrishami et al. is true. To state this result, we need a couple of definitions. First, a

k-skinny ladder is a graph G consisting of two anti-complete paths Pl = ℓ1ℓ2 . . . ℓk and

Pr = r1r2 . . . rk (subgraphs A and B are anti-complete if V (A) ∩ V (B) = ∅ and there is

no edge between A and B) and a set {s1, s2, . . . , sk} of vertices such that for every i, si

is adjacent to ℓi and ri and to no other vertices. Second, an induced minor of a graph

G is a graph that can be obtained from G by deleting vertices and contracting edges

(contracting an edge uv of a graph G results in a new graph G′ where the vertices u

and v has been removed and a new vertex w is added where w is made a neighbor of all

vertices that was a neighbor of either u, v, or both u and v). The main result of Chapter

6 is the following weakening of the conjecture of Abrishami et al.

Theorem 1.1.5 ([5]). For every integer k, the family of graphs that are k-creature free

and exclude the k-skinny ladder as an induced minor is quasi-tame.

Theorem 1.1.5 is strong enough to allow us to classify graph classes defined by a finite

number of forbidden induced subgraphs. In particular, in Chapter 6 we will prove, using

Theorem 1.1.5 the following theorem.

Theorem 1.1.6 ([5]). Let F be a graph family defined by a finite number of forbidden

induced subgraphs. If there exists a natural number k such that F forbids all k-theta, k-

prism, k-pyramid, k-ladder-theta, k-ladder-prism, k-claw, and k-paw graphs (see Figure

10

Introduction Chapter 1

6.2), then F is quasi-tame. Otherwise, F is feral.

While Theorem 1.1.5 is strong enough to give a complete dichotomy for graph classes

defined by a finite number of forbidden induced subgraphs, it fails to be the “right” the-

orem we seek for two reasons. The first problem is that the bounds are quasi-polynomial

as opposed to polynomial. The second is that there are still very reasonable tame graph

classes not captured by this theorem, such as the graph class made up of k-skinny-ladders

for all natural numbers k.

The first issue was dealt with by Gajarsky et al. [44] who, building heavily upon the

work that will be presented in Chapter 6, brought the bounds of Theorem 1.1.5 down

from quasi-polynomial to polynomial. The second issue is dealt with in Chapter 7. To

properly state our main result of Chapter 7, we must introduce another graph called

t-critters. First, we need a small generalization of minimal separators that applies to

vertex sets instead of just vertices. Given A,B ⊂ V (G), we define S to be an A, B-

separator if A∩ S = B ∩ S = ∅ and no component of G− S contains a vertex from both

A and B. An A,B-minimal separator is an A, B-separator such that no proper subset of

S is an A, B-separator.

Definition 1.1.7 (t-critter partition, t-critter). A t-critter partition of a graph G is a

partition of the vertex set of G into sets A1, A2, . . . At+1, B1, B2, . . . , Bt+1, X1, X2, . . . , Xt,

such that the following conditions are satisfied.

1. For all 1 ⩽ i, j ⩽ t+ 1 with i ̸= j, Ai is anti-complete with Aj, Bi is anti-complete

with Bj, and Ai is anti-complete with Bj.

2. For all 1 ⩽ i ⩽ t+ 1 Ai and Bi is connected.

3. The vertices of Ai, Ai+1, Bi, and Bi+1 are the only vertices outside of Xi that have

a neighbor in Xi.

11

Introduction Chapter 1

4. There are (at least) two distinct (Ai ∪ Ai+1), (Bi ∪ Bi+1)-minimal separators in

G[Ai ∪Ai+1 ∪Bi ∪Bi+1 ∪Xi], S
i
1 and Si2, such that there is a path from Ai to Ai+1

through both Xi − Si1 and Xi − Si2 and there is a path from Bi to Bi+1 through

both Xi − Si1 and Xi − Si2.

A graph G is a t-critter if G has a t-critter partition. A graph G is t-critter free if G does

not contain a t-critter as an induced subgraph.

The definition of t-critters is arguably technical and unappealing. A reader who is

familiar with minimal separators should, after staring at the definition for a bit, be able

to convince themselves that just as for k-creatures, for every vertex a ∈ A =
⋃
iAi and

vertex b ∈ B =
⋃
iBi there are at least 2t minimal a,b-separators in G disjoint from

A∪B. In particular, to separate a from b, we may, for every i ⩽ t, choose to delete either

Si1 or Si2, and for every i the choice between Si1 or Si2 can be made independently of the

other choices. We are now ready to state the main theorem of Chapter 7 (See Chapter 7

for the formal statement of the theorem).

Theorem 1.1.8 ([6]). Let F be a graph class that satisfies some weak assumptions (that

almost all interesting graph classes satisfy). If there exist integers t and k such that for

all G ∈ F , G is k-creature free and t-critter free, then F is quasi-tame, else F is feral.

This concludes our literature review section. Readers who wish to gain more insight

into the works presented here are encouraged to read the other sections of this chapter.

1.2 Independent Set

An independent set (also known as a stable set) in a graph G is a vertex set S

such that no two distinct vertices in S are adjacent in G. In the Independent Set

problem, the input is a graph G and an integer k; the task is to determine whether

12

Introduction Chapter 1

G contains an independent set S of size at least k. Up to polynomial time overhead,

this task is equivalent to finding an independent set of maximum size in G, and we will

often treat these two problems as equivalent. Independent Set is a well-studied and

fundamental graph problem which is NP-complete [8, 9] and intractable within most

frameworks for coping with NP-Hardness, playing a central role as a hard problem in

many areas of computational complexity. Indeed, Independent Set was one of the

very first problems shown to be NP-Hard to approximate [10, 11], intractable from the

perspective of parameterized complexity [45], not to have a 2o(n) time algorithm assuming

the Exponential Time Hypothesis (ETH) [46], and whose hardness of parameterized

approximation, assuming the Gap-ETH, was established [47]. The Maximum Weight

Independent Set problem is a natural extension of Independent Set where the

input graph now has weights on the vertices, and the problem asks to find an independent

set of maximum total weight. In this introductory chapter, we will typically focus on

Independent Set, but almost everything said here extends to Maximum Weight

Independent Set with only minor modifications.

Given these hardness results above, researchers naturally turned their attention to

graph classes for which Independent Set is tractable, and much work has been put into

identifying classes for which there are polynomial time algorithms for Independent Set.

Some of the most exciting results in this direction have been polynomial time algorithms

for Independent Set on Perfect Graphs [13], P5-free graphs [14], and a polynomial time

approximation scheme for Independent Set on planar graphs [15] (Independent Set

remains NP-Hard on planar graphs [8]).

As the space of all possible graph classes is too large and contains many strange

and artificial counterexamples, we must restrict the graph classes we consider in some

way if we wish to build an interesting theory around the computational complexity of

Independent Set for various graph classes. One problem in this direction that has

13

Introduction Chapter 1

generated much interest in the algorithmic graph theory community and a problem that

will be a central focus in this thesis is the complexity of Independent Set on H-free

graphs. H-free graphs are graphs that do not contain H as an induced subgraph, where

an induced subgraph of a graph G is another graph, G′, where the vertex set of G′ is

a subset V (G′) ⊆ V (G) and the edge set of G′ is all edges uv in E(G) where u, v ∈

V (G′). We will also be concerned with the slightly more general problem, Independent

Set on H-free graphs. Here, H is a finite set of graphs, and H-free graphs are graphs

that do not contain H as an induced subgraph for all H ∈ H. This problem was

first investigated by Alekseev [4] in 1982. Alekseev observed a simple reduction that

shows that Independent Set remains NP-Hard on H-free graphs as long as H contains

a vertex of degree four or more, a cycle, or two vertices of degree three in the same

component. Let’s quickly see how the reduction goes.

The reduction is from Independent Set on max degree three graphs, which is

known to be NP-Hard [48], and goes as follows. Fix a graph H that has a vertex of

degree four or more, a cycle, or two vertices of degree three in the same component. Let

G be a graph of max degree three. It is easy to see that if we subdivide an edge of G

exactly twice, the maximum independent set size increases by exactly one. Subdividing

an edge uv of a graph G means we insert a new vertex w in the middle of the edge uv.

More formally, we add the vertex w to the vertex set of G, we remove the edge uv from the

edge set of G, and we add the edges uw and wv to the edge set of G. Now, we subdivide

each edge of G exactly 2|H| times to get a new graph G′. So, α(G) + |E(G)||H| = α(G′),

where α(G) denotes the maximum independent set size of a graph G. Furthermore, G′

is H-free as G′ has maximum degree three, all cycles in G′ have length at least 2|H|,

and all vertices of degree three in the same component of G′ are distance at least 2|H|

apart and H was assumed to either have a vertex of degree at least four, a cycle, or two

vertices of degree three in the same component. It follows that Independent Set is

14

Introduction Chapter 1

NP-Hard on H-free graphs. The same reduction also shows that Independent Set

remains NP-Hard on H-free graphs when all graphs H ∈ H have a vertex of degree at

least four, a cycle, or two vertices of degree three in the same component. Also, since

Independent Set is hard to approximate (APX-Hard) on graphs of maximum degree

three [49], Independent Set remains APX-Hard on H-free graphs when all graphs

H ∈ H have a vertex of degree at least four, a cycle, or two vertices of degree three in

the same component.

So, what kind of graphs have max degree three, are acyclic, and have at most one ver-

tex of degree three in each component? These graphs are forests of paths and subdivided

claws (see Figure 1.1). The standard claw graph is an independent set of size three, and

an additional vertex neighbors with the three independent vertices. A subdivided claw

is one where the three edges of the standard claw may now be subdivided some number

of times. We make the following conjecture about Independent Set when forests of

paths and subdivided claws are forbidden. This conjecture appeared in the paper corre-

sponding to Chapter 3 of this thesis and possibly elsewhere as well (this conjecture was a

known and investigated open problem well before any of the work in this thesis was done,

but before the work in this thesis there was little evidence of its truth, so few researchers

would have referred to it as a conjecture).

Conjecture 1.2.1. Let H be a finite set of graphs. Independent Set is polynomial-

time solvable on H-free graphs when H contains at least one graph H that is a forest of

paths and subdivided claws, otherwise, it is NP-Hard.

Notice that the NP-Hardness part of the conjecture is covered in the hardness proof

we just presented. Additionally, if H ∈ H, then the set of H-free graphs contains the

set of H-free graphs. So, this conjecture reduces to proving that Independent Set is

polynomial-time solvable on H-free graphs where H is a forest of paths and subdivided

15

Introduction Chapter 1

Figure 1.1: A forest of paths and subdivided claws made up of a path of length eight
(P8), a subdivided claw with arm lengths three, four, and five (S3,4,5), subdivide claw
with arm lengths four, five, and six (S4,5,6), and a subdivided claw with all arms of
length six (S6,6,6).

claws. In this thesis, we will make substantial progress towards answering this conjecture.

In particular, we prove the following theorem in Chapter 3.

Theorem 1.2.2 ([1]). For every positive integer k, there is an algorithm for Indepen-

dent Set on Pk-free graphs running in quasi-polynomial time.

Here, quasi-polynomial means poly-log functions are allowed in the exponent instead

of just constants as in polynomial functions, for instance, nlog
2(n) is a quasi-polynomial

function. In Chapter 4, we extended the result of Theorem 1.2.2 to obtain the following

theorem.

Theorem 1.2.3 ([3]). For every graph H that is a forest of paths and subdivided claws,

there is an algorithm for Independent Set on H-free graphs running in quasi-polynomial

time.

The works in Chapters 3 and 4 appeared in [1] and [3] respectively.

Our quasi-polynomial time algorithms have two implications for Conjecture 1.2.1.

The first is that it is widely believed that NP is not a subset of quasi-polynomial time

(QP), so assuming this, our quasi-polynomial time algorithms allow us to conclude that

Independent Set on H-free graphs is not NP-Hard when H is a forest of paths and

16

Introduction Chapter 1

subdivided claws. The second is that most of the time when a quasi-polynomial time

algorithm is found, researchers eventually find a polynomial time algorithm, so this tells

us that Conjecture 1.2.1 is likely to be true. Before we discuss this result further, let us

look at previous work that has been done for this problem.

It has been known since 1980 that Independent Set is polynomial-time solvable in

S1,1,1-free graphs, where St,t,t denotes a claw where each arm has t vertices, so S1,1,1 is just

the standard claw graph, see Figure 1.1. Around the same time, it was shown that the

class of P4-free graphs, where Pt denotes a path with t vertices (see Figure 1.1) coincides

with the class of cographs and has very strong structural properties (in modern terms,

has bounded cliquewidth) thus allowing for efficient algorithms for Independent Set

and many other combinatorial problems. Apart from results by Alekseev [17] (for the

unweighted case) and Lozin and Milanič [18] (for the weighted case) extending the S1,1,1-

free case to S1,1,2-free graphs the progress on Conjecture 4.1.1 was limited to various

subclasses of Pt-free graphs and St1,t2,t3-free graphs for small values of t, t1, t2, t3 (for

instance {P7, K3}-free graphs [19]). (see [20, 19, 21, 22, 23, 24, 25, 26, 27, 19, 28, 29, 30,

31, 32] for older and newer results of this kind) until around a decade ago.

Research in this area gained significant momentum in the last decade. The progress

can be partitioned into two main threads. The first one focuses on the framework of

potential maximal cliques, introduced by Bouchitté and Todinca [33], and tries to provide

polynomial-time algorithms for Pt-free graphs for small values of t. A landmark result

here is due to Lokshtanov, Vatshelle, and Villanger [14], who were the first to show the

usability of the framework in the context of Pt-free graphs by providing a polynomial-

time algorithm for Independent Set in P5-free graphs. This has been later extended to

P6-free graphs [34] and related graph classes [35]. A notable property of this framework

is that, in most cases, it not only provides algorithms for Independent Set, but for a

wide range of problems asking for large induced subgraph of small treewidth, for example

17

Introduction Chapter 1

Feedback Vertex Set.

The second thread attempts to treat Pt-free or St,t,t-free graphs in full generality,

but relaxing the requirements on either the running time (by providing subexponential

or quasi-polynomial-time algorithms) or the accuracy (by providing approximation algo-

rithms, such as approximation schemes). This thread of research will be one of the main

focuses of this thesis, in particular, our proof of Theorem 1.2.3 represents the pinnacle of

this second line of research. Three papers by other authors on this second line of research

have had significant influence over the development of this algorithm, the first is a 2Õ(
√
n)-

time algorithm (here Õ suppresses poly-log factors) for Independent Set on Pk-free

graphs [37], the second is a quasi-polynomial time approximation scheme (QPTAS) for

Independent Set on H-free graphs where H is a forest of paths and subdivided claws

[38], resolving all open cases in the QPTAS setting, and the third, which was concurrent

with the work in this thesis, gave a more straightforward proof of the previously men-

tioned QPTAS using a nice structural property of St,t,t-free graphs [50] which will be an

essential ingredient to some of our work. Because of the importance of these three papers

to this thesis, we will briefly sketch the ideas of these papers here.

We begin with the 2Õ(
√
n)-time algorithm for Independent Set on Pk-free graphs

of [37]. This paper introduced the notion of dominated balanced separators. A balanced

separator S for a graph G is a set S ⊆ V (G) such that no component of G− S has over

|G|/2 vertices. We say a set S is a dominated balanced separator if S can be dominated

by a small number of vertices in G (either by some fixed constant or fixed function that is

poly-logarithmic in the number of vertices of the graph). The reader should be aware that

the definition of dominated balanced separators will be made more formal and change

slightly in other chapters based on certain parameters, such as how large the components

of G − S are allowed to be, the definition being used in a given chapter will be made

clear at the start of that chapter. We say that a hereditary graph class F has dominated

18

Introduction Chapter 1

balanced separators if every G ∈ F has a dominated balanced separator. By hereditary,

we mean that F is closed under vertex deletion, so if G ∈ F and v ∈ G, then G− v ∈ F .

So, some fixed poly-logarithmic function f exists, such that for every G ∈ F , G has a

balanced separator dominated by at most f(|G|) vertices. The 2Õ(
√
n)-time algorithm

for Independent Set on Pk-free graphs is based on two theorems which we will now

sketch. The first is that Pk-free graphs have dominated balanced separators, based on

the Gyárfás path growing argument, first used to prove χ-boundedness of Pk-free graphs

[36]. The second is that any hereditary graph class with dominated balanced separators

admits a 2Õ(
√
n)-time algorithm for Independent Set.

Theorem 1.2.4 (Gyárfás Path Growing Argument [36], [37]). Let G be a Pk-free graph.

There is a set S of size less than k such that N [S] is a balanced separator.

Proof: [sketch] Let G be a Pk-free graph, for simplicity assume that G is connected,

and let v1 be any vertex of G. We will find a sequence of vertices P j = {v1, v2, . . . , vj} such

that P j is an induced path in G (and hence j < k) and N [P j] is a balanced separator.

To do this, we take an induced path P i = {v1, v2, . . . , vi} (hence i < k) and vi has a

neighbor, v, which no other vertex of P i is a neighbor of and v has a neighbor in the

large component of G−N [P i] (the unique component with over half of G’s vertices - if

there is no large component then we are done as we have found a dominated balanced

separator). We show how to extend it to a path P i+1 with the same properties. Since G

is Pk-free, this process cannot continue more than k iterations.

So, assume that we have such a P i = {v1, v2, . . . , vi} and let C be the large component

of G−N [P i]. Set vi+1 = v and P i+1 = {v1, v2, . . . , vi, vi+1}. P i+1 is a path since only vi is

neighbors with vi+1. If N [P i+1] is a balanced separator, we are done, so we may assume

there is a large component, C ′, of G−N [P i+1], this implies that C ′ is the large component

of C−N [vi+1]. Since C is connected and C ∩N(vi+1) is non-empty by assumption, there

19

Introduction Chapter 1

must be some vertex, v′, in C ∩N(vi+1) that has a neighbor in C ′ and since v′ ∈ C, no

vertex of P i can be neighbors with v′.

Next, we sketch the 2Õ(
√
n)-time algorithm for Independent Set on any hereditary

class with dominated balanced separators. We will use the term branching on a vertex in

the following algorithm (and in many other places in this thesis). Branching on a vertex

v in a graph G when trying to solve the Independent Set problem means making two

recursive calls, one where you guess that v is in a maximum independent set of G and one

where you guess it is not. If v is in a maximum independent set of G, then it is easy to

verify that α(G) = α(G−N [v])+1, where α(G) is the size of a maximum independent set

of G. If v is not in a maximum independent set of G, then α(G) = α(G− v). Thus when

we branch on v (in the context of solving Independent Set), we make two recursive

calls, one solving Independent Set on G−N [v] and one on G− v and we return the

maximum of α(G−N [v]) + 1 and α(G− v).

Theorem 1.2.5 ([37]). Let F be a hereditary graph class and f a quasi-polynomial

function such that for every G ∈ F , there is a balanced separator S of G dominated by

at most f(|G|) vertices in G. Then F admits a 2Õ(
√
n)-time algorithm for Independent

Set.

Proof: [sketch] Let F and f be as in the statement of this theorem, and let G ∈ F

be a n-vertex graph. We begin by branching on all vertices of degree at least
√
n in

G until none are left. The runtime of this step is governed by the recurrence T (n) ⩽

T (n− 1) + T (n−
√
n). Repeatedly applying the recurrence relationship

√
n− 1 times to

the T (n− 1) term gives T (n) ⩽
√
nT (n−

√
n) which solves to 2Õ(

√
n), so this step takes

2Õ(
√
n) time. We now may assume that we are working with a graph G′ of max degree

√
n. We then find a balanced separator S dominated by at most f(n) vertices. Since

G′ has max degree
√
n, and S is dominated by at most f(n) vertices, |S| ⩽

√
nf(n).

20

Introduction Chapter 1

We branch on each vertex of S, as there are at most
√
nf(n) vertices in S, this leads

to at most 2
√
nf(n) cases to consider. Since no vertex of S is left after this branching,

the size of the largest component after branching is at most n/2. Since the union of

maximum independent sets of each component of a graph is a maximum independent

set of the entire graph, we can recurse on each component independently and return the

sum of the maximum independent set sizes found for each component. As there are at

most n components in the graph, the runtime of this step is governed by the recurrence

T (n) ⩽ n · 2
√
nf(n)T (n/2) which solves to 2Õ(

√
n).

Together Theorems 1.2.4 and 1.2.5 show that Pk-free graphs have a 2Õ(
√
n)-time al-

gorithm for Independent Set. Next, we consider the paper of Chudnovsky et al. [38],

which gives a QPTAS for Independent Set on H-free graphs where H is a forest of

paths and subdivided claws. There are two important ideas to take away from this paper,

the first is another application of dominated balanced separators, in particular, they show

that any hereditary graph class with dominated balanced separators admits a QPTAS

for Independent Set. We now sketch a proof of this.

Theorem 1.2.6 ([38]). Let F be a hereditary graph class with dominated balanced sepa-

rators. Then there exists a QPTAS for Independent Set on F .

Proof: [sketch] For simplicity, we assume there is a constant c such that for all graphs

G ∈ F , G has a balanced separator dominated by c vertices. Now, let G ∈ F be an

n-vertex graph, ε the desired accuracy of the algorithm, I a maximum independent set

of G, and β = ε−1c log(n). We call a vertex v ∈ G I-heavy if N [v] contains at least β−1

fraction of the vertices of I. First, we show a small set X such that N [X] contains all

I-heavy vertices.

Let v be an I-heavy vertex and let w be a uniformly at random chosen vertex in I,

then there is at most a (1 − β−1) chance that v /∈ N [w]. It follows that if X ⊆ I is a

21

Introduction Chapter 1

set of size O(β log(n)) then there is less than 1/n chance that v /∈ N [X] and since there

are at most n I-heavy vertices, using the union bound there is a non-zero chance that

all I-heavy vertices are in N [X]. It follows there is some set X of size O(β log(n)) such

that N [X] contains all I-heavy vertices.

The algorithm works as follows. Investigate all nO(β log(n)) = nO(ε−1c log2(n)) subcases

corresponding to a possible choice for X ⊆ I of size O(β log(n)) determined from the

previous paragraph. Since X ⊆ I, we may remove N [X] from G, and now no I-heavy

vertices are left. We then take a set S of size at most c such that N [S] is a balanced

separator and remove N [S] from G. Since there are no I-heavy vertices, we lose at most

β−1c ⩽ ε/ log(n) of the weight of I in this step. As every component of G−N [S] has at

most n/2 vertices, the depth of this recursion is at most log(n). Hence, we lose at most

ε|I| fraction of the weight throughout this recursion. Additionally, it is straightforward

to check that this recursion tree has at most 2O(ε−1c log4(n)) nodes.

Extended Strip Decompositions The second important idea of this paper [38] is

more technical and makes use of a decomposition known as extended strip decomposi-

tions first introduced by Seymour and Chudnovsky to solve the Three-in-a-Tree problem

[39]. For a detailed definition of extended strip decompositions, see Chapter 4; for now,

we present an informal and simplified discussion of extended strip decompositions. An

extended strip decomposition can, in some sense, be viewed as a generalization of the

notion of line graphs (a line graph of a graph G is a new graph L(G) where the vertex

set of L(G) is the edge set of G and two vertices in L(G) are neighbors if and only if

there corresponding edges in G are adjacent). While not every graph G can be realized

as the line graph, L(H), of some graph H, it is true that every graph G has an extended

strip decomposition (H, η). Here, H is a graph, and η is a function that maps the ver-

tices, edges, and triangles of H (where triangles of H are vertices x, y, and z such that

22

Introduction Chapter 1

xy, xz, yx ∈ E(H)) onto vertex sets of G in such a way as to partition V (G). This map-

ping must satisfy specific properties which resemble those of a line graph. For instance,

let e and e′ be edges in some graph K. Then e and e′ are vertices in the line graph,

L(K), of K, and there is an edge between e and e′ if and only if e and e′ are adjacent

edges in H. Similarly, if x, y ∈ G and e, e′ are now edges of H such that x ∈ η(e) and

y ∈ η(e′) then if e and e′ are adjacent edges in H, there must be an edge between x and

y in G, and if e and e′ are not adjacent edges in H, then there can be no edge between

x and y in G.

One additional structure of extended strip decompositions that will be useful are

particles, which are more or less the image under η of small collections of vertices, edges,

and triangles that are adjacent to each other. Without losing too much, you may think

of a particle as the image of η with respect to some vertex, edge, or triangle of H. It is

worth noting here that if G is the line graph of a graph H, then G has an extended strip

decomposition (H, η) where η maps the vertex e in G to the corresponding edge e in H.

Thus, G has an extended strip decomposition where each particle is very small, in fact,

each particle is just a single vertex.

Recall the well-known fact that if H denotes a graph and L(H) denotes the line

graph of H, then Independent Set on L(H) can be solved by applying a Maximum

Matching algorithm to H, which can be done in polynomial time. Since there is

some connection between extended strip decompositions and line graphs, there is some

hope that these structures might help us solve Independent Set. Indeed, similar to

how Independent Set on L(H) can be solved by applying a Maximum Matching

algorithm on H, the authors show that if a maximum independent set of every particle

of (H, η) is known (or more precisely the graphs induced by each particle), then the

maximum independent set of G can be computed in polynomial time by applying a

Maximum Matching algorithm to a modified version of H. This implies that if there

23

Introduction Chapter 1

is a hereditary graph class F such that for every G ∈ F we can find an extended strip

decomposition (H, η) of G such that no particle of (H, η) contains over |G|/c vertices

for some fixed c > 1 (we will refer to such extended strip decompositions as good), then

we can solve Independent Set in quasi-polynomial time on F . This is done by first

computing said extended strip decomposition, then recursively solving Independent

Set on each particle (which now has at most |G|/c vertices) and then applying an

algorithm for Maximum Matching to find a maximum independent set of G. More

formally, the authors implicitly prove the following theorem.

Theorem 1.2.7 ([38]). Let c > 1 and F be a hereditary graph class such that for every

G ∈ F there is an extended strip decomposition (H, η) of G, computable in polynomial

time, such that no atom of (H, η) has over |G|/c vertices. Then F admits a quasi-

polynomial time algorithm for Independent Set.

Note that this theorem gives an exact algorithm, not an approximation, the reason

why the algorithm of [38] is a QTPAS and not a quasi-polynomial time algorithm is due

to a different step of their algorithm that is similar to Theorem 1.2.6.

Of course, not every hereditary graph class satisfies the premise of Theorem 1.2.7.

Recall, though, that line graphs always have an extended strip decomposition where each

atom is just a single vertex. Furthermore, it is well known that line graphs are claw-free.

Hence, claw-free graphs are a generalization of line graphs. Similarly, St,t,t-free graphs

(St,t,t denotes a claw where each edge has been subdivided t − 1 times, so each arm of

the claw has t vertices) contain the set of claw-free graphs. So, it is not too much of a

stretch to hope that St,t,t-free graphs might have good extended strip decompositions.

Unfortunately, this is false, but it is close to being true. In both [38] and [50], it is

shown that after removing a small collection of vertices, the resulting graph has a good

extended strip decomposition. In particular, in [50], the authors show the following

24

Introduction Chapter 1

structural theorem.

Theorem 1.2.8 ([50]). Let G be an St,t,t-free graph. Then there is a set X of size

O(log(n)) such that G−N [X] has a good extended strip decomposition.

This theorem tells us that while St,t,t-free graphs do not have dominated balanced

separators, they have something similar, which for Independent Set is just as good.

In particular, in [38, 50], the following theorem is implicitly proved.

Theorem 1.2.9 ([38, 50]). Let F be a graph class with a poly-log function f such that

for every G ∈ F , there is a set |X| ⩽ f(|G|) such that G − N [X] has a good extended

strip decomposition. Then F admits a QPTAS for Independent Set.

The proof of Theorem 1.2.9 essentially combines the proofs of Theorem 1.2.6 and

1.2.7.

Our path to giving a quasi-polynomial time algorithm for Independent Set on H-

free graphs where H is a forest of paths and subdivided claws (Theorem 1.2.3) begins with

our quasi-polynomial time algorithm for Independent Set on Pk-free graphs (Theorem

1.2.2). In particular, we will prove the following theorem.

This theorem will be presented in Chapter 3. The proof builds off the ideas from

[37] that we sketched earlier, in particular, it uses the concept of dominated balanced

separators to guide a branching process as was done in Theorem 1.2.5. But instead

of being concerned with just a single dominated balanced separator as in the proof of

Theorem 1.2.5, we must juggle around many dominated balanced separators at once and

be more careful of our choices of vertices to branch on. Additionally, unlike Theorem

1.2.5, which works on any hereditary graph class with dominated balanced separators, our

algorithm depends on the fact that the graph is Pk-free to run in quasi-polynomial time.

Additionally, in Chapter 3 we show that to prove Conjecture 1.2.1 (up to quasi-polynomial

25

Introduction Chapter 1

(a) (b)

Figure 1.2: (a) A wall graph. (b) The line graph of a wall graph.

time) it is sufficient to give a quasi-polynomial time algorithm for Independent Set

on St,t,t-free graphs, so for the rest of this section we will focus more on St,t,t-free graphs

and less on H-free graphs where H is a forest of paths and subdivided claws.

We face two roadblocks when trying to extend Theorem 1.2.2 to St,t,t-free graphs. The

first and less serious roadblock we face is that the branching algorithm guided by domi-

nated balanced separators for Pk-free graphs uses explicitly the fact that the graphs are

Pk-free and does not immediately generalize to other graph classes with dominated bal-

anced separators. However, with some new ideas, using dominated balanced separators

to guide a branching algorithm that runs in quasi-polynomial time on St,t,t-free graphs is

possible. A more significant roadblock, though, comes from the fact that St,t,t-free graphs

do not necessarily have dominated balanced separators. In particular, the line graph of a

wall (see Figure 1.2) is a claw-free graph (all line graphs are claw-free) and also does not

have any balanced separator dominated by few vertices. Hence, an efficient branching

algorithm guided by dominated balanced separators for St,t,t-free graphs seems useless

as we may be unable to find dominated balanced separators. The results we recently

discussed (in particular Theorem 1.2.7) along with the following theorem, which is more

formally stated and proved in Chapter 4 saves us from this issue.

Theorem 1.2.10 ([3]). For every fixed integer t, there exists an integer ct and a polynomial-

time algorithm that, given an n-vertex St,t,t-free graph G returns one of the following

26

Introduction Chapter 1

outcomes:

1. a subset X ⊆ V (G) of size at most ct ·log(n) such that every component of G−N [X]

has at most |G|/2 vertices;

2. an extended strip decomposition of G where no atom has over |G|/2 vertices.

Theorem 1.2.8 is a cornerstone in our proof of Theorem 1.2.10. At a very high level,

the idea behind the proof of Theorem 1.2.10 is that if we have an St,t,t-free graph G

with no dominated balanced separator then we apply Theorem 1.2.8 to get a set X of

small size and a good extended strip decomposition, (H, η) of G − N [X]. Then, we

incorporated the vertices of N [X] one at a time into the extended strip decomposition,

all while ensuring that it remains good.

Theorem 1.2.10 allows us to use the previously mentioned quasi-polynomial time

algorithm for Independent Set on St,t,t-free graphs that have dominated balanced

separators. The moment we come across an instance with a graph that does not have

a dominated balanced separator, we can apply 1.2.10 to get a good extended strip de-

composition, then use Theorem 1.2.7 to allow us to solve the problem on particles of

substantially smaller size recursively. Thus allowing us to prove the following Theorem.

Theorem 1.2.11 ([3]). St,t,t-free graphs admit a quasi-polynomial time algorithm for

Independent Set.

Our last result in the direction of solving Independent set on some hereditary

graph class will come in Chapter 5, this work was done in [2]. There, we will provide

an algorithm that extends Theorem 1.2.2 in two ways. First, it broadens the graph

class that it can run on from Pk-free graphs to C>k-free graphs (graphs with no in-

duced cycles of length k or more). Second, the algorithm can solve an extensive set of

problems, which includes Independent Set, but also many other interesting problems

27

Introduction Chapter 1

such as Feedback Vertex Set, Maximum Weight Induced Planar Subgraph,

Maximum Length Induced Path, and 3-Coloring. It was shown in [38] that C>k-

free graphs have dominated balanced separators, and our algorithm on C>k-free graphs

is still a branching-based algorithm that uses dominated balanced separators to guide

the branching process, as was done for our algorithm for Independent Set on Pk-free

graphs. Extending the branching algorithm for Pk-free graphs to work on C>k-free graphs

requires some new ideas, and getting the branching algorithm to also solve problems be-

yond just Independent Set requires substantially more work in the form of new ideas

as well as using tools that lie in the intersection of logic and graph theory. In particular,

we will prove the following Theorem.

Theorem 1.2.12 ([2]). Fix two integers t and k and CMSO2 sentence φ. Then there

exists an algorithm that, given an n-vertex C>t-free graph G, in quasi-polynomial time,

finds a set X ⊆ V (G) of maximum weight subject to the constraints that X has treewidth

at most t and X satisfies φ. Additionally, C>k-free graphs admit a quasi-polynomial time

algorithm for 3-Coloring.

Following the terminology of [51], in this Chapter, we will refer to the problem of

finding an induced subgraph of maximum weight that satisfies the CMSO2 statement, φ,

and has treewidth at most k as the (tw ⩽ k, φ)-MWIS problem (where MWIS stands for

maximum weight induced subgraph).

Treewidth and Monadic Second Order Logic The statement of Theorem 1.2.12

requires a few explanations, in particular, we need to define treewidth along with Monadic

Second Order Logic (MSO2) and is extension Counting Monadic Second Order Logic

(CMSO2). We begin with an informal discussion on treewidth.

Intuitively, the treewidth of a graph is a positive integer that measures how similar

the graph is to a tree. A graph has treewidth one if and only if it is a forest (with at

28

Introduction Chapter 1

least one edge). More formally a tree decomposition of a graph G is a pair (T, f) where

T is a tree and f is a a function from the vertices of T to vertex sets of G that satisfies

the following properties:

•
⋃
v∈T

f(v) = V (G). That is, the image of f is V (G).

• If v ∈ G and u,w ∈ T such that v ∈ f(u) and v ∈ f(w) then for any vertex z on

the (unique) u,w path in T it holds that v ∈ f(z).

• For every edge u, v of G, there is a vertex w ∈ T such that u, v ∈ f(w).

The treewidth of a tree decomposition (T, f) is defined to be maxv∈T (|f(v)| − 1).

The treewidth of a graph is the minimum treewidth taken over all tree decompositions

of the graph. The −1 term is to ensure that the treewidth of a tree is one. Graphs of

bounded treewidth have been extensively studied and are known to admit polynomial

time algorithms for most problems researchers care about.

Next, we define MSO2 and CMSO2. MSO2 and CMSO2 are very closely related

and only differ in a minor point in their definition, which will be pointed out at the

appropriate time. CMSO2 is a formal language for testing whether or not a graph (or a

given substructure of a graph) has some property expressed by a CMSO2 formula. Most

standard graph properties can be expressed in CMSO2 such as checking if a graph, G, is

k-colorable for some fixed k, Hamiltonian, a given subset S ⊆ V (G) is an independent

set, if a graph is even-hole free, or if it is planar. The following is a CMSO2 formula

for determining if a subset X ⊆ V (G) induces a connected subgraph. To verify the

correctness of the following formula, we need a folkloric lemma; a set X ⊆ V (G) induces

a connected subset if and only if for all sets Y ⊆ V (G) such that X ∩ Y ̸= and X ̸⊆ Y

then there are vertices x, y ∈ X such that y ∈ Y , x /∈ Y and xy ∈ E(G). In other words,

for every vertex set Y ⊆ V (G) that contains some but not all of X, an edge of X crosses

29

Introduction Chapter 1

the boundary of Y . Having to use roundabout definitions for standard graph properties

like this is common with CMSO2 formulas. We now present the CMSO2 formula.

conn(X) = ∀Y⊆V [(∃u∈Xu ∈ Y ∧ ∃v∈Xv /∈ Y) =⇒

(∃e∈E∃u∈X∃v∈Xinc(u, e) ∧ inc(v, e) ∧ u ∈ Y ∧ v /∈ Y) (1)

Let us unpack what is going on in this formula. Part of what makes up CMSO2

formulas are variables. There are four types of variables: single vertices (in (1) this

would be u and v), single edges (e), subsets of vertices (V , X, and Y), and subsets of

edges (E). The variables given as part of the input are called free variables (a graph

G = (V,E) is always given as one of the free variables. However, it is not usually

explicitly written as it is clear what G is from the context), in (1) X is a free variable.

Variables that are not free are determined by the free variables, for example, the vertex

set Y is determined by the vertex set of G.

CMSO2 formulas are constructed inductively from smaller subformulas. The smallest

building blocks are called atomic formulas, of which there are three. There is set mem-

bership checking, if u is a vertex (edge) variable and X is a vertex (edge) set variable,

then we can write formula u ∈ X which evaluates to true when u is an element of X.

There is incidence checking, if u is a vertex variable and e is an edge variable, then we

can write formula inc(u, e) which evaluates to true if the vertex u is incident to the edge

e. There is equality checking, for any two variables x, y of the same type, we can write

formula x = y which evaluates to true when x and y are the same object. No equality

checking occurs in the formula (1). Lastly, we can check if the size of a set is congruent

to 0 modulo some number p. If X is a set and p is some number, we can write |X| ≡ 0

(mod p), which evaluates to true when the size of X is congruent to 0 mod p. This last

30

Introduction Chapter 1

atomic formula differentiates CMSO2 from MSO2 (it is allowed in CMSO2 formulas, but

not in MSO2 formulas). No atomic formula of this type occurs in (1).

The four standard Boolean operators ¬, ∧, ∨, and =⇒ are used to assemble atomic

formulas to make complex statements. A ∧ B evaluates to true if and only if both A

and B are true, A ∨ B evaluates to true as long as at least one of A and B is true. ¬A

evaluates to true if A is false and false if A is true. v /∈ Y is short hand for ¬v ∈ Y .

A =⇒ B evaluates to false when A is true and B is false, else it is true.

Lastly, we have quantifiers. CMSO2 uses universal quantifiers (for all), ∀, and ex-

istential quantifiers (there exists), ∃. Supposed we have a formula ∀Y⊆V Ψ where Ψ is

some subformula (this is precisely what occurs in (1)). This will evaluate to true if for

all subsets Y ⊆ V , Ψ evaluates to true. Next, suppose we have ∃u∈XΦ. This evaluates

to true if there exists some u ∈ X such that Φ is true. For example, in (1), we have

∃u∈Xu ∈ Y , this evaluates to true when there exists u ∈ X such that u also belongs to

Y .

We can now fully understand what (1) is doing. Recall how we are determining if

X induces a connected set. X ⊆ V (G) induces a connected subset if and only if for all

sets Y ⊆ V (G) such that X ∩ Y ̸= and X ̸⊆ Y there are vertices x, y ∈ X such that

y ∈ Y , x /∈ Y and xy ∈ E(G). (1) begins by stating ∀Y⊆V Ψ, that is for all subsets Y of

V the remainder of the formula, Ψ, must hold for (1) to be true. This matches the first

part of our alternative definition for connectivity, where we state that for all Y ⊆ V (G)

“something” must hold. Next, we see an implication operator =⇒ . This means that

for (1) to be true, it must hold that whenever

(∃u∈Xu ∈ Y ∧ ∃v∈Xv /∈ Y) (2)

is true then

31

Introduction Chapter 1

(∃e∈E∃u∈X∃v∈Xinc(u, e) ∧ inc(v, e) ∧ u ∈ Y ∧ v /∈ Y) (3)

must be true.

Similarly, in our definition of connectivity, we require that if X ∩ Y ̸= and X ̸⊆ Y is

true, then there must be vertices x, y ∈ X such that y ∈ Y , x /∈ Y and xy ∈ E(G) (here

the terms “if” and “then there must be” plays the role of =⇒). Now, (2) is true when

there exists a u ∈ X such that u ∈ Y and a v ∈ X such that v /∈ Y . This is equivalent

to the second part of our definition of connectivity, that X ∩ Y ̸= ∅ and X ̸⊆ Y . Lastly

(3) is true when there is an edge e ∈ E such that u and v are the endpoints of e (this

is what ∃e∈E∃u∈X∃v∈Xinc(u, e) ∧ inc(v, e) checks) and one of those endpoints, u is in Y

and the other, v is not in Y (this is what u ∈ Y ∧ v /∈ Y checks). This is equivalent to

the last part of our definition of connectivity, wherein there are vertices x, y ∈ X such

that y ∈ Y , x /∈ Y and xy ∈ E(G).

We are now better positioned to understand the statement of Theorem 1.2.12. On

C>k-free graphs, we can solve the (tw ⩽ k, φ)-MWIS problem in quasi-polynomial time;

that is, we can solve any problem that is expressible in CMSO2 logic and has bounded

treewidth in quasi-polynomial time. For instance since there are CMSO2 formulas that

can check if subset X of vertices of a graph G is an independent set, a forest, a planar

graph, or an induced path and since independent sets have treewidth 0, forests have

treewidth 1, planar graphs that are also C>k-free have bounded treewidth, and induced

paths have treewidth 1, Independent Set, Feedback Vertex Set (since Maximum

Weight Forest is the compliment of Minimum Weight Feedback Vertex Set),

Maximum Weight Induced Planar Subgraph, and Maximum Length Induced

Path problems are all subcases of the (tw ⩽ k, φ)-MWIS problem.

We should note here that Theorem 1.2.9 can be extended to encompass not just

32

Introduction Chapter 1

Independent Set but the hereditary (tw ⩽ k, φ)-MWIS problem (the hereditary (tw ⩽

k, φ)-MWIS problem requires that if φ evaluates to true when the input is a vertex set

X, then φ also evaluates to true when the input is X ′ ⊆ X). This can be accomplished

using similar techniques that we use to prove Theorem 1.2.12.

1.3 Minimal Separators

In the last two chapters of this thesis, Chapters 6 and 7, we turn our attention to

minimal separators, these two chapters correspond to the papers [5] and [6]. Minimal

separators are objects that can also be used to solve the (tw ⩽ k, φ)-MWIS problem.

At first, it will seem like this is the only thing minimal separators have in common with

dominated balanced separators, but we will later uncover a deeper connection between

these two concepts.

Given a graph G and vertices u, v ∈ G, a set S ⊂ V (G) is said to be a u, v-separator if

u and v are in different components of G− S. S is a u, v-minimal separator if no proper

subset of S is a u, v-separator. S is called a minimal separator if it is a u, v-minimal

separator for some pair of vertices u, v ∈ G. We say that a graph class F is tame if there

exists a polynomial p such that for all G ∈ F , G has at most p(|G|) minimal separators,

quasi-tame if there exists a quasi-polynomial function p such that for all G ∈ F , G has at

most p(|G|) minimal separators, and feral if there is a c > 1 such that there are arbitrarily

large graphs G ∈ F such that G has at least c|G| minimal separators. A graph class is

feral when an exponential bound on the number of minimal separators is the best that

can be given. While many functions have growth rates between (quasi) polynomial and

exponential, we will soon see that most typical graph classes are either (quasi) tame or

feral.

A series of important results beginning with a paper from Bouchitte and Todinca [33]

33

Introduction Chapter 1

and culminating with a paper from Fomin et al. [7] showed that the (tw ⩽ k, φ)-MWIS

problem is solvable in time that is polynomial in the number of minimal separators of

the graph. This means that tame graph classes admit a polynomial time algorithm for

the (tw ⩽ k, φ)-MWIS problem, and quasi-tame graph classes admit a quasi-polynomial

time algorithm for the (tw ⩽ k, φ)-MWIS problem. Many well-studied graph classes are

tame, such as chordal graphs, permutation graphs, interval graphs, and P4-free graphs,

also known as cographs (we will soon sketch a proof that P4-free graphs are tame). The

results of Fomin et al. [7] on minimal separators provided a unifying theory as to why all

of these graph classes admit polynomial time algorithms for problems like Independent

Set, Feedback Vertex Set, and Maximum Length Induced Path.

Let us look at a quick proof that P4-free graphs tame, in particular, we show they

have O(n2) minimal separators, although a more careful proof can show they have O(n)

minimal separators. In this proof, we will use a folkloric lemma that a set S is a minimal

separator if and only if at least two distinct components of G − S dominate S (their

neighborhood contains S). These components are called S-full components.

Let G be a P4-free graph, and let S be any minimal separator of G. Let u be in one

S-full component, call it Cu, and let v in a different S-full component, Cv. We claim that

both u and v dominate S. Assume for a contradiction that u does not dominate S, let

z be a non-neighbor of u in S. So there is an induced path P with its endpoints being

u and z, all internal vertices are in Cu, and P contains at least three vertices. We can

extend the induced path P by one more vertex by adding any neighbor of z in Cv (which

must exist since Cv is S-full), this gives us a P4, contrary to the assumption G is P4-free.

It follows that S is a subset of N(u)∩N(v), but if any vertex of N(u)∩N(v) is not in S,

then Cu and Cv would not be two different components of G−S, hence S = N(u)∩N(v).

So, every minimal separator of G is exactly the intersection of the neighborhood of some

pair of vertices in G. Since there are O(n2) pairs of vertices in G, G has O(n2) minimal

34

Introduction Chapter 1

Figure 1.3: A k-creature. The blue edges indicate that xi (yi) may or may not be a
neighbor of xj (yj)

separators.

More recently, researchers have become interested in gaining a more general under-

standing of what causes graph classes to be tame or feral. The first work to systemically

study tame vs feral graph classes was by Milanic and Pivac [42], where they classified all

graph classes that are defined by forbidden induced subgraphs of size four or less into

tame vs feral. Another effort in this direction came from Abrishami et al. [43], where

they proved that {theta, prism, pyramid, turtle}-free graphs are tame. In their paper,

Abrishami et al. identified the presence/absence of a structure they called k-creatures

as important in determining whether or not a graph class is tame or feral. Due to the

importance of k-creatures in describing our results on this problem, we give the definition

here.

Definition 1.3.1 (k-creatures (See Figure 1.3)). A graph G is said to be a k-creature

if its vertices can be partitioned into sets A, X = {x1, x2, . . . , xk}, Y = {y1, y2, . . . , yk},

and B satisfying the following conditions:

1. G[A] and G[B] are connected.

2. A and Y ∪ B are anti-complete (i.e. N [A] ∩ (Y ∪ B) = ∅) and B and A ∪ X are

anti-complete.

35

Introduction Chapter 1

3. A dominates X (every vertex in X has a neighbor in A) and B dominates Y .

4. xiyj is an edge if and only if i = j.

If a graph G does not contain an induced subgraph that is a k-creature, then we say

that G is k-creature-free.

In a k-creature, it is easy to see that for a vertex a ∈ A and b ∈ B, there are precisely

2k minimal separators S which are disjoint from A and B. Such a separator S must

pick exactly one vertex from each of {xi, yi}, and it can make each one of these k choices

independently.

The aforementioned previous works essentially give different sufficient conditions for

a graph to only have polynomially many separators. This naturally leads to the question

is there a “right” sufficient condition for tameness? That is - a condition that, on one

hand, is easy to state and verify, while on the other hand, captures all interesting tame

graph classes. Abrishami et al. [43] conjectured that for every integer k, there exists

a k′ such that if an n-vertex graph G does not contain any k-creature as an induced

subgraph, then G has at most nk
′

minimal separators. It turns out, we will show in

Chapter 6 that this conjecture is false: for arbitrarily large n there exist n-vertex graphs

that exclude 100-creatures and yet have 2Ω(n) minimal separators. Let us discuss, though,

for a moment, why it would have been the “right” sufficient condition for polynomially

many minimal separators if it had been true.

Towards this, we need to ask, which graph families F would have been tame, but

whose tameness would not be captured by the conjecture of Abrishami et al. [43]? In

simplest terms, it would be families F that are tame but that contain for every k an

n-vertex graph G that contains a k-creature as an induced subgraph. Since k-creatures

have at least 2k minimal separators, and F is tame it must hold that 2k ⩽ nO(1), meaning

that k = O(log n). In other words, the conjecture fails to capture tame graph classes

36

Introduction Chapter 1

that contain k-creatures in graphs whose number of vertices is at least exponential in k.

This could happen for a few different reasons. One option, that we call Type 1, is

that whenever a graph G ∈ F contains a k-creature then, G also contains some different

piece of size exponential in k which is completely unrelated to the k-creature. The other

option, which we call Type 2, is that whenever a graph G ∈ F contains a k-creature,

then this k-creature itself has size exponential in k (meaning the sets A and B together

have exponentially many vertices in k). Families of either one of these two types would

have to be rather strange, although it is perfectly possible to construct artificial graph

families of either type. For example, most interesting graph families are hereditary, that

is, closed under vertex deletion. A hereditary family F cannot be Type 1 since whenever

F contains a graph G that contains a k-creature, we can simply delete all the vertices

not in the k-creature to obtain a k-creature which is in the family. Thus, if true, the

conjecture of Abrishami et al. [43] would only fail to capture the tameness of hereditary

classes of graphs whose every k-creature has size exponential in k.

As previously mentioned, we show in Chapter 6 that the conjecture of Abrishami et

al. [43] is false. We will give a counterexample and show that a weaker version of the

conjecture of Abrishami et al. is true. To state this result, we need a couple of definitions.

First, a k-skinny ladder is a graph G consisting of two anti-complete paths Pl = ℓ1ℓ2 . . . ℓk

and Pr = r1r2 . . . rk (subgraphs A and B are anti-complete if V (A)∩V (B) = ∅ and there

is no edge between A and B) and a set {s1, s2, . . . , sk} of vertices such that for every i,

si is adjacent to ℓi and ri and to no other vertices. Second, an induced minor of a graph

G is a graph that can be obtained from G by deleting vertices and contracting edges

(contracting an edge uv of a graph G results in a new graph G′ where the vertices u

and v has been removed and a new vertex w is added where w is made a neighbor of all

vertices that was a neighbor of either u, v, or both u and v). The main result of Chapter

6 is the following weakening of the conjecture of Abrishami et al.

37

Introduction Chapter 1

Theorem 1.3.2 ([5]). For every integer k, the family of graphs that are k-creature free

and exclude the k-skinny ladder as an induced minor is quasi-tame.

Theorem 1.3.2 is strong enough to allow us to classify graph classes defined by a finite

number of forbidden induced subgraphs. In particular, in Chapter 6, we will prove, using

Theorem 1.3.2, the following theorem.

Theorem 1.3.3 ([5]). Let F be a graph family defined by a finite number of forbidden

induced subgraphs. If there exists a natural number k such that F forbids all k-theta,

k-prism, k-pyramid, k-ladder-theta, k-ladder-prism, k-claw, and k-paw graphs, then F is

quasi-tame. Otherwise, F is feral.

While Theorem 1.3.2 is strong enough to give a complete dichotomy for graph classes

defined by a finite number of forbidden induced subgraphs, it fails to be the “right” the-

orem we seek for two reasons. The first problem is that the bounds are quasi-polynomial

as opposed to polynomial. The second is that there are still very reasonable tame graph

classes not captured by this theorem, such as the graph class made up of k-skinny-ladders

for all natural numbers k.

The first issue was recently dealt with by Gajarsky et al. [44] who, building heavily

upon the work that will be presented in Chapter 6, the second issue is dealt with in

Chapter 7. To properly state our main result of Chapter 7, we must introduce another

graph called t-critters. First, we need a small generalization of minimal separators that

applies to vertex sets instead of just vertices. Given A,B ⊂ V (G), we define S to be an

A, B-separator if A∩S = B ∩S = ∅ and no component of G−S contains a vertex from

both A and B. An A,B-minimal separator is an A, B-separator such that no proper

subset of S is an A, B-separator.

Definition 1.3.4 (t-critter partition, t-critter). A t-critter partition of a graph G is a

38

Introduction Chapter 1

partition of the vertex set of G into sets A1, A2, . . . At+1, B1, B2, . . . , Bt+1, X1, X2, . . . , Xt,

such that the following conditions are satisfied.

1. For all 1 ⩽ i, j ⩽ t+ 1 with i ̸= j, Ai is anti-complete with Aj, Bi is anti-complete

with Bj, and Ai is anti-complete with Bj.

2. For all 1 ⩽ i ⩽ t+ 1 Ai and Bi is connected.

3. The vertices of Ai, Ai+1, Bi, and Bi+1 are the only vertices outside of Xi that have

a neighbor in Xi.

4. There are (at least) two distinct (Ai ∪ Ai+1), (Bi ∪ Bi+1)-minimal separators in

G[Ai ∪Ai+1 ∪Bi ∪Bi+1 ∪Xi], S
i
1 and Si2, such that there is a path from Ai to Ai+1

through both Xi − Si1 and Xi − Si2 and there is a path from Bi to Bi+1 through

both Xi − Si1 and Xi − Si2.

A graph G is a t-critter if G has a t-critter partition. A graph G is t-critter free if G does

not contain a t-critter as an induced subgraph.

The definition of t-critters is arguably technical and unappealing. A reader who is

familiar with minimal separators should, after staring at the definition for a bit, be able

to convince themselves that just as for k-creatures, for every vertex a ∈ A =
⋃
iAi and

vertex b ∈ B =
⋃
iBi there are at least 2t minimal a,b-separators in G disjoint from

A ∪ B. In particular, to separate a from b, we may, for every i ⩽ t, choose to delete

either Si1 or Si2, and for every i the choice between Si1 or Si2 can be made independently

of the other choices (see Lemma 7.6.13). We are now ready to state the main theorem

of Chapter 7.

Theorem 1.3.5 ([6]). For every pair of integers t, k the family of k-creature free and

t-critter free graphs is quasi-tame.

39

Introduction Chapter 1

The upper bound in Theorem 1.3.5 on the number of minimal separators is nk
′ log17(n)

where k′ is a constant that depends only on k and t. The proof of Theorem 1.3.5

contains some interesting ingredients, from a VC-dimension-based lemma from Chapter

6, to a “greedy branching” procedure inspired by our quasi-polynomial time algorithm

for Independent Set on Pk-free graphs of Chapter 3, to covering-packing dualities [52]

and Ramsey- and Erdös-Szekers [53] type arguments.

Theorem 1.3.5 is yet another sufficient condition for a graph to have few minimal

separators. To boot, the condition is very technical, and the upper bound in the number

of minimal separators is an ugly quasi-polynomial function. What makes this sufficient

condition for an upper bound for the number of minimal separators special? What

makes it special is that it is the right sufficient condition, in the way that the conjecture

of Abrishami et al. [43] would have been right if only it had been correct. But don’t take

our word for it - we prove this in a precise and technical sense in Chapter 7.

Let us apply the same litmus test for Theorem 1.3.5 as we did for the conjecture

of Abrishami et al. [43], and ask for which tame graph families F are not captured

by Theorem 1.3.5? Again, there could be families of Type 1, namely families that do

contain graphs G that contain k-critters or k-creatures for every k, but such graphs G

always also have at least 2Ω(k) additional unrelated vertices. Such families cannot be

hereditary, and so, if we restrict attention to hereditary families, the only tame families

that Theorem 1.3.5 does not capture are Type 2 families that do contain k-critters or

k-creatures for every k, but these k-critters or k-creatures have at least 2Ω(k) vertices.

It is, in fact, possible to construct such hereditary families. It is even possible to

construct tame families that contain k-critters for every k, and yet are closed under

induced minors, disproving a prior conjecture of ours. However, all such families are

pretty artificial. The next theorem shows that they have to be artificial.

We previously discussed Monadic Second Order Logic (MSO) and its extension,

40

Introduction Chapter 1

Counting Monadic Second Order Logic (CMSO). Their main claim to fame in graph algo-

rithms is probably from Courcelle’s Theorem [54], which states that every MSO-definable

family of graphs can be recognized in linear time on graphs of bounded treewidth.

The overwhelming majority of interesting graph families can be expressed in Counting

Monadic Second Order Logic, this includes all graph classes with a finite number of for-

bidden minors, induced minors, topological minors, induced subgraphs or subgraphs, and

several other classes such as bipartite, or perfect. We show that if we restrict attention

to CMSO-definable hereditary properties, then the sufficient condition of Theorem 1.3.5

is also necessary.

Theorem 1.3.6 ([6]). Let F be a CMSO-definable hereditary graph family. If there exists

an integer k such that no graph in F contains a k-creature nor a k-critter, then F is

quasi-tame. Otherwise, F is feral.

The proof of Courcelle’s theorem [54] establishes that CMSO-definable graph classes

have many properties in common with regular languages. This has been exploited with

great success in graph algorithms [45, 55], however, to the best of our knowledge, it has

never been used to prove a purely structural result such as Theorem 1.3.6

The proof of Theorem 1.3.6 is based on a “pumping lemma” style argument that

shows that a k-creature or k-critter on n vertices can be “pumped” to a k · x-critter on

n · x vertices, thereby demonstrating that in every CMSO-definable hereditary family

that contains k-creatures or k-critters for arbitrarily large k, there exist k-creatures or

k-critters in the family with only O(k) vertices.

As we recently mentioned, part of the proof of Theorem 1.3.5 takes inspiration from

our branching algorithm for Independent Set on Pk-free graphs. In the next section,

we will see a bit more about why this works, and we will propose a conjecture that

explains how dominated balanced separators generalize and extend minimal separators.

41

Introduction Chapter 1

1.4 Induced Grid Minor Conjecture

Recall our definition of a balanced separator, it is a vertex set S of a graph G such

that no component of G − S contains over half of G’s vertices, and S is a dominated

balanced separator if it can be dominated by few vertices (poly-log in the size of G). We

saw in Theorem 1.2.6 that hereditary graph classes with dominated balanced separators

admit a QPTAS for Independent Set and more generally (as we noted at the end of

the paragraph on CMSO2), the hereditary (tw ⩽ k, φ)-MWIS problem. Additionally, we

have mentioned that dominated balanced separators are a valuable tool for developing

exact quasi-polynomial time algorithms for Independent Set and, more generally, the

(tw ⩽ k, φ)-MWIS problem. This naturally leads to the question, which graph classes

have dominated balanced separators? As well as the closely related question, which graph

classes admit an efficient algorithm for Independent Set and the (tw ⩽ k, φ)-MWIS

problem?

We formally define the k × k grid as the graph with vertex set {v(i, j) : 1 ⩽ i, j ⩽

k for i, j ∈ N} and edge set {v(i, j)v(i′, j′) : |i − i′| + |j − j′| ⩽ 1}. Note that a k × k

grid does not have balanced separators that are dominated by fewer than k/3 vertices,

so hereditary graph classes that contain all k × k grids and an induced minor do not

have dominated balanced separators. We believe that grids are the only induced minor

obstruction to having dominated balanced separators. More specifically, we make the

following conjecture.

Conjecture 1.4.1 ((Structural) Induced Grid Minor Conjecture). There exists a func-

tion f such that for all graphs G and integers k, if G does not contain a k × k grid as

an induced minor then G has a balanced separator dominated by f(k) vertices.

Additionally, it can be shown that Independent Set is NP-Hard on the graph class

that contains for all integers k, all subdivisions of the k×k grid. We believe that grids are

42

Introduction Chapter 1

the only induced minor obstruction to efficient algorithms for not just Independent Set

but for the (tw ⩽ k, φ)-MWIS problem, which includes Independent Set along with

many other interesting problems like Feedback Vertex Set and Maximum Length

Induced Path. This leads us to our second conjecture.

Conjecture 1.4.2 ((Algorithmic) Induced Grid Minor Conjecture). Let k be an integer

and F a hereditary graph class such that no graph in F contains a k × k grid as an

induced minor. Then F admits a polynomial time algorithm for 3-Coloring and the

(tw ⩽ k, φ)-MWIS problem.

It is interesting to note that whenever we have a k × k grid as an induced minor in

a graph, we also have either a subdivision of a Ω(k) × Ω(k) wall or the line graph of

subdivision of a Ω(k) × Ω(k) wall as an induced subgraph (See Figure 1.2). We could

have even reworded these conjectures in terms of induced wall minors. Still, we chose to

use induced grid minors because of these conjectures’ natural connection with the classic

Grid Minor Theorem.

We mentioned previously that as long as the balanced separators are dominated by

some poly-log function of vertices that is usually enough to still give quasi-polynomial

time results that we desire such as in Theorem 1.2.6 (and there will be a few places in this

thesis where we are only able to prove poly-log bounds and not constant bounds), so a

weakened but still interesting variation of Conjecture 1.4.1 would replace “has balanced

separators dominated by f(k) vertices” with “has balanced separators dominated by

f(k)·poly-log(n) vertices”.

This is not the first time that it has been asked if Independent Set has an efficient

algorithm on graphs that do not have some fixed grid as an induced minor, it appears

to have been first asked by Dallard et al. [56]. But Conjecture 1.4.1 has, to the best of

our knowledge, not been made by other researchers and is the first conjecture that tells

43

Introduction Chapter 1

us why Independent Set should have an efficient algorithm on these graphs (because

we believe they have dominated balanced separators). Additionally, it is, to the best of

our knowledge, the first time that it has been conjectured that the (tw ⩽ k, φ)-MWIS

problem has an efficient algorithm on graphs that do not have some fixed grid as an

induced minor.

For multiple decades now, researchers have been studying problems like Indepen-

dent Set, Feedback Vertex Set, and 3-Coloring on graph classes such as Pk-free

graphs, C>k-free graphs, graph with no induced cycles of even length, better known as

even-hole-free graphs (and more general graph classes such as {theta, prism}-free graphs

and graphs that forbid induced cycles of length 0 mod x where x is any positive integer)

and tame graph classes. Except for tame graph classes, little progress had been made.

Indeed, before this thesis, whether or not Independent Set on P7-free graph was NP-

Hard was still open. Conjectures 1.4.1 and 1.4.2 tie together these different areas of

research as subproblems of the same overarching question as well as giving a promising

line of attack for solving these problems (it might not be clear yet how tame graph classes

are a subproblem of these conjectures, we will discuss this soon).

What evidence do we have of Conjectures 1.4.1 and 1.4.2? We have already seen

a proof of Conjecture 1.4.1 when restricted to Pk-free graphs in this introduction. In

Chapter 7, we will also see a proof of this conjecture for k-creature-free graphs. Addi-

tionally, it is known that this conjecture is true when restricted to C>k-free graphs [38],

graphs that are St,t,t-free and do not contain the line graph of any subdivision of the

t × t wall for some fixed positive integer t as an induced subgraph [50], and there are

two manuscripts in preparation which show that this conjecture holds for even-hole-free

graphs as well as graphs that are {theta, pyramid}-free and do not contain the line graph

of any subdivision of the t× t wall as an induced subgraph for some fixed positive integer

t . For some of these results, Conjecture 1.4.1 is only known to hold with poly-log bounds

44

Introduction Chapter 1

and not constant bounds as in the formal statement of the conjecture. For all of these

cases where there are poofs of Conjecture 1.4.1, we have been able to use the existence

of dominated balanced separators to prove Conjecture 1.4.2 for these graph classes (at

least up to quasi-polynomial runtime). In this thesis, we will see algorithms solving the

(tw ⩽ k, φ)-MWIS problem for Pk, C>k, and k-creature free graph classes.

Let us now briefly discuss potential applications of Conjecture 1.4.1. In addition to

giving a QPTAS for Independent Set on induced grid minor free graphs and being

an essential ingredient to resolving 1.4.2, a positive resolution of Conjecture 1.4.1 may

lead to other consequences as well. The well-known Grid Minor Theorem of Robertson

and Seymour has played a central role in many interesting theorems about minor-closed

graph classes, and we now have a very deep understanding of minor-closed graph classes,

much of this do in some way or another to the Grid Minor Theorem. On the other hand,

our knowledge of hereditary and induced minor-closed graph classes is much weaker.

Readers familiar with the Grid Minor Theorem and treewidth should notice a very strong

connection between the Grid Minor Theorem and our Induced Grid Minor Conjecture,

so it isn’t unreasonable to think that a positive resolution to Conjecture 1.4.1 could lead

us to a better understanding of hereditary and induced minor-closed graph classes, as

the Grid Minor Theorem did for minor-closed graph classes.

Let us give a few concrete examples of how a positive resolution of Conjecture 1.4.1

could help us gain a deeper understanding of hereditary and induced minor-closed graph

classes.

The first is a sort of “induced” variation of Menger’s Theorem, which has captured

the interest of researchers recently [57, 16, 58]. There are many different variations that

this can come in, the one we will concern ourselves with is the following. Given a graph

class F , we wish to prove there exists a function f such that for any graph G ∈ F and

vertex sets A,B ⊆ V (G) such that there are at most k pairwise anti-complete paths

45

Introduction Chapter 1

from A and B (the paths are vertex disjoint and there is no edge between any two of

the paths) there is a set X such that |X| ⩽ f(k) and no component of G − N [X] has

vertices from both A and B. For graph classes with dominated balanced separators, we

sketch a proof of a slight weakening of this “induced” Menger’s Theorem. Note that in

the following theorem, we require that we have dominated balanced separators for vertex

sets in a graph, that is, for every graph G and every vertex set C ⊆ V (G), we can find

a set, X of small size (at most poly-log) such that no component of G−N [X] has over

|C|/2 vertices of C. We call X a dominated balanced separator for C in G. For every

graph class we know of that has dominated balanced separators, weighted versions of

dominated balanced separators like this have always come with only minor modifications

to the proofs. Alternatively, we could add many leaves to the vertices of C to simulate

giving the vertices of C “all of the weight” in the graph, assuming the graph class is closed

under this leaf adding operation, then a dominated balanced separator for G would need

to be a dominated balanced separator for C in G.

Theorem 1.4.3. Let F be a hereditary graph class and f a function such that for all

G ∈ F , and all subsets X ⊆ V (G), G has a balanced separator for X dominated by f(|G|)

vertices. Let A,B ⊆ V (G) with at most k anti-complete paths from A to B. Then there

is a vertex set Y ⊆ V (G) of size at most O(f(|G|) · k · log(|G|)) such that no component

of G−N [Y] has vertices from both A and B.

Proof: [sketch] We prove by induction on |A ∪ B| that there is an A-B separator

dominated by at most O(f(|G|) · k · log(|A ∪ B|)) vertices. Take a balanced separator

S for A ∪ B dominated by f(|G|) vertices. Let C1, . . . , Ct be the connected components

of G − S and let yi be the maximum number of anti-complete A-B paths in Ci. Then

the sum of yi’s can be at most k. In each component of G − S, A ∪ B is smaller

by a factor of at least two. So, by induction on each component Ci we find an A-B

46

Introduction Chapter 1

separator dominated by O(f(|G|) · yi · log(|A ∪ B|/2)) vertices. In total this is at most

O(f(|G|) ·k · log(|A∪B|)−f(|G|) ·k) vertices, so if we add in S (which was dominated by

f(|G|) vertices) then we found an A-B separator dominated by O(f(|G|) ·k · log(|A∪B|))

vertices as desired.

Another application of Conjecture 1.4.1 is as follows. Recently, there has been much

work by several graph theorists in trying to understand what induced subgraphs must

be forbidden to force graphs to have bounded treewidth [59, 60, 61, 62, 63, 64, 65, 66,

67, 68, 69]. In the bounded degree case, which has also generated interest recently, bal-

anced separators dominated by a constant number of vertices are equivalent to balanced

separators of constant size. Since having bounded treewidth is equivalent to having bal-

anced separators of constant size (for any weighting of the vertices), a weighted variant

of Conjecture 1.4.1 (which we also believe to be true) then predicts that in the bounded

degree case, forbidding a k × k grid as an induced minor for some fixed value of k (or

equivalently, forbidding all subdivisions of the k × k wall and the line graphs of all sub-

divisions of the k × k wall as an induced subgraph for some fixed k) forces the graph to

have bounded treewidth. This was proven to be true by Korhonen [69].

Readers familiar with treewidth would notice immediately that to guarantee bounded

treewidth, cliques and complete bipartite graphs must be forbidden (Kn and Kn,n), as

well as all subdivisions of k × k walls and the line graphs of all subdivisions of k × k

walls. It is reasonable to ask if forbidding these graphs as induced subgraphs would

be sufficient to force graphs to have bounded treewidth, but several counterexamples

to such a question have been found [68]. We have already seen that Conjecture 1.4.1

implies (if true) that forbidding all subdivision of k × k walls and the line graphs of all

subdivisions of k×k walls as induced subgraphs for some fixed integer k implies the graph

class has dominated balanced separators. So, if Conjecture 1.4.1 is proven to be true,

the goal of understanding what induced subgraphs must be forbidden to force graphs to

47

Introduction Chapter 1

have bounded treewidth can be reduced to understanding what graphs that forbid all

subdivision of k×k walls and the line graphs of all subdivisions of k×k walls as induced

subgraphs for some value of k (and therefore have dominated balanced separators) but

also have high treewidth look like. This approach is similar to the one we took in Chapter

7 to characterize quasi-tame and feral graph classes. We proved that all k-creature free

graph classes have dominated balanced separators (a structure that we know forces a

graph to have exponentially minimal separators), then we asked, “what do k-creature

free graphs (which have dominated balanced separators) with many minimal separators

look like”? From there, we could show that such graph classes must contain k-critters

for arbitrarily large values of k. This ends our discussion of potential applications of the

Induced Grid Minor Conjecture.

We now look at how dominated balanced separators can be viewed as a generalization

of minimal separators and that the key properties of minimal separators are captured

in Conjectures 1.4.1 and 1.4.2. In particular, these two conjectures tell us that all tame

graph classes have dominated balanced separators and efficient algorithms for the (tw ⩽

k, φ)-MWIS problem.

Recall that any graph that contains a k-creature as an induced subgraph has at least

2k minimal separators. It follows that for every tame graph class F (or even quasi-tame

graph class), there must be some quasi-polynomial function h such that no graph G ∈ F

has an h(|G|)-creature. It is straightforward to verify that a k × k grid is a k-creature,

and furthermore, any graph that contains a k × k grid as an induced minor contains a

k-creature as an induced subgraph. Hence, no graph G ∈ F has a h(|G|) × h(|G|) grid

as an induced minor. As long as the function f from Conjecture 1.4.1 is a polynomial

(which would be consistent with our knowledge), then this conjecture would imply that

(quasi) tame graph classes have dominated balanced separators. We do, in fact, show in

Chapter 7 that every k-creature free graph contains a balanced separator dominated by

48

Introduction Chapter 1

at most 2k vertices, so (quasi) tame graph classes have dominated balanced separators.

Identically, since for a (quasi) tame graph class F , there must be some quasi-polynomial

function h such that no graph G ∈ F has an h(|G|) × h(|G|) grid as an induced minor,

Conjecture 1.4.2 tells us that we should be able to solve the (tw ⩽ k, φ)-MWIS problem in

quasi-polynomial time. Admittedly, our current form of Conjecture 1.4.2 does not quite

say this, but only a small modification would be needed, in particular only forbidding

h(|G|)×h(|G|) grids as an induced minor as apposed to k× k grids for some fixed k and

allowing the runtime to be quasi-polynomial now to compensate for the larger grid sizes

permitted. In Chapter 7, we do use the presence of dominated balanced separators in

h(|G|)-creature-free graphs to devise a branching algorithm that solves the (tw ⩽ k, φ)-

MWIS problem in quasi-polynomial time for h(|G|)-creature-free graphs and hence for

(quasi) tame graph classes.

Next, we turn our attention to two more related conjectures that apply to an even

more general class of graphs. Recall one of the main results of this thesis is a quasi-

polynomial time algorithm for Independent Set on H-free graphs where H is a forest

of paths and subdivided claws. When we were discussing this result we noted that such

graph classes do not have dominated balanced separators, our example was that these

graph classes always contain the line graph of arbitrarily large walls (which have a large

grid as an induced minor). It follows that this graph class does not satisfy the premise of

Conjectures 1.4.1 and 1.4.2. This leads us to look for a natural extension of Conjectures

1.4.1 and 1.4.2 that can include graph classes like St,t,t-free graphs. Unfortunately, most

problems, like Feedback Vertex Set, included in the (tw ⩽ k, φ)-MWIS problem are

known to be NP-Hard even on claw-free graphs. So any extension of Conjecture 1.4.2

that includes claw-free graphs should only deal with the Independent Set problem,

and not the more general (tw ⩽ k, φ)-MWIS problem.

Theorem 1.2.8 tells us that St,t,t-free graphs have a property that is not too far away

49

Introduction Chapter 1

from having dominated balanced separators, in particular, it tells us that there exists

a poly-log function f such that for every St,t,t-free graph G, there is a set X ⊆ V (G)

with |X| ⩽ f(|G|) such that G − N [X] has a good extended strip decomposition. As

Theorem 1.2.9 states, this property is enough to get a QPTAS for Independent Set.

It is simple to show that if S is a balanced separator, then G − S has a good extended

strip decomposition. Hence, graph classes with dominated balanced separators also have

small sets X such that G−N [X] has a good extended strip decomposition.

So, we search for reasonable conjectures that extend the graph classes Conjectures

1.4.1 and 1.4.2 to also include H-free graphs where H is a forest of paths and subdi-

vided claws. From what we just discussed in the previous paragraph, it is intuitive that

these conjectures would utilize extended strip decompositions somehow. According to

Conjecture 1.4.1 (and the discussion immediately after the conjecture), if we forbid all

subdivisions of a k×k wall and all the line graphs of all subdivisions of a k×k wall as in-

duced subgraphs, the graphs should have dominated balanced separators. Furthermore,

we already saw that line graphs always have good extended strip decompositions (recall

an extended strip decomposition is good if each particle has at most say n/2 vertices),

and more generally extended strip decompositions handle line graphs well. So, the pres-

ence of the line graph of a subdivision of some large wall should not pose an obstacle to

finding a good extended strip decomposition. Hence, as long as we forbid all subdivisions

of a k× k wall as an induced subgraph, it seems reasonable to expect that we can find a

set X of small size such that G−N [X] has a good extended strip decomposition. More

precisely, we make the following two conjectures.

Conjecture 1.4.4. There exists a function f such that given any integer k, if G does

not contain a subdivision of a k × k wall as an induced subgraph, then there is a set

X ⊆ V (G) such that |X| ⩽ f(k) and G − N [X] has an extended strip decomposition

50

Introduction Chapter 1

where each particle has at most |G|/2 vertices and can be found in polynomial time.

Conjecture 1.4.5. Let k be an integer and F be a hereditary graph class such that no

graph in F contains a subdivision of a k×k wall as an induced subgraph. Then F admits

a polynomial time algorithm for Independent Set.

These two conjectures now include all of the graph classes that Conjectures 1.4.1 and

1.4.2 included along with H-free graphs where H is a forest of paths and subdivided

claws, as well as other interesting graph classes such as theta-free graphs. We mentioned

in the statement of Theorem 1.2.9 that as long as the set X from 1.4.4 is at most some

poly-log function of the number of vertices of G, then that is enough to get a QPTAS for

Independent Set, and there are in fact some cases like for St,t,t-free graphs where that

bound is as good as we currently know how to do. So, a weakened but still useful variation

on Conjecture 1.4.4 would replace “|X| ⩽ f(k)” with “|X| ⩽ f(k)· poly-log(n)”.

What evidence do we have of Conjectures 1.4.4 and 1.4.5? Admittedly, it appears that

we are further away from solving these conjectures than we are from solving Conjectures

1.4.1 and 1.4.2 (in fact, it can be shown without much trouble that a positive resolution of

Conjecture 1.4.4 implies a positive resolution of Conjecture 1.2.1). We saw that Theorem

1.2.8 proved Conjecture 1.4.4 when restricted to St,t,t-free graphs, and it is easy to extend

this result to prove this conjecture when limited to H-free graphs, where H is a forest

of paths and subdivided claws (with quasi-polynomial bounds). This conjecture is also

known to be true when restricted to {theta, pyramid}-free graphs (along with all graph

classes Conjecture 1.4.1 is known to hold). In these graph classes Conjecture 1.4.2 also

holds as well (with quasi-polynomial run time), with one of the most important results

of this thesis being a proof of Conjecture 1.4.2 (with quasi-polynomial run time) when

restricted to H-free graphs where H is a forest of paths and subdivided claws.

51

Introduction Chapter 1

1.5 Organization of Chapters

Each chapter in this thesis will have a local preliminaries section. Additionally, there is

a Preliminaries chapter (Chapter 2.4). Notation and definitions that are used in multiple

chapters will be given in the Chapter 2.4, notations and definitions that are unique to a

given chapter will go into the preliminaries section of that chapter.

In Chapter 3, we will give a quasi-polynomial time algorithm for Independent set

on Pk-free graphs. Building off this work in Chapter 4, we give a quasi-polynomial time

algorithm for Independent Set on H-free graphs, where H is a forest of paths and

subdivided claws. In Chapter 5, we again build off the work of Chapter 3 to give a

quasi-polynomial time algorithm for the (tw ⩽ k, φ)-MWIS problem on C>k-free graphs.

In Chapters 6 and 7, we turn our attention to minimal separators. The main result of

Chapter 6 is a characterization of quasi-tame and feral graph classed defined by a finite

number of forbidden induced subgraphs. The main result of Chapter 7 is a characteri-

zation of all quasi-tame graph classes that meet some weak conditions. Specifically, we

show that every graph which excludes certain graphs called k-creatures and k-critters as

induced subgraphs has at most quasi-polynomially many minimal separators. We then

demonstrate that this sufficient condition for having few minimal separators is the “right”

one. In particular, we show that every hereditary graph class F definable in CMSO2 logic

that contains k-creatures or k-critters for every k is feral.

52

Chapter 2

Preliminaries

All graphs in this thesis are assumed to be simple, undirected graphs unless otherwise

stated. We denote the edge set of a graph G by E(G) and the vertex set of a graph by

V (G). For a vertex v, by NG(v) we denote the set of neighbors of v, and by NG[v] we

denote the set NG(v)∪{v}. For a set X ⊆ V (G), we also define NG(X) :=
⋃
v∈X NG(v)−

X, and NG[X] = NG(X) ∪ X. If it does not lead to confusion, we omit the subscript

and write simply N(·) and N [·]. Additionally, if G′ is an induced subgraph of G, we use

NG′
G (X) and NG′

G [X] to mean NG(X) ∩ V (G′) and NG[X] ∩ V (G′) respectively. We use

CC(G) to denote the set of connected components of G. If G1, G2,..., Gm are graphs,

then we use G1 + G2 + ... + Gm to denote the graph that that has vertex set V (G1) ∪

V (G2) ∪ ... ∪ V (Gm), and edge set E(G1) ∪ E(G2) ∪ ... ∪ E(Gm).

Given a weight function w : V (G) → N the weight of a vertex set S is defined as

w(S) =
∑

v∈S w(v). An independent set in G is a vertex set S such that no pair of vertices

in S have an edge between them. We define mwis(G) to be the weight of the maximum

weight independent set in G. The length of a path is the number of vertices in the path

and we denote by Pk the path of length k. If X ⊆ V (G) then we will use G(X) to denote

the the graph induced by the vertex set X, and if it is clear from the context we will use

53

Preliminaries Chapter 2

G−X to denote the graph G(V (G)−X).

For a family Q of sets, by
⋃
Q we denote

⋃
Q∈QQ. Let G be a graph. For X ⊆ V (G),

by G[X] we denote the subgraph of G induced by X, i.e., (X, {uv ∈ E(G) : u, v ∈ X}).

If the graph G is clear from the context, we will often identify induced subgraphs with

their vertex sets. The sets X, Y ⊆ V (G) are complete to each other if for every x ∈ X

and y ∈ Y the edge xy is present in G. Note that this, in particular, implies that X

and Y are disjoint. We say that two sets X, Y touch if X ∩ Y ̸= ∅ or there is an edge

with one endpoint in X and another in Y . Finally, two disjoint sets are anti-adjacent or

anti-complete if they do not touch.

Given a graph G, we say a vertex set C ⊆ V (G) is a connected vertex set if G[C] is

a connected graph. A walk in a graph G is a sequence v1, v2, . . . , vℓ of vertices in G such

that each pair of consecutive vertices in the sequence are adjacent. The length of a walk

v1, v2, . . . , vℓ is the number ℓ of vertices in the walk. A walk whose first vertex is v1 and

last is vℓ is a walk from v1 to vℓ. The vertex v1 is called the first vertex of the walk, vℓ

the last. All other vertices are internal vertices. A walk v1, v2, . . . , vℓ where all vertices

are distinct is a path. A path P = v1, v2, . . . , vℓ is an induced path if there are no edges

between vi and vj whenever |i − j| > 1. For three disjoint vertex sets A, B, C a walk

(or path, or induced path) from A to B through C is a walk (or path, or induced path)

whose first vertex is in A, last vertex is in B, and all internal vertices (if any) are in C.

The length of a path and cycle is the number of edges of the path. Pt denotes an

induced path with t vertices (and t− 1 edges). Ct denotes an induced cycle of length t.

A claw is a set of three independent vertices, v1, v2, and v3 along with a a vertex u that

is neighbors with each vi. An St,t,t is three anti-complete Pt’s along with a vertex u that

is neighbors with exactly one endpoint from each Pt and no other vertices, so a claw is

S1,1,1.

Given a graph G and a graph H, G is said to be H-free if G does not contain H as

54

Preliminaries Chapter 2

an induced subgraph. If H is a set of graphs, then G is H-free if for each H ∈ H, G is

H-free. By C>t-free we mean a graph that does not have any induced cycle of length

greater than t. By T (G), we denote the set of all triangles in G. Similarly to writing

xy ∈ E(G), we write xyz ∈ T (G) to indicate that G[{x, y, z}] ≃ K3.

Minimal Separators Given a graph G, a non-empty set S ⊂ V (G) is called a

separator if there are at least two distinct components L and R of G − S. If u ∈ L

and v ∈ R then we call S a u-v-separator or a u, v-separator. S is a u, v-minimal

separator if S is a u, v-separator and no proper subset of S is a u, v-separator, or equiv-

alently, if NG(L) = NG(R) = S. This equivalence is folkloric and easy to show. If C is a

component of G− S such that NG(C) = S, then we say that C is an S-full component.

Similarly, given A,B ⊂ V (G) we define S to be an A, B-separator if A∩ S = B ∩ S = ∅

and no component of G − S contains a vertex from both A and B. An A,B-minimal

separator is an A, B-separator such that no proper subset of S is an A, B-separator.

A family of graphs F is called tame if there exists a constant c such that for all

G ∈ F , G has at most |V (G)|c minimal separators. A family of graphs F is called

strongly-quasi-tame if there exists a constant c such that for all G ∈ F , G has at most

|V (G)|c log(|V (G)|) minimal separators. A family of graphs F is called feral if there exists

a constant c > 1 such that for all natural numbers N there exists a G ∈ F , such that

|V (G)| = n > N and G has at least cn minimal separators.

2.1 Extended strip decompositions.

Now let us define a certain graph decomposition which will play an important role in

the paper. An extended strip decomposition of a graph G is a pair (H, η) that consists

of:

55

Preliminaries Chapter 2

• a simple graph H,

• a vertex set η(x) ⊆ V (G) for every x ∈ V (H),

• an edge set η(xy) ⊆ V (G) for every xy ∈ E(H), and its subsets η(xy, x), η(xy, y) ⊆

η(xy),

• a triangle set η(xyz) ⊆ V (G) for every xyz ∈ T (H),

which satisfy the following properties (also see fig. 2.1):

1. The family {η(o) | o ∈ V (H) ∪ E(H) ∪ T (H)} is a partition of V (G).

2. For every x ∈ V (H) and every distinct y, z ∈ NH(x), the set η(xy, x) is complete

to η(xz, x).

3. Every uv ∈ E(G) is contained in one of the sets η(o) for o ∈ V (H)∪E(H)∪T (H),

or is as follows:

• u ∈ η(xy, x), v ∈ η(xz, x) for some x ∈ V (H) and y, z ∈ NH(x), or

• u ∈ η(xy, x), v ∈ η(x) for some xy ∈ E(H), or

• u ∈ η(xyz) and v ∈ η(xy, x) ∩ η(xy, y) for some xyz ∈ T (H).

An extended strip decomposition (H, η) is rigid if for every xy ∈ E(H), the sets η(xy),

η(xy, x), and η(xy, y) are nonempty, and for every isolated x ∈ V (H), the set η(x) is

nonempty.

We say that a vertex v ∈ V (G) is peripheral in (H, η) if there is a degree-one vertex

x of H, such that η(xy, x) = {v}, where y is the (unique) neighbor of x in H. For a set

Z ⊆ V (G), we say that (H, η) is an extended strip decomposition of (G,Z) if H has |Z|

degree-one vertices and each vertex of Z is peripheral in (H, η).

56

Preliminaries Chapter 2

a

b

c

d

e
f

g

h

η(a)

η(c)

η(d)

η(b)

η(cd)

η(ce)

η(de)

η(cde)

η(e)

η(ef)

η(g)

η(f)

η(h)

η(fh)

η(gf)

η(ef, e) η(ef, f)

Figure 2.1: A graph H and an extended strip decomposition (H, η) of some graph G.
Edges within sets η(·) are arbitrary. A solid edge across two sets indicates that there
are complete to each other. A dashed edge means that edges across these sets are
allowed but not mandatory. No edge means that the sets do not touch.

57

Preliminaries Chapter 2

The following theorem by Chudnovsky and Seymour [39] is a slight strengthening

of their celebrated solution of the famous three-in-a-tree problem. We will use it as a

black-box to build extended strip decompositions.

Theorem 2.1.1 ([39, Section 6]). Let G be an n-vertex graph and consider Z ⊆ V (G)

with |Z| ⩾ 2. There is an algorithm that runs in time O(n5) and returns one of the

following:

• an induced subtree of G containing at least three elements of Z, or

• a rigid extended strip decomposition (H, η) of (G,Z).

Let us point out that actually, an extended strip decomposition produced by Theo-

rem 2.1.1 satisfies more structural properties, but for our purpose, we will only use the

fact that it is rigid.

Particles of extended strip decompositions. Let (H, η) be an extended strip de-

composition of a graph G. We introduce some special subsets of V (G) called particles,

divided into five types.

vertex particle: Ax := η(x) for each x ∈ V (H),

edge interior particle: A⊥
xy := η(xy)− (η(xy, x) ∪ η(xy, y)) for each xy ∈ E(H),

half-edge particle: Axxy := η(x) ∪ η(xy)− η(xy, y) for each xy ∈ E(H),

full edge particle: Axyxy := η(x) ∪ η(y) ∪ η(xy) ∪
⋃

z : xyz∈T (H)

η(xyz) for each xy ∈ E(H),

triangle particle: Axyz := η(xyz) for each xyz ∈ T (H).

58

Preliminaries Chapter 2

For an positive integer p, we write [p] := {1, . . . , p}. For a set A,
(
A
p

)
denotes the set

of all p-element subsets of A.

We say that two vertex subsets X1, X2 ⊆ V (G) are adjacent if either X1 ∩X2 ̸= ∅ or

there is an edge x1x2 ∈ E(G), such that x1 ∈ X1 and x2 ∈ X2. Otherwise, the sets are

nonadjacent.

For a path P , the length of P is the number of edges of P . For a graph G, the radius

of G is minv∈V (G) maxu∈V (G) dist(u, v), where dist(u, v) denotes the distance between u

and v, i.e., the length of a shortest u-v-path in G.

2.2 Graph minors

Let H be a graph. A minor model of H in a graph G is a mapping η that assigns to

each v ∈ V (H) a connected subgraph η(v) of G so that:

• the subgraphs {η(v) : v ∈ V (H)} are pairwise disjoint; and

• for every edge v1v2 ∈ E(H), there is an edge in G with one endpoint in η(v1) and

the other in η(v2).

Such a minor model η has depth t if every subgraph η(v) has radius at most t. We say

that G contains H as a (depth-t) minor if there is a (depth-t) minor model of H in G.

A topological minor model of H in G is a mapping ψ that assigns to each vertex

v ∈ V (H) a vertex ψ(v) in G and to each edge e ∈ E(H) a path ψ(e) in G so that

• vertices ψ(v) are pairwise different for different v ∈ V (H);

• for each edge v1v2 ∈ E(H), the path ψ(v1v2) has endpoints ψ(v1) and ψ(v2) and

does not pass through any of the vertices of {ψ(v) : v ∈ V (H)} other than ψ(v1)

and ψ(v2); and

59

Preliminaries Chapter 2

• paths {ψ(e) : e ∈ E(H)} are pairwise disjoint apart from possibly sharing end-

points.

The vertices {ψ(v) : v ∈ V (H)} are the roots of the topological minor model ψ. We say

that ψ has depth t if each path ψ(e) for e ∈ E(H) has length at most 2t + 1. We say

that G contains H as a (depth-t) topological minor if there is a depth-t topological minor

model of H in G. It is easy to see that if G contains H as a depth-t topological minor,

then it also contains H as a depth-t minor.

2.3 Treewidth and tree decompositions

A tree decomposition of a graph G is a pair (T, β), where T is a tree and β is a function

that maps every vertex of T to a subset of V (G), such that the following properties hold:

• every edge of G is contained in β(a) for some a ∈ V (T), and

• for every v ∈ V (G), the set {a ∈ V (T) | v ∈ β(a)} is nonempty and induces a

subtree of T .

The sets β(a) for a ∈ V (T) are called the bags of the decomposition (T, β). The width

of the decomposition (T, β) is maxa∈V (T) |β(a)| − 1 and the treewidth of a graph is the

minimum possible width of its decomposition.

We will need the following well-known observation about graphs of bounded treewidth.

Lemma 2.3.1 (see Lemma 7.19 of [70]). Let H be a graph of treewidth less than k and

let A ⊆ V (H). Then there exists a set X ⊆ V (H) of size at most k such that every

connected component of H −X has at most |A|/2 vertices of A.

60

Preliminaries Chapter 2

2.4 MSO2 and MSO2 types

We assume the incidence encoding of graphs as relational structures: a graph G

is encoded as a relational structure whose universe consists of vertices and edges of G

(each distinguishable by a unary predicate), and there is one binary incidence relation

binding each edge with its two endpoints. With this representation, the MSO2 logic on

graphs is the standard MSO logic on relational structures as above, which boils down to

allowing the formulas to use vertex variables, edge variables, vertex set variables, and

edge set variables, together with the ability of quantifying over them. For a positive

integer p, the C⩽pMSO2 logic extends MSO2 by allowing atomic formulas of the form

|X| ≡ a mod m, where X is a set variable and 0 ⩽ a < m ⩽ p are integers; denote

CMSO2 :=
⋃
p>0 C⩽pMSO2. The quantifier rank of a formula is the maximum number of

nested quantifiers in it.

For a finite set Λ of labels, a Λ-boundaried graph is a pair (G, ι) where G is a graph

and ι : B → Λ is an injective function for some B ⊆ V (G); then B = domι is called

the boundary of (G, ι). A k-boundaried graph is a shorthand for a [k]-boundaried graph,

where we denote [k] = {1, . . . , k}. For v ∈ B, ι(v) is the label of v. We define two

operations on Λ-boundaried graphs.

If (G1, ι1) and (G2, ι2) are two Λ-boundaried graphs, then the result of gluing them

is the boundaried graph (G1, ι1) ⊕Λ (G2, ι2) that is obtained from the disjoint union

of (G1, ι1) and (G2, ι2) by identifying vertices of the same label (so that the resulting

labelling is again injective).

If (G, ι) is a Λ-boundaried graph and l ∈ Λ, then the result of forgetting l is the

Λ-boundaried graph (G, ι|ι−1(Λ−{l})). That is, if l belongs to the range of ι, we remove

the label from the corresponding vertex (but we keep this vertex in G).

By C⩽pMSO2 on Λ-boundaried graphs we mean the C⩽pMSO2 logic over graphs en-

61

Preliminaries Chapter 2

riched with |Λ| unary predicates: for each label l ∈ Λ we have a unary predicate that

selects the only vertex with label l, if existent. Effectively, this boils down to the possi-

bility of using elements of the boundary as constants in C⩽pMSO2 formulas.

The following folklore proposition explains the compositionality properties of CMSO2

on boundaried graphs. The statement and the proof is standard, see e.g. [71, Lemma 6.1],

so we only sketch it.

Proposition 2.4.1. For every triple of integers k, p, q, there exists a finite set Typesk,p,q

and a function that assigns to every k-boundaried graph (G, ι) a type typek,p,q(G, ι) ∈

Typesk,p,q such that the following holds:

1. The types of isomorphic graphs are the same.

2. For every C⩽pMSO2 sentence φ on k-boundaried graphs, whether (G, ι) satisfies

φ depends only on the type typek,p,q(G, ι), where q is the quantifier rank of φ.

More precisely, there exists a subset Typesk,p,q[φ] ⊆ Typesk,p,q such that for every

k-boundaried graph (G, ι) we have

(G, ι) |= φ if and only if typek,p,q(G, ι) ∈ Typesk,p,q[φ].

3. The types of ingredients determine the type of the result of the gluing operation.

More precisely, for every two types τ1, τ2 ∈ Typesk,p,q there exists a type τ1 ⊕k,p,q τ2

such that for every two k-boundaried graphs (G1, ι1), (G2, ι2), if typek,p,q(Gi, ιi) = τi

for i = 1, 2, then

typek,p,q((G1, ι1)⊕[k] (G2, ι2)) = τ1 ⊕k,p,q τ2.

Also, the operation ⊕k,p,q is associative and commutative.

62

Preliminaries Chapter 2

4. The type of the ingredient determines the type of the result of the forget label oper-

ation. More precisely, for every type τ ∈ Typesk,p,q and l ∈ [k] there exists a type

τ¬l such that for every k-boundaried graph (G, ι), if typek,p,q(G, ι) = τ and (G′, ι′)

is the result of forgetting l in (G, ι), then

typek,p,q(G′, ι′) = τ¬l.

Proof: [sketch] It is well-known that there are only finitely many syntactically non-

equivalent C⩽pMSO2 sentence over k-boundaried graphs and of quantifier rank at most

q, so let Sentencesk,p,q be a set containing one such sentence from each equivalence class.

We set Typesk,p,q as the power set (set of all subsets) of Sentencesk,p,q. To each k-

boundaried graph (G, ι) we define typek,p,q(G, ι) ⊆ Sentencesk,p,q as the set of all sentences

ψ ∈ Sentencesk,p,q satisfied in (G, ι). Thus, whether (G, ι) satisfies φ can be decided by

verifying whether typek,p,q(G, ι) contains a sentence that is syntactically equivalent to φ.

The remaining two assertions — about compositionality of the gluing and the forget label

operations — follow from a standard argument using Ehrenfeucht-Fräısse games.

In our algorithms, we shall work with a fixed CMSO2 sentence φ over graphs with

treewidth upper-bounded by a fixed constant k. Note that φ belongs to C⩽pMSO2 for a

fixed constant p, and the quantifier rank of φ is a fixed constant q. Hence, when working

in k-boundaried graphs, whether φ is satisfied in a k-boundaried graph (G, ι) can be

read from its type typek,p,q(G, ι). To facilitate the computation of types, we shall assume

that our algorithms have a hard-coded set of types Typesk,p,q, together with the subset

Typesk,p,q[φ] ⊆ Typesk,p,q and functions

(τ1, τ2) 7→ τ1 ⊕k,p,q τ2 and (τ, l) 7→ τ¬l,

63

Preliminaries Chapter 2

as described in proposition 2.4.1. Also, the algorithms have hard-coded the types of all

k-boundaried graphs with O(k) vertices.

We will need also a simple observation that CMSO2 types preserve connectivity prop-

erties, as being in the same connected component can be easily expressed in CMSO2.

Lemma 2.4.2. Fix integers k ⩾ 0, p ⩾ 0, and q ⩾ 4, and suppose that (G1, ι1) and

(G2, ι2) are two k-boundaried graphs with typek,p,q(G1, ι1) = typek,p,q(G2, ι2). Then the

ranges of ι1 and ι2 are equal. Furthermore, for every two pairs (u1, u2), (v1, v2) ∈ V (G1)×

V (G2) with ι1(u1) = ι2(u2) and ι1(v1) = ι2(v2), vertices u1 and v1 are in the same

connected component of G1 if and only if vertices u2 and v2 are in the same connected

component of G2.

Proof: That the ranges of ι1 and ι2 are equal is clear: G1 and G2 satisfy the same

sentences of the form “there exists a vertex with label i ∈ [k]”. The assertion about

having the same connectivity between boundary vertices follows from an analogous ar-

gument, supplied with the observation that being in the same connected component can

be expressed by an MSO2 formula of quantifier rank four:

Connected(x, y) = ¬∃A⊆V (G)(x ∈ A) ∧ (y /∈ A) ∧(
∀e∈E(G)∀u∈V (G)∀v∈V (G)(inc(u, e) ∧ inc(v, e))⇒ ((u ∈ A)⇔ (v ∈ A))

)
.

In our proofs, we will need to keep track of the exact value of the treewidth of a con-

structed induced subgraph of the given graph. For this, we use the following observation.

Lemma 2.4.3. For every integer k there exists an MSO2 sentence φtw<k such that G |=

φtw<k if and only if the treewidth of G is less than k.

64

Preliminaries Chapter 2

Proof: Let Ftw<k be the set of all minor-minimal graphs of treewidth at least k. By

the Robertson-Seymour Theorem [72], Ftw<k is finite. Define φtw<k to be the conjunction,

over all H ∈ Ftw<k, of sentences asserting that H is not a minor of G. Note here that it

is straightforward to express in MSO2 that a fixed graph H is a minor of a given graph

G.

65

Chapter 3

Independent Set on Pk-Free Graphs

in Quasi-Polynomial Time

In this chapter we present an algorithm that takes as input a graph G with weights on

the vertices, and computes a maximum weight independent set S of G. If the input graph

G excludes a path Pk on k vertices as an induced subgraph, the algorithm runs in time

nO(k2 log3 n). Hence, for every fixed k our algorithm runs in quasi-polynomial time. This

resolves in the affirmative an open problem of [Thomassé, SODA’20 invited presentation].

Previous to this work, polynomial time algorithms were only known for P4-free graphs

[Corneil et al., DAM’81], P5-free graphs [Lokshtanov et al., SODA’14], and P6-free graphs

[Grzesik et al., SODA’19]. For larger values of t, only 2O(
√
kn logn) time algorithms [Bascó

et al., Algorithmica’19] and quasi-polynomial time approximation schemes [Chudnovsky

et al., SODA’20] were known. Thus, our work is the first to offer conclusive evidence

that Independent Set on Pk-free graphs is not NP-complete for any integer k.

Additionally we show that for every graph H, if there exists a quasi-polynomial time

algorithm for Independent Set on C-free graphs for every connected component C of

H, then there also exists a quasi-polynomial time algorithm for Independent Set on

66

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

H-free graphs. This lifts our quasi-polynomial time algorithm to Tk-free graphs, where

Tk has one component that is a Pk, and k − 1 components isomorphic to a fork (the

unique 5-vertex tree with a degree 3 vertex).

67

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

3.1 Introduction

An independent set (also known as a stable set) in a graph G is a vertex set S such

that no pair of distinct vertices in S are adjacent in G. In the Independent Set

problem the input is a graph G on n vertices and integer k, the task is to determine

whether G contains an independent set S of size at least k. Independent Set is a

well-studied and fundamental graph problem which is NP-complete [8, 9] and intractable

within most frameworks for coping with NP-hardness. Indeed, Independent Set was

one of the very first problems to be shown to be NP-hard to approximate [10, 11], one

of the first intractable problems from the perspective of parameterized complexity [45],

one of the first problems to be shown not to have a 2o(n) time algorithm assuming the

Exponential Time Hypothesis (ETH) [46], and one of the very first problems whose

hardness of parameterized approximation, assuming the Gap-ETH, was established [47].

With the above in mind, it is natural that a significant research effort has been

devoted to identifying classes of input graphs for which the Independent Set problem

is substantially easier than on general graphs. Of particular interest are the classes

where Independent Set becomes polynomial time solvable. Most famously the problem

becomes polynomial time solvable on Perfect graphs [13], other examples of polynomial

time solvable cases include k×K2-free graphs [73] and graphs of bounded cliquewidth [74].

For an extensive list, see [75] and the companion website [76]. On the other hand the

problem remains NP-complete even on planar graphs of maximum degree 3 [8], unit disc

graphs [77], triangle-free graphs [78] and AT-free graphs [79].

This chapter fits in a long line of work to precisely classify the complexity of In-

dependent Set on all hereditary graph classes defined by a single forbidden induced

subgraph H (and more generally, by a finite set H of forbidden induced subgraphs). A

graph G is said to be H-free if G does not contain a copy of H as an induced subgraph.

68

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

For a set H of graphs, G is H-free if G is H-free for all H ∈ H. The ultimate goal of

this research direction is to establish a dichotomy theorem that for every finite set H

of graphs determines whether Independent Set on H-free graphs is polynomial time

solvable, or NP-complete1.

In 1982 Alekseev [4] observed that Independent Set remains NP-complete on the

class of H-free graphs for every finite set H that does not include a graph H whose every

connected component is a path or a subdivision of the claw (K1,3). Since then, no new

NP-completeness results for Independent Set on H-free graphs have been found for

any other finite set H. Thus, it is consistent with current knowledge that Independent

Set is polynomial time solvable on H-free graphs for all other finite sets H. At the same

time, progress on algorithms has been embarrassingly slow. The only connected graphs H

for which NP-completness of Independent Set does not follow from Alekseev’s result

are paths and subdivisions of the claw. Polynomial time algorithms for Independent

Set on claw-free graphs were found independently by Sbihi [80] and Minty [81] in 1980.

A polynomial time algorithm on fork-free graphs (a fork is a claw with one subdivided

edge) was found by Alekseev [17]. Subsequently, Lozin and Milanic [18] gave an algorithm

for Weighted Independent Set on fork-free graphs. For paths, Independent Set

on P4-free graphs was shown to be polynomial time solvable by Corneil et al. [82] in

1981. After a series of papers giving polynomial time algorithms for various subclasses

of P5-free graphs [83, 84, 85, 28, 86, 87], in 2014 Lokshtanov et al. [14] gave a polynomial

time algorithm on P5 free graphs. Two years later, Lokshtanov et al. [88] devised a

quasi-polynomial time algorithm on P6-free graphs, before Grzesik et al. [89] designed a

polynomial time algorithm for P6-free graphs in 2019. This summarizes the state-of-the-

art for polynomial time solvability of Independent Set on H-free graphs.

1There is of course the possibility that Independent Set on H-free graphs has NP-intermediate
complexity for some choice of H. We believe this is unlikely, however that is pure speculation.

69

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

It appears that the currently known techniques are very far from being able to yield

polynomial time algorithms for Independent Set on Pk-free graphs for k = 8, let

alone for all values of k. More concretely, the polynomial time algorithms for P5-free

graphs of Lokshtanov et al. [14] and for P6-free graphs of Grzesik et al. [89] are based

on the same method. First, from a sample of two articles the complexity of applying

this method seems to grow exponentially with k. Second, and more importantly, in a

recent manuscript Grzesik et al. [90] show that a crucial component of this method fails

completely on Pk-free graphs for k ⩾ 8.

The slow progress on polynomial time algorithms have prompted researchers to look

for weaker forms of tractability of Independent Set on Pk-free graphs. Bacsó et

al. [37] provided 2O(
√
kn logn) time algorithms for Independent Set on Pk-free graphs

(see also [91, 92]). Finally, Chudnovsky et al. [38] obtained quasi-polynomial time approx-

imation schemes for Pk-free graphs for all k. In fact their result is much more general -

they obtain quasi-polynomial time approximation schemes onH-free graphs for all setsH

for which NP-hardness does not follow from Alekseev’s [4] observation. While the results

above are general, they are consistent with Independent Set being NP-complete on all

H-free classes of graphs on which polynomial time algorithms are not already known. In

this chapter we obtain a quasi-polynomial time algorithm for Weighted Independent

Set on Pk-free graphs for every k. In particular we prove the following theorem.

Theorem 3.1.1. There exists an algorithm that given a graph G and weight function

w : V (G) → N outputs the weight of a maximum weight independent set of G. If G is

Pk-free then the algorithm runs in nO(k2 log3 n) time.

Theorem 3.1.1 implies that unless NP ⊆ QP, Independent Set on Pk-free graphs is

not NP-complete for any k. This is the first conclusive evidence against NP-completeness

for any k ⩾ 7. The running time of the algorithm of Theorem 3.1.1 matches that of

70

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

Chudnovsky et al. [38], but computes optimal solutions instead of (1 − ε)-approximate

ones. It is also worth mentioning that our algorithm and analysis is substantially sim-

pler than the quasi-polynomial time algorithm of Lokshtanov et al. [88] for the special

case of P6-free graphs. We have been unsuccessful in generalizing Theorem 3.1.1 to a

quasi-polynomial time algorithms for H-free graphs where H is a subdivision of a claw.

However, the techniques used to prove Theorem 3.1.1 can be used to show that such

an algorithm would automatically generalize to all classes of H-free graphs for which

NP-hardness is not already known. More concretely, for a graph H let OH be an oracle

that takes as input an H-free graph G and outputs the weight of a maximum weight

independent set in G. Further, let CC(H) denote the set of connected components of H.

Our second result is the following.

Theorem 3.1.2. There exists an algorithm that given as input a graph H, a graph G, and

weight function w : V (G) → N as well as access to oracles O(Hi) for all Hi ∈ CC(H),

outputs the weight of a maximum weight independent set of G. If G is H-free then

the algorithm uses at most nO(|H|2|CC(H)| log3(n)) operations and oracle calls on induced

subgraphs of G.

Theorem 3.1.2 has two immediate consequences. First, coupled with Theorem 3.1.1

and the polynomial time algorithm for Weighted Independent Set on fork-free

graphs, Theorem 3.1.2 yields a quasi-polynomial time algorithm for Weighted Inde-

pendent Set on Tk-free graphs, where Tk is the graph with k connected components the

first of which is a Pk and each of the remaining k − 1 are isomorphic to a fork. Second,

Theorem 3.1.2 implies that if Weighted Independent Set has a quasi-polynomial

time algorithm on H-free graphs for every subdivided claw H, then Weighted Inde-

pendent Set also has a quasi-polynomial time algorithm on all H-free classes of graphs,

for finite setsH, for which NP-hardness does not follow from Alekseev’s result. Or, stated

71

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

more poetically, the buck stops at the (subdivided) claw.

Methods. The starting point for our algorithm is the 2O(
√
n logn) time algorithm for Pk-

free graphs of Bascó et al. [37]. The algorithm of Bascó et al. [37] is simple enough that

we can give a quite detailed overview here. It combines two methods - “degree reduction”

and “balanced separation”.

The “degree reduction” approach can be summarised as follows. As long as the

input graph G contains a vertex v of sufficiently high degree (degree ⩾ d) then branch

on v. That is, find the best solution avoiding v by a recursive call on G − v, and the

best solution containing v by adding v to the solution obtained from a recursive call on

G−N [v]. Output the best of these two solutions. A simple recurrence analysis shows that

this reduces the problem to solving 2O(n logn
d

) instances in which no vertex has degree at

least d. Bascó et al. [37] set d =
√
n log n and obtain 2O(

√
n logn) instances with maximum

degree
√
n log n.

The “balanced separation” technique is based on the classic “Gyárfás path” argu-

ment [36] for proving that Pk-free graphs are χ-bounded. A simple lemma (Lemma 2

of Bascó et al. [37]), whose proof spans less than a page, shows that in every Pk free

graph G there exists a vertex set X1 of size at most k − 1, such that every connected

component of G − N [X1] has at most n/2 vertices. Bascó et al. [37] apply this re-

sult to instances output by the degree reduction procedure above. In such instances,

|N [X1]| ⩽ O(
√
n log n), assuming k is a constant. Then, after guessing the intersection

of the optimal solution with N [X1] (there are at most 2|N [X1]| ⩽ 2
√
n logn such guesses) the

connected components of G − N [X1] become independent sub-instances of size at most

n/2, on which the algorithm may be called recursively. Thus, solving a single instance

on n vertices reduces to solving 2O(
√
n logn) instances on at most n/2 vertices. Analyzing

the corresponding recurrence shows that the total running time of the algorithm is upper

72

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

bounded by 2O(
√
n logn).

If we wish to improve the running time from 2O(
√
n logn) to quasi-polynomial, we may

only apply degree reduction with d = Ω(n

logO(1) n
), and we can not afford to guess the

intersection of the balanced separator N [X1] with an optimal solution. At this point we

apply a slight generalization of degree reduction, to degree reduction relative to a vertex

set S. Here we branch on vertices v that have at least d′ neighbors in S (the vertex v

itself does not have to be in S). A simple recursion analysis shows that this will reduce a

single instance to n|S|/d′ instances where every vertex has at most d′ neighbors in S. We

apply degree reduction on the balanced separator N [X1] with d′ = |N [X1]|/c for some

constant c (possibly depending on k). Thus, the initial degree reduction, followed by

the degree reduction on N [X1], reduces the task of solving a single instance G to that

of solving the problem on 2logO(1) n instances in which every vertex has degree at most

n/ logO(1) n and furthermore has at most |N [X1]|/c neighbors in the set N [X1]. Here we

are working with induced subgraphs of the original graph G, so when we say N [X1] we

really mean what remains of the set N [X1] (with the neighborhood taken in the graph

G) in the subgraph of G that is currently being considered.

The route above is perhaps the most natural one to try to obtain a quasi-polynomial

time algorithm. Indeed, it is also the engine in the quasi-polynomial time algorithm

of Lokshtanov et al. [88] for P6-free graphs. However it is not at all clear how to deal

with the instances output by this degree reduction. For P6-free graphs, Lokshtanov et

al. [88] (essentially) show that if the balanced separator N [X1] is chosen very carefully,

then the degree reduction procedure never gets stuck: as long as N [X1] is non-empty

some vertex is a neighbor to a constant fraction of N [X1]. Thus the algorithm will

make quasi-polynomially many calls on instances where the balanced separator N [X1]

has been reduced to the empty set, in which case each connected component of the graph

is substantially smaller than the original graph. This leads to a recurrence that solves

73

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

to quasi-polynomial time. We are not able to prove an analogous statement for Pk-free

graphs for higher values of k, and so we are faced with the problem of how to deal with

the degree-reduced instances described above.

The key insight of our algorithm is the following: if we re-apply the “Gyárfás path”

argument of Bascó et al. [37] on the degree-reduced instances to obtain a new balanced

separator N [X2], then N [X2] can not have large intersection with N [X1]. This is because

N [X2] is the neighbor set of a constant size set (X2) and no vertex in the degree-reduced

instance has many neighbors in N [X1]. We now apply the degree reduction procedure

again, this time on N [X2]. If this reduction procedure completely reduces X1 or X2 to

the empty set, or disconnects the graph into connected components so that the largest

one has at most 0.9n vertices, then we have won, because the connected components

of our instances are substantially smaller than on the original graph. If the procedure

gets stuck then we obtain yet another balanced separator X3, observe that X3 has small

intersection with X2 and X1, and do degree-reduction on X3. And this keeps going, we

keep adding new balanced separators into the mix until the degree-reduction procedure

sufficiently disconnects the graph (i.e the largest connected component of the instances

becomes sufficiently smaller than the original graph. The hard part of the analysis is

to prove that the graph does become substantially disconnected by the time at most

O(log n) separators have been added to the instance.

The actual final form of the algorithm is slightly different from what we describe

above. Indeed, based on the ideas in the previous paragraph we can get an algorithm

with running time O(2n
ε
) for every ε > 0, however to obtain quasi-polynomial time

we need to be slightly more careful. The main difference is that we do not do degree

reduction on each individual separator N [Xi]. Instead we define level sets. Level i is the

set of all vertices that appear in at least i of the separators N [X1], . . . , N [Xt] that we

have constructed so far. We will maintain that throughout the course of the algorithm

74

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

the size of level i drops exponentially with i. Thus there will only be O(log n) levels, and

we can afford to run degree reduction so that for each level, no vertex sees more than a

(1
k logn

)O(1) fraction of that level. Then, when we add a new separator, because it is the

neighbor set of only a constant number of vertices, each level will increase by at most

a factor of 1 + (1
k logn

)O(1) of the size of the previous level. Thus, such a process may

continue to depth (k log n)O(1) while maintaining the invariant that the size of the level

i drops exponentially with i.

If recursion depth Ω(k log n) is reached without sufficiently disconnecting the graph

(i.e the largest connected component C of the graph still has size at least N/2, where N

is the number of vertices in the original graph) this means that we have found Ω(k log n)

balanced separators for the graph such that no vertex is contained in more than O(log n)

of them. A simple counting argument then shows that the average distance between

pairs of vertices in the component C has to be at least k logn
logn

⩾ k, contradicting that

G is Pk-free. This means that after recursion depth O(k log n), the graph has already

been disconnected! At this point running the algorithm from scratch on each of the

connected components yields at most n instances of size at most n/2 which solves to

quasi-polynomial time.

Our algorithm for Theorem 3.1.2 follows the same template as the algorithm for

Theorem 3.1.1. The key difference is that instead of growing a sequence of balanced

separators we grow a sequence of (neighborhoods of) induced copies in G of connected

components of H. Again the sequence has the property that the sets in the sequence do

not overlap too much, so if we can grow the sequence to length Ω(|H|O(1) log n) then we

can find an induced copy of H in G.

75

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

3.2 Preliminaries

Given a positive number k and a graph G, we call a set S ⊂ V (G) a c-balanced

separator if no connected component of G− S has over c vertices.

A vertex multi-family F is a collection of vertex sets that allows for multiple instances

of its vertex sets. If F = {S1, S2, . . . , Sn} and X is a set of vertices, then F −X is the

vertex multi-family {S1−X,S2−X, . . . , Sn−X}. For two vertex multi-families A and B

their union is denoted by A∪B and is defined by the vertex multi-family that contains all

elements of A and of B. The multiplicity of an element X in A∪B is its multiplicity in A

plus its multiplicity in B. We will use log(x) to denote the function ⌈log2(x)⌉ throughout

this paper.

3.3 Quasi-Polynomial Time Algorithm for Pk-Free

Graphs

In this section we prove Theorem 3.1.1. We will make use of the following balanced

separator lemma from Basco et al. [37].

Lemma 3.3.1. [37] There exists an algorithm that given a graph G runs in polynomial

time and outputs an induced path P in G such that N(V (P)) is a |V (G)|
2

-balanced separator

of G.

We begin by proving a slight strengthening of Lemma 3.3.1.

Lemma 3.3.2. There exists an algorithm that takes as input a graph G, and a positive

integer i such that 2i < |V (G)|, runs in polynomial time and outputs a set X such that

N [X] is a |V (G)|
2i

-balanced separator in G. Furthermore, if G is Pk-free then |X| ⩽ 2i+1 ·k.

76

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

Proof: Let G and i be as in the statement of the lemma, the proof is by induction

on i. For i = 1 the algorithm calls the algorithm of Lemma 3.3.1 and obtains a path

P . It then returns X = V (P). Lemma 3.3.1 guarantees that in this case X satisfies

the statement of this lemma. For i > 1 the algorithm first calls itself recursively on the

input (G, i− 1) and obtains a set X ′ such that N [X ′] is a |V (G)|
2i−1 -balanced separator in G,

and furthermore, if G is Pk-free then |X ′| ⩽ 2i · k. For each connected component Cj of

G−N [X ′] such that |V (Cj)| > |V (G)|
2i

the algorithm calls itself recursively on (Cj, 1) and

obtains a set Xj such that N [Xj] is a
|V (Cj)|

2
-balanced separator of Cj. If G is Pk-free it

holds that |Xj| ⩽ k. The algorithms sets X as X = X ′∪(
⋃
j Xj) where the union is taken

over all j such that |V (Cj)| > |V (G)|
2i

. Clearly the construction of X ensures that N [X] is

a |V (G)|
2i

-balanced separator of G. Furthermore if G is Pk-free then |X| ⩽ |X ′|+ t ·k where

t is the number of connected components of G−X ′ whose size is more than |V (G)|
2i

. Since

these components are disjoint we have that t ⩽ 2i. Therefore |X| ⩽ 2i ·k+2i ·k = 2i+1 ·k

as claimed.

To see that the run time is polynomial it suffices to show the number of times the

algorithm makes a call to the algorithm of Lemma 3.3.1 is polynomial. To see this

polynomial bound, note that on input (G, i) the algorithm makes at most 2i calls to the

algorithm of Lemma 3.3.1 plus the number calls it makes to the algorithm of Lemma

3.3.1 on input (G, i − 1). Since 2i ⩽ |V (G)| = n, the recurrence shows the algorithm

makes at most Σ
log(n)
i=0 n/2i = O(n) calls to the algorithm of Lemma 3.3.1.

To describe the algorithm of Theorem 3.1.1 we first need to define the notion of level

sets relative to a vertex multi-family F .

Definition 3.3.3. Given a graph G and a vertex multi-family F consisting of vertex sets

of G, for positive integers i, the ith level relative to F is denoted by L(F , i) and defined

77

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

as follows

L(F , i) = {v ∈ V (G) : |{S ∈ F : v ∈ S}| ⩾ i}

In other words L(F , i) is a vertex set containing all vertices of G that are contained

in at least i sets in F . Our algorithm will also make use of a number N , this number

will be approximately equal to the number of vertices in the input graph G.

Definition 3.3.4. The ith branch threshold is denoted by ∆i and is defined as ∆i = N/2i.

Given a multi-family F , a vertex v ∈ V (G) is a branchable vertex if there exists an i ⩾ 1

such that |N [v] ∩ L(F , i)| ⩾ ∆i.

In the following G is always a graph, w is a weight function w : V (G)→ N, N is an

integer, and F is a multi-family of subsets of V (G). We now describe the main subroutine

ALG1 in the algorithm of Theorem 3.1.1. The algorithm takes as input G, w, N and F

and (as we will prove) outputs the weight of a maximum weight independent set in G.

The algorithm of Theorem 3.1.1 will call ALG1 with parameters G, N = |V (G)|, w, and

F = ∅. ALG1 is a recursive branching algorithm with only four rules. First, if G has at

most one vertex, then return V (G). Second, if the largest component of G has at most

|N |/2 vertices then solve the problem recursively on each component and return the sum.

Third, if there exists a branchable vertex v, then branch on v (i.e solve the problem with

v forced in to the independent set, and v forced out). Finally, if none of the previous

rules apply then add a new balanced separator X (obtained by Lemma 3.3.2) to F . In

other words, make a recursive call on the instance (G,w,N,F ∪ {N [X]}).

ALG1 is very similar to well known exact exponential time branching algorithms for

Independent Set [93]. The key differences are that we use the multi-family F of

balanced separators to guide which vertex to branch on, that when no rules apply we

add a separator to the family F (at a glance this appears to make no progress at all, but

it increases the size of the level sets, making more vertices branchable), and that we wait

78

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

with recursing on connected components until the size of the largest component becomes

less than N/2 (this is primarily to simplify the analysis).

ALG1

1: Input: G, w, N , F .

2: Output: mwis(G).

3: if |V (G)| ⩽ 1 then

4: return w(V (G))

5: else if (maxC∈CC(G) |V (C)|) ⩽ N/2 then

6: return
∑

C∈CC(G) ALG1(C,w, |V (C)|, ∅)

7: else if exists branchable vertex v then

8: return max(ALG1(G− v, w,N,F − {v}),ALG1(G−N [v], w,N,F −N [v]) + w(v))

9: obtain X by applying Lemma 3.3.2 on G with i = 2

10: return ALG1(G,w,N,F ∪ {N [X]})

We will distinguish between the three different kinds of recursive calls that ALG1 can

make. If the else if condition on line 5 holds, then the algorithm makes the recursive

calls on line 6. In this case we say that ALG1 recurses on connected components. If the

else if condition on line 7 holds, then the algorithm makes the recursive calls on line 8.

In this case we say that ALG1 branches on a branchable vertex. Otherwise the algorithm

makes the recursive call on line 10. In this case we say that ALG1 adds a balanced

separator. We will frequently need to refer to parts of the execution of the algorithm.

For disambiguation, we collect the terminology here.

An instance is a four-tuple (G,w,N,F). A run of the algorithm refers to the entire ex-

ecution of the algorithm on an instance. A call ALG1(G,w,N,F) refers to the computa-

tion done in the root node of the recursion tree of the run ALG1(G,w,N,F). We remark

that parameters G,w,N , and F never change during the call ALG1(G,w,N,F). When

79

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

a run or a call ALG1(G,w,N,F) recursively calls ALG1 on the instance (G′, w,N ′,F ′)

we say the run or the call executes a run or a call on (G′, w,N ′,F ′). This will sometimes

be referred to as makes a recursive call ALG1(G
′, w,N ′,F ′). A run of ALG1(G,w,N,F)

is called a k-fair run if G is a Pk-free graph, N = |V (G)|, F = ∅, and w is a weight func-

tion. A call ALG1(G,w,N,F) is called a k-fair call if it is executed during the course

of a k-fair run. An instance (G,w,N,F) is called a k-fair instance if ALG1(G,w,N,F)

is a k-fair call.

Lemma 3.3.5. ALG1(G,w,N,F) terminates on every input.

Proof: Consider a run of ALG1 with initial input G,w,N, and F . Whenever the

algorithm makes a recursive call ALG1(G
′, w,N ′,F ′) we have that |V (G′)| ⩽ |V (G)|

and N ′ ⩽ N . Furthermore, whenever the algorithm recurses on connected components

or branches on a branchable vertex, then it executes ALG1(G
′, w,N ′,F ′) with either

|V (G′)| < |V (G)| or N ′ < N . Finally, ALG1 cannot add a balanced separator for

over |V (G)| · log(N) successive recursive calls since then a call ALG1(G,w,N,F ′′) with

F ′′ = |V (G)| · log(N) would add a balanced separator. However, since each new balanced

separator must be non-empty (since otherwise the algorithm would have recursed on con-

nected components) we have that L(F ′′, log(N)) ̸= ∅, and so the call ALG1(G,w,N,F ′′)

would branch on a vertex. This contradicts that the call added a balanced separator, and

proves that ALG1 cannot add a balanced separator for over |V (G)| · log(N) successive

recursive calls. It follows by induction on |V (G)|+N that ALG1 always terminates.

Lemma 3.3.6. A run ALG1(G,w,N,F) always returns the weight of a maximum weight

independent set of G under the weight function w.

Proof: Consider a run of ALG1 with initial input G,w,N, and F . It is clear

from the algorithm that if each run ALG1(G
′, w,N ′,F) that is executed by the call

80

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

ALG1(G,w,N,F) returns the weight of a maximum weight independent set of G′ with

weight function w, then so would the run ALG1(G,w,N, F). By Lemma 3.3.5 the height

of the recursion tree is bounded, and the result is trivially true for the base case of

|V (G)| ⩽ 1, so the result follows by induction on the height of the recursion tree of the

run ALG1(G,w,N,F).

We have now proved that ALG1 always terminates and that it always outputs the

correct answer. The remainder of the section is devoted to the running time analysis. We

will now prove some lemmas to help us bound the run time of ALG1 on k-fair runs. First,

in Observation 3.3.7 we will prove that F remains a multi-family of balanced separators

of G throughout the execution of the algorithm. In Observation 3.3.8 we will show that

no vertex appears in many (more than logN) sets in F . This will ensure that F can

never grow too large, because, as we will show in Lemma 3.3.9, a connected Pk-free graph

can not contain a large fractional packing of balanced separators.

Observation 3.3.7. Let (G, w, N , F) be a k-fair instance. Then every set S ∈ F is a

N
4

-balanced separator of G.

Proof: Consider a k-fair instance (G,w,N,F). If F = ∅ then the result is triv-

ially true, so assume F ̸= ∅. It follows ALG1 executes ALG1(G,w,N,F) during a

k-fair call ALG1(G
′, w,N,F ′) by branching on a branchable vertex or ALG1 executes

ALG1(G,w,N,F) during a k-fair call ALG1(G,w,N,F ′′) by adding a balanced separa-

tor, X. In the first case, if all sets of F ′ are N
4

-balanced separators for G′, then since G

= G′−S for some vertex set S, and F = F ′−S, all sets of F are N
4

-balanced separators

for G. In the second case, X is generated in such a way that it is guaranteed to be an

N
4

-balanced separator for G, so if all sets of F ′′ are N
4

-balanced separators for G, then all

sets of F are N
4

-balanced separators for G. The statement of the observation now follows

by induction on the depth of the call ALG1(G,w,N,F) in the recursion tree.

81

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

Observation 3.3.8. For every k-fair instance (G,w,N,F), we have that L(F , log(N) +

1) = ∅.

Proof: Consider a k-fair call ALG1(G,w,N,F). We will prove the statement by

induction on the depth of the call ALG1(G,w,N,F) in the recursion tree of a run

ALG1(G
∗, w, |V (G∗)|, ∅) which executes ALG1(G,w,N,F).

If F = ∅ then the result is trivially true. Suppose now that F ≠ ∅, it follows ALG1

executes ALG1(G,w,N,F) during a k-fair call ALG1(G
′, w,N,F ′) by branching on a

branchable vertex or by adding a balanced separator X. In the first case F = F ′ − S

for some vertex set S. By the induction hypothesis L(F ′, log(N) + 1) = ∅ and hence

L(F , log(N) + 1) = ∅. In the second case, ALG1(G,w,N,F ′) does not branch on a

branchable vertex, so we have that L(F ′, log(N)) = ∅ since every vertex in L(F ′, log(N))

is branchable. It follows that L(F , log(N) + 1) = L(F ′ ∪X, log(N) + 1) = ∅.

Lemma 3.3.9. For every k-fair instance (G,w,N,F) it holds that |F| ⩽ 10k · log(N).

Proof: Consider a k-fair instance (G,w,N,F). We will prove the result by induction

on the depth of the call ALG1(G,w,N,F) in the recursion tree of a run ALG1(G
∗, w, |V (G∗)|,

∅) which executes ALG1(G,w,N,F).

In the base case F = ∅, and the claim of the lemma holds trivially, so assume F ̸= ∅.

Thus the call ALG1(G,w,N,F) is executed by a k-fair call ALG1(G
′, w,N ′,F ′). By

the induction hypothesis |F ′| ⩽ 10k · log(N) (N = N ′ since F ̸= ∅). Thus, unless

ALG1(G
′, w,N ′,F ′) recurses by adding a balanced separator we have that |F| ⩽ 10k ·

log(N) as well. So assume that ALG1(G
′, w,N ′,F ′) adds a balanced separator X and

that therefore G′ = G, N ′ = N and F = F ′ ∪ {X}. We prove that |F ′| < 10k · log(N),

then the result follows since |F| = |F ′|+ 1.

Suppose for contradiction that |F ′| ⩾ 10k · log(N), we will now produce an induced

path of length k in G, contradicting that G is Pk-free. The call ALG1(G
′, w,N ′,F ′) =

82

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

ALG1(G,w,N,F ′) added a balanced separator, and so the size of the largest connected

component, C, in G is greater than N
2

. This, together with Observation 3.3.7 then gives

that every set S ∈ F is a |V (C)|
2

-balanced separator for C. Consider the following random

process. Uniformly at random, select vertices x and y in C. For all S ∈ F , let XS denote

the random variable that is 1 if x and y are not in the same connected component of

C −S and 0 otherwise. Since S is a |V (C)|
2

-balanced separator for C, the probability that

x and y are in the same connected component of C − S is at most 1
2
. Thus XS = 1 with

probability at least 1
2
. We denote by Fx,y all sets S ∈ F such that x and y are not in the

same component of C − S, again including multiplicity. By linearity of expectation we

have that

E[|Fx,y|] =
∑
S∈F

E[XS] ⩾ |F|/2 > 5k · log(N).

It follows there exists vertices a and b in C such that |Fa,b| > 5k · log(N). Let P be a

shortest path connecting a and b in C. Since G is Pk-free, P has at most k − 1 vertices.

By Observation 3.3.8, each of these vertices is contained in at most log(N) sets in Fa,b.

But then there exists a set S ∈ Fa,b disjoint from V (P) contradicting that a and b are

not in the same component of C − S.

The following observation shows that the level sets do not grow a lot in each successive

recursive call, and that they therefore never get very large. Note in particular that the

size of level set i drops exponentially with i.

Observation 3.3.10. For every k-fair call ALG1(G,w,N,F) that adds a balanced sep-

arator X and every i,

|L(F ∪X, i)| ⩽ ∆i−1 · 8k + |L(F , i)|.

83

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

Furthermore, for every k-fair instance (G′, w,N ′,F ′),

|L(F ′, i)| ⩽ ∆i−1 · 8k · |F ′|.

Proof: Consider a k-fair call ALG1(G,w,N,F) that adds a balanced separator X.

Let Xj denote the set of vertices in L(F , j)∩X, then we can see that |L(F ∪ {X}, j)| ⩽

L(F , j) + |Xj−1|. Since the call ALG1(G,w,N,F) adds a balanced separator, X, there

are no branchable vertices. So, we have that for all v ∈ G, |N [v] ∩ L(F , j)| ⩽ ∆j.

Furthermore, by Lemma 3.3.2, since X is generated as an N
4

-balanced separator and

therefore a |G|
4

-balanced separator for G, X is the neighborhood of at most 8k vertices,

hence |Xj−1| ⩽ ∆j−1 · 8k and the result |L(F ∪ {X}, i)| ⩽ ∆i−1 · 8k + |L(F , i)| follows.

The second statement follows by combining induction, the first part of this Observa-

tion, and the fact that if the call ALG1(G,w,N,F) executes ALG1(G
′, w,N ′,F ′), then

|F| < |F ′| if and only if the call ALG1(G,w,N,F) adds a balanced separator.

For k-fair instances (G,w,N,F) we define a measure:

µk(G,w,N,F) = 400k2 · log2(N) · (N + |V (G)|) +
∑
i

(
|L(F , i)| · N

∆i−1

)
+ 16k ·N · log(N) · (10k · log(N)− |F|)

If (G,w,N,F) is not a k-fair instance, then µk(G,w,N,F) is undefined. Note that

µk(G,w,N,F) must always be an integer, and that it is independent of the weight func-

tion w. We will say that two instances (G,w,N,F) and (G′, w′, N ′,F ′) are essentially

different if G′ ̸= G, N ′ ̸= N or F ′ ̸= F .

Lemma 3.3.11. For every positive integer µ, the number of essentially different k-fair

instances (G,w,N,F) such that µk(G,w,N,F) = µ is finite. In addition, for every k-fair

84

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

instance it holds that µk(G,w,N,F) ⩾ 0.

Proof: Consider a k-fair instance (G,w,N,F) with µk(G,w,N,F) = µ. Clearly,

there are only a finite number of such instances with N = 1. We will show that if N ⩾ 2

then |V (G)| ⩽ µ. If |V (G)| ⩽ µ then |G|, |N |, and |F| are all bounded in terms of µ,

and the first part of the lemma follows.

By Lemma 3.3.9 we have that |F| is at most 10k · log(N). It follows that the terms

400k2·log2(N)·(N+|V (G)|), Σi(|L(F , i)|· N
∆i−1

), and 16k·N ·log(N)·(10k·log(N)−|F|) are

all non negative. Hence µk(G,w,N,F) ⩾ |V (G)|. This also proves that µk(G,w,N,F)

⩾ 0.

Lemma 3.3.12. For every k-fair instance (G,w,N,F) it holds that µk(G,w,N,F) ⩽

1050k2 ·N · log2(N)

Proof: Consider a k-fair instance (G,w,N,F). By Observation 3.3.10 and Lemma

3.3.9, we have that |L(F , i)|· N
∆i−1

< 8k·N ·|F| < 80k2 ·N ·log(N). Therefore, Σi(|L(F , i)|·
N

∆i−1
) < 80k2 ·N · log2(N). Also, since N ⩾ |V (G)|, we can see that

µk(G,w,N,F) = 400k2 · log2(N) · (N + |V (G)|) + Σi(|L(F , i)| · N

∆i−1

)

+ 16k ·N · log(N) · (10k · log(N)− |F|)

< 800k2 ·N · log2(N) + 80k2 ·N · log2(N) + 160k2 ·N · log2(N)

< 1050k2 ·N · log2(N)

We define Tk(G,w,N,F) to be the running time of a k-fair run of ALG1 starting with

the inputs (G,w,N,F). We also define

Tk(µ) = maxG,N,F : µk(G,w,N,F)⩽µTk(G,w,N,F).

85

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

When we analyze run time we assume that arithmetic (addition, subtraction, com-

parisons) on weights of vertices and vertex sets is constant time. Thus, both the running

time of ALG1 and the measure of an instance (G,w,N,F) are independent of the weight

function w. Thus, by Lemma 3.3.11, Tk(µ) is well defined.

Lemma 3.3.13. Tk(µ) satisfies the following recurrence:

Tk(µ) ⩽ µO(1) +max

µTk(.95µ)

Tk(µ− 1) + Tk(µ[1− 1/(2100k2 · log2(µ))])

Tk(µ[1− 1/(200k · log(µ))])

Proof: Let (G,w,N,F) be a k-fair instance such that µk(G,w,N, ∅) = µ and Tk(µ)

is the run time of ALG1(G,w,N,F). If the call ALG1(G,w,N,F) recurses on con-

nected components, then it makes at most |V (G)| recursive calls on instances of the form

(G′, w,N ′, ∅), where |V (G′)| ⩽ |V (G)| and N ′ ⩽ N
2

. It follows that for each of these

recursive calls we have

µk(G
′, w,N ′, ∅) = 400k2 · log2(N ′) · (N ′ + |V (G′)|) + 160k2 ·N ′ · log2(N ′)

⩽ 400k2 · log2(N) · (N
2

+ |V (G)|) + 80k2 ·N · log2(N)

⩽ 400k2 · log2(N) · (N + |V (G)|)− 100k2 ·N · log2(N)

⩽ µ− 100k2 ·N · log2(N)

⩽ .95µ (by Lemma 3.3.12)

Therefore, if the instance ALG1(G,w,N,F) recurses on connected components, we

must have that Tk(µ) ⩽ |V (G)| · Tk(.95µ) ⩽ µ · Tk(.95µ).

86

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

If the call ALG1(G,w,N,F) branches on a branchable vertex, v, then it makes two

recursive calls, one execution ALG1(G − {v}, w,N,F − {v}), where the instance (G −

{v}, w,N,F − {v}) has measure µk(G − {v}, w,N,F − {v}) ⩽ µ − 1, and the other

execution is ALG1(G −N [v], w,N,F −N [v]). Note that for a branchable vertex, v, we

have that ∑
i

(|L(F −N [v], i)| · N

∆i−1

⩽
∑
i

(|L(F , i)| · N

∆i−1

)− N

2
,

since for at least one level i we have that |N [v]∩L(F , i)| ⩾ ∆i and ∆i
∆i−1

= 1/2. It follows

that

µk(G−N [v], w,N,F −N [v]) = 400k2 · log2(N) · (N + |V (G)−N [V]|)

+
∑
i

(
|L(F −N [v], i)| · N

∆i−1

)
+ 16k ·N · log(N) · (10k · log(N)− |F|)

⩽ 400k2 log2(N) · (N + |V (G)|) +
∑
i

(
|L(F , i)| · N

∆i−1

)
+ 16k ·N · log(N) · (10k · log(N)− |F|)− N

2

⩽ µ− N

2

⩽ µ

(
1− 1

2100k2 · log2(N)

)
(by Lemma 3.3.12)

⩽ µ

(
1− 1

2100k2 · log2(µ)

)

Therefore, if the call ALG1(G,w,N,F) branches on a branchable vertex, then we have

that Tk(µ) ⩽ Tk(µ− 1) + Tk(µ[1− 1
2100k2·log2(µ)]).

Finally, if the call ALG1(G,w,N,F) adds a balanced separator, X, then it makes a

single recursive call ALG1(G,w,N,F ∪X). By Observation 3.3.10 and Lemma 3.3.12 we

87

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

obtain the following.

µk(G,w,N,F ∪X) < µ+ 8k ·N · log(n)− 16k ·N · log(N) < µ

(
[1− 1

200k · log(µ)
]

)

Therefore, if the call ALG1(G,w,N,F) adds a balanced separator, then Tk(µ) ⩽ Tk(µ[1−
1

200k·log(µ)]).

The result now follows from the observation that ALG1(G,w,N,F) only does |V (G)|O(1)

= µO(1) work in any given call and always recurses on connected components, branches

on a branchable vertex, adds a balanced separator, or returns without making further

recursive calls.

Since Tk(µ) is a non negative, non decreasing function, by adding the three pos-

sibilities in the max of Lemma 3.3.13 we immediately obtain the following simplified

recurrence.

Corollary 3.3.14. Tk(µ) ⩽ µO(1) + µTk(.95µ) + Tk(µ − 1) + Tk(µ[1 − 1
2100k2·log2(µ)]) +

Tk(µ[1− 1
200k·log(µ)]) < Tk(µ− 1) + µO(1) + 3µ · Tk(µ[1− 1

2100k2·log2(µ)])

Lemma 3.3.15. Tk(µ) = µO(k2·log3(µ))

Proof: The proof is by induction on µ. The base case is established by Lemma

3.3.11. By Corollary 3.3.14 we have the inequality Tk(µ) ⩽ Tk(µ−1)+µO(1)+3µTk(µ[1−
1

2100k2·log2(µ)]) and repeatedly applying the inequality to the first term on the right hand

side, gives Tk(µ) ⩽ µO(1) + 3µ2 ·Tk(µ[1− 1
2100k2·log2(µ)]). By the inductive hypothesis then,

there is some c such that

88

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

Tk(µ) ⩽ µO(1) + 3µ2 · (µ[1− 1

2100k2 · log2(µ)
])ck

2·log3(µ)

= µO(1) + 3µ2 · µck2·log3(µ) · [1− 1

2100k2 · log2(µ)
]ck

2·log3(µ)

⩽ µO(1) + 3µ2 · µck2·log3(µ) · e−
ck2·log3(µ)

2100k2·log2(µ) (since 1− x ⩽ e−x)

⩽ µO(1) + 3µ2 · µck2·log3(µ) · e−
c log(µ)
2100

⩽ µck
2·log3(µ) (for sufficiently large c)

We are now ready to prove Theorem 3.1.1.

Proof: [Proof of Theorem 3.1.1] The algorithm returns the answer of ALG1(G, |V (G)|,

w, ∅). By Lemma 3.3.5 ALG1 terminates, by Lemma 3.3.6 ALG1 returns return the

weight of a maximum weighted independent set. For the running time, observe that

(G,w,N, ∅) is a k-fair instance and let µ = µk(G,w,N, ∅). By Lemma 3.3.12 we

have that µ < 1050k2 · N · log2(N) = nO(1). Hence, by Lemma 3.3.15 it follows that

T (G,w,N, ∅) ⩽ T (µ) = µO(k2·log3(µ)) = nO(k2·log3(n)).

3.4 Disconnected Forbidden Induced Subgraphs

Let H be a graph. We denote by OH an oracle that takes an H-free graph G as

input and outputs the weight of a maximum weight independent set in G. In this section

we present a quasi-polynomial time algorithm for Maximum Weight Independent

Set in H-free graphs, assuming we have access to the oracles OC for all C ∈ CC(H).

Specifically we will prove Theorem 3.1.2.

In the following, H = H0 + H1 +...+ Hc−1 is a graph, G is a graph, w is a weight

function on the vertices of G, N is a positive integer, and F is a vertex multi-family of

89

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

subsets of V (G). We now present the algorithm ALG2 of Theorem 3.1.2. The algorithm is

very similar to the algorithm ALG1 for Pk free graphs, the main difference is that instead

of packing balanced separators in the family F , the algorithm “packs” (neighborhoods

of) copies of induced Hi’s.

ALG2

1: input: H,G,w,N,F .

2: output: mwis(G).

3: i = |F| mod c

4: if exists branchable vertex v then

5: return max(ALG2(H,G− v, w,N,F − {v}),ALG2(H,G−N [v], w,N,F −N [v])

+w(v))

6: else if exists induced Hi then

7: obtain X ← induced Hi in G

8: return ALG2(H,G,w,N,F ∪ {N [X]})

9: return OHi(G)

The proof of correctness and running time analysis for ALG2 closely follows that of

ALG1. The main difference is in the proof of why the family F can not grow beyond

size logN (Lemmata 3.4.4 and 3.4.5). The other parts are just minor modifications of

corresponding results from Section 3.3.

We will distinguish between the two different kinds of recursive calls that ALG2

can make. If the if condition of line 4 holds, then the algorithm makes the recursive

calls on line 5. In this case we say that ALG2 branches on a branchable vertex. If the

else if condition of line 6 holds, then the algorithm makes the recursive call in line 8.

In this case we say that ALG2 adds a neighborhood. We define instances, runs, calls,

execution and making a recursive call similarly as for ALG1. Just as for ALG1, a run of

90

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

ALG2(H,G,w,N,F) is called a fair run if G is an H-free graph, N = |V (G)|, F = ∅,

and w is a weight function. A call ALG2(H,G,w,N,F) is called a fair call if it is

executed during the course of a fair run. An instance (H,G,w,N,F) is a fair instance if

ALG2(H,G,w,N,F) is a fair call.

Lemma 3.4.1. ALG2(H,G,w,N,F) terminates on every input.

Proof: Consider a run of ALG2 with initial input H,G,w,N, and F . Whenever

the algorithm makes a recursive call it does so with a call ALG2(H,G
′, w,N,F ′) where

|V (G′)| ⩽ |V (G)|. Furthermore, whenever the algorithm branches on a branchable ver-

tex, then it recurses with a call ALG2(H,G
′, w,N,F) where |V (G′)| < |V (G)|. Further-

more ALG2 can not add a neighborhood in over |V (G)| · log(N) successive recursive calls.

Suppose it does, then a call ALG2(H,G,w,N,F ′′) with F ′′ = |V (G)| · log(N) adds a

neighborhood, but L(F ′′, log(N)) ̸= ∅ and thus there exists a branchable vertex, contra-

dicting that ALG2(H,G,w,N,F ′′) with F ′′ = |V (G)| · log(N) adds a neighborhood. It

follows by induction on |V (G)| that ALG2 always terminates.

Lemma 3.4.2. A run ALG2(H,G,w,N,F) returns the weight of a maximum weight

independent set of G.

Proof: Consider an run of ALG2 with initial input (H,G,w,N,F). It is clear

from the algorithm that if each run ALG2(H,G
′, w,N,F ′) that is executed by the call

ALG2(H,G,w,N,F) returns the weight of a maximum weight independent set of G′

under the weight function w, then so would the run ALG2(H,G,w,N,F). By Lemma

3.4.1 the height of the recursion tree is bounded, and the result is trivially true for the

base case of |V (G)| ⩽ 1 so the result follows by induction on the depth of the recursion

tree.

Observation 3.4.3. For ever fair instance (H,G,w,N,F), we have that L(F , log(N) +

1) = ∅.
91

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

Proof: Consider a fair call ALG2(H,G,w,N,F). We will prove the result by in-

duction on the depth of the call ALG2(H,G,w,N,F) in the recursion tree of a run

ALG2(H,G
∗, w, |V (G∗)|, ∅) which executes ALG2(H,G,w,N,F).

If F = ∅ then the result is trivially true. Suppose F ≠ ∅, it follows that ALG2

executes ALG2(H,G,w,N,F) during a fair call ALG2(H,G
′, w,N,F ′) by branching on

a branchable vertex or by adding a neighborhood, N [X]. In the first case, it is clear that

since F = F ′−S for some vertex set S, if L(F ′, log(N)+1) = ∅, then L(F , log(N)+1) = ∅

in ALG2(H,G,w,N,F). In the second case, since the instance ALG2(H,G,w,N,F ′) does

not branch on a branchable vertex, we have that L(F ′, log(N)) = ∅ since every vertex in

L(F ′, log(N)) is branchable. It follows that L(F , log(N)+1) = L(F ′∪{N [X]}, log(N)+

1) = ∅.

Lemma 3.4.4. Let G be a graph, N an integer greater than 1, and let H = H0 +

H1 + ... + Hc−1 be a graph. If there exists a sequence of subsets of V (G), {Xm} =

X0, X1, ..., Xc·|H|·log(N)−1 such that for all i, Xi ⊂ V (G), the subgraph induced by Xi is

isomorphic to Hi (mod c), and for all v ∈ Xi we have that {v} ∩ N [Xj] ̸= ∅ for at most

log(N) Xj’s where j < i, then there exists a subset I ⊆ {0, 1, 2, . . . , c · |H| · log(N)− 1}

such that XI =
⋃
i∈I Xi forms an induced H in G.

Proof: LetG andH be graphs, N an integer greater than 1, andX0, X1, ..., Xc·|H|·log(N)−1

a sequence of sets of vertices with the properties given in the statement of the lemma.

Given an Xj, set i = j − (j (mod c). We will refer to the segment Xi, Xi+1,..., Xi+c−1 as

Xj’s block.

The proof is by induction on c. If c = 1 then the statement is trivially true. Assume

now that c > 1 and that the statement is true for all smaller values. There are at

most |Hc−1| · log(N) Xj’s such that some vertex of Xc·|H|·log(N)−1 belongs to Xj, j ̸=

c · |H| · log(N)− 1. Remove from the sequence each such Xj along with all other vertex

92

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

sets in Xj’s block, as well as all Xt’s such that c− 1 ≡ t (mod c). After these deletions,

re-name the sets Xj in the updated sequence so that the index j of each set Xj is equal

to the position of Xj in the sequence (starting with X0).

Let H ′ = H −Hc−1. There are at least log(N) · (c · |H| − c · |Hc−1| − |H|+ |Hc−1|)− 1

= log(N) · (c − 1) · |H ′| − 1 remaining vertex sets in the updated sequence, and this

new sequence along with H ′ and G satisfies the condition of the inductive hypothesis. It

follows that there exists a set X ′
I such that G[X ′

I] = H ′ and X ′
I is the union of sets in

the (updated) sequence. Since Xc·|H|·log(N)−1 does not belong to the neighborhood of any

of the vertex sets in the new sequence, Xc·|H|·log(N)−1 is disjoint from N [X ′
I], and hence

XI = X ′
I ∪Xc·|H|·log(N)−1 induces H in G, completing the proof.

Lemma 3.4.5. For every fair instance (H,G,w,N,F) with H = H0 + H1 + ... + Hc−1,

it holds that |F| < c · |H| · log(N)

Proof: Let the fair instance (H,G,w,N,F) be as in the statement of the lemma,

furthermore let G′ be the graph used in the initial input of ALG2 of the fair run that pro-

duces the instance (H,G,w,N,F). Assume to the contrary, that |F| ⩾ c · |H| · log(N). In

the fair run that executes the call ALG2(H,G,w,N,F), consider the sequence of recur-

sive calls (ordered by when the call occurs) that lead to the call ALG2(H,G,w,N,F). In

particular, consider the subsequence ALG0
2(H,G

0, w,N,F0),ALG1
2(H,G

1, w,N,F1), ...

ALG
c·|H|·log(N)−1
2 (H,Gc·|H|·log(N)−1, w,N,F c·|H|·log(N)−1) such that the call ALGi

2(H,

Gi, w,N,F i) is the (i + 1)th call to add a neighborhood N [Xi]. By Observation 3.4.3,

we can see that for all Xi, and for all vertices v ∈ Xi, {v} ∩ N [Xj] ̸= ∅ for at most

log(N) Xj’s with j < i. The result follows now by observing that G′, H, N , and the

sequence X0, X1, ..., Xc·|H|·log(N)−1 satisfy the hypothesis of Lemma 3.4.4, contradicting

that G′ is H-free.

93

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

Observation 3.4.6. For every fair call ALG2(H,G,w,N,F) that recurses by adding a

neighborhood N [X] and for every i,

|L(F ∪N [X], i)| ⩽ ∆i−1 · |H|+ |L(F , i)|

Furthermore, for every fair instance (H,G′, w,N ′,F ′),

|L(F ′, i)| ⩽ ∆i−1 · |H| · |F ′|

Proof: Consider a fair call ALG2(H,G,w,N,F) that recurses by adding a neigh-

borhood N [X]. Let Xj denote the set of vertices in L(F , j) ∩ N [X], then we can see

that |L(F ∪ {N [X]}, j)| ⩽ L(F , j) + |Xj−1|. Since the call ALG2(H,G,w,N,F) adds a

neighborhood, N [X], there are no branchable vertices. So, we have that for all v ∈ G,

|N [v] ∩ L(F , j)| < ∆j. Hence |Xj−1| < ∆j−1 · |H| and the result |L(F ∪ {N [X]}, i)| ⩽

∆i−1 · |H|+ |L(F , i)| follows.

The second inequality follows by combining induction, the first part the observation,

and the fact that if the call ALG2(H,G,w,N,F) executes ALG2(H,G
′, w,N ′,F ′), then

|F| < |F ′| if and only if the call ALG2(H,G,w,N,F) makes the call ALG2(H,G
′, w,N ′,F ′)

by adding a neighborhood.

For fair instances (H,G,w,N,F) we define the measure

µH(H,G,w,N,F) = |V (G)|+
∑
i

(
|L(F , i)| · N

∆i−1

)
+ 2|H| ·N · log(N) · (|H| · |CC(H)| · log(N)− |F|)

If (H,G,w,N,F) is not a fair instance, then µH(H,G,w,N,F) is undefined. Note that

µH(H,G,w,N,F) must always be an integer and that it is independent of the weight

function w. We will say that two instances (H,G,w,N,F) and (H,G′, w′, N ′,F ′) are

94

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

essentially different if G′ ̸= G, N ′ ̸= N or F ′ ̸= F .

If N = 1 then a fair run ALG2(H,G,w,N,F) clearly terminates after a constant

number of steps (since in a fair run, |V (G)| ⩽ N) regardless of the other inputs, so from

now on we will assume N > 1.

Lemma 3.4.7. For every positive integer µ, the number of essentially different fair

instances (H,G,w,N,F) such that µH(H,G,w,N,F) = µ is finite. In addition, for

every fair instance µ(H,G,w,N,F) ⩾ 0.

Proof: Consider a fair instance (H,G,w,N,F). We will show that if µH(H,G,w,N,F)

= µ, then |V (G)| ⩽ µ. If |V (G)| ⩽ µ then the range of inputs for G, N , and F are

bounded in terms of µ and the first part of the Lemma follows.

By Lemma 3.4.5 we have that |F| is less than |H|·|CC(H)|· log(N). It follows that the

terms |V (G)|, Σi(|L(F , i)|· N
∆i−1

), and 2|H|·N ·log(N)·(|H|·|CC(H)|·log(N)−|F|) are all

non negative. Hence µ(H,G,w,N,F) ⩾ |V (G)|. This also proves that µH(H,G,w,N,F)

⩾ 0.

Lemma 3.4.8. µH(H,G,w,N,F) ⩽ 4|H|2 · |CC(H)| ·N · log2(N) for every fair instance

(H,G,w,N,F).

Proof: Consider a fair instance (H,G,w,N,F). By Observation 3.4.6 and Lemma

3.4.5, we have that

|L(F , i)| · N

∆i−1

< |H| ·N · |CC(H)| < |H|2 · |CC(H)| ·N · log(N)

It follows that

∑
i

(
|L(F , i)| · N

∆i−1

)
< |H|2 · |CC(H)| ·N · log2(N)

95

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

Also, since N ⩾ |V (G)|, we have the following.

µH(H,G,w,N,F) = |V (G)|+ Σi(|L(F , i)| · N

∆i−1

)

+ 2|H| ·N · log(N) · (|H| · |CC(H)| · log(N)− |F|)

< |V (G)|+ |H|2 · |CC(H)| ·N · log2(N) + 2|H|2 · |CC(H)| ·N · log2(N)

= 4|H|2 · |CC(H)| ·N · log2(N)

We define TH(H,G,w,N,F) to be the running time (including the number of oracle

calls) of ALG2 starting with the inputs (H,G,w,N,F). We also define

TH(µ) = max
G,N,F s.t.

µH(H,G,w,N,F)⩽µ

TH(H,G,w,N,F)

Just as for ALG1, when we analyze run time we assume that arithmetic on weights

takes constant time. Thus, both the running time of ALG2 and the measure of an

instance (H,G,w,N,F) are independent of the weight function w, and so by Lemma

3.4.7, TH(µ) is well defined.

Lemma 3.4.9. TH(µ) satisfies the following recurrence:

TH(µ) ⩽ µO(1) +max

TH(µ− 1) + TH(µ[1− 1

8|H|2·|CC(H)|·log2(µ)])

TH(µ[1− 1
4|H|·log(µ)])

Proof: Let (H,G,w,N,F) be a fair instance such that µH(H,G,w,N,F)) = µ

and TH(µ) is the run time of ALG2(H,G,w,N,F). If the call ALG2(H,G,w,N,F)

branches on a branchable vertex, v, then it makes two recursive calls, one execution on

(H,G − {v}, w,N,F − {v}), which has measure at most µ − 1. The other execution is

96

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

on the instance (H,G−N [v], w,N,F −N [v]). Note that for a branchable vertex, v, we

have that

∑
i

(
|L(F −N [v], i)| · N

∆i−1

)
⩽

∑
i

(
|L(F , i)| · N

∆i−1

)
− N

2

since for at least one level i we have that |N [v] ∩ L(F , i)| ⩾ ∆i and ∆i
∆i−1

= 1/2.

Hence,

µH(H,G−N [v], w,N,F −N [v]) = |V (G)−N [v]|+ Σi(|L(F −N [v], i)| · N

∆i−1

)

+ 2|H| ·N · log(N) · (|H| · |CC(H)| · log(N)− |F −N [v]|)

⩽ |V (G)|+
∑
i

(
|L(F , i)| · N

∆i−1

)
+ 2|H| ·N · log(N) · (|H| · |CC(H)| · log(N)− |F|)− N

2

= µ− N

2

⩽ µ

(
1− 1

8|H|2 · |CC(H)| · log2(N)

)
(by Lemma 3.4.8)

⩽ µ

(
1− 1

8|H|2 · |CC(H)| · log2(µ)

)

Thus, if the call ALG2(H,G,w,N,F) branches on a branchable vertex, then we have

that

TH(µ) ⩽ TH(µ− 1) + TH

(
µ[1− 1

8|H|2 · |CC(H)| · log2(µ)
]

)
If ALG2(H,G,w,N,F) adds a neighborhood, N [X], it makes a single call ALG2(H,G,w,N ,

97

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

F ∪ {N [X]}). By Observation 3.4.6 and Lemma 3.4.8 we get the following.

µ(H,G,w,N,F ∪ {N [X]}) < µ+ |H| ·N · log(n)− 2|H| ·N · log(N)

< µ

(
[1− 1

4|H| · |CC(H)| · log(µ)
]

)
(3.1)

Thus, if the call ALG2(H,G,w,N,F) adds a neighborhood, then TH(µ) ⩽ TH(µ([1 −
1

4|H|·|CC(H)|·log(µ)]). The result now follows from the observation that ALG2(H,G,w,N,F)

only does |V (G)|O(1) = µO(1) work in a given call and always branches on a branchable

vertex, adds a balanced separator, or immediately returns a value without making further

recursive calls.

Since TH(µ) is a non negative, non decreasing function, by adding the two possibilities

in the max of Lemma 3.4.9 we immediately obtain the following simplified recurrence.

Corollary 3.4.10. TH(µ) ⩽ µO(1) + TH(µ[1 − 1
4|H|·log(µ)]) + TH(µ − 1) + TH(µ[1 −

1
8|H|2·|CC(H)|·log2(µ)]) < TH(µ− 1) + µO(1) + 2TH(µ[1− 1

8|H|2·|CC(H)|·log2(µ)])

Lemma 3.4.11. TH(µ) = µO(|H|2·|CC(H)|·log3(µ))

Proof: The proof is by induction on µ. The base case is established by Lemma

3.4.7. By Corollary 3.4.10 we have the inequality TH(µ) ⩽ TH(µ−1) +µO(1) + 2TH(µ[1−
1

8|H|2·|CC(H)|·log2(µ)]) and repeatedly applying the inequality to the first term on the right

hand side, gives T (µ) ⩽ µO(1) + 2µTH(µ[1− 1
8|H|2·|CC(H)|·log2(µ)]). By the inductive hypoth-

esis then, there is some constant c such that TH(µ)

98

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

⩽ µO(1) + 2µ(µ[1− 1

8|H|2 · |CC(H)| · log2(µ)
])c|H|2·|CC(H)|·log3(µ)

= µO(1) + 2µµc|H|2·|CC(H)|·log3(µ)
(

1− 1

8|H|2 · |CC(H)| · log2(µ)

)c|H|2·|CC(H)|·log3(µ)

⩽ µO(1) + 2µµc|H|2·|CC(H)|·log3(µ) · e−
c|H|2·|CC(H)|·log3(µ)
8|H|2·|CC(H)|·log2(µ) (since (1− x) ⩽ e−x)

⩽ µO(1) + 2µµc|H|2·|CC(H)|·log3(µ) · e−
c log(µ)

8

⩽ µc|H|2·|CC(H)|·log3(µ) (for sufficiently large c)

We are now ready to prove Theorem 3.1.2.

Proof: [Proof of Theorem 3.1.2] The algorithm returns the answer of ALG2(H,G,w,

|V (G)|, ∅). By Lemmata 3.4.1 and 3.4.2, ALG2 will always terminate and return the

weight of a maximum weight independent set in G. For the running time analysis,

observe that (H,G,w, |V (G)|, ∅) is a fair instance and let µ = µH(H,G,w,N,F). We

assume that |H| ⩽ N , since the run time bound follows trivially if |H| > N . By Lemma

3.4.8 we have that µ < 4|H|2 · |CC(H)| ·N · log2(N). Let n = N = |V (G)|, then it follows

that

TH(H,G,w,N,F) ⩽ TH(µ) = µO(|H|2·|CC(H)|·log3(µ)) = nO(|H|2·|CC(H)|·log3(n))

This completes the proof.

Theorem 3.1.2 sligthly increases the current reach of Theorem 3.1.1. In particular, let

Tk be the graph with k connected components the first of which is a path Pk on k vertices

and the remaining k − 1 are forks (a fork is a path on four vertices plus a single vertex

adjacent to the second vertex of the path). Lozin and Milanic [18] gave a polynomial

time algorithm for Weighted Independent Set on fork-free graphs. Theorem 3.1.2

99

Independent Set on Pk-Free Graphs in Quasi-Polynomial Time Chapter 3

implies that Weighted Independent Set on Tk free graphs can be solved by making

nO(k3 log3(n)) oracle calls to the polynomial time algorithm of Lozin and Milanic [18] or

the algorithm of Theorem 3.1.1. Thus we obtain the following result.

Theorem 3.4.12. There exists an algorithm that given a Tk-free graph G and weight

function w : V (G)→ N, runs in nO(k3 log3 n) time, and outputs the weight of a maximum

weight independent set of G.

3.5 Conclusion

In this chapter we gave a quasipolynomial time algorithm for Weighted Indepen-

dent Set on Pk-free graphs for all integers k. The dependence on k in the exponent is

O(k2) and so our algorithm is quasi-polynomial even for k = logO(1) n and sub-exponential

for k = n
1
2
−ε for ε > 0. In light of our algorithm it is tempting to conjecture that

(Weighted) Independent Set on Pk-free graphs can be solved in polynomial time

for every k. Given how dependent our algorithms are on branching on high degree ver-

tices it looks unlikely that our techniques can lead to polynomial time algorithms for

Pk-free graphs. Nevertheless it may be possible to extract structural insights from our

algorithms that could eventually lead to polynomial time algorithms.

Our second main result (Theorem 3.1.2) implies that if there exists a quasi-polynomial

time algorithm for H-free graphs for every subdivided claw H then there exists a quasi-

polynomial time algorithm for every finite family H such that NP-completeness of In-

dependent Set on H-free graphs does not follow from Alekseev’s result [4]. Thus, a

quasi-polynomial time algorithm for subdivided-claw-free graphs would complete a di-

chotomy for the complexity of Independent Set onH-free graphs for every finite family

H: every case is either quasi-polynomial time solvable or NP-complete.

100

Chapter 4

Independent Set in Graphs with no

Long Claws in Quasi-Polynomial

Time

In this chapter we show that the Maximum Weight Independent Set problem

(MWIS) can be solved in quasi-polynomial time on H-free graphs (graphs excluding

a fixed graph H as an induced subgraph) for every H whose every connected component

is a path or a subdivided claw (i.e., a tree with at most three leaves). This completes

the dichotomy of the complexity of MWIS in F -free graphs for any finite set F of

graphs into NP-hard cases and cases solvable in quasi-polynomial time, and corroborates

the conjecture that the cases not known to be NP-hard are actually polynomial-time

solvable.

The key graph-theoretic ingredient in our result is as follows. Fix an integer t ⩾ 1. Let

St,t,t be the graph created from three paths on t edges by identifying one endpoint of each

path into a single vertex. We show that, given a graph G, one can in polynomial time find

either an induced St,t,t in G, or a balanced separator consisting of O(log |V (G)|) vertex

101

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

neighborhoods in G, or an extended strip decomposition of G (a decomposition almost

as useful for recursion for MWIS as a partition into connected components) with each

particle of weight multiplicatively smaller than the weight of G. This is a strengthening

of a result of Majewski et al. [ICALP 2022] which provided such an extended strip

decomposition only after the deletion of O(log |V (G)|) vertex neighborhoods. To reach

the final result, we employ an involved branching strategy that relies on the structural

lemma presented above.

4.1 Introduction

The Maximum Weight Independent Set (MWIS) problem takes as input a

graph G with vertex weights w : V (G)→ Z⩾0 and asks for a set X ⊆ V (G) of maximum

possible weight that is independent (sometimes also called stable): no two vertices of X

are adjacent. This classic combinatorial problem plays an important role as a central

hard problem in several areas of computational complexity: it appears as one of the

NP-hard problems on the celebrated list of Karp [9], it is the archetypical W[1]-hard

problem in parameterized complexity [70], and is one of the classic problems difficult to

approximate [12].

In the light of the hardness of MWIS within multiple paradigms, one may ask what

assumptions on the input make the problem easier. More formally, we can ask for which

graph classes G, the assumption that the input graph comes from G allows for faster

algorithms for MWIS. For example, if G is the class of planar graphs, MWIS remains

NP-hard, but the classic layering approach of Baker [15] yields a polynomial-time approx-

imation scheme and simple kernelization arguments give a parameterized algorithm [70].

This motivates a more methodological study of the complexity of MWIS depending

on the graph class G the input comes from. As the space of all graph classes is too wide

102

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

and admits strange artificial examples, the arguably simplest regularization assumption is

to restrict the attention to hereditary graph classes, i.e., graph classes closed under vertex

deletion. Every hereditary graph class G can be characterized by minimal forbidden

induced subgraphs : the (possibly infinite) set F of minimal (under vertex deletion) graphs

that are not members of G. Then, we have G ∈ G if and only if no member of F is an

induced subgraph of G; when we want to emphasize the set F , we refer to the graph

class G as the class of F-free graphs and shorten it to H-free graphs if F = {H}.

If a problem turns out to be easier in a class of F -free graphs, in many cases it is

a single forbidden induced subgraph H ∈ F that is responsible for tractability, and the

problem at hand is already easier in H-free graphs. A prime example of this phenomenon

are the classes of line graphs and claw-free graphs. Recall that a line graph of a graph H is

a graph G with V (G) = E(H) where two vertices of G are adjacent if their corresponding

edges in H are incident to the same vertex. Observe that MWIS in a line graph G of a

graph H becomes the Maximum Weight Matching problem in the pre-image graph

H; a problem solvable in polynomial time by deep combinatorial techniques [94]. It turns

out that the tractability of MWIS in line graphs can be explained solely by one of the

minimal forbidden induced subgraphs for the class of line graphs, namely the claw S1,1,1.

(For integers a, b, c ⩾ 1, by Sa,b,c we denote the tree with exactly three leaves, within

distance a, b, and c from the unique vertex of degree 3.) As proven in 1980, MWIS is

polynomial-time solvable already in the class of S1,1,1-free graphs [80, 81], called also the

class of claw-free graphs.

Together with the vastness of the space of all hereditary graph classes, this motivates

us to focus on F -free graphs for finite sets F , in particular on the case |F| = 1. This

turned out to be particularly interesting for MWIS. As observed by Alekseev [4], for the

“overwhelming majority” of finite sets F , MWIS remains NP-hard on F -free graphs.

More precisely Alekseev observed that MWIS remains NP-hard on F -free graphs unless,

103

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

for at least one graph in F , every connected component is a path or an Sa,b,c for some

integers a,b,c. Since the original NP-hardness proof of Alekseev [4] in 1982, no new

finite sets F have been discovered such that MWIS remains NP-hard on F -free graphs.

We conjecture that this is because all of the remaining cases are actually solvable in

polynomial time.

Conjecture 4.1.1. For every H that is a forest whose every component has at most

three leaves, Maximum Weight Independent Set is polynomial-time solvable when

restricted to H-free graphs.

Let us remark that Conjecture 4.1.1, if true, would yield a dichotomy for the com-

putational complexity of MWIS on F -free graphs for all finite sets F . This is because

for every F such that NP-hardness of MWIS on F -free graphs does not follow from

Alekseev’s proof, the class of F -free graphs is contained in the class of H-free graphs for

some graph H for which polynomial time solvability of MWIS on H-free graphs follows

from Conjecture 4.1.1.

From the positive side, as already mentioned, we know that MWIS is polynomial-

time solvable in S1,1,1-free graphs since 1980. Around the same time, it was shown that

the class of P4-free graphs (by Pt we denote the path on t vertices) coincides with the

class of cographs and has very strong structural properties (in modern terms, has bounded

cliquewidth) thus allowing efficient algorithms for MWIS and many other combinatorial

problems. Apart from a result by Lozin and Milanič proving extending the S1,1,1-free case

to S1,1,2-free graphs [18] (earlier the algorithm for the unweighted variant of the problem

was provided by Alekseev [17]), the progress on Conjecture 4.1.1 was limited to various

subclasses (see [20, 19, 21, 22, 23, 24, 25, 26, 27, 19, 28, 29, 30, 31, 32] for older and

newer results of this kind) until around a decade ago.

The research in the area got significant momentum in the last decade. The progress

104

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

can be partitioned into two main threads. The first one focuses on the framework of

potential maximal cliques, introduced by Bouchitté and Todinca [33], and focuses on

providing polynomial-time algorithms for Pt-free graphs for small values of t. A landmark

result here is due to Lokshtanov, Vatshelle, and Villanger [14] who were the first to

show the usability of the framework in the context of Pt-free graphs by providing a

polynomial-time algorithm for MWIS in P5-free graphs. This has been later extended to

P6-free graphs [34] and related graph classes [35]. A notable property of this framework

is that in most cases it not only provides algorithms for MWIS, but for a wide range of

problems asking for large induced subgraph of small treewidth, for example Feedback

Vertex Set.

The second thread attempts at treating Pt-free or St,t,t-free graphs in full generality,

but relaxing the requirements on either the running time (by providing subexponential

or quasi-polynomial-time algorithms) or the accuracy (by providing approximation al-

gorithms, such as approximation schemes). Here, the starting point is the theorem of

Gyárfás [95, 36] (see also [37]).

Theorem 4.1.2. Every vertex-weighted graph G contains an induced path Q such that

every connected component of G−N [V (Q)] has weight at most half of the weight of G.

As an induced path in a Pt-free graph has less than t vertices, a Pt-free graph admits

a balanced separator (in the sense of Theorem 4.1.2) consisting of at most t − 1 neigh-

borhoods. Chudnovsky et al. [38] observed that this easily gives a quasi-polynomial-time

approximation scheme (QPTAS) for MWIS in Pt-free graphs, and they designed an

elaborate argument involving the celebrated three-in-a-tree theorem of Chudnovsky and

Seymour [39] to extend the result to the St,t,t-free case and H-free case where H is a forest

of trees with at most three leaves each. Abrishami et al. [40] used also the three-in-a-

tree theorem to obtain a polynomial-time algorithm for MWIS for St,t,t-free graphs of

105

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

bounded degree. Gartland and Lokshtanov showed how to use the theorem of Gyárfás to

design exact quasi-polynomial-time algorithm for MWIS in Pt-free graphs [1], for every

fixed t. This algorithm was later simplified by Pilipczuk, Pilipczuk, and Rzażewski [41]

and the union of the authors of these two papers showed that the approach works for

a much wider class of problems and a slightly wider graph class [2]. Last year, Ma-

jewski et al. [50] gave a cleaner argument for an existence of a QPTAS for MWIS in

St,t,t-free graphs.

This work provides the pinnacle of the second thread by showing that MWIS is

quasi-polynomial-time solvable in all cases treated by Conjecture 4.1.1.

Theorem 4.1.3. For every H that is a forest whose every component has at most three

leaves, there is an algorithm for Maximum Weight Independent Set in H-free

graphs running in time nOH(log19 n).

HereOH denotes constants depending on |H| being repressed. Theorem 4.1.3 provides

strong evidence in favor of Conjecture 4.1.1, as it refutes the existence of an NP-hardness

proof for MWIS for H-free graphs as in Conjecture 4.1.1, unless all problems in NP can

be solved in quasi-polynomial time.

4.1.1 Our techniques

As discussed in [1] (in particular Theorem 2), to show Theorem 4.1.3 it suffices to focus

on the case H = St,t,t for a fixed integer t ⩾ 1. Together with a simple self-reducibility

argument, it is enough to prove the following.

Theorem 4.1.4. For every integer t ⩾ 1, the maximum possible weight of an independent

set in a given n-vertex St,t,t-free graph can be found in nOt(log16(n)) time.

Here Ot denotes constants depending on t being repressed.

106

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

The key structural result

While Theorem 4.1.2 provides a balanced separator consisting of a few neighborhoods

in a Pt-free graph, it does not seem to be directly usable for St,t,t-free graphs. The example

of G being a line graph of a clique (which is S1,1,1-free) shows that we cannot hope for

merely a balanced separator consisting of a few neighborhoods in S1,1,1-free graphs.

However, if G is a line graph, MWIS is solvable in polynomial-time by a very different

reason than Theorem 4.1.2: because it corresponds to a matching problem in the preimage

graph. Luckily, there is a known formalism capturing decompositions of a graph that are

“like a line graph”: extended strip decompositions.

For a graph G, a strip decomposition consists of a graph H (called the host) and

a function η that assigns to every edge e ∈ E(H) a subset η(e) ⊆ V (G) such that

{η(e) | e ∈ E(H)} is a partition of V (G) and a subset η(e, x) ⊆ η(e) for every endpoint

x ∈ e such that the following holds: for every v1, v2 ∈ V (G) with v1 ∈ η(e1), v2 ∈ η(e2)

and e1 ̸= e2 we have v1v2 ∈ E(G) if and only if there is a common endpoint x ∈ e1 ∩ e2

with v1 ∈ η(e1, x) and v2 ∈ η(e2, x). Note that if G is the line graph of H, then G has a

strip decomposition with host H and η(e) = {e} for every e ∈ E(H) = V (G). The crucial

observation is that if one provides a strip decomposition (H, η) of a graphG together with,

for every xy ∈ E(H), the maximum possible weight of an independent set in G[η(xy)],

G[η(xy) − η(xy, x)], G[η(xy) − η(y)], and G[η(xy) − (η(xy, x) ∪ η(xy, y)] (these graphs

are henceforth called particles), then we can reduce computing the maximum weight of

an independent set in G to the maximum weight matching problem in the graph H with

some gadgets attached [38].

An extended strip decomposition also allows vertex sets η(x) for x ∈ V (H) and triangle

sets η(xyz) for triangles xyz in H; a precise definition can be found in preliminaries, but

is irrelevant for this overview. Importantly, the notion of a particle generalizes and the

107

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

property that one can solve MWIS in G knowing the answers to MWIS in the particles

is still true.

Extended strip decompositions come from the celebrated solution to the three-in-a-

tree problem by Chudnovsky and Seymour.

Theorem 4.1.5 ([39, Section 6], simplified version). Let G be an n-vertex graph and Z

be a subset of vertices with |Z| ⩾ 2. There is an algorithm that runs in time O(n5) and

returns one of the following:

• an induced subtree of G containing at least three elements of Z,

• an extended strip decomposition (H, η) of G where for every z ∈ Z there exists a

distinct degree-1 vertex xz ∈ V (H) with the unique incident edge ez ∈ E(H) and

η(ez, xz) = {z}.

In a sense, an extended strip decomposition as in Theorem 4.1.5 is a certificate that

no three vertices of Z can be connected by an induced tree in G.

Chudnovsky et al. [38] combined Theorem 4.1.2 with Theorem 4.1.5 in a convoluted

way to show a QPTAS for MWIS in St,t,t-free graphs; Thereom 4.1.5 is used here to

construct an induced St,t,t in the argumentation. Majewski et al. [50] provided a simpler

argument for the existence of a QPTAS: they derived from Theorem 4.1.5 the following

structural result.

Theorem 4.1.6 ([50, Theorem 2] in a weighted setting). For every fixed integer t, there

exists a polynomial-time algorithm that, given an n-vertex graph G with nonnegative

vertex weights, either:

• outputs an induced copy of St,t,t in G, or

108

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

• outputs a set P consisting of at most 11 log n+ 6 induced paths in G, each of length

at most t + 1, and a rigid extended strip decomposition of G − N [
⋃
P] with every

particle of weight at most half of the total weight of V (G).

(Here, rigid means that the extended strip decomposition does not have some unnec-

essary empty sets; in a rigid decomposition the size of H is bounded linearly in the size

of G. The formal statement of Theorem 4.1.6 in [50] is only for uniform weights in G,

but as observed in the conclusions of [50], the proof works for arbitrary vertex weights.)

Majewski et al. [50] showed that Theorem 4.1.6 easily gives a QPTAS for MWIS

in St,t,t-free graphs, along the same lines as how Chudnovsky et al. [38] showed that

Theorem 4.1.2 easily gives a QPTAS for MWIS in Pt-free graphs.

However, it seems that the outcome of Theorem 4.1.6 is not very useful if one aims

for an exact algorithm faster than a subexponential one. Our main graph-theoretic

contribution is a strengthening of Theorem 4.1.6 to the following.

Theorem 4.1.7. For every fixed integer t, there exists an integer ct and a polynomial-

time algorithm that, given an n-vertex graph G and a weight function w : V (G) →

[0,+∞), returns one of the following outcomes:

1. an induced copy of St,t,t in G;

2. a subset X ⊆ V (G) of size at most ct ·log(n) such that every component of G−N [X]

has weight at most 0.99w(G);

3. a rigid extended strip decomposition of G where no particle is of weight larger than

0.5w(G).

That is, we either provide an extended strip decomposition of the whole graph (not

only after deleting a neighborhood of a small number of vertices as in Theorem 4.1.6)

109

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

or a small number of vertices such that deletion of their neighborhood breaks the graph

into multiplicatively smaller (in terms of weight) components.

The proof of Theorem 4.1.7 is provided in Section 4.4. Let us briefly sketch it.

We start by applying Theorem 4.1.6 to G; we are either already done or we have a set

Z :=
⋃
P∈P V (P) of size O(log n) and an extended strip decomposition (H, η) of G−N [Z]

with small particles. Our goal is now to add the vertices of N [Z] one by one back to

(H, η), possibly exhibiting one of the other outcomes of Theorem 4.1.7 along the way.

That is, we want to prove the following lemma:

Lemma 4.1.8. For every fixed integer t there exists an integer ct and a polynomial-time

algorithm that, given an n-vertex graph G, a weight function w : V (G)→ [0,+∞), a real

τ ⩾ w(G), a vertex v ∈ V (G), and a rigid extended strip decomposition (H, η) of G− v

with every particle of weight at most 0.5τ , returns one of the following:

1. an induced copy of St,t,t in G;

2. a set Z ⊆ V (G) of size at most ct such that every connected component of G−N [Z]

has weight at most 0.99τ ;

3. a rigid extended strip decomposition of G where no particle is of weight larger than

0.5τ .

A simple yet important observation for Lemma 4.1.8 is that for x ∈ V (H) of degree

at least two, the set
⋃
y∈NH(x) η(xy, x) can be dominated by at most two vertices, as the

sets η(xy, x) for y ∈ NH(x) are complete to each other. Consequently, if (A,B) is a

separation in H of small order, then the part of G that is placed by η in H[A] and the

part of G that is placed by η in H[B] can be separated by deleting at most 2|A ∩ B|

vertex neighborhoods in G. Hence, if there is a separation (A,B) in H of constant order

110

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

where both these sides have substantial weight (at least 0.01τ), we can provide the second

outcome of Lemma 4.1.8.

As N [v] is just one neighborhood, the same observation holds if, instead of looking

at (H, η), we look at the inherited extended strip decomposition (H ′, η′) of G − N [v].

Here, (H ′, η′) is obtained from (H, η) by first deleting vertices of N(v) from sets η(·)

and then performing a cleanup operation that trims unnecessary empty sets and ensures

that for every xy ∈ E(H ′) there is a path in G[η′(xy)] between η′(xy, x) and η′(xy, y).

Hence, we can take all separations (A,B) in H ′ of order bounded by a large constant

(depending on t) and orient them from the side that contains less than 0.01τ weight to

the side containing almost all the weight of G. This orientation defines a tangle in H ′.

By classic results from the theory of graph minors, this tangle implies the existence of a

large wall W in H ′ which is always mostly on the “large weight” side of any separation

(A,B) of constant order. The cleaning operation ensures that the wall W is also present

in (H, η).

An important observation now is that, because (H ′, η′) is cleaned as described below,

any family of vertex-disjoint paths in H ′ projects down to a family of induced, vertex-

disjoint, and anti-adjacent paths in G of roughly the same length (or longer): for a path

P in H, just follow paths from η(xy, x) to η(xy, y) in G[η(xy)] for consecutive edges xy

on P . Furthermore, a wall W is an excellent and robust source of long vertex-disjoint

paths.

This allows us to prove that if the neighbors of v are well-connected to the wall W in

(H, η) — either they are spread around the wall itself, or one can connect them to W via

three vertex-disjoint paths in H — then G contains an induced St,t,t. Otherwise, we show

that there is a separation (A,B) in H with the neighbors of v essentially all contained

in the sets of H[A], while W lies on the B-side of the separation. (Here, a large number

of technical details are hidden in the phrase “essentially contained”.) We construct a

111

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

A

B

v

Figure 4.1: Extending a subdivided claw in GA to an St,t,t using the large wall W in B.

graph GA being the subgraph of G induced by the vertices contained in the η sets of

H[A], augmented with a set Z of artificial vertices attached to
⋃
y∈NH(x)∩A η(xy, x) for

x ∈ A ∩ B; vertices of Z signify possible “escape paths” to the wall W . These “escape

paths” allow us to show that any induced tree in GA that contains at least three vertices

of Z lifts to an induced St,t,t in G, see fig. 4.1. Hence, the algorithm of Theorem 4.1.5

applied to GA and Z can be used to rebuild H[A] to accommodate v there as well, or

to expose an induced St,t,t. This finishes the sketch of the proof of Lemma 4.1.8 and of

Theorem 4.1.7.

We would like to highlight a significant difference between previous works [40, 38, 50]

and our use of the three-in-a-tree theorem to exhibit an St,t,t in a graph or obtain an

extended strip decomposition. All aforementioned previous works essentially picked three

anti-adjacent paths P1, P2, P3 of length t each, with endpoints say xi and yi for i = 1, 2, 3,

removed their neighborhood except for the neighbors of yis, and called three-in-a-tree

for the set Z = {x1, x2, x3}; note that any induced tree in the obtained graph that

112

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

contains Z contains also an induced St,t,t. This method inherently produced extended

strip decompositions not for the entire graph, but only for after removal of a number of

neighborhoods. Furthermore, it used the assumption of being St,t,t-free only in a very

local sense: there is no St,t,t with paths extendable to the given three vertices of Z. In

this work, in contrast, we apply the three-in-a-tree theorem to a potentially much bigger

set Z, and use a subdivided wall in the host graph of the extended strip decomposition to

extend any induced tree found to an induced St,t,t. In this way, we used the assumption of

being St,t,t-free in a more global way than just merely asking for three particular leaves.

Branching

We now proceed with a sketch of our recursive branching algorithm. On a very

high level, it is based on techniques used in the quasi-polynomial time algorithm for

independent set on Pk-free graphs found in [1], though multiple new ideas are required to

make the reasoning work in the setting of St,t,t-free graphs, making both the algorithm and

its running time analysis quite a bit more technical. We will soon sketch the algorithm

found in [1] and describe how to extend it to St,t,t-free graphs, but first we must address

a major barrier. The fact that Pk-free graphs have balanced separators dominated by k

vertices, as discussed after Theorem 4.1.2, is a crucial fact used in the algorithm of [1].

But, as mentioned previously, St,t,t-free graphs have no such property (take for instance

the line graph of a clique). This is where Theorem 4.1.7 comes to the rescue.

When applying Theorem 4.1.7 to G (the input graph of the current call of the algo-

rithm), since we assume that G is St,t,t-free, we are guaranteed that outcome (1) will not

occur. If outcome (3) occurs then we get an extended strip decomposition (H, η) and, as

previously mentioned, we can reduce finding a maximum independent set of G to finding

a maximum independent set in each particle of (H, η). That is great news, as each par-

ticle has at most half of the weight of G, and we can easily employ a divide-and-conquer

113

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

strategy by recursively calling the algorithm on each particle of (H, η). So, since outcome

(1) never happens and outcome (3) gives us an easy algorithm, we can always assume

that outcome (2) happens, that is, that Theorem 4.1.7 gives us a balanced separator of

G that is dominated by O(log n) vertices, and now we can try to extend the techniques

found in [1] to work for St,t,t-free graphs. Therefore, for the rest of this subsection we

will focus on sketching an algorithm for independent set on an St,t,t-free graph G such

that all induced subgraphs of G have a balanced separator dominated by some constant

number of vertices (the stronger assumption of a constant number of vertices versus log n

vertices does not change the algorithm very much and simplifies the discussion).

Before sketching the algorithm let us give a few short definitions around balanced

separators for an St,t,t-free graph G (see Section 4.2 for formal definitions of balanced

separators). For n′ > 0, we say that a set S ⊆ V (G) is a n′-balanced separator for G

if no component of G − S has more than n′ vertices. If A ⊆ V (G) and no component

of G − S contains over n′ vertices of A, we say that S is a n′-balanced separator for

(G,A). The outcome (2) of Theorem 4.1.7 gives us a 0.99|A|-balanced separator for

(G,A) dominated by O(log n) vertices (again here for simplicity we will assume that these

balanced separators are in fact dominated by a constant number of vertices). However,

by picking a constant number of balanced separators as provided by Theorem 4.1.7 and

taking their union, we can obtain c|A|-balanced separators for (G,A) dominated by a

constant number of vertices for any fixed c ∈ (0, 1), so we will assume we have access to

such strengthened balanced separators.

Summary of the Quasi-Polynomial Time Algorithm for MWIS on Pk-free

Graphs. The starting point for our algorithm is the algorithm for MWIS on Pk-free

graphs by Gartland and Lokshtanov [1], who in turn build on an algorithm of Bacsó et

al. [37]. We therefore give a brief summary of these algorithms.

114

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

We first consider the simple nO(k
√
n logn) time algorithm of Bacsó et al. [37] for MWIS

on Pk-free graphs. We begin with an n-vertex Pk-free graph G and branch on all vertices

of degree at least
√
n: we either exclude such a vertex from the solution (and thus

remove it from the graph), or we include it (and then remove its whole neighborhood

from the graph). After this we may assume that the graph in our current instance (we

will still refer to this graph as G although some vertices of the original graph G have

been removed) now has maximum degree at most
√
n. We solve this instance by finding

an n/2-balanced separator, S, for G that is dominated by at most k vertices. Since G

has maximum degree
√
n and S is dominated by at most k vertices, S can have size at

most k
√
n. We then branch on all k

√
n vertices of S simultaneously, which then breaks

up the graph into small connected components and we recurse on each component. A

simple analysis shows that this runs in nO(k
√
n logn) time.

Now, let us try to improve it to an algorithm that runs in time nO(kn1/3 logn). We first

state a modified form of a lemma that appears in [1].

Lemma 4.1.9. Let G be an n-vertex Pk-free graph and F a multi-set of subsets of V (G)

such that for every S ∈ F no component of G has more than n/2 vertices. Assume

that no vertex belongs to more than c sets of F counting multiplicity. Then provided

|F| ⩾ 3ck, no component of G contains more than 3n/4 vertices.

Proof: [Sketch of proof.] Let S ∈ F and assume for a contradiction that the largest

component of G, call it C, has more than 3n/4 vertices. Select vertices a, b uniformly

at random from C. As |C| > 3n/4 the probability that a and b belong to different

components of G − S is at least 1/3. If we let XS be the random variable that is 1 if a

and b are in different components of G − S and 0 otherwise, then E[XS] ⩾ 1
3
. By the

linearity of expectation, we have E[
∑

S∈F XS] ⩾ 1
3
· 3ck ⩾ ck. It follows that there exists

vertices a, b ∈ S such that for at least ck sets, S ′, in F (counting multiplicity) a and b

115

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

are in different components of G − S ′. Let F ′ be the subset of F that contains these

sets S ′. It follows that for any induced path P with a and b as its endpoints, if S ′ ∈ F ′

then V (P) ∩ S ′ ̸= ∅. Since F ′ has at least ck sets and no vertex of P belongs to more

than c sets in F ′, P must have at least k vertices, contradicting the assumption that G

is Pk-free.

Now for the nO(kn1/3 logn) algorithm. We again begin by branching on vertices of high

degree, but this time we set the threshold to vertices with degree at least n2/3. After

this we may assume the graph in our current instance, call it G1, has maximum degree

n2/3. We then find a balanced separator, S1, for G1 that is dominated by k vertices,

hence S has at most kn2/3 vertices. We then branch on all vertices with at least n1/3

neighbors in S1. Now we assume the graph considered in our current instance, call it G2,

has maximum degree n2/3 and a balanced separator S1 such that no vertex of G2 has

more than n1/3 neighbors in S1. We then find a balanced separator, S2, for G2 that is

dominated by k vertices, hence S has at most kn2/3 vertices and S1∩S2 has size at most

kn1/3. We then branch on all vertices with at least n1/3 vertices in S2 and we branch on

all vertices that belong to S1 ∩ S2, so S1 and S2 “become disjoint”. We repeat this 3k

times until we are in an instance where we have a graph G3k and 3k pairwise disjoint

balanced separators S1, . . . S3k. By Lemma 4.1.9, G3k has no component with over 3n/4

vertices and we then recurse on each component. A somewhat more involved, but still

fairly simple analysis shows that this runs in nO(kn1/3 logn) time.

In the nO(kn1/3 logn)-time algorithm, we branched on vertices that: had over n2/3 neigh-

bors, or had n1/3 neighbors in any of the balanced separators we picked up, or belonged

to two of the balanced separators we picked up. In order to modify this algorithm to

run in quasi-polynomial time all that must be done is change the branching threshold.

In particular, the algorithm collects balanced separators (each dominated by at most k

vertices) and will branch on any vertex that has over n/2i neighbors that belong to i or

116

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

more of the collected balanced separators (the algorithm no longer branches on vertices

that only have high degree). Any vertex that belongs to log n of the collected balanced

separators will then be branched on, so no vertex will ever belong to more than log n

of the collected balanced separators. So, by Lemma 4.1.9, after collecting 3k log n of

these balanced separators, the graph will not have any large component. A runtime

analysis of this algorithm shows that it runs in quasi-polynomial time. Note that in

all three algorithms discussed here (the nO(kn1/2 logn)-time, nO(kn1/3 logn)-time, and quasi-

polynomial-time algorithm) it is crucial for efficient runtime that the balanced separators

we use are dominated by few vertices (they were dominated by k vertices here, but being

dominated by polylog(n) vertices would still be sufficent).

Back to St,t,t-free Graphs. Recall that we wish to get a quasi-polynomial time al-

gorithm for MWIS on St,t,t-free graphs for the case where every induced subgraph of

the input graph G has a set S of at most ct vertices such that N [S] is a n/2-balanced

separator. Up to the bound on the set dominating the separator, this is precisely the

case when we keep getting outcome (2) whenever we apply Theorem 4.1.7.

We want to mimic the algorithm for Pk-free graphs. This algorithm used that the

input graph is Pk-free in precisely two places. The first is to keep getting constant size

sets S such that N [S] is an n/2-balanced separator. This is easily adapted to our new

setting because we keep getting such sets whenever we apply Theorem 4.1.7.

The second place where Pk-freeness is used is in Lemma 4.1.9, which states that a

Pk-free graph cannot have a set of 3k log n balanced separators such that no vertex of G

appears in at most O(log n) of them. If we could strengthen the statement of Lemma 4.1.9

to St,t,t-free graphs we would be done! Unfortunately such a strengthening is false, indeed

a path is a counterexample (each vertex close to the middle of the path is a balanced

separator).

117

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

Nevertheless, a subtle weakening of Lemma 4.1.9 does turn out to be true. In partic-

ular, in St,t,t-free graphs it is not possible to pack “very strong” balanced separators that

are dominated by “very few” vertices. We will call such balanced separators c-boosted

balanced separators. A somewhat simplified definition of a c-boosted balanced separator

is a set N [S] dominated by a set S of at most c vertices, such that no component of

G−N [S] has more than |V (G)|/16c2 vertices (see Definition 4.3.1). It turns out that on

St,t,t-free graphs Lemma 4.1.9 is true if “balanced separators” are replaced by “s-boosted

balanced separators” for appropriately chosen integer s.

Lemma 4.1.10. Let G be an n-vertex St,t,t-free graph, s an integer, and F a multi-set

of subsets of V (G) such that every set in F is an s-boosted balanced separator. Assume

no vertex belongs to more than c sets of F . Then, provided |F| ⩾ 80sct, no component

of G contains over 3n/4 vertices.

We skip sketching the proof of Lemma 4.1.10 here (see Section 4.3.2 for a formal

statement and proof of this lemma), but we will remark that one of the key ingredients

of the proof is a probabilistic argument akin to the proof of Lemma 4.1.9 (the proof of

Lemma 4.3.10 is a bit more involved).

At this point we are one “disconnect” away from being able to utilize the strategy for

Pk free graphs: Theorem 4.1.7 keeps giving us balanced separators, while Lemma 4.1.10

tells us that we can’t pack boosted balanced separators. Indeed, if we assumed our St,t,t-

free graphs always had, say, ct-boosted balanced separators (where ct is some constant

that depends on t), then by the exact same reasoning as before, the strategy of itera-

tively collecting a ct-boosted balanced separator and then branching (on all vertices that

have over n/2i neighbors that belong to i or more of the collected ct-boosted balanced

separators) would work. Any vertex that belongs to log n of the collected ct-boosted

balanced separators will then be branched on, so no vertex will ever belong to over log n

118

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

of the collected balanced separators. So, by Lemma 4.1.10, after collecting 80ctt log n of

these ct-boosted balanced separators, the graph will not have any large component. A

running time analysis identical to the one for Pk-free graphs [1] would then show that

this algorithm runs in quasi-polynomial time.

Is it possible to bridge the “disconnect” from the other side and keep getting boosted

balanced separators? This looks difficult, but we are able to bridge the gap algorithmi-

cally, by branching in such a way that a “normal” balanced separator becomes boosted.

We can then add this boosted balanced separator to our collection of previously created

boosted balanced separators, and then apply Lemma 4.1.10 to this collection to conclude

that the graph gets sufficiently disconnected before the collection grows too large. We

now sketch how to “boost” a separator.

Boosting Separators. We begin with a balanced separator N [S], dominated by a set

S of at most ct vertices, such that no component of G−N [S] has more than n/2 vertices.

(For technical reasons in the actual algorithm N [S] is not a balanced separator, but rather

a set given by Theorem 4.1.6 so that G−N [S] has an extended strip decomposition with

no large particles; from the viewpoint of efficient independent set algorithms this is just as

useful.) We wish to turn N [S] into a ct-boosted balanced separator. In order to do this,

we consider all vertices of N [S] that have a neighbor in a large component of G−N [S];

we call this set relevant(G,S) (see Figure 4.2. This is a slight simplification of the actual

definition of relevant(G,S) that we use in the algorithm, see Definition 4.3.2). By “large

component” we mean any component of G − N [S] that has more than n/16c2t vertices

(note that if there are no such components, then N [S] is a ct-boosted balanced separator).

In order to branch in a way that turns N [S] into a ct-boosted balanced separator, we use

the following lemma, similar to Lemmas 4.1.9 and 4.1.10.

Lemma 4.1.11. Let G be an n-vertex St,t,t-free graph, let N [S] be a balanced sepa-

119

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

Figure 4.2: Illustration of how the set relevant(G,S) is obtained from S.

rator for G dominated by a set S of at most ct vertices, and let F be a multi-set of

|relevant(G,S)|/100c3t -balanced separators for (G, relevant(G,S)). Assume no vertex be-

longs to over c sets of F . If |F| ⩾ 10ct, either S is a ct-boosted balanced separator or no

component of G contains more than 3n/4 vertices.

The proof of Lemma 4.1.11 follows a similar “expectation argument” that Lemma 4.1.9

uses, although it is a bit more involved. We do not sketch a proof of Lemma 4.1.11

here (this lemma statement is more or less a combination of Observation 4.3.6 and

Lemma 4.3.9)

This lemma suggests the following branching strategy. We first pick up an n/2-

balanced separatorN [S] dominated by a set S of ct vertices, and we will try use Lemma 4.1.11

to turn N [S] into a ct-boosted balanced separator or break up G into small compo-

nents. We use the same reasoning as before: iteratively collect |relevant(G,S)|/100c3t -

120

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

balanced separators for (G, relevant(G,S)) and branch (on all vertices that have over

n/2i neighbors that belong to i or more of the collected balanced separators). Any ver-

tex that belongs to log n of the collected balanced separators will then be branched on,

so no vertex will ever belong to over log(n) of the collected balanced separators. So,

by Lemma 4.1.11 after collecting 10t log n of these |relevant(G,S)|/100c3t -balanced sepa-

rators for (G, relevant(G,S)), either the graph will have no large component (and then

we make large progress by calling the algorithm recursively on the components) or S is

now a ct-boosted balanced separator, which we then add to our collection of ct-boosted

balanced separators. By Lemma 4.1.10 this collection cannot grow larger than 80ctt log n

before our graph no longer has large connected components.

The running time analysis of this algorithm essentially looks like this: if we could as-

sume that boosting a single balanced separator to become a boosted balanced separator

took constant time, then the analysis would be more or less identical to the analysis of

the algorithm for MWIS on Pk-free graphs. However, now each individual “boosting”

step is instead a branching algorithm whose analysis again is very similar to the analysis

of the algorithm for MWIS on Pk-free graphs, so each boosting step corresponds to a

recursive algorithm with quasi-polynomially many leaves. Since quasi-polynomial func-

tions compose the entire running time is still quasi-polynomial. Finally we need to take

into account what would happen if outcome (3) of Theorem 4.1.7 does occur, but this

can fairly easily be shown to only be good for the progress of the algorithm.

4.2 Preliminaries

We define a vertex list, or more simple a list, to be an ordered multi-set of subsets

V (G). If F = {F1, F2, . . . , Fk} is a list and S ⊆ V (G) we define F ∪ S to be the

list F with S appended at the end, that is F ∪ S = {F1, F2, . . . , Fk, S}. We define

121

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

column

row

subwall of sidelength 4basic subpath

pegs

Figure 4.3: Wall of sidelength 8. The lines between pegs denote paths of arbitrary length.

NG′
G [F] = {NG′

G [F1], N
G′
G [F2], . . . , N

G′
G [Fk]}.

Let G be a graph, G′ an induced subgraph of G, Y ⊆ V (G′), and w a weight function

for the vertices of G′. We say Y is a c-balanced separator for (G′,w) if no component, C,

of G− Y has w(C) > c. Now let Z ⊆ V (G′) such that no component of G′− Y contains

over c vertices of Z. Then we say that Y is a c-balanced separator for (G′, Z). If there is

a set X ⊆ V (G) such that Y = NG′
G [X] then we say that Y has a core X originating in

G. When Z = V (G′) then we say that Y is a c-balanced separator for G′ with a core X

originating in G and when G = G′ then we say that Y is a c-balanced separator for G′

with a core X.

Wall notation. A wall of sidelength ℓ is depicted in Figure 4.3; it consists of ℓ rows

and ℓ columns as in the figure. A peg is a vertex of degree three in a wall. A path between

two pegs that has no other peg as an internal vertex is called a basic path in a wall. We

say that wall is k-subdivided if every basic path has length more than k. A subwall of a

wall W is a wall whose rows and columns are subpaths of the rows and columns of W .

122

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

Separations and tangles. Let G be a graph. A separation in G is an ordered pair

(A,B) of vertex sets A,B ⊆ V (G) such that A ∪ B = V (G) and there is no edge of

G with one endpoint in A − B and the second endpoint in B − A. The order of the

separation (A,B) is |A ∩B|.

A tangle of order k in a graph G is a family T of separations of order less than k such

that:

• For every separation (A,B) of order less than k in G, exactly one of the separations

(A,B) and (B,A) belongs to T .

• For every triple (A1, B1), (A2, B2), (A3, B3) ∈ T we have A1 ∪ A2 ∪ A3 ̸= V (G).

Observe that if T is a tangle of order k and k′ < k, then the set T ′ consisting of

all separations of T of order less than k′ is a tangle of order k′. We call such T ′ the

restriction of T to order k′.

Let W be a wall in G of sidelength k. Let (A,B) be a separation in G of order k′ < k.

Note that for exactly one Γ ∈ {A − B,B − A}, Γ contains at least k − k′ full rows and

at least k− k′ full columns of W . Let TW be the set of those separations (A,B) of order

less than ⌈k/3⌉ such that B − A contains at least k − ⌈k/3⌉ + 1 full rows and at least

k − ⌈k/3⌉ + 1 full columns of W . It is straightforward to verify that TW is a tangle of

order ⌈k/3⌉; we call it the tangle governed by W .

We make the following simple but important observation.

Lemma 4.2.1. If W is a wall in a graph G and W ′ is a subwall of W , then TW ′ ⊆ TW .

Proof: Let k and k′ be the sidelengths of W and W ′, respectively. Let (A,B) ∈ TW

be a separation of order less than ⌈k′/3⌉. Then, B − A contains at least k − ⌈k′/3⌉ + 1

full rows of W and at least k − ⌈k′/3⌉ + 1 full columns of W . Since W ′ is a subwall of

W , B − A contains at least k′ − ⌈k′/3⌉ + 1 full rows of W ′ and at least k′ − ⌈k′/3⌉ + 1

full columns of W ′. Hence, (A,B) ∈ TW ′ , as desired.

123

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

We will need the following result, which follows from the combination of the poly-

nomial grid minor theorem [96, 97], the duality of tangles and branchwidth [98], and

Lemma 14.6 of [99].

Theorem 4.2.2. There exists a function fKTW20(k) = Õ(k18) such that if a graph G

admits a tangle T of order fKTW20(k) for an integer k, then G contains a wall W of

sidelength 3k such that TW is the restriction of T to order k.

4.3 The Algorithm

In this section, we define log(n) = max(2, ⌈log2(n)⌉). Let t be a positive integer,

throughout this section, we will use ct to denote the constant given in Lemma 4.4.1

of the same name. In order to make dealing with constants easier (in particular the

constants that arise from Definition 4.3.4), we will assume that ct ⩾ 34t. Additionally,

in this section we will assume that all graphs, G, come equipped with a weight function

w : V (G) → [0,+∞). If G′ is an induced subgraph of G′, then we assume that G

inherits its weight function from G, that is the weight function for the vertices of G′ is

the weight function for the vertices of G when restricted to the vertices of G′. For a

subset X ⊆ V (G), w(X) =
∑

x∈X w(x).

4.3.1 Definitions and Observations

In this subsection we collect most of the definitions we will use for this section and

immediate observations about these definitions.

The interpretation of G and G′ in the coming definitions will be as follows: we are

running the algorithm in order to find the maximum size independent set of G. The

algorithm is recursive, and only makes recursive calls on induced subgraphs of the input

124

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

graph. Suppose we want to analyze a recursive call in which the current induced subgraph

of G that is being considered is G′. When arguing about the behavior of the algorithm

on input G′, it is useful to be able to conclude that the bigger graph G contains an St,t,t.

Throughout our algorithm, balanced separators as defined in Section 4.2 will often

be readily available. However we will sometimes need balanced separators with even

stronger properties; in particular we will need the amount that the separator disconnects

the graph to depend super-linearly in the size of its core. We will call such balanced

separators boosted (see Definition 4.3.1 below), and a substantial part of our algorithm

will consist of trying to reduce the input graph G so that some vertex set becomes boosted

(in the sense of Definition 4.3.1). Unlike for normal balanced separators, the following

definition is always used with Z = V (G′), so reference to Z is dropped in the following

definition.

Definition 4.3.1 (s-boosted balanced separator). Let G be a graph, G′ an induced

subgraph of G, and s be a positive integer. A vertex set Y ⊆ V (G′) is an s-boosted

balanced separator for G′ with a core X originating in G if Y is a c-balanced separator

for G′ with core X originating in G, |X| ⩽ s, and c ⩽ |C|
16s2

, where C is a largest component

of G′. When G and G′ are clear from context, we may say that X is a core of the boosted

balanced separator, Y .

The algorithm will often work with a graph G, a vertex set X in G and an induced

subgraph G′ of G. The aim is to ensure that X is a core of an s-boosted balanced

separator (for an appropriately chosen s) of G′. If X doesn’t already satisfy this, it is

because G′ − Y , where Y = NG′
G [X], has some connected components that are too big.

The next definition zooms in on the neighborhood of these connected components into

Y (the constants in the formal definition don’t quite match the intuition above for book

keeping reasons).

125

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

Definition 4.3.2 (relevant set). Let t be a positive integer, G an St,t,t-free graph,

X ⊆ V (G), G′ an induced subgraph of G, and N a positive integer. We define rele-

vantG(G′, X,N) to be the subset of vertices of NG′
G [X] that have at least one neighbor in

at least one component of G′ −NG′
G [X] that contains over N

32c2t log
2(N)

vertices.

We make the following important observation about relevantG(G′, X,N) that follows

directly from the fact that if G′′ is an induced subgraph of G′, then every component

of G′′ − NG′′
G [X] of size at least N

32c2t log
2(N)

vertices is contained in some component of

G′ −NG′
G [X] of size at least N

32c2t log
2(N)

.

Observation 4.3.3. Let t be a positive integer, G an St,t,t-free graph, X ⊆ V (G), G′ an

induced subgraph of G, G′′ and induced subgraph of G′, and N a positive integer. Then

relevantG(G′′, X,N) ⊆ relevantG(G′, X,N).

Note that in an St,t,t-free graph, Theorem 4.1.6 will always return a family F satisfying

the second bullet point of the theorem statement. This motivates the following definition.

Definition 4.3.4 (esd and inferred extended strip decomposition). Let t be a positive

integer and G an n-vertex St,t,t-free graph. We define esd(G) to be a subroutine that

uses Theorem 4.1.6 to return a set X ⊆ V (G), |X| ⩽ (t + 1)(11 log(n) + 6) ⩽ 34t log(n)

⩽ ct log(n) such that G−NG[X] has a rigid extended strip decomposition, (H, η), where

no particle of (H, η) has over |G|/2 vertices. Furthermore, this subroutine runs in time

polynomial time.

Additionally, if G′ is an induced subgraph of G, we define the extended strip decom-

position inferred by (X,G′), call it (H ′, η′). For each component, C, of G′ that does not

contain a vertex of NG′
G [X], H ′ contains an isolated copy Hc of H, and for all vertices,

edges, and triangles, Rc, of Hc let R be the corresponding vertex, edge, or triangle in

H. We set η′(Rc) = η(R) ∩ C. For each component C∗ of G′ that contain at least one

vertex of NG′
G [X], H ′ contains an isolated vertex vc∗ and η′(vc∗) = C∗.

126

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

It follows from the definition of extended strip decomposition that (H ′, η′) is a valid

extended strip decomposition of G′. Note that the extended strip decomposition inferred

by (X,G′) can be computed in polynomial time since we have access to the extended strip

decomposition, (H, η), by Theorem 4.1.6 and since H has only O(n) vertices (because it

is rigid, see the discussion after Theorem 4.1.6), H ′ has nO(1) vertices and therefore nO(1)

particles. Furthermore, note that for any particle P of (H ′, η′) either P is equal so some

component C∗ that contains at least one vertex of NG′
G [X] (when P = η′(vc∗)) or P is

equal to to P ′ ∩C where P ′ is a particle of (H, η) and C is a component of G′ that does

note contain any vertices of NG′
G [X]. This leads to the next two observation. But we first

give one additional definition related to extended strip decompositions which is meant

to capture when each particle of our extended strip decomposition is “small enough” so

that we make enough progress when we recursively call the algorithm on each particle.

Let t be a positive integer, G an St,t,t-free graph, N a natural number, and (H, η)

an extended strip decomposition of G. We say that (H, η) is an N-good extended strip

decomposition if no particle of (H, η) has over (1− 1
32c2t log

2(N)
)N vertices of G. Note that

these are the same constants used in the definition of relevant, the reason for this will

become apparent in Observation 4.3.6.

The first observation follows from the fact that the size of the largest particle of the

extended strip decomposition inferred by (X,G′) is bounded by the size of the largest

component of G′.

Observation 4.3.5. Let t be a positive integer, N a natural number, G an St,t,t-free

graph, G′ an induced subgraph of G, and X ⊆ V (G). If no component of G′ has over

(1 − 1
32c2t log

2(N)
)N vertices then the extended strip decomposition inferred by (X,G′) is

N-good.

Observation 4.3.6. Let t be a positive integer, G an n-vertex St,t,t-free graph, N a

127

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

natural number, G′ an induced subgraph of G, and X ⊆ V (G) such that G−NG[X] has

an extended strip decomposition, (H, η), where no particle contains over N/2 vertices. If

relevantG(G′, X,N) = ∅ then either NG′
G [X] is an N

32c2t log
2(N)

-balanced separator for G′ or

the extended strip decomposition inferred by (X,G′) is N-good.

Proof: Let t, N , G, G′, X, and (H, η) be as in the statement of the lemma and (H ′, η′)

be the extended strip decomposition inferred by (X,G′). If there are no components

of G′ − NG′
G [X] that contain at least N

32c2t log
2(N)

of the vertices of G then we are done

(as NG′
G [X] would be an N

32c2t log
2(N)

balanced separator), so we may assume that there

is a component C of G′ − NG′
G [X] that contains at least N

32c2t log
2(N)

vertices of G and

NG′ [C] ∩ NG′
G [X] = ∅ by the assumption that relevantG(G′, X,N) = ∅. It follows that

C is a component of G′ and therefore any component of G′ that contains at least one

vertex of NG′
G [X] has at most (1 − 1

32c2t log
2(N)

)N vertices. This combined with the note

about particles made just after Definition 4.3.4 (that every particle of (H ′, η′) is either a

component, C, of G that contains at least one vertex of NG′
G [X] - which can have size at

most (1− 1
32c2t log

2(N)
)N - or a subset of a particle of (H, η) - which by assumption has at

most N/2 vertices) proves the observation.

4.3.2 Preliminary Lemmas

We will now present a few lemmas that will be useful to have in hand before describing

the algorithm. Given a graph G and an extended strip decomposition (H, η) for G the

following lemma shows that solving independent set on G can be reduced to solving

independent set on each particle of G. This reduction first appears in [38], the version

we cite here is derived from [40] (Lemma 5.2).

Lemma 4.3.7 ([38, 40]). Let G be an n-vertex graph and let (H, η) be an extended strip

decomposition of G where H has N vertices. Furthermore, assume that for each particle,

128

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

P , of (H, η), we know the weight of a maximum weight independent set of G[P]. Then in

time polynomial in n+N we can compute the weight of a maximum weight independent

set of G.

Let G be a graph and (H, η) an extended strip decomposition for G such that for

each particle, P , of (H, η) the weight of a maximum weight independent set of G[P] is

known. We use matching(H, η) to denote the output (the weight of a maximum weight

independent set of G) of running the algorithm of Lemma 4.3.7.

Lemma 4.3.8. Let t be an postive integer, G an n-vertex St,t,t-free graph, A ⊆ V (G),

and i ⩽ log(n) a natural number. Either G contains a set C such that NG[C] is an

(|A|/2i)-balanced separator for (G,A) and |C| ⩽ (ct)(70)2i+1 log(n) or G has a rigid

extended strip decomposition, (H, η), such that no particle contains over (1− 1/2i+2)|A|

vertices of A. Furthermore, either C or (H, η) can be found in polynomial time.

Proof: Let t, G, n, and A be a in the statement of this lemma. We first claim that

either G contains a set C such that NG[C] is an (|A|/2)-balanced separator for (G,A)

and |C| ⩽ 70ct log(n) or G has an extended strip decomposition, (H, η), such that no

particle contains over (1 − 1/4)|A| vertices of A and either C or (H, η) can be found in

polynomial time.

In order the prove this we will consider a process consisting of at most 70 step. At

the jth step we will assume we have a set Cj such that NG[Cj] is an (|A| · 0.99j)-balanced

separator for (G,A) and |C| ⩽ ctj log(n) (we have C0 = ∅ for the base case). Given

such a Cj, we show how to find Cj+1 or find a rigid extended strip decomposition (H, η)

of G such that no particle has over (1 − 1/4)|A| vertices of A. If NG[Cj] is already an

|A|/2-balanced separator for (G,A) then we are done, so assume this does not happen,

let X be the component of G−NG[Cj] that contains over half the vertices of A and let

XA = X ∩ A.

129

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

We apply Lemma 4.4.1 to G where all vertices of XA have weight 1 and all other

vertices have weight 0. Outcome (1) cannot occur as G is St,t,t-free. If outcome (2)

occurs, then we get a set XC such that NG[XC] is an (|XA| · 0.99)-balanced separator for

(G,XA) and |XC | ⩽ ct log(n). We set Cj+1 = Cj ∪XC , it holds then that NG[Cj+1] is an

(|A| ·0.99j+1)-balanced separator for (G,A) and |Cj+1| ⩽ |Ct|+ |Xc| ⩽ ct(j+1) log(n), as

desired. If outcome (3) occurs then we get a rigid extended strip decomposition (H, η) for

G such that no particle of (H, η) contains over half of XA. Since |XA| ⩾ |A|/2 it follows

that no particle of (H, η) contains over (1− 1/4)|A| vertices of A. Since 0.9970 < .5 this

process must end by the 70th step. Since Lemma 4.4.1 runs in polynomial time, this

process runs in polynomial time.

We now prove the full statement of this lemma in a similar manner. Fix some natural

number i ⩽ log(n). In order the prove this we will consider a process consisting of at

most i step. At the jth step, j < i, we will assume we have a set Cj such that NG[Cj]

is an |A|/2j-balanced separator for (G,A) and |C| ⩽ 70ct · 2j+1 log(n) (we have C0 = ∅

for the base case). So, assume Cj satisfies these properties, we show how to find Cj+1

or find a rigid extended strip decomposition (H, η) of G such that no particle has over

(1− 1/2j+2)|A| vertices of A (we have C0 = ∅ for the base case).

Consider each component, X, of G − NG[Cj] that contain at least |A|/2j+1 vertices

of |A|, there are at most 2j+1 such components, set XA = X ∩ A. For each X and

corresponding XA we apply the claim from the first paragraph of this proof to G where

all vertices of XA have weight 1 and all other vertices have weight 0. The first possibility

is for each X and XA we get a set XC such that NG[XC] is an |XA|/2-balanced separator

for (G,XA) and |XC | ⩽ 70ct log(n). Then we set Cj+1 = Cj ∪
⋃
X

XC , it holds then that

130

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

NG[Cj+1] is an (|A|/2j+1)-balanced separator for (G,A) and

|Cj+1| ⩽ |Cj|+
∑
X

|XC | ⩽ 70ct · 2j+1 log(n) + 70ct · 2j+1 log(n) = 70ct · 2j+2 log(n),

as desired. The other possibility is that for at least one X we get a rigid extended strip

decomposition (H, η) for G such that no particle of (H, η) contains over half of XA.

Since |XA| ⩾ |A|/2j+1 it follows that no particle of (H, η) contains over (1 − 1/2j+3)|A|

⩽ (1− 1/2i+2) vertices of A (since j < i).

Repeating this i ⩽ log(n) times (or until we get a desired extended strip decomposi-

tion) then yields the result. Since each step applies Lemma 4.4.1 less than n time and

Lemma 4.4.1 runs in polynomial time and there are at most log(n) steps, this process

runs in polynomial time.

Cannot Pack Many Balanced Separators

Recall the following notation from Section 4.2: Let G be a graph, G′ an induced

subgraph of G, and X ⊆ V (G). We define NG′
G [X] to mean NG[X]∩V (G′). Furthermore,

let F = {F1, F2, . . . , Fk} be a list. Then NG′
G [F] = {NG′

G [F1], N
G′
G [F2], . . . , N

G′
G [Fk]}.

Lemma 4.3.9. Let t be a positive integer, G an n-vertex St,t,t-free graph, N ⩽ |G| a

natural number, G′ an induced subgraph of G, X ⊆ V (G), and F a list of vertex sets

of G. Assume that relevantG(G′, X,N) ̸= ∅ and all sets of NG′
G [F] are |relevantG(G′,X,N)|

100c2t log
2(N)|X| -

balanced separators for (G′, relevantG(G′,X,N)) such that no vertex of G′ belongs to over

c sets of NG′
G [F]. If |F| ⩾ 10tc then G contains an induced St,t,t.

Proof: Let t, G,G′, N,X, and F have the same meaning as in the statement of this

lemma. Among all components of G′−NG′
G [X] that have at least |G′|

32c2t log
2(N)

vertices, let C

denote the one such that the size of C∗ = NG′ [C]∩relevantG(G′, X,N) is maximized. Since

131

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

there are at most 32c2t log2(N) components of G′ −NG′
G [X] that have at least |G′|

32c2t log
2(N)

vertices and by definition all vertices of relevantG(G′, X,N) have at least one neighbor in a

component of G′−NG′
G [X] of size at least |G′|

32c2t log
2(N)

, it holds that |C∗| ⩾ |relevantG(G′,X,N)|
32c2t log

2(N)
.

Next for all vertices in X let x be one such that C∗,x = NG′
G [x] ∩ C∗ is maximized, since

NG′
G [X] dominates C∗ it holds that |C∗,x| ⩾ |C∗|

|X| ⩾ |relevantG(G′,X,N)|
32c2t log

2(N)|X| > 0 (the last inequality

following from the assumption relevantG(G′, X,N) ̸= ∅).

Now let f ∈ F and let a, b, c be three independently and uniformly at random (with

replacement) chosen vertices of C∗,x. We calculate the probability that no two vertices

among a, b, c belong to the same component in G′−NG′
G [f]. Since |C∗,x| ⩾ |relevantG(G′,X,N)|

32c2t log
2(N)|X|

andNG′
G [f] is a |relevantG(G′,X,N)|

100c2t log
2(N)|X| -balanced separator for (G′, relevantG(G′, X,N)) and C∗,x ⊆

relevantG(G′, X,N), we have that NG′
G [f] is a |C∗,x|

3
-balanced separator for (G′, C∗,x). So,

since no component of G−NG′
G [f] has over |C∗,x|

3
vertices of C∗,x there is at at least a 2

3

probability that a and b are in different components in G−NG′
G [f] and there is at least

a 1
3

probability that c is in a different component from a and b conditioned on a and b

being in different components. It follows that there is at least a 2
3
· 1
3

= 2
9

probability that

no two vertices among a, b, c belong to the same component in G′ −NG′
G [f].

Hence if Xf represents the random variable that is 1 if the independently and uni-

formly at random chosen a, b, c ∈ C∗,x are in three different components in G′ − NG′
G [f]

and 0 otherwise, the expected value E[Xf] ⩾ 2
9
. Then by the linearity of expectation, we

have that E[
∑

f∈F Xf] ⩾ 2
9
· 10tc > 2tc. Thus, there must exists a triple, a, b, c ∈ C∗,x,

such that for a subset of F , call it F∗, of size greater than 2tc, a, b, and c are in three

different components in G′ − NG′
G [f ∗] for all f ∗ ∈ F∗. This implies that any path P

in G′ with a and b as its endpoints must have over 2t vertices because for all f ∗ ∈ F∗

NG′
G [f ∗]∩P ̸= ∅ (or else a and b would be in the same component of G′−NG′

G [f ∗]) and if

P had at most 2t vertices, since |F∗| > 2tc, that would force some vertex of P to belong

to over c sets in NG′
G [F∗], contrary to assumption. Similarly, all paths with a and c or b

132

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

and c with its endpoint must have over 2t vertices as well.

Now we show there exists three anti-complete induced paths, Pa, Pb and Pc, each with

t vertices such that a, b, and c are one of the endpoints of Pa, Pb and Pc respectively, and

all other vertices of these paths belong to C (recall from the first paragraph of this proof

that C is the component of G′ − NG′
G [X] such that C∗ = NG′ [C] ∩ relevantG(G′, X,N).

Since C∗,x ⊆ C∗, all vertices of C∗,x, which includes a, b, and c, have a neighbor in C).

To locate Pa, take a shortest path from a to b with all internal vertices in C (since a and

b both have neighbors in C and C is connected, such a path exists). By the previous

paragraph this path must have at least 2t vertices, so let Pa be the first t vertices of

this path, so Pa is a path with t vertices such that a is one endpoint of the path and

all other vertices are in C. Identical arguments show there are induced paths Pb and Pc

which have b and c as their endpoints, respectively, and all other other vertices are in C.

Furthermore, if Pa, Pb and Pc were not anti-complete, then that would imply that there

exists paths between two vertices of {a, b, c} with at most 2t vertices, which contradicts

the conclusion of the previous paragraph.

Lastly, note that since C is a component of G′−NG′
G [X] and x ∈ X, x has no neighbors

in C. So, since x is neighbors with a, b, and c and Pa, Pb and Pc are anti-complete, x

along with Pa, Pb and Pc form an St,t,t.

Cannot Pack Many Boosted Balanced Separators

Lemma 4.3.10. Let G be a graph and G′ be an induced subgraph of G, and s, t, c be

positive integers. If there exists a list F of s-boosted balanced separators of G′ originating

in G such that |F| ⩾ 80 · s · t · c, and no vertex of G′ belongs to over c sets of F , then G

contains an St,t,t.

This subsection is devoted to the proof of Lemma 4.3.10. Thus, within this sub-

133

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

section we will assume that the premise of Lemma 4.3.10 holds. Towards the proof of

Lemma 4.3.10, we set F = {Y1, Y2, . . . Yℓ}. For every Yi in F we let Xi be a core of Yi

originating in G. In other words, Yi = NG′
G [Xi], and |Xi| ⩽ s. Additionally, C is the

largest component of G′, and r = 4s.

Lemma 4.3.11. There exists a set R ⊆ C of size r and subfamily F1 ⊆ F such that

|F1| > |F|/2, and for every Yi ∈ F1, each connected component of G′ − Yi contains at

most one vertex of R.

Proof: We pick a tuple R = v1, v2, . . . , vr of r = 4s vertices from C uniformly at

random (with repetition). Consider an arbitrary Yi ∈ F . For each choice of 1 ⩽ p <

q ⩽ r, the probability that vq is in the same component of G′ − Yi as vp is at most |C|
16s2

.

The union bound over all choices of p, q yields that the probability that no component

of G′ − Yi contains at least two vertices of R is at least 1 −
(
r
2

)
· 1
16s2

> 1/2. Define F1

to be the set of all Yi’s in F such that no component of G′ − Yi contains at least two

vertices of R. The expected size of F1 is strictly larger than |F|/2, and there exists at

least one choice of R that achieves expectation, proving the statement of the lemma.

We will use the following well-known facts about trees, that we will state without

proof.

Observation 4.3.12. A tree with k leaves has at most k−1 vertices of degree at least 3.

Observation 4.3.13. Let T be a tree and P be a path in the tree such that all vertices

on P have degree 2 in T . Then T − V (P) has precisely two connected components.

For the rest of the proof of Lemma 4.3.10, let R and F1 be as given in the statement

of Lemma 4.3.11, G∗ be an inclusion minimal connected induced subgraph of G′[C]

containing R, and T ∗ be a spanning tree of G∗. Define M as R plus all the vertices of

T ∗ that have degree at least three in T ∗. Finally, set M∗ = NT ∗ [M]. In the next lemma

we collect a few simple observations about G∗, T ∗, M , and M∗.

134

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

Lemma 4.3.14. G∗, T ∗, M and M∗ have the following properties:

1. All leaves of T ∗ are in R,

2. |M | ⩽ 2|R|,

3. there are at most |M | − 1 connected components of T ∗ −M ,

4. |M∗| ⩽ 6|R|,

5. each edge uv of G∗ is an edge of T ∗ or has at least one endpoint in M∗.

Proof: For (1), note that G∗ − v is connected for every leaf v of T ∗. Thus v /∈ R

would contradict minimality of G∗. For (2) we note that (1) implies that T ∗ has at most

|R| leaves, and therefore (by Observation 4.3.12) at most |R| − 1 vertices of degree at

least 3.

For (3) and (4) we note that every vertex in V (T ∗) −M has degree precisely 2 in

T ∗. Thus every component P of T ∗ −M is a path (on one or more vertices), only the

endpoints of the path are neighbors (in T ∗) of M , and |NT ∗(P)| = 2. Let κ be the

number of connected components of T ∗ −M . Then κ applications of Observation 4.3.13

implies that T ∗[M] has at least 1+κ components. Hence 1+κ ⩽ |M |, proving (3). Since

each component of T ∗ −M contains at most two neighbors (in T ∗) of M it follows that

|NT ∗(M)| ⩽ 2|M |, and hence |M∗| ⩽ 3|M | ⩽ 6|R|, proving (4).

For (5) suppose for contradiction that there exists an edge uv in G∗ that is neither

an edge in T ∗ nor has an endpoint in M∗. Let P be the path in T ∗ from u to v. Since

uv is not an edge of T ∗ the path P has at least one internal vertex. Let u′ be the vertex

immediately after u on P . Since u /∈ M∗ and u ∈ NT ∗(u′) it follows that u′ /∈ M . Thus

u′ /∈ R and u′ has degree precisely 2 in T ∗. But then (T ∗−u′)∪{uv} is connected (since

we can go between u and the successor of u′ on P via uv and then P) and contains R,

contradicting the minimality of G∗.

135

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

We are now ready to conclude the proof of Lemma 4.3.10

Proof: [Proof of Lemma 4.3.10] We set M ′ to be the set of all vertices in T ∗ at

distance (in T ∗) at most t from M∗. By Lemma 4.3.14 (point 3) we have that |M ′| ⩽

|M∗|+ 2t|M | ⩽ 6r + 4tr. Since |F1| > |F/2| ⩾ r(4t+ 6)c there exists a Yi ∈ F1 disjoint

from M ′.

Let z be the number of connected components of T ∗ − M that have non-empty

intersection with Yi, and Z be the union of the vertex sets of all such components. Since

each component of T ∗ − M is a path of vertices of degree 2 in T ∗, z applications of

Observation 4.3.13 yield that T ∗ − Z has precisely z + 1 connected components. Since

Yi ∈ F1 we have that no connected component of G∗ − Yi contains two vertices of R.

Thus no connected component of T ∗ − Yi contains two vertices of R, and Yi is disjoint

from M ′ ⊇ M , so Yi ∩ V (T ∗) ⊆ Z and no connected component of T ∗ − Z contains two

vertices of R either. But then T ∗ − Z has at least r connected components, implying

z + 1 ⩾ r.

Since Yi ⊆ NG[Xi] and |Xi| ⩽ s, and z ⩾ r − 1 = 4s − 1 > 2|Xi|, there exists

an x ∈ Xi such that NG[x] has non-empty intersection with three distinct components

C1, C2 and C3 of T ∗ − M . For each j ∈ {1, 2, 3} define Pj to be a shortest path in

T ∗[Cj] from NG[x] to NT ∗ [M∗]. Since Yi, and therefore NG[x], is disjoint from M ′ it

follows that |V (Pj)| ⩾ t. Since Pj is shortest it follows that x /∈ V (Pj), that x is a

neighbor (in G) of precisely one endpoint of Pj (and no other vertices of Pj), and that

V (Pj) ∩M∗ = ∅. Thus, Lemma 4.3.14 (point 5) yields that each Pj induces a path in

G∗ (and therefore in G) and that there are no edges in G between Pj and Pj′ for j ̸= j′.

But then x ∪ V (P1) ∪ V (P2) ∪ V (P3) induces an St1,t2,t3 in G with t1, t2, t3 ⩾ t.

136

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

4.3.3 Presentation of the Algorithm

We give one last definition before presenting the algorithm.

Definition 4.3.15 (level sets). Let G be graph, G′ and induced subgraph of G, and F

a list of vertex sets of G. For all natural numbers j, the jth level set with respect to G,

G′, and F , denoted by Lj(G,G′,F , N), is defined as the set of vertices of G′ that belong

to at least j sets (counting multiplicity) of NG′
G [F].

In the following recursive algorithm, the input will always consist of a natural number

N , two level sets F1 and F2 and a graph G. Additionally, there will be a global variable

G which is set to the very first graph the algorithm is called on, so G will always be

an induced subgraph of G. We will say that a vertex, v, in G is N-branchable with

respect to G, G, F1, and F2 (or more simply branchable when the values of N , G, G,

F1, and F2 are clear from the context) if there is an natural number j such that either

|NG[v] ∩ Lj(G, G,F1, N)| ⩾ N
2j

or |NG[v] ∩ Lj(G, G,F2, N)| ⩾ N
2j

.

We now present a quasi-polynomial time algorithm for independent set on St,t,t-free

graphs which we will refer to as IND. We first give the high level ideas of how IND works,

followed by a formal prose-style description of the algorithm, then we give the algorithm

in pseudocode.

Overview. At the highest level IND is a recursive algorithm that does three basic

operations. When there is a branchable vertex, v, IND will be recursively called on G−v

and G − NG[v], when there is an extended strip decomposition such that no particle

contains to much weight, IND will be recursively called on each particle, and when there

is a balanced separator that is dominated by few vertices, it adds the balanced separator

to a list (either F1 or F2). The lists (F1 and F2) are what will guide the branching process,

and the goal of branching is to (efficiently) reach an instance where the input graph has

137

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

a desirable extended strip decomposition. Both the “extended strip decomposition” and

“add a balanced balanced separator” operations will come in two distinct flavors, type 1

and type 2.

Let us now be a little more detailed about how IND works. The algorithm is a

recursive algorithm that takes as input an St,t,t-free graph G, a vertex set X (X may

also be set to ⊥, indicating that a new set for X must be found), an integer N , and two

lists F1 and F2. If we wish to know the weight of a maximum weight independent set of

the graph G, then IND is intended to be initially called on the inputs G,X = ⊥, N =

|G|,F1 = ∅,F2 = ∅. The algorithm sets a global variable G which is set to the first graph

that the algorithm is called on, so that in all recursive calls, G refers to the initial graph

the algorithm is called on. In any given call of IND, the vertex set X along with the

vertex sets contained in F1 and F2 may not be subsets of V (G), but they will always

be subsets of V (G). The integer N will be approximately equal to |G| (and will always

satisfy |G| ⩽ N) and is used for the sake of making the run time analysis easier.

The set X is obtained using esd(G) (see Definition 4.3.4) and will thus have the prop-

erty that no particle of the corresponding extended strip decomposition of G − NG[X]

will have more than |G|/2 ⩽ N/2 vertices and |X| ⩽ ct log(N). One goal of the branch-

ing operation, “type 2 extended strip decomposition”, and “type 2 balanced separator”

operation are to efficiently reduce relevantG(G,X,N) to the empty set. Observation 4.3.6

tells us that when relevantG(G,X,N) = ∅ that either we will get an extended strip de-

composition that is N -good (in which case we make a lot of progress as each particle now

has much less than N ≈ |G| vertices, this is the “type 1 extended strip decomposition”

operation) or we get that NG
G [X] is a ct log(N)-boosted balanced separator (with X as a

core). In either case we find a new X using Theorem 4.1.6 and repeat the process.

But how do we make progress in the case where NG
G [X] is a ct log(N)-boosted balanced

separator (and we do not have an N -good extended strip decomposition)? When NG
G [X]

138

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

is a ct log(N)-boosted balanced separator, we place X into F1 (this is the “type 1 balanced

separator operation”). An analysis similar to that found in [1] (sketched in Section 4.1.1)

shows that, because the size of X is at most ct log(N)), we can collect these cores of

ct log(N)-boosted balanced separators into the list F1 and efficiently branch in a manner

such that no vertex of NG
G [F1] belongs to over log(N) of these sets, and therefore by

Lemma 4.3.10, in an St,t,t-free graph, F1 cannot contain more than 80tct log2(N) sets.

It follows that when we repeat the process from the previous paragraph, we can only

get back that NG
G [X] is ct log(N)-boosted balanced separator only a few times (at most

80tct log2(N) times) before get an extended strip decomposition that is N -good (or no

component of G has many vertices, but by Observation 4.3.5 this implies the existence

of an N -good extended strip decomposition), and we make good progress.

Next, let us briefly look at how the algorithm is able to efficiently reduce relevantG(G,X,

N) to the empty set using the branching, “type 2 extended strip decomposition”, and

“type 2 balanced separator” operations. The basic idea is based on a combination

of Lemmas 4.3.8 and 4.3.9 and the techniques used in [1] (sketched in Section 4.1.1).

IND applies Lemma 4.3.8 to G and relevantG(G,X,N) (with i = log(200c3t log3(N))).

If an extended strip decomposition, (H, η), is returned then since each particle, P ,

has much less than |relevantG(G,X,N)| vertices of relevantG(G,X,N) (at most (1 −
1

800c3t log
3(N)

)|relevantG(G,X,N)|) and because relevantG(P,X,N) ⊆ relevantG(G,X,N),

it follows that |relevantG(P,X,N)| << |relevantG(G,X,N)| and good progress is made in

reducing the size of relevantG(P,X,N) (this is the type 2 extended strip decomposition

operation). Otherwise the lemma returns a set C such that NG[C] is an |relevantG(G,X,N)|
200c3t log

3(N)
-

balanced separator of (G, |relevantG(G,X,N)|) and |C| ⩽ 28000c4t log4(N).

So how do we make progress in efficiently reducing |relevantG(G,X,N)| when what

we get back is a set C such that NG[C] is an |relevantG(G,X,N)|
200c3t log

3(N)
-balanced separator of G

for |relevantG(G,X,N)|? An analysis similar to that found in [1] shows that, because

139

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

|C| ⩽ 28000c4t log4(N), we can collect these sets C that we find into the list F2 (this

is the “type 2 balanced separator operation”) and efficiently branch in a manner such

that no vertex of NG
G [F2] belongs to over log(N) of these sets. Since G is St,t,t-free

(and |X| ⩽ ct log(N)), it follows from Lemma 4.3.9 that |F2| cannot grow larger than

10t log(N). Hence, after applying Lemma 4.3.8 a few times (at most 10t log(N) times),

it must return an extended strip decomposition and good progress is made in decreasing

relevantG(G,X,N).

Formal description. We now give a formal description of our independent set algo-

rithm for St,t,t-free graphs, which we will refer to as IND. The algorithm is a recursive

algorithm that takes as input a graph G, a vertex set X (X may also be set to ⊥), an

integer N , and two lists F1 and F2. IND is intended to be initially called on the inputs

G,X = ⊥, N = |G|,F1 = ∅,F2 = ∅. The algorithm sets a global variable G which is set

to the graph in the first set of input parameters, G,X,N,F1,F2, that the algorithm is

called on so that on all recursive calls G refers to the initial graph the algorithm is called

on. The vertex set X along with the vertex sets contained in F1 and F2 may not be

subsets of V (G), although they will always be subsets of V (G). N will be approximately,

but always greater than or equal to, the size of G. The function of N is to help in the

runtime analysis.

When the algorithm makes a recursive call, some of the elements among the input pa-

rameters, G,X,N,F1,F2, will be the same in the recursive call as they are in the current

instance, while the remaining parameters will be changed. In the following description

of the algorithm, when describing the input to the recursive calls, we will only explicitly

mention the parameters that are changed from the current call, unmentioned parameters

are assumed to remain the same as in the current call. For instance if the graph that

the recursive call is made on is different from the graph of the current call but all other

140

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

elements, X,N,F1,F2 remain the same as in the current call of the algorithm, we will

only indicate what the new graph is the call is made on and not mention the unchanged

elements, X,N,F1,F2.

In order to help the runtime analysis of the algorithm, we will label each call of IND

that is made based on the first case it satisfies (which in turn determines the recursive

calls it will make).

Base Case: For the Base Case (Label: base case call), if |V (G)| ⩽ 1 then IND returns w(V (G)).

Case 1: For Case 1 (Label: branch call), if there exists a branchable vertex v ∈ G, then IND

is recursively called on two instances, the first instance on G − v and the second

on G − NG[v], and stores the numbers returned by these recursive calls as If and

Is respectively. The algorithm then returns the maximum of If and Is + w(v).

• If the algorithm has not returned at this point and X is equal to ⊥, then the

algorithm sets X = esd(G). No recursive call is made here, no label is given here,

and the algorithm continues to see which case it satisfies. We say that the set X is

discovered in this call.

Case 2: For Case 2 (Label: type 1 extended strip decomposition call) if the extended strip

decomposition inferred by (X,G), call it (H, η), is an N -good extended strip de-

composition, then for each particle P of (H, η) the algorithm recursively calls itself

on G = P , X = ⊥, N = |P |, F1 = ∅,F2 = ∅. Then IND returns matching(H, η).

Case 3: For Case 3 (Label: boosted balanced separator call), if NG
G [X] is an N

32c2t log
2(N)

-

balanced separator for G then IND is recursively called with X added to F1, X set

to ⊥, and F2 set to ∅. Then the algorithm returns the value obtained from this

recursive call. Here we say that X is the boosted balanced separator core added in

this call.

141

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

• If IND has not returned at this point then note by Observation 4.3.6 and the

fact that Case 2 and 3 do not hold implies relevantG(G,X,N) ̸= ∅. The algo-

rithm then applies Lemma 4.3.8 (with i = log(200c3t log3(N))) to either obtain,

in polynomial time, a rigid extended strip decomposition of G, call it (H, η),

such no particle of (H, η) has over (1 − 1
800c3t log

3(N)
)|relevantG(G,X,N)| vertices

of relevantG(G,X,N) or a C ∈ G such that NG[C] is a |relevantG(G,X,N)|
200c3t log

3(N)
-balanced sep-

arator for relevant(G,X,N), and |C| ⩽ 28000c4t log4(|G|) ⩽ 28000c4t log4(N). No

recursive call is made here, no label is given, and the algorithm continues to see

which case it satisfies.

Case 4: For Case 4 (Label: type 2 extended strip decomposition call), if Lemma 4.3.8

returned an extended strip decomposition, (H, η), then for each particle, P , of

(H, η) IND is recursively called with the graph set to P and F2 set to the empty

set. IND then returns matching(H, η).

Case 5: For Case 5 (Label: balanced separator call), if Lemma 4.3.8 returned a balanced

separator, NG[C], for relevantG(G,X,N) then IND is recursively called, adding C

to F2. IND then returns the value obtained from this recursive call. Here we say

the set C is the balanced separator core added in this call.

For completeness and ease of reference we give pseudocode for the algorithm IND

below. The correctness proofs and running time analysis do not refer to the pseudocode,

and so a reader may choose to skip it. Recall that IND sets a global variable G which

is set to the graph in the first set of input parameters, G,X,N,F1,F2. This step is not

explicitly mentioned in the pseudocode.

IND

1: Input: G, X, N , F1, F2

142

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

2: Output: mwis(G).

3: if |V (G)| ⩽ 1 then

4: return w(V (G))

5: if exists branchable vertex, v, then

6: return max(IND(G− v,X,N,F1,F2), IND(G−NG[v], X,N,F1,F2) + w(v))

7: if X = ⊥ then

8: Set X = esd(G)

9: if the extended strip decomposition, (H, η), inferred by (X,G) is N -good then

10: for all particles P in (H, η) do

11: Get IND(P,⊥, |P |, ∅, ∅)

12: return matching(H, η)

13: if NG
G [X] is an N

32c2t log
2(N)

-balanced separator for G then

14: return IND(G,⊥, N,F1 ∪X, ∅)

15: Use Lemma 4.3.8 with i = log(200c3t log3(N)) to obtain either a rigid extended strip

decomposition, (H, η), such that no particle of (H, η) contains over (1− 1
800c3t log

3(N)
)

|relevantG(G,X,N)| vertices of relevantG(G,X,N) or a set C ⊆ V (G) such that NG[C]

is a |relevantG(G,X,N)|
200c3t log

3(N)
-balanced separator for relevantG(G,X,N), and |C| ⩽ 28000c4t log4(|G|)

⩽ 28000c4t log4(N).

16: if Lemma 4.3.8 returns (H, η) then

17: for all particles P in (H, η) do

18: Get IND(P,X,N,F1, ∅)

19: return matching(H, η)

20: if Lemma 4.3.8 returns C then

21: return IND(G,X,N,F1,F2 ∪ C)

143

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

4.3.4 Correctness and Runtime Analysis

In order to analyze the runtime of the algorithm, we will find it useful to define

the recursion tree generated by a run of the algorithm and prove that it has only a

quasi-polynomial number of vertices. Because we have yet to prove the algorithm will

terminate, the tree in the next definition may be infinite, but we will shortly prove that

IND will terminate that the recursion tree for IND is finite.

Definition 4.3.16 (recursion tree). The recursion tree, T , generated by IND(G,⊥, |G|, ∅, ∅)

is the directed rooted tree with a node for each call of IND made in the course of running

IND on the initial input (G,⊥, |G|, ∅, ∅), the root node corresponding to the initial call

of IND on the input (G,⊥, |G|, ∅, ∅). There is a directed edge from a node p ∈ T to a

node c ∈ T when the call that corresponds to p invoked the call that corresponds to c.

Furthermore, we label the vertices p and c as well as the edge pc as follows. The vertices

p and c get the same label as the calls they correspond to respectively (replacing “call”

now with “node”). If the call that corresponds to p is labeled with anything other than

branch call, then the pc edge gets same label as the call that corresponds to p (replacing

“call” now with “edge”). If p corresponds to a branch call then let v be the vertex that

is branched on in that call and let Gp be the graph given in the input of that call. If c

corresponds to the call where the graph Gp − NGp [v] is used as the input then we label

pc as a “success edge”, and if c corresponds to the call where the graph Gp − v is used

as the input we label pc as a “failure edge”.

Furthermore, let u be a node of T . Then we let (Gu, Xu, Nu, F1,u,F2,u) denote the

tuple that was used for the input of the call u corresponds to. We call this tuple the

parameters of u.

Let G be a graph. We collect a set of observations about IND and the recursion tree

generated by IND(G,⊥, |G|, ∅, ∅) that follow directly from how IND has been defined.

144

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

We state these observations without a proof (as their proofs follow directly from how

the algorithm was defined) and we will use them use in future proofs typically without

reference to this observation.

Observation 4.3.17. Let G be a graph and let T be the recursion tree generated by

IND(G,⊥, |G|, ∅, ∅). Let p and c be nodes of T such that pc is an edge of T and let

(Gp, Xp, Np, F1,p,F2,p) and (Gc, Xc, Nc, F1,c,F2,c) be the parameters of p and c respec-

tively. Then the following hold:

1. Np < Nc if pc is a type 1 recurse on particles edge and Np = Nc otherwise. Addi-

tionally, Np, Nc ⩾ |G|.

2. Gc is an induced subgraph of Gp, Gc is a proper induced subgraph of Gp if pc is a

success, failure, or type 2 recurse on particles edge, and Gp = Gc if pc is a balanced

separator or boosted balanced separator edge.

3. If Xp = ⊥ and p is not a base case node nor a branch node, then there is a set X

discovered in the call that corresponds to p.

4. Assume p is not a base case node nor a branch node. If Xp ̸= ⊥ then let X = Xp,

else let X be the set that is discovered in the call that corresponds to p. Then

if relevantG(Gp, X,Np) = ∅ then (using Observation 4.3.6) p is either a type 1

extended strip decomposition node or a boosted balanced separator node.

5. If c is a base case node then c is a leaf of T .

The next three lemmas show that IND(G,⊥, |G|, ∅, ∅) terminates and returns the

weight of a maximum weight independent set of G.

Lemma 4.3.18. Let t be a positive integer, G an St,t,t-free graph, T the recursion tree

generated by IND(G,⊥, |G|, ∅, ∅), u ∈ T such that u is a balanced separator or boosted

145

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

balanced separator node, and let (Gu, Xu, Nu,F1,u,F2,u) be the parameters of u. If C is the

balanced separator or boosted balanced separator core added in the call that corresponds

to u, then NGu
G [C] ̸= ∅.

Proof: Let t, G, T , u, (Gu, Xu, Nu,F1,u,F2,u), and C be as in the statement of this

lemma, and assume for a contradiction that NGu
G [C] = ∅.

First assume that u is a boosted balanced separator node, so either C = Xu or

Xu = ⊥ and C was discovered in the call that corresponds to u. In either case, since

u is a boosted balanced separator node, NGu
G [C] is an Nu

32c2t log
2(Nu)

-balanced separator for

Gu and by assumption NGu
G [C] = ∅, it follows that no component of Gu contains over

Nu
32c2t log

2(Nu)
vertices. It follows by Observation 4.3.5 that the extended strip decomposition

inferred by (C,Gu) is Nu-good and hence u should have been a type 1 extended strip

decomposition node and not a boosted balanced separator node.

Next, assume that u is a balanced separator node, so the empty set is a |relevantG(Gu,X,Nu)|
200c3t log

3(Nu)
-

balanced separator of (Gu, relevantG(Gu, X,Nu)). If Xu ̸= ⊥ then let X = Xu, and if

Xu = ⊥ then let X be the the set discovered in the call that corresponds to u. Since

u is not a type 1 extended strip decomposition node nor a boosted balanced separa-

tor node it follows from the 4 point of Observation 4.3.17 (or Observation 4.3.6) that

relevantG(Gu, X,Nu) ̸= ∅. Since NGu
G [C] = ∅ it follows that no component of Gu con-

tains over |relevantG(Gu,X,Nu)|
200c3t log

3(Nu)
vertices of relevantG(Gu, X,Nu). Among all components of

Gu−NGu
G [X] that has over Nu

32c2t log
2(Nu)

vertices (of which there are at most 32c2t log2(Nu)),

let B be one such that |NGu [B]∩relevantG(Gu, X,Nu)| is maximized, so since every vertex

of relevantG(Gu, X,Nu) has a neighbor in at least on component of Gu − NGu
G [X] that

has over Nu
32c2t log

2(Nu)
, it follows that |NGu [B] ∩ relevantG(Gu, X,Nu)| > |relevantG(Gu,X,Nu)|

32c2t log
2(Nu)

.

But then NGu [B] is a connected set that contains at least |relevantG(Gu,X,Nu)|
32c2t log

2(Nu)
vertices of

relevantG(Gu, X,Nu) and therefore the empty set cannot be a |relevantG(Gu,X,Nu)|
200c3t log

3(Nu)
-balanced

146

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

separator of (Gu, relevantG(Gu, X,Nu)).

Lemma 4.3.19. Let t be a positive integer and, G an St,t,t-free n-vertex graph. Then

IND(G,⊥, |G|, ∅, ∅) terminated and the recursion tree generated by IND(G,⊥, |G|, ∅, ∅) is

finite.

Proof: Let t, G, and n be as in the statement of this lemma, T the recursion tree of

IND(G,⊥, |G|, ∅, ∅), and P some path in T . In order to show that IND(G,⊥, |G|, ∅, ∅)

terminates and that T is finite, it is sufficient to show that there is a bounded number

of each of the 6 types of edges that can appear in P , type 1 and type 2 extended

strip decomposition edges, balanced separator and boosted balanced separator edges,

and success/failure edges. Let pc be an edge of T , and let (Gp, Xp, Np,F1,p,F2,p) and

(Gc, Xc, Nc,F1,c,F2,c) be the parameters of p and c respectively. If pc is a success edge,

failure, edge, or type 2 extended strip decomposition edge, then Gc is a proper subgraph

of Gp, hence there can be at most n of each type of these edges. If pc is a type 1 extended

strip decomposition edge, then Nc < Np, so again there can be at most n type 1 extended

strip decomposition edges.

Now let u and w be two nodes of P with parameters (Gu, Xu, Nu,F1,u,F2,u) and

(Gw, Xw, Nw,F1,w,F2,w) respectively and let P ′ be the subpath of P that starts at u

and ends at w. Assume that P ′ does not contain any type 1 or type 2 extended strip

decomposition edges nor success/failure edges (so all edges are balanced separator and

boosted balanced separator edges). It follows that Gu = Gw, Nu = Nw = N , and if P ′

has N log(N) boosted balanced separator edges, then F1,w must have at least N log(N)

sets S ∈ F1,w (counting multiplicity) such that NGw
G [S] ̸= ∅ (using Lemma 4.3.18 to

ensure they are non-empty). Hence Llog(N)(G,Gw,F1,w, N) is none empty and since any

vertex v ∈ Llog(N)(G,Gw,F1,w, N) is by definition a branchable vertex, w must be a

branch node (or a base case node). It follows that P ′ can have at most N log(N) boosted

147

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

balanced separator edges. Since P has a bounded number of type 1 or type 2 extended

strip decomposition edges and success/failure edges, there must be a bounded number of

boosted balanced separator edges as well.

Now additionally assume that P ′ contains no boosted balanced separator edges as

well, so all edges of P ′ are balanced separator edges, so if P ′ has N log(N) balanced sepa-

rator edges, then F2,w must have at least N log(N) sets S ∈ F2,w (counting multiplicity)

such that NGw
G [S] ̸= ∅ (using Lemma 4.3.18 to ensure theyu are non-empty). Hence

Llog(N)(G,Gw,F2,w, N) is non-empty and since any vertex v ∈ Llog(N)(G,Gw,F2,w, N)

is by definition a branchable vertex, w must be a branch node (or a base case node).

It follows that P ′ can have at most N log(N) balanced separator edges. Since P has a

bounded number of all other edge types, there must be a bounded number of balanced

separator edges as well, completing the proof.

Now that we have established the recursion tree is finite, we can prove that IND

returns the correct answer.

Lemma 4.3.20. Let G be a graph. Then IND(G,⊥, |G|, ∅, ∅) returns the weight of a

maximum weight independent set of G.

Proof: Let G be a graph, T the recursion tree generated by IND(G,⊥, |G|, ∅, ∅), and

u a node of T and assume that for all children, v, of u, that the call corresponding to v

correctly returns the weight of a maximum weight independent set of Gv, where Gv is the

graph used as input for the call corresponding to v. We show that the call corresponding

to u then correctly returns the maximum weight independent set of Gu where Gu is the

graph used as input for the call corresponding to u.

If u is balanced separator or boosted balanced separator node then Gu = Gv and

so u returns the weight of a maximum weight independent set of Gv = Gu. If u is a

branch node which branches on the vertex v ∈ Gu, then if we set If and Is to be the

148

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

weight of a maximum weight independent set of G− v and G−NGu [v] respectively, then

u returns the maximum of If and Is + w(v) which is the weight of a maximum weight

independent set of Gu. Lastly, if u is a type 1 or type 2 extended strip decomposition

node, then u returns matching(H, η), which by Lemma 4.3.7 is the weight of a maximum

weight independent set of Gu.

It now follows from induction that IND(G,⊥, |G|, ∅, ∅) returns the weight of a maxi-

mum weight independent set of G.

Next, we observe that the degree of recursion trees is at most polynomial.

Observation 4.3.21. There exists a constant c such that for any positive integer t and

St,t,t-free n-vertex graph G, the recursion tree, T , of IND(G,⊥, |G|, ∅, ∅) has a maximum

degree of most nc.

Proof: Let t, G, and T be as in the statement of the lemma, and let u ∈ T with

parameters (Gu, Xu, Nu,F1,u,F2,u). If u is any type of node other than a type 1 or type

2 extended strip decomposition node, then it is clear the degree of u is at most 2. If

u is a type 1 extended strip decomposition node then (by the discussion immediately

after Definition 4.3.4) the extended strip decomposition inferred by (Xu, Gu) has nO(1)

particles, hence u has degree nO(1). If u is a type 2 extended strip decomposition, then

each child of u corresponds to a particle of a rigid extended strip decomposition of Gu,

which has O(n) vertices and therefore nO(1) particles, and therefore u has degree nO(1).

Let G be an n-vertex graph and T the recursion tree generated by IND(G,⊥, |G|, ∅, ∅).

Recall that the edges of T are labeled (see Definition 4.3.16). The next set of lemmas

show that on any root to leaf path P of T , there are at most polylog(n) edges with any

given label other than a failure label, of which there can be at most n. We will then be

able to use this fact to bound the runtime of IND.

149

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

Lemma 4.3.22. Let t be a positive integer, G an St,t,t-free n-vertex graph, T the recursion

tree generated by IND(G,⊥, |G|, ∅, ∅), and P a path of T . Then P contains at most

64c2t log3(n) type 1 extended strip decomposition edges.

Proof: Let t, G, n, T , and P be as in the statement of this lemma. Let pc be

a type 1 extended strip decomposition edge of P and let (Gp, Xp, Np,F1,p,F2,p) and

(Gc, Xc, Nc,F1,c,F2,c) be the parameters of p and c respectively. Then Nc ⩽ (1 −
1

32c2t log
2(Np)

)Np ⩽ (1− 1
32c2t log

2(n)
)Np.

Now, let u and w be two vertices of P with parameters (Gu, Xu, Nu,F1,u,F2,u) and

(Gw, Xw, Nw,F1,w,F2,w) respectively. Since for all c ⩾ 2, (1−1/c)2c ⩽ 1/2 it follows that

if there are 64c2t log3(n) type 1 extended strip decomposition edges on the subpath of P

that starts and u and ends at w then Nw ⩽ (1− 1
32c2t log

2(n)
)64c

2
t log

3(n)Nu ⩽ (1−1/2)log(n)Nu

⩽ 1. It follows that |Gw| ⩽ 1 and therefore w must be a base node and hence the last

vertex of P . So, P cannot have over 64c2t log3(N) type 1 extended strip decomposition

edges.

Lemma 4.3.23. Let t be a positive integer, G an St,t,t-free graph, T the recursion gener-

ated by IND(G,⊥, |G|, ∅, ∅), and u a node of T with parameters (Gu, Xu, Nu,F1,u,F2,u).

Then no vertex of Gu belongs to over log(Nu) sets of NGu
G [F1,u] and no vertex of Gu be-

longs to over log(Nu) sets of NGu
G [F2,u], hence Li(G,Gp,F1,u, Nu) = Li(G,Gp,F2,u, Nu)

= ∅ for i > log(Nu).

Proof: Let t, G, T , u, and (Gu, Xu, Nu,F1,u,F2,u) be as in the statement of this

lemma. Assume for a contradiction that the statement of this lemma does not hold for

u and that u is the first node on a path from the root to u such that the statement of

this lemma does not hold. It follows there is some vertex, call it v, of Gu belongs to over

log(Nu) sets of NGu
G [F1,u] or log(Nu) sets of NGu

G [F2,u]. Let w be the parent of u in T and

let (Gw, Xw, Nw,F1,w,F2,w) be the parameters of w. If the edge wu was a type 1 recurse

150

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

on particles edge, then F1,u = F2,u = ∅ but then v could not belong to over log(Nu) sets

of NG[F1,u], so wu is not a type 1 recurse on particles edge, hence Nw = Nu.

As the arguments are nearly identical, with out loss of generality assume v ∈ Gu

belongs to over log(Nu) sets of NG[F1,u]. Since (by how u was chosen) v does not belong

to over log(Nw) = log(Nu) sets of NG[F1,w] it follows that the edge wu must be a boosted

balanced separator edge (hence Gu = Gw) and v must belong to log(Nu) = log(Nw)

sets of NGw
G [F1,w] in order for v to belong to over log(Nu) sets of NGu

G [F1,u]. But then

by definition of being a branchable vertex, since v belongs to log(Nw) sets of NGw
G [F1,w]

the call that corresponds to w should have branched on v (or some other branchable

vertex) and the edge wu would therefore be a either a success or failure edge, which is a

contradiction. Therefore, there can never be a “first node” in T such that the statement

of this lemma does not hold.

Lemma 4.3.24. Let t be a positive integer, G an St,t,t-free n-vertex graph, T the recursion

tree generated by IND(G,⊥, |G|, ∅, ∅), u a node of T with parameters (Gu, Xu, Nu,F1,u,F2,u),

and C the largest component of Gu. Then either |C| < Nu/2 or all sets of F1,u are cores

of ct log(Nu)-boosted balanced separators of Gu originating in G.

Proof: Let t, G, T , u, (Gu, Xu, Nu,F1,u,F1,u), and C be as in the statement of this

lemma. Let S be in F1,u and assume that |C| ⩾ Nu/2, we show that S is a core of a

ct log(Nu)-boosted balanced separator for Gu originating in G.

Let w be the closest ancestor of u in T that corresponds to a call where S is the core

of a boosted balanced separator added in that call. Let (Gw, Xw, Nw,F1,w,F2,w) be the

parameters of w. Note that this implies Xw = S or Xw = ⊥ and S was discovered in the

call that corresponds to w. Additionally, let a be the closest ancestor of w that corre-

sponds to a call where S was discovered. Let (Ga, Xa, Na,F1,a,F2,a) be the parameters

of a, as S was discovered in the call the corresponds to a, it follows that Xa = ⊥.

151

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

No edge on the path of T starting from w and ending at u can be a type 1 extended

strip decomposition edge or else S would not be in F1,u (since type 1 extended strip

decompositions “resets F1” to ∅), and no edge on the path of T starting from a and

ending at w can be a type 1 extended strip decomposition edge (since type 1 extended

strip decompositions “resetsX” to⊥). HenceNa = Nw = Nu, so setN =Na = Nw = Nu.

So, |S| ⩽ ct log(N) and since NGw
G [S] is an N

32c2t log
2(N)

-balanced separator for Gw and Gu

is an induced subgraph of Gw, it follows that NGu
G [S] is an N

32c2t log
2(N)

-balanced separator

for Gu. Since by assumption |C| ⩾ N/2, we have that NGu
G [S] is an |C|

16c2t log
2(N)

-balanced

separator for Gu and therefore S is a core of a ct log(N)-boosted balanced separator for

Gu originating in G.

Lemma 4.3.25. Let t be a positive integer, G an n-vertex St,t,t-free graph, T the recursion

tree generated by IND(G,⊥, |G|, ∅, ∅), and P a path of T . Then P contains at most

5200c4t log5(n) boosted balanced separator edges.

Proof: Let t, G, T , and P be as in the statement if this lemma. Let P ′ be a subpath

of P that does not contain any edges that are type 1 extended strip decomposition edges.

We first show that P ′ has less than 80tct log2(n) boosted balanced separator edges.

Assume for a contradiction that P ′ does have 80tct log2(n) boosted balanced sep-

arator edges, let uw be the 80tct log2(n))th boosted balanced separator edge, and let

(Gu, Xu, Nu,F1,u,F2,u) and (Gw, Xw, Nw, F1,w,F2,w) be the parameters of u and w re-

spectively. Since P ′ has no type 1 extended strip decomposition edges and 80tct log2(n)

boosted balanced separator edges it follows that |F1,w| ⩾ 80tct log2(n) ⩾ 80tct log2(Nw)

and Nu = Nw.

Since uw is a boosted balanced separator edge and not a type 1 extended strip de-

composition edge we can conclude that if C is the largest component of Gu = Gw, then

|C| ⩾ Nu/2 = Nw/2 (or else by Observation 4.3.5 the extended strip decomposition

152

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

inferred by (Xu, Gu) would be Nu-good and uw would be a type 1 extended strip decom-

position edge). It follows then from Lemma 4.3.24 that all 80tct log2(n) ⩾ 80tct log2(Nw)

sets of F1,w are cores of ct log(Nw)-boosted balanced separators for Gw originating in G.

By Lemma 4.3.23 no vertex of Gw belongs to over log(Nw) vertex sets of NGw
G [F1,w], it

then follows from Lemma 4.3.10 that G contains an St,t,t, a contradiction.

Hence, P ′ has less than 80tct log2(n) boosted balanced separator edges. Since by

Lemma 4.3.22 P has at most 64c2t log3(n) type 1 extended strip decomposition edges, it

follows that P contains at most (80tct log2(n)) · (64c2t log3(n) + 1) ⩽ 5200tc3t log5(n) ⩽

5200c4t log5(n) (recall by definition that ct ⩾ t) boosted balanced separator edges.

Lemma 4.3.26. Let t be a positive integer, G an n-vertex St,t,t-free graph, T the recursion

tree generated by IND(G,⊥, |G|, ∅, ∅), and P a path of T . Then P contains at most

107c7t log9(n) type 2 extended strip decomposition edges.

Proof: Let t, G, T , and P be as in the statement of this lemma. Let P ′ be a subpath

of P that contains no type 1 extended strip decomposition nor boosted balanced separator

edges. It then follows that there exists an integer N and a set X ⊆ V (G) such that for

any node a ∈ P ′ with parameters (Ga, Xa, Na,F1,a,F2,a) it holds that Na = N and Xa

= ⊥ or X.

We first show that P ′ has at most 1600c3t log4(n) + 2 type 2 extended strip decom-

position edges. Let pc be a type 2 extended strip decomposition edge of P ′ and let

(Gp, Xp, N,F1,p,F2,p) and (Gc, Xc, N,F1,c,F2,c) be the parameters of p and c respectively.

Either Xp = Xc = X or Xp = ⊥, Xc = X and X was discovered in the call p corresponds

to. In either case we have |relevantG(Gc, X,N)| ⩽ (1− 1
800c3t log

3(N)
)|relevantG(Gp, X,N)| ⩽

(1− 1
800c3t log

3(n)
)|relevantG(Gp, X,N)|.

Now, let u and w be two vertices of P ′ with parameters (Gu, Xu, N,F1,u,F2,u) and

(Gw, Xw, N,F1,w,F2,w) respectively. Since (1− 1/c)2c ⩽ 1/2 for c ⩾ 2, it follows that if

153

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

there are 1600c3t log4(n) + 2 type 2 extended strip decomposition edges on the subpath

of P ′ that starts and u and ends at w then

|relevantG(Gw, X,N)| ⩽ (1− 1

800c3t log3(n)
)1600c

3
t log

4(n)+2|relevantG(Gu, X,N)|

⩽ (1− 1/2)log(n)+1|relevantG(Gu, X,N)| < 1.

It follows that |relevantG(Gw, X,N)| = 0 and therefore, for any node z in P ′ (with param-

eters say (Gz, X, N,F1,z,F2,z)) that comes after w it holds that relevantG(Gz, X,N) = ∅.

It then follows from the 4th point of Observation 4.3.17 that there cannot be any other

type 2 extended strip decomposition edges after w in P ′.

Since P ′ has at most 1600c3t log4(n) + 2 type 2 extended strip decomposition edges

and by Lemmas 4.3.22 and 4.3.25, P has at most 64c2t log3(n) type 1 extended strip

decomposition edges and at most 5200c4t log(n)5 boosted balanced separator edges, it

follows that P has at most (1600c3t log4(n) + 2) (64c2t log3(n) + 5200c4t log5(n) + 1) ⩽

107c7t log9(n) type 2 extended strip decomposition edges.

Lemma 4.3.27. Let t be a positive integer, G an n-vertex St,t,t-free graph, T the recursion

tree generated by IND(G,⊥, |G|, ∅, ∅), and P a path of T such that no edges of P are

type 1 extended strip decomposition, boosted balanced separator, nor type 2 extended strip

decomposition edges. Then P contains at most 109c8t log11(n) balanced separator edges.

Proof: Let t, G, T , and P be as in the statement of this lemma. Let P ′ be a

subpath of P that contains no type 1 extended strip decomposition, boosted balanced

separator, nor type 2 extended strip decomposition edges. It then follows that there

exists an integer N and a set X ⊆ V (G) such that for any node a ∈ P ′ with parameters

(Ga, Xa, Na,F1,a,F2,a) it holds that Na = N and Xa = ⊥ or X.

Assume for a contradiction that P ′ has 10t log2(n) balanced separator edge. Let

154

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

uiwi denote the (i10t log(n))th balanced separator edge, u0 be the first vertex of P ′,

(Gui , Xui , N,F1,ui ,F2,ui) be the parameters of ui, i ⩾ 0, of P ′, and P j denote the subpath

of P ′ that starts at uj and ends at uj+1, j ⩾ 0.

For some P j it must hold that |relevantG(Gj, X,N)|/2 ⩽ |relevantG(Gj+1, X,N)| or

else |relevantG(G0,X,N)|
2log(n)

> |relevantG(Glog(n), X,N)| which implies that |relevantG(Glog(n), X,N)| =

0. Therefore, by the 4th point of Observation 4.3.17 it follows that ulog(n)wlog(n) cannot

be a balanced separator edge. So, we conclude that for some P j it must hold that

|relevantG(Gj, X,N)|/2 ⩽ |relevantG(Gj+1, X,N)|, so fix this index as j.

For each balanced separator node, v, on the path P j, let Bv denote the balanced

separator core added in call v, F the list of these Bv’s, and (Gv, Xv, N, F1,v,F2,v) the pa-

rameters of v. Note that X = Xv (accept for possibly the first such v if Xv = ⊥ and then

X would be X discovered in the call the corresponds to v) and |relevantG(Gv, X,N)|/2 ⩽

|relevantG(Guj , X,N)|/2 ⩽ |relevantG(Guj+1
, X,N)| and relevantG(Guj+1

, X,N)⊆ relevantG(Gv,

X,N) ⊆ relevantG(Guj , X,N). So, since NGv
G [Bv] is an |relevantG(Gv ,X,N)|

200c3t log
3(N)

-balanced separa-

tor for relevantG(Gv, X,N), it follows that N
Guj+1

G [Bv] is an
|relevantG(Guj+1 ,X,N)|

100c3t log
3(N)

-balanced

separator for relevantG(Guj+1
, X,N). By definition of F , it follows that |F| ⩾ 10t log(n) ⩾

10t log(N), by Lemma 4.3.23 no vertex ofGuj+1
belongs to over log(N) set ofN

Guj+1

G [F2,uj+1
]

and therefore of N
Guj+1

G [F] (as F ⊆ F2,uj+1
), so by Lemma 4.3.9 G contains and St,t,t, a

contradiction.

We conclude that P ′ has less that 10t log2(n) ⩽ 10ct log2(n) (recall by definition

ct ⩾ t) balanced separators. Since by Lemmas 4.3.22, 4.3.25, and 4.3.26 P has at most

64c2t log3(n), 5200c4t log5(n), and 107c7t log9(n) type 1 extend strip decomposition edges,

boosted balanced separator edges, and type 2 extended strip decomposition edges re-

spectively, it follows that P has at most 10ct log2(n) (64c2t log3(n) + 5200c4t log5(n) +

107c7t log9(n) + 1) ⩽ 109c8t log11(n) balanced separator edges.

Let G be a graph, T the recursion tree generated by IND(G,⊥, |G|, ∅, ∅), and p, c ∈ T
155

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

such that pc is an edge of T with parameters (Gp, Xp, Np,F1,p,F2,p) and (Gc, Xc, Nc,F1,c,F2,c)

respectively. We say that a vertex v ∈ G is added to level set i during the call correspond-

ing to p if v /∈ (Li(G,Gp,F1,p, Np) ∪ Li(G,Gp,F2,p, Np)) and v ∈ (Li(G,Gc,F1,c, Nc) ∪

Li(G,Gc,F2,c, Nc)). Note that for a vertex v to be added to level set i during call p, the

edge pc must be either a balanced separator edge or a boosted balanced separator edge

and v ∈ (Li−1(G,Gp,F1,p, Np)∪Li−1(G,Gp,F2,p, Np)). Given a path P in T we say that

a vertex v is added to level set i in path P if there is at least one node u such that v

is added to level set i during the call corresponding to u. Note that it is possible for a

vertex v to be added to level set i in path P multiple times since the level sets F1 and

F2 can get set to the empty set multiple times.

Additionally, we say that a vertex v ∈ G is removed from level set i during the call cor-

responding to p if v ∈ (Li(G,Gp,F1,p, N)∪Li(G,Gp,F2,p, N)) and v /∈ (Li(G,Gc,F1,c, N)∪

Li(G,Gc,F2,c, N)). We say that a vertex v is added to level set i in path P if there is

at least one node u such that v is removed from level set i during the call corresponding

to u. Note that it is possible for a vertex v to be removed from level set i in path P

multiple times since the level sets F1 and F2 can get set to the empty set multiple times.

Furthermore, note that if the call that corresponds to the first vertex of P has the prop-

erty that both lists F1 and F2 are the empty set, then the number of vertices added to

level set i in path P , counting multiplicity, is at least as much as the number of vertices

removed from level set i in path P . This holds because if for a node u ∈ P a vertex v is

removed from level set i during the call corresponding to u, the vertex v must have been

first added to level set i during the call corresponding to w for some w ∈ P that comes

before u in P .

Lemma 4.3.28. Let t be a positive integer, G be an n-vertex graph St,t,t-free graph, T

the recursion tree generated by IND(G,⊥, |G|, ∅, ∅), and P a path of T such that no edges

156

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

of P are type 1 extended strip decomposition edge and P contains c balanced separator

and boosted balanced separator edges. Then there exists a natural number N such that

for any vertex v ∈ P with parameters (Gv, Xv, Nv,F1,v,F2,v) it holds that Nv = N and

at most c · 56000c4t log4(N)N/2i vertices are added to level set i in P .

Proof: Let t, G, T , c, and P be as in the statement of this lemma. The fact

that there exists a natural number N such that for any vertex v ∈ P with parameters

(Gv, Xv, Nv,F1,v,F2,v) it holds that Nv = N follows from the fact that P has no type 1

extended strip decomposition edges.

Now, let p be an node of P and let (Gp, Xp, N,F1,p,F2,p) be the parameters of p.

Note that if there is a vertex v that is added to level set i during call p, it must be that

the vertex v is in Li−1(G,Gp,F1,p, N) or Li−1(G,Gp,F2,p, N).

First, assume that p is a balanced separator node of P and the set Bp is the bal-

anced separator core added in the call that corresponds to p, so |Bp| ⩽ 28000c4t log4(N).

Since p is a balanced separator node, there is no branchable vertex in the call corre-

sponding to p. Therefore each vertex of Bp has less than N/2i−1 neighbors in level set

Li−1(G,Gp,F2,p, N) and therefore at most |Bp|N/2i−1 ⩽ 56000c4t log4(N)N/2i vertices

are added to level set i during call p.

Next, assume that p is a boosted balanced separator node of P , and let X be the

boosted balanced separator core added in the call that corresponds to p (if Xp ̸= ⊥ then

X = Xp, and if Xp = ⊥ then the set X was discovered in the call that corresponds

to p). Let p′ be the first ancestor of p in T where X was discovered (possibly with

p′ = p) and let (Gp′ , Xp′ , Np′ ,F1,p′ ,F2,p′) be the parameters of p′, so X ⊆ V (Gp′) and

|X| ⩽ ct log(Np′). It follows that all nodes between p′ and p are branch nodes, type 2

extended strip decomposition nodes, and balanced separator nodes (since all recursive

calls of boosted balanced separator nodes and type 1 extended strip decomposition nodes

157

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

would reset X to ⊥). It follows that F1,p′ = F1,p and Np′ = N and so |X| ⩽ ct log(N).

Additionally, since X was discovered in the call that corresponds to p′, p′ cannot be a

branch node so there is no branchable vertex in the call corresponding to p′, in particular,

there is no vertex in Gp′ that has at least N/2i−1 neighbors in Li−1(G,Gp′ ,L1,p′ , N).

Therefore each vertex of X has at most N/2i−1 neighbors in level set Li−1(G,Gp′ ,F1,p′ , N)

and therefore (since Gp is an induced subgraph of Gp′ and F1,p′ = F1,p) in level set

Li−1(G,Gp,F1,p, N). Hence at most |X|N/2i−1 ⩽ 2ct log(N)N/2i vertices are added to

level set i during call p.

In either case, we conclude that at most 56000c4t log4(N)N/2i vertices are added to

level set i in the call p. Since by assumption there are c boosted balanced separator and

balanced separator edges in P , it follows that at most c · 56000c4t log4(N)N/2i vertices

are added to level set i in P .

Lemma 4.3.29. Let t be a positive integer, G an St,t,t-free n-vertex graph, T the recursion

tree generated by IND(G,⊥, |G|, ∅, ∅), and P a path of T . Then P contains at most

1014c12t log16(n) success edges.

Proof: Let t, G, T , and P be as in the statement of this lemma. Let P ′ be a maximal

subpath of P that contains no type 1 extended strip decomposition edges, c the number

of balanced separator and boosted balanced separator edges in P ′, u the first vertex

of P ′ (note by the maximality of P ′ the in-edge of u is either a type 1 extended strip

decomposition or u is the root of T), and (Gu, Xu, Nu,F1,u,F2,u) the parameters of u.

By Lemma 4.3.28 there is a natural number N such that for any node w ∈ P with

parameters (Gw, Xw, Nw,F1,w,F2,w) it holds that Nw = N , hence Nu = N , and there are

at most c ·56000c4t log4(N)N/2i vertices added to level set i in P ′ (counting multiplicity).

Since the in-edge of u is a type 1 extended strip decomposition edge (or u is the root

vertex of T), it follows that F1,u = F2,u = ∅. Hence if a vertex v is removed in P ′, the

158

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

vertex v must also have been added in P ′, so at most c56000c4t log4(N)N/2i vertices can

be removed from level set i in P ′ (counting multiplicity).

Let pc be a success edge of P ′ and let (Gp, Xp, N,F1,p,F2,p) and (Gc, Xc, N,F1,c,F2,c)

be the parameters of p and c respectively. Then there is some vertex v ∈ Gp such that

Gc = Gp−NGp [v]. Furthermore there is some natural number i such that NGp [v] contains

at least N/2i vertices in either level set Li(G,Gp,F1,p, N) or Li(G,Gp,F2,p, N), call this

set of vertices S. It follows that all of the vertices of S are removed from level set i

in call p. Since at most c · 56000c4t log4(N)N/2i vertices are added to level set i in P ′

(therefore as noted in the first paragraph of this proof at most c · 56000c4t log4(N)N/2i

vertices can be removed to level set i in P ′) this can happen to level set i in P ′ at most

c · 56000c4t log4(N) times before it is empty. Since by Lemma 4.3.23 for all j > log(N)

Lj(G,Gp,F2,p, N) and Lj(G,Gp,F2,p, N) are already empty, it follows that i ⩽ log(N).

Therefore there can be at most c · 56000c4t log5(N) success edges before all level sets are

empty. Hence there are at most c · 56000c4t log5(N) ⩽ c · 56000c4t log5(n) success edges in

P ′.

Lastly, by Lemmas 4.3.25 and 4.3.27 there are at most 5200c4t log5(n) and 109c8t log11(n)

boosted balanced separator and balanced separator edges respectively in P . It then

follows that there are at most (5200c4t log(n)5 + 109c8t log11(n) + 1)(56000c4t log5(n)) ⩽

1014c12t log16(n) success edges in P .

Lemma 4.3.30. Let t be a positive integer, G an St,t,t-free n-vertex graph and T the

recursion tree generated by IND(G,⊥, |G|, ∅, ∅). Then there are at most n failure edges

on any root to leaf path in T .

Proof: Let t, G, P , and T be as in the statement of this lemma, and let pc be a

failure edge of T . Then |Gc| = |Gp|−1. Hence it is impossible for P to have n+ 1 failure

edges.

159

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

Let G be an n-vertex St,t,t-free graph. In order to bound the number of nodes in the

recursion tree T generated by IND(G,⊥, |G|, ∅, ∅) we will provide a sequence which will

uniquely determine every node of T , then prove that there is at most nO(c12t log16(n)) such

sequences. Let u be a node in T and let P be the path from the root node to u. The

sequence we give is just the edges (given by their labels) taken on the path from the

root to the vertex u. Let us assume that we have been given such a sequence of edge

labels, S, that corresponds to the sequence of edge labelings of P . We show how to use

S to reconstruct the path P from the root node to u (proving this sequence uniquely

determines the vertex u). Assume we are currently at a vertex w, if w is a branch node,

then the next label in S must either be a success or failure edge, and whichever one

it is uniquely determines the next node in our path to u. Similarly, if w is a balanced

separator or boosted balanced separator node, then the next label in S must be a balanced

separator edge or boosted balanced separator edge and w has exactly one child, so again

the next node in the path is uniquely determined. If w is a type 1 or type 2 extended

strip decomposition node though, there exists some constant c (by Observation 4.3.21,

independent of the choice of G) so that w can have up to nc children, and all edges going

to these children have the same label, hence the next node in the path is not uniquely

determined. To fix this issue we define an enriched recursion tree to be a recursion tree

T such that for every type 1 or type 2 extended strip decomposition node, each of its

out edge labels are additionally given a unique number 1− nc. It follows that with this

enriching, the next label of S will uniquely determine a child of w and then this sequence

uniquely determines the vertex u.

Lemma 4.3.31. Let t be a positive integer, G an St,t,t-free n-vertex graph, and T the

recursion tree generated by IND(G,⊥, |G|, ∅, ∅). Then T has at most nO(c12t log16(n)) nodes.

Proof: Let t, G and T be as in the statement of this lemma, and let c be the constant

160

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

from Observation 4.3.21. Furthermore, assume that T is an enriched recursion tree, that

is for every u ∈ T that is a type 1 or type 2 extended strip decomposition node, the labels

of the out edges of u are given an additional unique integer between 1 and nc, where c is

the constant given in Observation 4.3.21.

We consider the set of all edge label sequences which contain at most 64c2t log3(n) type

1 extended strip decomposition edges (by Lemma 4.3.22 that is as many as T can have),

5200c4t log5(n) boosted balanced separator edges (by Lemma 4.3.25 that is as many as

T can have), 107c7t log9(n) type 2 extended strip decomposition edges (by Lemma 4.3.26

that is as many as T can have), 109c8t log11(n) balanced separator edges (by Lemma 4.3.27

that is as many as T can have), 1014c12t log16(n) (by Lemma 4.3.29 that is as many as T

can have) success edges, and n failure edges (by Lemma 4.3.30 that is as many as T can

have). To bound the number of such sequenced, first note that since there are six types of

edges and none can appear over nO(1) times there are at most nO(1) choices for the number

of each type of edge, call these choices n1, n2, n3, n4, n5, and n6 and let n6 be the number

which denotes the number of failure edges. The number of possible sequences with these

number choices is then
(
n1+n2+n3+n4+n5+n6

n1,n2,n3,n4,n5

)
⩽ (n1 +n2 +n3 +n4 +n5 +n6)

n1+n2+n3+n4+n5 .

Since n6 ⩽ n and for i < 6, ni ⩽ 1014c12t log16(n) this number is at most nO(c12t log16(n)).

Since there are at most nO(1) difference choices for values of the ni’s, it follows there are

at most nO(1)nO(c12t log16(n)) = nO(c12t log16(n)) sequences of this type.

Next we consider the “enriched” version of these sequences, that is, for each type 1

and type 2 extended strip decomposition edge in a sequence of S we give it some number

between 1 and nc. as there are at most 64c2t log3(n) and 107c7t log9(n) type 1 and type 2

extended strip decomposition edges respectively there are at most nc(64c
2
t log

3(n)+107c7t log
9(n))

nO(c12t log16(n)) = nO(c12t log16(n)) of these enriched sequences. It follows now that for any

u ∈ T , the sequences of edges in the path from the root node to u is contained in S, and

by the discussion just before the statement of this lemma, for each u ∈ T is edge sequence

161

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

is unique. So, since |S| = nO(c12t log16(n)) it follows that T has at most nO(c12t log16(n)) nodes.

We are now ready to prove Theorem 4.1.4.

Proof: [Proof of Theorem 4.1.4] Let t be a positive integer, G an n-vertex St,t,t-free

graph, and T the recursion tree generated by IND(G, ⊥, |G|, ∅, ∅). By Lemma 4.3.20

IND(G, ⊥, |G|, ∅, ∅) returns the weight of a maximum weight independent set of G and

by Lemma 4.3.31 |T | = nO(c12t log16(n)). All that must be verified then is for each u ∈ T

the amount of time spend in the call that correspond to u runs in polynomial time. We

justify this runtime by discussing only the runtime of the steps of IND that do not clearly

run polynomial time.

That the step of finding X = esd(G) runs in polynomial time was justified in Defini-

tion 4.3.4. That matching(H, η) runs in polynomial time follows from Lemma 4.3.7 and

the facts that in type 2 extended strip decompositions calls, (H, η) is rigid, and therefore

|H| = O(n), and in type 1 extended strip decomposition calls (H, η) is the extended

strip decomposition inferred by some (X ′, G′) and so |H| = nO(1) (see the discussion

after Definition 4.3.4), and by Lemma 4.3.7 matching(H, η) runs in time polynomial in

|G| and |H|. Lastly, that the second bullet point of IND, where Lemma 4.3.8 is applied

runs in polynomial time is stated in Lemma 4.3.8.

4.4 Extended Strip Lemma

The main result of this section is the following:

Lemma 4.4.1 (Extended strip decomposition or small balanced separator). For every

fixed integer t, there exists an integer ct and a polynomial-time algorithm that, given

an n-vertex graph G and a weight function w : V (G) → [0,+∞), returns one of the

following:

162

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

1. an induced copy of St,t,t in G;

2. a 0.99w(G)-balanced separator for (G,w) dominated by ct · log n vertices;

3. a rigid extended strip decomposition of G where no particle is of weight larger than

0.5w(G).

The main difference between Lemma 4.4.1 and the main result of [50], namely Theo-

rem 4.1.6, is that Lemma 4.4.1 promises in the last output an extended strip decompo-

sition of the entire graph, not the graph with a small number of neighborhoods deleted.

The algorithm of Lemma 4.4.1 first applies Theorem 4.1.6 to find either an induced

copy of St,t,t (which can be immediately returned) or a set Z of size O(log n) together

with a rigid extended strip decomposition (H, η) of G − N [Z] such that every particle

of (H, η) has weight at most 0.5w(G). Then, we attempt to put back vertices of N [Z]

one-by-one to (H, η), maintaining the property that every particle of (H, η) has weight

at most 0.5w(G). The following lemma, whose proof spans the remainder of this section,

shows that in every such attempt, we can either succeed or obtain one of the first two

outcomes of Lemma 4.4.1.

Lemma 4.4.2. For every fixed integer t there exists an integer ct and a polynomial-time

algorithm that, given an n-vertex graph G, a weight function w : V (G)→ [0,+∞), a real

τ ⩾ w(G), a vertex v ∈ V (G), and a rigid extended strip decomposition (H, η) of G− v

with every particle of weight at most 0.5τ , returns one of the following:

1. an induced copy of St,t,t in G;

2. a 0.99τ -balanced separator for (G,w) dominated by at most ct vertices;

3. a rigid extended strip decomposition of G where no particle is of weight larger than

0.5τ .

163

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

Let us formally prove Lemma 4.4.1 using Lemma 4.4.2. Proof: [Proof of Lemma 4.4.1.]

Let τ := w(G). Run Theorem 4.1.6 on (G,w). If an St,t,t is returned, return it as well.

Otherwise, we have a set Z of size O(log n) together with a rigid extended strip de-

composition (H, η) of G − N [Z] such that every particle of (H, η) has weight at most

0.5τ .

Enumerate N [Z] as {v1, v2, . . . , vk}. Let Gi = G − {v1, . . . , vi} for 0 ⩽ i ⩽ k, so

that G0 = G and Gk = G − N [Z]. Denote (Hk, ηk) := (H, η). We compute a sequence

(Hi, ηi)
0
i=k of rigid extended strip decompositions of graphs Gi whose every particle has

weight at most 0.5τ as follows. For each i = k, k − 1, . . . , 1 apply Lemma 4.4.2 to Gi−1,

vi (recall that Gi = Gi−1 − vi−1), τ , and the rigid extended strip decomposition (Hi, ηi).

If an St,t,t is returned, terminate the algorithm and return it, too. If a 0.99τ -balanced

separator X is returned, return X ∪N [Z] as a 0.99τ -balanced separator of G dominated

by O(log n) vertices. Otherwise, denote the output rigid extended strip decomposition

of Gi−1 by (Hi−1, ηi−1) and continue with the next step. If we reach (H0, η0), we return

it as the third output of Lemma 4.4.1.

The remainder of this section is devoted to the proof of Lemma 4.4.2.

4.4.1 Turning separations in H into separators in G

Let us make the following trivial observation.

Lemma 4.4.3. If (H, η) is a rigid extended strip decomposition of a graph G and x ∈

V (H) is of degree more than one, then
⋃
y∈NH(x) η(xy, x) is dominated by two vertices.

Proof: Pick two neighbors y1, y2 ∈ NH(x) and any vi ∈ η(xyi, x) for i = 1, 2.

(Recall that we mandate the interfaces η(xyi, x) to be nonempty in a rigid extended

strip decomposition.) Then, vi dominates
⋃
y∈NH(x)−{yi} η(xy, x), so {v1, v2} dominates⋃

y∈NH(x) η(xy, x).

164

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

For an extended strip decomposition (H, η) of a graph G and a set A ⊆ V (H), the

preimage of A in G is the set ←−η (H,η)(A) ⊆ V (G) consisting of:

• all vertex sets η(x) for x ∈ A;

• all edge sets η(xy) for |{x, y} ∩ A| ⩾ 1;

• all triangle sets η(xyz) for |{x, y, z} ∩ A| ⩾ 2.

We make the following two observations based on Lemma 4.4.3.

Lemma 4.4.4. Let (H, η) be an extended strip decomposition of a graph G and let (A,B)

be a separation in H. Let X =
⋃
x∈A∩B

⋃
y∈NH(x) η(xy, x). Then, every connected compo-

nent of G−X is contained in one of the following sets: ←−η (H,η)(A−B), ←−η (H,η)(B − A),

η(x) for some x ∈ A ∩ B, η(xy) for some xy ∈ E(H[A]), or η(xyz) for some triangle

xyz ∈ T (H) with |{x, y, z}∩A∩B| ⩾ 2. Furthermore, if (H, η) is rigid and every vertex

of A ∩B has degree at least 2, then X is dominated by at most 2|A ∩B| vertices.

Proof: Observe that every set Γ being either η(x) for x ∈ A ∩ B, η(xy) for some

xy ∈ E(H[A]), or η(xyz) for a triangle xyz ∈ T (H) with |{x, y, z} ∩A ∩B| ⩾ 2 satisfies

NG(Γ) ⊆ X. Similarly, every edge that has exactly one endpoint on ←−η (H,η)(A−B) −

X has its second endpoint in X and every edge that has exactly one endpoint on

←−η (H,η)(B − A) − X has its second endpoint in X. This proves the desired separation

properties of X. The second part of the lemma follows directly from Lemma 4.4.3.

Lemma 4.4.5. Let 0 < δ < 0.5 be a constant. Let (H, η) be an extended strip decompo-

sition of a graph G with weight function w. Assume that no particle of (H, η) has weight

more than (1 − δ)w(G), but there is a particle of (H, η) that has weight at least δw(G).

Then there exists a set F ⊆ V (H) of size at most 2 such that X :=
⋃
x∈F

⋃
y∈NH(x) η(xy, x)

is an (1 − δ)w(G)-balanced separator in G. Furthermore, if (H, η) is rigid, then X is

dominated by at most four vertices.

165

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

Proof: Observe that inclusion-wise maximal particles are vertex particles for isolated

vertices of H and full edge particles. Without loss of generality, we can assume that there

is a particle of (H, η) of one of those two types that has weight at least δw(G).

Assume first that w(η(x)) ⩾ δw(G) for some isolated x ∈ V (H). We also have

w(η(x)) ⩽ (1 − δ)w(G) by the assumptions of the lemma. Since η(x) is the union of

some connected components of G by the properties of an extended strip decomposition,

∅ is a (1− δ)w(G)-balanced separator in G and the we are done.

Assume now that w(Axyxy) ⩾ δw(G) for an edge xy ∈ E(H). Again, by the assump-

tions of the lemma we have w(Axyxy) ⩽ (1 − δ)w(G). Let F be the set of those vertices

of {x, y} that are of degree more than one in H and let X :=
⋃
x′∈F

⋃
y′∈NH(x′) η(x′y′, x′).

It follows from the properties of an extended strip decomposition that X separates Axyxy

from V (G) − Axyxy, i.e., every path from Axyxy to V (G) − Axyxy contains a vertex from X.

If (H, η) is rigid, then Lemma 4.4.3 implies that X is dominated by at most 2|F | ⩽ 4

vertices. Since δw(G) ⩽ w(Axyxy) ⩽ (1− δ)w(G), X is the desired (1− δ)w(G)-balanced

separator.

4.4.2 Locally cleaning an extended strip decomposition

We will need a few connectivity properties of an extended strip decomposition, a bit

stronger than just being rigid. Luckily, they are easy to obtain via local modifications.

Let (H, η) be an extended strip decomposition of a graph G. A local cleaning step for

(H, η) is one of the following modifications.

removing an isolated vertex with an empty set If x ∈ V (H) is an isolated vertex

satisfying η(x) = ∅, delete x from V (H).

moving an isolated vertex set If x ∈ V (H) is an isolated vertex with nonempty ver-

tex set and y ∈ V (H) is any other vertex that is not an isolated vertex with an

166

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

empty vertex set, we set η(y) := η(y) ∪ η(x) and η(x) := ∅.

moving a disconnected component of an edge set If for an edge xy ∈ E(H) there

exists a connected component C of η(xy)− (η(xy, x)∪ η(xy, y)) with no neighbors

in η(xy, y)− η(xy, x), we set η(x) := η(x) ∪ C and η(xy) := η(xy)− C.

moving a disconnected component of a triangle set If C is a connected compo-

nent of a triangle xyz ∈ T (H) with no neighbors in η(yz, y)∩ η(yz, z), then we set

η(x) := η(x) ∪ C and η(xyz) := η(xyz)− C.

moving a disconnected vertex of an interface If for an edge xy ∈ E(H) there is

a vertex v ∈ η(xy, x) − η(xy, y) such that NG[v] ∩ η(xy) ⊆ η(xy, x), set η(x) :=

η(x) ∪ {v} and η(xy) := η(xy)− {v}.

removing an edge with an empty interface If xy ∈ E(H) is an edge with η(xy, x) =

∅, we set η(y) := η(y) ∪ η(xy) and delete the edge xy from H.

suppressing a degree-1 vertex If x ∈ V (H) is of degree 1 in H, with its unique

neighbor y, set η(y) := η(y) ∪ η(xy) ∪ η(x), η(x) := ∅ and delete the edge xy.

An extended strip decomposition is locally cleaned if no local cleaning step is applicable.

The following observations are immediate.

Lemma 4.4.6. If (H, η) is an extended strip decomposition of G and (H ′, η′) is a result of

applying the first applicable local cleaning step to (H, η), then (H ′, η′) is also an extended

strip decomposition of G with V (H ′) ⊆ V (H) and E(H ′) ⊆ E(H). Furthermore, we have

the following:

• For every xy ∈ E(H ′) we have η′(xy) ⊆ η(xy), η′(xy, x) ⊆ η(xy, x), and η′(xy, y) ⊆

η(xy, y).

167

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

• For every xyz ∈ T (H ′), we have η′(xyz) ⊆ η(xyz).

• The following potential strictly increases from (H, η) to (H ′, η′): the number of

vertices of G in vertex sets of H/H ′, minus the number of vertices and edges of

H/H ′, and additionally minus the number of vertices of H/H ′ that are not isolated

vertices with empty vertex sets.

Proof: The only nontrivial check is that whenever we delete an edge e of H, all

triangles involving e already have empty sets. This follows for the “removing an edge with

an empty interface” step due to inapplicability of the “moving a disconnected component

of a triangle” step.

Note that the last property ensures that the local cleaning operation terminates and

indeed produces a locally cleaned extended strip decomposition.

Lemma 4.4.7. Let (H, η) be an extended strip decomposition of G that is locally cleaned.

Then (H, η) is a rigid extended strip decomposition such that either H consists of a single

vertex with the whole V (G) in its vertex set, or every vertex of H has degree at least 2.

Proof: If there was an isolated x ∈ V (H) with nonempty η(x), the “moving isolated

vertex set” step would apply, unless already η(x) = V (G). If there were an isolated

vertex x ∈ V (H) with η(x) = ∅, the “removing an isolated vertex with an empty set”

step would apply. If there were a vertex x ∈ V (H) of degree one, the “suppressing a

degree-1 vertex” step would apply. If there were an edge xy ∈ E(H) with empty η(xy),

η(xy, x), or η(xy, y), the “removing an edge with an empty interface” step would apply.

This concludes the proof.

Recall that in the context of Lemma 4.4.2, we have access to a rigid extended strip

decomposition (H, η) of G− v with all particles of weight at most 0.5τ . We want to add

v to the extended strip decomposition; on the way there we can identify an induced St,t,t

or a 0.99τ -balanced separator that is dominated by a small number of vertices.

168

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

If w(V (G)−NG[v]) ⩽ 0.99τ , then we can return NG[v] as the promised 0.99τ balanced

separator. Hence, we assume w(V (G)−NG[v]) ⩾ 0.99τ , that is,

τ ⩽ 0.99−1w(V (G)−NG[v]). (4.1)

Let S ⊆ NG[v] with v ∈ S. A local cleaning operation applied to S consists of the

following:

1. Computing an extended strip decomposition (HS, ηS) of G− S by restricting each

set η(·) from (H, η) to V (G)−S. (Note that in this step (HS, ηS) may not be rigid,

as some sets ηS(x), ηS(xy) or interfaces ηS(xy, x) may be empty.)

2. Iteratively, while possible, apply the first applicable local cleaning operation to

(HS, ηS).

3. If at any moment of the process there exists a particle of (HS, ηS) whose weight is

at least 0.01w(V (G)− S), apply Lemma 4.4.5 to it, obtaining a 0.99w(V (G)− S)-

balanced separator X of G − S equal to
⋃
x∈F

⋃
y∈NHS (x)

ηS(xy, x) for some F ⊆

V (HS) of size at most 2. Since V (HS) ⊆ V (H) and ηS(xy, x) ⊆ η(xy, x) for

every xy ∈ E(HS) by Lemma 4.4.6, X ⊆
⋃
x∈F

⋃
y∈NH(x) η(xy, x). Hence, by

Lemma 4.4.3, X is dominated by at most four vertices in G (not necessarily in

G − S). By (4.1) and since τ ⩾ w(G), every connected component of G − S −X

has weight at most

w(V (G)− S)− 0.01w(V (G)− S) = 0.99w(V (G)− S) ⩽ 0.99τ.

Thus, we return X ∪ S as a 0.99τ -balanced separator of G dominated by at most

five vertices.

169

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

Initially, every particle of (HS, ηS) has weight at most 0.5τ which, by (4.1), is upper

bounded by 0.5
0.99

w(V (G)−NG[v]) ⩽ 0.55w(V (G)−S). Thus, if Lemma 4.4.5 is triggered

before the first cleaning operation, its assumptions are satisfied. Later in the process, we

apply a local cleaning operation to an extended strip decomposition whose every particle

is of weight at most 0.01w(V (G) − S). Since every local cleaning operation moves a

subset of one set η(·) to another, after a single local cleaning operation every particle is

of weight at most 0.02w(V (G) − S). This justifies the assumptions of Lemma 4.4.5 if

triggered in later steps.

We conclude with the following straightforward summary of the properties of the

result of local cleaning (cf. Lemma 4.4.7).

Lemma 4.4.8. Let S ⊆ V (G) with v ∈ S and assume that the local cleaning operation

applied to S finished with an extended strip decomposition (HS, ηS) of G− S. Then:

• (HS, ηS) is a rigid extended strip decomposition of G− S.

• V (HS) ⊆ V (H) and E(HS) ⊆ E(H).

• For every x ∈ V (HS) we have ηS(x) ⊇ η(x).

• For every xy ∈ E(HS) we have ηS(xy) ⊆ η(xy), ηS(xy, x) ⊆ η(xy, x), and ηS(xy, y) ⊆

η(xy, y).

• For every xyz ∈ T (HS) we have ηS(xyz) ⊆ η(xyz).

• Every particle of (HS, ηS) is of weight at most 0.01w(V (G)− S) ⩽ 0.01τ .

• Every vertex of HS is of degree at least 2.

We start the algorithm of Lemma 4.4.2 with applying the local cleaning operation to

(H, η), that is, the case S = {v}. We either return a 0.99τ -balanced separator dominated

170

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

by at most five vertices or (we reuse the name (H, η) for the obtained extended strip

decomposition, slightly abusing the notation) ensure the following two properties.

Every particle of (H, η) is of weight at most 0.01τ. (4.2)

Every x ∈ V (H) is of degree at least 2. (4.3)

We henceforth proceed assuming (4.2) and (4.3). Note that Lemma 4.4.3 implies the

following.

For every F ⊆ V (H) the set
⋃
x∈F

⋃
y∈NH(x)

η(xy, x) is dominated by at most 2|F | vertices in G.

(4.4)

4.4.3 A wall avoiding N [v]

An edge xy ∈ E(H) is v-safe if there exists a path in G[η(xy)] − N [v] between a

vertex of η(xy, x) and a vertex of η(xy, y). A subgraph of H is v-safe if all its edges are

v-safe.

We now show the following.

Lemma 4.4.9. For every constant σ there exists a constant σ′ such that in polynomial

time we can either find a 0.99τ -balanced separator dominated by at most σ′ vertices in G

or a v-safe wall W in H of sidelength 3σ with the following property:

∀(A,B)∈TWw(←−η (H,η)(B − A)) ⩾ 0.99τ. (4.5)

Proof: Apply the local cleaning operation to (HS, ηS) where S := N [v]. If a 0.99τ -

balanced separator X is found, return X ∪ S as the promised 0.99τ -balanced separator.

171

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

Otherwise, we have an extended strip decomposition (HS, ηS) of G−N [v] that satisfies

the properties of Lemma 4.4.8.

Let k := fKTW20(σ) where fKTW20 comes from Theorem 4.2.2. Note that k is still a

constant.

Assume that there exists a separation (A,B) in HS of order less than k with both

w(←−η (HS ,ηS)(A−B)) ⩽ 0.99τ and w(←−η (HS ,ηS)(B − A)) ⩽ 0.99τ.

By Lemma 4.4.4, the set X :=
⋃
x∈A∩B

⋃
y∈NHS (x)

ηS(xy, x) is a 0.99τ -balanced separator

of G− S. Due to Lemma 4.4.8, we have X ⊆
⋃
x∈A∩B

⋃
y∈NH(x) η(xy, x), which is in

turn dominated by at most 2|A ∩B| ⩽ 2k − 2 vertices in G due to Lemma 4.4.3. Since

S = N [v], G admits a 0.99τ -balanced separator dominated by at most 2k − 1 vertices.

Since k is a constant, we can find such a separator in polynomial time and return it.

Thus, henceforth we assume that such a separation (A,B) does not exist.

Let T ′ be a set consisting of every separation (A,B) in HS of order less than k with

w(←−η (HS ,ηS)(B − A)) ⩾ 0.99τ.

Since w(G) ⩽ τ and due to our assumption from the previous paragraph, for every

separation (A,B) in HS of order less than k, exactly one of (A,B) and (B,A) belongs

to T ′. Also, for every (A,B) ∈ T ′ it holds that w(←−η (HS ,ηS)(A−B)) ⩽ 0.01τ .

Assume that T ′ is not a tangle of order k. Then, there exist (A1, B1), (A2, B2), (A3, B2)

∈ T ′ with A1 ∪A2 ∪A3 = V (HS). Let F = (A1 ∩B1) ∪ (A2 ∩B2) ∪ (A3 ∩B3). We have

|F | ⩽ 3k − 3. Let X =
⋃
x∈F

⋃
y∈NHS (x)

ηS(xy, y). Since w(←−η (HS ,ηS)(Ai −Bi)) ⩽ 0.01τ

for i = 1, 2, 3 and every particle of (HS, ηS) is of weight at most 0.01τ , X is a 0.99τ -

balanced separator in G− S. Similarly as before, Lemmas 4.4.8 and 4.4.3 imply that X

172

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

is dominated by at most 6k−6 vertices in G. Hence, X ∪S is a 0.99τ -balanced separator

in G dominated by at most 6k − 5 vertices in G. Since k is a constant, we can check

in polynomial time if such a separator exists. Thus, henceforth we continue with the

assumption that T ′ is a tangle of order k in HS.

We now apply Theorem 4.2.2 to obtain a wall W in HS of sidelength 3σ such that

T ′
W , the tangle of order σ governed by W in HS, is the restriction of T ′ to order σ. We

observe that as σ is a constant, W can be computed in polynomial time for example

by first guessing its pegs, and then applying an algorithm for Disjoint Paths of [100].

Since E(HS) ⊆ E(H), the wall W exists also in H. Observe that, due to the local

cleaning operation, every edge xy ∈ E(HS) is v-safe in H. Hence, W is v-safe.

Let (A,B) be a separation in H of order less than k. Since E(HS) ⊆ E(H), we observe

that (A∩V (HS), B∩V (HS)) is a separation in HS of order less than k. Let then T be the

set of all separations (A,B) of H of order less than k such that (A∩ V (HS), B ∩ V (HS))

belongs to T ′. Similarly, let TW be the set of all the separations (A,B) of H of order less

than σ such that (A∩ V (HS), B ∩ V (HS)) is in T ′
W . Then, T is a tangle of order k in H

that satisfies

∀(A,B)∈T w(←−η (HS ,ηS)(B − A)) ⩾ 0.99τ.

Moreover, TW is the tangle of order σ governed by W in H and is equal to the restriction

of T to order σ. This proves (4.5).

We fix the wall W obtained via Lemma 4.4.9 for the remainder of the proof. In

subsequent steps we are going to obtain more and more structural properties of (H, η)

and W , at the cost of gradually shrinking W . The actual value of σ will be fixed at the

end of the proof, so that the final remnants of W are still substantial.

173

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

4.4.4 Finding subdivided claws in a v-safe wall

In what follows, we will be thinking of every path P as a path with an orientation,

so that P has a starting vertex ←−u (P) and an ending vertex −→u (P), and for an integer

1 ⩽ i ⩽ |V (P)| we can speak of the i-th vertex ui(P) of a path. Clearly, ←−u (P) = u1(P)

and −→u (P) = u|V (P)|(P).

For a moment, let us get out of the context of the proof of Lemma 4.4.2 and introduce

an auxiliary tool for finding long disjoint paths in some parts of H and subwalls of W .

Lemma 4.4.10 (Finding paths of length t in a wall). Let W̃ be a 2t-subdivided wall of

sidelength at least 3 in a graph H̃. Let P1, P2, P3 be vertex-disjoint paths such that −→u (Pi)

is a peg of W̃ for i = 1, 2, 3. Let H̃ ′ be the subgraph of H̃ consisting of W̃ and all paths

Pi, i = 1, 2, 3.

Then, there exist three vertex-disjoint paths P ′
1, P

′
2, P

′
3 in G′ such that for every

i = 1, 2, 3 there exists an integer 1 ⩽ ki ⩽ min(|V (P ′
i)|, |V (Pi)|) so that

• the prefix of P ′
i up to uki(P

′
i) equals the prefix of Pi up to uki(Pi); and

• the suffix of P ′
i from uki(P

′
i) is an induced path in W̃ of length at least t.

Proof: A finishing touch for a vertex v in W̃ is a path defined as follows:

• if v is a peg of H̃, then a finishing touch is a zero-length path consisting of v only;

• otherwise, if Q is the basic path of W̃ containing v, then a finishing touch of v is a

subpath of Q between v and one of its endpoints (which is always a peg).

Thus, a finishing touch connects v with a peg of W̃ , without any other peg on the way.

Consider the following modification step. Let i ∈ {1, 2, 3} and assume Pi contains a

vertex v such that the suffix of Pi starting in v is not a finishing touch for v, but there is

a finishing touch of v whose intersection with V (P1)∪ V (P2)∪ V (P3) is contained in the

174

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

suffix of Pi starting at v. Then, modify Pi by replacing the suffix starting at v with the

said finishing touch of v. Note that if we find the paths P ′
1, P

′
2, and P ′

3 for the modified

paths, then they are also good for the original paths, as one can assume that uki(P
′
i) is

not later than v on P ′
i .

As this modification either strictly decreases the number of edges of H̃ ′ that are not

in W̃ or strictly decreases the number of pegs on the paths P1, P2, P3 while keeping H̃ ′

intact, without loss of generality we can assume that the modification step is not possible.

This in particular implies that for i = 1, 2, 3, the only peg on Pi is −→u (Pi).

Let Q be a basic path in W̃ . Assume that there is an internal vertex of Q which is

on one of the paths Pi. We claim that either both endpoints of Q are endpoints of two

out of three paths P1, P2, P3, or the intersection of Q with the union of paths P1, P2, P3

is a suffix of one of those paths being a finishing touch.

To this end, assume that an endpoint u of Q is not an endpoint of any of the paths

Pi, i = 1, 2, 3. Since the endpoints are the only pegs on the paths Pi, i = 1, 2, 3, u does

not lie on either of the paths Pi, i = 1, 2, 3. Let w be the closest to u vertex of Q that

lies on one of the paths Pi, i = 1, 2, 3, and let i ∈ {1, 2, 3} be such that w lies on Pi. By

our assumption, w is an internal vertex of Q.

Note that the modification step is applicable and we could replace the suffix of Pi

starting at w with the finishing touch being the subpath of Q from w to u. The only

reason for this being an invalid modification is that actually the suffix of Pi starting from

w is the second finishing touch of w, that is, the subpath of Q from w to the second

endpoint. This proves the claim.

Since every peg in W̃ has degree three, for every i = 1, 2, 3 we can find a basic path

Qi with one endpoint −→u (Pi) and the second endpoint not being any of the endpoints of

P1, P2, P3. We have shown that the intersection of Qi with the union of the paths P1,

P2, P3 is only a suffix of the path Pi (possibly of length 0). Denote this suffix by Ri.

175

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

For every i = 1, 2, 3, construct the path P ′
i as follows. Define ki so that vi := uki(Pi)

is the starting vertex of Ri. If Ri is of length at least t, just pick P ′
i = Pi. Otherwise, vi is

closer to −→u (Pi) on Qi than to the other endpoint of Qi; obtain P ′
i from Pi by replacing Ri

with the subpath of Qi from vi to the second endpoint of Qi, but without this endpoint

(because it can be also an endpoint of Qj for j ̸= i). Since every basic path is of length

at least 2t, the obtained path P ′
i is always of length at least t. This finishes the proof.

Now we get back to the context of the proof of Lemma 4.4.2, i.e., we work with an

extended strip decomposition (H, η) of G− v. We make the following simple observation

that we will later use multiple times to find St,t,ts within our reasoning.

Lemma 4.4.11. Let H̃ be a v-safe subgraph of H and let P be a family of vertex-disjoint

paths in H̃, each of length at least one. Then one can find a family Q = {QP | P ∈ P}

of disjoint anti-adjacent induced paths in G − N [v] such that for every P ∈ P, the path

QP :

• is of length at least |V (P)| − 2;

• starts in a vertex of η(←−u (P)u2(P),←−u (P));

• ends in a vertex of η(−→u (P)u|V (P)|−1(P),−→u (P)); and

• has all internal vertices contained in

⋃
e∈E(P)

η(e)− (η(←−u (P)u2(P),←−u (P)) ∪ η(−→u (P)u|V (P)|−1(P),−→u (P))).

Proof: Fix P ∈ P . Since H̃ is v-safe, for every 1 ⩽ i < |V (P)| there exists a

path QP,i in G[η(ui(P)ui+1(P))]−N [v] with endpoints in η(ui(P)ui+1(P),ui(P)) and in

η(ui(P)ui+1(P),ui+1(P)) and all internal vertices in η(ui(P)ui+1(P))−(η(ui(P)ui+1(P),ui(P))

∪η(ui(P)ui+1(P),ui+1(P))). By the properties of an extended strip decomposition, the

176

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

ending vertex of QP,i is adjacent to the starting vertex of QP,i+1 for 1 ⩽ i < |V (P)| − 1.

Thus, the concatenation of those paths gives a path QP in G − N [v] with the starting

and ending vertices placed as desired and with at least |V (P)| − 1 vertices. Finally, the

properties of an extended strip decomposition, together with the assumption that the

paths P are vertex-disjoint imply that the paths {QP | P ∈ P} are induced, disjoint,

and anti-adjacent. This completes the proof.

By the properties of an extended strip decomposition, every connected component of

G− v−
⋃
e∈E(H) η(e) lies in a single set η(x) for some x ∈ V (H) or in a single set η(xyz)

for some xyz ∈ T (H). We will be thinking of vertices that are reachable from v without

visiting
⋃
e∈E(H) η(e) as vertices close to v in the following sense.

Definition 4.4.12 (projection). The projection of v, denoted Π, is the set of those

vertices u ∈
⋃
e∈E(H) η(e) for which there exists a path PΠ

u with endpoints v and u and

no internal vertex in
⋃
e∈E(H) η(e).

Note that PΠ
u is either a single edge, or a path whose all internal vertices lie in a

single set η(x) for some x ∈ V (H), or in a single set η(xyz) for some xyz ∈ T (H). In

particular, Π ∩N [v] =
⋃
e∈E(H) η(e) ∩N [v].

We need one more tool that will help us exhibit induced St,t,ts.

Lemma 4.4.13. Let P be a path in H of length at least one with x =←−u (P), y = u2(P),

and Π ∩ η(xy) ̸= ∅. Then there is a path Q in G that starts in v, ends in a vertex of

η(−→u (P)u|V (P)|−1(P),−→u (P)), and has all internal vertices in

η(x) ∪ η(y) ∪
⋃

e∈E(P)

η(e) ∪
⋃

z∈V (H) | xyz∈T (H)

η(xyz).

Furthermore, if Π∩(η(xy)−η(xy, x)) ̸= ∅, then Q can be chosen with all internal vertices

177

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

in

η(y) ∪
⋃

e∈E(P)

η(e).

Proof: Pick u ∈ Π ∩ η(xy), preferably not in η(xy, x) if possible. The path PΠ
u is

either a direct edge, has all internal vertices in η(y), all internal vertices in η(x), or all

internal vertices in η(xyz) for some z ∈ V (H) such that xyz ∈ T (H). Furthermore, if

u /∈ η(xy, x), then the last two options are impossible.

Since (H, η) is locally cleaned, in particular, the “moving a disconnected vertex of an

interface” and “moving a disconnected component of an edge set” steps are inapplicable,

there is a path Qu in η(xy) from u to a vertex w ∈ η(xy, y) with all internal vertices not

in η(xy, x). By the properties of a locally cleaned extended strip decomposition, there is

a path Ru from w to a vertex of η(−→u (P)u|V (P)|−1(P),−→u (P)) via
⋃
e∈E(P)−{xy} η(e). By

concatenating PΠ
u , Qu, and Ru, and possibly shortcuting it to an induced path we obtain

the desired path Q.

We are ready to find our first St,t,t of the proof.

Lemma 4.4.14. For every constant t1 there is a constant t2 such that if W is a v-safe

wall in H of sidelength at least t2, then either G contains an induced St,t,t or there exists

a subwall W ′ of W of sidelength t1 such that for every e ∈ E(H) with Π ∩ η(e) ̸= ∅, at

most one endpoint of e lies in W ′.

Proof: Consider the natural plane embedding of the wall W . We say that two

vertices x, y of W are radially close if there exists a set F of at most 2t+4 bounded faces

of W such that the subgraph of W consisting of all vertices and edges lying on a face of

F is connected and contains both x and y.

Consider the following process. First, all vertices of W are unmarked. As long as

there exists an edge xy ∈ E(H) with η(xy) ∩ Π ̸= ∅, x, y ∈ V (W), and both x and y

178

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

unmarked, mark all vertices of W that are radially close to either x or y. Note that this

in particular marks x and y.

Assume first that this process iterated for at least three steps; let x1y1, x2y2, and

x3y3 be the three edges of H chosen in the first three steps. The radially close definition

implies that W contains vertex-disjoint paths P1, P2, and P3, each of length t+ 1 so that

Pi starts in xi for i = 1, 2, 3 and neither of the paths contains any of the vertices y1, y2, y3.

For i = 1, 2, 3, proceed as follows. Apply Lemma 4.4.13 to a path consisting of the

edge xiyi only, obtaining a path Qi from v to a vertex ui ∈ η(xiyi, xi) with all internal

vertices in η(xi) ∪ η(yi) ∪ (η(xiyi)− η(xiyi, xi)) ∪
⋃
z∈V (H) | xiyiz∈T (H) η(xiyiz). Since the

vertices x1, y1, x2, y2, x3, y3 are pairwise distinct, the paths {Qi − {v} | 1 ⩽ i ⩽ 3} are

anti-adjacent. Hence, V (Q1) ∪ V (Q2) ∪ V (Q3) induce a tree with three leaves u1, u2, u3

and v being the unique vertex of degree 3. We now extend this tree with paths QPi for

i = 1, 2, 3, obtained from paths Pi, i = 1, 2, 3, using Lemma 4.4.11 for H̃ = W . This

gives the desired St,t,t.

We are left with the case when the aforementioned process iterated for at most two

steps. Then, if t2 > t1 + 100(t+ 1), W contains a subwall W ′ of sidelength t1 consisting

of unmarked vertices only. This subwall satisfies the conditions of the lemma.

A wall W ′ in H is v-pure if it is v-safe, it is 2t-subdivided, and for every e ∈ E(H)

with η(e) ∩ Π ̸= ∅, at most one endpoint of e lies in W ′.

The following statement follows directly from Lemma 4.4.14 and the fact that by

leaving only every (2t+ 1)-th column and row of a wall, we can extract a 2t-subdivided

subwall.

Lemma 4.4.15. For every constant t1 there exists a constant t2 such that if W is a

v-safe wall in H of sidelength at least t2, then either G contains an induced St,t,t or W

contains a v-pure subwall W ′ of sidelength t1.

179

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

4.4.5 The case of Π being well-connected to a v-pure wall

Lemma 4.4.15 allows us to find a large v-pure wall W in H. We now observe that if

there is a substantial connection between edges of H containing elements of Π in their

sets and W , then G admits an induced St,t,t.

Lemma 4.4.16 (Claw rooted at v without a small cut). Let W be a v-pure wall in H of

sidelength at least 3. Assume that H contains three vertex-disjoint paths P1, P2, and P3

such that for every i = 1, 2, 3, the first edge ei of Pi is such that η(ei) ∩ Π ̸= ∅ and the

ending vertex of Pi is a peg of W . Then G contains an induced St,t,t.

Proof: Apply Lemma 4.4.10 to P1, P2, P3, and W , obtaining paths P ′
1, P

′
2, P

′
3. For

every i = 1, 2, 3 define the path P ′′
i as follows. If ei is the first edge of P ′

i (i.e., ki > 1), then

keep P ′′
i := P ′

i . The other case is only possible if ei = xiyi with xi ∈ V (W), yi /∈ V (W),

xi =←−u (Pi), and the path P ′
i is fully contained in W . Note that, because Pj and P ′

j differ

only inside W , the vertex xi is not used by any other path P ′
j . Define P ′′

i to be the path

P ′
i prepended with the edge ei (so now ←−u (P ′′

i) = yi). (Note that ei cannot be an edge of

W as yi /∈ V (W).) In this manner, (P ′′
i)i=1,2,3 are vertex-disjoint, each starts with ei and

contains a suffix of length at least t contained in the wall W .

Split each P ′′
i into the said suffixRi of length t and the remaining prefixQi. Lemma 4.4.11

applied to {Ri | 1 ⩽ i ⩽ 3} and H̃ = W gives pairwise disjoint, anti-adjacent, induced

paths R′
i on t vertices each. Lemma 4.4.13 applied to Qi gives a path Q′

i from v to a vertex

of η(−→u (Qi)u|V (Qi)|−1(Qi),
−→u (Qi)). Because the paths P ′′

i for i = 1, 2, 3 are vertex-disjoint,

the paths Q′
i − {v} for i = 1, 2, 3 are anti-adjacent. Then, Q′

1 ∪Q′
2 ∪Q′

3 ∪ R′
1 ∪ R′

2 ∪ R′
3

contains an induced St,t,t with the center in v.

Lemma 4.4.17 (Claw in wall rooted at v where paths in H start at a single vertex). Let

W be a v-pure wall of sidelength at least 3. Assume that H contains three vertex-disjoint

paths P1, P2, P3 and a vertex x ∈ V (H) such that for every i = 1, 2, 3 the ending vertex

180

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

of Pi is a peg of W while x←−u (Pi) ∈ E(H) and Π ∩ (η(x←−u (Pi)) − η(x←−u (Pi), x)) ̸= ∅.

Then, G contains an induced St,t,t.

Proof: We start by applying Lemma 4.4.10 to P1, P2, and P3, obtaining paths P ′
1,

P ′
2, and P ′

3 and indices k1, k2, and k3. We remark that x may appear on one of the paths

P ′
i and even one of those paths can start with the edge x←−u (Pi).

Fix i ∈ {1, 2, 3}. Denote yi = ←−u (Pi) = ←−u (P ′
i). Lemma 4.4.13, applied to the

single edge xyi gives a path Qi from v to vi ∈ η(yix, yi) with all internal vertices in

η(yi) ∪ (η(xyi) − (η(xyi, x) ∪ η(xyi, yi))). Observe that because vertices yi are pairwise

distinct, the paths Qi − {v} are pairwise disjoint and anti-adjacent for i = 1, 2, 3.

If ki > 1, extend Qi from vi to a vertex of η(uki(P
′
i)uki−1(P

′
i),uki(P

′
i)) via sets η(e)

for e lying on the prefix of P ′
i till uki(P

′
i), and shorten the walk to an induced path in

the end. Let Q′
i be the resulting path; set Q′

i = Qi if ki = 1 and observe that if ki = 1

then the first edge of P ′
i is not xyi as xyi /∈ E(W) due to W being v-pure. To obtain the

desired St,t,t centered at v, extend every path Q′
i with a path obtained from Lemma 4.4.11

applied to the suffix of P ′
i from uki(P

′
i) and H̃ = W .

We will use Lemmas 4.4.16 and 4.4.17 to find a separation that separates W from Π.

The precise meaning of “separate” is encapsulated in the following statement.

Definition 4.4.18 (capturing a projection). Let (A,B) be a separation in H and let

Z ⊆ A ∩ B. We say that (A,B) captures Π with backdoor set Z if for every e ∈ E(H)

with Π ∩ η(e) ̸= ∅, either e ⊆ A or there is an endpoint x ∈ e such that x ∈ Z and

Π ∩ η(e) ⊆ η(e, x).

Lemma 4.4.19. Let W be a v-pure wall in H of sidelength at least 55. Then either G

contains an induced St,t,t or there exists a separation (A,B) ∈ TW of order less than 19

that captures Π with a backdoor set of size at most 2.

181

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

Proof: Let

X1 = {x ∈ V (H) | ∃ex=xyx∈E(H)Π ∩ (η(ex)− η(ex, yx)) ̸= ∅}.

For each x ∈ X1 fix one edge ex (and thus also the endpoint yx) as in the definition

above. Let

F = {e = xy ∈ E(H) | x, y /∈ X1 and Π ∩ η(e, x) ∩ η(e, y) ̸= ∅}.

Let F2 be a maximal matching in F and let X2 := V (F2). For an edge e = xy ∈ F2

we denote ex = ey = e. Furthermore, for every x ∈ X2, if xy is the unique edge of F2

containing x, then we denote yx = y. Let X := X1 ∪X2. Note that ex and yx has been

defined for all x ∈ X. Observe that, by the definition of X,

∀e∈E(H)(η(e) ∩ Π ̸= ∅) =⇒ (e ⊆ X) or (e ∩X = {x} and η(e) ∩ Π ⊆ η(e, x)). (4.6)

Assume first that there exists a family P of 17 vertex-disjoint paths in H with starting

points in X and ending points in pegs of W . Let X ′ ⊆ X be the set of the starting points

of the paths in P and for x ∈ X ′ let Px ∈ P be the path starting at x. We say that

x ∈ X ′ kills x′ ∈ X ′ − {x} if yx lies on Px′ . Observe that x kills at most one x′ ∈ X ′ as

paths in P are pairwise vertex-disjoint.

Consider an auxiliary bipartite graph K with sides being two copies of X ′ and an

edge (x, x′) ∈ E(K) if x kills x′. We consider two subcases. In the first subcase, K has a

matching of size 9. Then, K contains three edges (x1, x
′
1), (x2, x

′
2), and (x3, x

′
3) such that

x1, x
′
1, x2, x

′
2, x3, x

′
3 are six pairwise distinct vertices of X ′. Then, the paths Pxi prepended

with the edge exi are vertex-disjoint and satisfy the requirements of Lemma 4.4.16, giving

an induced St,t,t in G. In the other case, K has a vertex cover of size at most 8. By

182

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

deleting these vertices from X ′, we obtain a subset X ′′ ⊆ X ′ of size 9 where no vertex

kills another one.

Consider now a graph L on the vertex set X ′′ where xx′ ∈ E(L) if yx = yx′ . By

Ramsey’s Theorem, L has an independent set of size 3 or a clique of size 4. If I is an

independent set of size 3 in L, then for every x ∈ I obtain a path P ′
x as follows: if yx

does not lie on Px, set P ′
x to be Px prepended with the edge xyx, and otherwise set P ′

x

to be the edge xyx with the suffix of Px starting in yx; note that {P ′
x | x ∈ I} satisfy the

requirements of Lemma 4.4.16. If I is a clique of size 4 in L, denote by z the vertex that

is equal to yx for every x ∈ I. Note that because F2 is a matching, at most one element

of I is in X2. Hence, z and {Px | x ∈ I −X2} satisfy the requirements of Lemma 4.4.17.

This finishes the case where the family of paths P exists.

In the other case, by Menger’s theorem, there is a separation (A,B) in H of order less

than 17 such that X ⊆ A but all pegs of W lie in B. By (4.6), (A,B) captures Π, but

the set of backdoors can be as large as A∩B. Our goal is now to modify (A,B) a bit to

restrict the set of backdoors. To this end, consider a subgraph H ′ of H with V (H ′) = B

and e ∈ E(H ′) if e ⊆ B − A or |e ∩ A ∩B| = 1 and η(e) ∩ Π ̸= ∅.

We consider two subcases. In the first subcase, H ′ contains a family Q of three vertex-

disjoint paths from A∩B to the set of pegs of W that are in B−A. By the construction

of H ′, each path Q ∈ Q starts with a vertex x ∈ A∩B and an edge ex = xyx, yx ∈ B−A,

and Π ∩ η(ex) ̸= ∅. Then, Lemma 4.4.16 applied to Q yields an induced St,t,t in G.

In the second subcase, there is a separation (A′, B′) in H ′ of order less than 3 such

that A ∩ B ⊆ A′ while all pegs of W that lie in B − A belong to B′. Let A′′ := A ∪ A′

and B′′ := B′ ∪ (A ∩B). Then, (A′′, B′′) is a separation in H with X ⊆ A′′ and all pegs

of W lying in B′′. Furthermore, A′′ ∩B′′ = (A′ ∩B′) ∪ (A ∩B). In particular, the order

of (A′′, B′′) is less than 19 and hence (A′′, B′′) ∈ TW as W has sidelength at least 55 (so

TW has order at least 19) and all pegs of W lie in B′′.

183

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

Consider now z ∈ A′′∩B′′ such that there exists an edge zy ∈ E(H) with y ∈ B′′−A′′

and Π ∩ η(zy) ̸= ∅. By (4.6), {y, z} ∩X ̸= ∅. However, as X ⊆ A while y /∈ A, we have

z ∈ X, z ∈ A, and, by (4.6) again, Π ∩ η(zy) ⊆ η(zy, z). The edge zy belongs to H ′.

Since y ∈ B′′−A′′ ⊆ B′−A′, we have z ∈ B′. Since z ∈ A∩B ⊆ A′, we have z ∈ A′∩B′.

Hence, (A′′, B′′) ∈ TW is a separation of order less than 19 that captures Π with

backdoor set Z ⊆ A′ ∩B′, which is of size at most 2. This finishes the proof.

4.4.6 Cleaning the backdoors

Lemma 4.4.19 allows us to find a separation of small order that captures Π with at

most two backdoors. Our goal in this section is to further clean the situation with regards

to how exactly the neighbors of v can appear around η(z) and η(zx, x) for a backdoor

vertex z. On the way there, we will need to sacrifice small parts of the wall W defining

the tangle or slightly increase the size of the allowed separation.

We start with the following straightforward observation from the definition of cap-

turing Π and the fact that (H, η) is locally cleaned.

Lemma 4.4.20. Let (A,B) be a separation in H that captures Π with backdoor set Z.

Suppose xyz ∈ T (H) is such that η(xyz) ∩N(v) ̸= ∅. Then either x, y, z ∈ A, or two of

the vertices x, y, z belong to Z and the third one is in B − A.

We need a few definitions. Let (A,B) be a separation in H that captures Π with

backdoor set Z. For z ∈ Z, let Pz :=
⋃
x∈NH(z)∩(B−A) η(zx, z). We say that (A,B) is

triangle-safe if for every triangle T = xyz ∈ T (H) with η(T)∩N(v) ̸= ∅ either x, y, z ∈ A

or, assuming without loss of generality y, z ∈ A ∩ B and x ∈ B − A, we have that v is

complete to both η(xy, y) and η(xz, z).

Assume (A,B) is triangle-safe. Fix a backdoor vertex z ∈ Z. Observe that for every

u ∈ Π ∩Pz, the path PΠ
u is either a direct edge or goes via η(z): it cannot go through

184

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

η(xyz) for a triangle with say x ∈ B−A as, thanks to triangle-safeness, v is then complete

to η(xz, z), where u resides. An entry point is a vertex v′ ∈ {v}∪η(z) that has a neighbor

in Pz and admits a path QΠ
v′ from v to v′ (it can be of zero length when v = v′) whose

internal vertices have no neighbors in Pz. The backdoor z is pure if every entry point is

complete to Pz.

In the next two lemmas we first ensure that we have a separation in H that captures

Π and is triangle-safe, and then we ensure that all backdoors are pure.

Lemma 4.4.21 (triangle cleanup). Let W be a v-pure wall in G and let (A,B) ∈ TW be a

separation capturing Π with a set of backdoors Z of size at most 2 such that the sidelength

of W is kW ⩾ 4|A ∩ B| + 7. Then, either G admits an induced St,t,t or there exists a

subwall W ′ of W of sidelength at least kW − |A ∩ B| and a separation (A′, B′) ∈ TW ′ in

H of order at most |A ∩ B| + 2 that captures Π with a backdoor set of size at most 2,

A ⊆ A′, B′ ⊆ B, and is triangle-safe.

Proof: If (A,B) is already triangle-safe, we can return W = W ′ and (A′, B′) =

(A,B), so assume otherwise. By Lemma 4.4.20, this is only possible if |Z| = 2, say

Z = {z1, z2} and there is a triangle z1z2x ∈ T (H) with η(xyz)∩N(v) ̸= ∅ and x ∈ B−A,

but v is not complete to η(zx, z) for some z ∈ {z1, z2}. Let us call such a triangle a

violating triangle. Let X be the set of those x ∈ B − A for which z1z2x is a violating

triangle.

Since (A,B) ∈ TW , B − A contains kW − |A ∩ B| full rows and kW − |A ∩ B| full

columns of W ; let W ′ be a subwall of W completely contained in B −A of sidelength at

least kW − |A ∩B|.

We consider two cases. In the first case, there are three vertex-disjoint paths P1, P2,

P3 from X to the pegs of W ′ in the graph H[B − A]. Let xi = ←−u (Pi) for i = 1, 2, 3. In

this case, we exhibit an induced St,t,t in G.

185

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

To this end, apply Lemma 4.4.10 to P1, P2, P3, and W ′, obtaining paths P ′
1, P

′
2, and

P ′
3. We note that as all paths P1, P2, and P3, as well as the wall W ′ are in H[B−A], the

paths P ′
1, P

′
2, and P ′

3 are also contained in H[B − A]; in particular, they do not contain

vertices z1 nor z2. Since (A,B) captures Π, H[B − A] is v-safe. Thus, Lemma 4.4.11

applied to {P ′
1, P

′
2, P

′
3} in H[B−A] yields disjoint anti-adjacent induced paths R1, R2, R3.

For i = 1, 2, 3, let Ci be a component of G[η(xiz1z2)] that contains a neighbor of v.

Since z1 and z2 are symmetric so far, as z1z2x2 is a violating triangle, we can assume

that v is not complete to η(z1x2, z1); pick y2 ∈ η(z1x2, z1) nonadjacent to v. Since

(H, η) is locally cleaned, C1 has a neighbor y1 ∈ η(z1x1, z1) ∩ η(z1x1, x1) and C3 has a

neighbor y3 ∈ η(z2x3, z2) ∩ η(z2x3, x3). (We emphasize the intended lack of symmetry

in the choice of z1 vs z2 in the last two sentences.) By the properties of an extended

strip decomposition, y1y2 ∈ E(G), y1y3, y2y3 /∈ E(G), and C1 and C3 are anti-adjacent

to y2. Let Q be a shortest path from y1 to y3 via C1, v, and C3 (note that it may go via

direct edges vy1 or vy3 if they exist). Let R′
2 be a shortest path from y2 to a vertex of

η(z1x2, x2) with all internal vertices in η(z1x2)− (η(z1x2, z1)∪η(z1x2, x2)). By appending

R1 to y1, R
′
2 and R2 to y2, and R3 to y3 and connecting y1 and y3 via Q, we obtain an

induced St,t,t in G with center in y1.

In the second case, there is a separation (A1, B1) in H[B − A] of order less than 3

with X ⊆ A1 and all pegs of W ′ lying in B1. Define A′ = A∪A1 and B′ = B1 ∪ (A∩B).

Clearly, (A′, B′) is a separation of order at most |A ∩ B| + 2 in H with A ⊆ A′ and

B′ ⊆ B. Since the sidelength of W ′ is at least 3|A ∩ B|+ 7 and all pegs of W ′ lie in B′,

we have (A′, B′) ∈ TW ′ . Since A ⊆ A′, any backdoor vertex of (A′, B′) is also a backdoor

vertex of (A,B), and thus is in the set Z of size 2. Finally, since X ⊆ A1, for every

xyz ∈ T (H) with η(xyz) ∩ N(v) ̸= ∅ we have x, y, z ∈ A′. Thus, the wall W ′ and the

separation (A′, B′) is the desired outcome.

186

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

Lemma 4.4.22 (backdoor cleanup). Let W be a v-pure wall in G and let (A,B) ∈ TW be

a separation capturing Π with a set of backdoors Z of size at most 2 that is triangle-safe

and such that the sidelength of W is kW ⩾ 4|A ∩B|+ 7.

Suppose there exists a backdoor vertex z ∈ Z that is not pure. Then, one of the

following holds:

• G admits an induced St,t,t;

• H admits a separation (A0, B0) ∈ TW of order 1 that captures Π with backdoor set

A ∩B;

• H admits a subwall W ′ of W of sidelength at least kW − |A ∩ B| and a separation

(A′, B′) ∈ TW ′ of order at most |A ∩ B| + 2 with A ⊆ A′ and B′ ⊆ B capturing Π

with backdoor set contained in Z − {z}; or

• H admits a separation (A∗, B∗) ∈ TW of order at most |A ∩ B| with A ⊆ A∗,

B∗ ⊆ B, and (A,B) ̸= (A∗, B∗).

Proof: Recall that for z ∈ A ∩ B, Pz =
⋃
x∈NH(z)∩(B−A) η(zx, z). Fix an entry point

v′ ∈ {v} ∪ η(z) that causes z not to be pure: v′ has some neighbors in Pz, but is not

complete to Pz.

Since (A,B) ∈ TW while the sidelength of W is at least 4|A ∩ B| + 7, we define W ′

to be a subwall of W of sidelength at least kW − |A ∩ B| ⩾ 3|A ∩ B| + 7 that is fully

contained in H[B − A].

We define X1 to be the set of those vertices x ∈ A for which either xz ∈ E(H)

and Π ∩ (η(xz) − η(xz, z)) ̸= ∅, or there exists a neighbor y ∈ NH(x) ∩ (A − {z}) with

Π ∩ η(xy) ̸= ∅. Let X⊥ be the set of those vertices y ∈ B − A for which there exists

xy ∈ X1 and a path Py in H from xy to y that avoids z and whose only vertex outside

A is y; denote the last edge of Py by ey and the penultimate vertex of Py by zy (so that

187

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

ey = zyy). Note that Lemma 4.4.13 implies that for every y ∈ X⊥ there exists an induced

path Ry from v to a vertex η(ey, y) whose all internal vertices belong to

(η(ey)−η(ey, y))∪
⋃

x∈NH(z)∩A

(η(zx)−η(zx, x))∪
⋃

e∈E(H[A−{z}])

η(e)∪
⋃

x∈A−{z}

η(x)∪
⋃

T∈T (H[A])

η(T).

(4.7)

We construct an auxiliary graph H1 as follows. Start with H1 := H[B − A]. Add

all vertices of Pz to H1 and for a vertex u ∈ Pz, if u ∈ η(zy, z) for y ∈ B − A, make

u adjacent to y in H1. Add three new vertices a◦, a•, and a⊥. Make a⊥ adjacent to all

vertices of X⊥. Make a◦ adjacent to all vertices of Pz that are nonadjacent to v′ in G

and make a• adjacent to all vertices of Pz that are adjacent to v′ in G.

We consider two cases. In the first case, there are three vertex-disjoint paths P◦, P•,

and P⊥ in H1 from a◦, a•, and a⊥, respectively, to the set of pegs of W ′. In this case, we

will exhibit an induced St,t,t in G.

Since every vertex of Pz is of degree 2 in H1, the path P◦ starts in a◦, continues via

u◦ ∈ η(zx◦, z) to x◦ ∈ B − A and then stays in B − A till the end. Similarly, the path

P• starts in a•, continues via u• ∈ η(zx•, z) to x• ∈ B − A and then stays in B − A

till the end. By construction, v′u◦ /∈ E(G) while v′u• ∈ E(G). Since P◦ and P• are

vertex-disjoint, x◦ ̸= x• and thus u◦u• ∈ E(G) by the properties of an extended strip

decomposition. Let a⊥x⊥ be the first edge of P⊥ for some x⊥ ∈ X⊥.

Apply Lemma 4.4.10 to P◦, P•, P⊥, and the wall W ′, obtaining paths P ′
◦, P

′
•, and P ′

⊥.

Note that a◦u◦ and u◦x◦ remain the first two edges of P ′
◦, a•u• and u•x• remain the first

two edges of P ′
•, and a⊥x⊥ remains the first edge of P ′

⊥.

The suffixes of paths P ′
◦, P

′
•, and P ′

⊥ from x◦, x•, and x⊥, respectively, stay inH[B−A],

which is v-safe due to the assumption that (A,B) captures Π. Apply Lemma 4.4.11 to

these three suffixes and H[B−A], obtaining disjoint anti-adjacent induced paths R◦, R•,

and R⊥.

188

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

We now exhibit an induced St,t,t in G with the center in u•. For the first leg, as (H, η)

is locally cleaned (in particular, the “moving a disconnected vertex of an interface” and

“moving a disconnected component of an edge set” operations are inapplicable), there is

a path in η(zx•) (possibly of zero length) from u• to a vertex of η(zx•, x•) whose only

vertex of η(zx•, z) is u•; concatenate this path with R•. For the second leg, start with

an edge u•u◦, continue via an analogous path in η(zx◦) from u◦ to a vertex of η(zx◦, x◦)

whose only vertex of η(zx◦, z) is u◦ and append R◦ at the end. For the third leg, go with

a shortest path from u• to the starting vertex of R⊥ via v′, QΠ
v′ , v, Rx⊥ , and finish with

R⊥. Condition (4.7) ensures that this is indeed an induced St,t,t in G.

We are left with the second case where H1 contains a separation (A1, B1) of order

less than three with a◦, a•, a⊥ ∈ A1 but all pegs of W ′ in B1. Pick such (A1, B1) with B1

inclusion-wise minimal.

Observe that no vertex of Pz is in A1 ∩B1, as if some u ∈ A1 ∩B1 with u ∈ η(zx, z),

x ∈ B − A, then as a◦, a• ∈ A1, (A1 ∪ {x}, B1 − {u}) is also a separation of order

less than 3, contradicting the choice of (A1, B1). Let B′ consist of the pegs of W ′ and

NH [(B − A) ∩ (B1 − A1)] and A′ = V (H) − ((B − A) ∩ (B1 − A1)). Clearly, (A′, B′)

is a separation in H. Observe that A′ ∩ B′ ⊆ (A ∩ B) ∪ (A1 ∩ B1), and thus the order

of (A′, B′) is at most |A ∩ B| + |A1 ∩ B1| ⩽ |A ∩ B| + 2. As all pegs of W ′ are in

B′, (A′, B′) ∈ TW ′ ⊆ TW . We have B′ ⊆ B and thus A ⊆ A′, and hence (A′, B′) is

triangle-safe and captures Π with a backdoor set being a subset of Z.

If there is no path in H[B − A] from X⊥ to a peg of W ′, then define a separation as

follows. Let B0 consist of z and all vertices of H reachable in H −{z} from a peg of W ′,

and let A0 = (V (H)−B0)∪ {z}. Clearly, (A0, B0) is a separation of order 1 in H. Since

all pegs of W ′ lie in B0, we have (A0, B0) ∈ TW ′ ⊆ TW . By the assumption, X⊥ ⊆ A0.

Hence, (A0, B0) is Π-capturing. This gives the second outcome of the lemma.

If for some a ∈ {a◦, a•} there is no path in H1 from a to a peg of W ′, define a

189

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

separation (A∗, B∗) as follow. Let C be all vertices of B − A reachable from a in H1.

Since v′ has at least one neighbor in Pz, but is not complete to Pz, we have that a is

not an isolated vertex of H1 and thus C ̸= ∅. Let A∗ = A ∪ C and B∗ = B − C. Then,

(A∗, B∗) is also a separation in H with A ∩B = A∗ ∩B∗ and all pegs in W ′ lying in B∗

(thus (A∗, B∗) ∈ TW ′ ⊆ TW) but with A ⊊ A∗, B∗ ⊊ B. This gives the last outcome of

the lemma.

If z is not a backdoor of (A′, B′), then we are done with the penultimate outcome.

Otherwise, there exists x ∈ B′−A′ with Π∩η(zx, z) ̸= ∅. We have x ∈ B1−A1 and thus

either a◦ or a• belongs to A1∩B1. Since |A1∩B1| < 3 and for every a ∈ {a◦, a•, a⊥} there

is a path from a to a peg of W ′ in H1, A1∩B1 is of size 2 and consists of a ∈ {a◦, a•} and

a vertex z′ ∈ B−A. In particular, a⊥ ∈ A1−B1 hence X⊥ ⊆ A1. Observe that for every

y ∈ X⊥, we have NH(zy)∩ (B −A) ⊆ X⊥. Hence, for every y ∈ X⊥, the vertex zy lies in

A′ − B′. As there is a path from X⊥ to a peg of W ′ in H[B − A], in particular we have

X⊥ ̸= ∅, so at least one zy in (A′ − B′) ∩ (A ∩ B) exists. As A1 ∩ B1 = {a, z′}, we have

A′ ∩ B′ ⊆ (A ∩ B) ∪ {z′}. As (A′ − B′) ∩ (A ∩ B) ̸= ∅, we have |A′ ∩ B′| ⩽ |A ∩ B| and

(A′, B′) ̸= (A,B). This proves that (A′, B′) satisfies the properties of the last outcome

of the lemma.

We conclude this section with a lemma summarizing what we obtained so far.

Lemma 4.4.23. For every constant t, there exists a constant ct and a polynomial-time

algorithm that, given input as in Lemma 4.4.2, either returns one of the promised outputs

of Lemma 4.4.2 or outputs all the following objects:

• a locally clean extended strip decomposition (H, η) of G − v with every vertex of

degree at least 2 and every particle of weight at most 0.01τ ,

• a separation (A,B) in H of order at most ct that is triangle-safe, captures Π with

backdoor set Z of size at most 2 such that every z ∈ Z is pure, and satisfies

190

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

w(←−η (H,η)(B − A)) ⩾ 0.99τ , and

• for every X ⊆ A ∩ B of size three, a family QX = {QX
x | x ∈ X} of three disjoint

anti-adjacent induced paths in G on t vertices each, where for every x ∈ X there

exists yx ∈ NH(x) ∩ (B − A) such that the path QX
x starts in a vertex of η(xyx, x)

and has all remaining vertices in
⋃
e∈E(G[B−A]) η(e) or in η(xyx)− η(xyx, x).

Proof: We compute (H, η) as discussed in Section 4.4.2, by exhaustively applying the

local cleaning operation to the input extended strip decomposition of G−v and discarding

isolated vertices of H with empty vertex sets. Either a 0.99τ -balanced separator dom-

inated by a constant number of vertices is returned, or (H, η) satisfies properties (4.2),

(4.3), and (4.4).

We fix σ to be large enough constant depending on t, emerging from the proof. We

start searching for W and (A,B) by applying Lemma 4.4.9. Thus, we can either already

conclude, or get a v-safe wall W of sidelength 3σ satisfying (4.5).

We proceed with W with a series of lemmas that each either concludes the reasoning,

or exhibit a subwall W ′ of W with some additional property. The new subwall will be

large in the following sense: if for every constant σ′ there exists a constant σ such that if

W is of sidelength at least σ, then W ′ is guaranteed to be of sidelength at least σ′. After

each step, we rename W ′ back to W . For the sake of clarity, we will not follow the exact

computation of the dependencies of σ on σ′, but only refer to them as a “decrease” or

“losing on the sidelength”.

We start with applying Lemma 4.4.15 to W ; by losing a bit on the sidelength of

W , we can assume that W is actually v-pure. We then apply Lemma 4.4.19. This

yields either an induced St,t,t in G (which we can return) or a separation (A,B) ∈ TW

of order less than 19 that captures Π and has backdoor set of size at most 2. We pass

it to Lemma 4.4.21 that either finds St,t,t or, at the cost of a slight decrease (of at most

191

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

|A ∩ B|) of the sidelength of W and an increase of the order of (A,B) by at most 2,

upgrades (A,B) to be triangle-safe. (Here, we slightly abuse the notation by denoting

the output of Lemma 4.4.21 by W and (A,B), again.)

We now iterate on improving W and (A,B) using Lemma 4.4.22. While (A,B) has

a backdoor vertex z that is not pure, apply Lemma 4.4.22 to W , (A,B), and z. If the

third outcome happens, replace W with W ′ and (A,B) with (A′, B′) and repeat; note

that this can happen only twice as initially (A,B) has at most two backdoors. If the

fourth outcome happens, replace (A,B) with (A∗, B∗) and repeat; note that this step

can happen O(|V (H)|) times, but does not degrade the order of (A,B) nor the size of

the wall W .

If we reach (A,B) with all backdoor vertices being pure, we proceed as follows. First,

note that we can assume that there is no (A′, B′) ∈ TW with A ⊆ A′ but |A′∩B′| < |A∩B|,

as then we can replace (A,B) with (A′, B′), because such an operation cannot turn a pure

backdoor into a non-pure backdoor. We would like to return (H, η) and (A,B) as the

third outcome of the lemma; to this end, we need to construct the path families QX . Fix

a subwall W ′ of W contained in H[B−A]; assuming σ is large enough, we can choose W ′

of sidelength at least 3|A∩B|+ 4. Since A∩B and the pegs of W ′ cannot be separated

in H[B] by a separation of order less than |A∩B|, by Menger’s theorem, there is a family

P = {Px | x ∈ A ∩B} of vertex-disjoint paths in H[B] such that every Px ∈ P starts in

x and ends in a peg of W ′. For every X ⊆ A ∩B of size three, construct QX as follows:

Apply Lemma 4.4.10 to {Px | x ∈ X} and W ′, obtaining paths {P ′
x | x ∈ X}. Let yx be

the second vertex of a path P ′
x for x ∈ X. As H[B − A] is v-pure, apply Lemma 4.4.11

to the paths P ′
x with the first edges removed, obtaining paths Rx for x ∈ X. Prepend

every path Rx with a shortest path in η(xyx) from η(xyx, x) to η(xyx, yx), obtaining the

desired path QX
x .

The remaining case is when one of the applications of Lemma 4.4.22 returns a separa-

192

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

tion (A0, B0) ∈ TW of order 1 that captures Π. Let {z} = A0∩B0. Compute an extended

strip decomposition (H ′, η′) of G as follows. Start with H ′ := H[B0] and η′(α) := η(α)

for every α ∈ V (H ′)∪E(H ′)∪T (H ′). Let V ′ be the set of vertices of G that are already

in some set of η′. Add every vertex of V (G)− V ′ to the vertex set η′(z).

We first observe that (H ′, η′) is indeed an extended strip decomposition of G. Indeed,

since z is a cutvertex of H, every vertex of V (G) − (V ′ ∪ {v}) has only neighbors in

V (G)−V ′ and
⋃
y∈NH(z)∩B0

η(zy, z). Furthermore, since (A0, B0) captures Π, all neighbors

of v are also only in V (G)− V ′ and
⋃
y∈NH(z)∩B0

η(zy, z). Since (A0, B0) ∈ TW , we have

w(←−η (H,η)(B0 − A0)) ⩾ 0.99τ by (4.5). Hence, as w(G) ⩽ τ , we have w(η′(z)) ⩽ 0.01τ .

Since every particle of (H, η) is of weight at most 0.01τ by (4.2), every particle of (H ′, η′)

is of weight at most (0.01 + 0.01)τ = 0.02τ . Hence, we can output (H ′, η′) as the third

output of Lemma 4.4.2.

To finish the proof, we observe that after getting the first wall W from Lemma 4.4.9,

all further steps tackle separations of constant order and subwalls of a wall of constant

sidelength. Hence, all computations in later steps can be done in polynomial time naively.

4.4.7 Applying three-in-a-tree

Lemma 4.4.23 allows us to conclude the proof of Lemma 4.4.2 by applying the three-

in-a-tree theorem (Theorem 2.1.1) in the following way.

Given the input to Lemma 4.4.2, we apply Lemma 4.4.23 for the constant t. Unless

we are already done, we obtained the last output, consisting of (H, η), (A,B), and W .

Recall that (A,B) captures Π with a backdoor set Z of size at most 2, it is triangle-safe,

and all z ∈ Z are pure backdoors.

We will need the following notation. Fix z ∈ Z. Recall that Pz =
⋃
x∈NH(z)∩(B−A) η(zx, z).

193

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

Let Vz ⊆ η(z) be the set of those vertices u ∈ η(z) that are reachable from v by a path

contained in G[{v} ∪ η(z)] whose all vertices, except for possibly the last one, are anti-

adjacent to Pz. Note that as z is a pure backdoor, every vertex u ∈ Vz is either completely

adjacent to Pz or completely anti-adjacent to Pz; we denote by V •
z and V ◦

z the sets of

vertices of u ∈ Vz that are completely adjacent and completely anti-adjacent to Pz, re-

spectively. Furthermore, observe that as z is a pure backdoor, v is either completely

adjacent to Pz or completely anti-adjacent to Pz and, in the first case, Vz = ∅.

We construct an auxiliary graph GA as follows. Let XA ⊆ V (G) consist of the

following:

• the vertex v;

• every η(e) for e ∈ E(G[A]);

• every η(xyz) for xyz ∈ T (G[A]);

• every η(x) for x ∈ A−B; and

• for every z ∈ Z, the set Vz.

Observe that XA is disjoint with ←−η (H,η)(B − A) and thus w(XA) ⩽ 0.01τ .

We start with GA := G[XA] and then, for every x ∈ A ∩B we add two new adjacent

vertices ax,1 and ax,2 to GA, adjacent to every vertex of
⋃
y∈NH(x)∩A η(xy, x). Furthermore,

if x ∈ Z, we make ax,1 and ax,2 fully adjacent to V •
z and, if v is complete to Pz, also

adjacent to v. Observe that for x ∈ A ∩ B, the vertices ax,1 and ax,2 are true twins in

GA. Let Z = {ax,i | x ∈ A ∩B, i ∈ {1, 2}}.

We apply Theorem 2.1.1 to GA and the set Z. There are two possible outcomes:

either an induced tree in GA containing at least three elements of Z or a rigid extended

strip decomposition (HA, ηA) of (GA,Z). We deal with these cases separately.

194

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

An induced tree in GA. Let K be an induced tree in GA containing at least three

elements of Z. Without loss of generality, we can assume that K contains exactly three

elements of Z, and K is either a path with two endpoints in Z or a tree with exactly

three leaves being the elements of Z. For x ∈ A∩B, as ax,1 and ax,2 are true twins while

K contains three elements of Z and is an induced tree, K can contain only one of ax,1

and ax,2. Without loss of generality, we can assume that V (K) ∩Z = {ax,1 | x ∈ X} for

some X ⊆ A ∩B of size three.

Consider the family QX = {QX
x | x ∈ X} promised by Lemma 4.4.23 and let ux be the

starting vertex of QX
x for x ∈ X. Observe that ux has exactly the same neighbors in XA

as ax,1, while all other vertices of QX
x are anti-adjacent to XA. Hence, (V (K)−{ax1 | x ∈

X}) ∪ {V (QX
x) | x ∈ X} induces a tree in G that contains an St,t,t, as desired.

An extended strip decomposition of GA. We will now show that one can merge

(HA, ηA) and (H, η) into an extended strip decomposition (H∗, η∗) of the whole graph G.

Recall that for every ax,i ∈ Z there is a degree-1 vertex ξx,i ∈ V (HA) with a unique

neighbor ζx,i ∈ V (HA) and ηA(ξx,iζx,i, ξx,i) = {ax,i}. For every x ∈ A ∩ B, since ax,1 and

ax,2 are adjacent, we have ζx,1 = ζx,2 (and we henceforth denote this vertex by ζx) and

ax,i ∈ ηA(ξx,iζx, ζx) for i = 1, 2. Thus, we can assume without loss of generality that

actually ηA(ξx,iζx) = {ax,i} and ηA(ξx,i) = ∅, as all vertices of ηA(ξx,iζx) ∪ ηA(ξx,i) except

for ax,i can be moved to ηA(ζx). Furthermore, since ax,i and ay,j are nonadjacent for

x ̸= y, i, j ∈ {1, 2}, we have that ζx and ζy are distinct.

Denote H ′
A := HA − {ξx,i | x ∈ A ∩B, i = 1, 2} and observe that H ′

A with η′A defined

as ηA restricted to the vertices, edges, and triangles present in H ′
A is an extended strip

decomposition of G[XA].

Note that every vertex of V (G)−XA appears in (H, η) either in η(x) for some x ∈ B,

in η(e) for an edge e with at least one endpoint in B − A and both endpoints in B,

195

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

or in η(xyz) for a triangle xyz with x, y, z ∈ B and at least one vertex in B − A.

Hence, H ′
B := H[B] with η′B defined as η with the domain restricted to the objects

present in H[B] and every value restricted to vertices of V (G)−XA is an extended strip

decomposition of G−XA. We note that η′B(e) = ∅ for an edge e with both endpoints in

A ∩B, but we retain the edge e in H ′
B as there may be triangles of H[B] involving it.

We construct H∗ by taking a disjoint union of H ′
A and H ′

B, discarding edges e of H ′
B

that have both endpoints in A ∩ B, and identifying ζx with x for every x ∈ A ∩ B. We

define η∗ as follows:

• η∗(e) for e ∈ E(H∗) equals η′A(e) or η′B(e), depending on whether e came from H ′
A

or H ′
B;

• η∗(xyz) for xyz ∈ T (H∗) equals η′A(xyz), η′B(xyz), or ∅, depending on whether the

triangle xyz is present in H ′
A, or at least one of x, y, z is in B−A, or none of these

options happen;

• η∗(x) for x ∈ V (H∗) equals η′A(x) for x ∈ V (H ′
A)− {ζx | x ∈ A ∩B}, equals η′B(x)

for x ∈ B − A, equals η′A(ζx) ∪ η′B(x) for x ∈ A ∩B.

Finally, we discard from H∗ every edge e for which η∗(e) = ∅ and e does not participate

in any triangle with a nonempty set in η∗, and every isolated vertex with an empty vertex

set.

We now check that (H∗, η∗) is indeed a rigid extended strip decomposition ofG. Recall

that (H ′
A, η

′
A) and (H ′

B, η
′
B) are extended strip decompositions of G[XA] and G − XA,

respectively. Furthermore, (H ′
A, η

′
A) is rigid; for (H ′

B, η
′
B), we have η′B(e) = η(e) and

η′B(e, x) = η(e, x) for every e with at least one endpoint in B − A and any x ∈ e,

so (H ′
B, η

′
B) can violate the requirements of being rigid only at vertex sets and edges

contained in A ∩B. We infer that it remains to check the following three properties:

196

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

1. For every uw ∈ E(G) with u ∈ XA and w /∈ XA, u and w are placed in (H∗, η∗) in

a way allowing the edge uw, that is, both u and w either

• belong to one set η∗(e) for some e ∈ E(H∗), or

• belong to one set η∗(x) ∪
⋃
y∈NH∗ (x) η(xy, x) for some x ∈ V (H∗), or

• belong to one set η∗(xyz) ∪ (η∗(xy, x) ∩ η∗(xy, y)) ∪ (η∗(yz, y) ∩ η∗(yz, z)) ∪

(η∗(zx, z) ∩ η∗(zx, x)) for some triangle xyz ∈ T (H∗).

2. For every u ∈ XA and w ∈ V (G)−XA such that for some x ∈ A ∩B it holds that

u,w ∈
⋃
y∈NH∗ (x) η

∗(xy, x), we have uw ∈ E(G).

3. For every edge xy ∈ E(H) with x, y ⊆ A ∩ B, if there exists a triangle xyz with

z ∈ B − A and η(xyz) = η′B(xyz) ̸= ∅, the edge ζxζy exists in H ′
A.

For the first property, let u ∈ XA and w /∈ XA be adjacent. We observe that, since

(H, η) is an extended strip decomposition of G − v, we can break into the following

subcases.

• u = v. Then, as (A,B) is triangle-safe and captures Π, we have two options when

w exists:

– There exists z ∈ Z with v complete to Pz and w ∈ Pz. Then, v is adjacent to

az,1 and az,2. Hence, in (H ′
A, η

′
A) we have that v ∈ η′A(ζz)∪

⋃
y∈NH′

A
(ζz)

η(ζzy, ζz).

Consequently, in (H∗, η∗) we have that both u = v and w belong to η∗(z) ∪⋃
y∈NH∗ (z) η

∗(zy, z), as desired.

– There exists a triangle xyz ∈ T (H) with x, y ∈ Z and z ∈ B − A with

w ∈ η(xyz). Then, as (A,B) is triangle-safe, we have that v is complete

to η(xz, x) ∪ η(yz, y). Hence, v is adjacent to ax,1, ax,2, ay,1, and ay,2 in

GA. The only way how (HA, ηA) can accommodate this is if ζxζy ∈ E(HA)

197

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

and v ∈ ηA(ζxζy, ζx) ∩ ηA(ζxζy, ζy). Hence, v ∈ η∗(xy, x) ∩ η∗(xy, y) while

w ∈ η∗(xyz), as desired.

• u ∈ η(z) for some z ∈ V (H). By the definition of XA, we have actually z ∈ A.

By the existence of w, we have z ∈ A ∩ B. Since the only parts of sets η(x) for

x ∈ A ∩ B that are in XA are sets Vx for x ∈ Z, we have z ∈ Z and v is anti-

complete to Pz. Furthermore, as V ◦
z is nonadjacent to Pz and to η(z) − Vz, we

have u ∈ V •
z and w ∈ Pz ∪ (η(z)− Vz). Then, u is adjacent to az,1 and az,2 in GA.

Thus, u ∈ η′A(ζz) ∪
⋃
y∈NH′

A
(z) η(ζzy, ζz). Hence, u,w ∈ η∗(z) ∪

⋃
y∈NH∗ (z) η

∗(zy, z),

as desired.

• u ∈ η(e) for some e ∈ E(H). By the definition of XA, both endpoints of e are in A.

Due to the existence of the vertex w ∈ NG(u)−XA, we have the following options:

– There exists an endpoint x of e that lies in A ∩ B, u ∈ η(e, x), and w ∈ η(x)

or w ∈
⋃
y∈NH(x)∩(B−A) η(xy, x). Then, u is adjacent to ax,1 and ax,2 in GA,

and therefore u ∈ η′A(ζx)∪
⋃
y∈NH′

A
(ζx)

η′A(ζxy, ζx). Thus, both u and w belong

to η∗(x) ∪
⋃
y∈NH∗ (x) η

∗(xy, x).

– Both endpoints x, y of e lie in A ∩ B, u ∈ η(xy, x) ∩ η(xy, y) and there exists

z ∈ B − A with xz, yz ∈ E(H) and w ∈ η(xyz). We infer that u is adjacent

to ax,1, ax,2, ay,1, and ay,2 in GA. The only way how u is accommodated in

(HA, ηA) is that ζxζy ∈ E(HA) and u ∈ ηA(ζxζy, ζx) ∩ ηA(ζxζy, ζy). Hence,

u ∈ η∗(xy, x) ∩ η∗(xy, y) while w ∈ η∗(xyz).

• u ∈ η(xyz) for some xyz ∈ T (H). By the definition of XA, we have x, y, z ∈ A.

Then, NG(η(xyz)) ⊆ XA, contradicting the existence of w. Hence, this case is

impossible.

For the second property, let x ∈ A ∩ B and u,w ∈
⋃
y∈NH∗ (x) η

∗(xy, x) with u ∈ XA

198

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

and w /∈ XA. By the way we obtained (H∗, η∗), there exists yu ∈ NH′
A

(ζx) with u ∈

ηA(ζxyu, ζx) and yw ∈ NH(x) ∩ (B − A) with w ∈ η(xyw, x). In particular, u is adjacent

to ax,1 and ax,2 in GA. Therefore, by the way we constructed GA, we have that either

u ∈
⋃
y∈NH(x)∩A η(xy, x), or for z ∈ Z, either u ∈ V •

z , or u = v and v is completely

adjacent to Pz. On all cases, u is completely adjacent to
⋃
y∈NH(x)∩(B−A) η(xy, x), where

w resides. This proves uw ∈ E(G), as desired.

For the third property, consider xyz ∈ T (H) with x, y ∈ A ∩ B, z ∈ B − A, and

η(xy) ̸= ∅. Since (H, η) is locally cleaned, there is an edge uw ∈ E(G) with w ∈ η(xyz)

and u ∈ η(xy, x) ∩ η(xy, y). Then, u ∈ XA and u is adjacent to ax,1, ax,2, ay,1, and ay,2

in GA. Hence, the only option to accommodate u in (HA, ηA) is that ζxζy ∈ E(HA) and

u ∈ ηA(ζxζy, ζx) ∩ ηA(ζxζy, ζy). This proves the third property.

Hence, (H∗, η∗) is indeed a rigid extended strip decomposition of G. Since w(XA) ⩽

0.01τ and every particle of (H, η) has weight at most 0.01τ , every particle of (H∗, η∗)

has weight at most 0.5τ . This proves that (H∗, η∗) satisfies the requirements for the last

outcome of Lemma 4.4.2. This concludes the proof of Lemma 4.4.2, and thus also the

proof of Lemma 4.4.1.

4.5 Conclusion

Let us point out some possible directions for future research. First, on the structural

side, we believe that theorem 4.1.7 could be improved so that in the second outcome the

balanced separator is dominated by a constant (depending on t) number of vertices. The

only reason why the current statement has the logarithmic bound is that in theorem 4.1.6

the number of deleted neighborhoods is logarithmic. Majewski et al. [50] conjectured that

theorem 4.1.6 can actually be improved so that the number of deleted neighborhoods is

constant. Proving this conjecture would immediately yield an improved version of our

199

Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time Chapter 4

theorem 4.1.7. However, such a stronger version, while being more elegant, would not

give any essentially new algorithmic result: the running time of our algorithms would

still be quasi-polynomial (though a bit faster).

On the algorithmic side, an obvious natural problem is to provide a polynomial-time

algorithm for MWIS in St,t,t-free graphs, for all t. While we believe that extended strip

decompositions are the right tool to use towards this goal, it seems that decompositions

like the ones obtained by theorem 4.1.7 would not lead to such a statement. This is

because recursing into a polynomial number of multiplicatively smaller particles inher-

ently leads to a quasi-polynomial running time. We believe the ultimate goal would be

to build an extended strip decomposition where each particle induces a graph from some

“simple” class. In particular, so that we can solve MWIS for each particle in polynomial

time without using recursion. Such decompositions for the simplest case, i.e., claw-free

graphs, are provided by a deep structural result of Chudnovsky and Seymour [101].

An important milestone on the way towards obtaining a polynomial-time algorithm

for MWIS in St,t,t-free graphs is to solve the case of Pt-free graphs, which is already a

very ambitious goal.

200

Chapter 5

Finding Sparse Induced Subgraphs

in C>k-Free Graphs in

Quasi-Polynomial Time

For an integer t, a graph G is called C>t-free if G does not contain any induced cycle

on more than t vertices. We prove the following statement: for every pair of integers

d and t and a CMSO2 statement φ, there exists an algorithm that, given an n-vertex

C>t-free graph G with weights on vertices, finds in time nO(log4 n) a maximum-weight

vertex subset S such that G[S] has degeneracy at most d and satisfies φ. The running

time can be improved to nO(log2 n) assuming G is Pt-free, that is, G does not contain an

induced path on t vertices. This expands the recent results of the authors [to appear at

FOCS 2020 and SOSA 2021] on the Maximum Weight Independent Set problem

on Pt-free graphs in two directions: by encompassing the more general setting of C>t-free

graphs, and by being applicable to a much wider variety of problems, such as Maximum

Weight Induced Forest or Maximum Weight Induced Planar Graph.

201

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

5.1 Introduction

Consider the Maximum Weight Independent Set (MWIS) problem: given a

vertex-weighted graph G, find an independent set in G that has the largest possible

weight. While NP-hard in general, the problem becomes more tractable when structural

restrictions are imposed on the input graph G. In this work we consider restricting G

to come from a fixed hereditary (closed under taking induced subgraphs) class C. The

goal is to understand how the complexity of MWIS, and of related problems, changes

with the class C. A concrete instance of this question is to consider H-free graphs —

graphs that exclude a fixed graph H as an induced subgraph — and classify for which

H, MWIS becomes polynomial-time solvable in H-free graphs.

Somewhat surprisingly, we still do not know the complete answer to this question. A

classic argument of Alekseev [4] shows that MWIS is NP-hard in H-free graphs, unless

H is a forest of paths and subdivided claws: graphs obtained from the claw K1,3 by

subdividing each of its edges an arbitrary number of times. The remaining cases are still

open apart from several small ones: of P5-free graphs [14], P6-free graphs [89], claw-free

graphs [80, 81], and fork-free graphs [102, 18]. Here and further on, Pt denotes a path

on t vertices.

On the other hand, there are multiple indications that MWIS indeed has a much

lower complexity in H-free graphs, whenever H is a forest of paths and subdivided claws,

than in general graphs. Concretely, as we saw in Chapter 4, in this setting the problem

is known to admit a quasi-polynomial time algorithm; note that the existence of such

algorithms for general graphs is excluded under standard complexity assumptions. We

saw in Chapter 3 an algorithm for MWIS in Pt-free graphs, for every fixed t. The running

time was nO(log3 n), which was subsequently improved to nO(log2 n) by Pilipczuk et al. [41].

A key fact that underlies the algorithms for Pt-free graphs is the following balanced

202

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

separator theorem (see theorem 5.2.1): In every Pt-free graph, we can find a connected

set X consisting of at most t vertices, such that the number of vertices in every connected

component ofG−N [X] is at most half of the number of vertices ofG. It has been observed

by Chudnovsky et al. [38] that the same statement is true also in the class of C>t-free

graphs: graphs that do not contain an induced cycle on more than t vertices. Note

here that, on one hand, every Pt-free graph is C>t-free as well, and, on the other hand,

C>t-free graphs generalize the well-studied class of chordal graphs, which are exactly C>3-

free. Using the separator theorem, Chudnovsky et al. [38, 50] gave a subexponential-time

algorithm and a QPTAS for MWIS on C>t-free graphs, for every fixed t.

The basic toolbox developed for MWIS can also be applied to other problems of sim-

ilar nature. Consider, for instance, the Maximum Weight Induced Forest problem:

in a given vertex-weighted graph G, find a maximum-weight vertex subset that induces

a forest; note that by duality, this problem is equivalent to Feedback Vertex Set.

By lifting techniques used to solve MWIS in polynomial time in P5-free and P6-free

graphs [14, 89], Abrishami et al. [35] showed that Maximum Weight Induced For-

est is polynomial-time solvable both in P5-free and in C>4-free graphs. In fact, the result

is even more general: it applies to every problem of the form “find a maximum-weight

induced subgraph of treewidth at most k”; MWIS and Maximum Weight Induced

Forest are particular instantiations for k = 0 and k = 1, respectively.

As far as subexponential-time algorithms are concerned, Novotná et al. [103] showed

how to use separator theorems to get subexponential-time algorithms for any problem of

the form “find the largest induced subgraph belonging to C”, where C is a fixed hereditary

class of graphs that have a linear number of edges. The technique applies both to Pt-

free and C>t-free graphs under the condition that the problem in question admits an

algorithm which is single-exponential in the treewidth of the instance graph.

203

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

Our results. We extend the recent results on quasipolynomial-time algorithms for

MWIS in Pt-free graphs [1, 41] in two directions:

(a) We expand the area of applicability of the techniques to C>t-free graphs.

(b) We show how to solve in quasipolynomial time not only the MWIS problems,

but a whole family of problems that can be, roughly speaking, described as find-

ing a maximum-weight induced subgraph that is sparse and satisfies a prescribed

property.

Both of these extensions require a significant number of new ideas. Formally, we prove

the following.

Theorem 5.1.1. Fix a pair of integers d and t and a CMSO2 sentence φ. Then there ex-

ists an algorithm that, given a C>t-free n-vertex graph G and a weight function w : V (G)→

N, in time nO(log4 n) finds a subset S of vertices such that G[S] is d-degenerate, G[S] sat-

isfies φ, and, subject to the above, w(S) is maximum possible; the algorithm may also

conclude that no such vertex subset exists. The running time can be improved to nO(log2 n)

if G is Pt-free.

Recall here that a graph G is d-degenerate if every subgraph of G contains a vertex of

degree at most d; for instance, 1-degenerate graphs are exactly forests and every planar

graph is 5-degenerate. Also, CMSO2 is the Monadic Second Order logic of graphs with

quantification over edge subsets and modular predicates, which is a standard logical

language for formulating graph properties. In essence, the logic allows quantification

over single vertices and edges as well as over subsets of vertices and of edges. In atomic

expressions one can check whether an edge is incident to a vertex, whether a vertex/edge

belongs to a vertex/edge subset, and whether the cardinality of some set is divisible by

a fixed modulus. We refer to [104] for a broader introduction.

204

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

Corollaries. By applying theorem 5.1.1 for different sentences φ, we can model var-

ious problems of interest. For instance, as 1-degenerate graphs are exactly forests, we

immediately obtain a quasipolynomial-time algorithm for the Maximum Weight In-

duced Forest problem in C>t-free graphs. Further, as being planar is expressible in

CMSO2 and planar graphs are 5-degenerate, we can conclude that the problem of finding

a maximum-weight induced planar subgraph can be solved in quasipolynomial time on

C>t-free graphs. In section 5.7.5 we give a generalization of theorem 5.1.1 that allows

counting the weights only on a subset of S. From this generalization it follows that for

instance the following problem can be solved in quasipolynomial time on C>t-free graphs:

find the largest collection of pairwise nonadjacent induced cycles.

Let us point out a particular corollary of theorem 5.1.1 of a more general nature. It is

known that for every pair of integers d and t there exists ℓ = ℓ(d, t) such that every graph

that contains Pℓ as a subgraph, contains either Kd+2, or Kd+1,d+1, or Pt as an induced

subgraph [105]. Since the degeneracy of Kd+2 and Kd+1,d+1 is larger than d, we conclude

that every Pt-free graph of degeneracy at most d does not contain Pℓ as a subgraph.

On the other hand, for every integer ℓ, the class of graphs that do not contain Pℓ as a

subgraph is well-quasi-ordered by the induced subgraph relation [106]. It follows that for

every pair of integers t and d and every hereditary class Cd such that every graph in Cd has

degeneracy at most d, the class Cd∩(Pt-free) of Pt-free graphs from Cd is characterized by

a finite number of forbidden induced subgraphs: there exists a finite list F of graphs such

that a graph G belongs to Cd∩ (Pt-free) if and only if G does not contain any graph from

F as an induced subgraph. As admitting a graph from F as an induced subgraph can

be expressed by a CMSO2 sentence, from theorem 5.1.1 we can conclude the following.

Theorem 5.1.2. Let C be a hereditary graph class such that each member of C is d-

degenerate, for some integer d. Then for every integer t there exists algorithm that, given

205

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

a Pt-free n-vertex graph G and a weight function w : V (G)→ N, in time nO(log2 n) finds a

subset S of vertices such that G[S] ∈ C and, subject to this, w(S) is maximum possible.

Degeneracy and treewidth. Readers familiar with the literature on algorithmic re-

sults for CMSO2 logic might be slightly surprised by the statement of theorem 5.1.1.

Namely, CMSO2 is usually associated with graphs of bounded treewidth, where the

tractability of problems expressible in this logic is asserted by Courcelle’s Theorem [54].

theorem 5.1.1, however, speaks about CMSO2-expressible properties of graphs of bounded

degeneracy. While degeneracy is upper-bounded by treewidth, in general there are graphs

that have bounded degeneracy and arbitrarily high treewidth. However, we prove that

in the case of C>t-free graphs, the two notions are functionally equivalent.

Theorem 5.1.3. For every pair of integers d and t, there exists an integer k = (dt)O(t)

such that every C>t-free graph of degeneracy at most d has treewidth at most k.

As the properties of having treewidth at most k and having degeneracy at most d

are expressible in CMSO2, from theorem 5.1.3 it follows that in the statement of the-

orem 5.1.1, assumptions “G[S] has degeneracy at most d” and “G[S] has treewidth at

most k” could be replaced by one another. Actually, both ways of thinking will become

useful in the proof.

Simple QPTASes. As an auxiliary result, we also show a simple technique for turning

algorithms for MWIS in Pt-free and C>t-free graphs into approximation schemes for

(unweighted) problems of the following form: in a given graph, find the largest induced

subgraph belonging to C, where C is a fixed graph class that is closed under taking

disjoint unions and induced subgraphs and is weakly hyperfinite [107, Section 16.2]. This

last property is formally defined as follows: for every ε > 0, there exists a constant

c(ε) such that from every graph G ∈ C one can remove an ε-fraction of vertices so that

206

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

every connected component of the remaining graph has at most c(ε) vertices. Weak

hyperfiniteness is essentially equivalent to admitting sublinear balanced separators, so

all the well-known classes of sparse graphs, e.g. planar graphs or all proper minor-closed

classes, are weakly hyperfinite. We present these results in section 5.8.

3-Coloring. In [41], it is shown how to modify the quasipolynomial algorithm for

MWIS in Pt-free graphs to obtain an algorithm for 3-Coloring with the same asymp-

totic running time bound in the same graph class. We remark here that the same modi-

fication can be applied to the algorithm of theorem 5.1.1, obtaining the following:

Theorem 5.1.4. For every integer t there exists an algorithm that, given an n-vertex

C>t-free graph G, runs in time nO(log4 n) and verifies whether G is 3-colorable.

5.2 Overview

In this section we present an overview of the proof of our main result, theorem 5.1.1.

We try to keep the description non-technical, focusing on explaining the main ideas and

intuitions. Complete and formal proofs follow in subsequent sections.

5.2.1 Approach for Pt-free graphs

We need to start by recalling the basic idea of the quasipolynomial-time algorithm

for MWIS in Pt-free graphs [1, 41]; we choose to follow the exposition of [41]. The main

idea is to exploit the following balanced separator theorem.

Theorem 5.2.1 (Gyárfás [36], Bacsó et al. [37]). Let G be an n-vertex Pt-free graph.

Then there exists a set X consisting of at most t vertices of G such that G[X] is connected

and every connected component of G−N [X] has at most n/2 vertices. Furthermore, such

a set can be found in polynomial time.

207

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

In the MWIS problem, there is a natural branching strategy that can be applied

on any vertex u. Namely, branch into two subproblems: in one subproblem — success

branch — assume that u is included in an optimal solution, and in the other — failure

branch — assume it is not. In the success branch we can remove both u and all its

neighbors from the consideration, while in the failure branch only u can be removed.

Hence, theorem 5.2.1 suggests the following naive Divide&Conquer strategy: find a set

X as provided by the Theorem and branch on all the vertices of X as above in order to try

to disconnect the graph. This strategy does not lead to any reasonable algorithm, because

the graph would get shattered only in the subproblem corresponding to success branches

for all x ∈ X. However, there is an intuition that elements of X are reasonable candidates

for branching pivots: vertices such that branching on them leads to a significant progress

of the algorithm.

The main idea presented in [41] is to perform branching while measuring the progress

in disconnecting the graph in an indirect way. Let G be the currently considered graph.

For a pair of vertices u and v, let the bucket of u and v be defined as:

BGu,v := {P : P is an induced path in G with endpoints u and v}.

Observe that since G is Pt-free, every element of BGu,v is a path on fewer than t vertices,

hence BGu,v has always at most nt−1 elements and can be computed in polynomial time

(for a fixed t). On the other hand, BGu,v is nonempty if and only if u and v are in the

same connected component of G.

Let X be a set whose existence is asserted by theorem 5.2.1. Observe that if u and

v are in different components of G−N [X], then all the paths of BGu,v are intersected by

N [X]. Moreover, as every connected component of G−N [X] has at most n/2 elements,

this happens for at least half of the pairs {u, v} ∈
(
V (G)
2

)
. Since X has only at most t

208

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

vertices, by a simple averaging argument we conclude the following.

Claim 5.2.2. There is a vertex x such that N [x] intersects at least a 1
t
-fraction of paths

in at least 1
2t

-fraction of buckets.

A vertex x having the property mentioned in claim 5.2.2 shall be called 1
2t

-heavy, or

just heavy. Then claim 5.2.2 asserts that there is always a heavy vertex; note that such

a vertex can be found in polynomial time by inspecting the vertices of G one by one.

We may now present the algorithm:

1. If G is disconnected, then apply the algorithm to every connected component of G

separately.

2. Otherwise, find a heavy vertex in G and branch on it.

We now sketch a proof of the following claim: on each root-to-leaf path in the recursion

tree, this algorithm may execute only O(log2 n) success branches. By claim 5.2.2, in

each success branch a constant fraction of buckets get their sizes reduced by a constant

multiplicative factor. Since buckets are of polynomial size in the first place, after Ω(log n)

success branches a 1
10

-fraction of the initial buckets must become empty. Since in a

connected graph all the buckets are nonempty, it follows that after Ω(log n) success

branches, the vertex count of the connected graph we are working on must have decreased

by at least a multiplicative factor of 0.01 with respect to the initial graph. As this can

happen only O(log n) times, the claim follows.

Now the recursion tree has depth at most n and each root-to-leaf path contains at

mostO(log2 n) success branches. Therefore, the total size of the recursion tree is nO(log2 n),

which implies the same bound on the running time. This concludes the description of

the algorithm for Pt-free graphs; let us recall that this algorithm was already presented

in [41].

209

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

5.2.2 Lifting the technique to C>t-free graphs

We now explain how to lift the technique presented in the previous section to the

setting of C>t-free graphs. As we mentioned before, the main ingredient — the balanced

separator theorem — remains true.

Theorem 5.2.3 (Gyárfás [36], Chudnovsky et al. [38]). Let G be an n-vertex C>t-free

graph. Then there is a set X consisting of at most t vertices of G such that G[X]

is connected and every connected component of G − N [X] has at most n/2 vertices.

Furthermore, such a set can be found in polynomial time.

However, in the previous section we used the Pt-freeness of the graph in question also

in one other place: to argue that the buckets BGu,v are of polynomial size. This was crucial

for the argument that Ω(log n) success branches on heavy vertices lead to emptying a

significant fraction of the buckets. Solving this issue requires reworking the concept of

buckets.

The idea is that in the C>t-free case, the objects placed in buckets will connect

triples of vertices, rather than pairs. Formally, a connector is a graph formed from three

disjoint paths Q1, Q2, Q3 by picking one endpoint ai of Qi, for each i = 1, 2, 3, and either

identifying vertices a1, a2, a3 into one vertex, or turning a1, a2, a3 into a triangle; see

fig. 5.1. The paths Qi are the legs of the connector, the other endpoints of the legs are

the tips, and the (identified or not) vertices a1, a2, a3 are the center of the connector. We

remark that we allow the degenerate case when one or more paths Q1, Q2, Q3 has only

one vertex, but we require the tips to be pairwise distinct.

The following claim is easy to prove by considering any inclusion-wise minimal con-

nected induced subgraph containing u, v, w.

Claim 5.2.4. If vertices u, v, w belong to the same connected component of a graph G,

then in G there is an induced connector with tips u, v, w.

210

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

A tripod is a connector in which every leg has length at most t/2 + 1 (w.l.o.g. t is

even). Every connector contains a core: the tripod induced by the vertices at distance

at most t/2 from the center. The next claim is the key observation that justifies looking

at connectors and tripods.

Claim 5.2.5. Let G be a C>t-free graph, let T be an induced connector in G, and let X

be a subset of vertices such that G[X] is connected and no two tips of T are in the same

connected component of G−N [X]. Then N [X] intersects the core of T .

Proof of Claim 1. Since no two tips of T lie in the same component of G − N [X], it

follows that N [X] intersects at least two legs of T , say Q1 and Q2 at vertices q1 and q2,

respectively. We may choose q1 and q2 among N [X] ∩ V (Q1) and N [X] ∩ V (Q2) so that

they are as close in T as possible to the center of T . Since G[X] is connected, there exists

a path P with endpoints q1 and q2 such that all the internal vertices of P belong to X.

Now P together with the shortest q1-q2 path within T form an induced cycle in G. As

this cycle must have at most t vertices, we conclude that q1 or q2 belongs to the core of

T .

claim 5.2.5 suggests that in C>t-free graphs, cores of connectors are objects likely to

be hit by balanced separators provided by theorem 5.2.3, similarly as in Pt-free graphs,

induced paths were likely to be hit by balanced separators given by theorem 5.2.1. Let

us then use cores as objects for defining buckets.

Let G be a C>t-free graph. For an unordered triple {u, v, w} ∈
(
V (G)
3

)
of distinct

vertices, we define the bucket BGu,v,w as the set of all cores of all induced connectors with

tips u, v, w. Let us stress here that BGu,v,w is a set, not a multiset, of tripods: even if some

tripod is the core of multiple connectors with tips u, v, w, it is included in BGu,v,w only

once. Therefore, as each tripod has O(t) vertices, the buckets are again of size nO(t) and

can be enumerated in polynomial time. By claim 5.2.4, the bucket BGu,v,w is nonempty if

211

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

and only if u, v, w are in the same connected component of G. Moreover, from claim 5.2.5

we infer the following.

Claim 5.2.6. Let {u, v, w} ∈
(
V (G)
3

)
be a triple of vertices of G and let X be a vertex

subset such that G[X] is connected and no two vertices out of u, v, w belong to the same

connected component of G − N [X]. Then N [X] intersects all the tripods in the bucket

BGu,v,w.

We now would like to obtain an analogue of claim 5.2.2, that is, find a vertex x

such that N [x] intersects a significant fraction of tripods in a significant fraction of

buckets. Let then X be a set provided by theorem 5.2.3 for G. For a moment, let us

assume optimistically that each connected component of G−N [X] contains at most n/10

vertices, instead of n/2 as promised by theorem 5.2.3. Observe that if we choose a triple

of distinct vertices uniformly at random, then with probability at least 1
2

no two of these

vertices will lie in the same connected component of G − N [X]. By claim 5.2.5, this

implies that N [X] intersects all the tripods in at least half of the buckets. By the same

averaging argument as before, we get the following.

Claim 5.2.7. Suppose that in G there is a set X consisting of at most t vertices such

that G[X] is connected and every connected component of G − N [X] has at most n/10

vertices. Then there is a heavy vertex in G.

Here, we define a heavy vertex as before: it is a vertex x such that N [x] intersects at

least a 1
t
-fraction of tripods in at least a 1

2t
-fraction of buckets.

Unfortunately, our assumption that every component of G−N [X] contains at most

n/10 vertices, instead of at most n/2 vertices, is too optimistic. Consider the following

example: G is a path on n vertices. The cores of connectors degenerate to subpaths

consisting of at most t consecutive vertices of the path, and for every vertex x, the set

212

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

N [x] intersects any tripod in only an O(t/n)-fraction of the buckets. Therefore, in this

example there is no heavy vertex at all. We need to resort to a different strategy.

Secondary branching. So let us assume that the currently considered graph G is

connected and has no heavy vertex — otherwise we may either recurse into connected

components or branch on the heavy vertex (detectable in polynomial time). We may even

assume that there is no 1
4t

-heavy vertex: a vertex x such that N [x] intersects at least a

1
2t

-fraction of tripods in at least a 1
4t

-fraction of buckets buckets. Indeed, branching on

such vertices also leads to quasipolynomial running time (with all factors in the analysis

appropriately scaled).

Let us fix a set X provided by theorem 5.2.3 for G; then G[X] is connected and each

connected component of G−N [X] has at most n/2 vertices. By claim 5.2.7, there must

be some components of G−N [X] that have more than n/10 vertices, for otherwise there

would be a heavy vertex. The idea is that we perform some additional branching in those

large components in order to shatter them into smaller pieces, so that a heavy vertex

must appear due to claim 5.2.7.

A connected component C of G−N [X] shall be called a chip if C has at least n/100

vertices and C has a neighbor in N [X]. Our goal is to get rid of all the chips by performing

branching on vertices of G. Indeed, if we achieve this, then either the vertex count of

every connected component of G drops to below 0.99n — which is a huge progress for the

algorithm — or G still contains a connected component D that constitutes more than

99% of the original graph G. However, in the latter case, every component of D−N [X]

has at most n/100 vertices, as otherwise it would be a chip. So by applying claim 5.2.7

we may find a 1
2t

-heavy vertex in D. We will later argue what shall be done with such a

heavy vertex, but for now let us focus on the goal of getting rid of all the chips.

Consider a chip C. A C-link is a path in G with endpoints in N [X] ∩N(C) and all

213

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

internal vertices in C; this path should be induced, except that we allow the existence of

an edge between the endpoints. Observe the following:

Claim 5.2.8. Every C-link has at most t vertices.

Proof of Claim 2. Let P be a C-link. Since the endpoints of P are in N [X] and G[X]

is connected, there exists an induced path Q with same endpoints as P such that all the

internal vertices of P are in X. Then P ∪Q is an induced cycle in G, hence both P and

Q must have at most t vertices.

The idea is that in order to shatter the chips, we perform a secondary branching

procedure, but this time we use C-links as objects that are hit by neighborhoods of

vertices. Formally, for a pair (w, {u, v}), where {u, v} ∈
(
N [X]
2

)
, we consider the secondary

bucket LGw;u,v consisting of all C-links with endpoints u and v, where C is the chip that

contains w. Again, by claim 5.2.8, each secondary bucket is of size at most nt and can

be enumerated in polynomial time. Note that LGw;u,v is nonempty if and only if there is

a chip C such that u, v ∈ N(C) and w ∈ C.

We shall say that a vertex z of G is secondary-heavy if N [z] intersects at least a

1
100t

-fraction of links in at least a 1
200t

-fraction of nonempty secondary buckets.

Claim 5.2.9. If there is a nonempty bucket, then there is a secondary-heavy vertex.

Proof of Claim 3 (Sketch). Since every chip has at least n/100 vertices, there are at

most 100 chips, so there is a chip C which gives rise to at least a 1
100

-fraction of nonempty

buckets. We apply a weighted variant of theorem 5.2.3 to the graph G[N [C]] in order to

find a set Z ⊆ N [C] of size at most t such that every connected component of C −N [Z]

contains at most half of the vertices of N(C). Then N [Z] intersects all the links in at

least half of the buckets. The same averaging argument as used before shows that one of

vertices of Z is secondary-heavy.

214

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

The secondary branching procedure now branches on a secondary-heavy vertex (de-

tectable in polynomial time) as long as there are nonempty secondary buckets. This is

always possible by claim 5.2.9. Note that during this branching, the set of chips changes

— some components of G−N [X] may stop being chips due to either getting disconnected

from N [X] or their sizes being reduced to below n/100.

The same analysis as in section 5.2.1 shows that branching on secondary-heavy ver-

tices results in a recursion tree with nO(log2 n) leaves. In each of these leaves all secondary

buckets are empty, so no chip has more than one neighbor in N [X].

Let us focus on one leaf of the recursion tree described above. Suppose for a moment

that there is still some chip C left. Then N(C) consists of only one vertex, say z. Note

that z is a cutvertex in the current graph and if we branch on z, in both branches C

becomes a separate connected component of the graph, not connected to N [X]. Since

C has at least n/100 and at most n/2 vertices, we conclude that after branching on z,

in both the success branch and in the failure branch, every connected component has

at most 0.99n vertices. This is a huge progress for the algorithm, so let us perform this

branching at the end.

Thus, in each of the nO(log2 n) leaves of the obtained recursion tree we have either an

instance where every connected component has at most 0.99n vertices, or an instance

that has no chips, and therefore there exists a heavy vertex (for the primary branching).

It is tempting now to say that in the latter instances we simply branch on the obtained

heavy vertex. However, this would not lead to a sound complexity analysis, because in

total we would end up with not one, but nO(log2 n) failure branches, in which essentially

no progress can be measured.

The final observation is as follows: we do not need to perform branching on the ob-

tained heavy vertices, as already their appearance witnesses that the (primary) branching

noted a substantial progress. More precisely, consider an instance in a leaf of the recur-

215

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

sion tree of the secondary branching, and let x be a 1
2t

-heavy vertex in this instance. This

vertex was not 1
4t

-heavy before the secondary branching, because we assumed that there

were no 1
4t

-heavy vertices at that point. Obviously, all the tripods that N [x] hits after the

secondary branching were also hit by N [x] before the secondary branching was executed.

This means that for at least a 1
2t

-fraction of all the buckets, the number of tripods in

them must have at least halved during the secondary branching — so that the at most

1
4t

-fraction of hit tripods before the branching could become the at least 1
2t

-fraction of hit

tripods after the branching. This is a progress comparable to making a success branch

when branching on a heavy vertex.

To summarize, we perform branching on 1
4t

-heavy vertices and recursing on connected

components as long as a 1
4t

-heavy vertex can be found. When this ceases to be the case,

we resort to secondary branching. Such an application of secondary branching results

in producing nO(log2 n) subinstances to solve, where in each subinstance either the vertex

count of the graph drops by 1%, or we note a progress in emptying the buckets comparable

to making a success branch on a heavy vertex. Combining this with the complexity

analysis presented in section 5.2.1, we infer that the running time is nO(log4 n). This

concludes the description of an nO(log4 n)-time algorithm for MWIS on C>t-free graphs.

5.2.3 Degeneracy branching

Our goal in this section is to generalize the approach presented in the previous section

to an algorithm solving the following problem: given a vertex-weighted C>t-free graph

G, find a maximum-weight subset of vertices S such that G[S] is d-degenerate. Here

d and t are considered fixed constants. Thus we allow the solution to be just sparse

instead of independent, but, compared to theorem 5.1.1, so far we do not introduce

CMSO2-expressible properties. Let us call the considered problem Maximum Weight

216

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

Induced d-Degenerate Graph (MWID). The algorithm for MWID that we are

going to sketch is formally presented in section 5.4 and section 5.5, and is the subject of

theorem 5.4.1 there.

Recall that a graph G is d-degenerate if every subgraph of G has a vertex of degree

at most d. We will rely on the following characterization of degeneracy, which is easy to

prove.

Claim 5.2.10. A graph G is d-degenerate if and only if there exists a function η : V (G)→

N such that for every uv ∈ E(G) we have η(u) ̸= η(v) and for each u ∈ V (G), u has at

most d neighbors v with η(v) < η(u).

A function η(·) satisfying the premise of claim 5.2.10 shall be called a degeneracy

ordering. Note that we only require that a degeneracy ordering is injective on every edge

of the graph, and not necessarily on the whole vertex set. For a vertex u, the value η(u) is

the position of u and the set neighbors of u with smaller positions is the left neighborhood

of u.

We shall now present a branching algorithm for the MWID problem. For convenience

of exposition, let us fix the given C>t-free graph G, an optimum solution S⋆ in G, and

a degeneracy ordering η⋆ of G[S⋆]. We may assume that the co-domain of η⋆ is [n] :=

{1, . . . , n}.

Recall that when performing branching for the MWIS problem, say on a vertex x,

in the failure branch we were removing x from the graph, while in the success branch we

were removing both x and its neighbors. When working with MWID, we cannot proceed

in the same way in the second case, because the neighbors of x can be still included in

the solution. Therefore, instead of modifying the graph G along the recursion, we keep

track of two disjoint sets A and W : A consists of vertices already decided to be included

in the solution, while W is the set of vertices that are still allowed to be taken to the

217

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

solution in further steps. Initially, A = ∅ and W = V (G). We shall always branch on a

vertex x ∈ W : in the failure branch we remove x from W , while in the success branch

we move x from W to A. The intuition is that moving x to A puts more restrictions

on the neighbors of x that are still in W . This is because they are now adjacent to one

more vertex in A, and they cannot be adjacent to too many, at least as far as vertices

with smaller positions are concerned.

For the positions, during branching we will maintain the following two pieces of

information:

• a function η : A→ [n] that is our guess on the restriction of η⋆ to A; and

• a function ζ : W → [n] which signifies a lower bound on the position of each vertex

of W , assuming it is to be included in the solution.

Initially, we set ζ(v) = 1 for each v ∈ V (G). The quadruple (A,W, η, ζ) as above describes

a subproblem solved during the recursion. We will say that such a subproblem is lucky

if all the choices made so far are compliant with S⋆ and η⋆, that is,

A ⊆ S⋆ ⊆ A ∪W, η = η⋆|A, and η⋆(u) ⩾ ζ(u) for each u ∈ S⋆ ∩W.

Additionally to the above, from a lucky subproblem we also require the following prop-

erty:

for each v ∈ A and u ∈ N(v)∩W such that ζ(u) ⩽ η⋆(v), we have u ∈ S⋆ and η⋆(u) < η⋆(v).

(5.1)

In other words, all the neighbors of a vertex v ∈ A should have their lower bounds larger

than the guessed position of v, unless they will be actually included in the solution at

positions smaller than that of v. The significance of this property will become clear in a

moment.

218

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

First, observe that if G[W] is disconnected, then we can treat the different connected

components of G[W] separately: for each component D of G[W] we solve the subproblem

(A,D, η, ζ|D) obtaining a solution SD, and we return
⋃
D SD as the solution to (A,W, η, ζ).

Property (5.1) is used to guarantee the correctness of this step: it implies that when

taking the union of solutions SD, the vertices of A do not end up with too many left

neighbors.

Thus, we may assume that G[W] is connected. In this case we execute branching on

a vertex of W . For the choice of the branching pivot x we use exactly the same strategy

as described in the previous section: having defined the buckets in exactly the same way,

we always pick x to be a heavy vertex in G[W], or resort to secondary branching in G[W]

(which picks secondary-heavy pivots) in the absence of heavy vertices.

An important observation is that in the success branch — when the vertex x ∈ W is

moved to A — the algorithm notes a significant progress that allows room for additional

guessing (by branching). More precisely, on every root-to-leaf path in the recursion

tree there are only O(log4 n) success branches, which means that following each success

branch we can branch further into nO(1) options, and the size of the recursion tree will

be still nO(log4 n). We use this power to guess (by branching) the following objects when

deciding that x should be included in the solution S⋆ (here, we assume that the current

subproblem is lucky):

• the position η⋆(x);

• the set of left neighbors L = {v ∈ W ∩N(x) | η⋆(v) < η⋆(x)};

• the positions (η⋆(v) : v ∈ L); and

• for each v ∈ L, its left neighbors Lv := {u ∈ W ∩N(v) | η⋆(u) < η⋆(v)}.

This guess is reflected by the following clean-up operations in the subproblem:

• Move {x} ∪ L from W to A and set their positions in η(·) as the guess prescribes.

Note that the vertices of
⋃
v∈L Lv are not being moved to A.

219

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

• For each w ∈ (N(x) ∩W)− L, increase ζ(w) to max(ζ(w), η(x) + 1).

• For each v ∈ L and w ∈ (N(v) ∩W)− Lv, increase ζ(w) to max(ζ(w), η(v) + 1).

It is easy to see that if (A,W, η, ζ) was lucky, then at least one of the guesses leads to con-

sidering a lucky subproblem. In particular, property (5.1) is satisfied in this subproblem.

This completes the description of a branching step.

It remains to argue why it is still true that on every root-to-leaf path in the recursion

tree there are at most O(log4 n) success branches. Before, the key argument was that

when a success branch is executed, a constant fraction of buckets (either primary or

secondary) loses a constant fraction of elements. Now, the progress is explained by the

following claim, which follows easily from the way we perform branching.

Claim 5.2.11. Suppose (A,W, η, ζ) is a lucky subproblem in which branching on x is

executed, and let (A′,W ′, η′, ζ ′) be any of the obtained child subproblems. Then for every

y ∈ N(x) ∩W , we either have

y /∈ W ′ or |{z ∈ A ∩N(y) | η(z) < ζ(y)}| < |{z ∈ A′ ∩N(y) | η′(z) < ζ ′(y)}|.

Note that for y ∈ W , if y gets included in the solution, then the whole set

My := {z ∈ A ∩N(y) | η(z) < ζ(y)}

must become the left neighbors of y. So if the size of My exceeds d, then we can conclude

that y cannot be included in the solution and we can safely remove y from W . Thus, the

increase of the cardinality of My for all neighbors y of x that do not get excluded from

consideration is the progress achieved by the algorithm.

Formally, we do as follows. Recall that before, we measured the progress in emptying

220

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

a bucket BGu,v,w by monitoring its size. Now, we monitor the potential of BGu,v,w defined as

Φ(BGu,v,w) :=
∑

T∈BG(u,v,w)

∑
y∈V (T)

(d− |My|).

Thus, Φ(BG(u, v, w)) measures how much the vertices of tripods of BGu,v,w have left till

saturating their “quotas” for the number of left neighbors. From claim 5.2.11 it can be

easily inferred that when branching on a heavy vertex, a constant fraction of buckets lose

a constant fraction of their potential, and the same complexity analysis as before goes

through.

5.2.4 CMSO2 properties

We now extend the approach presented in the previous section to a sketch of a proof

of theorem 5.1.1 in full generality. That is, we also take into account CMSO2-expressible

properties.

Degeneracy and treewidth. The first step is to argue that degeneracy and treewidth

are functionally equivalent in C>t-free graphs, i.e., to prove theorem 5.1.3. This part of

the reasoning is presented in section 5.6.

The argument goes roughly as follows. Suppose, for contradiction, that G is a C>t-

free d-degenerate graph that has huge treewidth (in terms of d and t). Using known

results [108], in G we can find a huge bramble B — a family of connected subgraphs that

pairwise either intersect or are adjacent — such that every vertex of G is in at most

two elements of B. This property means that B gives rise to a huge clique minor in G′,

the graph obtained from G by adding a copy of every vertex (the copy is a true twin

of the original). Note that G′ is still C>t-free and is 2d + 1-degenerate. Now, we can

easily prove that the obtained clique minor in G′ can be assumed to have depth at most

221

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

t: every branch set induces a subgraph of radius at most t. Using known facts about

bounded-depth minors [109, Lemma 2.19 and Corollary 2.20], it follows that G′ contains

a topological minor model of a large clique that has depth at most 3t + 1: every path

representing an edge has length at most 6t+3. Finally, we show that if we pick at random

t+ 1 roots v0, . . . , vt of this topological minor model, and we connect them in order into

a cycle in G′ using the paths from the model, then with high probability this cycle will

be induced. This is because G′ is (2d+ 1)-degenerate, so two paths of the model chosen

uniformly at random are with high probability nonadjacent, due to their shortness. Thus,

we uncovered an induced cycle on more than t vertices in G′, a contradiction.

Boundaried graphs and types. We proceed to the proof of theorem 5.1.1. By the-

orem 5.1.3, the subgraph G[S] induced by the solution has treewidth smaller than k,

where k is a constant that depends only on d and t. Therefore, we will use known

compositionality properties of CMSO2 logic on graphs of bounded treewidth.

For an integer ℓ, an ℓ-boundaried graph is a pair (H, ι), where H is a graph and ι

is an injective partial function from V (H) to [ℓ], called the labelling. The domain of

ι is the boundary of (H, ι) and if ι(u) = α, then u is a boundary vertex with label α.

On ℓ-boundaried graphs we have two natural operations: forgetting a label — removing

a vertex with this label from the domain of ι — and gluing two boundaried graphs —

taking their disjoint union and fusing boundary vertices with the same labels. It is not

hard to see that a graph has treewidth less than ℓ if and only if it can be constructed

from two-vertex ℓ-boundaried graphs by means of these operations.

The crucial, well-known fact about CMSO2 is that this logic behaves in a composi-

tional way under the operations on boundaried graphs. Precisely, for each fixed ℓ and

CMSO2 sentence φ there is a finite set Types of types such that to every ℓ-boundaried

graph (H, ι) we can assign type(H, ι) ∈ Types so that:

222

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

• Whether H |= φ can be uniquely determined by examining type(H, ι).

• The type of the result of gluing two ℓ-boundaried graphs depends only on the types

of those graphs.

• The type of the result of forgetting a label in an ℓ-boundaried graph depends only

on the label in question and the type of this graph.

See proposition 2.4.1 for a formal statement. In our proof we will use ℓ := 6k, that is,

the boundaries will by a bit larger than the promised bound on the treewidth.

Enriching branching with types. We now sketch how to enrich the algorithm from

the previous section to the final branching procedure; this part of the reasoning is pre-

sented in section 5.7. The idea is that we perform branching as in the previous section

(with significant augmentations, as will be described in a moment), but in order to make

sure that the constructed induced subgraph G[S] satisfies φ, we enrich each subproblem

with the following information:

• A rooted tree decomposition (T, β) of G[A] of width at most ℓ (β : V (T) → A is

the bag function).

• For each node a of T , a projected type typea ∈ Types.

Again, we fix some optimum solution S⋆ together with a d-degeneracy ordering η⋆ of

G[S⋆]. Compared to the approach of the previous section, we extend the definition of a

subproblem being lucky as follows:

• For each connected component D of G[W ∩ S⋆], we require that N(D)∩A is a set

of size at most 4k such that there exists a bag of (T, β) that entirely contains it.

For such a component D, let a(D) be the topmost node of T satisfying N(D)∩A ⊆

β(a(D)).

• For each node a of T , consider the graph Ha induced by β(a) and the union of all

those components D of G[W ∩ S⋆] for which a(D) = a. Then the type of Ha with

223

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

β(a) as the boundary is equal to typea.

Thus, one can imagine the solution S⋆ as A plus several extensions into W — vertex

sets of components of G[W ∩ S⋆]. Each of such extensions D is hanged under a single

node a(D) of (T, β) and is attached to it through a neighborhood of size at most 4k. For

each node a of T , we store the projected combined type typea of all the extensions D for

which a is the topmost node to which D attaches. Note that as since the algorithm will

always make only logO(1) n success branches along each root-to-leaf path, we maintain

the invariant that |A| ⩽ logO(1) n, which implies the same bound on the number of nodes

of T .

Recall that in the algorithm presented in the previous section, two basic operations

were performed: (a) recursing on connected components of G[W] once this graph becomes

disconnected; and (b) branching on a node x ∈ W .

Lifting (a) to the new setting is conceptually simple. Namely, each graph Ha is

correspondingly split among the components of G[W], so we guess the projected types of

those parts of Ha so that they compose to typea. The caveat is that in order to make the

time complexity analysis sound, we can perform such guessing only when a significant

progress is achieved by the algorithm. This is done by performing (a) only when each

connected component of G[W] contains at most 99% of all the vertices of W , which

means that the number of active vertices after this step will drop by 1% in each branch.

This requires technical care.

More substantial changes have to be applied to lift operation (b), branching on a node

x ∈ W . Failure branch works the same way as before: we just remove x from W . As for

success branches, recall that in each of them together with x we move to A the whole set L

of left neighbors of x in W . Clearly, the vertices of L∪{x} belong to the same component

of G[A ∩ S⋆], say D. It would be natural to reflect the move of L ∪ {x} to A in the

decomposition (T, β) as follows: create a new node b with β(b) = (L∪{x})∪ (N(D)∩A)

224

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

and make it a child of a(D) in T . Note that thus, |β(b)| ⩽ d+ 1 + 4k ⩽ 5k, so the bound

on the width of (T, β) is maintained (even with a margin). However, there is a problem:

if by A′ we denote the updated A, i.e., A′ = A ∪ (L ∪ {x}), then the removal of L ∪ {x}

breaks D into several connected components whose neighborhoods in A′ are contained

in (N(D) ∩ A) ∪ (L ∪ {x}). This set, however, may have size as large as 4k + d + 1, so

we do not maintain the invariant that every connected component of G[W ∩ S⋆] has at

most 4k neighbors in A.

We remedy this issue using a trick that is standard in the analysis of bounded-

treewidth graphs. Since the graph G[D ∪ (N(D) ∩W)] has treewidth smaller than k,

there exists a set K consisting of at most k vertices of D ∪ (N(D) ∩W) such that every

connected component of D−K contains at most |N(D)∩W |/2 vertices of N(D)∩W (see

lemma 2.3.1). The algorithm guesses K along with L, moves K to W along with x and

L, and and sets β(b) := (N(D)∩A)∪ (L∪{x})∪K; thus |β(b)| ⩽ 4k+ (d+ 1) + k ⩽ 6k.

Now it is easy to see that due to the inclusion of K, every connected component of

D − (K ∪ L ∪ {x}) has only at most 2k + k + (d + 1) ⩽ 4k neighbors in β(b), and the

problematic invariant is maintained.

This concludes the overview of the proof of theorem 5.1.1.

5.3 Preliminaries

We use standard graph notation. For an positive integer p, we write [p] := {1, . . . , p}.

For a set A,
(
A
p

)
denotes the set of all p-element subsets of A.

225

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

5.4 Branching framework

In this section we prove theorem 5.4.1 stated below, which is a weaker variant of

theorem 5.1.1 that does not speak about CMSO2 properties.

Theorem 5.4.1. Fix a pair of integers d and t. Then there exists an algorithm that,

given a C>t-free n-vertex graph G and a weight function w : V (G)→ N, in time nO(log4 n)

finds a subset of vertices S such that G[S] is d-degenerate and, subject to the above, w(S)

is maximum possible. The running time can be improved to nO(log2 n) if G is Pt-free.

We present the strategy for our branching algorithm in a quite general fashion, so

that it can be reused later for the proof of theorem 5.1.1. For the description, we fix a

positive integer d that is the bound on the degeneracy of the sought induced subgraph.

We will rely on the following characterization of graphs of bounded degeneracy. As

the statement of lemma 5.4.2 is a bit non-standard, we include a sketch of a proof.

Lemma 5.4.2. A graph G has degeneracy at most d if and only if there exists a function

η : V (G) → [|V (G)|] such that for every uv ∈ E(G) we have η(u) ̸= η(v), and for every

v ∈ V (G), the set {u ∈ NG(v) | η(u) < η(v)} has size at most d.

Proof: [sketch] If G is d-degenerate, then we can construct an ordering η by removing

a vertex v with minimum degree, inductively ordering the vertices of G−v, and appending

v at the last position.

On the other hand, consider any subgraph G′ of G and let η′ be the ordering η

restricted to the vertices of G′. Let v ∈ V (G′) be a vertex at the last position in η′; if

there is more than one such vertex, we choose one arbitrarily. Note that all neighbors of

v in G′ precede it in η′, so there are at most d of them.

Function η as in lemma 5.4.2 shall be called a d-degeneracy ordering of G, and the value

η(v) is the position of v. We remark here that, contrary to the usual definition, we do not

226

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

require η to be injective, but only to give different positions to endpoints of a single edge.

Henceforth, we say that a function η : Z → [|V (G)|] for some Z ⊆ V (G) is edge-injective

if η(u) ̸= η(v) for every uv ∈ E(G[Z]).

Let G be an n-vertex C>t-free graph and w : V (G)→ N be a weight function. Without

loss of generality, assume t ⩾ 6. Fix a subset S∗ ⊆ V (G) such that G[S∗] has degeneracy

at most d and fix a d-degeneracy ordering η∗ : S∗ → [|S∗|] of G[S∗]. We think of S∗ as of

the intended optimum solution.

5.4.1 Recursion structure

A subproblem R consists of

• Two disjoint vertex sets AR, XR ⊆ V (G). We additionally denote RR := V (G) −

(AR ∪XR) and call RR the free vertices.

• An integer ℓR ⩾ 0, called the level of the subproblem.

• A set WR ⊆ RR that is nonadjacent to RR −WR and is of size less than 0.99−ℓR .

The vertices of WR are called the active vertices ;

• An edge-injective function ηR : AR → [n].

• A function ζR : WR → [n+ 1].

The superscript can be omitted if it is clear from the context.

In our recursive branching algorithms, one recursive call will treat one subproblem.

The intended meaning of the components of the subproblem is as follows:

• AR corresponds to the vertices already decided to be in the partial solution. The

value ηR(v) for v ∈ AR indicates the final position in the degeneracy ordering.

• XR corresponds to the vertices already decided to be not in the partial solution.

227

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

• RR are vertices yet to be decided.

Relying on some limited dependence between the connected components of G[RR] in the

studied problems, one recursive call focuses only on a group of these components, whose

union of vertex sets is denoted by WR, and seeks for a best way to extend the current

partial solution into WR. The integer ζR(v) for v ∈ WR indicates the minimum position

at which the vertex v can be placed in the final degeneracy ordering.

This intuition motivates the following definition. A subproblem R is lucky if

• AR ⊆ S∗, XR ∩ S∗ = ∅;

• ηR = η∗|AR ;

• for every u ∈ S∗ ∩WR we have ζR(u) ⩽ η∗(u); and

• for every u ∈ WR and every v ∈ NG(u) ∩ AR, if ζR(u) ⩽ η∗(v), then u ∈ S∗ and

η∗(u) < η∗(v).

We will also need the following notion: for an edge-injective function η : Z → [n] for

some Z ⊆ V (G), v ∈ V (G), and an integer p, the quota of v in η at position p is defined

as

γ(η, v, p) = d− |{u ∈ NG(v) ∩ Z | η(u) < p}|.

If v ∈ Z, then γ(η, v) is a shorthand for γ(η, v, η(v)). Intuitively, γ(η, v) measures the

number of “free slots” for the neighbors of v that precede it in η. Note that an edge-

injective function η : V (G)→ [n] is a d-degeneracy ordering of G if and only if γ(η, v) ⩾ 0

for every v ∈ V (G). Furthermore, if η′ : Z ′ → [n] is an extension of η : Z → [n] to some

Z ′ ⊇ Z, then for every v ∈ V (G) and p ∈ [n], it holds that γ(η, v, p) ⩾ γ(η′, v, p).

Extending. For subproblems R1 and R2, we say that

228

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

• R2 extends R1 if

– AR1 ⊆ AR2 , XR1 ⊆ XR2 (and hence RR1 ⊇ RR2);

– AR2 − AR1 ⊆ WR1 and XR2 −XR1 ⊆ WR1 ;

– WR1 ⊇ WR2 ;

– ηR1 = ηR2 |AR1 ;

– for every v ∈ WR2 we have ζR2(v) ⩾ ζR1(v); and

– for every v ∈ AR2 ∩WR1 we have ηR2(v) ⩾ ζR1(v).

• R2 extends R1 completely if additionally (AR2 −AR1) ∪ (XR2 −XR1) = WR1 and

ℓR2 = 0 (in particular, WR2 = ∅).

One easy way to extend a subproblem R is to select a set Z ⊆ WR and move it to

X; formally, the operation of deleting Z creates a new subproblem R′ extending R by

keeping all the ingredients the same, except for XR′
= XR ∪ Z, WR′

= WR − Z, and

ζR
′

= ζR|WR′ . Clearly, if R is lucky and Z ∩ S∗ = ∅, then R′ is lucky as well.

A second (a bit more complicated way) to extend a subproblem R is the following.

First, select a set Z ⊆ WR. Second, select an edge-injective function η : AR ∪ Z → [n]

extending ηR such that η(u) ⩾ ζR(u) for every u ∈ Z; we henceforth call such a function

a position guess for Z and R. Third, for every u ∈ Z select a set Du ⊆ WR − Z of

size at most γ(η, u). The family (Du)u∈Z is called the left neighbor guess for Z, R, and

η. Finally, define the operation of taking Z at positions η with left neighbors (Du)u∈Z

as constructing a new subproblem R′ created from R by keeping all the ingredients the

same, except for AR′
= AR ∪ Z, WR′

= WR − Z, ηR
′

= η, and, for every w ∈ WR′
,

taking

ζR
′
(w) = max(ζR(w),max{1 + η(u) : u ∈ Z ∧ w ∈ NG(u)−Du}).

We have the following immediate observation:

229

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

Lemma 5.4.3. Let R be lucky and Z ⊆ S∗∩WR. Then η|AR∪Z := η∗|AR∪Z is a position

guess for R and Z and (Du)u∈Z defined as

Du = {w ∈ NG(u) ∩ S∗ ∩WR | η∗(w) < η∗(u)}

is a left neighbor guess for R, Z, and η. Furthermore, the result of taking Z at positions

η and left neighbors (Du)u∈Z is lucky as well.

Filtering. We will need a simple filtering step. Consider a subproblem R.

• A vertex v ∈ AR is offending if there are more than d vertices u ∈ NG(v) such that

either u ∈ AR and ηR(u) < ηR(v), or u ∈ WR and ζR(u) ⩽ ηR(v).

• A vertex v ∈ WR is offending if ζR(v) > n or γ(ηR, v, ζR(v)) < 0, where γ is

defined w.r.t. Z = AR.

• The subproblem R is clean if there are no offending vertices.

We observe the following.

Lemma 5.4.4. If in a subproblem R there is an offending vertex v ∈ AR or v ∈ WR∩S∗,

then R is not lucky.

Proof: For contradiction, suppose R is lucky. Assume first there is an offending

vertex v ∈ WR ∩ S∗. Since R is lucky, we have ζR(v) ⩽ η∗(v) ⩽ n. Furthermore,

d ⩾ |{u ∈ NG(v) ∩ S∗ | η∗(u) < η∗(v)}|

⩾ |{u ∈ NG(v) ∩ AR | η∗(u) < η∗(v)}|

⩾ |{u ∈ NG(v) ∩ AR | η∗(u) < ζR(v)}|

= d− γ(ηR, v, ζR(v)),

230

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

which implies that γ(ηR, v, ζR(v)) ⩾ 0. This contradicts the assumption that v is offend-

ing.

Assume now that there is an offending vertex v ∈ AR. Note that if u ∈ NG(v) ∩ AR

satisfies ηR(u) < ηR(v), then u ∈ S∗ and η∗(u) < η∗(v). Further, if u ∈ NG(v) ∩WR

satisfies ζR(u) ⩽ ηR(v), then by the last item of the definition of being lucky we infer that

u ∈ S∗ and η∗(u) < η∗(v). Consequently, if v is offending, then |{u ∈ NG(v)∩S∗ | η∗(u) <

η∗(v)}| > d, a contradiction.

A filtering step applied to a subproblem R creates a subproblem R′ that is the result

of deleting all offending vertices v ∈ WR from R. By lemma 5.4.4 we infer that if R is

lucky, then R′ is lucky, too.

5.4.2 Subproblem tree

Note that subproblems of level 0 have necessarily WR = ∅. These subproblems shall

correspond to the leaves of the recursion. Let us now proceed to the description of the

recursion tree.

A subproblem tree is a rooted tree where every node x is labelled with a subproblem

R(x) and is one of the following five types: leaf node, filter node, split node, branch node,

and free node. We require that the root of the tree is labelled with a clean subproblem

and that for every x and its child y, R(y) extends R(x).

For brevity, we say that x is clean if R(x) is clean. Similarly, we say that y (com-

pletely) extends x if R(y) (completely) extends R(x). Also, the level of x is the level of

R(x).

Leaf node. A leaf node x has no children, is of level ℓR(x) = 0, and hence hasWR(x) = ∅.

231

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

Filter node. A filter node x has no or one child. If R(x) contains an offending vertex

v ∈ AR(x), then x has no children. Otherwise, x contains a single child y with R(y) being

the result of the filtering step applied to R(x). Note that the child of a filter node is

always clean.

We additionally require that a parent of a filter node is not a filter node.

Split node. We say that a subproblem R is splittable if ℓR ⩾ 1 and every connected

component of G[WR] has size less than 0.99−ℓR+1. We observe that it is straightforward

to split a splittable subproblem into a constant number of subproblems of smaller level.

Lemma 5.4.5. If R is a splittable subproblem, then there exists a family F of one or two

subproblems of level ℓR−1 that all extend R, so that for every Q ∈ F we have AQ = AR,

XQ = XR, and ηQ = ηR, and furthermore {WQ : Q ∈ F} is a partition of WR with

ζQ = ζR|WQ for every Q ∈ F .

Proof: Let C1, . . . , Cp be connected components of G[WR] in a non-increasing order

of their number of vertices. Since R is of level ℓR, it holds that
∑p

i=1 |Ci| < 0.99−ℓR .

Let j be the maximum index for which it holds that
∑j

i=1 |Ci| < 0.99−ℓR+1. Then the

assumption that R is splittable implies j ⩾ 1.

If j = p, then we can set F to be a singleton that contains a copy of R. In particular,

the set of active vertices remains unchanged. So now assume j < p. Since we ordered

Cis in a non-increasing order of the number of vertices, the maximality of j implies that∑j
i=1 |Ci| ⩾

1
2
· 0.99−ℓR+1. Consequently,

p∑
i=j+1

|Ci| < (1− 0.495) · 0.99−ℓR < 0.99−ℓR+1.

Hence, we can split WR into
⋃j
i=1Ci and

⋃p
i=j+1Ci for the active sets of the subproblems

of F . Note that in this case F is of size two.

232

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

A split node x satisfies the following properties: R(x) is a splittable subproblem and the

family of subproblems of children of x satisfy the properties promised by lemma 5.4.5 for

the family F . Moreover, we require that all the children of a split node are free nodes.

We remark that if a split node x is clean, then all the children of x are clean as well.

We also make the following observation.

Lemma 5.4.6. Let x be a clean split node with children Y. For every y ∈ Y, let R′
y be

a clean subproblem extending R(y) completely. Define a subproblem R′ as

AR′
=

⋃
y∈Y

AR′
y , XR′

=
⋃
y∈Y

XR′
y , ηR

′
=

⋃
y∈Y

ηR
′
y ,

WR′
= ∅, ζR

′
= ∅, ℓR

′
= 0.

Then, R′ is clean and extends completely R(x).

Proof: Most of the asserted properties follow from the definitions in a straightforward

manner; here we only discuss the nontrivial ones.

First, note that ηR
′

is a well-defined function with domain AR′
. This is because each

ηR
′
y extends ηR(x), and the sets {AR′

y − AR(x) : y ∈ Y} are pairwise disjoint, because

{WR(y) : y ∈ Y} is a partition of WR(x). Thus, R′ is indeed a subproblem extending

completely R(x). It remains to show that it is clean, that is, there are no offending

vertices in AR′
(note here that WR′

is empty).

Consider first a vertex v ∈ AR′
y − AR(x) for some y ∈ Y . Then, since WR(y) is

nonadjacent to RR(y) −WR(y), we have that NG(v) ⊆ WR(y) ∪ AR(x) ∪XR(x). We infer

that since v is not offending in R′
y, due to this subproblem being clean, it is also not

offending in R′.

Consider now a vertex v ∈ AR(x). Let u ∈ NG(v)∩AR′
be such that ηR

′
(u) < ηR

′
(v).

Then either u ∈ AR(x) and ηR(x)(u) < ηR(x)(v), or u ∈ WR(x) and ζR(x)(u) < ηR(x)(v).

233

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

Since v is not offending in R(x), the number of such vertices u is bounded by d. Hence,

v is not offending in R′. This completes the proof of the lemma.

Branch node. Branch node x is additionally labelled with a pivot νx ∈ WR(x). Intu-

itively, in the branching we decide whether νx belongs to the constructed solution or not.

In case we decide to include νx in A, we also guess its left neighbors and their positions

in our fixed degeneracy ordering, as well as several other useful pieces of information.

Formally, a branch node x has a child yx such that R(yx) is the result of deleting νx

from R(x). We call the edge pair xyx of the subproblem tree the failure branch at node

x, while yx is the failure child of x. Note that if x is clean, then the failure child yx is

also clean.

Additionally, for every tuple D = (D, η, (Du)u∈D′), where

• D ⊆ WR(x) ∩NG(νx) is of size at most γ(ηR(x), νx, ζR(x)(νx)),

• η is a position guess for R and D′, where D′ := D ∪ {νx}, and

• (Du)u∈D′ is a left neighbor guess for R and D′ such that Dνx = ∅,

the branch node x has a child zxD. This child is associated with the subproblemR(zxD) that

is the result of taking D′ at positions η with left neighbors (Du)u∈D′ in the subproblem

R. We call each edge xzxD of the subproblem tree a success branch at node x, and zxD is

a success child of x.

We remark that the children zxD may not be clean even if x is clean. Therefore, we

require that every child zxD is a filter node. The child of zxD, if present, is denoted as sxD

and is called a success grandchild of x. We require that all the success grandchildren of

x are free nodes.

Observe that for success children of a branch node, there are at most nd choices for

D, at most nd+1 choices for η, and at most nd choices for each Du, u ∈ D. This gives at

234

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

most nd
2+2d+1 = n(d+1)2 choices for the tuple D, and consequently this is an upper bound

on the number of success children.

Finally, we make the following observation that follows immediately from lemma 5.4.3:

Lemma 5.4.7. Assume that a branch node x is lucky. If νx /∈ S∗, then the failure child

yx is lucky. Otherwise, if νx ∈ S∗, then for

D = {u ∈ NG(νx) ∩WR(x) ∩ S∗ | η∗(u) < η∗(νx)},

η = η∗|AR(x)∪D′ ,

Du = {w ∈ NG(u) ∩WR(x) ∩ S∗ −D′ | η∗(w) < η∗(u)},

we have |D| ⩽ d, η is a position guess for R(x) and D′, (Du)u∈D′ is a left neighbor guess

for R(x), D′, and η satisfying Dνx = ∅, and zxD is a lucky success child of x.

Free node. For free nodes, we put three restrictions:

• a free node is a success grandchild of a branch node or a child of a split node;

• the children of a free node have the same level as the free node itself; and

• a child of a free node is clean or is a filter node.

Recall also the requirements stated in the above sections:

• Every child of a split node is a free node.

• Every success grandchild of a branch node is a free node.

Free nodes are essentially not used in the proof of theorem 5.4.1. Precisely, we use a

trivial subroutine of handling them that just passes the same instance to the child, which

235

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

can be a node of a different type. Free nodes will play a role in further results, precisely

in the proof of theorem 5.1.1, where they will be used as placeholders for additional

branching steps, implemented using non-trivial subroutines for handling free nodes. The

requirements stated above boil down to placing free nodes as children of split nodes and

as success grandchildren of branch nodes, which means that the algorithm is allowed to

perform the discussed additional guessing at these points. As we will see in the analysis,

both passing through a split node and through a success branch correspond to some

substantial progress in the recursion, which gives space for those extra branching steps.

Final remarks. The requirements that the root node is clean, that success children of

a branch node are filter nodes, and that a child of a free node is either clean or a filter

node, ensure the following property: every node of the subproblem tree is clean unless it

is a filter node.

In a subproblem tree, the level of a child node equals the level of the parent, unless

the parent node is a split node, in which case the level of a child is one less than the level

of a parent. In particular, on a root-to-leaf path in a subproblem tree the levels do not

increase.

Also, if y is a child of x, then WR(y) ⊆ WR(x). Furthermore, WR(y) = WR(x) can

happen only when x is a split node, a filter node, or a free node. Taking into account

the restrictions on the parents of filter and free nodes, we infer the following:

Lemma 5.4.8. The depth of a subproblem tree rooted in a node x is at most O(|WR(x)|+

ℓR(x)).

5.4.3 Branching strategy

A branching strategy is a recursive algorithm that, given a subproblem R, creates

a node x of a subproblem tree with R(x) = R, decides the type of x, appropriately

236

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

constructs subproblems for the children of x, and recurses on those children subproblems.

The subproblem trees returned by the recursive calls are then attached by making their

roots children of x. A branching strategy can pass some additional information to the

child subcalls; for instance, after creating a split node, the call should ask all the subcalls

to create free nodes, while a branch node should tell all its success children to be filter

nodes with free nodes as their children. We require that the subproblem tree constructed

by a branching strategy is a subproblem tree, as defined in the previous section.

A few remarks are in place. If the level of R is 0, the branching strategy has no

option but to create a leaf node and stop (unless the parent or grandparent asks it to

perform a filter or free node first). If a branching strategy makes a decision to create

a filter node or a split node, there are no more decisions to make: the filtering step

works deterministically, and for the split node we always create child subproblems using

lemma 5.4.5.

If a branching strategy decides to make a branch node, the only remaining decision

is to choose the pivot νx; after this, the failure branch and the success branches are

defined deterministically. The method of choosing the pivot is the cornerstone of our

combinatorial analysis, and is presented in the remainder of this section. (We will also

use the freedom of sometimes not choosing to create a split node, even if the current

subproblem is splittable.)

Finally, the definition of a subproblem tree allows only a limited freedom of creating

free nodes: they have to be children of a split node or success grandchildren of a branch

node. On the other hand, we would like to leave the freedom of how to handle free

nodes to applications. Thus, a branching strategy is parameterized by a subroutine that

handles free nodes: the subroutine is called by the branching strategy when handling a

child of a split node or a success grandchild of a branch node, and asked to create the

family of subproblems for children.

237

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

For theorem 5.4.1, we do not use the possibility of creating free nodes. Formally, the

subroutine handling free nodes, invoked at a subproblem R, returns a one-element family

{R}, that is, creates a dummy free node x with a single child y such that R(x) = R(y).

An application of a branching strategy to a graph G is a shorthand for applying the

branching strategy to a subproblem R defined by:

• AR = XR = ∅;

• WR = V (G);

• ℓR = ⌈− log0.99(|V (G)|+ 1)⌉, and

• ζR(v) = 1 for every v ∈ V (G).

Note that such a subproblem R is clean and lucky, regardless of the choice of S∗ and η∗.

section 5.5 is devoted to branching strategies that lead to a quasipolynomial running

time bounds. Formally, we prove there the following:

Lemma 5.4.9. For every fixed pair of integers d and t, and every subroutine handling

free nodes, there exists a branching strategy that, when applied to an n-vertex C>t-free

graph G, creates a recursion tree that is a subproblem tree such that on every root-to-leaf

path there are O(log n) split nodes and O(log4 n) success branches. If the input graph is

Pt-free, the bound on the number of success branches on a single root-to-leaf path improves

to O(log2 n).

Furthermore, the branching strategy takes polynomial time to decide on the type of

the node and on the choice of the branching pivot (in case the node is decided to be a

branch node).

Let us now show how lemma 5.4.9 implies theorem 5.4.1 Proof: [of theorem 5.4.1.]

Fix a set S∗ ⊆ V (G) maximizing w(S∗) subject to G[S∗] being of degeneracy at most d.

Fix also a degeneracy ordering η∗ of G[S∗]. This allows us to speak about lucky nodes.

238

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

Consider the branching strategy provided by lemma 5.4.9 with the discussed dummy

subroutine handling free nodes.

By lemma 5.4.8, the depth of the subproblem tree is O(n). Furthermore, every node

of the subproblem tree has at most 1 + n(d+1)2 children, and the only nodes that may

have more than one child are branch nodes and split nodes. Since each branch node has

only one failure child, while on every root-to-leaf path there are O(log n) split nodes and

O(log4 n) success branches, it follows that the subproblem tree has nO(log4 n) nodes.

For every clean node x in the generated subproblem tree, we would like to compute

a clean subproblem R′(x) that extends R(x) completely and, subject to that, maximizes

w(AR′(x)). Observe that for the answer toR′(r) at the root node r we can return AR′(r) as

the sought subset S: the cleanness of R′(r) implies that G[AR′(r)] is d-degenerate, while

a subproblem of level 0 with A = S∗, X = V (G) − S∗, and η = η∗ extends completely

R(r).

For a leaf node x, the only option is to return R(x). For a split node x with children

Y , we apply lemma 5.4.6 to {R′(y) | y ∈ Y}, thus obtaining a clean subproblem R′(x).

For a branch node x, we take R′(x) to be the subproblem with the maximum weight of

A among subproblem R′(yx) for the failure child yx and subproblems R′(sxD) for success

grandchildren sxD. Note that both R′(yx) and every R′(sxD) are clean subproblems that

extending completelyR(x). Finally, for a dummy free node x with a child y, R′(x) equals

R′(y).

To finish the proof, it suffices to argue that for every lucky node x, we have

w(AR′(x)) ⩾ w(S∗ ∩ (AR(x) ∪WR(x))). (5.2)

We prove this fact by a bottom-up induction on the subproblem tree.

For a lucky leaf node the claim is straightforward, as being lucky implies that AR(x) ⊆

239

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

S∗ while being a leaf node implies WR(x) = ∅. For a lucky split node, note that all children

are also lucky; the claim is immediate by the inductive assumption for the children and

the construction of lemma 5.4.6. For a lucky branch node x, lemma 5.4.7 implies that

x has a lucky failure child or a lucky success grandchild; the claim follows from the

inductive assumption of the said lucky (grand)child. Finally, for a lucky dummy free

node, the claim is immediate by the inductive assumption on its child.

This finishes the proof of theorem 5.4.1.

5.5 Branching strategies: choosing pivots in Pt-free

and C>t-free graphs

This section is devoted to the proof of lemma 5.4.9. Recall that a branching strategy

is essentially responsible for choosing whether the current node of the tree is a split node

or a branch node and, in the latter case, choosing the branching pivot.

The following observation, immediate from the definition of a success branch, will be

the basic source of progress.

Lemma 5.5.1. Let x be a branch node and y := sxD be a successful grandchild of x, where

D = (D, η, (Du)u∈D′) and D′ = D ∪ {νx}. Then, for every u ∈ NG(νx), we have either

u /∈ WR(y) or ζR(y)(u) > ηR(y)(νx). Consequently, for every u ∈ NG(νx)∩WR(y), it holds

that

γ(ηR(y), u, ζR(y)(u)) ⩽ γ(ηR(x), u, ζR(x)(u))− 1.

Proof: If u ∈ WR(y), then in particular y /∈ D. Then, in the definition of ζR(zxD)(u),

one term over which the maximum is taken is equal to 1 + η(νx) and η(νx) = ηR(y)(νx).

Thus, νx, which is in WR(x) ∩ AR(y), is taken into account in γ(ηR(y), u, ζR(y)(u)), but

does not contribute to γ(ηR(x), u, ζR(x)(u)) due to being not included in AR(x).

240

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

5.5.1 Quasipolynomial branching strategy in Pt-free graphs

To obtain the promised bounds for Pt-free graphs, we closely follow the arguments

for MWIS from [41].

Let us fix d, t, and a subroutine handling free nodes.

The branching strategy chooses a leaf node whenever possible (the level of the sub-

problem is zero) and a split node whenever possible (the subproblem is splittable). Given

a subproblem of positive level that is not splittable, the branching strategy creates a

branch node.

For a Pt-free graph G and a pair {u, v} ∈
(
V (G)
2

)
, the bucket of {u, v} is a set BGu,v

that consists of all induced paths with endpoints u and v. Two remarks are in place.

First, BGu,v ̸= ∅ if and only if u and v are in the same connected component of G. Second,

an n-vertex Pt-free graph has at most nt−1 induced paths; hence, all buckets can be

enumerated in polynomial time.

For ε > 0, a vertex x ∈ V (G) is ε-heavy if the neighborhood N [x] intersects more

that ε fraction of paths from more than ε fraction of buckets, that is,

∣∣∣∣{{u, v} ∈ (
V (G)

2

) ∣∣∣ ∣∣{P ∈ BGu,v | N [x] ∩ V (P) ̸= ∅}
∣∣ > ε|BGu,v|

}∣∣∣∣ > ε

(
|V (G)|

2

)
.

Note that empty buckets cannot contribute towards the left hand side of the inequality

above.

We make use of the following lemma.

Lemma 5.5.2 ([41]). A connected Pt-free graph contains a 1
2t

-heavy vertex.

In our case, a subproblem R at a branch node may not have G[WR] connected, but

G[WR] contains a large connected component if R is not splittable.

241

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

Corollary 5.5.3. If R is a not splittable subproblem of positive level, then G[WR] con-

tains a 1
3t

-heavy vertex.

Proof: Recall that nR := |WR| < 0.99−ℓR . Since R is of positive level but not

splittable, there is a connected component D of G[WR| of size at least 0.99−ℓR+1. That

is, |D| ⩾ 0.99nR.

lemma 5.5.2 asserts there is a 1
2t

-heavy vertex in G[D]. We have

(
|D|
2

)
⩾

(
⌈0.99nR⌉

2

)
⩾ 0.9

(
nR

2

)
.

Thus, x is 0.9
2t

-heavy in G and 0.9
2t
> 1

3t
.

The branching strategy chooses a 1
3t

-heavy vertex of G[WR(x)] as a branching pivot νx

at a branch node x. Recall that at a branch node x the subproblem R(x) is of positive

level and not splittable. Hence, corollary 5.5.3 asserts the existence of such a pivot. As

already discussed, all buckets can be enumerated in polynomial time and thus such a

heavy vertex can be identified.

The bound on the number of split nodes on any root-to-leaf path in the subproblem

tree is immediate from the fact that there are O(log n) levels. It remains to argue that

any root-to-leaf path has O(log2 n) success branches.

To this end, let Q be a maximal upward path in the subproblem tree that consists of

nodes of the same level ℓ. As there are O(log n) possible levels, it suffices to prove that

Q contains O(log n) success branches.

Consider then a success branch on Q: a branch node x and its success grandchild

y := sxD for D = (D, η, (Du)u∈D′), D′ = D ∪ {νx}. lemma 5.5.1 suggests the following

potential at node x:

242

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

µ(x) :=
∑

{u,v}∈(W
R(x)

2)

log2

1 +
∑

P∈BG[WR(x)]
u,v

∑
u∈V (P)

(1 + γ(ηR(x), u, ζR(x)(u)))

.
Since we branch on a 1

3t
-heavy vertex and the innermost sums in the definition above

are bounded by O(dt), we have that for some universal constant c:

µ(x)− µ(y) ⩾
c

dt3

(
|WR(x)|

3

)
.

Let x0 be the topmost node of Q and nQ = |WR(x0)|. Since all nodes of x0 are of the

same level, we have |WR(x)| ⩾ 0.99nQ for every branch node x on Q. We infer that

µ(x)− µ(y) = Ω(n2
P).

We have µ(x0) = O(n2
P log nP) while µ(x) ⩾ 0 for any node x. Consequently, Q may

contain O(log nP) = O(log n) success branches, as desired.

This finishes the proof of lemma 5.4.9 for Pt-free graphs.

5.5.2 Quasipolynomial branching strategy in C>t-free graphs

We now prove lemma 5.4.9 for C>t-free graphs. Hence, let us fix d, t, and a subroutine

handling free nodes. W.l.o.g. assume t is even and t ⩾ 6. Recall that our goal is to design

a branching strategy, which given a subproblem R should decide the type of the node

created for R and, in case this type is the branch node, choose a suitable branching pivot.

We will measure the progress of our algorithm by keeping track of the number of some

suitably defined objects in the graph.

A connector is a graph with three designated vertices, called tips, obtained in the fol-

243

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

lowing way. Take three induced paths Q1, Q2, Q3; here we allow degenerated, one-vertex

paths. The paths Q1, Q2, Q3 will be called the legs of the connector. The endvertices of

Qi are called ai and bi. Now, join these paths in one of the following ways:

a) identify a1, a2, and a3 into a single vertex, i.e., a1 = a2 = a3, or

b) add edges a1a2, a2a3, and a1a3.

Furthermore, if the endvertices are identified, then at most one leg may be degenerated;

thus, b1, b2, b3 are pairwise different after the joining. There are no other edges between

the legs of the connector. The vertices b1, b2, and b3 are the tips of the connector, and

the set {a1, a2, a3} is called the center (this set can have either three or one element);

see fig. 5.1. If one of the paths forming the connector has only one vertex, and the

endvertices were identified, then the connector is just an induced path with the tips

being the endpoints of the path plus one internal vertex of the path. Note that, given

a connector as a graph and its tips, the legs and the center of the connector are defined

uniquely.

We will need the following folklore observation.

Lemma 5.5.4. Let G be a graph, A ⊆ V (G) be a set consisting of exactly three vertices

in the same connected component of G, and let A ⊆ B ⊆ V (G) be an inclusion-wise

minimal set such that G[B] is connected. Then the graph G[B] with the set A as tips is

a connector.

Proof: Let A = {u, v, w}, let Puv be a shortest path from u to v in G[B] and

let Pw be a shortest path from w to V (Puv) in G[B]. By minimality of B, we have

B = V (Puv) ∪ V (Pw).

If w ∈ V (Puv) (equivalently, |V (Pw)| = 1), then G[B] is a path and we are done.

Otherwise, let q ∈ V (Pw) ∩ V (Puv) be the endpoint of Pw distinct than w and let p be

244

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

a1 = a2 = a3b′1b1 b′2 b2

b3 = b′3

a1 a2

a3

b′1b1 b′2 b2

b3 = b′3

Figure 5.1: Two connectors with two long legs and one short leg; one connector with
ais identified and one with ais forming a triangle. Vertices b′i are the tips of the core
T of the connector. The gray area depicts the set T ∗.

the unique neighbor of q on Pw. By the minimality of Pw, p and q are the only vertices

of Pw that may have neighbors on Puv. If p has two neighbors x, y ∈ V (Puv) that are

not consecutive on Puv, then G[B] remains connected after the deletion from B of all

vertices on Puv between x and y (exclusive), a contradiction to the choice of B. Thus,

N(p) ∩ V (Puv) consists of q and possibly one neighbor of q on Puv. We infer that G[B]

is a connector with tips u, v, and w, as desired.

A tripod is a connector where each of the paths Q1, Q2, Q3 has at most t/2+1 vertices.

A leg of a tripod is long if it contains exactly t/2 + 1 vertices, and short otherwise. The

core of a connector C with legs Q1, Q2, Q3, is the tripod consisting of the first t/2 + 1

(or all of them, if the corresponding path Qi is shorter) vertices of each path Qi, starting

from ai. A tripod in G is a tripod that is an induced subgraph of G. Note that each

tripod has at most 3t/2 + 3 vertices, hence given G, we can enumerate all tripods in G

in time nO(t).

Let T be a tripod in G with legs Q1, Q2, Q3. Let L(T) denote the tips of T which are

245

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

endvertices of the long legs. We denote

T ∗ := NG[V (T)− L(T)]− L(T).

In other words, T ∗ is the closed neighborhood of the tripod T in G, except that we do not

necessarily include the neighbors of tips of long legs and we exclude those tips themselves.

Note that tips of short legs together with their neighborhoods are included in T ∗.

We have the following simple observation.

Lemma 5.5.5. For every tripod T in G and for every connected component C of G−T ∗,

the component C contains at most one tip of L(T) and no tip of a short leg.

Proof: First, note that tips of short legs are contained in T ∗, hence they are not

contained in G− T ∗.

For contradiction, without loss of generality assume that b1, b2 ∈ C ∩ L(T). Then,

Q1, Q2, and a shortest path from b1 to b2 in C yield an induced cycle on more than t

vertices in G, a contradiction.

Suppose T is a tripod in G. With each tip bi of T we associate a bag Bi defined as

follows:

• if bi is the endpoint of a long leg, then Bi is the vertex set of the connected com-

ponent of G− T ∗ that contains bi; and

• otherwise, Bi = {bi}.

Note that lemma 5.5.5 implies that the bags B1, B2, B3 are pairwise disjoint and nonad-

jacent in G, except for the corner case of two adjacent tips of short legs.

We now define buckets that group tripods. Each bucket will be indexed by an un-

ordered triple of distinct vertices of G. Every tripod T in G with bags B1, B2, B3 belongs

246

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

to the bucket BGu,v,w for all triples u, v, w such that u ∈ B1, v ∈ B2, and w ∈ B3. Note

that thus, the buckets do not have to be pairwise disjoint. The superscript G can be

omitted if the graph is clear from the context.

Observe the following.

Lemma 5.5.6. For every {u, v, w} ∈
(
V (G)
3

)
and every T ∈ Bu,v,w, there exists a connec-

tor T ′ with tips u, v, w whose core equals T . Consequently, the bucket Bu,v,w is nonempty

if and only if u, v, w lie in the same connected component of G.

Proof: Let Qu, Qv, Qw be the legs of T with tips bu, bv, bw and bags Bu, Bv, and Bw,

respectively, such that u ∈ Bu, v ∈ Bv, w ∈ Bw. Let Q′
u be the concatenation of Qu and

a shortest path from bu to u in G[Bu]. Similarly define Q′
v and Q′

w.

Recall that the bags Bu, Bv, and Bw are pairwise distinct and nonadjacent (except

for the case of two adjacent tips of short legs). Hence, Q′
u, Q

′
v, and Q′

w form a connector

T ′ with tips u, v, and w. Since Bu ̸= {bu} only if the leg Qu is long, T is the core of T ′.

The next combinatorial observation is critical to the complexity analysis.

Lemma 5.5.7. Let G be a connected C>t-free graph, and let u, v, w be three distinct

vertices of G. Let X ⊆ V (G) be such that G[X] is connected and no two of u, v, w are in

the same connected component of G−N [X]. Then N [X] intersects all tripods in Bu,v,w.

Proof: Let T ∈ Bu,v,w. Let Qu, Qv, Qw be the legs of T with tips bu, bv, bw and bags

Bu, Bv, and Bw, respectively. Let T ′ be the connector for T given by lemma 5.5.6 with

legs Q′
u, Q

′
v, and Q′

w. Since no two of u, v, w lie in the same connected component of

G−N [X], the set N [X] intersects at least two legs of Q′
u, Q

′
v, and Q′

w. Without loss of

generality, assume that N [X] intersects Q′
u and Q′

v. Let u′ ∈ N [X]∩V (Q′
u) be the vertex

of N [X] ∩ V (Q′
u) that is farthest from u on Q′

u and similarly define v′ ∈ N [X] ∩ V (Q′
v).

247

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

Then, the subpath of Q′
u from u′ to the center of T ′, the subpath of Q′

v from v′ to the

center of T ′, and a shortest path from u′ to v′ with all internal vertices in X form an

induced cycle in G. This cycle has more than t vertices unless u′ ∈ V (Qu) or v′ ∈ V (Qv).

Hence, V (T) ∩N [X] ̸= ∅, as desired.

For ε > 0, we will say that a vertex v is ε-heavy (or just heavy, if ε is clear from the

context) if N [v] intersects strictly more than ε-fraction of tripods in at least ε-fraction of

buckets. Note that the “strictly more” part makes empty buckets not count toward the

ε-fraction of the buckets hit.

Intuitively, our branching strategy chooses as the pivot a 1
10t

-heavy vertex of G[WR].

lemma 5.5.1 captures the source of the gain in a success branch: the quotas of the

neighbors of the pivot get reduced.

Unfortunately, it may happen that there is no 1
10t

-heavy vertex. For an example,

consider the case when H := G[WR] is a long path. Then Bu,v,w consists of subpaths of

H of length at most t containing the middle vertex of {u, v, w}, and an arbitrary neigh-

borhood N [x] intersects tripods in roughly t/|V (H)| fraction of all buckets. However,

lemma 5.5.8 below shows a setting where a heavy vertex is guaranteed to exist.

Lemma 5.5.8. Let G be a connected C>t-free graph and let X ⊆ V (G) be a set of size

at most t such that G[X] is connected and every connected component of G−N [X] has

at most 0.1 · |V (G)| vertices. Then there exists a 1/(2t)-heavy vertex in G.

Proof: Let n = |V (G)|. Assume n ⩾ 5, as otherwiseN [X] = V (G) and the statement

is trivial. The number of buckets Bu,v,w such that at least two of u, v, w are in the same

248

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

connected component of G−N [X] is upper bounded by

∑
C: component of G−N [X]

(
|V (C)|

3

)
+

(
|V (C)|

2

)
· (n− |V (C)|)

⩽ n ·
(

(0.1n− 1)(0.1n− 2)

6
+

(0.1n− 1) · 0.9n
2

)
⩽ n · 0.1 · n− 1

2
· 2.8n− 2

3

=
1

2
· n · n− 1

2
· 0.56n− 0.4

3

<
1

2

(
n

3

)
.

Here, the last inequality uses n ⩾ 5. Hence, by lemma 5.5.7, the set N [X] intersects all

tripods in at least half of the buckets. Since |X| ⩽ t, there exists w ∈ X such that N [w]

intersects at least 1/t fraction of tripods in at least 1/(2t) fraction of the buckets.

Unfortunately, theorem 5.2.3 for A = V (G) gives us only a connected set X of size at

most t such that every component of G − N [X] has at most |V (G)|/2 vertices. The

example of a long path shows that the fraction 1/2 cannot be improved while keeping X

both connected and of constant size.

In the absence of a heavy vertex, we shift to a secondary branching strategy. To

describe the properties of this strategy, let us first make the following definition. For a

subproblem R and a subset K ⊆ WR, we say that a subproblem R′ considerably extends

(R, K) if R′ extends R, is of the same level, and at least one of the following properties

holds:

• every connected component of H ′ := G[WR′
] is of size at most 0.99|WR|, or

• every connected component C of H ′−K with more than 0.01|WR| vertices satisfies

NH′ [C] ∩K = ∅.

The secondary branching strategy:

249

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

(1) is initiated with a subproblem R and a set X ⊆ WR such that G[X] is connected;

for convenience, denote nR := |WR|, H := G[WR], and K := NH [X];

(2) terminates (i.e., falls back to the primary branching strategy) if and only if when

called at a subproblem R′ that considerably extends (R, K);

(3) never forms a split node (that is, at every node either terminates or selects a

branching pivot, makes a branch node and successive filter and free nodes for success

branches);

(4) on every root-to-leaf path in the subproblem tree created by the recursion there

are O(log2 nR) success branches.

Note that, in particular, all subproblems in a subproblem tree created by the secondary

branching strategy are of the same level.

We postpone the description of the secondary branching strategy to section 5.5.2.

Now, using it as a blackbox, we describe our primary strategy.

For a subproblem R, the primary branching strategy makes the following decisions:

1. If R is of level 0, make a leaf node and terminate.

2. If R is splittable, make a split node using lemma 5.4.5 and recurse on the con-

structed children.

3. If G[WR] contains a 1/(10t)-heavy vertex w, create a branch node x and choose w

as the branching pivot νx.

4. Otherwise, construct a set X from theorem 5.2.3 for the graph G[WR] and invoke

the secondary branching strategy on R and X.

The crucial observation is the following.

250

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

Lemma 5.5.9. Let R be a subproblem such that H := G[WR] does not contain a 1/(10t)-

heavy vertex. Let X be a result of an application of theorem 5.2.3 to H and let K =

NH [X]. Let R′ be a subproblem considerably extending (R, K) and let H ′ := G[WR′
].

Then:

a) If every connected component of H ′ has less than 0.99|WR| vertices, then R′ is

splittable.

b) Otherwise, there is subset F ⊆
(
V (H′)

3

)
of size at least 1

10t
·
(|V (H)|

3

)
such that for

every {u, v, w} ∈ F , the size of the bucket BH′
u,v,w is of size less than one-fifth of the

size of BHu,v,w (in particular, BHu,v,w ̸= ∅).

Proof: Let nR := |WR|. Assume first that every connected component of H ′ has

fewer than 0.99nR vertices. By assumption, nR < 0.99−ℓR . Hence, every connected

component of H ′ has fewer than 0.99−ℓR+1 vertices. As ℓR = ℓR
′
, R′ is splittable.

Assume now that there is a connected component D′ of H ′ that has at least 0.99nR

vertices. Since R′ considerably extends (R, K), every connected component C of H ′−K

that has more than 0.01nR vertices satisfies NH′ [C] ∩K = ∅.

Let H ′′ = G[WR′ ∪X] = G[V (H ′)∪X]. Since every connected component of H −K

has at most nR/2 vertices, H[X] is connected, while D′ has at least 0.99nR vertices,

we infer that there is a connected component D of H ′′ that contains both X and D′.

Observe that since D is a connected component of H ′′ and H ′′ is an induced subgraph

of H, it follows that BDu,v,w = BH′′
u,v,w ⊆ BHu,v,w.

We have K ∩ V (H ′′) = NH′′ [X], H ′ − K = H ′′ − NH′′ [X], and for every connected

component C of H ′′ − NH′′ [X] we have NH′ [C] = NH′′ [C]. Hence, every connected

component C of H ′′ − NH′′ [X] that has more than 0.01nR vertices satisfies NH′′ [C] ∩

NH′′ [X] = ∅, Consequently, every connected component C of D − NH′′ [X] contains at

most 0.01nR vertices. Since 0.01nR < 0.1|V (D)|, lemma 5.5.8 implies that there is a set

251

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

F0 ⊆
(
V (D)

3

)
of size at least 1

2t

(|V (D)|
3

)
and a vertex x ∈ V (D) such that ND[x] intersects

at least a fraction of 1
2t

tripods from every bucket BDu,v,w = BH′′
u,v,w for {u, v, w} ∈ F0. As

|V (D)| ⩾ 0.99nR, we have that |F0| ⩾ 1
4t

(
nR

3

)
.

Note that ND[x] = NH′′ [x] ⊆ NH [x]. Hence, for fixed {u, v, w} ∈ F0, every tripod hit

by NH′′ [x] in BH′′
u,v,w is also hit by NH [x] in BHu,v,w. However, x is not 1/(10t)-heavy in H,

because we assumed that H has no 1/(10t)-heavy vertices. This implies that there is a

set F ⊆ F0 of size at least

(
1

4t
− 1

10t

)(
nR

3

)
⩾

1

10t

(
nR

3

)

such that for every {u, v, w} ∈ F , the neighborhood NH [x] hits less than a 1
10t

-fraction

of tripods in BHu,v,w. However, for {u, v, w} ∈ F , NH′′ [x] hits a 1
2t

-fraction of tripods in

BH′′
u,v,w and every tripod hit by NH′′ [x] in H ′′ is hit by NH [x] in H. Consequently, for

every {u, v, w} ∈ F we have |BHu,v,w| > 5|BH′′
u,v,w| ⩾ 5|BH′

u,v,w|, as desired.

With lemma 5.5.9 established, we can proceed with the analysis. Consider the sub-

problem tree of the algorithm applied to the graph G. The claim that every root-to-leaf

path contains O(log n) split nodes is straightforward, because the root node has level

⌈− log0.99(n + 1)⌉ = O(log n) and the level of the split node is one higher than the level

of its children. To show the more difficult claim that every root-to-leaf path contains

O(log4 n) success branches, it suffices to show that any upward path in the subproblem

tree consisting of nodes of the same level ℓ contains O(log3 n) success branches.

Consider such a maximal upward path P with all nodes of level ℓ. On the path

P we can distinguish subpaths that are maximal subpaths contained in a subtree of

the subproblem tree corresponding to one use of the secondary branching strategy; we

henceforth call them secondary subpaths. Because of the maximality of P , for every

secondary subpath Q, the topmost vertex of Q is a node where the secondary branching

252

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

strategy has been invoked, whereas the bottom-most vertex of Q is where the secondary

branching strategy decided to terminate.

Recall that we promised that every secondary subpath contains O(log2 n) edges that

are success branches (this promise will be fulfilled in the next section). Hence, it suffices

to show that P contains:

• O(log n) edges that are success branches at branch nodes of the primary branching

strategy, and

• O(log n) secondary subpaths.

Let nP = |WR(r)| where r is the topmost node of P . By the threshold at which we

use split node in the primary strategy and the termination condition for the secondary

strategy, for every x on P except for possibly the bottom-most one, we have

|WR(x)| ⩾ 0.99nP . (5.3)

Let X be the family of pairs (x, y) of nodes of P such that either y is a success grandchild

of x or the secondary branching strategy has been invoked at x and terminated at y (i.e.,

x and y are endpoints of a secondary subpath). Our goal is to show that |X | = O(log n).

Consider a pair (x, y) ∈ X that corresponds to a secondary subpath such that R(y)

considerably extends (R(x), K), because every connected component of G[WR(y)] is of

size at most 0.99|WR(x)|. By lemma 5.5.9, R(y) is splittable. Consequently, all children

of y are of lower level and y is the bottom-most node of P . Hence, X contains at most

one such pair; let us exclude it from X and further consideration.

For every remaining pair (x, y) ∈ X that corresponds to a secondary subpath, lemma 5.5.9

implies that there are at least 1
10t

(|WR(x)|
3

)
nonempty buckets of G[WR(x)] that in G[WR(y)]

have size decreased by a multiplicative factor of at least 1/5.

253

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

On the other hand, consider any pair (x, y) ∈ X that does not correspond to a

secondary path, i.e. x is a branch node and y is its success grandchild, and recall that

this corresponds to branching on a 1
10t

-heavy pivot νx. Motivated by lemma 5.5.1, we

measure the progress through the following potential:

µ(x) :=
∑

{u,v,w}∈(W
R(x)

3)

log2

1 +
∑

T∈BG[WR(x)]
u,v,w

∑
u∈V (T)

(1 + γ(ηR(x), u, ζR(x)(u)))

.
Observe that when y is a child of x on P , we have µ(x) ⩾ µ(y). Let us now analyze the

drop of this potential for each (x, y) ∈ X .

Consider first the case when (x, y) does not correspond to a secondary path, i.e., x is a

branch node and y is its success grandchild. As the branching is performed on a 1
10t

-heavy

pivot, while each of the innermost sums is upper bounded by O(dt), by lemma 5.5.1 we

may infer that

µ(x)− µ(y) ⩾
c1
dt3

(
|WR(x)|

3

)
,

for some universal constant c1 > 0.

Consider now the case when (x, y) corresponds to a secondary path. As argued, then

there are at least 1
10t

(|WR(x)|
3

)
nonempty buckets of G[CR(x)] whose sizes are decreased

by at least one-fifth in G[CR(y)]. Note that if this happens to a bucket corresponding to

{u, v, w} ∈
(
WR(x)

3

)
, then the corresponding double-sum under the logarithm decreases by

a multiplicative fraction of at least 1
O(dt)

, because the innermost sums are upper bounded

by O(dt) and lower bounded by 1. We again infer that in this case,

µ(x)− µ(y) ⩾
c2
dt2

(
|WR(x)|

3

)
,

for some universal constant c2 > 0.

254

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

By (5.3), we conclude that in both cases, µ(x)− µ(y) = Ω(n3
P). On the other hand,

since every bucket is of size nO(t), we have that µ(x) = O(n3
P log nP) for every x on P .

Hence |X | = O(log nP), as desired.

Secondary branching strategy

We now move to the explanation of the secondary branching strategy.

For a graph H, a set C ⊆ V (H) such that H[C] is connected, and distinct vertices

u, v ∈ NH(C), a C-link between u and v is a path P in H with the following properties:

• P has endpoints u and v and length at least 2;

• all internal vertices of P belong to C; and

• P is an induced path in H −E(H[NH(C)]) (i.e. P is an induced path in H, except

that we allow the existence of the edge uv).

We now make a combinatorial observation that is critical to the analysis:

Lemma 5.5.10. Let H be a C>t-free graph, let X ⊆ V (H) be such that H[X] is con-

nected, and let C be a connected component of H−N [X]. Then every C-link has at most

t vertices.

Proof: Let P be the C-link in question, let u, v be its endpoints, and let Q be a

shortest path with endpoints u, v and all internal vertices in X; such Q exists because

u, v ∈ N [X] and H[X] is connected. Then P ∪Q is an induced cycle in H. Thus, both

P and Q have at most t vertices.

Recall that the setting of the secondary branching strategy is as follows: we have a

subproblem R and a set X ⊆ WR such that G[X] is connected. Let nR = |WR| and

K = NG[WR][X].

255

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

Recall also that the secondary branching strategy is allowed only to make branch

nodes (and subsequent filter and free nodes at success branches) and it always terminates

whenever the current subproblem considerably extends (R, K). The crux is to describe

the choice of the branching pivot when the current subproblem does not considerably

extend R.

We fix a threshold τ := 0.01nR. For an induced subgraph H of G[WR], a chip in H is

the vertex set C of a connected component of H −K satisfying the following properties:

C contains more than τ vertices and NH [C] ∩K ̸= ∅.

Assume that we are now considering a subproblem R′ extending R. Observe that

if H := G[WR′
] has no chip, then R′ considerably extends (R, K) and the secondary

branching strategy terminates.

If H contains a chip C with |NH(C)| = 1, we choose the unique element of NH(C) as

the branching pivot. Note that after branching on such a pivot, for every child z of the

current branching node (both in the failure and in the success branches) (the remainder

of) the chip C in G[WR(z)] is in a different connected component than any vertex of K. If

|C| ⩽ 0.99nR, then every connected component in G[WR(z)] has at most 0.99nR vertices

due to |C| ⩾ τ = 0.01nR, and if |C| > 0.99nR, then G[WR(z)] contains no chips. Hence,

the secondary branching strategy terminates both at the failure child, and at all success

grandchildren of the current branch node.

We are left with the following case: in H, there is at least one chip and every chip

C in H satisfies |NH(C)| ⩾ 2. We define (secondary branching) buckets as follows. The

buckets are indexed by a pair consisting of a vertex w ∈ V (H) and an unordered pair

{u, v} ∈
(
K∩V (H)

2

)
. For such a choice of w, u, v, the bucket Lw;u,v contains all C-links

with endpoints u and v where C is a chip in H and w ∈ V (C). lemma 5.5.10 ensures

that every link in a bucket has at most t vertices and, consequently, every bucket has

size O(nt) and can be enumerated in polynomial time. Note that Lw;u,v is nonempty if

256

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

and only if there exists a chip C with w ∈ V (C) and u, v ∈ NH(C).

For ε > 0, a vertex x ∈ V (H) is ε-heavy if NH [x] intersects strictly more than an ε

fraction of links in at least an ε fraction of nonempty buckets. We prove the following.

Lemma 5.5.11. If there exists a nonempty bucket, then there exists a 1
200t

-heavy vertex.

Proof: Since there are at most nR/τ = 100 chips, pick a chip C such that for at least

a fraction of 0.01 nonempty buckets Lw;u,v we have w ∈ V (C). Let HC := H[NH [C]];

note that C ⊆ NH [C] ⊆ C ∪K. Apply theorem 5.2.3 to HC with A = NH(C), obtaining

a set YC of size at most t such that every connected component of HC −N [YC] contains

at most |NH(C)|/2 vertices of NH(C). Consequently, NHC [YC] intersects all links in at

least half of the buckets Lw;u,v with w ∈ V (C). We infer that there is y ∈ YC such that

NHC [y] intersects at least a 1
t

fraction of links in at least 1
200t

fraction of all nonempty

buckets. This completes the proof.

If there exists a chip C with |NH(C)| ⩾ 2, then there exists a nonempty bucket, as

every bucket Lw;u,v for w ∈ V (C) and {u, v} ∈
(
NH(C)

2

)
is nonempty. Hence, lemma 5.5.11

allows us to choose a 1
200t

-heavy vertex as the branching pivot.

It remains to show that with this choice of the branching pivot, the subproblem tree

generated by the secondary branching strategy has O(log2 n) success branches on any

root-to-leaf path.

As argued, for a branch node x, if there exists a chip C in H := G[WR(x)] with

|NH(C)| = 1, then the pivot is the unique element of NH(C) and the secondary branching

strategy terminates both in the failure child and in all success grandchildren. Thus, on

any root-to-leaf path there is at most one such branch node.

For every other branch node x, the pivot is a 1
200t

-heavy vertex. The secondary level

257

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

of a node x is defined as

λ(x) := ⌊log2(1 + |{(w, {u, v}) | LG[WR(x)]
w;u,v ̸= ∅}|)⌋.

Note that the secondary level is positive if and only if there is a nonempty bucket. Since

at the root node there are O((nR)3) nonempty buckets, there are O(log nR) possible

secondary levels. Furthermore, during the recursion the buckets can only shrink, so the

secondary level of an ancestor is never lower than the secondary level of a descendant.

Hence, it suffices to prove that any upward path in the subproblem tree on which all

branching nodes have the same secondary level contains O(log nR) success branches.

To this end, consider the following potential for a node x.

µ̂(x) :=
∑

(w,{u,v}) : LG[WR(x)]
w;u,v ̸=∅

log2

 ∑
Q∈LG[WR(x)]

w;u,v

∑
q∈Q

(1 + γ(ηR(x), q, ζR(x)(q)))

.
For every node x of secondary level λ, there are between 2λ − 1 and 2λ+1 − 2 nonempty

buckets of G[WR(x)]. Hence, for node x of secondary level λ,

µ̂(x) ⩽ (2λ+1 − 2) · O(log nR) = 2(2λ − 1) · O(log nR).

Let x be a branch node and y its successful grandchild, both with the same secondary

level. Noting that the innermost sums in the definition of µ̂ are lower-bounded by 1 and

upper-bounded by (d + 1)t, from the definition of a 1
200t

-heavy vertex and lemma 5.5.1

we infer that

µ̂(x)− µ̂(y) ⩾
c

dt3
· (2λ − 1),

for some universal constant c > 0. Since the potential µ never becomes negative, it can

258

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

decrease only O(log nR) times at a successful branch when the secondary level λ is fixed.

Since there are O(log nR) secondary levels in total, we conclude that every root-to-leaf

path contains O(log2 nR) success branches.

This completes the proof of the properties of the secondary branching strategy and

thus of lemma 5.4.9.

5.6 C>t-free graphs of bounded degeneracy have bounded

treewidth

It is well known that if a graph G has treewidth k, then its degeneracy it at most k.

However, these parameters can be arbitrarily far away from each other: for instance, 3-

regular expanders have degeneracy 3 and treewidth linear in the number of vertices [110].

In this section we prove that if we restrict our attention to C>t-free graphs, the treewidth

is bounded by a function of degeneracy. In particular, we show theorem 5.1.3.

Theorem 5.1.3. For every pair of integers d and t, there exists an integer k = (dt)O(t)

such that every C>t-free graph of degeneracy at most d has treewidth at most k.

Before we proceed to the proof of theorem 5.1.3, let us recall the notion of brambles.

Recall that two sets A, b are adjacent if either A ∩ B ̸= ∅ or there is an edge with one

endpoint in A and the other in B. For brevity, we say that a set A is adjacent to a

vertex v if A is adjacent to {v}, i.e., either v ∈ A or v is adjacent to some vertex of A.

A bramble of size p in a graph G is a collection B = (B1, B2, . . . , Bp) of nonempty vertex

subsets such that each Bi induces a connected graph and all Bis are pairwise adjacent.

The sets Bi are called branch sets. The order of a bramble B is the size of a smallest

set of vertices that hits all branch sets. Observe that the size of a bramble is always at

least its order. We will use the following result of Hatzel et al. [108], which in a graph

259

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

of large treewidth constructs a bramble of large order in which no vertex participates in

more than two branch sets.

Theorem 5.6.1 (Hatzel et al. [108]). There exists a polynomial p(·) such that for every

positive integer k, every graph G of treewidth at least k contains a bramble B of order at

least
√
k/p(log k) such that each vertex of G is in at most two branch sets of B.

We now proceed to the proof of theorem 5.1.3. Without loss of generality we may

assume that t is even, t ⩾ 4, and d ⩾ 2. For contradiction, suppose that G is a C>t-free

graph with degeneracy at most d and treewidth larger that

k :=
(
500 000 · d2t5

)4t+4 ·
[
p
(
log

(
(500 000 · d2t5)4t+4

))]4
,

where p(·) is the polynomial provided by theorem 5.6.1. Thus, by applying theorem 5.6.1

to G we obtain a bramble B = (B1, B2, . . . , Bp) of order

p >

√
k

p(log k)
⩾

(
500 000 · d2t5

)2t+2
.

Note that we can assume that each branch set of B is inclusion-wise minimal (subject

to B being a bramble), as otherwise we can remove some vertices from branch sets.

Therefore, for each branch set Bi and each vertex v of Bi, either there is some branch

set Bj which is adjacent to v but nonadjacent to Bi − {v}, or v is a cutvertex in G[Bi]

and its role is to keep the branch set connected.

Claim 5.6.2. For each i ∈ [p], and all u, v ∈ Bi, the distance between u and v in G[Bi]

is at most t.

Proof of Claim 4. For contradiction, suppose that there is Bi violating the claim. Let

u, v be the vertices at maximum distance in G[Bi], by assumption this distance is at

260

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

least t + 1. As u and v are the ends of a maximal path in G[Bi], none of them is a

cutvertex in G[Bi]. Thus there is a branch set Bu which is adjacent only to u in Bi, and

another branch set which is adjacent only to v in Bi. Recall that Bu ∪ Bv is connected

and nonadjacent to Bi − {u, v}. So by concatenating a shortest u-v-path in Bi and a

shortest u-v-path in Bu ∪ Bv, we obtain an induced cycle with at least t + 1 vertices, a

contradiction.

Let G′ be the lexicographic product G•K2: the graph obtained from G by introducing,

for each x ∈ V (G), a copy x′ of x and making it adjacent to x, all neighbors of x, and

all their copies. Note that in G′, the copy x′ is a true twin of x. Observe also that the

degeneracy of G′ is at most 2d + 1: we can modify a d-degeneracy ordering of G into a

(2d+ 1)-degeneracy ordering of G′ by inserting each vertex x′ immediately after x.

Claim 5.6.3. The graph G′ contains Kp as a depth-t minor.

Proof of Claim 5. We construct a family B′ = (B′
1, B

′
2, . . . , B

′
p) as follows. We start

with B′
i := Bi for all i ∈ [p] and we iteratively inspect every vertex x of G. If x belongs to

more than one of the sets {B1, . . . , Bp}, then, by the properties given by theorem 5.6.1,

x must belong to exactly two of them, say x ∈ Bi ∩ Bj for some i ̸= j. Then replace x

with x′ in B′
j, thus making B′

i and B′
j not overlap on x.

It is clear that once this operation is applied to each vertex of G, the resulting sets

of B′ are pairwise disjoint and pairwise adjacent. Further, for each i ∈ [p] the graph

G′[B′
i] is isomorphic to G[Bi], as we only replaced some vertices by their true twins, so

in particular G′[B′
i] is connected. Therefore, B′ is a minor model of a clique of order p

in G′. By claim 5.6.2, the radius of each graph G′[B′
i] is at most t, hence this model has

depth at most t.

The next result binds the maximum size of a bounded-depth clique minor and the

maximum size of a bounded-depth topological clique minor that can be found in a graph.

261

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

It is a fairly standard fact used in the sparsity theory; for the proof, see e.g. [109, Lemma

2.19 and Corollary 2.20].

Proposition 5.6.4. Let G be a graph and let t, p, p′ be integers such that p ⩾ 1 + (p′ +

1)2t+2. If G contains Kp as a depth-t minor, then G contains Kp′ as a depth-(3t + 1)

topological minor.

By combining claim 5.6.3 and proposition 5.6.4, we conclude that G′′ contains Kp′ as

a topological depth-(3t+ 1) minor, where

p′ :=

⌊
p

1
2t+2

4

⌋
⩾ 100 000 · d2 · t5.

Fix some topological depth-(3t + 1) minor model of Kp′ in G′. Let R be the set

of roots of the minor model and consider the graph G′[R]. It has p′ vertices and, as a

subgraph of G′, is (2d+1)-degenerate. Therefore, there is an independent set R′ in G′[R]

of size at least

p′′ :=

⌈
p′

2d+ 2

⌉
⩾

100 000 · d2 · t5

2d+ 2
⩾ 20 000 · d · t5.

Observe that restricting our minor model only to the roots that are in R′ and paths

incident to them gives us a topological depth-(3t + 1) minor model of Kp′′ with the

additional property that the roots are pairwise nonadjacent.

Let H be the subgraph of G′ induced by the vertices used by the topological minor

model obtained in the previous step. Let X be the set of vertices of H with degree larger

than 200 · d · t2, which are not roots. Since H is (2d+ 1)-degenerate, we observe that

|X| ⩽ (2d+ 1)|V (H)|
100 · dt2

⩽
(2d+ 1)(6t+ 3)

(
p′′

2

)
100 · dt2

⩽
20

100t

(
p′′

2

)
= ε ·

(
p′′

2

)
, where ε :=

1

5t
.

262

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

Let H ′ be obtained from H by removing all vertices in X, along with all paths from

the topological minor model which contain a vertex from X. Note that thus, we have

removed at most ε ·
(
p′′

2

)
paths.

Observe that H ′ still contains a depth-(3t+1) topological minor model of some graph

Z with p′′ vertices and at least

(
p′′

2

)
− |X| ⩾

(
p′′

2

)
− ε

(
p′′

2

)
= (1− ε)

(
p′′

2

)

edges. Thus, the average degree of a vertex in Z is at least (1− ε)(p′′ − 1).

Let W = (v0, v1, . . . , vt/2) be a sequence of vertices of Z, chosen independently and

uniformly at random. In what follows, all arithmetic operations on the indices of the

vertices vi are computed modulo t/2 + 1, in particular vt/2+1 = v0.

We prove that with positive probability, W has the following four properties:

(P1) The vertices vi are pairwise distinct.

(P2) For every 0 ⩽ i ⩽ t/2, vivi+1 is an edge of Z; let Pi be the corresponding path in

H ′.

(P3) For every 0 ⩽ i ⩽ t/2 and 0 ⩽ j ⩽ t/2 such that j /∈ {i, i+ 1}, the internal vertices

on the path Pi are anti-adjacent to vj.

(P4) For all 0 ⩽ i < j ⩽ t/2, the internal vertices of Pi are anti-adjacent to the internal

vertices of Pj.

Observe that these four properties imply that the concatenation of all paths Pi is a hole

of length more than t in G′ (recall here that the roots of the minor model are independent

in H ′). The assumption that G is C>t-free implies that G′ is C>t-free as well, hence this

will be a contradiction.

263

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

For (P1), since p′′ ⩾ 20 000 · d · t5, by the union bound the probability that vi = vj

for some i ̸= j is at most
(
t
2

)
/p′′ < 0.1.

For (P2), since vi and vi+1 are independently chosen vertices, and Z has at least

(1−ε)
(
p′′

2

)
edges, the probability that vivi+1 is not an edge of Z is bounded by ε = 1

5t
. By

the union bound, the probability that (P2) does not hold is bounded by ε ·(t/2+1) ⩽ 0.2.

For (P3), fix 0 ⩽ i ⩽ t/2 and assume vivi+1 ∈ E(Z) so that Pi is defined. Then,

the total number of neighbors of the internal vertices of Pi is bounded by (6t+ 3) · 200 ·

d · t2 ⩽ 2000 · d · t3. Since vj is a vertex of V (Z) chosen at random independently of

the choice of vi and vi+1, the probability that vj is among these neighbors is bounded

by 2000 · dt3/p′′ ⩽ 0.1/t2. By the union bound, (P2) holds but (P3) does not hold with

probability at most t(t− 2) · 0.1
t2

⩽ 0.1.

For (P4), fix 0 ⩽ i < j ⩽ t/2. Note that it may be possible that i + 1 = j or

j + 1 = i (cyclically modulo t/2 + 1), but not both. Hence, by symmetry between i

and j, assume that the choice of vj+1 is independent of the choices of vi, vi+1, and vj.

Assume that vivi+1 ∈ E(Z) so that Pi is defined. As in the previous paragraph, there

are at most 2000dt3 neighbors in H ′ of the internal vertices of Pi. There are p′′ = |V (Z)|

choices for vj+1, all of them leading to either vjvj+1 /∈ E(Z) or to vertex-disjoint (except

for vj) choices of the path Pj. Hence, for at most 2000dt3 of these choices, we have

vjvj+1 ∈ E(Z) but there is an edge between an internal vertex of Pj and an internal

vertex of Pi. By the union bound, (P2) holds but (P4) does not hold with probability

less than
(
t/2+1

2

)
· 2000dt3

p′′ ⩽
(
t/2+1

2

)
· 2000dt3

20 000dt5
⩽ 0.1.

By the union bound over all the above cases,W satisfies all properties (P1)–(P4) with

probability at least 1− 0.1− 0.2− 0.1− 0.1 = 0.5. This gives the desired contradiction

and completes the proof.

264

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

5.7 MSO2 and C>t-free graphs

In this section we prove theorem 5.1.1 using the branching strategy described in

section 5.4.

5.7.1 Extending subproblems

Fix integers k ⩾ 1 and t ⩾ 3, CMSO2 sentence φ, and a C>t-free graph G. Let q

be the maximum of the quantifier rank of φ, the quantifier rank of φtw<k, where φtw<k

comes from lemma 2.4.3, and 4 (so that we can use lemma 2.4.2). Let p be the largest

modulus used in φ, or 0 if φ does not contain any modular atomic expression. We also

denote k′ := 6k. In what follows, we will be using CMSO2 types Typesk
′,p,q, as given by

proposition 2.4.1. Hence, by “CMSO2 types” we mean elements of Typesk
′,p,q, and we

drop the super- or subscript k′, p, q when it is clear from the context.

Recall that every graph of treewidth less than k is (k− 1)-degenerate. Hence, we will

use the branching strategy provided lemma 5.4.9 for d := k−1 and t. More precisely, the

algorithm executes the branching, i.e. decides on the types of nodes, chooses branching

pivots, etc., exactly as prescribed by the strategy given by lemma 5.4.9. However, we

enrich the subproblems with some additional piece of information, which intuitively en-

codes a skeleton of a decomposition of the subgraph induced by the constructed solution.

From the recursive subcalls, we expect returning quite an elaborate result: intuitively,

optimum solutions to the subproblem of every possible CMSO2 type. As we will check at

the end, the properties asserted by lemma 5.4.9 ensure a quasipolynomial running time

bound.

Let us start by formally augmenting the notion of a subproblem with extra infor-

mation. At every leaf, split, and branch node x, the subproblem R := R(x) contains

additionally the following:

265

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

1. a tree decomposition (TR, βR) of G[AR] with maximum bag size at most k′ = 6k

and the root node having an empty bag;

2. a labelling ιR : AR → [k′] such that for every a ∈ V (TR), ιR restricted to βR(a) is

injective.

We call such a subproblem an extended subproblem. Leaf, split, and branch nodes are

called extendable nodes.

For such an extended subproblem R, a set S ⊆ WR is a feasible solution if for

every connected component C of G[S], we have |NG(C) ∩ AR| ⩽ 4k and there exists a

node a ∈ V (TR) such that NG(C) ∩ AR ⊆ βR(a). Observe that from the properties

of a tree decomposition it follows that the family of those nodes a ∈ V (TR) for which

NG(C)∩AR ⊆ βR(a) is a connected subtree of T . By aR(C) we denote the highest such

node a.

For an extended subproblem R, a type assignment is a function TypeTree : V (TR)→

Types. A feasible solution S is of type TypeTree if for every a ∈ V (TR), the subgraph of

G induced by

extSR(a, S) := βR(a) ∪
⋃
{C ∈ cc(G[S]) | aR(C) = a}

equipped with the labelling ιR|βR(a) on boundary βR(a) is of CMSO2 type TypeTree(a).

The branching strategy will return, at every extendable node x, for every type as-

signment TypeTree at x, a feasible solution S[x,TypeTree] of type TypeTree. We allow

S[x,TypeTree] = ⊥, indicating that no such feasible solution was found, and we use the

convention that the weight of ⊥ is −∞. In the algorithm description the following oper-

ation will be useful when defining S[x, ·] for a fixed node x: given a current state of the

table S[x, ·] and a feasible solution S of type TypeTree, updating S[x,TypeTree] with S is

266

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

an operation that sets S[x,TypeTree] := S if the weight of S is larger than the weight of

the former value of S[x,TypeTree].

In the root of the recursion r, the considered extension is the trivial one: the tree

decomposition (TR(r), βR(r)) consists of a single node ar with an empty bag, and la-

belling ιR(r) is empty. After the computation if finished, we iterate over all type assign-

ments TypeTree for r for which TypeTree(ar) ∈ type[φ] ∩ type[φtw<k] and return the set

S[r,TypeTree] of maximum weight found (ignoring values ⊥). If no such set S[r,TypeTree]

is found (all values are ⊥), the algorithm returns that there is no such set S.

Note that, assuming the recursive strategy indeed maintains the invariant that S[x,

TypeTree] is of type TypeTree, for the returned set S we have G[S] |= φ and G[S] is of

treewidth less than k.

5.7.2 Extended computation at nodes of the subproblem tree

Recall that now, the setting is that each extendable node (lead, split, or branch

node) is assigned an extended subproblem. We need to describe (a) how at each node

we handle the extended subproblem and what extended subproblems are passed down

the subproblem tree; (b) what is the subroutine for handling free nodes; and (c) how the

tables S[·, ·] are computed along the recursion. As before, each type of a node is handled

differently.

Leaf nodes

For a leaf node x, there is little choice the algorithm could do.

We have WR(x) = ∅, so the only feasible solution is S = ∅. There is exactly one type

assignment TypeTree such that for every a ∈ V (TR(x)) we have that G[extSR(x)(a, ∅)] with

the labelling ιR|βR(a) is of type TypeTree(a). For this labelling, we set S[x,TypeTree] = ∅

267

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

and for every other type assignment TypeTree′ we set S[x,TypeTree′] = ⊥.

Split nodes

Let x be a split node. We do not use the power of free nodes below split nodes;

formally, they are dummy free nodes as in the proof of theorem 5.4.1 that only pass the

subproblem to their single child. Therefore, in what follows we speak about grandchildren

of a split node.

If x has one grandchild y, then R(y) differs from R(x) only by its level. Therefore,

given an extension of R(x), we pass the same extension to the grandchild y and for the

return value at x, we copy the result returned by the grandchild y.

The situation is more interesting if x has two grandchildren y1 and y2. Recall that

then WR(y1) and WR(y2) is a partition of WR(x), while AR(y1) = AR(y2) = AR(x). Given a

subproblem extension of R(x), we pass it without modifications to both y1 and y2. To

compute S[x, ·] based on S[y1, ·] and S[y2, ·], we proceed as follows.

First, we initiate S[x,TypeTree] = ⊥ for every tree assignment TypeTree at x. Then,

we iterate over all pairs TypeTree1 and TypeTree2 of type assignments for R(x) such that

both S[y1,TypeTree1] ̸= ⊥ and S[y2,TypeTree2] ̸= ⊥. Let TypeTree be the type assignment

for R(x) defined as

TypeTree(a) = TypeTree1(a)⊕ TypeTree2(a) for every a ∈ TR(x).

Then observe that asWR(y1) is nonadjacent toWR(y2), S[y1,TypeTree1]∪S[y2,TypeTree2] is

a feasible solution for x of type TypeTree. We update S[x,TypeTree] with S[y1,TypeTree1]∪

S[y2,TypeTree2].

268

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

Branch and subsequent free nodes

Let x be a branch node and recall that we are given a subproblem extension of

R(x). For the failure child yx of x, we pass this subproblem extension to yx without

modifications.

Consider now a success grandchild s := sxD for D = (D, η, (Du)u∈D′), D′ = D ∪ {νx}.

We now use the power of the free node sxD to guess how the extension at x should be

enhanced.

Formally, we iterate over every possibility of:

• a partition B of D′ into nonempty subsets;

• a node aB ∈ V (TR(x)) and a subset NB ⊆ βR(x)(aB) of size at most 4k for every

B ∈ B;

• a set XB ⊆ WR(s) of size at most k for every B ∈ B so that the sets (XB)B∈B are

pairwise vertex-disjoint; we denote XB :=
⋃
B∈BXB;

• a position guess ηB for XB and a left neighbor guess (DB
u)u∈XB for XB and ηB.

For every choice C = (B, (aB, NB, XB)B∈B, η
B, (DB

u)u∈XB) as above, we construct a child

ŝxD,C of sxD that is created from sxD by taking XB at positions ηB with left neighbors

(DB
u)u∈XB . Every created child ŝxD,C is a filter node; we denote the resulting grandchild

(if present) as s̃xD,C.

Denoting s̃ = s̃xD,C for brevity, the grandchild’s subproblem is extended as follows:

• create (TR(s̃), βR(s̃)) from (TR(x), βR(x)) by adding, for every B ∈ B, a new node ãB

with bag NB ∪B ∪XB that is a child of aB;

• create ιR(s̃) by extending ιR(x) to the new elements of WR(s̃) in any manner that is

injective on the newly created bags.

269

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

Observe that every newly created bag is of size bounded by 4k+ k+ k = k′. Since B is a

partition of D′ and we assume that the sets (XB)B∈B are pairwise disjoint, for every two

newly created nodes a′B1
and a′B2

, we have βR(s̃)(a′B1
)∩ βR(s̃)(a′B2

) ⊆ NB1 ∩NB2 ⊆ AR(x),

the pair (TR(s̃), βR(s̃)) is indeed a tree decomposition of G[AR(s̃)] with maximum bag size

at most k′, and it is straightforward to extend ιR(x) to obtain ιR(s̃).

To complete the description of the algorithm, it remains to show how to assemble

the table S[x, ·] at the branch node x from the tables computed for its great-great-

grandchildren s̃xD,C and the failure child yx.

To this end, we initiate S[x,TypeTree] = S[yx,TypeTree] for every type assignment

TypeTree at x (note that every feasible solution at yx is also a feasible solution at x

and is of the same type). Then, for every great-great-grandchild s̃ := s̃xD,C and type

assignment ˜TypeTree at s̃ such that S̃ := S[s̃, ˜TypeTree] ̸= ⊥, we proceed as follows.

Let D = (D, η, (Du)u∈D′), D′ = D ∪ {νx}, C = (B, (aB, NB, XB)B∈B, η
B, (DB

u)u∈XB), and

XB =
⋃
B∈BXB. Observe that AR(s̃) − AR(x) = D′ ∪XB. Let S := S̃ ∪D′ ∪XB.

We say that the pair (s̃, S̃) is liftable if the set S obtained as above is a feasible

solution at x and, furthermore, for every B ∈ B there exists a connected component C̃B

of G[S] such that

C̃B = B ∪XB ∪
⋃
{C̃ ∈ cc(G[S̃]) | as̃(C̃) = ãB},

the components (C̃B)B∈B are pairwise distinct, and ax(C̃B) = aB for every B ∈ B. For a

liftable pair (s̃, S̃), the set S is called the lift of (s̃, S̃).

If (s̃, S̃) is liftable, then we can use proposition 2.4.1 to compute the type TypeTreeS

of the lift S at x as follows. First, for every B ∈ B, the CMSO2 type of G[CB∪βR(x)(aB)]

with labelling ιR(x)|βR(x)(aB) can be computed from ˜TypeTree(ãB) by forgetting the labels

of B ∪XB. Second, for each a ∈ V (TR(x)), the type TypeTreeS(a) is the composition of

270

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

˜TypeTree(a) and the types of all graphs (G[CB ∪ βR(x)(aB)], ιR(x)|βR(x)(aB)) for those B

for which aB = a.

For every liftable pair (s̃, S̃), we compute the lift S and its type TypeTreeS at x

as above and we update S[x,TypeTreeS] with S. This finishes the description of the

algorithm at branch nodes.

We conclude this section with an immediate, yet important corollary of the way how

we compute the type TypeTreeS.

Lemma 5.7.1. Let x be a branch node, s̃ be its great-great-grandchild, and S̃1 and S̃2 be

two feasible solutions at s̃ of the same type such that both (s̃, S̃1) and (s̃, S̃2) are liftable.

Let Si be the lift of (s̃, S̃i) for i = 1, 2. Then S1 and S2 are of the same type at x.

Proof: The aforementioned algorithm to compute the type of the lift of (s̃, S̃i) uses

only the type of S̃i at s̃ and the subproblems R(x) and R(s̃). The claim follows.

5.7.3 Correctness

Fix a subset S∗ ⊆ V (G) such that G[S∗] is of treewidth less than k and G[S∗] |= φ.

We would like to show that the algorithm returns a set S of weight at least the weight of

S∗ (not necessarily S∗). Clearly, since G[S∗] is (k − 1)-degenerate, we can speak about

lucky nodes of the subproblem tree, defined in the same manner as in section 5.4.

A lucky extendable node x is called a gander if S∗ ∩WR(x) is a feasible solution for

R(x). For a gander x, define the type assignment TypeTreex as the type of the feasible

solution S∗ ∩WR(x).

Note that the root r of the subproblem tree is a gander and TypeTreer(ar) ∈ type[φ]∩

type[φtw<k]. Thus, it suffices to show the following:

Lemma 5.7.2. For every gander x, we have that S[x,TypeTreex] ̸= ⊥ and the weight of

S[x,TypeTreex] is at least the weight of S∗ ∩WR(x).

271

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

Proof: The proof proceeds by a bottom-up induction on the subproblem tree.

For a leaf gander x, since x is lucky, from the definition of TypeTreex the only type

assignment TypeTree for which S[x,TypeTree] ̸= ⊥ is exactly TypeTreex. Consequently,

S[x,TypeTreex] = ∅ and the claim is proven.

For a split gander x, the claim is straightforward if x has one grandchild. Assume

then x has two grandchildren y1 and y2. Since WR(y1) is nonadjacent to WR(y2), every

connected component of G[S∗ ∩WR(x)] is contained either in WR(y1) or in WR(y2). It

follows that both y1 and y2 are ganders, too.

By induction, for i = 1, 2 the weight of S[yi,TypeTree
yi] is at least the weight of

S∗ ∩WR(yi). Denote

TypeTree(a) := TypeTreey1(a)⊕ TypeTreey2(a) for a ∈ V (TR(x)).

Then, on one hand from proposition 2.4.1 we have that TypeTree = TypeTreex, and on the

other hand the handling of split nodes will update S[x,TypeTree] with S[y1,TypeTree
y1]∪

S[y2,TypeTree
y2]. The claim for split ganders follows.

It remains to analyse branch ganders. Let x be a branch gander. If νx /∈ S∗, then

yx is lucky and it is immediate that it is a gander, too. By the inductive assumption,

w(S[yx,TypeTreey
x

]) ⩾ w(S∗ ∩WR(yx)). Since in this case TypeTreex = TypeTreey
x

and

we initiated S[x,TypeTreex] with S[yx,TypeTreex], the inductive claim follows.

Assume then that νx ∈ S∗. Define D, η, and (Du)u∈D′ for D′ = D ∪ {νx} as in

lemma 5.4.7, that is:

D = {u ∈ NG(νx) ∩WR(x) ∩ S∗ | η∗(u) < η∗(νx)},

η = η∗|AR(x)∪D′ ,

Du = {w ∈ NG(u) ∩WR(x) ∩ S∗ −D′ | η∗(w) < η∗(u)}.

272

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

Then, by lemma 5.4.7, the branch node x creates a child zxD for D = (D, η, (Du)u∈D′) and

zxD is lucky. Hence, the grandchild sxD exists and is lucky as well.

We now want to look at some particular child of the free node sxD. Define the partition

B of D′ as the partition induced by the connected components of G[S∗ ∩WR(x)] on D′,

that is:

B = {C ∩D′ : C ∈ cc(G[S∗ ∩WR(x)]) such that C ∩D′ ̸= ∅}.

For every B ∈ B, let CB be the connected component of G[S∗ ∩WR(x)] that contains B.

Define aB := ax(CB) for B ∈ B and NB := NG(CB)∩AR(x). Since x is a gander, we have

|NB| ⩽ 4k and NB ⊆ βR(x)(aB). Let X◦
B ⊆ CB ∪NB be a set of size at most k promised

by lemma 2.3.1 for the graph G[CB ∪NB] and A = NB; note here that G[CB ∪NB] is of

treewidth less than k, because CB, NB ⊆ S∗. Let XB := X◦
B ∩CB. Finally, define ηB and

(DB
u)u∈XB similarly as for the grandchildren of x:

ηB = η∗|AR(x)∪D′∪XB ,

DB
u = {w ∈ NG(u) ∩WR(x) ∩ S∗ − (D′ ∪XB) | η∗(w) < η∗(u)}.

Let C = (B, (aB, NB, XB)B∈B, η
B, (DB

u)u∈XB). Observe that ŝ := ŝxD,C is lucky by lemma 5.4.3,

as XB ⊆ S∗. Hence, s̃ := s̃xD,C exists and is lucky as well. We claim that s̃ is a gander.

To this end, consider a connected component C̃ of G[S∗ ∩WR(s̃)]. We want to show

that |NG(C̃) ∩ S∗| ⩽ 4k and there exists a node ã ∈ V (TR(s̃)) such that NG(C̃) ∩

S∗ ⊆ βR(s̃)(ã). The claim is straightforward if C̃ is also a connected component of

G[S∗ ∩WR(x)], because x is a gander. Otherwise, C̃ ⊊ C for some connected component

C of G[S∗ ∩WR(x)]. Note that there exists B ∈ B such that B ⊆ C, that is, C = CB for

some B ∈ B.

By the choice of X◦
B, the connected component of G[CB ∪NB]−X◦

B that contains C̃

273

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

contains at most |NB|/2 ⩽ 2k vertices of NB. Consequently,

|NG(C̃) ∩ S∗| ⩽ |XB|+ |B|+ |NB|/2 ⩽ k + k + 2k = 4k.

Furthermore,

NG(C̃) ∩ S∗ ⊆ XB ∪B ∪NB ⊆ βR(s̃)(ãB).

We infer that s̃ is indeed a gander.

Since S∗ ∩WR(s̃) is a feasible solution at s̃, it follows immediately from the definition

of C that (s̃, S∗ ∩WR(s̃)) is liftable with the lift S∗ ∩WR(x).

Let now S̃ = S[s̃,TypeTrees̃] and S = S̃∪D′∪XB; note that AR(s̃)−AR(x) = D′∪XB.

We claim that (s̃, S̃) is liftable. To this end, fix B ∈ B. Observe that:

extSs̃(ãB, S
∗ ∩WR(s̃)) = βR(s̃)(a) ∪ CB.

Consider the connected component CB of G[S∗∩CR(x)]: it contains XB∪B = βR(s̃)(aB)−

βR(s̃)(ãB), which is nonempty due to B ̸= ∅, and its neighborhood in AR(x) is the set

NB ⊆ βR(x). Observe that the graph induced by extSs̃(ãB, S̃) is of the same type as the

graph induced by extSs̃(ãB, S
∗ ∩WR(s̃)) (both with the boundary labelling ιs̃|βR(s̃)(ãB)).

Therefore, due to XB ∪ B being nonempty, by lemma 2.4.2 we infer that there exists a

connected component C̃B of G[S] such that

C̃B = XB ∪B ∪
⋃
{C ′ ∈ cc(G[S̃]) | as̃(C ′) = ãB}

and

NG(C̃B) ∩ AR(x) = NB = NG(CB) ∩ AR(x). (5.4)

Consequently, every connected component C of G[S] that is disjoint with D′ is also a

274

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

connected component of G[S̃], and hence NG(C) ∩ AR(s̃) = NG(C) ∩ AR(x). Since S̃ is a

feasible solution at s̃, we infer that S is a feasible solution at x. Furthermore, from (5.4)

if follows that for every B ∈ B we have ax(C̃B) = a. Hence, (s̃, S̃) is liftable and S is the

lift.

By induction, the weight of S̃ is not smaller than the weight of S∗ ∩ WR(s̃). As

D′ ∪ XB ⊆ S∗, the weight of S is not smaller than the weight of S∗ ∩WR(x). Since S

is liftable, the algorithm updates S[x,TypeTreeS] with S, where TypeTreeS is the type

assignment of S at node x.

Since S̃ and S∗∩WR(s̃) are of the same type TypeTrees̃ at s̃, it follows from lemma 5.7.1

that S and S∗ ∩WR(x) are of the same type at x, that is, TypeTreeS = TypeTreex. This

finishes the induction step for branch ganders and completes the proof of the lemma.

5.7.4 Complexity analysis

We are left with arguing that the time complexity is as promised. By lemma 5.4.9,

the subproblem tree generated by the recursion has depth O(n), O(log2 n) or O(log4 n)

success branches on any root-to-leaf path depending on whether we work in Pt-free or

C>t-free regime, and O(log n) split nodes on any root-to-leaf path.

Note that success branches are the only places where we add nodes to the tree de-

composition (TR, βR). Furthermore, a success branch adds at most k nodes to the tree

decomposition, one for each element of B. Hence, at every node x we have |V (TR(x))| =

O(log4 n) and |V (TR(x))| = O(log2 n) if G is Pt-free. As |Types| = O(1), there are

2O(log4 n) type assignments to consider (2O(log2 n) if G is Pt-free).

At a free node that is a grandchild of a branch node, the sets D′, B, XB, NB are of con-

stant size. Consequently, every free node has a number of children bounded polynomially

in n.

275

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

We infer that the whole subproblem tree has size nO(log4 n). At every node, the algo-

rithm spends time nO(log4 n) inspecting all type assignments (or pairs of type assignments

in the case of a split node). Both bounds improve to nO(log2 n) if G is Pt-free. The running

time bound follows, and hence the proof of theorem 5.1.1 is complete.

5.7.5 A generalization

We now give a slight generalization of theorem 5.1.1 that can be useful for expressing

some problems that do not fall directly under its regime. The idea is that together with

the solution S we would like to distinguish a subset M ⊆ S that satisfies some CMSO2-

expressible predicate, and only the vertices of M contribute to the weight of the solution.

The proof is a simple gadget reduction to theorem 5.1.1.

Theorem 5.7.3. Fix a pair of integers d and t and a CMSO2 formula φ(X) with one

free vertex subset variable. Then there exists an algorithm that, given a C>t-free n-

vertex graph G and a weight function w : V (G) → N, in time nO(log4 n) finds subsets of

vertices M ⊆ S such that G[S] is d-degenerate, G[S] |= φ(M), and, subject to the above,

w(M) is maximum possible; the algorithm may also conclude that no such vertex subsets

exist. The running time can be improved to nO(log2 n) if G is Pt-free.

Proof: For a graph G and a set M ⊆ V (G), the forked version of (G,M) is the

graph ĞM created from G by attaching three degree-one neighbors to every vertex of

V (G) and, additionally, a two-edge path to every vertex of M . If G is weighted, then we

assign weights to the vertices of ĞM so that all of them are zero, except that for every

v ∈M the other endpoint of the attached two-edge path inherits the weight of v.

Note that the vertices of V (ĞM)−V (G) are exactly the vertices of degree one or two

in ĞM ; the vertices of V (G) are of degree at least three in ĞM . This implies that if H ′ is

a forked version of some other graph H and M ⊆ V (H), then the pair (H,M) is defined

276

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

uniquely and is easy to decode:

• The vertices of H are exactly the vertices of H ′ that are of degree at least three,

and H is the induced subgraph of H ′ induced by those vertices.

• Every vertex of H needs to be adjacent to exactly three vertices of degree 1 or to

three vertices of degree 1 and one vertex of degree 2, which in turn has another

neighbor of degree 1. The vertices of the latter category are exactly the vertices of

M .

Note that if G is C>t-free for some t ⩾ 3, then ĞM is C>t-free as well. Moreover,

tw(ĞM) ⩽ max(tw(G), 1).

Let k, t, and φ be as in theorem 5.1.1. Construct a CMSO2 sentence φ̆ that for a

graph H ′ behaves as follows:

• If H ′ is a forked version of some pair (H,M), then H ′ |= φ̆ if and only if H |= φ(M).

• Otherwise, H ′ ̸|= φ̆.

Writing φ̆ in CMSO2 is straightforward: we distinguish vertices of H and M as described

above, and then apply φ relativized to those subsets of vertices.

Let φ′ := φ̆ and k′ = k if k ⩾ 2, and φ′ := φ̆ ∧ φtw<k and k′ = 2 if k < 2 (where the

sentence φtw<k comes from lemma 2.4.3). We apply theorem 5.7.3 to k′, t, and φ′, and,

given a graph G with weight function w, apply the asserted algorithm to G′ := ĞV (G)

(with weight function w′), obtaining a set S ′. By the construction of G′ and φ′, G′[S ′]

must be a forked version of (G[S],M) for some M ⊆ S ⊆ V (G) such that G[S] |= φ(M)

and G[S] has treewidth less than k. Moreover, w′(S ′) = w(M).

We return (S,M). To see the correctness of this output, note that for every M ⊆ S ⊆

V (G) such that G[S] is of treewidth less than k and G[S] |= φ(M), if we denote H = G[S],

277

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

then H̆M is an induced subgraph of G′ of treewidth less than k′, w′(V (H̆M)) = w(M),

and H̆M |= φ′.

For an example application of theorem 5.7.3, consider the Maximum Induced Cy-

cle Packing problem: given an (unweighted) graph G, find the largest (in terms of

cardinality) collection of pairwise non-adjacent induced cycles in G. Consider the follow-

ing property of a graph G and a vertex subset M ⊆ V (G): G is a disjoint union of cycles

and every connected component of G contains exactly one vertex of M . It is straight-

forward to write a CMSO2 formula φ(M) such that G |= φ(M) if and only if G and M

have this property. Noting that disjoint unions of cycles are 2-degenerate, we can apply

theorem 5.7.3 for the formula φ(X) to conclude that the Maximum Induced Cycle

Packing problem admits a nO(log4 n)-time algorithm on C>t-free graphs, for every fixed

t. Here, we endow the input graph with a weight function that assigns a unit weight to

every vertex.

5.8 A simple technique for approximation schemes

In this final section we present a simple technique for turning polynomial-time and

quasipolynomial-time algorithms for MWIS on Pt-free and C>t-free graphs into PTASes

and QPTASes for more general problem, definable as looking for the largest induced

subgraph that belongs to some weakly hyperfinite class. Let us stress that this technique

works only for unweighted problems.

We define the blob graph of a graph G, denoted G◦, as the graph defined as follows:

V (G◦) := {X ⊆ V (G) | G[X] is connected},

E(G◦) := {X1X2 | X1 and X2 are adjacent}.

278

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

The main combinatorial insight of this section is the following combinatorial property of

G◦. Let us point out that a similar result could be derived from the work of Cameron

and Hell [111], although it is not stated there explicitly.

Theorem 5.8.1. Let G be a graph. The following hold.

(S1) The length of a longest induced path in G◦ is equal to the length of a longest induced

path in G.

(S2) The length of a longest induced cycle in G◦ is equal to the length of a longest induced

cycle in G, with the exception that if G has no cycle at all (G is a forest), then G◦

may contain triangles, but it has no induced cycles of length larger than 3 (i.e. it

is a chordal graph).

Proof: Note that since G is an induced subgraph of G◦ (as witnessed by the mapping

u 7→ {u}), we only need to upper-bound the length of a longest induced path (resp., cycle)

in G◦ by the length of a longest induced path (resp. cycle) in G.

Let P ◦ = X1, X2, . . . , Xt be an induced path in G◦. We observe that the graph

G[
⋃t
j=1Xj] is connected and for each j′ ∈ [t − 2] the sets

⋃j′

j=1Xj and
⋃t
j=j′+2Xj are

nonadjacent.

Fix an induced path P = v1, v2, . . . , vp in G[
⋃t
i=1Xi]. We define

set(i) := max{j | {v1, v2, . . . , vi} ∩Xj ̸= ∅}.

Claim 5.8.2. For all i ∈ [p− 1] it holds that set(i+ 1) ∈ {set(i), set(i) + 1}.

Proof of Claim 6. It is clear that set(i+ 1) ⩾ set(i), so suppose set(i+ 1) ⩾ set(i) + 2.

Since vivi+1 is an edge of G, we conclude that there is an edge in G◦ between the sets

{Xj | j ⩽ set(i)} and {Xj | j ⩾ set(i) + 2}, a contradiction with P ◦ being induced.

279

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

The following claim encapsulates the main idea of the proof.

Claim 5.8.3. Let P ◦ = X1, X2, . . . , Xt be an induced path in G◦ such that X1 ̸⊆ X2.

Let X ′
1 ⊆ X1 − X2 and X ′

t ⊆ Xt be nonempty sets. Let P = v1, v2, . . . , vp be a shortest

path in G[
⋃t
j=1Xj] such that v1 ∈ X ′

1 and vp ∈ X ′
t. Then P is induced, p ⩾ t, and

{v2, v3, . . . , vp−1} ∩ (X ′
1 ∪X ′

t) = ∅.

Proof of Claim 7. The path P is induced and {v2, v3, . . . , vp−1} ∩ (X ′
1 ∪X ′

t) = ∅ by the

minimality assumption. Recall that X1 must be disjoint with
⋃t
j=3Xj. Thus set(1) = 1

and set(p) = t, so the claim follows from claim 5.8.2.

Now we are ready to prove (S1). Our goal is to prove that if G◦ contains an induced

path on t vertices, then so does G. If t = 1, then the statement is trivial, so assume that

t ⩾ 2 and let P ◦ = X1, X2, . . . , Xt be an induced path in G◦.

If X1 ̸⊆ X2, then we are done by claim 5.8.3 applied to P ◦ for X ′
1 = X1 − X2 and

X ′
t = Xt. So assume that X1 ⊆ X2 and note that X2 ̸⊆ X1, for X1 and X2 are two

different vertices of P ◦. If t = 2, then any edge from X1 to X2 −X1 is an induced path

in G with two vertices; such an edge exists as G[X2] is connected. So from now on we

may assume t ⩾ 3.

Let X ′
2 ⊆ X2 −X1 be such that G[X ′

2] is a connected component of G[X2 −X1] and

X ′
2 and X3 are adjacent. Such a set exists as X3 is adjacent to X2, but nonadjacent to

X1. Note that G[X2] being connected implies that there exists a nonempty set X ′′
2 ⊆ X ′

2,

such that every vertex from X ′′
2 has a neighbor in X1. Furthermore, X ′′

2 ∩X3 = ∅, as X1

is nonadjacent to X3. Observe that P̂ ◦ := X ′
2, X3, . . . , Xt is an induced path in G◦ with

at least t − 1 ⩾ 2 vertices, such that X ′
2 ̸⊆ X3. Let P ′ = v2, v3, . . . , vp be the induced

path in G with at least t− 1 vertices obtained by claim 5.8.3 applied to P̂ ◦, X ′′
2 , and Xt.

Now recall that v2 ∈ X ′′
2 , so there is v1 ∈ X1 adjacent to v2. Note that v1 is nonadjacent

to every vi for i > 2, because vi /∈ X ′′
2 for i > 2. Thus P := v1, v2, . . . , vp is an induced

280

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

path in G with at least t vertices.

Now let us prove (S2). We proceed similarly to the proof of (S1). If G◦ is chordal

(every induced cycle is of length 3), then we are done by the exceptional case of the

statement. Otherwise, let C◦ = X1, X2, . . . , Xt be an induced cycle in G◦ for some t ⩾ 4;

we want to find an induced cycle of length at least t in G. Note that Xt ̸⊆ Xt−1 and

Xt ̸⊆ X1, as otherwise C◦ is not induced. We observe that there are nonempty sets

X1
t ⊆ Xt and X t−1

t ⊆ Xt, such that every vertex from X1
t has a neighbor in X1 and

every vertex from X t−1
t has a neighbor in Xt−1. Let Q be a shortest path contained in

Xt whose one endvertex, say x1 is in X1
t and the other endvertex, say xt−1 is in X t−1

t .

Note that it is possible that x1 = xt−1. The minimality of Q implies that no vertex of Q,

except for x1, xt−1, has a neighbor in
⋃t−1
j=1Xj.

Let P ◦ be the induced path X1, X2, . . . , Xt−1. Denote X ′
1 := N(x1)∩X1 and X ′

t−1 :=

N(xt−1) ∩Xt−1. Recall that both these sets are nonempty and X ′
1 ∩X2 = ∅ and X ′

t−1 ∩

Xt−2 = ∅. Let P = v1, v2, . . . , vp be the induced path given by claim 5.8.3 for P ◦, X ′
1, and

X ′
t−1. Recall that p ⩾ t − 1. Now let C be the cycle obtained by concatenating P and

Q, and observe that the cycle C is induced. Furthermore, as P has at least t− 1 vertices

and Q has at least one vertex, C has at least t vertices, which completes the proof.

Let us define an auxiliary problem called Maximum Induced Packing. An instance

of Maximum Induced Packing is a triple (G,F ,w), where G is a graph, F is a family

of connected induced subgraph of G, and w : F → R+ is a weight function. A solution

to (G,F ,w) is a set X ⊆ V (G), such that

• each connected component of G[X] belongs to F ; and

•
∑

C : component of G[X] w(C) is maximized.

We observe the following.

281

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

Theorem 5.8.4. Let (G,F ,w) be an instance of Maximum Induced Packing, where

|F| = N .

1. If G is Pt-free for some integer t, then the instance (G,F ,w) can be solved in time

NO(log2N).

2. If G is C>t-free for some integer t, then the instance (G,F ,w) can be solved in

time NO(log4N).

3. If G is P6-free or C>4-free, then the instance (G,F ,w) can be solved in time NO(1).

Proof: Let G′ be the subgraph of G◦ induced by F . Clearly, G′ has N vertices.

We observe that solving the instance (G,F ,w) of Maximum Induced Packing is

equivalent to solving the instance (G′,w) of MWIS. Now the theorem follows from

theorem 5.8.1 and the fact that MWIS can be solved in time nO(log2 n) in n-vertex Pt-free

graphs [1, 41], in time nO(log4 n) in n-vertex C>t-free graphs, using theorem 5.1.1 only for

MWIS, and in polynomial time in P6-free [89] or C>4-free graphs [35].

As an example of an application of theorem 5.8.4, we obtain the following corollary.

Corollary 5.8.5. For every fixed d and t, given an n-vertex Pt-free graph G, in time

nO(log2 n) we can find the largest induced subgraph of G with maximum degree at most d.

Proof: Note that every connected Pt-free graph with maximum degree at most d

has at most dt vertices. Thus, the family F of all connected induced subgraphs of G

with maximum degree at most d has size at most N := nd
t

and can be enumerated in

polynomial time. For each F ∈ F set w(F) := |V (F)|. We may now apply theorem 5.8.4

to solve the instance (G,F ,w) of Maximum Induced Packing in time NO(log2N) =

nO(log2 n).

Note that the strategy we used to prove theorem 5.8.4 cannot be used to solve Max

Induced Forest in quasipolynomial time, as there can be arbitrarily larger Pt-free

282

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

tree; consider, for instance, the family of stars. However, it is sufficient to obtain a

simple QPTAS for the unweighted version of the problem.

A class of graphs C is called weakly hyperfinite if for every ε > 0 there is c(ε) ∈ N, such

that in every graph F ∈ C there is a subset X of at least (1− ε)|V (F)| vertices such that

every connected component of F [X] has at most c(ε) vertices [107, Section 16.2]. Weakly

hyperfinite classes are also known under the name fragmentable [112]. Every class closed

under edge and vertex deletion which has sublinear separators is weakly hyperfinite [107,

Theorem 16.5], hence well-known classes of sparse graphs, such as planar graphs, graphs

of bounded genus, or in fact all proper minor-closed classes, are weakly hyperfinite.

For a class C of graphs, by Largest Induced C-Graph we denote the following

problem: given a graph G, find a largest induced subgraph of G, which belongs to C.

To make the problem well defined, we will always assume that K1 ∈ C. We can now

conclude the following.

Theorem 5.8.6. Let C be a nonempty, weakly hyperfinite class of graphs, which is closed

under vertex deletion and disjoint union operations. Then, the Largest Induced C-

Graph problem

1. has a QPTAS in C>t-free graphs, for every fixed t; and

2. has a PTAS in P6-free graphs and in C>4-free graphs.

Proof: Let n be the number of vertices of the given graph G and let ε be the desired

accuracy, i.e., the goal is to find a solution whose size is at least a (1− ε)-fraction of the

optimum. Let c := c(ε).

Let X∗ be the vertex set of an optimum solution. By the properties of C, there exists

X ′ ⊆ X∗ of size at least (1 − ε)|X∗| such that each connected component of G[X ′] has

at most c vertices. Let F be the set of all connected induced subgraphs of G that have

283

Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time Chapter 5

at most c vertices and belong to C. Clearly |F| ⩽ nc and F can be enumerated in

polynomial time. For each F ∈ F , we set w(F) := |V (F)|.

Apply the algorithm of theorem 5.8.4 to solve the instance (G,F ,w) of Maximum

Induced Packing in time nO(log4 nc) = nO(log4 n) if G is C>t-free, or in polynomial time

if G is P6-free or C>4-free. Let X be the optimum solution found by the algorithm. As C

is closed under the disjoint union operation, we observe that G[X] is a feasible solution

to Largest Induced C-Graph. Moreover we have |X| ⩾ |X ′| ⩾ (1− ε)|X∗|.

284

Chapter 6

Graph Classes with Few Minimal

Separators. I. Finite Forbidden

Induced Subgraphs

A vertex set S in a graph G is a minimal separator if there exist vertices u and v that

are in distinct connected components of G−S, but in the same connected component of

G−S ′ for every S ′ ⊂ S. A class F of graphs is called tame if there exists a constant c so

that every graph in F on n vertices contains at most O(nc) minimal separators. If there

exists a constant c so that every graph in F on n vertices contains at most O(nc logn)

minimal separators the class is strongly-quasi-tame. If there exists a constant c > 1 so

that F contains n-vertex graphs with at least cn minimal separators for arbitrarily large n

then F is called feral. The classification of graph classes into tame or feral has numerous

algorithmic consequences, and has recently received considerable attention.

A key graph-theoretic object in the quest for such a classification is the notion of a

k-creature. A k-creature consists of 4 disjoint vertex sets A,B,X = {x1, . . . , xk}, Y =

{y1, . . . yk} such that: (a) A and B are connected, (b) there are no edges from A to Y ∪B

285

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

and no edges from B to X ∪ A, (c) A dominates X (every vertex in X has a neighbor

in A) and B dominates Y and (d) xiyj is an edge if and only if i = j. It is easy to

verify that a k-creature contains at least 2k minimal separators. On the other hand, in a

recent article Abrishami et al. [43] conjecture that every hereditary class F that excludes

k-creatures for some fixed constant k is tame.

In this paper we first give a counterexample to the conjecture of Abrishami et al. Our

main result is a proof of a weaker form of their conjecture. More concretely, we prove

that a hereditary class F is strongly quasi-tame if it excludes k-creatures for some fixed

constant k and additionally every minimal separator can be dominated by another fixed

constant k′ number of vertices. The tools developed on the way lead to a number of

additional results of independent interest.

(i) We obtain a complete classification of all hereditary graph classes defined by a

finite set of forbidden induced subgraphs into strongly quasi-tame or feral. This substan-

tially generalizes a recent result of Milanič and Pivač [113] , who classified all hereditary

graph classes defined by a finite set of forbidden induced subgraphs on at most 4 vertices

into tame or feral. (ii) We show that every hereditary class that excludes k-creatures

and additionally excludes all cycles of length at least c, for some constant c, is tame.

This generalizes the result of Chudnovsky et al. [114] who obtained the same state-

ment for c = 5. (iii) We show that every hereditary class that excludes k-creatures and

additionally excludes a complete graph on c vertices for some fixed constant c is tame.

6.1 Introduction

Let G be a graph and u and v be distinct vertices in G. A vertex set S is a u,v-

separator if u and v are in distinct components of G − S. The set S is a u,v-minimal

separator if S is a u,v-separator, but no proper subset of S is a u,v-separator. Finally,

286

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

S is a minimal separator if S is a u,v-minimal separator for some pair of vertices u

and v. Minimal separators have a tremendous role in the design of graph algorithms,

both directly, such as in the structural characterization of chordal graphs [75] but also

indirectly in optimization algorithms for graph separation and routing problems (for ex-

ample [115, 116, 100]). The theory of potential maximal cliques, developed by Bouchitté

and Todinca [33] implies that a several fundamental graph problems, such as computing

the treewidth and minimum fill in of a graph G can be done in time polynomial in the

number of vertices of G and the number of minimal separators in G. Lokshtanov [117]

showed that the same result holds for computing the tree-length of the graph G, while

Fomin et al. [7] proved a general result that showed that a whole class of problems (in-

cluding e.g. maximum independent set and minimum feedback vertex set) can be solved

in time polynomial in the number of vertices and minimal separators of the graph. All

of these algorithms require a list of all the minimal separators of G to be provided as

input. However, the listing algorithms for minimal separators of Kloks and Kratsch [118]

or Berry et al. [119] can be used to compute such a list in time polynomial in the number

of vertices times a factor linear in the number of minimal separators of G.

This brings to the forefront the main question asked in this Chapter — which classes

of graphs have polynomially many minimal separators? We will say that a graph class

F is tame if there exists an integer c such that every graph in F on n vertices has

at most O(nc) minimal separators. A number of important graph classes have been

shown to be tame, such as Chordal [75] (and more generally Weakly Chordal [33]),

Permutation (and, more generally d-Trapezoid [120]), Circular Arc [121] and Polygon

Circle graphs [122]. Most of these results date back to the late 1990s and early 2000s.

Much more recently [43, 123, 114, 42], research has started to focus on a more systematic

classification of which graph classes are tame and which are not. Indeed the term tame

for graph classes with polynomially many minimal separators was defined by Milanič and

287

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

Pivač [42], who classified all hereditary (closed under vertex deletion) classes defined by

a set of forbidden induced subgraphs, all of which have at most 4 vertices, as tame or

not tame.

Building on the terminology of Milanič and Pivač [42], we will say that a class of

graphs F is quasi-tame if there exist constants c, c′ such that every n-vertex graph in the

family contains at most O(nc log
c′ n) minimal separators. Further, F is strongly quasi-tame

if it is quasi-tame with c′ ⩽ 1. On the opposite side of the spectrum, we will say that F

is feral if there exists a constant c such that for every N ⩾ 0 there exists an n ⩾ N such

that F contains an n-vertex graph with at least cn minimal separators.

Abrishami et al. [43] define a structure, called a k-creature, the presence of which ap-

pears to control, to a large extent, whether a graph has many or few (quasi-polynomially

many) separators. A k-creature in a graph G is a four-tuple (A,B, X = {x1, x2, . . . , xk},

Y = {y1, y2, . . . , yk}) of mutually disjoint vertex subsets of V (G), satisfying the following

conditions (see Figure 6.1).

1. A and B induce connected subgraphs of G,

2. A and Y ∪B are anti-complete (i.e., no vertex in A is adjacent to a vertex in B∪Y)

and B is anti-complete with X ∪ A.

3. A dominates X (every vertex in X has a neighbor in A) and B dominates Y , and

4. xiyj is an edge if and only if i = j.

A graph G is k-creature-free if there does not exists a 4-tuple of vertex sets of V (G)

that form a k-creature. It is easy to see that a k-creature contains at least 2k minimal

separators (select precisely one of {xi, yi} for every i ⩽ k). Because deleting a vertex

cannot increase the number of minimal separators, a graph G that contains a k-creature

contains at least 2k minimal separators. Thus, a graph family F that contains n-vertex

graphs with k-creatures for arbitrarily large n and with k = Ω(n) is feral. For F to not

288

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

A B

𝑥ଵ

𝑥

𝑦ଵ

𝑦ଶ

𝑦

.

.

.

𝑥ଶ

Figure 6.1: A graph induced by the vertices of a k-creature. The blue edges indicate
that xi (yi) may or may not be a neighbor of xj (yj)

be tame it is sufficient for k to grow super-logarithmically with n (i.e n ∈ 2o(k)). A sort

of converse to this observation was conjectured in [43].

Conjecture 6.1.1. [43] For every fixed natural number k, the family of graphs that are

k-creature-free is tame.

Even if Conjecture 6.1.1 were to be true, it would still not give a complete charac-

terization of hereditary graph classes into tame or non-tame. In particular Abrishami

et al. [43] give an example of a tame hereditary class F that contains k-creatures for

arbitrarily large k. Their example can also be slightly modified to show that there exist

hereditary families that are neither tame nor feral. This makes it appear that, at least

for hereditary classes in their full generality, the boundary between tame and non-tame

graph classes is so “strange-looking” that a complete dichotomy may be out of reach, and

that we therefore have to settle for sufficient conditions for tameness / non-tameness, and

possibly complete characterizations for more well-behaved sub-classes of hereditary fam-

ilies. For an example, Conjecture 6.1.1, if true, would have yielded a complete dichotomy

into tame or feral for all classes of graphs closed under induced minors (i.e closed under

vertex deletion and edge contraction).

Unfortunately it turns out that Conjecture 6.1.1 is false. In particular we give

(in Section 6.4) an example of a feral family F that excludes 100-creatures. The family

289

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

F consists of all k-twisted ladders (see Section 6.4 for a definition). Our main result is

nevertheless that Conjecture 6.1.1 is true “in spirit”, in the sense that for large classes

of hereditary families, excluding k-creatures does imply few minimal separators. To

state Theorem 6.1.2 we need to define k-skinny-ladders. A k-skinny-ladder is a graph

G consisting of two anti-complete paths Pl = ℓ1ℓ2 . . . ℓk and Pr = r1r2 . . . rk and a set

{s1, s2, . . . , sk} of vertices such that for every i, si is adjacent to ℓi and ri and to no other

vertices.

Theorem 6.1.2. For every natural number k, the family of graphs that are k-creature-

free and do not contain a k-skinny-ladder as an induced minor is strongly-quasi-tame.

Theorem 6.1.2 suggests that other counterexamples to Conjecture 6.1.1 should resem-

ble the counterexample we provide in Section 6.4. Furthermore, we do not have an an

example of a non-tame class for which strong quasi-tameness follows from Theorem 6.1.2.

Therefore we conjecture that the statement of Theorem 6.1.2 remains true even if strongly

quasi-tame is replaced by tame.

Excluding the k-skinny-ladder is closely tied to domination of minimal separators. A

vertex set X dominates S if every vertex in S is either in X or has a neighbor in X. An

important ingredient in the proof of Theorem 6.1.2 (see Lemma 6.5.15) is that for every

k there exists a k′ such that if G excludes k-creatures and excludes k-skinny-ladders as

an induced minor then every minimal separator S in G is dominated by a set X on at

most k′ vertices. In fact, because a k-skinny-ladder is itself 5-creature-free and contains

a minimal separator (namely the set {s1, s2, . . . , sk}) which cannot be dominated by

k − 1 vertices, among the hereditary classes F that exclude k-creatures, the presence

or absence of k-skinny-ladders (as induced minors) precisely characterizes whether every

minimal separator of every graph in F can be dominated by a constant size set of vertices.

While the statement of Theorem 6.1.2 is concise, it is not immediately clear which

290

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

graph families it applies to. Which families are k-creature-free? What does it mean in

terms of forbidden induced subgraphs to exclude a k-skinny-ladder as an induced minor?

In the second half of this chapter we obtain an equivalent characterization of the premise

of Theorem 6.1.2 in terms of forbidden induced subgraphs. Specifically, we first show that

for every k ⩾ 1 there exists a k′ such that if G contains a k′-creature then G contains a

k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism, or a k-ladder as an induced

subgraph (see Figure 6.2, formal definitions in Section 6.6). Additionally, it is easy to see

that every graph that contains a 2k-skinny-ladder as an induced minor either contains a

k-ladder or a k-contracted-ladder as an induced subgraph. Here a k-contracted-ladder is

a graph obtained from a k-ladder by contracting all of the horizontal paths into single

vertices (see Section 6.6 for a formal definition). This leads to the following variant of

Theorem 6.1.2.

Theorem 6.1.3. For every natural number k, the family of graphs that exclude the k-

theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism, k-ladder, and the k-contracted-

ladder as induced subgraphs, is strongly-quasi-tame.

Theorems 6.1.2 and 6.1.3 are equivalent in the sense that for every k there exists a

k′ such that the graph family that satisfies the premise of Theorem 6.1.2 with k also

satisfies the premise of Theorem 6.1.3 with k′, and the graph family that satisfies the

premise of Theorem 6.1.3 with k also satisfies the premise of Theorem 6.1.2 with k′.

To demonstrate the power of Theorem 6.1.2 (or equivalently, Theorem 6.1.3) we show

that it gives, as a pretty direct consequence, a complete classification of all hereditary

graph classes defined by a finite set of forbidden induced subgraphs into strongly quasi-

tame or feral. Indeed, it is an easy exercise to show that if a family F is defined by a

finite set of forbidden induced subgraphs and contains k-skinny-ladders for arbitrarily

large k as induced minors, then there exists a constant p such that F either contains

291

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

all p-subdivisions of 3-regular graphs (an p-subdivision of G is the graph obtained from

G by replacing each edge of G by a path on p + 1 edges) or all line graphs (see [124]

for a definition) of p-subdivisions of 3-regular graphs. In this case F is feral. Therefore,

Theorem 6.1.2 proves Conjecture 6.1.1 for hereditary graph classes defined by a finite set

of forbidden induced subgraphs, albeit with strongly quasi-tame instead of tame.

The “strongly quasi-tame” part of the classification of families F defined by a finite

set of forbidden induced subgraphs into strongly quasi-tame or feral follows directly by

inspecting the graphs in the statement of Theorem 6.1.3. The “feral” part follows by

observing that if F contains some of the graphs in the premise of Theorem 6.1.3 for

arbitrarily large k, then F must also contain such graphs with only O(k) vertices. This

part of the proof crucially depends on F being defined by a finite set of forbidden induced

subgraphs.

Theorem 6.1.4. Let F be a graph family defined by a finite number of forbidden induced

subgraphs. If there exists a natural number k such that F forbids all k-theta, k-prism,

k-pyramid, k-ladder-theta, k-ladder-prism, k-claw, and k-paw graphs, then F is strongly-

quasi-tame. Otherwise F is feral.

Note that some of the graphs of Figure 6.2 share a name with graphs that appear in

the work of Abrishami et al. [43], but the definitions given here are slightly different. In

particular, in some of the places where they require single edges we allow arbitrarily long

paths. Abrishami et al. [43] prove that the family of (what they define to be) theta-free,

pyramid-free, prism-free, and turtle-free graphs is tame. We remark that our results

are incomparable to theirs, in the sense that there are classes of graphs whose tameness

follows from their work, but not ours, and vice versa.

Theorem 6.1.4 substantially generalizes the main result of Milanič and Pivač [42],

who obtained a complete classification into tame or feral of hereditary graph classes

292

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

characterized by forbidden induced subgraphs on at most 4 vertices. The generalization

comes at a price - as our upper bounds on the number of minimal separators are quasi-

polynomial instead of polynomial.

Next we explore for which classes we are able to improve our quasi-polynomial upper

bounds to polynomial ones. Here, again, domination plays a crucial role. We show

that for every pair k, k′ of integers, every class of graphs that excludes k-creatures and

additionally has the property that every minimal separator S is dominated by a vertex set

X of size at most k′ and disjoint from S is tame. We then proceed to show that graphs

that exclude k-creatures and all cycles of length at least r for any choice of natural

numbers k and r have this property, leading to Theorem 6.1.5.

Theorem 6.1.5. For every pair of natural numbers k and r, the family of graphs that

are C⩾r-free, k-theta-free, k-prism-free, and k-pyramid-free is tame.

Here a graph G is C⩾r-free if it contains no induced cycles of length at least r.

Theorem 6.1.5 is optimal in the sense that k-theta, k-prism, and k-pyramid graphs have

at least 2k−2 minimal separators and therefore can have exponentially many minimal

separators. Further, it substantially strengthens the results of Chudnovsky et al. [114],

who prove the same statement but only for r = 5.

Finally we show that graph classes that exclude k-creatures, k-skinny-ladders, as well

as k-cliques satisfy the property that every minimal separator S can be dominated by a

constant size set X disjoint from S. This implies that this family of graphs is tame as

well.

Theorem 6.1.6. For any fixed natural number k, the family of graphs that are k-creature-

free, contain no k-skinny-ladder as an induced minor, and contain no minimal separator

that has a clique of size k is tame.

293

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

k-theta k-pyramid k-prism

.

.

.

.

.

.

.

.

.

.

.

.

k-ladder-theta k-ladder-prism k-ladder

k-paw

k-claw

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 6.2: Dashed lines represent the option of having an arbitrary length path
or just an edge (except for k-claw and k-paw graphs which the dotted line is always
a path of length k.) The blue lines used in the k-ladder-theta, k-ladder-prism, and
k-ladder graphs represents the option of either having or not having that edge, but
for each vertex incident to more than one of the blue edges, at least one of those blue
edges must belong to the graph.

294

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

Theorem 6.1.4 provided a classification of all hereditary graph classes defined by a

finite set of forbidden induced subgraphs into strongly quasi-tame or feral. In the same

way that Theorem 6.1.4 is a fairly direct consequence of Theorem 6.1.3, we can obtain

from Theorem 6.1.6 a complete dichotomy of all hereditary graph classes defined by a

finite set of forbidden induced subgraphs, and additionally exclude at least one clique,

into tame or feral.

Theorem 6.1.7. Let F be a graph family defined by a finite number of forbidden induced

subgraphs. If there exists a natural number k such that F forbids all k-clique, k-theta,

k-ladder-theta, k-claw, and k-paw graphs then F is tame. Otherwise, F contains all

cliques or F is feral.

Subsequent Work. There have been two significant developments since the first version

of this manuscript. The first is a manuscript by Gajarský et al. [44] which answers

Conjectures 6.9.1 and 6.9.2 in the affirmative, that is, they prove that “strongly-quasi-

tame” can be replaced by “tame” in the statements of Theorems 6.1.2, 6.1.3, and 6.1.4,

respectively.

The proof of Gajarský et al. builds heavily on top of the results in this chapter. In

particular, their proof of Conjecture 6.9.1 (i.e the strenthening of our Theorem 6.1.2 from

quasi-tame to tame) requires all the tools that we develop in the proof of Theorem 6.1.2,

except that the last crucial piece of our proof, namely Lemma 6.5.16, is replaced by a

remarkably elegant argument that yields a polynomial upper bound on the number of

minimal separators, rather than a quasi-polynomial one. Given Theorem 6.1.2, the proof

of Theorem 6.1.3, which is given in Section 6.6, amounts to characterizing the inclusion

minimal hereditary families F that contain a k-creature for every integer k. Thus, given

that Conjecture 6.9.1 is true, the truth of Conjecture 6.9.2 follows directly from our proof

of Theorem 6.1.3 as given in Section 6.6.

295

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

Our Theorems 6.1.5, 6.1.6 and 6.1.7 all give polynomial upper bounds for a subset

of the graph classes covered by Theorems 6.1.2 and 6.1.3. Thus the proof of Gajarský et

al. [44] that Conjectures 6.9.1 and 6.9.2 are true completely subsumes Theorems 6.1.5,

6.1.6 and 6.1.7. We nevertheless keep their statements and proofs in this chapter, both

because their proofs pre-dates the proof of Gajarský et al., and because they retain

some (if arguably small) value. Specifically the proofs of Theorems 6.1.5, 6.1.6 and

6.1.7 all work a manner similar to the proof of Conjecture 6.9.1 by Gajarský et al.,

namely by replacing Lemma 6.5.16 by a polynomial upper bound. Our “replacements

of Lemma 6.5.16” are slightly simpler than the one by Gajarský et al. Of course our

proofs of Theorems 6.1.5, 6.1.6 and 6.1.7 only replace the quasi-polynomial bound of

Lemma 6.5.16 by a polynomial upper bound for different special cases, while Gajarský

et al., (essentially) do it for Lemma 6.5.16 in its full generality.

The second development concerns Conjecture 6.9.3, which conjectures that every

induced-minor-closed class F is either tame or feral. It turns out that Conjecture 6.9.3

is false by a counterexample that combines the features of the counterexample to Con-

jecture 6.1.1 given in section 6.4 of this chapter with the construction that shows that

there exist hereditary families that are neither feral nor tame.

However, a much more general statement (that avoids the special cases which make

Conjecture 6.9.3 false) is true. In Chapter 7 we show that every hereditary graph class

which is definable in Monodic Second Order Logic (CMSO2 Logic) is either quasi-tame

or feral.

In terms of generality the result of Chapter 7 completely subsumes Theorems 6.1.2

and Theorem 6.1.3, at a cost of the quasi-polynomial bound on the number of minimal

separators being much worse (about nO(log17 n), as opposed to nO(logn)). The proof of the

main result in Chapter 7 requires some, but far from all, tools in the present chapter

(namely Lemma 6.5.6 and the entire characterization of the inclusion minimal hereditary

296

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

families F that contain a k-creature for every integer k, given in Section 6.6).

More importantly, the proof of the main result in Chapter 7 is very complex (spanning

close to 200 pages of this thesis), and appears to be very difficult to strengthen to a

polynomial upper bound, leaving the polynomial bound of Gajarský et al. [44] as highly

relevant. Therefore all of the main contributions of the present chapter (the proofs of

Theorems 6.1.2 and 6.1.3, with exception of Lemma 6.5.16) are crucial to either the

proof Gajarský et al. [44] of Conjectures 6.9.1 and 6.9.2, or the proof of the dichotomy

for CMSO-definable hereditary classes of Chapter 7, or both.

Outline of the chapter. In Section 6.2 we give a high level overview of our proofs.

In Section 6.3 we set up the standard definitions and notations used in the chapter. In

Section 6.4 we give the counterexample to Conjecture 6.1.1. In Section 6.5 we prove our

main result, Theorem 6.1.2. In Section 6.6 we characterize the premise in the statement

of Theorem 6.1.2 (being k-creature-free and k-skinny-ladder induced minor-free) in terms

of forbidden induced subgraphs, and use this characterization to prove Theorems 6.1.3

and 6.1.4. In Sections 6.7 and 6.8 we prove the polynomial bounds on the number of

minimal separators in graphs that are both k-creature-free and long cycle-free, and in

graphs that are k-creature-free, k-skinny-ladder induced minor-free, and k-clique-free.

We conclude with some open problems in Section 6.9.

6.2 Overview

In this section we provide high level overview of our proofs. We will give quite detailed

proof sketches of some of the pivotal steps, while skipping technical details of the more

cumbersome parts. We start with the main ideas behind the proof of Theorem 6.1.2.

297

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

6.2.1 Overview of the Proof of Theorem 6.1.2.

Recall that Theorem 6.1.2 states that for every natural number k, the family of graphs

that are k-creature-free and do not contain a k-skinny-ladder as an induced minor is

strongly-quasi-tame. There are three key lemmas that lie at the heart of the proof of

Theorem 6.1.2. The first of these states that for a k-creature-free graph G, there are

at most nk distinct ways for the neighborhood of a vertex v to intersect the minimal

separators S of G, where n = |V (G)|.

Claim 6.2.1. Let G be a k-creature-free graph with n = |V (G)|, v ∈ G, and let Sv =

{N(v) ∩ S : v /∈ S and S is a minimal separator of G}. Then |Sv| ⩽ nk.

Claim 6.2.1 is stated as Lemma 6.5.6 in the formal proof. Note that Claim 6.2.1 on

its own does not imply that the number of minimal separators of G is bounded, only that

the number of ways the neighborhood of a vertex can intersect the minimal separators of

G is polynomial. In fact the counterexample given in Section 6.4 shows that the number

of minimal separators of a k-creature-free graph of maximum degree at most 3 can be

exponential.

The proof of Claim 6.2.1 is based on VC-dimension (see Definition 6.5.3) and follows

from the Sauer-Shelah Lemma (see Lemma 6.5.4). In particular, if |Sv| is large then there

exists a vertex u not adjacent to v such that there are at least nk−1 distinct intersections

N(v) ∩ S ′, where S ′ is a u, v-minimal separator. By the Sauer-Shelah Lemma there is a

subset of N(v) of size k that is shattered by the sets of the form N(v) ∩ S ′.

From the definition of shattering it follows that there are vertices X = {v1, . . . , vk} in

N(v) such that each vi belongs to a private u, v-minimal separator Si, i.e., X ∩Si = {vi}.

Now, let Ci be the component that u belongs to in G − Si, let v′i be a neighbor of vi in

Ci with minimum distance to u, and let Pi be a shortest path from v′i to u in Ci. Notice

that no vertex of Pi can be neighbors with vj for i ̸= j or else there would be a u, v

298

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

v

v1

v2

vk

v1'

P1

.

.

.

uv2'

vk'

P2

Pk

Figure 6.3: The k-creature formed in Claim 6.2.1 and Lemma 6.5.6. Note there may
or may not be edges between the vi’s and the Pi’s may overlap or have edges between
them as well.

path in G − Si, and vi cannot be neighbors with u, or else there would be a u, v path

in G − Sj for j ̸= i. It then follows that v together with the set X and the Pi’s make

a k-creature (See Figure 6.3). So, for any fixed u, v, there are at most nk−1 unique sets

of the form N(v) ∩ S where S is a u, v-minimal separator. Finally, it is easy to check

that for every u-w minimal separator S there exists some v-w minimal separator or v-u

minimal separator S ′ such that N(v) ∩ S = N(v) ∩ S ′, proving the claim.

The second ingredient in the proof of Theorem 6.1.2 states that the minimal separators

of graphs that are k-creature-free and have no k-skinny-ladder as an induced minor can

be dominated by few vertices.

Claim 6.2.2. Let F be a graph family that forbids k-creatures and has no k-skinny-ladder

as an induced minor, then there exists a constant c such that for all graphs G ∈ F , every

minimal separator of G can be dominated by c vertices.

The proof of Claim 6.2.2 (re-stated as Lemma 6.5.15 in the formal proof) is substan-

tially more involved than the proof of Claim 6.2.1. Indeed the full proof of Lemma 6.5.15

takes up the bulk of Section 6.5. The overall strategy of the proof of Claim 6.2.2 is to

start with the assumption that G is a graph and S is a minimal separator in G that can-

not be dominated by c vertices and use this assumption to show the existence of either a

299

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

k-creature or a k-skinny-ladder in G for sufficiently large k. Here sufficiently large means

that k tends to infinity when c tends to infinity.

The proof is carried out in a sequence of steps, where each step “zooms in” on a more

structured induced subgraph of G which still has a minimal separator (which is a subset

of the original separator S) that cannot be dominated by c′ vertices for some sufficiently

large c′. As an example step let Cu and Cv be two full components of G − S (a full

component of G− S is a component C such that N(C) = S). Without loss of generality

V (G) = Cu ∪ S ∪ Cv, because if G− S also contains some other component C then S is

still a minimal separator in (G − C) − S and S still cannot be dominated by c vertices

in G− C.

The first step of the proof of Claim 6.2.2 is to reduce to the case where G − S has

precisely two components PL and PR and both PL and PR induce paths. While this

sounds like a pretty strong claim this is actually one the less technical steps in the proof

of Claim 6.2.2. The idea is to look for a k-creature (A,X, Y,B) where A ∪ X ⊆ Cu,

Y ⊆ S and B = Cv. If we fail to find a k-creature of this form then one can find

k − 1 induced paths P1 . . . Pk−1 in Cu that together dominate S (see Lemma 6.5.8). A

symmetric argument shows the existence of induced paths Q1 . . . Qk−1 in Cv that together

dominate S. Since S is completely covered by at most k2 sets on the form N(Pi)∩N(Qj),

it follows that there must exist some pair i, j such that S ∩ N(Pi) ∩ N(Qj) cannot be

dominated by c/k2 vertices. We now consider G[Pi ∪ (S ∩N(Pi) ∩N(Qj)) ∪Qj], in this

graph the minimal separator (S ∩N(Pi)∩N(Qj)) cannot be dominated by c/k2 vertices

and the two full components are PL = Pi and PR = Qj.

The next sequence of steps (Lemmas 6.5.9, 6.5.10, and ultimately 6.5.11) show that

it is possible to zoom in on a sub-path P ′
L of PL, a sub-path P ′

R of PR and a subset

I ⊆ S of size at least c′ (where c′ is lower bounded by an unbounded function of c) such

that both P ′
L and P ′

R dominate I, I is an independent set (no pair of vertices in I are

300

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

adjacent) and furthermore no vertex in P ′
L or P ′

R have more than one neighbor in I.

Note that I is now a minimal separator in G[P ′
L ∪ I ∪ P ′

R]. The additional properties of

I witness that I cannot be dominated by less than |I| ⩾ c′ vertices, because no vertex

of G[P ′
L ∪ I ∪ P ′

R] can dominate more than one vertex in I. Thus, Lemmas 6.5.9, 6.5.10,

and 6.5.11 allow us to reduce the proof of Claim 6.2.2 from the general case where S

cannot be dominated by few vertices, but we do not know why, to the special case where

S cannot be dominated by few vertices because no vertex in G dominates more than one

vertex of S. The proofs of Lemmas 6.5.9, 6.5.10, and 6.5.11 are fairly technical, and we

skip them in this overview.

Assuming Lemma 6.5.11 we are in the following setting. Our graph G consists of an

independent set S of size at least c, which is much larger than k and two paths PL and

PR that both dominate S. Further, no two vertices in S have any common neighbor. Our

goal is to find a k-skinny-ladder as an induced minor in G. Observe that the graph G

already kind of looks like a skinny-ladder. The main problem is that each of the vertices

of S can have many neighbors in PL and in PR and that these neighbors can “interleave”

a lot (see e.g. Figure 6.8). The next series of lemmas — namely Lemmas 6.5.12, 6.5.13,

and 6.5.14, culminating with 6.5.15 — show that if the neighbors of the vertices in S

interleave “too much”, then we can find a k-creature in G, while if they do not then G

contains a k-skinny-ladder.

Claim 6.2.1 together with Claim 6.2.2 are almost enough to prove Theorem 6.1.2.

Suppose that instead of Claim 6.2.2 we had the stronger statement that for every minimal

separator S in every k-creature-free, k-skinny-ladder induced minor-free graph there is

a dominating set D of size c such that D is disjoint from S. 1 In this hypothetical

scenario we can give a simple proof of a statement stronger than Theorem 6.1.2 — a

1This claim is actually false: for any k ⩾ 1 start with a k-skinny-ladder for and turn {s1, . . . , sk} into
a clique. It is easy to check that this graph does not contain a 5-creature or a 5-skinny-ladder (as an
induced minor), while no set of size less than k disjoint from S can dominate S.

301

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

polynomial upper bound on the number of minimal separators of k-creature-free, k-

skinny-ladder induced minor-free graphs. Suppose for contradiction that the number

of minimal separators is super-polynomial. By the dream-claim there is some constant

size set D such that there are super-polynomially many minimal separators S that are

disjoint from D and dominated by D. By Claim 6.2.1 each vertex v ∈ D has only

polynomially many options for the intersection N(v) ∩ S. But then there must be two

distinct minimal separators S1 and S2 that are disjoint from D, dominated by D, and

that satisfy S1 ∩N(v) = S2 ∩N(v) for every vertex v in D. But D dominates S1 and S2,

and therefore we have

S1 =
⋃
v∈D

N(v) ∩ S1 =
⋃
v∈D

N(v) ∩ S2 = S2

contradicting that S1 and S2 are different minimal separators.

The final ingredient of the proof of Theorem 6.1.2 is a strengthening of this argument

that also works for the case when the dominating set D is not necessarily disjoint from S.

This strengthening comes at the cost that we are only able to prove a quasi-polynomial

upper bound on the number of minimal separators.

Claim 6.2.3. There exists a function f : N×N→ N such that the following holds. Let G

be a graph with n vertices and let k and k′ be integers such that for all induced subgraphs

G′ of G and for all v ∈ G′, if SvG′ = {N(v) ∩ S : v /∈ S and S is a minimal separator

of G′}, then |SvG′ | ⩽ nk and every minimal separator of every induced subgraph of G can

be dominated by k′ vertices. Then G has at most nf(k,k
′) log(n) minimal separators where

n = |V (G)|.

Claim 6.2.3 is stated as Lemma 6.5.16 in the formal proof (we note that for technical

reasons the statement of Lemma 6.5.16 slightly differs from that of Claim 6.2.3). Note

302

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

that by Claims 6.2.1 and 6.2.2, graphs that are k-creature-free and forbid k-skinny-ladders

as an induced minor satisfy the premise of Claim 6.2.3.

The basic idea of the proof is to use a recursive branching algorithm that outputs all

of the minimal separators of the graph, and upper bound the total number of sets output

by this algorithm. The algorithm takes a tuple (G,X) where G is a graph that satisfies

the conditions of Claim 6.2.3, and X ⊆ V (G) and returns all minimal separators of G

contained in X (and possibly other sets as well). Initially the algorithm is called with

X = V (G). We will measure the running time of the algorithm in terms of n and an

upper bound x on the size of X. Initially we have x = n.

Fix some minimal separator S of G that is contained in X. We set Q to be the set

of vertices of G that have at least 1
2k′ |X| neighbors in X. The reason for choosing this

particular fraction will become apparent shortly. By assumption, for each q ∈ Q if q /∈ S

then there are at most nk options as to what N [q] ∩ S is. For each option Y ∈ SqG we

call the algorithm on (G − Y,X − N [Y]), and for each set S ′ that is returned by the

call (G − Y,X − N [q]), we add S ′ ∪ Y to our collection of sets that we will return. If

Y ′ ∈ SvG is equal to N [q] ∩ S, then S − Y ′ is a minimal separator of G− Y ′ contained in

X −N [q] and so (S − Y ′)∪ Y ′ = S will be included in the list of sets that we return. In

each of our branches we are calling the algorithm on X ′ = X −N [q], and since q has at

least 1
2k′ |X| neighbors in X, X ′ is a constant fraction smaller than X. Thus the running

time of (and the number of sets output by) the algorithm is governed by the recurrence

T (n, x) ⩽ nk+O(1)T (n, x(1− 1
2k′)), which solves to nO(log x) ⩽ nO(logn) for fixed k and k′.

But what if Q ⊆ S? To handle this case we use that fact that S −Q must then be a

minimal separator of G − Q and by assumption there are at most k′ vertices of G − Q

that dominate S − Q. We can now see why the fraction 1
2k′ was used to define Q; the

neighborhood of these k′ vertices contain at most 1/2 the vertices of X. Thus, for every

set R of k′ vertices of G, we call the algorithm on (G − Q, (X − Q) ∩ N(R)). For each

303

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

set S ′ that is returned from the call (G − Q, (X − Q) ∩ N(R)), we add S ′ ∪ Q to the

list of sets output by the algorithm. Since there is some set R′ of k′ vertices in G − Q

such that R′ dominates S − Q, S will get added to the list. Each of the recursive calls

invoke the algorithm on X ′ = X ∩ N [R], and |X ′| ⩽ .5|X|. In this case the running

time of (and the number of sets output by) the algorithm is governed by the recurrence

T (n, x) ⩽ nk
′+kT (n, x

2
), which also solves to nO(log x) ⩽ nO(logn) for fixed k and k′. This

completes the sketch of the proof of Claim 6.2.3 and therefore also of Theorem 6.1.2.

6.2.2 Overview of the Proof of Theorems 6.1.3 and 6.1.4.

The conclusion of Theorem 6.1.2 is simple - G only has a quasi-polynomial number

of minimal separators. On the other hand the premise is somewhat opaque. It is not

immediately obvious which graphs contain k-creatures for arbitrarily large k, and which

graphs contain a k-skinny-ladder as an induced minor. In the second part of the paper

we re-formulate the premise of Theorem 6.1.2 in terms of forbidden induced subgraphs.

More concretely, the bulk of the work in Section 6.6 goes into proving the following

statement.

Claim 6.2.4. For every natural number k, there is a number k′ such that if a graph

G contains a k′-creature, then G contains a k-theta, k-pyramid, k-prism, k-ladder, k-

ladder-theta, or k-ladder-prism as an induced subgraph.

See Figure 6.2 for a depiction of the graphs in Claim 6.2.4, and see Section 6.6 for

definitions. This statement appears as Lemma 6.6.10 in the formal proof. Claim 6.2.4 is

best possible in the sense that each one of the k-theta, k-pyramid, k-prism, k-ladder, k-

ladder-theta, or k-ladder-prism contains a k-creature, and that dropping any one of them

from the list would make the conclusion of Claim 6.2.4 false. The contrapositive of the

statement of Claim 6.2.4 implies that if a hereditary graph family F excludes the k-theta,

304

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

k-pyramid, k-prism, k-ladder, k-ladder-theta, and k-ladder-prism as induced subgraphs,

then there exists a k′ depending only on k such that F is k′-creature-free. Therefore,

Claim 6.2.4 together with Theorem 6.1.2 and the observation that a 2k-skinny-ladder

induced minor either yields a k-creature or a k-contracted ladder as an induced subgraph

implies Theorem 6.1.3.

So, how do we prove Claim 6.2.4? At a very high level it is just a sequence of structural

lemmas, each on the form “if G contains a k-creature that additionally has some property

X, then G also contains a k′-creature for some k′ which is much smaller than k, but still

tends to infinity with k, and the k′-creature has some stronger structural property Y ”.

The next lemma now has as premise “if G contains a k creature that additionally has

property Y ”, continuing the chain. Since we are looking for highly symmetric induced

subgraphs in fairly general graphs it should come as no surprise that this sequence of

arguments makes frequent use of Ramsey’s Theorem.

Slightly more concretely, the proof of Claim 6.2.4 considers the two “sides” of the k-

creature separately. Specifically, suppose that G contains a k′-creature (A, B, {x1, x2, . . .,

xk′}, {y1, y2, . . . , yk′}), then we focus in on just one half of the k′-creature, say the side

the consists of A and {x1, x2, . . . , xk′}. Here we can find what amounts to a k-half-theta,

k-half-prism, or k-half-ladder (imagine cutting a k-theta, k-prism, or k-ladder in half

vertically, see Figure 6.9). Then on the other side that consists of B and {y1, y2, . . . , yk′}

we find a k-half-theta, k-half-prism, or k-half-ladder in the same way and we can merge

them together to make either a k-theta, k-pyramid, k-prism, k-ladder, k-ladder-theta, or

a k-ladder-prism.

Let us now see how to derive Theorem 6.1.4 from Theorem 6.1.3. We can see that for

every natural number k there is a k′ large enough such that if a graph contains a k′-ladder

as an induced subgraph or a k′-skinny-ladder as an induced minor, then it contains a

k-paw or k-claw as an induced subgraph. Hence, putting this together with Theorem

305

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

6.1.3 leads us to one half of Theorem 6.1.4, that if there is a natural number k such that a

family of graphs F forbids k-theta, k-pyramid, k-prism, k-ladder-theta, k-ladder-prism,

k-claw, and k-paw graphs, then F is strongly-quasi-tame.

Next, let’s see how we prove the second part of the statement of Theorem 6.1.4. This

states that if F is a family of graphs defined by a finite number of forbidden induced

subgraphs, then if F contains k-theta, k-pyramid, k-prism, k-ladder-theta, k-ladder-

prism, k-claw, or k-paw graphs for arbitrarily large k, then F is feral. If F contains k-

theta, k-pyramid, k-prism, k-ladder-theta, or k-ladder-prism graphs for arbitrarily large

k, then we take some k-theta, k-pyramid, k-prism, k-ladder-theta, or k-ladder-prism

graph that is contained in F and show that if we contract the correct edges, then we can

end up with a k-theta, k-pyramid, k-prism, k-ladder-theta, or k-ladder-prism graph that

is still contained in F but now has O(k) vertices. It follows that in this case F is feral.

It is critical here that our graph family is defined by a finite set of forbidden induced

subgraphs. In general one cannot just contract an edge of a graph G that belongs to a

family F and expect G to still belong to F after contraction. However, for a family that

is defined by a finite set of forbidden induced subgraphs we can contract edges that are

in the middle of sufficiently long paths consisting of vertices of degree 2. In our proofs

we only contract such edges. Now, if F contains k-paw or k-claw graphs for arbitrarily

large k, then we show that for large enough k we can essentially glue the claws or paws

together on top of each other an create a graph with O(k) vertices, exponentially many

minimal separators, and avoid any of the forbidden subgraphs of F (see Figure 6.10 of

Section 6.6 for a picture of this. Again it is crucial here that that our graph family is

defined by a finite set of forbidden induced subgraphs). This concludes our sketch of the

proof of Theorem 6.1.4.

306

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

6.2.3 Overview of the Proofs of Theorems 6.1.5, 6.1.6, and 6.1.7

Recall that Theorems 6.1.5 and 6.1.6 give polynomial upper bounds on the number

of minimal separators for graphs that exclude k-creatures, k-skinny-ladders as induced

minors, and additionally long cycles (in the case of Theorem 6.1.5) or large cliques (in

the case of Theorem 6.1.6).

Given the tools developed on the way to proving Theorems 6.1.2 and 6.1.4, Theo-

rems 6.1.5 and 6.1.6 follow almost for free. Recall the “dream strengthening” of Claim 6.2.2

from the proof sketch of Theorem 6.1.2; every minimal separator S in a graph that ex-

cludes a k-creature and a k-skinny-ladder as an induced minor is dominated by a set D

of constant size k′, disjoint from S. This dream strengthening is false in general, but

it turns out to be true (and fairly easy to prove) in graphs that additionally exclude

either all long cycles or all sufficiently large cliques. Now Theorems 6.1.5 and 6.1.6 follow

directly from the argument in the failed proof attempt in Section 6.2.1 for Theorem 6.1.2

based on the dream claim. Theorem 6.1.7 is “extracted” from Theorem 6.1.6 in exactly

the same way Theorem 6.1.4 is derived from Theorem 6.1.2.

6.3 Preliminaries

Let F be a family of graphs. We say that F is a family of graphs defined by a

finite number of forbidden induced subgraphs if there exists a finite set of graphs H

such that G ∈ F if and only if G if G is H-free. We say that H is a set of forbidden

subgraphs that define F .

307

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

6.4 A k-Creature-Free Feral Graph Family

In this section we will show that the graph of Figure 6.4, which we will refer to

as the k-twisted-ladder, is a counterexample to Conjecture 6.1.1. We begin the next

paragraph by giving a few definitions, then in the following paragraph we will observe

that the k-twisted-ladder has 2k minimal separators, and finally Lemma 6.4.1 completes

the counterexample by showing that the k-twisted-ladder does not contain a large k-

creature.

We define a partition of the vertices as follows, let S denote the set of labeled vertices

of the k-twisted ladder that have 1 as their superscript. If we remove S from the k-

twisted-ladder we get two induced paths, one on the left side which we will refer to as L

and one on the right side which we will refer to as R. We also define the ith block of the

k-twisted-ladder to be the set of vertices that contains the vertices of the subpath of L

that has cLi+1 and cLi as its endpoints, the vertices of the subpath of R that has cRi+1 and

cRi as its endpoints, and the vertices a1i and b1i . So, the ith block and the (i + 1)th block

overlap at the vertices cRi+1 and cLi+1.

To see that the k-twisted-ladder has at least 2k minimal separators we make the

following set, X. For each i with 1 ⩽ i ⩽ k we choose j ∈ {1, 2} and add aji and bji to

X. X is then an x, y-minimal separator, and there are 2k different choices we had when

making X, so the k-twisted-ladder has at least 2k minimal separators.

To complete the counterexample, we show in the following lemma that this structure

does not have a large k-creature. To make the result as easy as possible to verify, we

show no k-twisted-ladder has a 100-creature, although a significantly smaller upper bound

exists.

Lemma 6.4.1. k-twisted-ladders are 100-creature-free for all k.

Proof:

308

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

𝑏ଵ
ଵ

𝑎ଵ
ଵ

𝑏ଵ
ଶ

𝑎ଵ
ଶ

𝑎ଶ
ଶ

𝑎ସ
ଶ

𝑎ଷ
ଶ

𝑎ଷ
ଵ

𝑎ଶ
ଵ

𝑎ସ
ଵ

𝑏ସ
ଶ

𝑏ଷ
ଶ

𝑏ଶ
ଶ

𝑏ଶ
ଵ

𝑏ସ
ଵ

𝑏ଷ
ଵ

𝑥 𝑦

.

.

.

.

.

.

𝑎
ଶ

𝑎
ଵ

𝑏
ଶ

𝑏
ଵ

𝑐ଵ
 𝑐ଵ

ோ

𝑐ଶ
ோ𝑐ଶ

𝑐ଷ
 𝑐ଷ

ோ

𝑐ସ
ோ𝑐ସ

𝑐ହ
ோ𝑐ହ

𝑐
ோ𝑐

𝑐ାଵ
 𝑐ାଵ

ோ

Figure 6.4: The k-twisted-ladder.

309

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

Let H be a k-twisted-ladder. Assume for a contradiction that H contains a 100-

creature (A,B, {x1, x2, . . . , x100}, {y1, y2, . . . , y100}).

Let XA and XB denote the highest numbered block that A and B have a vertex in

respectively, and let YA and YB denote the lowest numbered block that A and B have a

vertex in respectively. Let i = max(YA, YB) + 1 and let j = min(XA, XB)− 1. Let r be

an integer such that i ⩽ r ⩽ j (if no such r exists, then the only blocks that can contain

vertices from both A and B must be two adjacent blocks. Since each block only has 10

vertices, A has size at most 20 and since the max degree of the twisted-ladder is 3, A

cannot dominate all 100 vertices of {x1, x2, . . . , x100}, a contradiction to the definition

of k-creature). Then since A and B are connected and both contain vertices in blocks

above and below block r we can see by inspection that A must contain one vertex from

{cLr , cRr } and one from {cLr+1, c
R
r+1} and B must contain one vertex from {cLr , cRr } and one

from {cLr+1, c
R
r+1}. Furthermore, since A is anti-complete with B, we can again see from

inspection that if cLr ∈ A then we must have cLr+1 ∈ A, cRr ∈ B, and cRr+1 ∈ B (the removal

of the closed neighborhoods of cLr and cRr+1 would separate blocks numbered greater than

r from blocks numbered less than r, so both cLr and cRr+1 cannot belong to A since B is

connected and has vertices in blocks above and below r). Similarly if cRr ∈ A then we

must have cRr+1 ∈ A, cLr ∈ B, and cLr+1 ∈ B.

Therefore, without loss of generality we may assume that for all r with i ⩽ r ⩽ j

that cLr ∈ A and cRr ∈ B. It then follows from this assumption and the fact that A is

anti-complete with B that there are only two possibilities for the restriction of A and B

to the rth block. Either we have that both the restriction of A to the rth block is the

subpath of L with endpoints cLr and cLr+1 and the restriction of B is the subpath of R

with endpoints cRr and cRr+1 or the restriction of A is the induced path made up of cLr+1

along with b1r and b1r’s two neighbors in L and the restriction of B is the induced path

made up of cRr along with a1r and a1r’s two neighbors in R. Note that in either case, we

310

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

may conclude by inspection of the twisted-ladder that every vertex in block r is either

in A, B or N(A) ∩N(B).

We now show that it is impossible for the vertices of {x1, x2, . . . , x100} to be within

distance two of both A and B, which would contradict the definition of a k-creature. By

the definition of a k-creature, no vertex of {x1, x2, . . . , x100} can belong to N(A)∩N(B).

Hence, by the last sentence of the previous paragraph, no vertex of {x1, x2, . . . , x100}

belongs to blocks i through j. Since no vertex of {x1, x2, . . . , x100} belongs to blocks

i through j, i − 1 = max(YA, YB) and j + 1 = min(XA, XB), and the vertices of

{x1, x2, . . . , x100} must be within distance two of both A and B it follows that all ver-

tices of {x1, x2, . . . , x100} must be with distance two of blocks i − 1 and j + 1. But we

can see by inspection of the twisted-ladder that there do not exists that many vertices

within distance two of these two blocks. We can conclude that (A,B, {x1, x2, . . . , x100},

{y1, y2, . . . , y100}) cannot be a 100-creature.

6.5 k-Creature and k-Skinny-Ladder Induced Minor

Free Graphs

In this section we will provide all the lemmas needed for a proof of Theorem 6.1.2 and

conclude this section with a proof of Theorem 6.1.2. We begin this section by stating

some well known results which we will need later on. The three key ideas of this section

are Lemma 6.5.6 which shows that the neighborhood of a vertex v of a k-creature-free

graph G can intersect the minimal separators of G that do not contain v in at most nk

different ways, Lemma 6.5.15 which shows that all minimal separators of graphs that

are k-creature-free and do not contain a k-skinny-ladder as an induced minor can be

dominated by a constant number vertices, and Lemma 6.5.16 which uses a branching

311

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

algorithm to list all minimal separators of its input graph assuming the input graph

satisfies certain properties and proves a bound on the number of minimal separators

produced by this algorithm. An easy proof combining Lemma 6.5.6, and Lemma 6.5.16

is then used to establish Theorem 6.1.2. Most of the work of this section goes into proving

lemmas needed for the proof of Lemma 6.5.15, in particular, Lemmas 6.5.8 through 6.5.14

build up to a proof of Lemma 6.5.15. In this section and the rest of the paper when we

refer to k-creatures and k-skinny-ladders we will assume k > 1.

Lemma 6.5.1 (Ramsey’s Theorem). [125]

For every pair of positive integer k and ℓ there is a least positive integer R(k, ℓ) such

that every graph with at least R(k, ℓ) vertices contains a clique of size k or an independent

set of size ℓ.

Throughout this paper we will us the notation R(k, ℓ) to denote the least positive

integer such that every graph with at least R(k, ℓ) vertices contains a clique of size k or

an independent set of size ℓ.

Lemma 6.5.2 (Erdös-Szekeres Theorem). [53]

For every pair on positive integers r and s, any sequence of distinct real numbers of

length at least (r-1)(s-1) + 1 contains a monotone increasing subsequence of length r or

a monotone decreasing subsequence of length s.

Definition 6.5.3 (VC-Dimension). Let F = {S1, S2, . . .} be a finite family of finite

sets and let H be a set. F is said to shatter H if for every subset H ′ ⊆ H there is a

Si ∈ F such that H ′ = Si ∩H. The V C-dimension of F is the cardinality of the largest

set that it shatters.

Lemma 6.5.4 (Sauer-Shelah Lemma). [126] Let F be a finite family of finite sets

such that the VC-dimension of F is k > 1, and let n = |
⋃
Si∈F Si|, so n is the number

312

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

of distinct elements contained in the sets of F . Then the number of sets of F is at most

Σk
i=0

(
n
i

)
⩽ nk.

Lemma 6.5.5. Let S be a u, v-minimal separator and a u,w-separator and let S ′ ⊂ S

be a u,w-minimal separator. Then N(w) ∩ S ′ = N(w) ∩ S.

Proof: Let S be a u, v-minimal separator and a u,w-separator, let S ′ ⊂ S be a

u,w-minimal separator, and let Cu and C ′
u be the connected components that u lies in

in G− S and G− S ′ respectively. Note that Cu ⊆ C ′
u. Clearly N(w) ∩ S ′ ⊆ N(w) ∩ S.

Now let y ∈ N(w)∩S. Then there is a path from y to u such that all internal vertices of

this path are contained in Cu. This same path has its internal vertices in C ′
u, so if y /∈ S ′

then S ′ does not separate u from w. The result follows.

Lemma 6.5.6. Let G be a k-creature-free graph and let S be a set of minimal separators

of G. Then for every v ∈ G, if Sv = {N(v) ∩ S| S ∈ S and v /∈ S} then |Sv| ⩽ |V (G)|k.

Proof: Let G be a k-creature-free graph with n vertices, let S be a set of minimal

separators of G, and fix two non-adjacent vertices u, v. Let Sv,u = {N(v) ∩ S|S ∈ S

and S is a u, v-minimal separator of G}. We first show that |Sv,u| ⩽ nk−1. Assume for a

contradiction that |Sv,u| > nk−1, then by the Sauer-Shelah Lemma there is a subset of size

k of N(v) that is shattered by Sv,u. It follows that there are vertices V = {v1, . . . , vk} in

N(v) such that each vi belongs to a private u, v-minimal separator Si, i.e., V ∩Si = {vi}.

Now, let Ci be the component that u belongs to in G − Si, Ci dominates Si since Si is

a u, v-minimal separator. Let v′i be a neighbor of vi in Ci with minimum distance to u

(note that vi is not a neighbor of u or else there would be a u, v path in G−Sj for j ̸= i,

hence v′i ̸= u), and let Pi be a shortest path from v′i to u in Ci. Let P =
⋃
i=1

(V (Pi)−{v′i}).

We claim that (v, P , {v1, v2, . . . , vk}, {v′1, v′2, . . . , v′k}) is a k-creature (see Figure 6.3

to for a visual description of this step of the proof). To see this note that (1) G[P] is

313

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

connected since it is a set of paths which all contain u. (2) v is anti-complete with each

Pi since v and Pi are both contained in two different Si-full components hence v is anti-

complete with P and {v′1, v′2, . . . , v′k}. To see that P is anti-complete with {v1, v2, . . . , vk}

note that each Pi − v′i is anti-complete with vi since v′i was chosen to be a neighbor

of vi in Ci that is as close as possible to u and Pi is a shortest path from v′i to u in

Ci. Furthermore, if Pi was not anti-complete with vj for i ̸= j then Si would not be a

u, v-minimal separator since by assumption vj /∈ Si and no vertex of Pi is in Si (since

V (Pi) ⊆ Ci), hence there would be a path from v to u in G − Si. It then follows that

P is anti-complete with {v1, v2, . . . , vk}. (3) P dominates {v′1, v′2, . . . , v′k} follows from

how we defined P and {v1, v2, . . . , vk} ⊆ N(v). (4) vi is anti-complete with Pj for i ̸= j

was showing when establishing (2), hence vi is a neighbor of v′j only if i = j. So, (v, P ,

{v1, v2, . . . , vk}, {v′1, v′2, . . . , v′k}) is a k-creature, a contradiction to G being k-creature-

free. It follows that |Sv,u| ⩽ nk−1.

Now, let S ∈ S such that v /∈ S and assume that S is an x, y-separator. S must be

either a v, x-separator or a v, y-separator, let us assume without loss of generality that S

is a v, x-separator, so there is an S ′ ⊆ S that is a v, x-minimal separator. By Lemma 6.5.5

we have that N(v)∩S ′ = N(v)∩S, hence N(v)∩S ∈ Sv,x, where Sv,x = {N(v)∩S ′′|S ′′ ∈ S

and S ′′ is a v, x-minimal separator of G}. It follows that if Sv = {N(v) ∩ S ′′| S ′′ ∈ S

and v /∈ S ′′} then Sv =
⋃

x∈V (G)

Sv,x. Then by the conclusion of the previous paragraph, it

follows that |Sv| ⩽ nk.

The following corollary will be needed in Sections 6.7 and 6.8.

Corollary 6.5.7. If G is a k-creature-free graph and every minimal separator, S, of G

can be dominated by k′ vertices of G not in S, then G has at most |V (G)|kk′+k′ minimal

separators.

Proof: Assume G is a k-creature-free graph and every minimal separator, S, of G

314

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

can be dominated by k′ vertices of G not in S. For every v ∈ G let Sv = {N(v)∩S|v /∈ S

and S is a minimal separator of G}. By Lemma 6.5.6 it holds that |Sv| ⩽ |V (G)|k. Let

X =
⋃
v∈G S

v. Then |X| = |V (G)|k+1 and the assumption that all minimal separators,

S, of G can be dominated by k′ vertices in G not in S implies that S is the union of at

most k′ sets in X. It follows there are at most |V (G)|kk′+k′ minimal separators in G.

We remark that it is possible to generalize Lemma 6.5.6 and Corollary 6.5.7 to the rth

neighborhood of a vertex for any fixed positive integer r while still maintaining polynomial

bounds by using the fact the family of k-creature-free graphs are closed under contracting

edges.

The following lemmas will be building towards a proof of Lemma 6.5.15, that all

minimal separators of a graph that is k-creature-free and has no k-skinny-ladder as an

induced minor can be dominated by few vertices. We begin with a proof that minimal

separators can be dominated by a few induced paths in k-creature-free graphs (the paths

may have edges between them).

Lemma 6.5.8. Let G be a graph that is k-creature-free, let S be a minimal separator of

G, and let A be an S-full component of G−S. Then S is dominated by a set of less than

k induced paths of A.

Proof: Let G, S, and A be as in the statement of this lemma, and let A′ be a

minimally connected induced subgraph of A such that S is dominated by A′. Let T be a

breadth first search tree of A′ rooted at some vertex v ∈ A′, and let L = {ℓ1, ℓ2, . . . , ℓc} be

the set of leaves of T . Since A′ is minimal each leaf, ℓi ∈ L, must have a neighbor si ∈ S

such that no other vertex of A′ is a neighbor of si, else A′ − si would still be connected

and dominate S. Then if K is another S-full component different from A we claim that

the tuple (V (A′) − L, V (K), L = {ℓ1, ℓ2, . . . , ℓc}, {s1, s2, . . . , sc}) forms a c-creature. To

see this, note that (1) G[V (A′)−L] is still connected since L is a set of leaves of T , hence

315

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

T − L is a spanning tree of G[V (A′) − L]. Additionally, K is connected by definition.

(2) V (A′)− L is anti-complete with {s1, s2, . . . , sc} since ℓi is the only vertex of A′ that

is neighbors of si, V (A′) is anti-complete with V (K) since they are contained in two

different S-full components hence V (A′ − L) and V (K ′) are anti-complete and V (K ′)

and L are anti-complete. (3) That V (A′) − L dominates L is straight forward, and K

dominates {s1, s2, . . . , sc} since K is an S-full component. (4) By how we chose the si’s

we have have ℓi is a neighbor of sj if and only if i = j.

It follows that if G is k-creature-free, then T has at most k − 1 leaves. Since T is

a breadth first search tree of A′, a root to leaf path in T is also an induced path in A′,

therefore A′ is the union of at most k − 1 induced paths and the result follows.

A key step to proving Lemma 6.5.15 is to show that if a k-creature-free graph G has

a minimal separator, S, that cannot be dominated by f(k) vertices, then using Lemma

6.5.8 we can find an induced path in an S-full, call the induced path PL, and another

induced paths from another S-full component, call this induced path PR, such that we

can find a large independent set, I, of S where every vertex in I has at least one neighbor

in PL and one neighbor in PR and furthermore, no pair of vertices in I share a neighbor

in either PL or PR. This is proven in Lemma 6.5.11.

The paths PL and PR are paths obtained by selecting induced paths such that the

set S1 = N(PL) ∩ S ∩ N(PR) takes at least f(k)/k2 vertices to dominate, such paths

must exits by Lemma 6.5.8. The idea of the proof of Lemma 6.5.11 is to find a special

vertex v1 ∈ S1, such that we can find a small set of vertices X1 such that no vertex in

S1 − N [X1] shares a neighbor with v1 in PL and we find a small set of vertices Y1 such

that no vertex in S1 −N [Y1] shares a neighbor with v1 in PR. We then add v1 to I and

set S2 = S1 − (N [X1] ∪N [Y1] ∪ {v1}). Then we find a special vertex v2 ∈ S2 and repeat.

If the Xi’s and Yi’s are small in size and S1 cannot be dominated by few vertices then

we can create a large set I in this way so that no vertices in PL and PR have more than

316

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

P S H

v
v

P S H

p1

p2

pk

.

.

.

s1

s2

sk

P S H

v

PL PRI
Figure 6.5: P, S, and H and the vertex v of Lemma 6.5.9

one neighbor in I, so we get our desired PL, PR, and I.

The following lemma shows us how to locate Xi given the vertex vi. The specially

chosen vertex vi will have the property that there exists a connected graph H such that

all vertices of Si have at least one neighbor in H except for vi, and H is anti-complete

with PL (see Figure 6.5, where PL = P, Si = S, and vi = v). In this situation, Lemma

6.5.9 shows how to obtain the desired set Xi, such that no vertex of Si −N [Xi] shares a

neighbor with vi in the path PL.

Lemma 6.5.9. Let G be a k-creature-free graph and let (S,H, P, v) be a tuple of disjoint

subsets of V (G) with the following properties (see Figure 6.5): G[H] is connected, G[P]

is an induced path, H is anti-complete with P and v, and H dominates S. Then there

is a set, X, of size at most k such that N(S − N [X]) ∩ N(v) ∩ P = ∅ and no vertex of

S −N [X] is a neighbor of v.

Proof:

Let G, S, H, P , and v be as in the statement of this lemma. Let P ′ = P ∩ N(v),

let S ′ = (S ∩ N(P ′)) − N(v), and let P ′′ = {p1, p2, . . . , pc} be a minimal subset of P ′

that dominates S ′. Since P ′′ is a minimal dominating set each element of P ′′ has a

private neighbor in S ′, in other words for each pi ∈ P ′′ there is an si ∈ S ′ such that

pi is a neighbor of si and pj is not a neighbor of si if i ̸= j. We claim that the tuple

317

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

P S H

v
v

P S H

p1

p2

pk

.

.

.

s1

s2

sk

P S H

v

PL PRIFigure 6.6: The k-creature formed in Lemma 6.5.9

P S H

v
v

P S H

p1

p2

pk

.

.

.

s1

s2

sk

P S H

v

PL PRI

Figure 6.7: P, S, and H and the vertex v of Lemma 6.5.10

({v}, H, P ′′ = {p1, p2, . . . , pc}, {s1, s2, . . . , sc}) forms a c-creature (see figure 6.6). To

see this note that (1) by assumption G[H] is connected. (2) By assumption v and H

are anti-complete, v and {s1, s2, . . . , sc} ⊆ S ′ are anti-complete by how S ′ was defined,

and by assumption H and {p1, p2, . . . , pc} ⊆ P are anti-complete. (3) v dominates

{p1, p2, . . . , pc} ⊆ P ′ by how P ′ is defined and H dominates {s1, s2, . . . , sc} since H

dominates S by assumption. (4) By how the si’s were chosen, si is a neighbor of pj if

and only if i = j.

Hence, since G is k-creature free we may assume that c ⩽ k − 1. By how P ′′ was

chosen then we have that N(S ′−N [P ′′])∩N(v)∪ P = ∅. Then setting X = P ′′ ∪ {v} is

a set of size at most k that satisfies the conclusion of this lemma.

While Lemma 6.5.9 works for finding Xi such that no vertex of Si − N [Xi] has a

318

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

common neighbor with vi in PL, it will not work to obtain a corresponding Yi for PR,

the problem will lie in finding a suitable H with respect to PR, Si, and vi (vi is chosen

specifically so we can find a suitable H with respect to PL, Si, and vi, the path PR is not

taken into consideration in this selection). This issue is taken care of by Lemma 6.5.10,

which shows that there is a set of at most k− 1 connected components, C1, C2, . . . , Ck−1

of PL − N(vi) that collectively dominated Si. Then for each Cj clearly all vertices of

Si ∩ N(Cj) have a neighbor in Cj, and PR and vi are anti-complete with Cj, so we can

apply Lemma 6.5.9 to (Si ∩ N(Cj), Ci, PR, vi) to get a set Yi,j such that no vertex of

(Si ∩ N(Cj)) − N [Yi,j] shares a neighbor with vi in PR. Since collectively all the Cj’s

dominate Si, if we take Yi =
⋃
j

Yi,j then no vertex of Si − N [Yi] shares a neighbor with

vi in PR.

Lemma 6.5.10. Let G be a k-creature-free graph and let (S,H, P, v) be a tuple of disjoint

subsets of V (G) with the following properties (see Figure 6.7): G[H] is connected, G[P]

is an induced path, H is anti-complete with P and v, v is anti-complete with S, S is

dominated by H and S is dominated by P , and N(S) ∩ N(v) ∩ P = ∅. Then there is a

set of at most k − 1 connected components of G[P] − N(v) such that every vertex of S

has a neighbor in at least one of these connected components.

Proof: Let G,S,H, P , and v be as in the statement of this lemma. Assume for a

contradiction that there does not exists a set of at most k − 1 connected components of

G[P]−N(v) such that every vertex of S has a neighbor in at least one of these connected

components. It follows then there is a set of k connected components of G[P]−N(v), say

C1, C2, . . . , Ck, such that there exists s1, s2, . . . , sk in S where N(si) ∩ V (Cj) ̸= ∅ if and

only if i = j. Since G[P] is connected, for every Ci there exists a vertex ci ∈ N(v) ∩ P

such that ci ∈ N(Ci) (the ci’s may not be unique even though the Ci’s are). Now, for

each si, let s′i be the vertex in Ci that si is a neighbor of such that there exists an induced

319

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

path Pi from s′i to ci with internal vertices in Ci such that s′i is the only neighbor of si

on the path Pi (recall by assumption that N(S) ∩ N(v) ∩ V (P) = ∅ so si cannot be a

neighbor of ci).

We claim the tuple ({v} ∪
⋃
V (Pi − s′i), H, {s′1, s′2 . . . , s′k}, {s1, s2 . . . , sk}) is a k-

creature, contradicting the assumption G is k-creature-free. To see this note that (1)

H is connected by assumption and for all i, 1 ⩽ i ⩽ k, ci belongs to Pi − s′i which is a

neighbor of v, so {v}∪
⋃
V (Pi− s′i) induces a connected graph, (2) {v}∪

⋃
V (Pi− s′i) is

anti-complete with H by definition, {v}∪
⋃
V (Pi−s′i) is anti-complete with {s1, s2 . . . , sk}

by how the paths Pi were chosen and by the assumption that v is anti-complete with S,

and H is anti-complete with {s′1, s′2 . . . , s′k} ⊆ V (P) by assumption. (3) {v}∪
⋃
V (Pi−s′i)

dominates {s′1, s′2 . . . , s′k} since s′i ∈ Pi and H dominates {s1, s2 . . . , sk} ⊆ S by assump-

tion. (4) si is a neighbor of s′i by how s′i was chosen and for i ̸= j si is not a neighbor of

s′j ∈ Cj because si has no neighbor in Cj by how the Cj’s where chosen.

We are now ready to prove Lemma 6.5.11.

Lemma 6.5.11. Let S be a minimal separator of a k-creature-free graph G such that

S cannot be dominated by 2k4x vertices. Then there exists there exists an independent

subset I of S of size x such that there exists two induced paths, PL and PR, in two

different components of G − S that dominate the vertices of I and no vertex of PL nor

PR has more than one neighbor in I (see Figure 6.8).

Proof: Assume that G is a k-creature-free graph, and let S be a minimal separator

of G that cannot be dominated by 2k4x vertices of G, and let L and R be two different

S ′-full components of G. It follows from Lemma 6.5.8 that there is a set of less than k

induced paths in L that together dominated S and there is a set of less than k induced

paths in R that together dominate S. So, since there are less than k2 pairs of these

induced paths with one from R and one from L, it follows there exists two induced paths

320

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

PL in L and PR in R such that (N(PL) ∩ S ∩ N(PR)) cannot be dominated by 2k2x

vertices of G. Let S ′ = (N(PL) ∩ S ∩ (N(PR)). Number the vertices of PR sequentially

1 through |V (PR)|.

Assume that we have an independent set of vertices Ii−1 of size i−1, 1 ⩽ i ⩽ x, and a

vertex set Zi−1 of size at most 2k2(i−1), with the properties that no vertex of S ′−N [Zi−1]

is a neighbor of a vertex in Ii−1, and for all v ∈ Ii−1 if w ∈ Ii−1∪(S ′−N [Zi−1]), v ̸= w, then

N(v)∩N(w)∩ (V (PL)∪V (PR)) = ∅, that is for all v ∈ Ii−1, no w ∈ Ii−1∪ (S ′−N [Zi−1]),

w ̸= v, shares a neighbor with v in PL nor PR. We will show how to produce a set Ii of

size i and Zi of size at most 2k2i with the same properties, assuming i ⩽ x. Note that

for the base case the empty set satisfies the conditions required of S0 and Z0.

Let S ′′ = S ′−N [Zi−1], since i ⩽ x and since S ′ cannot be dominated by 4k2x vertices

S ′′ must be non-empty. Label the vertices of S ′′ according to the lowest numbered

neighbor it has in PR. Let v be a highest labeled vertex in S ′′. Let w be the lowest

numbered neighbor v has in PR and assume w (and therefore v) is labeled with the

number p. Let H denote the subpath of PR that is made up of the vertices labeled 1

through p−1, hence H is anti-complete with v and H dominates all vertices of S ′′−N(w)

(since v is a highest labeled vertex of S ′′ and has label p, all vertices of S ′′ −N(w) must

have a neighbor that has a label lower than p and hence in H).

We now wish to apply Lemma 6.5.9 using (S ′′ −N(w), V (H), V (PL), v). To see that

this tuple satisfies the assumption of Lemma 6.5.9 note that H and PL are paths and

therefore connected, H is anti-complete with PL since they are contained in two different

S-full components, that H is anti-complete with v was noted at the end of the previous

paragraph, and that H dominates S ′′ −N(w) was also noted at the end of the previous

paragraph. Hence, we may apply Lemma 6.5.9 using (S ′′−N(w), V (H), V (PL), v) to get

a set X of size at most k such that N((S ′′ −N [w])−N [X]) ∩N(v) ∩ V (PL) = ∅ and no

vertex of (S ′′ − N [w]) − N [X] is a neighbor of v. This implies if we set X ′ = X ∪ {w}
321

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

then N(S ′′−N [X ′])∩N(v)∩V (PL) = ∅, no vertex of S ′′−N [X ′] is a neighbor of v, and

v /∈ S ′′ −N [X ′].

We now wish to find a set Y of size less than k2 such that no vertex of S ′′− (N [X ′]∪

N [Y]) shares a neighbor with v in either PL or PR. For ease of notation, set S ′′′ =

S ′′ −N [X ′]. It is tempting to try to use Lemma 6.5.9 on something like (S ′′′, PL, PR, v),

but this lemma requires that v not have any neighbors in PL. Instead, we first use Lemma

6.5.10 on (S ′′′, V (H), V (PL), v). To see that we can apply this lemma, note that both H

and PL are paths, H is anti-complete with PL since they are contained in two different

S-full components, that H is anti-complete with v was noted at in the last sentence two

paragraphs ago as was the fact that H dominates S ′′′ ⊆ S ′′ −N(w) (recall w ∈ X), that

v is anti-complete with S ′′′ = S ′′−N [X ′] was noted at the end of the previous paragraph,

and PL dominates S ′′′ because PL dominates S ′ by assumption and S ′′′ ⊆ S ′.

So, we use Lemma 6.5.10 on (S ′′′, V (H), V (PL), v) to get connected components

C1, C2, . . . , Cc, c < k, of PL − N(v) (hence v has no neighbors in each Ci) such that

all vertices of S ′′′ have a neighbor in at least one Ci. Now, for each Ci we apply

Lemma 6.5.9 on (S ′′′ ∩ N(Ci), Ci, PR, v) to get a set Yi of size at most k such that

N((S ′′′ ∩ V (Ci))−N [Yi]) ∩N(v) ∩ V (PR) = ∅.

Since the Ci’s dominate S ′′′, it follows that if we set Y =
⋃
Yi then N(S ′′′ −N [Y])∩

N(v) ∩ V (PR) = ∅. Since S ′′′ = S ′′ −N [X ′] and N(S ′′ −N [X ′]) ∩N(v) ∩ V (PL) = ∅ it

follows that if we set Zi = Zi−1∪X ′∪Y then no vertex S ′−N [Zi] shares a neighbor with

v in PL nor PR. We may set Ii = Ii−1 ∪ {v} and Zi = Zi−1 ∪X ′ ∪ Y . Since each Yi has

at most k vertices we have that |Y | ⩽ k2 and |X ′| ⩽ k so |Zi| ⩽ |Zi−1| + k + k2 ⩽ 2k2i

as required.

The statement of the lemma now follows from the fact that S cannot be dominated by

2k2x vertices so this process can continue until we attain the set Ix, which has the property

that for any pair v, w ∈ Ix v ̸= w it holds that N(v) ∩N(w) ∩ (V (PL) ∪ V (PR)) = ∅. So

322

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

P S H

v
v

P S H

p1

p2

pk

.

.

.

s1

s2

sk

P S H

v

PL PRI

Figure 6.8: An example of a graph produced by Lemma 6.5.11

Ix which is the desired set, along with the paths PL and PR.

We now present three straightforward lemmas that will help us in the proof of Lemma

6.5.15. This first lemma is essentially a quick application of the Erdös-Szekeres Theorem.

First we must give the following definition.

We call a graph G a k-almost-skinny-ladder if the following conditions hold:

• V (G) = L ∪ S ∪R with L, S, and R mutually disjoint and |S| = k.

• G[L] and G[R] form induced paths of G and L is anti-complete with R.

• Each s ∈ S has at least one neighbor in L and at least one neighbor in R.

• For all pairs x, y ∈ S, if a, b are neighbors of x in L, then y has no neighbors on the

subpath of G[L] that has a and b as its endpoints. Similarly, if a, b are neighbors

of x in R, then y has no neighbors on the subpath of G[R] that has a and b as its

endpoints.

The last condition of almost-skinny-ladders requires that no vertex of L or R has

more than one neighbor in S. It is a straight forward application of the Erdös-Szekeres

Theorem to show that a k-almost-skinny-ladder contains a k-skinny-ladder as an induced

minor, as the next lemma shows.

323

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

Lemma 6.5.12. Let G be a graph that contains a k2-almost-skinny-ladder as an induced

subgraph. Then G contains a k-skinny-ladder as an induced minor.

Proof: Let G be a graph that has a k2-almost-skinny-ladder, H, as an induced

subgraph. V (H) = L ∪ S ∪ R where L, S,R each have the same meaning as in the

definition of an almost-skinny-ladder. Number the vertices of L sequentially 1 through

|V (L)|, and similarly, number the vertices of R sequentially 1 through |V (R)|.

Next we label each vertex in S with a number 1 through |S| such that for all si, sj ∈ S

i > j if and only if all of si’s neighbors in L have a higher number than all of sj’s

neighbors in L (by the definition of an almost-skinny-ladder such a numbering exists).

Let n(si) be the number of the highest numbered neighbor si has is R. We now apply

the Erdös-Szekeres Theorem to the sequence n(s1), n(s2) . . . , n(sk2) to get an increasing

or decreasing subsequence of length at least k and set S∗ to be the subset of S that

corresponds to the subsequence obtained from our application of the Erdös-Szekeres

Theorem. If the Erdös-Szekeres Theorem returned a decreasing subsequence then reverse

the numbering of R, else leave it unchanged. Then for every si, sj ∈ S∗, if i > j then all

of si’s neighbors in L have a higher number than all of sj’s neighbors in L and all of si’s

neighbors in R have a higher number than all of sj’s neighbors in R. We can now apply

the obvious edge contractions to L and R to form a k-skinny-ladder.

Lemma 6.5.13. Let G be a graph, let a, b ∈ G be two non adjacent vertices of G, and

let P1, P2, . . . , Pk be k mutually anti-complete induced paths. Assume for all Pi that both

a and b have a neighbor in Pi and no vertex of Pi is a neighbor of both a and b. Then G

contains a k-creature.

Proof: Let G, a, b, P1, P2, . . . , Pk be as in the statement of the lemma. For each Pi

we can then, by assumption, find a subpath of Pi, call it P ∗
i , such that P ∗

i has endpoints

ai, bi where ai is a neighbor of a, bi is a neighbor of b, no internal vertex is a neighbor of

324

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

a or b. Since a and b do not share any neighbors in Pi we can see that P ∗
i has at least

2 vertices and since the P ∗
i ’s are anti-complete by assumption, together the P ∗

i ’s along

with a and b make a k-creature.

Lemma 6.5.14. Let G be a directed graph with maximum out-degree or maximum in-

degree at most c, c > 0. Then G has an independent set (no vertex is an in-neighbor

or out-neighbor of any other vertex in this set) of size at least |V (G)|
2c+1

. Furthermore, if

|V (G)| ⩾ 2t and the maximum out-degree or maximum in-degree of G is at most 1
4t
|V (G)|,

then G has an independent set of size at least t.

Proof: Let G be a directed graph. We will prove the statements for bounded maxi-

mum out-degree (for maximum in-degree the proof is nearly identical). If the maximum

out-degree of G is c, c > 0, then as long as G has at least one vertex, there must exists

a vertex v ∈ G with in-degree at most c. If we let G′ be the subgraph induced by all

vertices of G− v that do not have v as an in-neighbor or an out-neighbor, then the size

of G′ is at least |V (G)| − 2c − 1, and G′ has maximum out-degree c. It follows by an

inductive argument that we can find an independent set of size at least |V (G)|
2c+1

.

To prove the furthermore statement, assume the maximum out-degree of G is at

most 1
4t
|V (G)|, t > 0, and |V (G)| ⩾ 2t, so we have that |V (G)|

2t
+ 1 ⩽ |V (G)|

t
. From the

first paragraph we have that G contains an independent set of size at least |V (G)|
2|V (G)|

4t
+1

=

|V (G)|
|V (G)|

2t
+1

⩾ |V (G)|
|V (G)|
t

= t.

We are now in a position to prove Lemma 6.5.15, which states that if our graph G is k-

creature-free and has a minimal separator that cannot be dominated by few vertices, then

G contains a k-skinny-ladder as an induced minor. How do we show this? By Lemma

6.5.11 we know that if our graph G is k-creature-free and has a minimal separator that

cannot be dominated by few vertices, then we can find a large independent set I and

paths PL and PR such that all vertices of I have neighbors in PL and PR and no vertex in

325

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

PL and PR has over one neighbor in I. This is the starting point for the proof of Lemma

6.5.15

Heuristically, the idea of the proof is that we set I1 = I, L1 = PL, and R1 = PR and

we can either find a large subset A ⊂ I1 that satisfies certain properties, in which case we

use Lemmas 6.5.14 and 6.5.12 to show that L1, R1 and A contain a k-skinny-ladder as an

induced minor, or there is a large subset I2 ⊂ I1 such there is a way to divide either L1 or

R2 into two “halves” such that both halves dominate I2, for simplicity let us say we can

do this with L1. We then set P1 to be one half of L1, we set L2 to be the other half, and

we set R2 = R1. We now repeat this process with L2, R2 and I2 and so on. In the end

we either end up with our desired k-skinny-ladder, or we end up with k anti-complete

induced paths all of which dominate some independent set Ik, and no vertices in Ik have

a common neighbor in any of these anti-complete paths. But Lemma 6.5.13 shows this

implies the existence of a k-creature in G which is a contradiction, so we must be in the

case where this process produces a k-skinny-ladder as an induced minor.

Lemma 6.5.15. Let S be a minimal separator of a k-creature-free graph G such that S

cannot be dominated by 2k4[(8k2)k+1] vertices. Then G contains a k-skinny-ladder as an

induced minor.

Proof: Assume that G is k-creature-free and S is a minimal separator of G such

that S cannot be dominated by 2k4[(8k2)k+1] vertices. It follows from Lemma 6.5.11 that

there is an independent set I ⊆ S of (8k2)k+1 vertices and two induced paths PL and PR

that dominate I, PL anti-complete with PR, and every vertex in v ∈ V (PL)∪ V (PR) has

at most one neighbor in I.

Number the vertices of PL sequentially 1 through |V (PL)| and number the vertices of

PR sequentially 1 through |V (PR)|. For a vertex x in PL or PR we will use the notation

n(x) to denote the number it has been given in PL or PR. For every v ∈ I let ℓ(v) and

326

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

r(v) denote the highest numbered vertex v is a neighbor of in PL and PR respectively.

We now set L1 = PL, R1 = PR, and I1 = I. We will consider the following process to

produce a k2-almost-skinny-ladder. We will show this process cannot go past k iterations

do to the fact that G is k-creature-free.

We will ensure the following properties are met at the end of the ith step (and we will

assume that these properties hold for the previous steps). At the ith step we produce Li+1

which is a subpath of Li, Ri+1 which is a subpath of Ri, Ii+1 ⊆ Ii, |Ii+1| ⩾ (8k2)k−i+1,

and for every v ∈ Ii+1 it holds that ℓ(v) ∈ Li+1 and r(v) ∈ Ri+1. We will also produce Pi

which will be either a subpath of Li or Ri and is anti-complete with Li+1, anti-complete

with Ri+1, and anti-complete with Pj for j < i, and Pi will dominate Ij if i < j (note

by Lemma 6.5.13 that if we have k such paths then G would have a k-creature, so this

process cannot go past k steps).

At the ith step, 1 ⩽ i ⩽ k, we do as follows. Create an auxiliary directed graph, Ai,

whose vertex set is Ii and there is an edge from v ∈ Ii to w ∈ Ii if at least one of the

following two cases hold

1. n(ℓ(v)) > n(ℓ(w)) and v has a neighbor x in Li such that n(x) < n(ℓ(w))

2. n(r(v)) > n(r(w)) and v has a neighbor x in Ri such that n(x) < n(r(w))

If the maximum in-degree of Ai is at most 1
4k2
|Ii| then we stop. Since by assumption

|Ii| ⩾ (8k2)k−i+2 this gives an independent set of size at least k2 by Lemma 6.5.14. If

there is an st ∈ Ii with in-degree over 1
4k2
|Ii| then either case 1 or case 2 is satisfied for at

least half of st’s in-neighbors. This means that for at least 1
8k2

fraction of the vertices of

Ii, call this subset of vertices Ii+1, all vertices s ∈ Ii+1 must satisfy case 1 with s playing

the role of v and st playing the role of w, or all vertices s ∈ Ii+1 must satisfy case 2 again

with s playing the role of v and st playing the role of w. For both case 1 and case 2 we

now describe what to do if all the vertices of Ii+1 satisfy that case (if all vertices of Ii+1

327

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

happen to satisfy both cases, then we go with case 1). Each number here corresponds

with what to do in that case.

1. In case 1, set Pi to the subpath of Li that is made up of vertices numbered less

than n(ℓ(st)), set Ri+1 = Ri, and set Li+1 to be the vertices of Li numbered greater

than n(ℓ(st)).

2. In case 2, set Pi to the subpath of Ri that is made up of vertices numbered less

than n(r(st)), set Li+1 = Li, and set Ri+1 to be the vertices of Ri numbered greater

than n(r(st)).

This concludes the ith step. We now show that in case 1, all properties required of

Li+1, Ri+1, Ii+1, and Pi are met (the argument is identical when we are in case 2). It

is straight forward to see that Li+1 is a subpath of Li, Ri+1 is a subpath of Ri, and

Ii+1 ⊆ Ii. Since Ii was assumed to have size at least (8k2)k−i+2 and |Ii+1| ⩾ 1
8k
|Ii|, it

holds that |Ii+1| ⩾ (8k2)k−i+1. Since Li+1 is made up of vertices of Li numbered greater

than n(ℓ(st)) and for every vertex s ∈ Ii+1 it holds that n(ℓ(s)) ⩾ n(ℓ(st)) it follows that

ℓ(s) ∈ Li+1. Also, since Ri+1 = Ri it follows that r(s) ∈ Ri. Lastly, we can see that Pi

is a subpath of Li and is anti-complete with Li+1 and Ri+1. By definition every vertex

s ∈ Ii+1 must have a neighbor x ∈ Li such that n(x) ⩽ n(ℓ(st)) and therefore x ∈ Pi so

Pi dominates Ii+1.

Now we observe that for a < b that Pa dominates Ib. This follows from the fact that

Pa dominated Ia+1 and that Ib ⊆ Ia+1 (since Ia ⊆ Ia+1 ⊆ . . . Ib). Also observe that Pa is

anti-complete with Pb since Pa is anti-complete with La+1 and Ra+1 and therefore Lb and

Rb, which Pb is a subpath of. Hence the Pa’s are pairwise anti-complete. Lastly, observe

that if x, y ∈ Ii+1 then x, y ∈ I which means x and y share no neighbors in PL and PR.

We can now see that the conditions of Lemma 6.5.13 are satisfied, therefore this process

cannot go past the kth step without producing a k-creature.

328

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

We conclude there is some step j ⩽ k such that the auxiliary graph Aj has max in-

degree less than 1
4k2
|Ij|, and since |Ij| ⩾ (8k2)k−i+2 ⩾ 8k2 it therefore has an independent

set of size k2 by Lemma 6.5.14. Let I∗ denote such an independent set, we claim that

G[V (Lj) ∪ I∗ ∪ V (Rj)] makes an k2-almost-skinny-ladder. Let x, y ∈ I∗ and let a, b be

the highest and lowest numbered neighbors of x in Lj respectively, and assume that y

has a neighbor c on the induced path of Lj that has a and b as its endpoints. If y’s

highest numbered neighbor in Lj is greater than n(a) then y has an edge to x in Aj by

case 1. If y’s highest numbered neighbor is Lj is less than n(a), then x has an edge to y

again by case 1. Both cases yield a contradiction to I∗ being an independent set in Aj.

A symmetric argument show that if a′, b′ are x’s highest and lowest numbered neighbors

Rj respectively, then y cannot have a neighbor in the induced subpath of R that has

a′, b′ as its endpoints. It follows that G[V (Lj)∪ I∗∪V (Rj)] is a k2-almost-skinny-ladder.

Applying Lemma 6.5.12 shows that G contains a k-skinny-ladder as an induced minor.

The following lemma uses a branching algorithm to produce all of the minimal sepa-

rators of a graph G and proves a bound on the number of minimal separators produced

by this algorithm. See Claim 6.2.3 of Section 6.2 and the discussion following the claim

for a high level description of Lemma 6.5.16.

Lemma 6.5.16. There exists a function f : N → N such that the following holds. Let

G be a graph and let k and c be integers such that for all induced subgraphs G′ of G and

for all v ∈ G′, if SvG′ = {N(v) ∩ S : v /∈ S and S is a minimal separator of G′}, then

|SvG′| ⩽ c and every minimal separator of any induced subgraph of G can be dominated by

k vertices. Then G has a most (c+ nk)f(k) log(n) minimal separators where n = |V (G)|.

Proof: Let G, SvG, k, c, and n be as in the statement of this lemma. The proof

of the bound makes use of a branching algorithm. The algorithm takes as input G and

329

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

X ⊆ V (G) and the algorithm will use the set Kret to store the vertex sets it will return. It

will return Kret which will contain all minimal separators of G contained in X (possibly

along with other vertex sets which are not minimal separators). We have no concern

about the runtime of the algorithm, but we care about the size of the final set it returns.

The algorithm is intended to be used initially on the input (G, V (G)).

Assume the the input to the algorithm is (G,X). If X is empty, then the algorithm

returns {∅} (if G is disconnected then ∅ is a minimal separator of G). Else, the algorithm

determines the set Q ⊆ V (G) where Q contains all vertices v ∈ G such that |N [v]∩X| ⩾
1
2k
|X|. The algorithm then initializes Kret to ∅ then branches in the following two ways:

1. For every q ∈ Q and every Y ∈ SqG the algorithm recursively calls itself on (G− Y ,

X − NG[q]). The recursive call (G − Y , X − NG[q]) returns the collection K ′ of

vertex sets and for each set S in K ′, the algorithm adds the set S ∪ Y to Kret.

2. For every set R of k vertices of G such that R ∩ Q = ∅, the algorithm recursively

calls itself on (G−Q, (X−Q)∩NG(R)). The recursive call (G−Q, (X−Q)∩NG(R))

returns a collection K ′ of vertex sets. Then for each set, S in K ′ the algorithm

adds the set S ∪Q to Kret.

After completing this, the algorithm then returns the set Kret.

This algorithm will terminate since each recursive call is on input (G′, X ′) where the

size of X ′ is strictly less than X. Note that since the set R has no vertex in Q and

|R| = k, the neighborhood of R contains at most 1
2

of the vertices of X, so in (2) each

recursive call made is on input (G′, X ′) where |X| ⩾ 1
2
|X ′|, additionally note by how the

vertices of Q were chosen, in (1) each recursive call is made on input (G′, X ′) where is

made on |X| ⩾ 1
2k
|X ′|.

We now show that if this algorithm is called on an instance (G,X) the set returned

from this algorithm contains all minimal separators of G contained in X. Let S be a

330

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

minimal separator of G contained in X. Assume all of the recursive calls (G′, X ′) the

algorithm makes returns a set that contains all minimal separators of G′ contained in

X ′, possibly along with additional vertex sets (note that the base case for when X = ∅

is handled by returning {∅}). If Y = NG(q) ∩ S for some q ∈ G and q /∈ S, then S − Y

is a minimal separator of G − Y that is contained in X − NG[q]. So if there is a q ∈ Q

such that q /∈ S, then S gets added to Kret in (1). If Q ⊆ S, then S − Q is a minimal

separator of G−Q, and by assumption there exists some collection of at most k vertices,

R, in G−Q such that S −Q ⊆ NG−Q(R) and therefore S −Q ⊆ (X −Q) ∩NG(R). It

follows that in this case we also have S gets added to Kret in (2). Induction on the the

depth of the recursive call now shows that this algorithm returns all minimal separators.

Let T (n, x) denote the maximum number of minimal separators that a vertex set

X of size at most x can contains for any graph G with |V (G)| ⩽ n and X ⊂ V (G),

such that the graph G satisfies the conditions of the lemma. The algorithm just shown

makes at most cn recursive calls in (1) and nk recursive calls in (2), each on an instance

(G′, X ′) where |X| ⩾ 1
2k
|X ′|. Hence, T (n, x) ⩽ (cn + nk)T (n, [1 − 1

2k
]x). Using the fact

that (1 − 1
y
)y ⩽ 1

e
< 1

2
we expand the inequality T (n, x) ⩽ (cn + nk)T (n, [1 − 1

2k
]x) out

2k times to get T (n, x) ⩽ (cn + nk)2kT (n, 1
2
x), then expanding this inequality log(x)

times gives T (n, x) ⩽ (cn+nk)2k log(x)T (n, 1). Since T (n, 1) = 2 it follows that T (n, x) ⩽

2(cn+nk)2k log(x). By taking the initial set X to be V (G), it follows that G then contains

at most 2(cn+ nk)2k log(n) minimal separator.

We are now ready to prove Theorem 6.1.2.

Proof: [Proof of Theorem 6.1.2] Let G be a graph that is k-creature-free and has no

k-skinny-ladder as an induced minor and let n = |V (G)|. For every induced subgraph G′

of G and for every v ∈ G′, let SvG′ = {N(v) ∩ S : v /∈ S and S is a minimal separator of

G′}. Then |SvG′| ⩽ nk for by Lemma 6.5.6. By Lemma 6.5.15, since G is k-creature-free

and has no k-skinny-ladder as an induced minor every minimal separator of any induced

331

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

subgraph of G′ is dominated by k′ = 2k4[(8k2)k+1] vertices. Lemma 6.5.16 then implies

that G has at most 2(nk+1 + nk
′
)2k

′ log(n) minimal separators. It follows that the family

of graphs that are k-creature-free and do not contain a k-skinny-ladder as an induced

minor are strongly-quasi-tame.

6.6 Finite Forbidden Induced Subgraphs

In this section we will provide the lemmas needed in the proofs of Theorems 6.1.3

and 6.1.4 as well give a proof of these theorems. The majority of the work of this section

goes into proving that given an integer k, if G contains a k′-creature for large enough k′,

then G must contain a k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism, or

k-ladder as an induced subgraph.

We will require a number of new graph definitions for this section. The following

graphs, except for k-ladder graphs, appear in the statement of Theorem 6.1.4. Figure

6.2 depicts these graphs. It can be seen that all graphs here except for k-claw and k-paw

graphs contains at least 2k−2 minimal separators.

• A graph G is a k-theta if G consist of two vertices a, b and k induced paths

P1, P2, . . . Pk. For 1 ⩽ i ⩽ k the end points of Pi are a and b, every Pi is anti-

complete with Pj, and every Pi has length at least 4.

• A graph G is a k-prism if G consist of two disjoint cliques a1, a2, . . . , ak and

b1, b2, . . . , bk along with k induced paths P1, P2, . . . Pk each of length at least 2.

For 1 ⩽ i ⩽ k the end points of Pi are ai and bi, every Pi−{ai, bi} is anti complete

with Pj, and ai is neighbors with bj if and only if i = j and Pi is a path of length

2.

• A graph G is a k-pyramid if G consist of a vertex a and a clique b1, b2, . . . , bk, where

332

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

a is anti-complete with b1, b2, . . . , bk, along with k induced paths P1, P2, . . . Pk each

of length at least 3. For 1 ⩽ i ⩽ k the end points of Pi are a and bi and every

Pi − {a, bi} is anti complete with Pj − {a}.

• A graph G is a k-ladder if G consists of two anti-complete paths L and R with the

vertices of L and R are numbered sequentially from 1 to |V (L)| and 1 to |V (R)|,

along with k anti-complete induced paths P1, P2, . . . Pk that are also disjoint from

L and R, each of length at least 2. For 1 ⩽ i ⩽ k the end points of Pi are ai and

bi. Every ai has at least one neighbor in L, every bi has at least one neighbor in

R. Furthermore if i > j, then every neighbor of ai in L has a higher number then

every neighbor of bj in L and every neighbor of bi in R has a higher number then

every neighbor of bj in R.

• A graph G is a k-contracted-ladder if can be obtained from a k-ladder by contract-

ing each of the the paths P1, P2, . . . Pk into single vertices.

• A graph G is a k-ladder-theta if G consists of an induced path L and a vertex b

anti-complete with L, along with k induced paths P1, P2, . . . Pk that are also disjoint

from L, each of length at least 3. For 1 ⩽ i ⩽ k the end points of Pi are ai and b,

every Pi − {b} is anti-complete with Pj − {b}, Pi − {ai} is anti-complete with L,

every ai has at least one neighbor in L, and if x, y are neighbors with ai in L, then

no aj with i ̸= j has a neighbor in the induced subpath of L that has x and y as

its endpoints.

• A graph G is a k-ladder-prism if G consists of an induced path L and clique

b1, b2, . . . , bk where L is anti-complete with b1, b2, . . . , bk, along with k induced paths

P1, P2, . . . Pk that are also disjoint from L, each of length at least 2. For 1 ⩽ i ⩽ k

the end points of Pi are ai and bi, every Pi−{bi} is anti-complete with Pj, Pi−{ai}

333

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

is anti-complete with L, every ai has at least one neighbor in L, and if x, y are

neighbors with ai in L, then no aj with i ̸= j has a neighbor in the induced

subpath of L that has x and y as its endpoints.

• A graph G is a k-claw if G consists of k anti-complete copies of the following graph

which we call a long-claw of arm length k: let v be a vertex and P1, P2, P3 be three

paths of length k each with v as one of its endpoints and Pi−{v} is anti-complete

with Pj − {v} (i.e., the graph is a claw with each edge subdivide k − 2 times)

• A graph G is a k-paw if G consists of k anti-complete copies of the following graph

which we call a long-paw of arm length k: let v1, v2, v3 be a triangle and P1, P2,

P3 be three disjoint induced paths of length k each such that Pi has vi as one of its

endpoints and Pi − {vi} is anti-complete with Pj for 1 ⩽ i ̸= j ⩽ 3.

It will be useful in this section to define the following graphs as well. These graphs

are depicted in Figure 6.9.

• A graph G is a k-half -theta if G consists of a vertex v and k induced paths P1,

P2, . . . , Pk of G such that each path has length at least 2, for 1 ⩽ i ⩽ k it holds

that v is one endpoint of Pi, and for j ̸= i it hold that Pi− v is anti-complete with

Pj − v. Let xi denote the endpoint of Pi that is not v. Then we say the vertices

x1, x2, . . . , xk are the endpoints of the k-half-theta. If X is a vertex set and xi ∈ X

for all i with 1 ⩽ i ⩽ k, then we say G is a k-half-theta ending in X.

• A graph G is a k-half -prism if G consists of a clique of vertices v1, v2, . . . , vk and

k induced paths P1, P2, . . . , Pk of G such that each path has length at least 1, for

1 ⩽ i ⩽ k it holds that vi is one endpoint of Pi, and for j ̸= i it hold that Pi− vi is

anti-complete with Pj. If the length of Pi is greater than 1 then let xi denote the

endpoint of Pi that is not vi, and if the length of Pi is 1 then let xi = vi. We say

334

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

the vertices x1, x2, . . . , xk are the endpoints of the k-half-prism. If X is a vertex set

and xi ∈ X for all i with 1 ⩽ i ⩽ k, then we say G is a k-half-prism ending in X.

• A graph G is a k-half -ladder if G consists of a path P of G along with k additional

paths P1, P2, . . . , Pk of G such that each path has length at least 1. For 1 ⩽ i ⩽ k let

Pi’s endpoints be vi and xi (with vi possibly equal to xi). We call P the backbone

path and the Pi’s the auxiliary paths. We require that vi has at least one neighbor

in P , P is anti-complete with Pi − vi, and for j ̸= i Pi is anti-complete with Pj.

Lastly, we also require that if a and b are two neighbors of some vi in P , then

there is no vj, i ̸= j such that vj has a neighbor in the induced subpath of P

with endpoint a and b. We say the vertices x1, x2, . . . , xk are the endpoints of the

k-half-ladder. If X is a vertex set and xi ∈ X for all i with 1 ⩽ i ⩽ k, then we say

G is a k-half-ladder ending in X.

• A graph G is a k-half -quasi-ladder if G consists of a path P of G along with

k additional paths P1, P2, . . . , Pk of G such that each path has length at least 1.

For 1 ⩽ i ⩽ k let Pi’s endpoints be vi and xi (with vi possibly equal to xi). We

call P the backbone path and the Pi’s the auxiliary paths. We require that vi has

at least one neighbor in P , P is anti-complete with Pi − vi, and for j ̸= i Pi is

anti-complete with Pj. We say the vertices x1, x2, . . . , xk are the endpoints of the

k-half-quasi-ladder. If X is a vertex set and xi ∈ X for all i with 1 ⩽ i ⩽ k, then

we say G is a k-half-ladder ending in X. Note that a k-half-quasi-ladder is almost

the same as a k-half-ladder, but we drop the requirement that if a and b are two

neighbors of some vi in P , then there is no vj, i ̸= j such that vj has a neighbor in

the subpath of P with endpoint a and b.

The following lemmas, culminating with Lemma 6.6.10, work towards proving that

given an integer k, if G contains a k′-creature for large enough k′, then G must contain

335

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

.

.

.

.

.

.
.
.
.

k-half-theta k-half-prism

k-half-ladder

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

k-quasi-half-ladder

Figure 6.9: Dashed lines represent the option of having an arbitrary length path (pos-
sibly of length 0). The blue lines used in the k-half-ladder and k-almost-half-ladder
graphs represents the option of either having or not having that edge, but for each
vertex not on the backbone path that is adjacent at least one blue edges, at least one
of those blue edges must belong to the graph.

336

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

an induced k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism, or k-ladder.

Our first goal is to show that if we have a k′ creature (A, B, {x1, x2, . . . , xk′},

{y1, y2, . . . , yk′}) for large enough k′, then if we focus in on one half, say that half with A

and {x1, x2, . . . , xk′}, then we can find a k-half-theta, k-half-prism, or k-half-quasi-ladder

that that ends in {x1, x2, . . . , xk′}. This goal is accomplished with Lemmas 6.6.1 through

6.6.4. Since if we have a k-clique in the set {x1, x2, . . . , xk′} then we have a k-half-prism

ending in {x1, x2, . . . , xk′} we may assume, by Ramsey’s Theorem, that {x1, x2, . . . , xk′}

is an independent set.

Lemma 6.6.1. Let G be a graph that contains a k-creature (A, B, {x1, x2, . . . , xk},

{y1, y2, . . . , yk}) where {x1, x2, . . . , xk} is an independent set of G. Let A′ be a minimally

connected induced subgraph of G[A] such that {x1, x2, . . . , xk} ⊂ N(A′). If A′ contains

a vertex with degree at least R(d, d) in A′, then G[A ∪ {x1, x2, . . . , xk}] contains a d-half

theta or a d-half-prism ending in {x1, x2, . . . , xk}.

Proof: LetG be a graph that contains a k-creature (A, B, {x1, x2, . . . , xk}, {y1, y2, . . .,

yk}). LetA′ be a minimally connected induced subgraph ofG[A] such that {x1, x2, . . . , xk}

⊂ NG(A′). Assume v ∈ A′ has degree at least R(d, d) in A′. Let v1, v2, . . . , vR(d,d) be dis-

tinct neighbors of v in A′. By the minimality of A′, for each vi there must be a vertex xvi

such that every path starting from v and ending at xvi with internal vertices contained

A′ must contain vi, since if this does not happen for some given vi then the connected

component of A′ − vi that contains v would be a proper induced subgraph of A′ that is

connected and whose open neighborhood contains {x1, x2, . . . , xk}. It follows there must

exist induced paths P1, P2, . . . , PR(d,d) such that vi ∈ Pi, Pi’s endpoints are vi and xvi , and

Pi−vi is anti-complete with Pj. We then apply Ramsey’s Theorem to the vi’s get a subset

of size d of the Pi’s that along with v form a d-half theta that ends in {x1, x2, . . . , xk} (if

Ramsey’s Theorem provides an independent set of size d) or a subset of size d of the Pi’s

337

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

that form a d-half prism that ends in {x1, x2, . . . , xk} (if Ramsey’s Theorem provides a

clique of size d) and the result now follows.

Lemma 6.6.2. Let G be connected graph with maximum degree d and contains at least dk

vertices with degree greater than 2. Then there exists an induced path of G that contains

at least k vertices of degree greater than 2.

Proof: Let G be a connected graph with maximum degree d and contains at least dk

vertices with degree greater than 2. Let T be a breadth first search tree of G rooted at

some vertex v ∈ G. We create the desired path as follows. Let v1 be the first descendent

of v in T that has degree greater than 2 in G (v1 could be v). We begin our path at v1.

We will grow the path Pi = {x1, x2, . . . xm} where x1 = v1, xj is the parent of xj+1 in T ,

Pi contains at least i vertices of G with degree greater than 2 in G, and the subtree of T

rooted at xm contains at least dk−i+1 vertices of G with degree greater than 2 in G.

Assume that we have such a path Pi = {x1, x2, . . . xm}, i < k (the vertex v1 satisfies

the conditions of P1). We will show how to attain Pi+1. Since the maximum degree in G

is d, xm has at most d children in T , and by assumption the subtree of T rooted at xm

has at least dk−i+1 vertices of degree greater than 2 in G, it follows that for at least one

child, call it xm+1, the subtree rooted at xm+1 has at least dk−i vertices of G with degree

greater than 2 in G. Now let vi+1 be the first descendant of xm+1 with degree different

from 2 in G (vi+1 could be xm+1) and let Pi+1 be the path Pi along with the induced

path in T from xm+1 to vi+1. It follows Pi+1 satisfies the required conditions.

Hence we can produce a Pk that satisfies the conditions stated before, and we can

then see that Pk is an induced path in G with at least k vertices of degree greater than

2.

Lemma 6.6.3. Let G be a graph that contains a k-creature (A, B, {x1, x2, . . . , xk},

{y1, y2, . . . , yk}) where {x1, x2, . . . , xk} is an independent set. Let A′ be a minimally

338

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

connected subgraph of G[A] such that {x1, x2, . . . , xk} ⊂ N(A′). If A′ contains an induced

path, P , with at least R(d, d) vertices of degree greater than 2 in A′, then there is a d-half-

quasi-ladder or a d-half-prism in G[A ∪ {x1, x2, . . . , xk}] that ends in {x1, x2, . . . , xk}.

Proof: Let G, A′, {x1, x2, . . . , xk}, and P be as in the statement of the lemma, let

v1, v2, . . . , vR(d,d) be vertices of P that have degree greater than 2 in A′, and for each vi

let v′i be a neighbor of vi in A′ that is not in P . By the minimality of A′, for each v′i

there must exist a vertex xvi such that every path from vi to xvi with internal vertices

contains in A′ must contain v′i, since if this does not happen for some given v′i then the

component of A′ − v′i that contains vi would be a proper induced subgraph of A′ that is

connected and whose open neighborhood contains {x1, x2, . . . , xk}. It follows there must

exists induced paths P1, P2, . . . , PR(d,d) disjoint from P with internal vertices contained

in A′, Pi’s endpoints are v′i and xvi , and Pi− v′i is anti-complete with Pj. We then apply

Ramsey’s Theorem to the v′i’s to get a subset of size d of the Pi’s along with P that

form a d-half-quasi-ladder that ends in {x1, x2, . . . , xk} (if Ramsey’s Theorem provides

an independent set of size d) or a subset of size d of the Pi’s that yield a d-half-prism

that ends in {x1, x2, . . . , xk} (if Ramsey’s Theorem provides a clique of size d).

Lemma 6.6.4. Let G be a graph that contains a k ·(dc+1+d)-creature (A, B, {x1, x2, . . .,

xk·(dc+1+d)}, {y1, y2, . . ., yk·(dc+1+d)}). Let A′ be a minimally connected subgraph of G[A]

such that {x1, x2, . . . , xk·(dc+1+d)} ⊂ N(A′). Assume the max degree in A′ is d and

that A′ contains less than dc vertices of degree greater than 2 in A′. Then G[A ∪

{x1, x2, . . . , xk·(dc+1+d)}] contains a k-half-quasi-ladder ending in {x1, x2, . . . , xk·(dc+1+d)}.

Proof: Let G, A′ and {x1, x2, . . . , xk·(dc+1+d)} be as in the statement of the lemma.

Let T be a breadth first search tree of A′ rooted at some vertex v. Then T is a tree in

which every vertex except for the root can have at most d− 1 children, hence there are

at most dc + 1 vertices that have more than one descendent, and the maximum number

339

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

of descendants any vertex from this set can have is d. It follows that there are at most

dc+1 +d leaves of T , and therefore A′ is the union of at most dc+1 +d induced paths in A′.

Hence, there exists some induced path P in A′ such that P ’s open neighborhood contains

at least k vertices in {x1, x2, . . . , xk·(dc+1+d)}, which gives us a k-half-quasi-ladder ending

in {x1, x2, . . . , xk·(dc+1+d)}.

Lemma 6.6.5. Let k′ = k ·R(k, k)R(k,k)+1 +R(k, k), and let G be a graph that contains

an R(k′, k′)-creature (A, B, {x1, x2, . . . , xR(k′,k′)}, {y1, y2, . . . , yR(k′,k′)}). Then G[A ∪

{x1, x2, . . . , xR(k′,k′)}] contains an induced k-half-theta, k-half-prism, or a k-half-quasi-

ladder, ending in {x1, x2, . . . , xR(k′,k′)}.

Proof: Let k′ = k · R(k, k)R(k,k)+1 + R(k, k). Assume that G contains a R(k′, k′)-

creature (A, B, {x1, x2, . . . , xR(k′,k′)}, {y1, y2, . . . , yR(k′,k′)}). Apply Ramsey’s Theorem to

{x1, x2, . . . , xR(k′,k′)}. If Ramsey’s Theorem returns a clique of size k′ or more then we

have thatG[A∪{x1, x2, . . . , xR(k′,k′)}] contains a k-half-prism ending in {x1, x2, . . . , xR(k′,k′)},

so we can assume that Ramseys theorem returns an independent set of size at least k′. By

relabeling the xi’s and yi’s if follows that G contains a k′-creature (A, B, {x1, x2, . . . , xk′},

{y1, y2, . . . , yk′}) where {x1, x2, . . . , xk′} is an independent set.

LetA′ be a minimally connected induced subgraph ofG[A] such that {x1, x2, . . . , xk′} ⊂

N(A′). If A′ contains a vertex of degree R(k, k) in A′, then by Lemma 6.6.1 G[A ∪

{x1, x2, . . . , xk′}] contains a k-half-theta ending in {x1, x2, . . . , xk′}. So we may assume

max degree of A′ is R(k, k).

If A′ contains R(k, k)R(k,k) vertices of degree greater than two, then there is an induced

path of A′ that contains R(k, k) vertices of degree greater than two by Lemma 6.6.2. Then

by Lemma 6.6.3 G[A ∪ {x1, x2, . . . , xk′}] contains a k-half-quasi-ladder or a k-half-prism

ending in {x1, x2, . . . , xk′}. So we may assume that A′ has maximum degree R(k, k)

and contains fewer than R(k, k)R(k,k) vertices of degree greater than two. It then follows

340

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

from Lemma 6.6.4 that G[A ∪ {x1, x2, . . . , xk′}] contains a k-half-quasi-ladder ending in

{x1, x2, . . . , xk′}.

If in the statement of Lemma 6.6.5 we would replace k-half-quasi-ladder with k-half-

ladder, then we would basically be done. If we had a k′′-creature (A, B, {x1, x2, . . . , xk′′},

{y1, y2, . . . , yk′′}) for large enough k′′ then we could find a k′-half-theta, k′-half-prism, or

k′-half-ladder in A ∪ {x1, x2, . . . , xk′′}. We could then switch over to the other side

with B and {y1, y2, . . . , yk′′} and restricting our self to the k′ vertices of {y1, y2, . . . , yk′′}

that match up with end endpoints of the k′-half-theta, k′-half-prism, or k′-half-ladder

in {x1, x2, . . . , xk′′} we just found, repeat the same process in B and {y1, y2, . . . , yk′′} to

find a k-theta, k-pyramid, k-prism, k-ladder, k-ladder-theta, k-ladder-prism. Our goal

then now is clear, we must clean up a k′-half-quasi-ladder to give use a k-half-ladder (or

possible a k-half theta or even a k-theta).

The next three lemmas show how to clean up a half-quasi-ladder into a half-ladder,

half-theta, or theta. Their proofs are similar to those of lemmas 6.5.9 6.5.11, and 6.5.15

respectively, although the conclusions we draw from them are somewhat different.

So, we are now in a situation where we have have found a k′-half-quasi-ladder. Let

us say that P is the backbone path, and P1, P2, . . . , Pk′ are the auxiliary paths of the

k′-half-quasi-ladder where Pi has endpoints si and xi, and let the xi’s be the endpoint

of our half-quasi-ladder. Set S equal to the set of si’s. To turn our k′-half-quasi-ladder

into a k-half-ladder, we first want to find a subset S ′ ⊂ S such that no vertices of S ′

share a neighbor in P . Notice that if any vertex of P has k neighbors in S, then we

have a k-half-theta ending in {x1, x2, . . . , xk′} and we are done, so we can assume that

the vertices of S cannot be dominated by a small set of vertices of P . So, what the next

lemma shows that if we take some v ∈ S then we can either find a k-half-theta ending

in V (and therefore W) or find a small set X ⊂ V (P) such that no vertex of S −N [X]

shares a neighbor with v in P . As S cannot be dominated by a small subset of P , this

341

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

lemma can be repeatedly used to give us a large subset S ′ of S such that no two vertices

of S ′ share a neighbor in P , which is precisely what we do in Lemma 6.6.7.

Lemma 6.6.6. Let (G, S, P , v) be a tuple where G is a graph, v ∈ G, S ⊂ V (G),

and P is an induced path of G such that (S ∪ {v}) and V (P) are disjoint. Assume

G[V (P) ∪ S ∪ {v}] does not have a k-half-theta ending in S, then there is a set X ⊂

S ∪ V (P) ∪ {v} of size at most 4k − 1 such that N(S −N [X]) ∩N(v) ∩ V (P) = ∅, and

no vertex of S −N [X] is neighbors with v.

Proof: Let G, S, P , and v be as in the statement of this lemma. Number the vertices

of P 1 through |V (P)| such that the vertex numbered i is neighbors with the vertices

numbers i− 1 and i+ 1. We now consider the following process to build the set desired

set X such that N(S −N [X]) ∩N(v) ∩ V (P) = ∅ and X ⊂ S ∪ V (P) ∪ {v}.

We do the following for the first step of the process. Let X1 = {v}, and let S1 = {s :

s ∈ S−N(X1) and N(s)∩N(v)∩V (P) ̸= ∅} (i.e., S1 is the set of vertices of S−N(X1)

that share a neighbor with v in P). Label the vertices of S1 by the lowest numbered

vertex it is neighbors with in V (P)∩N(v). Let s1 be a highest labeled vertex in S1, and

let p1 be s1’s lowest numbered neighbor in N(v) ∩ V (P). This completes the first step.

For the ith step we do the following. Let Xi = Xi−1 ∪ {si−1, pi−1}, and let Si =

Si−1 − N [Xi] and label the vertices of Si by the lowest vertex it sees in V (P) ∩ N(v)

(the vertices of Si inherit their labels from their labels in Si−1). Let si be a highest

labeled vertex in Si and let pi be si’s lowest neighbor in N(v) ∩ V (P). Note by how

we selected v, s1, p1, s2, p2, . . . si, pi that sa, 1 ⩽ a ⩽ i, cannot be neighbors with pb

if a > b since pb would be in Xa and therefore sa would not be in Sa, and sa cannot

have a neighbor with pb if a < b since that would contradict either pa being sa’s lowest

numbered neighbor in N(v) ∩ P or sa being a highest labeled vertex in Sa. Hence, we

then have that among these vertices sj is only neighbors with pj for 1 ⩽ j ⩽ i, and v is

342

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

only neighbors with pj for 1 ⩽ j ⩽ i. p2i could be neighbors with p2i+1 and/or p2i−1 since

they could be consecutive vertices on the path P , but p2i cannot be neighbors with p2j.

It follows that the set {v}∪{p2, p4, . . . , p2c}∪{s2, s4, . . . , p2c}, 2c ⩽ i, forms a c-half-theta

in G[V (P) ∪ S{v}] ending in S.

We continue this process until we reach an Sj that is empty. By what we noted in

the previous paragraph, this process cannot go past the 2kth step if G[V (P) ∪ S ∪ {v}]

does not contain a k-half-theta ending in S. Set X to be Xj. Since Sj is empty, it follows

N(S −N [X])∩N(v)∩ V (P) = ∅. We also have that no vertex of S −N [X] is neighbors

with v since v ∈ X and |X| ⩽ 4k − 1 since j ⩽ 2k and since the first step adds a single

vertex and each step after that only adds two vertices.

Lemma 6.6.7. Let (G,S, P) be a tuple such that G is a graph, S ⊂ V (G) such that

S cannot be dominated by 4kx vertices and P is an induced path disjoint from S that

dominates S. Assume G[V (P) ∪ S] does not contain a k-half-theta ending in S. Then

there exists a subset S ′ of S of size x such that no vertex of P has more than one neighbor

in S ′.

Proof:

Let G, S, and P be as in the statement of the lemma. Assume that we have an

independent set of vertices vertices Si−1 of size i − 1, i ⩽ k, and a set Zi−1 of size at

most 4k(i− 1), with the properties that no vertex S−N [Zi−1] is neighbors with a vertex

in Si−1, and any vertex in P that is neighbor with some vertex in Si−1 has no other

neighbors in Si−1 nor in S −N [Zi−1]. We will use this to produce a set Si of size i and

Zi of size at most 4k2i with the same properties. Note that the empty set satisfies the

conditions of S0.

Let S ′ = S − N [Zi−1]. Let s be some vertex in S ′, since i ⩽ k and S cannot be

dominated by 4kx vertices, such an s must exists. We can then apply Lemma 6.6.6 using

343

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

(G,S ′, P, s) and to get a set X of size at most 4k−1 such that (S ′−N [X])∩N(s)∩V (P) =

∅ and no vertex of S ′ − N [X] is neighbors with s. We then set Si = Si−1 ∪ {s} and

Zi = Zi−1 ∪X and we can see these sets satisfies the required properties.

Since the empty set satisfies the properties of S0 and S cannot be dominated by 4kx

vertices, we can continue the process until we generate the set Sx which has size x and

no vertex of P has more than one neighbor in Sx.

The previous two lemmas now give us a k′-half-quasi-ladder with backbone path P ,

auxiliary paths P1, P2, . . . , Pk′ where Pi has endpoints si and wi such that no vertex of P

is neighbors with more than one of the si’s. The next lemma now show use how to take

such a k′-half-quasi-ladder and produce a k-half-ladder.

Lemma 6.6.8. Let T be an induced 4k[2(4k)k+1]2-half-quasi-ladder of a graph G ending

in X. Assume T does not have an induced k-half-theta ending in X and assume that G

does not contain an induced k-theta. Then T contains a k-half-ladder ending in X.

Proof: Let G, T , and X be as in the statement of the lemma. Let P be the backbone

path of T and P1, P2, . . . , P4k[2(4k)k+1]2 be its auxiliary paths, where the endpoints of Pi are

vi and xi, and the xi’s are the endpoints of T , so xi ∈ X. Let S = {v1, v2, . . . , v4k[2(4k)k+1]2}.

Clearly, if any vertex of P is neighbors with k distinct vi’s, then T contains a k-half-theta

ending in X. It follows that since T does not have a k-half-theta ending in X, the vertices

of S cannot be dominated by less than 4[2(4k)k+1]2 vertices in T . Also, if G[S ∪ V (P)]

contain a k-half-theta ending in S, then it contains a k-half-theta ending in X, so we can

apply Lemma 6.6.7 with (G,P, S) to get a set S ′ ⊂ S of size 2(4k)k+1 such that no vertex

of P is neighbors with more than one vertex in S ′. It follows that by only taking the paths

Pi such that vi ∈ S ′, that these Pi’s together with P , form a 2(4k)k+1-half-quasi-ladder

where no vertex of P has a neighbor with more than one vertex in any of the Pi’s. We

will call this 2(4k)k+1-half-quasi-ladder T ′, we will call its backbone path P ′ so P ′ = P ,

344

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

and we will call the auxiliary paths P ′
1, P

′
2, . . . , P

′
2(4k)k+1 where the endpoints of P ′

i are v′i

and x′i, and the x′i’s are the endpoints of T ′, so x′i ∈ X. We use S ′ as before to denote

the set of v′i’s.

Now, number the vertices of P ′ 1 through |V (P ′)| such that the vertex numbered i

is neighbors with the vertices numbers i− 1 and i + 1. For a vertex x in P ′ we will use

the notation n(x) to denote the number it has been given in P ′. For every sj ∈ S ′ let

pj ∈ P ′ be the highest numbered neighbor sj has in P . We now set P1 = P ′ and S1 = S ′.

We will consider the following process, where we will try to produce a large independent

set in an auxiliary graph related to some Pi and Si which we will then use to produce a

k-half-ladder. We will show this process cannot go past k iterations if T does not have

a k-half-theta ending in X. We will ensure that at the ith step that V (Pi) ⊂ V (P ′),

Si ⊂ S ′, |Si| ⩾ 2(4k)k−i+2, Pi is an induced path, and if sj ∈ Si then pj ∈ Pi. We will

also produce induced subpaths Di of P such that the Di’s are anti-complete with respect

to one another and the vertices of Di will dominate Sj if i < j.

At the ith step we do as follows. Create an auxiliary directed graph, AUXi, whose

vertex set is Si and there is an edge from sa ∈ Si to sb ∈ Si if the following condition

holds

1. n(pa) > n(pb) and sa has a neighbor x in P ′ such that n(x) < n(pb)

If the maximum in degree of AUXi is at most 1
4k
|Si| then we stop. If i ⩽ k (which

we will show must happen) then since |Si| ⩾ 2(4k)k−i+2 this gives an independent set

of size at least k by Lemma 6.5.14. If there is an sj ∈ Si with in degree at least 1
4k
|Si|

then for at least 1
4k

fraction of the vertices of Si must satisfy (1) playing the role of sa

while sj plays the role of sb. Call this set of vertices Si+1. If sj ∈ Si with in degree at

least 1
4k
|Si| then we do as follows. Define Di to be the subpath of Pi that is made up

of vertices with numbers less than n(pj). Set Pi+1 to be the vertices of Pi with numbers

345

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

greater than n(pj). This concludes the ith step.

It can then be seen that V (Pi+1) ⊂ V (P), Si+1 ⊂ S, |Si+1| ⩾ 2(4k)k−i+1, Pi+1 is an

induced path, and if sj ∈ Si+1 then pj ∈ Pi+1 as required. Furthermore, it can be seen

that any of the previously Dj’s that have been produced in this process (j ⩽ i) dominate

all vertices of Si+1. Since the Dj’s are disjoint and anti complete, By Lemma 6.5.13 then,

this process cannot go past the kth iteration without producing a k-theta in G.

We conclude there is some step j ⩽ k such that the auxiliary graph AUXj has max

in-degree less than 1
4k
|Sj|, and since |Sj| ⩾ 8k it therefore has an independent set of size

k by Lemma 6.5.14. Let S∗ denote such an independent set.

We claim by only taking the paths P ′
i such that v′i ∈ S∗, that these P ′

i ’s together with

P ′, form a k-half-ladder. Let x, y ∈ S∗ and let a, b be the highest and lowest numbered

neighbors of x in L respectively, and assume that y has a neighbor c on the induced path

of L that has a and b as its endpoints. If y’s highest numbered neighbor in L is greater

than n(a) then y has an edge to x in AUXj. If y’s highest numbered neighbor in L is

less than n(a), then x has an edge to y. It follows that taking the P ′
i such that v′i ∈ S∗

together with P ′, form a k-half-ladder.

Corollary 6.6.9. Let k be a natural number. There exists a natural number k′ large

enough such that if G is a graph that contains a k′-creature (A, B, {x1, x2, . . . , xk′},

{y1, y2, . . . , yk′}), then G[A ∪ {x1, x2, . . . , xk′}] contains an induced k-half-theta, k-half-

prism, or k-half-ladder ending in {x1, x2, . . . , xk′} or G contains an induced k-theta.

Proof: By Lemma 6.6.5 there exists a k′ large enough such that if G contains a k′-

creature (A, B, {x1, x2, . . . , xk′}, {y1, y2, . . . , yk′}) thenG[A∪{x1, x2, . . . , xk′}] contains an

induced 4k[2(4k)k+1]2-half-theta, 4k[2(4k)k+1]2-half-prism, or a 4k[2(4k)k+1]2-half-quasi-

ladder, ending in {x1, x2, . . . , xk′}. If G[A∪{x1, x2, . . . , xk′}] contains a 4k[2(4k)k+1]2-half-

theta or a 4k[2(4k)k+1]2-half-prism ending in {x1, x2, . . . , xk′} then we are done. If G[A∪

346

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

{x1, x2, . . . , xk′}] contains a 4k[2(4k)k+1]2-half-quasi-ladder ending in {x1, x2, . . . , xk′}

then we may apply Lemma 6.6.8 to get that either G[A ∪ {x1, x2, . . . , xk′}] contains

a k-half-ladder ending in {x1, x2, . . . , xk′} or G contains a k-theta.

We now know that given a k′-creature (A, B, {x1, x2, . . . , xk′}, {y1, y2, . . . , yk′}) for

large enough k′ in each half, A ∪ {x1, x2, . . . , xk′} and B ∪ {y1, y2, . . . , yk′} we can find a

k-half-theta, k-half-prism, or k-half-ladder, and we can combine them together to make

a k-theta, k-prism, k-pyramid, k-ladder, k-ladder-theta, or a k-ladder-prism. The next

lemma formalizes this.

Lemma 6.6.10. Let k be a natural number. Then there exists a natural number k′ large

enough such that if G is a graph that contains a k′-creature (A, B, {x1, x2, . . . , xk′},

{y1, y2, . . . , yk′}), then G contains an induced k-theta, k-prism, k-pyramid, k-ladder-

theta, k-ladder-prism, or a k-ladder.

Proof: Let k be a natural number. By Corollary 6.6.9 there exists a k′ large

enough such that if G is a graph that contains a k′-creature (A, B, {x1, x2, . . . , xk′},

{y1, y2, . . . , yk′}), then G[A∪{x1, x2, . . . , xk′}] contains an induced k2-half-theta, k2-half-

prism, or k2-half-ladder ending in {x1, x2, . . . , xk′} or G contains an induced k2-theta.

It then also follows from Corollary 6.6.9 there exists a k′′ large enough such that if G

is a graph that contains a k′′-creature (A, B, {x1, x2, . . . , xk′′}, {y1, y2, . . . , yk′′}), then

G[B ∪ {y1, y2, . . . , yk′′}] contains an induced k′-half-theta, k′-half-prism, or k′-half-ladder

ending in {y1, y2, . . . , yk′′} or G contains an induced k′-theta.

So, assume that G is a graph that contains an k′′-creature (A, B, {x1, x2, . . . , xk′′},

{y1, y2, . . . , yk′′}). If G contains an induced k′-theta then we are done, so assume that

G[B ∪ {y1, y2, . . . , yk′′}] contains an induced k′-half-theta, k′-half-prism, or k′-half-ladder

ending in {y1, y2, . . . , yk′′}. By relabeling the xi’s and yi’s we can then assume that

G contains a k′ creature (A′, B′, {x1, x2, . . . , xk′}, {y1, y2, . . . , yk′}) such that G[B′ ∪

347

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

{y1, y2, . . . , yk′}] is a k′-half-theta, k′-half-prism, or k′-half-ladder. Then applying Corol-

lary 6.6.9 gives us that G[A ∪ {x1, x2, . . . , xk′}] contains an induced k2-half-theta, k2-

half-prism, or k2-half-ladder ending in {x1, x2, . . . , xk′}. If G[B′ ∪ {y1, y2, . . . , yk′}] is a

k′-half-ladder and G[A ∪ {x1, x2, . . . , xk′}] contains a k2-half-ladder, then an application

of the Erdös-Szekeres Theorem gives us a k-ladder. Otherwise, it follows that G must

contain a k2-theta, a k2-prism, k2-pyramid, k2-ladder-theta, or k2-ladder-prism.

With Lemma 6.6.10 in hand we can now provide a proof of Theorem 6.1.3.

Proof: [Proof of Theorem 6.1.3] Let G be a graph, |V (G)| = n, where G forbids all

k-theta, k-pyramid, k-prism, k-ladder, k-ladder-theta, and k-ladder-prism graphs as well

as k-contracted-ladder graphs. By Lemma 6.6.10 there exists a function f : N → N (f

in independent of the choice of k or G) such that G is f(k)-creature-free. Furthermore,

we can see that any graph that contains a 2k-skinny-ladder as an induced minor must

either contain a k-ladder or a k-contracted-ladder as an induced subgraph, therefore G

contains no 2k-skinny-ladder as an induced minor. Hence by Theorem 6.1.2 there is a

function f ∗ : N → N (f ∗ is independent of the choice of k or G) such that G has at

most nf
∗(k) log(n) minimal separators. It follows that the family of graphs that forbid all

k-theta, k-pyramid, k-prism, k-ladder, k-ladder-theta, and k-ladder-prism graphs as well

as k-contracted-ladder graphs are strongly-quasi-tame.

The following two lemmas will be used in Lemma 6.6.13 to establish that if F is a

family of graphs defined by a finite number of forbidden induced subgraphs and F allows

for at least one of k-thetas, k-prisms, k-pyramids, k-ladder-thetas, or k-ladder-prisms,

for arbitrarily large k, then we can ensure it contains these graphs where their number

of vertices only grow linearly with respect to k, and therefore have exponentially many

minimal separators. These two lemmas achieve this by showing that a graph in F has

certain paths that are too long, then we can contract part of those paths and maintain

that the resulting graph remains in F .

348

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

Lemma 6.6.11. Let G be a graph and let H be a graph with |V (H)| ⩽ h, where h > 5.

Assume that G contains an induced path P of length at least 5h where all internal vertices

of P have degree 2 in G. Then there exists an edge e in G such that if Ge contains H as

an induced subgraph, then so does G.

Proof: Let G be a graph, let H be a graph with |V (H)| ⩽ h where h > 5,

and let P be an induced path of G of length at least 5h where all internal vertices

of P have degree 2, say P = p1, p2, . . . , p5h. Let e be the edge between p⌈ 5h−1
2

⌉ and

p⌈ 5h+1
2

⌉. Let v denote the new vertex p⌈ 5h−1
2

⌉ and p⌈ 5h+1
2

⌉ create when e is contracted in

G to make Ge, and let P ′ be what the path P becomes after contracting e in G, so

P ′ = p1, p2, . . . , p⌈ 5h−1
2

⌉−1, v, p⌈ 5h+1
2

⌉+1, . . . , p5k. Assume that Ge contains H as an induced

subgraph. We will show that there exists a set X ⊂ V (Ge) that induces H such that

v /∈ X. It will then follows that G contains an induced H.

Any component of H that is not an induced path can only contain vertices outside

of P ′ or within distance h of either the endpoints of P ′ since all internal vertices of P ′

have degree 2 in Ge. For the components of H that are paths, since there are at most

h vertices among these components, we can ensure that the vertices of X that we use

to induce these components either do not belong to P ′ or only contain vertices from the

subpaths ph+2, ph+3, . . . , p⌈ 5h−1
2

⌉−1 and p⌈ 5h+1
2

⌉+1, p⌈ 5h+1
2

⌉, . . . , p4h−2. It follows that v /∈ X.

Lemma 6.6.12. Let G be a graph and let H be a graph with |V (H)| ⩽ h, where h > 5.

Assume that G contains an induced path P of length 5h[(h + 1)(5h)2h+2 + 1] such that

the only neighbor the vertices of P might have outside of P is a single vertex v. Then

there exists a subpath P ′ of P such that if GP ′
contains H as an induced subgraph, then

so does G.

Proof: Let G be a graph and let H be a graph with |V (H)| ⩽ h, where h > 5.

349

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

Assume that G contains an induced path P of length 5h[(h + 1)(5h)2h+2 + 1] such that

the only neighbor the vertices of P might have outside of P is a single vertex v. Let a, b

be the endpoints of P . Now divide P into a sequence of subpaths P1, P2, . . . , Pk each of

length at least 2 so that all internal vertices of Pi have degree 2 in G, all endpoints of Pi

are either a vertex of degree 3 or a or b, P1 has a and one of its endpoints, Pk has b as

one of its endpoints, and Pi shares one of its endpoints with Pi+1 (i.e., these are subpaths

that whose endpoints are a, b, or the vertices that are neighbors with v and are sequenced

going from one end of P to the other). We define a second sequence a1, a2, . . . ak where ai

= |E(Pi)|. If any ai ⩾ 5h then the result follows from Lemma 6.6.11, so we can assume

for all i that ai ⩽ 5h. It then follows that k is at least (h+ 1)(5h)2h+2 + 1, and therefore

by the pigeonhole principle there must be a continuous subsequence of length 2h+2 that

is repeated at least h + 2 times, where none of these continuous subsequences overlap

with each other. Let S = s0, s1, . . . , s2h+1 be this repeated subsequence. So we have

h + 2 sequences for 1 ⩽ i ⩽ h + 2, Ai = aji , aji+1, . . . , aji+2h+1 where for 1 ⩽ m ⩽ h + 2

and c, 0 ⩽ c ⩽ 2h + 1, ajm+c = sc and no part of Am overlaps with some other An (so

|jn−jm| ⩾ 2h+2) and jm > jn if m > n. Fix the values denoted by jm for 1 ⩽ m ⩽ h+2.

We wish to combine the first half of A1 with the second half of A2 by contracting a

path in P . Let x be the endpoint of Pj1+h+1 that it shares with Pj1+h, and let y be the

endpoint Pj2+h+1 shares with Pj2+h. Let P ′ be the subpath of P that has x and y as its

endpoints. Let w be the vertex that gets created when contracting the path P ′ in G to get

GP ′
and let all the subpaths Pi of P in G that were not contained in P ′ retain their labels

in GP ′
, so Pj1+h and Pj2+h+1 share w as an endpoint, and let the ai’s retain their same

meaning as long as Pi was not a subpath of P ′. It follows that GP ′
has h sequences for

3 ⩽ i ⩽ h+2, Ai = aji , aji+1, . . . , aji+2h+1 where for 1 ⩽ m ⩽ h+2 and c, 0 ⩽ c ⩽ 2h+1,

ajm+c = sc and no part of Am overlaps with some other An (so |jn − jm| ⩾ 2h + 2)

and jm > jn if m > n. Furthermore, A1 and A2 have now been combined to give

350

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

A′ = aj1 , aj1+1, . . . , aj1+h, aj2+h+1, aj2+h+2, . . . , aj2+2h+1 so that aj1+c = sc for 0 ⩽ c ⩽ h

and aj2+c = sc for h+1 ⩽ c ⩽ 2h+1. We will show that if there exists a set X ⊂ V (GP ′
)

that induces H in GP ′
then we can require w /∈ X. The result then follows since if w /∈ X

then the vertices that correspond to X in G induced an H in G.

So, assume X ⊂ V (GP ′
) and induces H. If w /∈ X then we are done, so assume

w ∈ X ′ for some connected component X ′ of X. For i with 3 ⩽ i ⩽ h + 1, let P ∗
i

denote the path induced by V (Pji), V (Pji+1), . . . , V (Pji+2h+1) in GP ′
, so P ∗

i is the path

that naturally corresponds to Si, and let P ∗
1 denote the path induced by

V (Pj1), V (Pj1+1), . . . , V (Pj1+h), V (Pj2+h+1), V (Pj2+h+2), . . . , V (Pj2+2h+1),

so P ∗
1 naturally corresponds with A′. Then since X ′ has at most h vertices there is at

least one P ∗
i that contains no vertex of X and since X ′ is connected and contains w, all

vertices of X ′ ∩ P must be completely contained in V (P ∗
1) since w is at least distance

h from either endpoint of P ∗
1 . It follows that we can replace the vertices of X ′ ∩ P ,

which must be completely contained in the interal vertices of P ∗
1 , with the corresponding

vertices in a P ∗
i that contains no vertices of X and still maintain that the vertices of X

induce H. Now w /∈ X and the result then follows.

Lemma 6.6.13. Let F be a family of graphs determined by a finite number of forbidden

induced subgraphs. Then if F does not forbid all k-thetas, k-prisms, k-pyramids, k-

ladder-thetas, k-ladder-prisms, and k-ladders for arbitrarily large k, then F is feral.

Proof: Let F be a family of graphs determined by a finite number of forbidden

induced subgraphs, and let H be a set of forbidden subgraphs that define F . Let let

h > 5 be a number such that for any H ∈ H, |V (H)| ⩽ h. First assume that F allows for

either k-thetas k-prisms, or k-pyramids for arbitrarily large k. Then by Lemma 6.6.11

we can ensure that all paths with internal vertices all having degree 2 of the k-thetas

351

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

k-prisms, or k-pyramids are at most 5h (we keep on contracting the appropriate edges

given by Lemma 6.6.11 until no path where all internal vertices have degree 2 have length

more than 5h) and therefore F contains a k-theta k-prism, or k-pyramid with at most

5h · k vertices. Since a k-theta, k-prism, or k-pyramid must have at least 2k minimal

separators, it follows that there exists a c > 1 such that for every natural number N ther

exists a G ∈ F such that |V (G)| = n > N and the number of minimal separators in G is

at least cn.

Now assume that F allows for k-ladder-thetas or k-ladder-prisms for arbitrarily large

k. Every k-ladder-theta and k-ladder-prism contains a k-half-ladder and by Lemma 6.6.11

we can ensure that all paths with internal vertices all having degree 2 of the k-ladder-theta

or k-ladder-prism are at most 5h and by Lemma 6.6.12 we can ensure that the backbone

path of the corresponding k-half-ladder has length at most [5h(h + 1)(5h)2h+1 + 1] · k

by contracting the appropriate edges and paths if necessary while still guaranteeing the

resulting graph belongs to F (Lemma 6.6.12 gives us that if there is a subpath of length

over [5h(h+1)(5h)2h+1+1] of the backbone path that only has one neighbor outside of the

backbone path, there there exists a subpath of the backbone path that we can contract

and still maintain that the resulting graph is a k-ladder-theta or k-ladder-prism contained

in F). Since k-ladder-thetas and k-ladder-prisms have at least 2k minimal separators it

follows that there exists a contains c > 1 such that for every natural number N there

exists a G ∈ F such that the number of minimal separators in G is at least cn. It follows

that F is feral.

The following lemma shows why it is necessary to forbid k-paw and k-claw graphs

for a family of graphs defined by a finite number of forbidden induced subgraphs to be

strongly-quasi-tame. Figure 6.10 gives a picture of the two graphs constructed in the

following lemma.

352

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

Lemma 6.6.14. Let F be a family of graphs determined by a finite number of forbidden

induced subgraphs. Then if F does not forbid k-claws and k-paws for some natural number

k, then F is feral.

Proof: Let F be a family of graphs determined by a finite number of forbidden

induced subgraphs, and let H be a set of forbidden subgraphs that define F . Let h > 5

be a number such that for any H ∈ H, |V (H)| ⩽ h. First we assume that F allows

k-claw for arbitrarily large k. We will construct a graph with many minimal separators.

Assume that we have two sets of 2c − 1 long-claws, C1
1 , C

1
2 , . . . C

1
2c , and C2

1 , C
2
2 , . . . C

2
2c

where in both sets each long claw has arm length h. We label the leaves of C1
i as a1i , b

1
i , c

1
i

and we label the endpoints of C2
i as a2i , b

2
i , c

2
i . Then for 1 ⩽ i ⩽ 2c−1 − 1 we glue a12i to

b1i , a
1
2i+1 to c1i , a

2
2i to b2i , and a22i+1 to c2i . Furthermore, for 2c−1 ⩽ i ⩽ 2c − 1 we add an

edge between b1i and b2i and between c1i and c2i . Note that any collection of bjii and cℓii

with 2c−1 ⩽ i ⩽ 2c− 1 and ji, ℓi = 1 or 2 is a minimal separator, so there are at least 22c

minimal separators in this construction. Since the arm length of each long-claw is h, the

total number of vertices in this construction is less than 3h · 2c+1.

If F allows for k-claws, then forest of paths and subdivided claws cannot be forbidden

in F , and it can be seen that any induced subgraph of size at most h of the construction

just given is a forest of paths and subdivided claws (i.e., three anti-complete paths where

one endpoint of each path are glued together). It follows that this construction must

belong to F and since this construction has at least 22c minimal separators and less than

3h · 2c+1 vertices, the statement of the lemma follows for the case where k-claw graphs

for arbitrarily large k are not forbidden.

Now we assume that F allows k-paw graphs for arbitrarily large k. The construction

and analysis we make in this case is nearly identical to the k-claw case. We present it here

for completeness. Assume that we have two set of 2c − 1 long-paws, C1
1 , C

1
2 , . . . C

1
2c , and

353

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

Figure 6.10: The two graphs in this figure are small versions of the constructions of
the graphs given in Lemma 6.6.14, explicit vertices are omitted in this graph. The
left side graph is the construction provided when when the k-claw is not forbidden
for arbitrarily large k. The right hand side graph is the construction provided when
when the k-paw is not forbidden for arbitrarily large k.

C2
1 , C

2
2 , . . . C

2
2c where in both sets each long-paw has arm length h. We label the endpoints

of C1
i as a1i , b

1
i , c

1
i and we label the endpoints of C2

i as a2i , b
2
i , c

2
i . Then for 1 ⩽ i ⩽ 2c−1−1

we glue a12i to b1i , a
1
2i+1 to c1i , a

2
2i to b2i , and a22i+1 to c2i . Lastly, for 2c−1 ⩽ i ⩽ 2c − 1 we

add an edge between a1i and a2i and between b1i and b2i . Note that any collection of bjii

and cℓii with 2c−1 ⩽ i ⩽ 2c − 1 and ji, ℓi = 1 or 2 is a minimal separator, so there are at

least 22c minimal separators in this construction. Since the arm length of each long-claw

is h, the total number of vertices in this construction is less than 3h · 2c+1.

Since F allows for k-paws, a forest of paths and subdivided paws cannot be forbidden

in F , and it can be seen that any induced subgraph of size at most h of the construction

just given is a forest of paths and subdivided paws. It follows that this construction must

belong to F and since this construction has at least 22c minimal separators and less than

3h · 2c+1 vertices, the statement of the lemma follows for the case where k-paw graphs

for arbitrarily large k are not forbidden.

We are now ready to prove Theorem 6.1.4

Proof: [Proof of Theorem 6.1.4] Let F be a family of graphs defined by a finite

number of forbidden induced subgraphs. It follows from Lemmas 6.6.13 and 6.6.14 that

354

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

if F allows for any k-thetas, k-prisms, k-pyramids, k-ladder-thetas, k-ladder-prisms, k-

claws, or k-paws for arbitrarily large k, F is feral.

Now assume that there exists a natural number k such that F forbids k-thetas, k-

prisms, k-pyramids, k-ladder-thetas, k-ladder-prisms, k-claws, and k-paws. Observe that

there exists a k′ large enough such that ifG contains an induced k′-ladder, thenG contains

an induced k-claw or k-paw graph, therefore F forbids k′-ladders. It then follows from

Lemma 6.6.10 there exists a k′′ such that no G ∈ F can contain a k′′-creature, where

the minimum value of k′′ is a function of k. Furthermore, it is clear that there exists a

k′′′ large enough such that if G contains a k′′′-skinny-ladder as an induced minor, then

G contains a k-claw or a k-paw as an induced subgraph. Hence F forbids k′′′-skinny-

ladders as an induced minor. It then follows from Theorem 6.1.2 that there is a function

f : N → N such that for all G ∈ F the number of minimal separators of G is at most

nf(k) log(n). Hence F is strongly quasi-tame.

6.7 Long Cycle-free Graphs

Here we present a proof of Theorem 6.1.5 which is based on an easy application of

Corollary 6.5.7. We will need the following lemma in order to apply Corollary 6.5.7.

Lemma 6.7.1. Let G be a C⩾r-free graph and assume G does not contain a k-creature.

Then every minimal separator, S, can be dominated by r · k2 vertices of G not in S.

Proof: Let G be a C⩾r-free graph and assume G does not contain a k-creature.

Assume for a contradiction that there exists a minimal separator, S, of G such that S

cannot be dominated by r · k2 vertices in G and not in S. Let H be an S-full component

of G − S, then by Lemma 6.5.8, S is dominated a subset of H that is the union of k2

induced paths in H. It follows there must exists some induced path P in H such that

355

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

SP = N(P)∩S cannot be dominated by r vertices in P . There then exists a subpath P ′

of P such that there are vertices a, b ∈ SP that have no neighbor in P ′, both component

of P −P ′ have vertices that are neighbors with a and/or b. It follows that we can extend

the path P ′ to have endpoints xa and xb such that the only neighbors of a in P ′ is xa

and possible xb and the only neighbors of b in P ′ is xb and possibly xa. If xa and xb are

both neighbors with a then P ′ and a form a cycle of length r, and if xa and xb are both

neighbors with b then P ′ and b form a cycle of length r so assume neither of these cases

occur. If a and b are neighbors then P ′ a, b make a cycle of length more than r. Else,

there is an induced path, T between a and b with all of its internal vertices contained in

some S-full component other than H. It follows that P ′, and T makes a cycle of length

more than r, a contradiction.

Proof: [Proof of Theorem 6.1.5] Let G be a C⩾k-free graph that is k-theta, k-prism,

and k-pyramid free. Since G is C⩾k-free this implies that G is also k-ladder-theta, k-

ladder-prism, and k-ladder free. Lemma 6.6.10 then implies that there exists a function

f : N → N (independent of the choice of k or G) such that G is f(k)-creature-free.

Lemma 6.7.1 gives that every minimal separator S of G can be dominated by kf(k)2

vertices not in S. Hence, by Corollary 6.5.7 G has at most |V (G)|(kf(k)2)2+2kf(k)2 minimal

separators. It follows that the family of graphs that are C⩾k-free, k-theta, k-prism, and

k-pyramid free is tame.

6.8 Graph With Bounded Clique Size

Here we present a proof of Theorems 6.1.6 and 6.1.7 which are based on an easy

application of Corollary 6.5.7. We will need the following lemma in order to apply

Corollary 6.5.7.

Lemma 6.8.1. Let k′ = 4[(8k2)k+1]7. If G is k-creature-free, G does not contain a k-

356

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

skinny-ladder as an induced minor, and no minimal separator of G contains a clique of

size k, then every minimal separator S of G can be dominated by at most (k′)k+1 vertices

of G− S.

Proof: Let k′, k, and G be as in the statement of the lemma. Let G′ be an induced

subgraph of G and let S ′ be a minimal separator of G′. Then G′ must be k-creature-free

and k-ladder free, so it follow from Lemma 6.5.15 that S ′ can be dominated by k′ vertices

of G′ − S ′.

We will produce a set of (k′)k+1 vertices of G − S that dominate S by considering

the following recursive algorithm. The input to the algorithm is (G′,S ′) where G′ is a

subgraph of G and S ′ is a minimal separator of G′, and the algorithm returns a set of

vertices which will be described shortly. The algorithm finds two vertex sets A and B

such that |A| + |B| ⩽ k′, A ⊂ V (G′), B ⊂ S ′, and A ∪ B dominate S ′ (such a set must

exists by what was established in the previous paragraph). Let B′ be a set of vertices in

G′ − S ′ such that |B′| ⩽ |B| and B′ dominates B. For each b ∈ B we recursively call

the algorithm on (G′ − (S ′ − [S ′ ∩ N(b)]), S ′ ∩ N(b)) (note that S ′ ∩ N(b) is a minimal

separator of G′ − (S ′ − [S ′ ∩ N(b)])). Let X be the union of the sets returned by each

recursive call. Then algorithm then returns X ∪ A ∪B′.

If we initially call this algorithm on (G,S) for some minimal separator S of G, then it

is clear that the set this algorithm returns is a subset of vertices of G−S that dominate S.

We can also see the depth of this recursive algorithm cannot go past k without producing

a clique of size k in S since the minimal separator we recursively call this algorithm on

is always dominated by the open neighborhood of some vertex v of S. So, the depth of

the recursion tree is at most k − 1 and each node has at most k′ children since |B| ⩽ k′.

It follows that since each recursive call of the algorithm adds at most k′ vertices to the

set it returns, the size of the final returned set cannot exceed k′ · k′k

357

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

Proof: [Proof of Theorem 6.1.6] Let G be a graph that is k-creature-free and does

not contain a k-skinny-ladder as an induced minor, and furthermore assume that no

minimal separator of G has a clique of size k. By Lemma 6.8.1 there exists a function

f : N→ N such that all minimal separators, S, of any graph that is k-creature-free, does

not contain a k-skinny-ladder as an induced minor, and has no minimal separator that

contains a clique of size k, can be dominated by f(k) vertices outside of S. It then follows

from Corollary 6.5.7 that G has at most |V (G)|f(k)2+2f(k) minimal separators. Hence, the

family of graphs that are k-creature-free, do not contain a k-skinny-ladder as an induced

minor, and have no minimal separator has a clique of size k is tame.

Proof: [Proof of Theorem 6.1.7] Let F be a family of graphs defined by a finite

number of forbidden induced subgraphs. Assume that F forbids the complete graph on

k vertices for some natural number k. It follows from Lemmas 6.6.13 and 6.6.14 that if

F allows for any k′-thetas, k′-ladder-thetas, k′-claws, or k′-paws for arbitrarily large k′,

then F is feral.

Now assume that for some integer k that F forbids k-thetas, k-ladder-thetas, k-

claws, and k-claws. Since F forbids k-cliques as well, it follows that F forbids k-prisms,

k-pyramids, and k-ladder-prisms. Observe that there exists a k′ large enough such that if

G contains an induced k′-ladder, then G contains an induced k-claw or k-paw, therefore

G does not contain a k′-ladder. It follows from Lemma 6.6.10 there exists a k′′ such that

no G ∈ F can contain a k′′-creature, where the minimum value of k′′ is a function of

k. Furthermore, it is clear that there exists a k′′′ large enough such that if G contains

a k′′′-skinny-ladder as an induced minor, then G contains a k-claw or a k-paw as an

induced subgraph. Hence F forbids k′′′-skinny-ladders as an induced minor. Now, if

no graph of F contains a minimal separator with a clique of size k, then it follows by

Lemma 6.8.1 there exists a function f : N→ N such that for all G ∈ F it holds that all

minimal separators S of G can be bounded by f(k) vertices in G − S. It then follows

358

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

from Corollary 6.5.7 that for all G ∈ F has at most |V (G)|f(k)2+2f(k) minimal separators.

Therefore F is tame.

6.9 Conclusion

In this Chapter we disproved a conjecture of Abrishami et al. [43] that for any natural

number k, the family of graphs that exclude k-creatures is tame. On the other hand,

we proved a weakened form of the conjecture, that every family of graphs that excludes

k-creatures and also excludes k-skinny-ladders as induced minors is strongly-quasi-tame.

This led to a complete classification of graph families defined by a finite number of for-

bidden induced subgraphs into strongly-quasi-tame and feral, substantially generalizing

the main result of Milanič and Pivač [42]. The tools we develop on the way to prove

our main results yield with some additional effort polynomial upper bounds instead of

quasi-polynomial, proving tameness instead of strong quasi-tameness, for two interesting

special cases. In particular we show that the conjecture of Abrishami et al. [43] is true for

C⩾r-free graphs for every integer r, as well as for Kr-free graphs excluding an r-skinny-

ladder for every integer r. The first of these results generalizes work of Chudnovsky et

al. [114], who proved that C⩾5-free, k-creature-free graphs are tame,

Although Theorems 6.1.2 and 6.1.4 provide a strongly-quasi-tame bound we have no

examples of non-tame families that exclude k-creatures and k-skinny-ladders for some k.

We conjecture that these classes of graphs are actually tame.

Conjecture 6.9.1. For every natural number k, the family of graphs that are k-creature-

free and do not contain a k-skinny-ladder as an induced minor is tame.

Conjecture 6.9.1, if true, put together with the proof of Theorem 6.1.4 would lead

to the following classification of hereditary families defined by a finite set of forbidden

induced subgraphs.

359

Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs Chapter 6

Conjecture 6.9.2. Let F be a graph family defined by a finite number of forbidden

induced subgraphs. If there exists a natural number k such that F forbids all k-theta,

k-prism, k-pyramid, k-ladder-theta, k-ladder-prism, k-claw, and k-paw graphs, then F is

tame. Otherwise F is feral.

We remark that Conjecture 6.9.1 implies Conjecture 6.9.2, but not the other way

around. In particular Conjecture 6.9.2 might be easier to prove.

We have so far been unsuccessful in identifying other counterexamples to Conjec-

ture 6.1.1 that look “substantially different” from the k-twisted ladders constructed in

Section 6.4. For this reason it is tempting to conjecture that at least for induced minor

closed classes, a ”clean” classification of all classes into tame or feral is possible.

Conjecture 6.9.3. Every induced-minor-closed class F is either tame or feral.

Since removing vertices and contracting edges can not increase the number of minimal

separators, Conjecture 6.9.3, would show (in an informal sense) that both the brittleness

of the boundary between tame and non-tame hereditary classes, as well as the existence

of non-tame hereditary classes that are not feral is primarily due to “number fiddling”

effects such as in the example of Abrishami et al. [43] of a tame family containing k-

creatures for arbitrarily large k.

Remark: As mentioned in the introduction, subsequent work([44] and Chapter 7 of this

thesis), has confirmed that Conjectures 6.9.1 and 6.9.2 are true, while Conjecture 6.9.3 is

false. We nevertheless keep the statements of these conjectures here, both because they

provided guidance and motivation for the subsequent works.

360

Chapter 7

Graph Classes with Few Minimal

Separators. II. A Dichotomy

A class F of graphs is called tame if every graph in F on n vertices contains at most

nO(1) minimal separators, quasi-tame if every graph in F on n vertices contains at most

2logO(1)(n) minimal separators, and feral if there exists a constant c > 1 so that F contains

n-vertex graphs with at least cn minimal separators for arbitrarily large n. The classifica-

tion of graph classes into (quasi-) tame or feral has numerous algorithmic consequences,

and has recently received considerable attention.

In this paper we precisely characterize the structure of graphs which have few minimal

separators. Specifically we show that every graph which excludes certain graphs called

k-creatures and k-critters as induced subgraphs has at most quasi-polynomially many

minimal separators. We then demonstrate that this sufficient condition for having few

minimal separators is the “right” one. In particular we show that every hereditary graph

class F definable in CMSO logic that contains k-creatures or k-critters for every k is

feral.

361

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

7.1 Introduction

Let G be a graph and u and v be distinct vertices in G. A vertex set S is a u,v-

separator if u and v are in distinct components of G − S. The set S is a u,v-minimal

separator if S is a u,v-separator, but no proper subset of S is a u,v-separator. Finally,

S is a minimal separator if S is a u,v-minimal separator for some pair of vertices u and

v. Building on the terminology of Milanič and Pivač [42], we will say that a graph class

F is tame if there exists an integer c so that every graph in F on n vertices has at most

O(nc) minimal separators.

Minimal separators are a fundamental combinatorial object that show up naturally

both in structural arguments [75, 115], as well as in algorithmic applications [116]. Many

graph problems including Treewidth, Minimum Fill In, Treelength, Indepen-

dent Set, Feedback Vertex Set, and others [33, 7, 117] can be solved in time

polynomial in the number n of vertices plus the number of minimal separators in the

input graph. These algorithms run in time polynomial in n precisely for the graphs that

have at most nO(1) minimal separators, motivating the question we address in this paper

- which graph classes are tame?

Since this paper is the second in a series we will refrain from a more in-depth discussion

on the importance of minimal separators, or the history of study of tame graph classes.

Such a discussion may be found in the first paper in the series [5] We will simply mention

that a substantial body of work has been devoted to identifying tame graph classes [43,

123, 114, 33, 75, 121, 120, 42, 122, 44].

All of the aforementioned previous work essentially gives different sufficient conditions

for a graph to only have polynomially many separators. This naturally leads to the

question is there a “right” sufficient condition for tameness? That is - a condition that

on one hand is easy to state and verify, while on the other hand captures all interesting

362

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

A B

𝑥ଵ

𝑥

𝑦ଵ

𝑦ଶ

𝑦

.

.

.

𝑥ଶ

Figure 7.1: A graph induced by the vertices of a k-creature. The blue edges indicate
that xi (yi) may or may not be a neighbor of xj (yj)

tame graph classes. One Theorem to tame them all, so to speak.

Abrishami et al. [43] conjectured that the presence or absence of k-creatures (more

or less) completely dictates whether a graph has many or few minimal separators. To

properly state their conjecture we first need to define k-creatures.

Definition 7.1.1 (k-creatures). (see Figure 7.1) A graph G is said to be a k-creature

if its vertices can be partitioned into sets A, X = {x1, x2, . . . , xk}, Y = {y1, y2, . . . , yk},

and B satisfying the following conditions:

(i) G[A] and G[B] are connected.

(ii) A and Y ∪ B are anti-complete (i.e. N [A] ∩ (Y ∪ B) = ∅) and B and A ∪ X are

anti-complete.

(iii) A dominates X (every vertex in X has a neighbor in A) and B dominates Y .

(iv) xiyj is an edge if and only if i = j.

When identifying a k-creature in a graph, we will typically denote it as a tuple of vertex

sets (V1, V2, V3, V4) such that the graph G[V1∪V2∪V3∪V4] is a k-creature with the set V1

corresponding to A, V2 corresponding to X, V3 corresponding to Y , and V4 corresponding

to B.

363

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

We will say that a graph G is k-creature free if G does not contain a k-creature as

an induced subgraph. It is quite easy to see that for a vertex a ∈ A and b ∈ B there are

precisely 2k minimal separators S which are disjoint from A and B. Such a separator S

must pick precisely one vertex from each of {xi, yi}, and it can make each one of these k

choices independently.

Abrishami et al. [43] conjectured that for every integer k there exists a k′ such that

if an n-vertex graph G does not contain any k-creature as an induced subgraph, then

G has at most nk
′

minimal separators. It turns out, as we showed in the first paper

in this series [5], that this conjecture is false: for arbitrarily large n there exist n-vertex

graphs that exclude 100-creatures and yet have 2Ω(n) minimal separators. However, before

discarding the conjecture of Abrishami et al. [43], let us discuss why it would have been

the “right” sufficient condition for polynomially many minimal separators if it had been

true.

Towards this we need to ask, which graph families F would have been tame, but

whose tameness would not be captured by the conjecture? It would be precisely families

F that are tame, but that contain for every k an n-vertex graph G that contains a k-

creature as an induced subgraph. Since k-creatures have 2k minimal separators, and F

is tame it must hold that 2k ⩽ nO(1), meaning that k = O(log n). In other words the

conjecture fails to capture tame graph classes that contain k-creatures in graphs whose

number of vertices is at least exponential in k.

This could manifest itself in two different ways. One option, that we call Type 1, is

that whenever a graph G ∈ F contains a k-creature then G also contains some different

piece of size exponential in k which is completely unrelated to the k-creature. The other

option, which we call Type 2, is that whenever a graph G ∈ F contains a k-creature,

then this k-creature itself has size exponential in k. Families of either one of these

two types would have to be rather strange, although it is perfectly possible to construct

364

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

artificial graph families of either type. For an example, most interesting graph families are

hereditary, that is, closed under vertex deletion. A hereditary family F cannot possibly

be Type 1. Indeed whenever F contains a graph G that contains a k-creature we can

simply delete all the vertices not in the k-creature to obtain a k-creature which is in the

family. Thus, the conjecture of Abrishami et al. [43] if true, would only fail to capture

tameness of hereditary classes of graphs whose every k-creature has size exponential in

k.

As previously mentioned, the conjecture of Abrishami et al. [43] is false. In [5] the

authors gave a counterexample, and showed that a weaker version of the conjecture of

Abrishami et al. is true. To state this result we need three definitions. First, a family

F is quasi-tame if every n-vertex graph in the family has at most 2logO(1) n minimal

separators. Second, a k-skinny ladder is a graph G consisting of two anti-complete paths

Pl = ℓ1ℓ2 . . . ℓk and Pr = r1r2 . . . rk and a set {s1, s2, . . . , sk} of vertices such that for

every i, si is adjacent to ℓi and ri and to no other vertices. Third, an induced minor of

a graph G is a graph that can be obtained from G by deleting vertices and contracting

edges. The main result of [5] is the following weakening of the conjecture of Abrishami

et al.

Theorem 7.1.2 ([5]). For every integer k, the family of k-creature free graphs that

exclude k-skinny ladders as induced minors is quasi-tame.

Theorem 7.1.2 fails to be “the one theorem to tame them all” in two different ways.

The first is the quasi-polynomial upper bound on the number of minimal separators. The

second is that Theorem 7.1.2 fails to capture the tameness of some perfectly reasonable

hereditary graph classes. For an example, the class of all induced subgraphs of k-skinny

ladders (for all k ∈ N) can easily be checked to be tame, yet Theorem 7.1.2 fails to

conclude anything at all about this family.

365

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

The first shortcoming of Theorem 7.1.2 was very recently rectified by Gajarsky et

al. [44] who, building heavily upon the work of [5], showed a version of Theorem 7.1.2,

but with the conclusion of quasi-tame replaced by tame. In this paper we rectify the

second shortcoming. To properly state our main result we need to introduce another

kind of graph, called t-critters. We first need a small generalization of minimal separators

which applies to vertex sets instead of just vertices. Given A,B ⊂ V (G) we define S

to be an A, B-separator if A ∩ S = B ∩ S = ∅ and no component of G − S contains a

vertex from both A and B. An A,B-minimal separator is an A, B-separator such that

no proper subset of S is an A, B-separator.

Definition 7.1.3 (t-critter partition, t-critter). (see Figure 7.2) A t-critter partition of

a graph G is a partition of the vertex set of G into sets A1, A2, . . . At+1, B1, B2, . . . , Bt+1,

X1, X2, . . . , Xt, such that the following conditions are satisfied.

(i) For all 1 ⩽ i, j ⩽ t+ 1 with i ̸= j, Ai is anti-complete with Aj, Bi is anti-complete

with Bj, and Ai is anti-complete with Bj.

(ii) For all 1 ⩽ i ⩽ t+ 1 Ai and Bi is connected.

(iii) The vertices of Ai, Ai+1, Bi, and Bi+1 are the only vertices outside of Xi that have

a neighbor in Xi.

(iv) There are (at least) two distinct (Ai ∪ Ai+1), (Bi ∪ Bi+1)-minimal separators in

G[Ai ∪Ai+1 ∪Bi ∪Bi+1 ∪Xi], S
i
1 and Si2, such that there is a path from Ai to Ai+1

through both Xi − Si1 and Xi − Si2 and there is a path from Bi to Bi+1 through

both Xi − Si1 and Xi − Si2.

A graph G is a t-critter if G has a t-critter partition. A graph G is t-critter free if G does

not contain a t-critter as an induced subgraph.

366

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Figure 7.2: The left hand graph is a general visualization of a 3-critter, the orange
blocks representing Si1 and the blue blocks representing Si2. The right hand graph is
specific instance of a 4-critter. The orange vertices represent the sets Si1 and the blue
vertices represent the sets Si2

367

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

The definition of t-critters is arguably technical and unappealing. After staring at

the definition for a few minutes the reader should be able to convince themselves that,

just as for k-creatures, for every vertex a ∈ A =
⋃
iAi and vertex b ∈ B =

⋃
iBi there

are at least 2t minimal a,b-separators in G disjoint from A ∪ B. In particular, in order

to separate a from b we may for every i ⩽ t choose to delete either Si1 or Si2, and for

every i the choice between Si1 or Si2 can be made independently of the other choices (see

Lemma 7.6.13). We are now ready to state our main theorem.

Theorem 7.1.4. For every pair of integers t, k the family of k-creature free and t-critter

free graphs is quasi-tame.

The upper bound in Theorem 7.1.4 on the number of minimal separators is nk
′ log17 n

where k′ is a constant that depends only on k and t. The proof of Theorem 7.1.4

contains some interesting ingredients, from the VC-dimension-based lemma of [5], to a

“greedy branching” procedure inspired by the recent quasi-polynomial time algorithm

for Independent Set on Pk-free graphs [1], to covering-packing dualities [52] and Ramsey-

and Erdös-Szekers [53] type arguments.

Theorem 7.1.4 is yet another sufficient condition for a graph to have few minimal

separators. To boot, the condition is very technical and the upper bound in the number

of minimal separators is an ugly quasi-polynomial function. What makes this sufficient

condition for an upper bound for the number of minimal separators special? What

makes it special is that it is the right sufficient condition, in the way that the conjecture

of Abrishami et al. [43] would have been right if only it had been correct. But don’t take

our word for it - we actually prove this in a precise and technical sense.

Let us apply the same litmus test for Theorem 7.1.4 as we did for the conjecture

of Abrishami et al. [43], and ask for which tame graph families F are not captured by

Theorem 7.1.4? Again there could be families of Type 1, namely families that do contain

368

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

graphs G that contain k-critters or k-creatures for every k, but such graphs G always also

contain at least 2Ω(k) additional unrelated vertices. Such families cannot be hereditary,

and so, if we restrict attention to hereditary families the only tame families that are not

captured by Theorem 7.1.4 are Type 2 families, that do contain k-critters or k-creatures

for every k, but these k-critters or k-creatures have at least 2Ω(k) vertices.

It is in fact possible to construct such hereditary families. It is even possible to

construct tame families that contain k-critters for every k, and yet are closed under

induced minors, disproving Conjecture 4 of the authors [5] in the process1 However all

such families are pretty artificial. The next theorem shows that they have to be artificial.

Monadic Second Order Logic (MSO) and their extension, Counting Monadic Second

Order Logic (CMSO), (see Section 7.6 for a definition) can be viewed as formal languages

to express families of graphs. In graph algorithms their main claim to fame probably

comes from from Courcelle’s Theorem [54], which states that every MSO-definable family

of graphs can be recognized in linear time on graphs of bounded treewidth. The over-

whelming majority of interesting graph families can be expressed in Counting Monadic

Second Order Logic, this includes all graph classes with a finite number of forbidden mi-

nors, induced minors, topological minors, induced subgraphs or subgraphs, and a number

of other classes such as bipartite, or perfect. We show that if we restrict attention to

CMSO-definable hereditary properties then the sufficient condition of Theorem 7.1.4 is

also necessary.

Theorem 7.1.5. Let F be a CMSO-definable hereditary graph family. If there exists an

integer k such that F neither contains a k-creature nor a k-critter then F is quasi-tame.

Otherwise F is feral.

The proof of Courcelle’s theorem [54] establishes that CMSO-definable graph classes

1We do not give such a construction in this paper, as it is long enough as it is.

369

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

have many properties in common with regular languages. This has been exploited with

great success in graph algorithms [45, 55], however, to the best of our knowledge, it has

never been used to prove a purely structural result such as Theorem 7.1.5

The proof of Theorem 7.1.5 is based on a “pumping lemma” style argument that

shows that a k-creature or k-critter on n vertices can be“pumped” to a k · x-critter on

n · x vertices, thereby demonstrating that in every CMSO-definable hereditary family

that contains k-creatures or k-critters for arbitrarily large k, there exist k-creatures or

k-critters in the family with only O(k) vertices.

Paper Organization. In Section 7.2 we review basic definitions and notations. In

Section 7.3 we give an overview of our proofs of Theorems 7.1.4 and 7.1.5.

The proof of Theorem 7.1.4 cleanly breaks into two parts, where the output of the first

part is then fed into the second part. The first part of the proof is given in Section 7.4,

while the second part of the proof is given in Section 7.5. Finally we prove Theoerm 7.1.5

in Section 7.6. It is worth noting that while the proof of Theorem 7.1.4 is a bit of

a monstrosity, the proof of Theorem 7.1.5 is relatively short and slick. If the reader is

willing to assume the statement of Theorem 7.1.4 on face value, the proof of Theorem 7.1.5

may be read independently of the proof of Theorem 7.1.4.

7.2 Preliminaries

Unless otherwise stated, graphs in this paper are assumed to be simple, undirected

graphs. We denote the edge set of a graph G by E(G) and the vertex set of a graph by

V (G). If v ∈ V (G), then we use NG[v] to denote the closed neighborhood of v in the

graph G, i.e. the set of all neighbors v has in G together with v itself. We use NG(v)

to denote the set NG[v]− {v}. If X ⊆ V (G), then NG[X] =
⋃
x∈X NG[x] and NG(X) =

370

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

NG[X]−X. When the graph G is clear from the context, we will use N [v], N(v), N [X],

and N(X). If X ⊆ V (G), then we use G[X] to denote the induced subgraph of G with

vertex set X and G−X denotes G[V (G)−X]. Additionally, for a natural number i, we

inductively define N i
G[X] to equal NG[X] if i = 1 and NG[N i−1

G [X]] for i > 1. Given a

graph G and disjoint sets X, Y ⊆ V (G) we define the distance between X and Y to be

the lowest integer i such that N i
G[X] ∩ Y ̸= ∅.

Given a graph G, a non-empty set S ⊂ V (G) is called a separator if there are at

least two distinct components L and R of G − S. If u ∈ L and v ∈ R then we call S a

u-v-separator or a u, v-separator. S is a u, v-minimal separator if S is a u, v-separator

and no proper subset of S is a u, v-separator, or equivalently, if NG(L) = NG(R) = S.

This equivalence is folkloric and easy to show. If C is a component of G − S such that

NG(C) = S, then we say that C is an S-full component. Similarly, given A,B ⊂ V (G)

we define S to be an A, B-separator if A ∩ S = B ∩ S = ∅ and no component of G− S

contains a vertex from both A and B. An A,B-minimal separator is an A, B-separator

such that no proper subset of S is an A, B-separator.

Let G be a graph. A vertex list (or simply a list), S, is an ordered tuple of vertex

sets of G, that is, S is a collection of vertex sets which allow multiple instances of its

vertex sets and gives an index to each element it contains. Let S = {S1, S2, . . . Sm} be a

vertex list and let S be a vertex set. We define S ∪S to be the list {S1, S2, . . . Sm, Sm+1}

where Sm+1 = S. Given a vertex list S we define NG[S] to be the vertex list where each

element S ∈ S is replaced with NG[S]. Lastly, for a set A ⊆ V (G), we define S − A to

be the vertex list {S1 − A, S2 − A, . . . Sm − A}

Given a graph G with n vertices, a set S ⊆ V (G) is called a δ-balanced separator if

no component of G− S contains over δ vertices.

Given a graph G, we say a vertex set C ⊆ V (G) is a connected vertex set if G[C] is

a connected graph. A walk in a graph G is a sequence v1, v2, . . . , vℓ of vertices in G such

371

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

that each pair of consecutive vertices in the sequence are adjacent. The length of a walk

v1, v2, . . . , vℓ is the number ℓ of vertices in the walk. A walk whose first vertex is v1 and

last is vℓ is a walk from v1 to vℓ. The vertex v1 is called the first vertex of the walk, vℓ

the last. All other vertices are internal vertices. A walk v1, v2, . . . , vℓ where all vertices

are distinct is a path. A path P = v1, v2, . . . , vℓ is an induced path if there are no edges

between vi and vj whenever |i − j| > 1. For three disjoint vertex sets A, B, C a walk

(or path, or induced path) from A to B through C is a walk (or path, or induced path)

whose first vertex is in A, last vertex is in B, and all internal vertices (if any) are in C.

We define contracting an edge. LetG be a graph. For an edge uv ∈ E(G) we define the

contraction of uv to result in a new graphG′ with vertex set V (G′) = (V (G)−{u, v})∪{w}

and there is an edge between two vertices x, y ∈ V (G′) − {w} in G′ if there is an edge

between x and y in G, and there is an edge between x ∈ V (G′)−{w} and w in G′ if there

is an edge x and u in G or an edge between x and v in G. Given a connected vertex set

A ⊂ V (G) we define the contraction of A to be the graph that results from contracting

all edges between every pair of vertices of A. It can easily be seen that the contractions

may be performed in any order without changing the final result.

Given a graph G we define a function CC(G) that returns a set which contains the

vertex sets of all connected components of G.

Given a graph G we say that two vertex sets A,B ⊆ V (G) are anti-complete if A and

B are disjoint and there is no edge in G between any vertex of A and any vertex of B.

Let X, Y ⊆ V (G) be disjoint sets. We define a semi-induced matching in G of size m

between X and Y to be two subsets X ′ ⊆ X, Y ′ ⊆ Y with X ′ = {x′1, x′2, . . . , x′m} and

Y ′ = {y′1, y′2, . . . , y′m} where x′i is neighbors with y′j in G if and only if i = j.

Let A and B be sets. The Cartesian product of A and B, denoted as A × B, is the

set with consists of all ordered pairs of the form (a, b) where a ∈ A and b ∈ B.

372

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

7.3 Overview

7.3.1 Generalized ω-Creatures

In order to prove Theorem 7.1.4 we will show that a graph that is k-creature free but

still has a large number of minimal separators must have a t-critter. t-critters are highly

structured objects and thus it is difficult to extract such objects from a graph directly,

so in order to find a t-critter in a k-creature free graph with many minimal separators,

we first construct an intermediate structure that we call a generalized ω-creature which

we will define shortly. Generalized ω-creatures are less structured than t-critters and

are thus easier to find in a graph, but they share some essential features with t-critters.

In fact, the last main component of our proof is that for any natural numbers t, every

generalized ω-creature, for ω large enough, contains a t-critter.

It is not necessary to have a full understanding of the definition of generalized ω-

creatures until the end Section 7.4.2. We nevertheless give the definition here as it

can help put the prior work of Section 7.4 into context which prepares the ground for

extracting a generalized ω-creature from a k-creature free graph with many minimal

separators.

Bistars, Bistar Partitions, and Generalized ω-Creatures. We define an ω-bistar,

H, to be a graph with two central vertices, denoted by cA and cB, and ω independent

vertices, called the peripheral vertices, that are neighbors with cA and cB (so H is a

complete bipartite graph with 2 vertices on one side and ω on the other).

Let G be a graph. We define an ω-bistar partition of G to be an ω′-bistar graph

H, with ω′ ⩾ ω, along with a function φ from V (G) to V (H) such that for every edge

uv ∈ V (G) either φ(u) = φ(v) or one of φ(u) and φ(v) is either cA or cB and the other

is a peripheral vertex. We will use Aφ to denote the vertices of G in φ−1(cA) and Bφ to

373

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

denote the vertices of G in φ−1(cB).

We now give the definition for generalized ω-creatures.

Definition 7.3.1 (Generalized ω-Creature). A generalized ω-creature is a tuple W =

(G,H, φ, S1, S2) where G is a graph, (H,φ) is an ω-bistar partition for G, and S1, S2 ⊆

V (G) with the following properties:

(i) There exists S⋆1 ⊆ S1 and S⋆2 ⊆ S2 such that for every peripheral vertex, u, of H,

φ−1(u)∩S⋆1 and φ−1(u)∩S⋆2 are distinct Aφ, Bφ-minimal separators in G[Aφ∪Bφ∪

φ−1(u)].

(ii) Aφ is entirely contained in one component of G− S1 and Bφ is entirely contained

in a different component of G − S1 and similarly Aφ is entirely contained in one

component of G − S2 and Bφ is entirely contained in a different component of

G− S2.

(iii) For every peripheral vertex u of H and all pair of components C1 and C2 of G[Aφ∪

Bφ] there is a path from C1 to C2 through φ−1(u)− S1 in G if and only if there is

a path from C1 to C2 through φ−1(u)− S2 in G.

(iv) For all peripheral vertices, u, of H, if a component, XA, of G[Aφ] has a neighbor

in φ−1(u) then there is at least one component, XB, of G[Bφ] such that XA has a

path through φ−1(u) to XB in G. Similarly, if a component, XB, of G[Bφ] has a

neighbor in φ−1(u) then there is at least one component XA of G[Aφ] such that XB

has a path through φ−1(u) to XA in G.

Note that by property (i) that for every u ∈ H, φ−1(u) must be non-empty. Sets

S⋆1 ⊆ S1 and S⋆2 ⊆ S1 satisfying property (i) of W are called witness separators for W .

374

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

For a generalized ω-creature W = (G,H, φ, S1, S2) we define the sets A1(W), A2(W),

B1(W) and B2(W) as the component of G − S1 that contains Aφ, the component of

G−S2 that contains Aφ, the component of G−S1 that contains Bφ, and the component

of G − S2 that contains Bφ respectively. The vertex sets A⋆1(W), A⋆2(W), B⋆
1(W) and

B⋆
2(W) are defined analogously, but with S⋆1 and S⋆2 in place of S1 and S2

Just like how for each Xi of a t-critter we can independently pick either S1
i or S2

i

to build a minimal separator for the t-critter (giving 2t minimal separators), it can be

shown that conditions (i)-(iii) together allow us, for each peripheral vertex u ∈ H, to

independently choose the vertex set S1∩φ−1(u) or S2∩φ−1(u) in order to build a minimal

separator, S, for the graph G of the generalized ω-creature W = (G,H, φ, S1, S2), giving

2ω such minimal separators. In such a minimal separator, the vertex sets Aφ will be in

one S-full component of G− S and Bφ will be in a different S-full component. We will

prove this later on in the paper.

7.3.2 Proof of Theorem 7.1.4

The following two lemmas show how generalized ω-creatures help us to prove Theo-

rem 7.1.4. Proving the first lemma is the main goal of Section 7.4 and proving the second

lemma is the main goal of Section 7.5. We will actually need a generalized ω-creature

with a some additional structure, in particular we will need the generalized ω-creature

to be a connected, good, full generalized ω-creature. We will introduce these definitions

later in the paper and the reader does not need to concern themselves with them at the

moment.

Lemma 7.3.2. Let G be a k-creature free graph with n vertices, let ω > 1 and δ = 3ω, let

c be an integer large enough so that 400k3δ2 log4(c) < c/6, let x = 400k3δ2 log4(n), and

let G have at least 2c(12n)6k
2x4 log(n) minimal separators. Then there exists an induced

375

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

minor G′ of G, an ω-bistar partition H and φ of G′, and sets S1, S2 ⊆ V (G′) such that

(G′, H, φ, S1, S2) is a connected, good, full generalized ω-creature.

Lemma 7.3.3. Let k ⩾ 2 and G be a k-creature free graph, and W = (G,H, φ, S1, S2)

be a connected, good, full generalized ω-creature. Then there exists an induced subgraph

G′ of G which is a t-critter for t ⩾ (log log(ω))1/4k

96k4
− 4.

This paper natural breaks up into two parts, first part where we prove Lemma 7.3.2

and the second where we prove Lemma 7.3.3. We will provide an outline of how we prove

Lemmas 7.3.2 and 7.3.3 later on in this section, right now we give a proof of Theorem 7.1.4

using Lemmas 7.3.2 and 7.3.3. Additionally, since Lemma 7.3.2 deals with an induced

minor G′ of G we need to show that k-creature free graphs and t-critter free graphs are

closed under taking induced minors. We state the lemmas here and prove them shortly.

Lemma 7.3.4. Let G be graph and let G′ be an induced minor of G. If G is k-creature

free then G′ is k-creature free.

Lemma 7.3.5. Let G be a graph and let G′ be an induced minor of G. If G is t-critter

free then G′ is t-critter free.

Proof: [proof of Theorem 7.1.4] Let G be a k-creature free graph with n vertices,

let ω be large enough to satisfy the inequality t ⩽ (log log(ω))1/4k

96k4
− 4 (note that the size of

ω only depends on t and k), let δ = 3ω, let c be large enough to satisfy the inequality

400k3δ2 log4(c) < c/6, and let x = 400k3δ2 log4(n), so x = k′ log4(n) where k′ only depends

on k and t. We will show that if G has at least 2c(12n)6k
2x4 log(n) = nO(log(n)17) minimal

separators then G must contain a t-critter. It follows from Lemma 7.3.2 that there is an

induced minor G′ of G, an ω-bistar partition H and φ of G′, and sets S1, S2 ⊆ V (G′)

such that W = (G′, H, φ, S1, S2) is a connected, good, full generalized ω-creature. By

Lemma 7.3.4 G′ is k-creature free. Then by Lemma 7.3.3 it follows that G′ contains a

376

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

t′-critter for t′ ⩾ (log log(ω))1/4k

96k4
− 4. By how ω was chosen we have t′ ⩾ t, so G′ contains a

t-critter. Hence, by (the contra-positive of) Lemma 7.3.5, G contains a t-critter.

We now give proofs for Lemmas 7.3.4 and 7.3.5. They are fairly straightforward and

just involve checking a few cases.

Proof: [proof of Lemma 7.3.4] Let G be a k-creature free graph. We first show that

the deletion of a single vertex or the contraction of a single edge leaves us with a graph

that is also k-creature free. Let v ∈ G. If G− v contains a k-creature, (A,X, Y,B), then

clearly G contains the same k-creature, (A,X, Y,B), hence G− v is k-creature free. Now

let uv be an edge of G, let G′ be the graph that results from contracting uv, and let w

denote the vertex that is creature from this contraction, so V (G′) = (V (G)−{u, v})∪{w}.

Assume for a contradiction that G′ contains a k-creature, (A,X, Y,B). We will break

the proof into cases when w either belongs to A,X, Y,B or none of these sets. By the

symmetry of k-creatures, the cases where w ∈ A and w ∈ B are identical and the cases

where w ∈ X and w ∈ Y are identical, so we will only prove the cases for w ∈ A, w ∈ X

and w /∈ A ∪X ∪ Y ∪B.

If w /∈ A,X, Y,B, then we can see that (A,X, Y,B) is a k-creature in G, a contradic-

tion. If w ∈ A, then we can see that ((A−{w})∪ {u, v}, X, Y,B) is a k-creature in G, a

contradiction. Lastly, if w ∈ X, say w = xi, then, in G, at least one of u, v is neighbors

with yi and at least one of u, v has a neighbor in A. If one of these two vertices, say u, is

both neighbors with yi and has a neighbor in A in G, then (A, (X − {w})∪ {u}, Y, B) is

a k-creature in G. So we may assume that in G exactly one of u, v is neighbors with yi,

say u, and does not have a neighbor in A, and that the other one, v, has a neighbor in

A (but is not neighbors with yi). It then follows that (A ∪ {v}, (X − {w}) ∪ {u}, Y, B)

is a k-creature in G.

A straightforward application of induction then shows that if G′′ is any induced minor

of G then since G is k-creature free, so is G′′.

377

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Proof: [proof of Lemma 7.3.5] Let G be a graph that is t-critter free. We first show

that the deletion of a single vertex or the contraction of a single edge leaves us with a graph

that is also t-critter free. Let v ∈ G. If G−v contains a t-critter, then clearly G contains

the same t-critter, hence G−v is t-critter free. Now, let uv be an edge in G, let G′ be the

graph that results in from contracting uv, and let w denote the vertex that is creature

from this contraction, so V (G′) = (V (G) − {u, v}) ∪ {w}. Assume for a contradiction

that G′ contains a t-critter, T , and let A1, A2, . . . At+1, B1, B2, . . . Bt+1, X1, X2, . . . , Xt be

the partitioning of the vertices of T given in Definition 7.1.3. We will break the proof

into cases when w either belongs to one of the Ai’s, one of the Bi’s, one of the Xi’s, or

none of these sets. By the symmetry of k-critters, the cases when w ∈ Ai for some i and

when w ∈ Bi for some i are identical, so we will only prove the cases where w ∈ Ai for

some i, w ∈ Xi for some i, and w /∈ T .

If w /∈ T then T is an induced subgraph of G and hence G contains a t-critter as

an induced subgraph, a contradiction. If w ∈ Xi for some i, then let T ′ be the induced

subgraph of G with vertex set (T −{w})∪{u, v}. It is straightforward to verify that the

partitioning A1, A2, . . . , At+1, B1, B2, . . . , Bt+1, X1, X2, . . . , (Xi − {w}) ∪ {u, v}, . . . Xt+1

of V (T ′) satisfies properties (i)-(iii) of Definition 7.1.3. Now, since T is a t-critter, there

are subsets Si1 and Si2 of Xi that satisfy property (iv) from Definition 7.1.3. Then, in T ′, it

can be seen that there exists Z1, Z2 ⊆ {u, v} such that (Si1−{w})∪Z1 and (Si2−{w})∪Z2

satisfy property (iv) and for all other sets Xj, j ̸= i it can be seen (using the same Sj1 and

Sj2 as in T) that property (iv) is satisfied in T ′. This again contradicts the assumption

that G is t-critter free. Lastly, if w ∈ Ai for some i, it is straightforward to verify that the

partitioning A1, A2, . . . , (Ai−{w})∪ {u, v}, . . . , At+1, B1, B2, . . . , Bt+1, X1, X2, . . . , Xt+1

satisfies properties (i)-(iv) of Definition 7.1.3. This contradicts the assumption that G is

t-critter free.

A straightforward application of induction then show show that if G′′ is an induced

378

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

minor of G, then G′′ is t-critter free.

7.3.3 An Overview of Lemma 7.3.2

In order to find a generalized ω-creature in a k-creature free graph G with many

minimal separators, we will “grow” sets A,B,C ⊆ V (G), where initially A and B only

contain a single vertex and C is the empty set. The goal is that in the end we will be able

to find a connected, good, full generalized ω-creature, W = (G′, H, φ, S1, S2), where A

and B correspond to the sets Aφ and Bφ and G′ = G−C. Intuitively, we use the minimal

separators of G as a resource in order to “grow” the sets A,B, and C and slowly obtain

all of the properties we will require of them. We try to motivate the key properties of A,

B, and C now.

We have, from the definition of an ω-bistar partition, that for any two peripheral

vertices u, v ∈ H there can be no edge between the sets φ−1(u) and φ−1(v). Since,

as noted as a consequence of property (i) in the definition of ω-creatures, for all u ∈

H, φ−1(u) ̸= ∅, the first property that we will need A, B, and C to satisfy is that

G − (A ∪ B ∪ C) has at least ω components (actually for technical reasons we will

need that no component of G − (A ∪ B ∪ C) contains many vertices which will imply

G− (A ∪B ∪ C) has at least ω components).

We now try to motivate the second property that we will require of A, B, and C.

As we mentioned before (when we introduced the definition of a generalized ω-creature)

that since W is a generalized ω-creature we can construct a minimal separator, S, of G′

by selecting sets of the form S1 ∩ φ−1(u) or S2 ∩ φ−1(u) for each peripheral vertex u in

H and unioning them together and S will have the property that Aφ and Bφ will be

contained in different S-full components of G−S. It turns out that in order to be able to

find sets S1 and S2 that have this nice property, we must be very careful to ensure that

379

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

as we grow A, B, and C that G has many minimal separators (at least µ
npolylog(n)

where

µ is the number of minimal separators of G) that are consistent with A, B, and C. We

will formally define this property later, but roughly speaking, a minimal separator S is

consistent with A, B, and C if A is contained in one S-full component of G − S and B

is contained in a different S-full component of G− S. This requirement isn’t surprising,

since as we just saw, the minimal separator S that was previously described has the

property that Aφ and Bφ will be contained in different S-full components of G− S.

A third and closely related property of A, B, and C that we will require is that

G[A] and G[B] have few components (where few means logO(1)(n)). This requirement

is partially (but though not entirely) due to property (iii) of generalized ω-creatures.

Intuitively, to get property (iii) to work out, we filter the minimal separators we consider

in such a way so that for all remaining separators under consideration, if we take any

pair, say S1 and S2, it holds that for every component X of G− (A ∪B ∪ C) and every

pair of components P,Q of G[A∪B] there is a path from P to Q through X − S1 if and

only if there is a path from P to Q through X−S2. As long as the number of components

of G[A] and G[B] stay small then by the pigeon hole principle this filtering step will not

lose too many minimal separators.

Thus, we have three apposing requirements we want A, B, and C to meet. On the

one hand, we want G − (A ∪ B ∪ C) to have no components with many vertices (and

therefore G−(A∪B∪C) will have at least ω components). This can be trivially satisfied

by just picking A, B, and C to be really large sets. But, our second and third properties

require us to be very careful with how we grow A, B, and C. Picking A, B, and C

without much care would probably result in G not having many minimal separators that

are consistent with A, B, and C and/or G[A] and G[B] having too many components.

It turns out that if we can find sets A, B, and C with these properties, then we

would be able to construct a generalized ω-creature. Finding A, B, and C with these

380

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

three properties is the focus of Subsection 7.4.1. Recall though that we do not just need

a generalized ω-creature, but a connected, good, full generalized ω-creature. Further

enriching A, B, and C to allow us to make a connected, good, full generalized ω-creature

is the goal of Subsection 7.4.2.

So, how do we find these sets A, B, and C that have the three previously described

properties? It involves a rather surprising combination and extension of two ideas.

The first idea comes from a quasi-polynomial time branching algorithm for indepen-

dent set on Pk-free graphs of Gartland and Lokshtanov [1]. In the algorithm used in [1],

when a vertex, v, is branched on the algorithm is recursively called on the inputs G− v

and on G−N [v]. The algorithm works by using n/2-balanced separators dominated by

few vertices (it is a critical property of Pk-free graph that they always have n/2-balanced

separators dominated by few vertices, we prove that k-creature free graphs also have this

property in Lemma 7.4.7) to guide the selection of a vertex v to branch on. This branch-

ing “efficiently” breaks up the graph into small connected components (similar to what

want the set A, B, and C, to do, but where “efficient” now does not refer to run time,

but the fact that G has many minimal separators that are consistent with A, B, and C.

It turns out that these two notions of “efficient” are strongly connected). Because we

are working with k-creature free graphs though instead of Pk-free graphs, our process of

selecting which vertex v to branch on becomes more complicated and requires some new

ideas.

The second idea we use allows us to bridge this gap between independent set branching

used in [1] and our goal of “growing” the sets A, B, and C. This idea is a lemma which

appears in [5] where the authors prove that if G is a k-creature free graph with n vertices,

then for every v ∈ V (G), if Sv = {N(v)∩S| S ∈ S and v /∈ S} then |Sv| ⩽ nk. Intuitively,

when a vertex, v, has been selected, instead of branching on the vertex and removing the

set N [v] from G, this lemma allows us to to allocate the vertices of N [v] to the set A, B,

381

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

and C in such a way that many minimal separators of G remain consistent with A, B,

and C.

7.3.4 An Overview of Lemma 7.3.3

In the second part of the paper we extract a k-critter from an ω-creature as long as

ω is sufficiently large compared to k, and satisfies some additional structural properties

(namely is good, connected, and full). For the purposes of this overview we will not need

the precise definition of these notions.

The first thing a reader should notice is that a k-critter is a generalized k-creature.

Consider a k-critter partition (A1, . . . , Ak+1, B1, . . . , Bk+1, X1, . . . , Xk) of a graph G. Set

A =
⋃
iAi and B =

⋃
iBi. Letting H be a k-bistar we define the function φ that maps

all vertices in A to cA, all vertices in B to cB and each Xi to the ith peripheral vertex of

H. We then set S1 =
⋃
i S

i
1 and S2 =

⋃
i S

i
2. It can now be verified that (G,H, φ, S1, S2)

is in fact a generalized k-creature.

This fact is never stated or used explicitly in the proof, but it should help the reader

understand what is going on. We have at hand a generalized ω-creature for some gigantic

value of ω. Our goal is to extract from it a highly structured generalized k-creature. Here

gigantic means that ω is bigger than any given function of k, but does not depend on n.

The key difference between a k-critter and a generalized ω-creature is that in a k-

critter, every Xi has neighbors in precisely 4 components of G[A ∪B], namely Ai, Ai+1,

Bi and Bi+1. On the other hand, the (pre-image φ−1(v) of) peripheral vertices v of a

generalized ω-creature (which correspond to the Xi’s of a k-critter) may have neighbors

in any number of components of G[A ∪B].

Now the proof for extracting a k-critter from the generalized-ω creature goes like a

typical “Ramsey Theory” style proof. We are given a large and unstructured object (here

382

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

the largeness of the object is the number ω of peripheral vertices) and the goal is to extract

from it a smaller, but still large, structured sub-object. We proceed in several steps. First

we extract a generalized ω-creature in which the adhesion size is upper bounded by 2k.

The adhesion size is the maximum number of components of G[A∪B] that a peripheral

vertex φ−1(v) can have neighbors into. From the generalized ω-creature of bounded

adhesion size we then extract a “path-like” generalized ω′-creature, for ω′ roughly equal

to logω. After some additional steps we extract a “critter-like” generalized ω′-creature,

which basically is an ω′-critter.

It would seem that we are done. But no! We are not able to actually execute the

arguments in the way we described above. Instead we are able to get each of the properties

listed above on “one side”, say the A side, of the generalized ω′-creature. After the A-side

is critter-like we need to turn around and re-do all of the arguments again for the B-side.

However, this time when we are cleaning the B-side we need to make sure that we don’t

break the nice properties that we worked so hard for on the A side. After both sides of

the generalized ω′-creature are critter-like, we inspect its properties and observe that it

is in fact an ω′-critter. In several places of the argument we may stumble on a k-creature

instead of the more structured generalized ω-creature that we are looking for. In that

case we halt and declare a win.

In order to execute this Ramsey-Theory style argument we need to define ways in

which we can remove a few pieces of our generalized ω-creature while still keeping it a

generalized ω-creature. For this we need to define three operations – dissolve, absorb

and erase. One can think of these operations as analogues standard graph operations

like vertex deletion, edge deletion and edge contraction for graphs, but for operating on

generalized ω-creatures instead.

Because generalized ω-creatures are somewhat brittle and have a long and technical

definition, every change to them requires us to go over and verify that the definitions are

383

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

maintained. This makes many of these proofs excruciatingly long and wordy.

7.3.5 An Overview of Theorem 7.1.5

Let F be a CMSO-definable hereditary graph family. Theorem 7.1.5 consists of two

main statements regarding F namely (i) If there exists an integer k such that F neither

contains a k-creature nor a k-critter then F is quasi-tame, and (ii) otherwise F is feral.

Statement (i) follows directly from Theorem 7.1.4. The premise of the “otherwise” case

of Theorem 7.1.5 is that the family F contains, for every k, a k-creature or a k-critter.

Because a k-creature contains a (k− 1)-creature as an induced subgraph, and a k-critter

contains a (k − 1)-critter as an induced subgraph, it follows that F either contains a

k-creature for every k, or a k-critter for every k (or both). Thus, to prove Theorem 7.1.5

we are left with proving two implications, namely

(i) if F contains a k-creature for every k then F is feral, and

(ii) if F contains a k-critter for every k then F is feral.

The approach for proving both implications is to use the fact that F is hereditary

and CMSO-definable to show that if F contains a k-creature (k-critter) for every k then

F contains for every k a k-creature (k-critter) with O(k) vertices. Here the constant

hidden in the big-oh depends on the CMSO formula describing F . Since k-creatures and

k-critters both contain 2k minimal separators this proves that F is feral.

We now sketch the proof of (i). The authors showed in [5] that for every k there

exists a k′ such that every k′-creature contains one of six highly structured k-creatures as

an induced subgraph. Since our premise is that F contains a k-creature for every k, we

may now assume without loss of generality that F contains one of these six structured

k-creatures for every k.

384

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

All of the the six structured k-creatures have the property that they can be partitioned

into at most 5k paths, such that only the endpoints of these paths have neighbours on

the outside (this is not quite true, but close enough to the truth for this overview, see

Section 7.6). Therefore, if the structured k-creature G ∈ F has more than c · 5k vertices,

then it contains an induced path on at least c vertices, such that only the endpoints of

the path have neighbors on the outside of the path.

We now use the “regular-like” properties of CMSO-definable families: From the per-

spective of being a member of F there exists some universal constant γ, such that for

every path P of length more than γ there exists a path P ′ of length at most γ such

that “replacing” P with P ′ in G (which amounts to shortening the relevant path by

|V (P)| − |V (P ′)| vertices) does not affect whether the graph is in F or not.

In particular if G was in F before the path shortening, then it is also in F after. But

shortening a path in G does not destroy the property of G being a k-creature. Thus, as

long as c > γ and the number of vertices in the k-creature is at least c · 5k we can prove

that F contains a structured k-creature strictly smaller than G. Hence F must contain

a k-creature on at most 5ck vertices.

The proof for k-critters is based on the same idea, but now things are more technical

because k-critters do not necessarily contain long paths. Instead we prove that a k-critter

contains a cut of size 3 in each Xi, and use these cuts to drive our “pumping” argument.

7.4 Finding A Generalized ω-Creature

In order to find a generalized ω-creature in a k-creature free graph G with many

minimal separators, we will “grow” sets A,B,C ⊆ V (G), where initially A and B only

contain a single vertex and C is the empty set. The goal is that in the end we will be

able to find a generalized ω-creature, W = (G′, H, φ, S1, S2) where A and B correspond

385

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

to the sets Aφ and Bφ and G′ = G − C. Intuitively, we use the minimal separators of

G as a resource in order to “grow” the sets A,B, and C and slowly obtain all of the

properties we require of them. As we mentioned before, when we construct a minimal

separator, S, by selecting sets of the form S1 ∩φ−1(u) or S2 ∩φ−1(u) for u ∈ H, Aφ and

Bφ will be contained in different S-full components of G− S. Hence, as we are growing

the sets A, B, and C we should try and keep tract of the minimal separators, S, such

that A is contained in one S-full component of G − S, B is contained in some different

S-full component, and the vertices of C are “irrelavant” in some sense (as we wind up

just removing the vertices of C from G to get G′). It turns out the the correct notion of

“irrelavant” is that these vertices are in neither of the S-full components A and B are

contained in. This motivates the following definition.

Definition 7.4.1. Let G be a graph, let A,B,C ⊆ V (G), and let S be a minimal

separator of G. We say that S is consistent with A, B, and C if the vertices of A all

belong to one S-full component of G−S, the vertices of B all belong to a different S-full

component of G− S, and no vertex of C belongs to the same component as a vertex in

A ∪B does in G− S .

We make the following two observations about this definition which we will use fre-

quently without explicit reference.

Observation 7.4.2. Let G be a graph and let A,B,C ⊆ V (G). If there is at least one

minimal separator of G that is consistent with A,B, and C, then A and B are anti-

complete and C is disjoint from A ∪B.

Proof: Let G be a graph and let A,B,C ⊆ V (G) and assume S is a minimal

separator of G that is consist with A, B, and C. Since A and B are contained in

different components of G − S, then A and B must be anti-complete. Since no vertex

386

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

of C belongs the the same component that a vertex in A ∪B does in G− S, C must be

disjoint from A ∪B.

Observation 7.4.3. Let G be a graph, let A,B,C ⊆ V (G), and let S be a minimal

separator that is consistent with A, B, and C. If v ∈ S, then S is consistent with A,B,

and C ∪ {v}.

Proof: Let G be a graph, let A,B,C ⊆ V (G), and let S be a minimal separator that

is consistent with A, B, and C. If v ∈ S, then v will not belong to the same component

that a vertex in A ∪B does in G− S, hence S is consistent with A,B, and C ∪ {v}.

We now formalize this notion of C being a set of “irrelevant” vertices in the following

lemma.

Lemma 7.4.4. Let G be a graph, let A,B,C ⊆ V (G) with A,B ̸= ∅, and let S be

a minimal separator that is consistent with A, B, and C. Then S − C is a minimal

separator of G− C that is consistent with A,B, and ∅. Furthermore, if S ′ is a minimal

separator of G that is consistent with A,B, and C such that S ̸= S ′, then S−C ̸= S ′−C.

Proof: Let G be a graph, let A,B,C ⊆ V (G) with A,B ̸= ∅, and let S be a

minimal separator of G that is consistent with A, B, and C. Let AS and BS be the S-full

components of G−S that contain A and B respectively, so C ∩ (AS ∪BS) = ∅. It follows

that AS and BS are then (S −C)-full components of (G−C)− (S −C), hence S −C is

a minimal separator of G− C that is consistent with A, B, and ∅.

Now let S ′ be another minimal separator of G that is consistent with A,B, and C

such that S ′ ̸= S. By the preceding paragraph, if AS′ and BS′ are the S ′-full components

of G − S ′ that contain A and B, then AS′ and BS′ are then (S ′ − C)-full components

of (G − C) − (S ′ − C). Now, if S ′ − C = S − C, then the (S − C)-full components are

the same as the (S ′ − C)-full components, hence AS = AS′ and BS = BS′ , but this then

implies that S = S ′.

387

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

The previous lemma more or less shows that we can remove the vertices of C from G

without having much of an effect on the minimal separators of G that are consistent with

A, B, and C, so the reader may intuitively think of these vertices as being irrelevant.

Lastly, we prove a lemma which shows that as far as minimal separators of G that are

consistent with A, B, and C are concerned, we can intuitively think of the components

of G[A] and G[B] as actually being just single vertices of the graph.

Lemma 7.4.5. Let G be a graph, let A,B,C ⊆ V (G), let S be a minimal separator of G

that is consistent with A,B, and C, and let G′ be the graph that results from contracting

each component of G[A] and G[B] in G. Then S is a minimal separator of G′.

Proof: Let G be a graph, let A,B,C ⊆ V (G) and let S be a minimal separator of G

that is consistent with A, B, and C, it follows that S ∩ (A ∪B) = ∅. Let AS and BS be

the S-full components of G− S that contain A and B respectively. Let G′ be the graph

that results from contracting each component of G[A] and G[B] in G, and let A′
S and

B′
S be the vertex sets of G′ that correspond to AS and BS. Then A′

S and B′
S are S-full

components of G′ − S, hence S in a minimal separator in G′.

We could have actually strengthened the result of the previous lemma by also showing

that if A′ and B′ are the vertices of G′ that correspond to the components of G[A] and

G[B] in G, then S is a minimal separator of G′ that is consistent with A′, B′, and C.

We have no need for such a strengthening though so we do not prove this. In most

cases, we will not explicitly preform the contractions that Lemma 7.4.5 allows us to do

as this would create some additional technical complications in our proofs. But, the

reader should note that since the components of G[A] and G[B] can all be contracted to

single vertices without destroying much structure in G (as far as minimal separators that

are consistent with A, B, and C are concerned), these components can often intuitively

be thought of as if they were single vertices.

388

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

In order to construct a generalized ω-creature from a k-creature free graph G with

many minimal separators we will combine structural properties that k-creature free

graphs have and use the minimal separators of G as a resource, which if given enough of

(more than some amount that is quasi-polynomial in the number of vertices) will allow

us to make a generalized ω-creature for some large value of ω. Our goal of creating a

generalized ω-creature can be split into two main smaller goals.

The first goal is to find (or “grow”) vertex sets A, B and C so that no component

in G − (A ∪ B ∪ C) has many vertices (say no more that n/δ for some large value of

δ) while maintaining that a large fraction of the minimal separators of G are consistent

with A,B, and C as well as that G[A] and G[B] have few (poly-log(n)) components.

This process of growing A, B and C shares many similarities with the quasi-polynomial

time algorithm for independent set on Pk-free graphs by [1], although more complex as

Pk-free graphs are in many ways more structurally simple when compared to k-creature

free graphs. Additionally, we borrow tools from [5] which allow us to translate indepen-

dent set branching techniques into branching techniques that can be applied to minimal

separators.

The second goal is to leverage the facts that G[A] and G[B] have few components

(which from our previous discussion we can pretend each component is just a single

vertex), G − (A ∪ B ∪ C) has many small components, and G still has many minimal

separators that are consistent with A,B, and C in order to “grow” A, B, and C into

sets A′, B′, and C ′ and find a generalized ω-creature, W = (G′, H, φ, S1, S2), where G′

is G − C ′, Aφ = A′, Bφ = B′, and for each peripheral vertex u ∈ H the set φ−1(u)

corresponds to a component of G − (A′ ∪ B′ ∪ C ′). Additionally, the generalized ω-

creature we will build will have a little bit more structure than is required from a regular

generalized ω-creature, which will allow us to prove in Section 7.5.1 that for all peripheral

vertices u ∈ H, φ−1(u) will have neighbors in less than k components of G′[Aφ] and

389

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

G′[Bφ].

7.4.1 Breaking up G

Lemma 7.4.6. Let G be a k-creature free graph (assume k ⩾ 2) with n ⩾ 2 vertices

and µ minimal separators and let δ > 1. Then there exists sets A,B,C ⊆ V (G) with

A,B ̸= ∅ where the following properties hold:

(i) No component of G− (A ∪B ∪ C) contains over n/δ vertices.

(ii) G has at least µ/(12n(k+1))400k
3δ2 log4(n) minimal separators that are consistent with

A,B, and C.

(iii) The number of components of G[A ∪B] is at most 400k3δ2 log4(n).

This section is devoted to proving Lemma 7.4.6 and Lemma 7.4.6 is the only lemma

from this section that is used outside of this section.

We find (or “grow”) A, B, and C of Lemma 7.4.6 using techniques similar to those

used by Gartland and Lokshtanov [1] where they give a quasi-polynomial time branching

algorithm for independent set on Pk-free graphs. A crucial step of the algorithm is proving

that Pk-free graphs have balanced separators that are dominated by few vertices. As we

now show, k-creature free graphs also have balanced separators dominated by few vertices.

Let G be a graph with n vertices and let S ⊆ V (G) such that S is not an n/2-

balanced separator, hence G− S has a unique component with over n/2 vertices. In the

following proof we will refer to this component as the large component of G−S, all other

components of G− S will be referred to as small components.

Lemma 7.4.7. Let G be a k-creature free graph with n vertices, then there is a set

S ⊆ V (G) such that S is an n/2-balanced separator and S can be dominated by 2k

vertices.

390

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Proof: Let G be a k-creature free graph with n vertices. Assume for a contradiction

that G does not contain an n/2-balanced separator dominated by at most 2k vertices.

Consider all vertex sets, S, such that S is dominated by at most k vertices (hence S

is not an n/2-balanced separator and therefore G − S has a large component) and S is

dominated by some small component, A, of G − S. The open neighborhood of a single

vertex meets these conditions, so at least one set satisfies this property. Now, among all

such sets, let S ′ be a set such that the size of the large component of G− S ′ is smallest.

Let C denote the large component of G − S ′, let A denote some small component of

G − S ′ that dominates S ′, and let X be a vertex set of size at most k that dominates

S ′. Note by how S ′ was chosen (to minimize the size of the large component, C), S ′

is not anti-complete with C, since if it was, C would be a component of G. But then

c ∈ C would have the property that the largest component of G − NG(c) would have

fewer vertices than C, which would contradict how S ′ was chosen.

Let Y ⊆ V (G) be a set of size at most k. Since C is the only component of G − S ′

that has over n/2 vertices, if no component of G[C −NG[Y]] has over n/2 vertices then

no component of G− (S ′∪NG[Y]) has over n/2 vertices. Since X dominates S ′ it follows

that no component of G − (NG[X] ∪ NG[Y]) has over n/2 vertices, but since X and

Y both have size at most k this implies G has an n/2 balanced separator of size at

most 2k, contrary to assumption. So, for any set Y ⊆ V (G), the largest component of

G[C −NG[Y]] has over n/2 vertices and hence this largest component is unique.

For all sets Z ⊆ S ′ of size at most k, let CZ denote the component of G[C −NG[Z]]

= G[C − (NG[Z] ∩ C)] that has over n/2 vertices (which must exists by the previous

paragraph), let γZ denote the number of neighbors that CZ has in S ′ − Z, and let γ

denote the minimum over all γZ . Let Z ′ ⊆ S ′ be a set of size at most k where CZ′ has

exactly γ neighbors in S ′ − Z ′. We study two cases now, one where γ = 0 and the other

where γ > 0 and get a contradiction in both cases, which will allow us to conclude that

391

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

our assumption that G does not contain an n/2-balanced separator dominated by 2k

vertices is impossible.

Case 1: Assume γ = 0. We will show that NG[Z ′] ∩ C is dominated by at most k

vertices (namely the vertices of Z ′), NG[Z ′] ∩ C is dominated by a small component of

G− (NG[Z ′]∩C), and the large component of G− (NG[Z ′]∩C), is strictly smaller than

the large component of G− S ′, contradicting how S ′ was chosen. Since |Z ′| ⩽ k, clearly

any subset of NG[Z ′] ∩ C is dominated by at most k vertices, which establishes the first

condition we must show.

Now, since C is a component of G− S ′ and CZ′ is a component of G[C − (NG[Z ′] ∩

C)], CZ′ is a component of G − (S ′ ∪ (NG[Z ′] ∩ C)). Because CZ′ is a component of

G− (S ′ ∪ (NG[Z ′]∩C)), NG(CZ′) ⊆ S ′ ∪ (NG[Z ′]∩C), furthermore by assumption γ = 0

so no vertex of CZ′ has a neighbor in S ′ − Z ′, it follows that NG(CZ′) ⊆ NG[Z ′] ∩ C.

Hence CZ′ is a component of G − (NG[Z ′] ∩ C), and therefore the large component of

G− (NG[Z ′] ∩ C) since by definition (two paragraphs above), CZ′ has over n/2 vertices.

Now, if NG[Z ′] ∩ C = ∅ then since γ = 0 this implies S ′ is anti-complete with C,

but as noted in the first paragraph, S ′ is not anti-complete with C, so NG[Z ′] ∩ C ̸= ∅.

Since NG[Z ′] ∩ C ̸= ∅, it holds that C ′
Z is a strict subset of C. Lastly, recall that A

is a small component of G − S ′ that dominates S ′, so since A and S ′ are both disjoint

from C (and hence no vertices from A ∪ S ′ belong to CZ′) and Z ′ ⊆ S ′, the vertices of

A∪S ′ will belong to a small component of G− (NG[Z ′]∩C) that dominates NG[Z ′]∩C.

Hence, NG[Z ′] ∩ C is dominated by a set of at most k vertices (namely Z ′), NG[Z ′] ∩ C

is dominated by a small component of G − (NG[Z ′] ∩ C), and the large component of

G− (NG[Z ′]∩C), specifically CZ′ , is strictly smaller than the large component of G−S ′,

specifically C, contradicting how S ′ was chosen. We may then conclude that γ = 0 is

impossible.

392

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Case 2: Assume γ > 0. Among all sets Z ⊆ S ′ of size at most k such that number of

neighbors CZ has in S ′−Z is γ, let Ẑ be one of smallest size (fewest vertices). If |Ẑ| < k

then γ must be 0 or else we could add an element of S ′ − Ẑ that has a neighbor in CẐ

to Ẑ to get a set Ẑ ′ ⊆ S ′ of size at most k and CẐ′ would have less than γ neighbors in

S ′ − Ẑ ′ which contradicts the how we chose γ. So, since by assumption γ ̸= 0, we have

that |Ẑ| = k.

Next, we claim that every vertex zi ∈ Ẑ has a private neighbor wi ∈ NG[Ẑ] ∩ C

which in turn has a neighbor in the large component of C − NG[Ẑ], CẐ . Assume for

a contradiction that this claim is false, so there is a vertex z ∈ Ẑ such that for every

neighbor w ∈ NG[Ẑ]∩C that z has, where w also has a neighbor in CẐ , there is another

vertex in Ẑ− z that is a neighbor of w. We claim that by how z was chosen, CẐ = CẐ−z.

It follows immediately from the definition of these sets that CẐ ⊆ CẐ−z.

Next note that since CẐ is a component of C − (NG[Ẑ] ∩ C), NC(CẐ) ⊆ NG[Ẑ] ∩ C.

So, if CẐ−z ̸⊆ CẐ then since both sets are connected and CẐ ⊂ CẐ−z ⊆ C, it must be

that there is some v ∈ CẐ−z such that v ∈ NC(CẐ) ⊆ NG[Ẑ] ∩ C. Since no vertex of

NG[Ẑ−z]∩C is in CẐ−z, it must be that v ∈ NG(z)∩C and v /∈ NG[Ẑ−z]∩C. Therefore

v ∈ NG[Ẑ]∩C, is a neighbor of z, v has a neighbor in CẐ , and v is not a neighbor of any

vertex in Z − z, contrary to how z was chosen. Hence CẐ = CẐ−z.

So, there is no vertex in CẐ−z that is a neighbor of z, hence number of neighbors that

CẐ−z has in S ′ − (Ẑ − z) is γ, which contradicts that Ẑ was chosen to be as small as

possible since the number of neighbors CẐ−z has in S ′ − (Ẑ − z) is also γ. We may then

let W denote the set that contains these wi’s from the claim we just proved.

We now show that (A, Ẑ, W , CẐ) is a k-creature. By how A and CẐ were chosen,

we have that G[A] and G[CẐ] are connected. Next, A and C are both vertex sets of

components of G − S ′, so A and CẐ are anti-complete since CẐ ⊆ C, A and W are

393

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

anti-complete since W ⊆ C, and Ẑ and CẐ are anti-complete since CẐ ⊆ C − NG[Ẑ].

Next, by the definition of A, A dominates S ′ and therefore dominates Ẑ ⊆ S ′ and by

definition of CẐ we can see that CẐ dominates W . Lastly, by how the vertices of W were

selected, there is a semi-induced matching between Ẑ and W and |Ẑ| = |W | = k. It

follows that (A, Ẑ, W , CẐ) is a k-creature, a contradiction to the assumption that G is

k-creature free.

It now follows that the original assumption that G does not contain an n/2-balanced

separator dominated by 2k vertices is impossible.

Lemma 7.4.8. Let G be a k-creature free graph with n vertices and let δ > 1, then there

is a set S ⊆ V (G) such that S is an n/δ-balanced separator and S can be dominated by

8kδ vertices.

Proof: Let G be a k-creature free graph with n vertices and let δ > 1. We will prove

by induction on i that G has an n/2i-balanced separator dominated by 4k2i vertices. By

rounding to the nearest multiple of 2, this proves that G has an n/δ-balanced separator

that is dominated by 8kδ vertices.

Lemma 7.4.7 handles the base case where i = 1. Assume that for all i less than

j > 1, G has a n/2i-balanced separator dominated by 4k2i vertices. We show that G has

a n/2j-balanced separator dominated by 4k2j vertices. By the inductive hypothesis, G

has an n/2j−1-balanced separator, S, dominated by 4k2j−1 vertices. There are at most

2j components of G − S that have over n/2j vertices, so for each such component, Cr,

apply Lemma 7.4.7 to get an |Cr|/2-balanced separator Sr for G[Cr] that is dominated

by 2k vertices. Setting S ′ = S ∪ (
⋃
r

Sr) it follows that S ′ is an n/2j-balanced separator

for G. Furthermore, since there are at most 2j Sr’s, each of which is dominated by 2k

vertices, S ′ is dominated by 4k2j−1 + 2k2j = 4k2j vertices.

In the branching algorithm used in [1], balanced separators for a Pk-free graph, G,

394

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

are collected in order to guide in the selection of a vertex, v, to branch on, the algorithm

is recursively called on the input G − v and on G − N [v] and it can be shown that

with well chosen v, the graph G will be efficiently broken up into small components. In

our methods here, we do not wish to remove vertices from the graph, but either add

v or N [v] to the sets A,B and C to get new A, B, and C sets. We actually will not

be branching either, but greedily choosing the branch that roughly corresponds to the

one that contains a new A, B, and C that have the most minimal separators that are

consistent with the new A, B, and C. We will use the term refining on a vertex v when

refer to this “greedy branching” process. At each refining step, some vertices are added

to A,B, and C, so the number of minimal separators that are consistent with A, B,

and C drops by some factor, but because this refining process efficiently breaks up the

graph into small components, we will be able to grow A, B, and C into sets where all

components of G− (A∪B ∪C) are small, and additionally there will still be some large

fraction of minimal separators of G that are consistent with A, B, and C.

We now discuss refining in a little more in depth. In general, given v ∈ G, there are

3|NG[v]| way to allocate the vertices of N [v] into the sets A, B, and C (and therefore 3|N [v]|

different refinement options that must be considered), so we cannot guarantee that any

of the refinement options correspond to a new A, B, and C such that a large fraction of

minimal separators are consistent with A, B, and C. But, if G is k-creature free, then the

next three lemmas, the first of which is taken from [5] and the second of which is a slight

strengthening of the first, shows that we only need to consider roughly nk refinement

options and this allows us to guarantee that at least one option corresponds to a new A,

B, and C such that a large fraction of minimal separators are consistent with A, B, and

C.

Lemma 7.4.9 ([5]). Let G be a k-creature-free graph with n vertices and let S be a set

395

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

of minimal separators of G. Then for every v ∈ V (G), if Sv = {N(v) ∩ S| S ∈ S and

v /∈ S} then |Sv| ⩽ nk.

Lemma 7.4.10. Let G be a k-creature free graph with n vertices, let U ⊆ V (G) be a

vertex set such that G[U] has c components, let S be a set of minimal separators of G,

and let SU = {N(U) ∩ S|S ∈ S and U ∩ S = ∅}. Then |SU | ⩽ nkc.

Proof: Let G be a k-creature free graph with n vertices, let U ⊆ V (G) be a vertex

set such that G[U] has c components, let G′ be the graph that results from contracting

each component of G[U] in G, and let U ′ be the vertices of G′ that correspond to the

components of G[U], so U ′ has c vertices and by Lemma 7.3.4 G′ is k-creature free.

Observe that if S is a minimal separator of G such that U ∩ S = ∅, then S is also a

minimal separator of G′ such that S∩U ′ = ∅ and furthermore NG(U)∩S = NG′(U ′)∩S.

So to prove this lemma it is sufficient to prove that if SU ′
= {N(U ′) ∩ S|S ∈ S and

U ∩ S = ∅} then |SU ′| ⩽ nkc.

For ui ∈ U ′ let Sui = {N(ui) ∩ S|S ∈ S and ui /∈ S} and let V ∈ SU
′
. Then we

can see that for each ui ∈ U ′ we can select a Vi ∈ Sui such that V =
⋃
Vi. Since by

Lemma 7.4.9 Sui has at most nk elements and U ′ has c elements, it follows that SU
′

has

at most nkc elements.

Lemma 7.4.11. Let G be a k-creature free graph with n vertices, let A,B,C ⊆ V (G),

let G have µ minimal separators that are consistent with A, B, and C, and let v ∈ G.

Then at least one of the following cases apply:

(i) At least (1−1/n)µ minimal separators of G are consistent with A, B, and C∪{v}.

(ii) There exists A′, B′, C ′ ⊆ V (G) such that at least (1/3)(1/nk+1)µ minimal separators

of G are consistent with A′, B′, and C ′ where A ⊆ A′, B ⊆ B′, and C ⊆ C ′,

NG[v] ⊆ (A′∪B′∪C ′), and the number of components in G[A′∪B′] is at most one

more than the number of components in G[A ∪B].

396

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Proof: Let G be a k-creature free graph with n vertices, let A,B,C ⊆ V (G), let G

have µ minimal separators that are consistent with A, B, and C, and let S denote this

set of minimal separators. Let v ∈ G, if at least (1 − 1/n)µ minimal separators of S

contain v, then since S is consistent with A,B, and C ∪ {v}, case (i) is satisfied. So, we

may assume that at least µ/n minimal separators of S do not contain v. It then follows

that for at least µ/3n minimal separators S ∈ S, either v belongs to the same component

that A does in G − S, v belongs to the same component B does in G − S, or v does

not belong to the same component A does in G− S nor the same component B does in

G− S.

First, assume that for at least µ/3n minimal separators S ∈ S, v belongs to the same

component that A does in G−S, denote this subset of S by SA. By Lemma 7.4.10 there

are at most nk sets of the form NG(v) ∩ S for S ∈ SA, hence for some set, X, there are

at least µ/3nk+1 minimal separators, S, of SA such that NG(v) ∩ S = X, denote this

subset of SA as SXA . Since for all S ∈ SXA v belongs to the same component that A does

in G− S, it follows that all vertices of NG[v]−X belong to the same component that A

does in G− S, hence S is consistent with A ∪NG[v]−X,B and C. Furthermore, since

X ⊂ S, it then holds that S is consistent with A ∪ NG[v] − X,B, and C ∪ X. It then

follows that case (ii) of the lemma statement is satisfied in this case (the additional new

component of G[A′ ∪B′] arises if NG[v]−X is anti-complete with A, making NG[v]−X

the new component of G[A′ ∪B′]).

The case where for at least µ/3n minimal separators S ∈ S, v belongs to the same

component that B does in G − S is handled in the exact same was as in the previous

paragraph. So, we now consider the case where for at least µ/3n minimal separators

S ∈ S, v does not belong to S, nor does v belong the same component A does in G− S,

nor the same component B does in G−S. Denote this subset of S by S ′. Since for S ∈ S ′

v /∈ S, it follows that no vertex of NG(v) belongs to the same component A does in G−S
397

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

nor the same component B does in G− S. Hence, for S ∈ S ′, S is consistent with A, B,

and C ∪NG[v]. It then follows that case (ii) of the lemma statement is satisfied in this

case, completing the proof.

We now define a function which formalizes this refinement process (greedily choosing

the the best branch). This function will play a central role in this section.

Definition 7.4.12. Let G be a k-creature free graph with n vertices, let v ∈ G, and let

A,B,C ⊆ V (G). We define a function Refine(G, v,A,B,C). We match the output of

Refine(G, v,A,B,C) according to the first case of Lemma 7.4.11 that is met by G, v,A,

B, and C. Refine(G, v,A,B,C) returns:

(i) (A,B,C ∪ {v}) if case (i) of Lemma 7.4.11 is the first case satisfied.

(ii) (A′, B′, C ′) if case (ii) of Lemma 7.4.11 is the first case satisfied, where A′, B′ and

C ′ are the sets whose existence is given by case (ii) of Lemma 7.4.11.

If the return of Refine(G, v,A,B,C) comes from case (i) then we call Refine(G, v,A,B,C)

a failure refinement, else we call Refine(G, v,A,B,C) a success refinement.

A simple application of Lemma 7.4.11 then gives us the following lemma.

Lemma 7.4.13. Let G be a k-creature free graph with n vertices, let A,B,C ⊆ V (G),

let G have µ minimal separators that are consistent with A, B, and C, let v ∈ G, and

let A′, B′, C ′ = Refine(G, v,A,B,C). Then the following conditions hold:

(i) If Refine(G, v,A,B,C) is a failure refinement then G has at least (1 − 1/n)µ

minimal separators that are consistent with A′, B′, and C ′ and A′ = A, B′ = B,

and C ′ = C ∪ {v}.

(ii) If Refine(G, v,A,B,C) is a success refinement then G has at least (1/3)(1/nk+1)µ

minimal separators that are consistent with A′, B′, and C ′, A ⊆ A′, B ⊆ B′, and

398

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

C ⊆ C ′, NG[v] ⊆ (A′ ∪B′ ∪C ′), and the number of components of G[A′ ∪B′] is at

most one more than the number of components of G[A ∪B].

Collecting Separators with Anti-Complete Cores.

This subsection is devoted to proving Lemma 7.4.14, which is the only lemma from

this subsection that is used outside of this subsection. Before we state Lemma 7.4.14 we

give a short definition pertaining to vertex lists. Let G be a graph and let S be a list

that contains vertices from G. We will say that S is an anti-complete vertex list if for

every two elements Si, Sj ∈ S, Si is anti-complete with Sj. Note that this implies that if

Si = Sj then Si = Sj = ∅.

Lemma 7.4.14. Let G be a k-creature free graph with n ⩾ 2 vertices and µ minimal

separators and let δ > 1. Without loss of generality assume k ⩾ 2. Then there exists sets

A,B,C ∈ V (G) with A,B ̸= ∅ and an anti-complete vertex list S of size log(n) + 1 such

that the following properties hold:

(i) Let G′ = G− (A∪B ∪C). For all Si ∈ S, NG[Si]− (A∪B ∪C) is an n/δ-balanced

separator of G′.

(ii) G has at least µ/(4(3n(k+1))160k
2δ2 log3(n)+2) minimal separators that are consistent

with A,B, and C.

(iii) G[A ∪B] has at most 160k2δ2 log3(n) + 2 components.

(iv) No vertex v in G′ = G− (A ∪B ∪ C) belongs to all sets of NG′ [S].

The algorithm from [1] (which the techniques of subsubsection 7.4.1 is based on)

works by collecting balanced separators dominated by few vertices while branching on

vertices who have a sufficient number of neighbors into the collected balanced separators.

399

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Eventually this leads to having a large collection of balanced separators such that no

vertex of the remaining graph has neighbors in more than log(n) of the collected balanced

separators. Since the graphs the algorithm of [1] is run on are Pk-free, this is enough to

guarantee that the graph now has been efficiently broken up into small components, and

the algorithm is then called on each component.

Lemma 7.4.14 is proved using very similar techniques to the algorithm described in

the previous paragraph, even up to determining what vertex to refine (branch) on. This

process of collecting balanced separators and refining allows us to gather a vertex list,

S, of balanced separators as well as vertex sets A,B, and C which satisfy the properties

stated in Lemma 7.4.14. A key difference is that when working with Pk-free graphs, this

would be enough to ensure that G− (A ∪B ∪ C) has no large component, thus proving

Lemma 7.4.6, but when we are dealing with graphs that are k-creature free we must do

more in order to break up the graph into small components. We cover this additional

process in subsubsection 7.4.1. A second key difference here is that in the independent

set algorithm for Pk-free graphs of [1], the algorithm continues to recurse on connected

components after breaking up the graph. Here in this paper, we stop our process after

finding A,B, and C such that G− (A ∪ B ∪ C) has no large components, we do not do

any recursion on the components.

In order to prove Lemma 7.4.14, we will study a sequence produced from a k-creature

free graph G and a number δ > 1, which we denote by seq1(G, δ). seq1(G, δ) is a sequence

of tuples (Ai, Bi, Ci,Si) where Ai, Bi, Ci ⊆ V (G) and Si is a vertex list. Before we can

describe how the sequence is created, we need to provide the following definitions.

Definition 7.4.15. Let G be a k-creature free graph and let (Ai, Bi, Ci,Si) be the ith

element of seq1(G, δ). For all natural numbers j, the jth level set with respect to Ai, Bi, Ci

and Si, denoted by Lj(Ai, Bi, Ci,Si), is defined as the set of vertices that belong to at

400

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

least j sets (counting multiplicity) of NG[Si]− (Ai ∪Bi ∪ Ci).

Definition 7.4.16. LetG be a k-creature free graph with n vertices and let (Ai, Bi, Ci,Si)

be the ith element of seq1(G, δ). A vertex v ∈ G′, G′ = G−(Ai∪Bi∪Ci), is good for refin-

ing with respect to (Ai, Bi, Ci,Si) if there exists a j such that |NG′ [v]∩Lj(Ai, Bi, Ci,Si)| ⩾

n/2j.

We shall use the notion of “good for refining” when determining what the i+1th tuple

of the sequence will be. Note that this definition implies that any vertex of G − (Ai ∪

Bi ∪ Ci) that belongs to Llog(n)(Ai, Bi, Ci,Si) is good for refining, meaning any vertex

that belongs to log(n) sets of NG[Si]− (Ai ∪Bi ∪ Ci) is good for refining.

Let G be a k-creature free graph with n vertices and µ minimal separators and let

δ > 1. We now define seq1(G, δ). Let a, b ∈ G be two vertices such that at least µ/n2

minimal separators of G are a, b-minimal separators (since there are n(n − 1)/2 pairs

of vertices in G and every minimal separator is a u, v-minimal separator for some pair

u, v ∈ G such a pair a, b must exist). For the base case of this sequence we define

A1 = {a}, B1 = {b}, C1 = ∅, and S1 = ∅. We will maintain throughout the sequence

that Ai ⊆ Ai+1, Bi ⊆ Bi+1, Ci ⊆ Ci+1, and Si ⊆ Si+1. We recursively define this sequence

as follows.

Assume we are given (Ai, Bi, Ci,Si), we will refer to the following process of deter-

mine the next tuple (Ai+1, Bi+1, Ci+1,Si+1) as the ith step of seq1(G, δ). If there is a

vertex v ∈ G − (Ai ∪ Bi ∪ Ci) that is good for refining, then we set Ai+1, Bi+1, Ci+1 =

Refine(G, v,Ai, Bi, Ci) and Si+1 = Si (hence, by the definition of Refine, Ai ⊆ Ai+1,

Bi ⊆ Bi+1, and Ci ⊆ Ci+1). If Refine(G, v,Ai, Bi, Ci) is a failure refinement then we call

(Ai+1, Bi+1, Ci+1,Si+1) a failure tuple, else Refine(G, v,Ai, Bi, Ci) is a success refinement

and we call (Ai+1, Bi+1, Ci+1,Si+1) a success tuple.

If there is no vertex that is good for refining, then let G′ = G− (Ai ∪Bi ∪Ci). Since

401

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

G′ is a subgraph of G, G′ has at most n vertices and by Lemma 7.3.4 G′ is a k-creature

free, so by Lemma 7.4.8 there exists a (possibly empty) set of vertices S ⊆ V (G′) where

|S| ⩽ 8kδ and NG′ [S] is an n/δ-balanced separator for G′. Set Ai+1 = Ai, Bi+1 = Bi,

Ci+1 = Ci, and Si+1 = Si ∪ {S}. In this case we call (Ai+1, Bi+1, Ci+1,Si+1) a separator

tuple.

The sequence terminates once we reach a tuple (Aj, Bj, Cj,Sj) such that |Sj| =

10kδ log2(n).

The following observation was noted just before defining seq1(G, δ) and follows di-

rectly from the definition of seq1(G, δ). We will use it frequently without explicit refer-

ence.

Observation 7.4.17. Let G be a k-creature free graph, let δ > 1, and let (Ai, Bi, Ci,Si)

and (Ai+1, Bi+1, Ci+1,Si+1) be the ith and i + 1th elements of the sequence seq1(G, δ).

Then Ai ⊆ Ai+1, Bi ⊆ Bi+1, Ci ⊆ Ci+1, and Si ⊆ Si+1.

Lemma 7.4.18. Let G be a k-creature free graph and let δ > 1. Then seq1(G, δ) is finite.

Proof: Let G be a k-creature free graph. Consider the ith and i + 1th tuples of

seq1(G, δ), (Ai, Bi, Ci,Si) and (Ai+1, Bi+1, Ci+1,Si+1). If (Ai+1, Bi+1, Ci+1,Si+1) is a suc-

cess or failure tuple then Si = Si+1, and if (Ai+1, Bi+1, Ci+1,Si+1) is a separator tuple,

then |Si|+1 = |Si+1|. Since the sequence ends once we reach a tuple with (Aj, Bj, Cj,Sj)

where Sj = 10kδ log2(n), the sequence will terminate after the 10kδ log2(n)th separator

tuple. So all we must show is there there is a finite number of success and failure tu-

ples. This follows from three facts. The first is that regardless if (Ai+1, Bi+1, Ci+1,Si+1)

is a success, failure, or separator tuple, Ai ⊆ Ai+1, Bi ⊆ Bi+1, Ci ⊆ Ci+1. The sec-

ond is that if (Ai+1, Bi+1, Ci+1,Si+1) is a success or failure tuple, then at the ith step,

Refine is called on a vertex that belongs to G − (Ai ∪ Bi ∪ Ci) and it follows that

(Ai ∪Bi ∪Ci) ⊂ (Ai+1 ∪Bi+1 ∪Ci+1) where the containment is strict. Hence, if there are

402

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

|V (G)| failure or success tuples that precede (Ai, Bi, Ci,Si), then Ai ∪ Bi ∪ Ci = V (G).

The third fact is that if Ai ∪ Bi ∪ Ci = V (G), then there are no vertices that are good

for refining at this step (or any future step) and therefore (Aj+1, Bj+1, Cj+1,Sj+1) is a

separator tuple. Hence there are at most |V (G)| success and failure tuples.

It now follows from 7.4.18 that we may assume there is a last element of seq1(G, δ).

Lemma 7.4.19. Let G be a k-creature free graph with n vertices, let δ > 1, and let

(A,B,C,S) denote the last tuple of seq1(G, δ). Let G′ = G− (A∪B ∪C), then for every

S ∈ S, NG[S]− (A ∪B ∪ C) is an n/δ-balanced separator for G′.

Proof: Let G be a k-creature free graph with n vertices, let δ > 1, and let (A,B,C,S)

denote the last tuple of seq1(G, δ). Let Sj denote the jth element in the list S. Then

there is some tuple (Ai, Bi, Ci,Si) of seq1(G, δ) such that if G′ = G− (Ai ∪Bi ∪Ci) then

Sj ⊆ V (G′) and NG′ [Sj] = NG[Sj]− (Ai ∪ Bi ∪ Ci) is an n/δ-balanced separator for G′.

Since Ai ⊆ A, Bi ⊆ B, and Ci ⊆ C, it follows that NG[Sj] − (A ∪ B ∪ C) is a balanced

separator for G′′ where G′′ = G− (A ∪B ∪ C).

Lemma 7.4.20. Let G be a k-creature free graph with n vertices, let δ > 1, and let

(Ai, Bi, Ci,Si) denote the ith tuple of seq1(G, δ). Then no vertex of G − (Ai ∪ Bi ∪ Ci)

belongs to over log(n) sets (counting multiplicity) of NG[Si]− (Ai ∪Bi ∪ Ci).

Proof: LetG be a k-creature free graph with n vertices, let δ > 1, and let (Ai, Bi, Ci,Si)

denote the ith tuple of seq1(G, δ). We will prove by induction on i that no vertex of

G′ = G− (Ai ∪ Bi ∪ Ci) belongs to over log(n) sets of NG[Si]− (Ai ∪ Bi ∪ Ci). If i = 1

then (Ai, Bi, Ci,Si) is the first element of the sequence, and by definition Si = ∅, so the

result holds for the base case. Assume the result holds for all i less than j > 1, we prove

it holds for i = j.

Consider the j − 1th and jth elements of seq1(G, δ), (Aj−1, Bj−1, Cj−1,Sj−1) and

(Aj, Bj, Cj,Sj). If (Aj, Bj, Cj,Sj) is a success or failure tuple then Ai ⊆ Ai+1, Bi ⊆
403

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Bi+1, Ci ⊆ Ci+1, and Sj−1 = Sj. Then by the induction hypothesis no vertex of

G − (Aj−1 ∪ Bj−1 ∪ Cj−1) belongs to over log(n) vertices of NG[Sj−1] − (Aj−1 ∪ Bj−1 ∪

Cj−1) which implies no vertex of G − (Aj ∪ Bj ∪ Cj) belongs to over log(n) vertices of

NG[Sj]− (Aj ∪Bj ∪Cj). If (Aj, Bj, Cj,Sj) is a separator tuple then this implies that no

vertex of G− (Aj−1 ∪Bj−1 ∪Cj−1) belongs to log(n) or more set (counting multiplicity)

of NG[Sj−1] − (Aj−1 ∪ Bj−1 ∪ Cj−1) since such a vertex would good for refining. Hence,

no vertex of G− (Aj ∪Bj ∪Cj) belongs to over log(n) vertices of NG[Sj]− (Aj ∪Bj ∪Cj).

Let d be a natural number and let G be a graph with n vertices. G is said to be

d-degenerate if there is a bijective function f : V (G)→ [n] where for each vertex v ∈ G,

v has at most d neighbors u ∈ G such that f(u) < f(v). The function f is called a

degeneracy ordering of G. We will need the following easy to prove lemma, which is

folklore, and so we omit the proof.

Lemma 7.4.21 (folklore). Let G be a d-degenerate graph with n vertices. Then G has

an independent set of size ⌈n/(d+ 1)⌉.

Let (A,B,C,S) be the last tuple of seq1(G, δ), let (Ai−1, Bi−1, Ci−1,Si−1) and (Ai, Bi, Ci,Si)

be the i− 1th and ith elements of seq1(G, δ), and let S ∈ S. We say S was added at step

i− 1 if Si−1 ∪ {S} = Si.

Lemma 7.4.22. Let G be a k-creature free graph (assume k ⩾ 2) with n vertices, let

δ > 1, and let (A,B,C,S) be the last tuple of seq1(G, δ). There exists an anti-complete

sub-list S ′ ⊆ S of size at least log(n) + 1.

Proof: Let G be a k-creature free graph (assume k ⩾ 2) with n vertices, let δ > 1,

and let (A,B,C,S) be the last tuple of seq1(G, δ). Let GS be a graph with |S| vertices

and let f be a bijective function f : V (GS)→ [n]. The vertex v ∈ GS will correspond to

404

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

the f(v)th element of S. We now define the edges of GS . Let u, v ∈ GS , the edge uv is in

E(GS) if and only if the f(v)th element and f(u)th element of GS are not anti-complete.

The statement of this lemma is then equivalent to GS having an independent set of size

at least log(n) + 1. In order to establish this, we show GS is 8kδ log(n)-degenerate with

degeneracy ordering f and apply Lemma 7.4.21.

Let v ∈ GS and assume that Sf(v), the f(v)th element of S, was added at the i− 1th

step of seq1(G, δ). Let (Ai−1, Bi−1, Ci−1,Si−1) and (Ai, Bi, Ci,Si) be the (i− 1)th and ith

elements of seq1(G, δ). It follows that if G′ = G−(Ai−1∪Bi−1∪Ci−1) then Sf(v) ⊆ V (G′)

and for u ∈ GS with f(u) < f(v) the f(u)th element of S is also the f(u)th element of

Si−1. By Lemma 7.4.20 each vertex of Sf(v) belongs to at most log(n) sets of NG′ [Si−1],

and since there are at most 8kδ vertices in Sf(v) this implies v has at most 8kδ log(n)

neighbors u where f(u) < f(v), proving GS is 8kδ log(n)-degenerate with degeneracy

ordering f .

Now since GS is 8kδ log(n)-degenerate, and GS has |S| = 10kδ log(n)2 vertices (by

the definition of seq1(G, δ)), it follows from Lemma 7.4.21 that GS has an independent

set of size at least log(n) + 1.

We now wish to show that seq1(G, δ) does not contain many success tuples. Toward

this end we track the sizes of the level sets. Let i be a natural number, we will say that

a vertex v ∈ G is added to level set Li at step j − 1 if for the jth tuple, (Aj, Bj, Cj,Sj),

of seq1(G, δ) v is in Li(Aj, Bj, Cj,Sj), but v is not in Li(Aj−1, Bj−1, Cj−1,Sj−1). We say

that v ∈ G is added to level set Li if it is added to level set Li at step j − 1 for some j.

Similarly, we will say that a vertex v ∈ G is removed from level set Li at step j if

for the jth tuple, (Aj, Bj, Cj,Sj), of seq1(G,A,B,C), v is in Li(Aj, Bj, Cj,Sj), but v is

not in Li(Aj+1, Bj+1, Cj+1,Sj+1). We say that v ∈ G is removed from level set Li if it is

removed from level set Li at step j for some j.

405

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Lemma 7.4.23. Let G be a k-creature free graph with n vertices and let δ > 1. In the

sequence seq1(G, δ), for all natural numbers i, at most 160k2δ2n log2(n)/2i vertices are

added to level set Li.

Proof: Let G be a k-creature free graph with n vertices and let δ > 1. Consider the

j − 1th and jth element of seq1(G, δ), (Aj−1, Bj−1, Cj−1,Sj−1) and (Aj, Bj, Cj,Sj). First,

assume that (Aj, Bj, Cj,Sj) is a separator tuple. Since (Aj, Bj, Cj,Sj) is a separator

tuple, there was no vertex that was good for refining in step j − 1, in particular this

implies that no vertex of G′ = G − (Aj−1 ∪ Bj−1 ∪ Cj−1) has over n/2i−1 neighbors

in Li−1(Aj−1, Bj−1, Cj−1,Sj−1). If a vertex v is added to level set Li at step j − 1

then since Sj only has one additional set, call it S, that Sj−1 does not have, it follows

that v ∈ Li−1(Aj−1, Bj−1, Cj−1,Sj−1) and v ∈ NG[S] − (Aj−1 ∪ Bj−1 ∪ Cj−1). Since

|S| ⩽ 8kδ and no vertex of S has over n/2i−1 neighbors in Li−1(Aj−1, Bj−1, Cj−1,Sj−1), it

follows that |Li−1(Aj−1, Bj−1, Cj−1,Sj−1)∩ (NG[S]− (Aj−1 ∪Bj−1 ∪Cj−1))| ⩽ 8kδn/2i−1

= 16kδn/2i. Hence, at most 16kδn/2i vertices are added to level set Li at step j when

(Aj, Bj, Cj,Sj) is a separator tuple.

Now, if (Aj, Bj, Cj,Sj) is a success or failure tuple, then Sj−1 = Sj, so no vertices are

added to level set Li at step j. Since by how seq1(G, δ) was defined, there are 10kδ log2(n)

separator tuples, therefore at most 160kδn log2(n)/2i vertices are added to level set Li.

Since a vertex v must be added to level set Li before it can be removed from level set

Li, and by Lemma 7.4.23 at most 160k2δ2n log2(n)/2i vertices are added to level set Li,

we get the following corollary, at most 160k2δ2n log2(n)/2i are removed from level set Li

Corollary 7.4.24. Let G be a k-creature free graph with n vertices and let δ > 1. In the

sequence seq1(G, δ), for all natural numbers i, at most 160k2δ2n log2(n)/2i vertices are

removed from level set Li.

406

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Let G be a graph with n vertices, let δ > 1, and let (Ai, Bi, Ci,Si) be the ith tuple of

seq1(G, δ). If there are at least n/2c vertices that are removed from level set Lc at step

i− 1, then we say the tuple (Ai, Bi, Ci,Si) drains level set Lc.

Lemma 7.4.25. Let G be a graph with n vertices and let δ > 1. If (Ai, Bi, Ci,Si) is a

success tuple of seq1(G, δ). Then (Ai, Bi, Ci,Si) drains at least one level set Lj.

Proof: Let G be a graph with n vertices, let δ > 1, let (Ai−1, Bi−1, Ci−1,Si−1) and

(Ai, Bi, Ci,Si) be the i − 1th and ith tuples of seq1(G, δ), and assume (Ai, Bi, Ci,Si) is

a success tuple. There is then some vertex v in G′ = G − (Ai−1 ∪ Bi−1 ∪ Ci−1) that

Refine was called on to get sets Ai, Bi, and Ci. By the definition of a vertex being good

for refining there must be at least one level set, say Lj(Ai−1, Bi−1, Ci−1,Si−1), such that

|Lj(Ai−1, Bi−1, Ci−1,Si−1)∩NG′ [v]| ⩾ n/2j. Hence, since (Ai, Bi, Ci,Si) is a success tuple

and therefore NG′ [v] ⊂ Ai∪Bi∪Ci, there are at least n/2j vertices from level set Lj that

are removed at step i− 1. Therefore (Ai, Bi, Ci,Si) drains level set Lj.

Lemma 7.4.26. Let G be a k-creature free graph with n vertices and let δ > 1. Then

seq1(G, δ) contains at most n failure tuples and at most 160k2δ2 log3(n) success tuples.

Proof: Let G be a k-creature free graph with n vertices and let δ > 1. By Corollary

7.4.24 at most 160k2δ2n log2(n)/2j vertices are removed from level set Lj, hence at most

160k2δ2 log2(n) tuples of seq1(G, δ) drain level set Lj. By Lemma 7.4.20, for any tuple

(Ai, Bi, Ci,Si) of seq1(G, δ), no vertex of G− (Ai∪Bi∪Ci) belongs to over log(n) sets of

NG[Si]−(Ai∪Bi∪Ci), hence no vertices are ever added to level set Lj for j > log(n), and

therefore no tuple of seq1(G, δ) will ever drain a level set Lj for j > log(n). Furthermore,

By Lemma 7.4.25 every success tuple of seq1(G, δ) drains at least one level set Li. It

follows that there are at most 160k2δ2n log3(n) success tuples of seq1(G, δ).

Now, consider the ith and i+1th elements of seq1(G, δ), (Ai, Bi, Ci,Si) and (Ai+1, Bi+1,

Ci+1,Si+1) and assume that (Ai+1, Bi+1, Ci+1,Si+1) is a failure tuple. Let v be the vertex

407

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

ofG′ = G−(Ai∪Bi∪Ci) that Refine was called on to get the tuple (Ai+1, Bi+1, Ci+1,Si+1).

It follows that v /∈ (Ai ∪ Bi ∪ Ci), but v ∈ (Ai+1 ∪ Bi+1 ∪ Ci+1). Additionally, if

(Ai+1, Bi+1, Ci+1,Si+1) is the nth failure tuple, then we must have that (Ai+1 ∪ Bi+1 ∪

Ci+1) = V (G). in this case, this forces any tuples after (Ai+1, Bi+1, Ci+1,Si+1) in

seq1(G, δ) to be separator tuples.

Corollary 7.4.27. Let G be a k-creature free graph with n ⩾ 2 vertices and µ minimal

separators, let δ > 1, and let (A,B,C,S) be the last tuple of seq1(G, δ). Then G has at

least µ/(4(3n(k+1))160k
2δ2 log3(n)+2) minimal separators that are consistent with A, B, and

C.

Proof: Let G be a k-creature free graph with n ⩾ 2 vertices and µ minimal sepa-

rators, let δ > 1, and let (A,B,C,S) be the last tuple of seq1(G, δ). Consider the ith

and i + 1th elements of seq1(G, δ), (Ai, Bi, Ci,Si) and (Ai+1, Bi+1, Ci+1,Si+1). Assume

that there are µ′ minimal separators of G that are consistent with Ai, Bi, and Ci. By

Lemma 7.4.13 it follows that if (Ai+1, Bi+1, Ci+1,Si+1) is a failure tuple, then there are

at least µ′(1 − 1/n) minimal separators of G that are consistent with Ai+1, Bi+1, and

Ci+1 and if (Ai+1, Bi+1, Ci+1,Si+1) is a success tuple, then there are at least µ′(1/3nk+1)

minimal separators of G that are consistent with Ai+1, Bi+1, and Ci+1. Furthermore, if

(Ai+1, Bi+1, Ci+1,Si+1) is a separator tuple, then Ai = Ai+1, Bi = Bi+1 and Ci = Ci+1,

and so there are µ′ minimal separators of G that are consistent with Ai+1, Bi+1 and Ci+1.

Now, the first tuple, (A1, B1, C1,S1), of seq1(G, δ) was chosen so that at least µ/n2

minimal separators of G agree with A1, B1, and C1. Furthermore, by Lemma 7.4.26 there

are at most n failure tuples and at most 160k2δ2 log3(n) success tuples in seq1(G, δ). It

then follows that there are at least µ(1−1/n)n

n2(3n(k+1))(160k
2δ2 log3(n))

⩾ µ

4(3n(k+1))160k
2δ2 log3(n)+2

(using

the fact that (1− 1/n)n > 1/4 when n ⩾ 2) minimal separators of G that are consistent

with A,B, and C.

408

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Corollary 7.4.28. Let G be a k-creature free graph with n vertices, let δ > 1, and let

(A,B,C,S) be the last tuple of seq1(G, δ). Then G[A∪B] has at most 160k2δ2 log3(n)+2

components.

Proof: LetG be a k-creature free graph with n vertices, let δ > 1, and let (A1, B1, C1,S1),

(Ai, Bi, Ci,Si), (Ai+1, Bi+1, Ci+1,Si+1), and (A,B,C,S) be the 1st, ith, i + 1th, and last

elements of seq1(G, δ) respectively. If (Ai+1, Bi+1, Ci+1,Si+1) is a separator tuple then

Ai+1 = Ai and Bi+1 = Bi, if it is a failure tuple then Ai+1 = Ai and Bi+1 = Bi by

Lemma 7.4.13, and if it is a success tuple then G[Ai+1 ∪ Bi+1] has at most one more

component then G[Ai ∪ Bi] by Lemma 7.4.13. Since, by Lemma 7.4.26 there are at

most 160k2δ2 log3(n) success tuples in seq1(G, δ) and since A1 and B1 both have one

component, we conclude that G[A ∪B] has at most 160k2δ2 log3(n) + 2 components.

We are now ready to prove Lemma 7.4.14.

Proof: [Proof of Lemma 7.4.14] Let G be a k-creature free graph (assume k ⩾ 2)

with n ⩾ 2 vertices and µ minimal separators, let δ > 1, and let (A,B,C,S) be the last

tuple of seq1(G, δ). Let the sub-list S ′ ⊂ S be the anti-complete sub-list of size log(n)+1

promised by Lemma 7.4.22, we will show that A,B, C, and S ′ satisfy the conclusions of

Lemma 7.4.14. Property (i) is established by Lemma 7.4.19, property (ii) is established

by Corollary 7.4.27, property (iii) is established by Corollary 7.4.28, and property (iv)

is established by Lemma 7.4.20 combined with the fact that |S ′| = log(n) + 1.

Separating Balanced Separators

Recall that our final goal of this section is to prove Lemma 7.4.6, that is, to take a

k-creature free graph G with n vertices and to find vertex sets A,B, and C such that no

component of G− (A∪B ∪C) contains over n/δ vertices and a large fraction of minimal

409

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

separators of G are consistent with A,B, and C. We achieve this in this subsubsection

by taking the output from Lemma 7.4.14, S, A,B, and C, and enriching A, B, and C to

get A′, B′, and C ′ so that for each Si, Sj ∈ S and for each vertex vi ∈ Si and vj ∈ Sj, no

component of G′ = G− (A′∪B′∪C ′∪V) contains both a vertex from NG′ [vi] and NG′ [vj]

where V = NG[vi]∩NG[vj]. We will show later on using Lemma 7.4.37 that this property

is enough to ensure that no component of G − (A′ ∪ B′ ∪ C ′) has over n/δ vertices and

prove Lemma 7.4.6.

We begin by showing that setsA, B, and C can be enriched so thatNG[vi]−(A∪B∪C∪

V) and NG[vj]−(A∪B∪C∪V) are anti-complete (where V = NG[vi]∩NG[vj]), then they

can be further enriched so that NG[vi]−(A∪B∪C∪V) and NG[vj]−(A∪B∪C∪V) are far

apart inG−(A∪B∪C∪V), then finally they can be enriched so thatNG[vi]−(A∪B∪C∪V)

and NG[vj]− (A∪B ∪C ∪V) are in different components of G− (A∪B ∪C ∪V), which

finally gives us the sets A′, B′, and C ′ from the previous paragraph.

Since vi and vj are anti-complete, if we set V = NG[vi] ∩ NG[vj], then notice that

(vi, NG(vi)− V,NG(vj)− V, vj) is nearly a k-creature, it only lacks the requirement of a

semi-induced matching of size k between NG(vi)− V,NG(vj)− V . This is an important

observation which we use in our “enrichment” process of A, B, and C and motivates

the following definition of a pre-creature, (Y1, X1, X2, Y2), which is just a k-creature but

without the requirement of a semi-induced matching of size k between X1 and X2.

Definition 7.4.29. Let G be a graph. A four-tuple (Y1, X1, X2, Y2) of vertex sets in G

is called a pre-creature if the following conditions are satisfied:

(i) G[Y1] and G[Y2] are connected.

(ii) Y1 is anti-complete with X2 ∪ Y2 and Y2 is anti-complete with X1 ∪ Y1.

(iii) Y1 dominates and is disjoint from X1 and Y2 dominates and is disjoint from X2.

410

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Similar to the methods of subsubsection 7.4.1, the “enrichment” process of A, B,

and C used to get the sets A′, B′, and C ′ which satisfy Lemma 7.4.6 works by taking a

carefully chosen vertex and using the Refine function on it. We will use the next lemma

to guide us on picking a vertex that will be a good choice to use the Refine function on.

Lemma 7.4.30. Let G be a k-creature free graph and let (Y1, X1, X2, Y2) be a pre-creature

of G where X1 ̸= ∅. Then there exists a vertex v ∈ X1 such that v dominates at least

(1/k)|NG(X1) ∩X2| vertices of NG(X1) ∩X2.

Proof: Let G be a k-creature free graph and let (Y1, X1, X2, Y2) be a pre-creature of

G where X1 ̸= ∅. Let D1 ⊂ X1 be a minimal subset of X1 that dominates NG(X1)∩X2.

Assume for a contradiction that |D1| ⩾ k. Since D1 is minimal, it follows that for

each d1i ∈ D1 there is a d2i ∈ NG(X1) ∩ X2 such that d1i is the only vertex of D1 that

is neighbors with d2i . Let D2 denote this set of d2i ’s. Then since (Y1, X1, X2, Y2) is a

pre-creature, (Y1, D1, D2, Y2) is a k′-creature for some k′ ⩾ k, a contradiction.

Thus, we may assume that |D1| < k. Hence, at least one vertex v ∈ D1 must have

the property that v dominates at least (1/k)|NG(X1) ∩X2| vertices of NG(X1) ∩X2.

Let vi and vj be anti-complete vertices. We now prove a lemma that shows we can

enrich A, B, and C so that NG[vi] − (A ∪ B ∪ C ∪ V) and NG[vj] − (A ∪ B ∪ C ∪ V)

are anti-complete (where V = NG[vi]∩NG[vj]). We will actually need to prove a slightly

more general lemma that is stated in terms of pre-creatures so that it can be used for

induction in a later lemma.

Lemma 7.4.31. Let G be a k-creature free graph with n vertices, let A,B,C ⊆ V (G), let

G have µ minimal separators that are consistent with A,B, and C, and let (Y1, X1, X2, Y2)

be a pre-creature of G. Then there exists sets A′, B′, C ′ ⊆ V (G) with the following

properties:

411

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

(i) G has at least µ/(4(3n(k+1))k log(n)) minimal separators that are consistent with

A′, B′, and C ′.

(ii) The number of components of G[A′ ∪ B′] is at most the number of components of

G[A ∪B] plus k log(n).

(iii) X1 − (A′ ∪B′ ∪ C ′) is anti-complete with X2 − (A′ ∪B′ ∪ C ′) in G.

(iv) A ⊆ A′, B ⊆ B′, and C ⊆ C ′.

In order to prove Lemma 7.4.31, we will study the following sequence produced from a

k-creature free graph G with n vertices along with sets A,B,C ⊆ V (G) and pre-creature

P = (Y1, X1, X2, Y2), which we denote by seq2(G,A,B,C, P). seq2(G,A,B,C, P) is a

sequence of tuples (Ai, Bi, Ci) with Ai, Bi, Ci ⊆ V (G).

We now define the sequence seq2(G,A,B,C, P). For the base case of this sequence we

set A1 = A, B1 = B, and C1 = C. We recursively define this sequence as follows. Given

(Ai, Bi, Ci) letX ′
1 = X1−(Ai∪Bi∪Ci), X ′

2 = X2−(Ai∪Bi∪Ci), andG′ = G−(Ai∪Bi∪Ci).

If NG′(X ′
1) ∩X ′

2 = ∅ then we terminate the sequence (so (Ai, Bi, Ci) is the last tuple of

the sequence), else since (Y1, X1, X2, Y2) is a pre-creature of G, (Y1, X
′
1, X

′
2, Y2) is a pre-

creature of G (and X ′
1 ̸= ∅ since NG′(X ′

1) ∩ X ′
2 ̸= ∅) and so Lemma 7.4.30 guarantees

the existence of v ∈ X ′
1 such that v dominates at least (1/k)|NG′(X ′

1) ∩ X ′
2| vertices of

NG′(X ′
1) ∩X ′

2 (Note that NG′(X ′
1) ∩X ′

2 = NG(X ′
1) ∩X ′

2). We then set Ai+1, Bi+1, Ci+1

= Refine(G, v,Ai, Bi, Ci). If Refine(G, v,Ai, Bi, Ci) is a failure refinement then we call

(Ai+1, Bi+1, Ci+1) a failure tuple, else Refine(G, v,Ai, Bi, Ci) is a success refinement and

we call (Ai+1, Bi+1, Ci+1) a success tuple.

Lemma 7.4.32. Let G be a k-creature free graph with n vertices, let A,B,C ⊂ V (G),

and let P be a pre-creature of G. seq2(G,A,B,C, P) has at most n failure tuples and at

most klog(n) success tuples.

412

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Proof: Let G be a k-creature free graph with n vertices, let A,B,C ⊂ V (G), and

let P = (Y1, X1, X2, Y2) be a pre-creature of G. Let (Ai, Bi, Ci) and (Ai+1, Bi+1, Ci+1)

be the ith and i + 1th tuples of seq2(G,A,B,C, P). We can see from the definition of

Refine and seq2 that (Ai ∪ Bi ∪ Ci) ⊂ (Ai+1 ∪ Bi+1 ∪ Ci+1) where the containment is

strict, hence if i = n then (Ai+1 ∪Bi+1 ∪ Ci+1) = V (G). Hence, by the definition of seq2

(Ai+1 ∪Bi+1 ∪Ci+1) would be the final tuple of seq2(G,A,B,C, P). Therefore, there are

at most n + 1 tuples of seq2(G,A,B,C, P), hence there are at most n failure tuples in

seq2(G,A,B,C, P) (recall the first tuple it neither a failure nor success tuple).

Now, assume (Ai+1, Bi+1, Ci+1) is a success tuple, let X i
1 = X1 − (Ai ∪ Bi ∪ Ci),

X i
2 = X2 − (Ai ∪ Bi ∪ Ci), Gi = G− (Ai ∪ Bi ∪ Ci), X i+1

1 = X1 − (Ai+1 ∪ Bi+1 ∪ Ci+1),

X i+1
2 = X2− (Ai+1∪Bi+1∪Ci+1), and Gi+1 = G− (Ai+1∪Bi+1∪Ci+1). If v is the vertex

of X i
1 that refine is called on to get the sets Ai+1, Bi+1, and Ci+1, then by how v was

selected, v dominates at least (1− 1/k)|NGi(X
i
1) ∩X i

2| vertices of |NGi(X
i
1) ∩X i

2|. Then

by Lemma 7.4.13 NG[v] ⊆ Ai+1∪Bi+1∪Ci+1 and it follows that (1− 1/k)|NGi(X
i
1)∩X i

2|

⩾ |NGi+1(X i+1
1)∩X i+1

2 |. Hence if (Ai+1, Bi+1, Ci+1) is the (k log(n))th success tuple, then

|NGi+1(X i+1
1)∩X i+1

2 | is at most n(1− 1/k)k log(n) ⩽ n/elog(n) < 1 (recall for our definition

of log(n) that log(n) ⩾ ln(n)), which implies |NGi+1(X i+1
1) ∩X i+1

2 | = 0.

Corollary 7.4.33. Let G be a k-creature free graph with n vertices, let A,B,C ⊂ V (G),

let G have µ minimal separators that are consistent with A, B, and C, and let P be a

pre-creature of G. Let (A′, B′, C ′) be the final tuple of seq2(G,A,B,C, P). Then G has

at least µ/(4(3n(k+1))k log(n)) minimal separators that are consistent with A′, B′, and C ′.

Proof: Let G be a k-creature free graph with n vertices, let A,B,C ⊆ V (G), let

G have µ minimal separators that are consistent with A, B, and C, and let P be a

pre-creature of G. Let (A′, B′, C ′) be the final tuple of seq2(G,A,B,C, P). Consider

the ith and i+ 1th tuples of seq2(G,A,B,C, P), (Ai, Bi, Ci) and (Ai+1, Bi+1, Ci+1), and

413

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

assume there are µ′ minimal separators of G that are consistent with Ai, Bi, and Ci. If

(Ai+1, Bi+1, Ci+1) is a failure tuple, then by Lemma 7.4.13 there are at least (1− 1/n)µ′

minimal separators that are consistent with Ai+1, Bi+1, and Ci+1, and if (Ai+1, Bi+1,

Ci+1) is a success tuple, then by Lemma 7.4.13 there are at least (1/3nk+1)µ′ minimal

separators that are consistent with Ai+1, Bi+1, and Ci+1. Since by Lemma 7.4.32 there

are at most n failure tuples and k log(n) success tuples, it follows that there are at least

µ(1−1/n)n

(3nk+1)k log(n) ⩽ µ
4(3nk+1)k log(n) minimal separators of G that are consistent with A′, B′, and

C ′ (using the fact that (1− 1/n)n ⩾ 1/4 for n ⩾ 2).

Corollary 7.4.34. Let G be a k-creature free graph with n vertices, let A,B,C ⊂ V (G),

let P be a pre-creature of G, and let (A′, B′, C ′) be the final tuple of seq2(G,A,B,C, P).

Then G[A′ ∪B′] has at most k log(n) more components then G[A ∪B].

Proof: Let G be a k-creature free graph with n vertices, let A,B,C ⊂ V (G), let P be

a pre-creature of G, and let (A′, B′, C ′) be the final tuple of seq2(G,A,B,C, P). Consider

the ith and i + 1th tuples of seq2(G,A,B,C, P), (Ai, Bi, Ci) and (Ai+1, Bi+1, Ci+1). If

(Ai+1, Bi+1, Ci+1) is a failure tuple, then by Lemma 7.4.13 Ai = Ai+1 and Bi = Bi+1.

If (Ai+1, Bi+1, Ci+1) is a success sequence, then by Lemma 7.4.13 G[Ai+1 ∪ Bi+1] has at

most one more component than G[Ai ∪ Bi]. Since by Lemma 7.4.32 there are at most

k log(n) success tuples, it follows that G[A′ ∪B′] has at most k log(n) more components

than G[A ∪B].

We are now ready to prove Lemma 7.4.31.

Proof: [Proof of Lemma 7.4.31] Let G be a k-creature free graph with n vertices,

let A,B,C ⊆ V (G), let G have µ minimal separators that are consistent with A,B,

and C, and let P = (Y1, X1, X2, Y2) be a pre-creature of G. Let (A′, B′, C ′) be the final

tuple of seq2(G,A,B,C, P), we will show the set A′, B′, and C ′ satisfy the conclusions

of Lemma 7.4.31. Property (i) is established by Corollary 7.4.33, property (ii) is es-

414

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

tablished by Corollary 7.4.34, property (iii) is established by the termination condition

of seq2(G,A,B,C, P), and property (iv) is established by the facts in the first tuple of

seq2(G,A,B,C, P), (A1, B1, C1), that A1 = A, B1 = B, and C1 = C and that for the

ith and i + 1th tuples of seq2(G,A,B,C, P), (Ai, Bi, Ci) and (Ai+1, Bi+1, Ci+1), that

Ai ⊆ Ai+1, Bi ⊆ Bi+1, and Ci ⊆ Ci+1.

Let vi and vj be anti-complete vertices. Lemma 7.4.31 showed how we can enrich A,

B, and C so that NG[vi]−(A∪B∪C∪V) and NG[vj]−(A∪B∪C∪V) are anti-complete

(where V = NG[vi] ∩ NG[vj]). In the next lemma we show how to further enrich A, B,

and C so that NG[vi]− (A ∪B ∪ C ∪ V) and NG[vj]− (A ∪B ∪ C ∪ V) are far apart in

G − (A ∪ B ∪ C ∪ V). Because we will need to apply this lemma in an inductive proof

later on, we will need to prove something slightly more general that what was just stated.

Lemma 7.4.35. Let G be a k-creature free graph, let A,B,C ⊆ V (G), let G have µ

minimal separators that are consistent with A,B, and C, let i be a natural number, let Y1

and Y2 be anti-complete connected subsets of V (G), and let Z ⊆ V (G) be disjoint from

N(Y1) ∩N(Y2). Then there exists sets A′, B′, C ′ ⊆ V (G) with the following properties:

(i) G has at least µ/(12n(k+1))ik log(n) minimal separators that are consistent with A′, B′,

and C ′.

(ii) The number of components of G[A′∪B′] is at most ik log(n) more than the number

of components of G[A ∪B].

(iii) Every path from Y1 to Y2 in G[Z ∪ Y1 ∪ Y2] of length less than i + 4 contains an

internal vertex from (A′ ∪B′ ∪ C ′).

(iv) A ⊆ A′, B ⊆ B′, and C ⊆ C ′.

Proof: Let G be a k-creature free graph, let A,B,C ⊆ V (G), let G have µ minimal

separators that are consistent with A,B, and C, let i be a natural number, let Y1 and Y2

415

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

be anti-complete connected subsets of V (G), and let Z be a subset of V (G) disjoint from

V = NG(Y1) ∩NG(Y2). We now prove by induction on i that there exists sets A′, B′, C ′

that satisfy properties (i)-(iv) of this lemma. For the base case, when i = 0, since Y1 and

Y1 are anti-complete and Z is disjoint from NG(Y1) ∩NG(Y2), every path from Y1 to Y2

in G[Y1 ∪ Y2 ∪Z] must be of length at least 4, so A′ = A, B′ = B and C ′ = C satisfy the

conclusion of the lemma. Assume now that 0 < i and that the conclusion of the lemma

holds for all i′ < i. We prove that it also holds for i.

We apply the inductive hypothesis to G, A, B, C, Y1, Y2, Z, and i − 1 to get sets

A′, B′, and C ′ that satisfy properties (i)-(iv) of this lemma (for the natural number i−1).

In particular, by property (iii) every path from Y1 to Y2 in G[Y1 ∪ Y2 ∪ Z] of length less

than (i− 1) + 4 contains an internal vertex from (A′ ∪B′ ∪C ′). Now, let ℓ be the length

of a shortest path from Y1 to Y2 in G[Y1∪Y2∪Z] that does not contain an internal vertex

from (A′ ∪ B′ ∪ C ′) and let P denote the set of all such shortest paths. If ℓ ⩾ i + 4

then the sets A′, B′, and C ′ satisfy properties (i)-(iv) of the lemma (now for the natural

number i) and we are done. So we may assume ℓ = (i− 1) + 4. Since i ⩾ 1, each path in

P contains at least two internal vertices. Let X1 denote the set of vertices that occur as

the first internal vertex (the vertex closest to Y1) in a path of P , let X2 denote the set

of vertices that occur as the second internal vertex in a path of P , and let X⩾3 denote

the set of vertices that occur as the third or later internal vertex of some path in P . It is

straightforward to verify that since P is a set of shortest paths it holds that X1, X2, and

X⩾3 are disjoint and furthermore P = (Y1, X1, X2, Y2 ∪ X⩾3) is a pre-creature of G. In

particular one can verify that G[Y1] and G[Y2 ∪X⩾3] are connected, Y1 is anti-complete

with X2 ∪ (Y2 ∪X⩾3) and (Y2 ∪X⩾3) is anti-complete with Y1, and Y1 dominates X1 and

(Y2 ∪X⩾3) dominates X2, which establishes that P is a pre-creature.

Since P is a pre-creature of G we may apply Lemma 7.4.31 to G, A′, B′, C ′, and P to

get sets A′′, B′′, and C ′′ that satisfy properties (i)-(iv) of Lemma 7.4.31. We now verify

416

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

that the sets A′′, B′′, and C ′′ satisfy conditions (i)-(iv) of this lemma.

We first verify property (iii) holds. Let Q be a shortest path from from Y1 to Y2 in

G[Y1∪Y2∪Z] that has no internal vertex contained in (A′′∪B′′∪C ′′), which implies it has

no internal vertex contained in (A′∪B′∪C ′). If this path is of length (i−1)+4 then Q is

a path of P , but since X1− (A′′∪B′′∪C ′′) is anti-complete with X2− (A′′∪B′′∪C ′′) this

is impossible. So it must be that Q has length at least i + 4 which establishes property

(iii).

To verify property (i), note that by the inductive hypothesis G has at least µ′ =

µ/(12n(k+1))(i−1)k log(n) minimal separators that are consistent with A′, B′, and C ′, and

by property (i) of Lemma 7.4.31 G has at least µ′/4(3n(k+1))k log(n) > µ′/(12n(k+1))k log(n)

minimal separators that are consistent with A′′, B′′ and C ′′. It follows that G has at least

µ/(12n(k+1))ik log(n) minimal separators that are consistent with A′′, B′′, and C ′′ which

established property (i).

To verify property (ii) note that by the inductive hypothesis G[A′ ∪ B′] has at most

(i − 1)k log(n) more components than G[A ∪ B] and by property (ii) of Lemma 7.4.31

G[A′′ ∪ B′′] has at most k log(n) more components than G[A′ ∪ B′]. It follows that

G[A′′ ∪ B′′] has at most ik log(n) more components than G[A ∪ B] which established

property (ii).

Lastly, to verify property (iv) note that by the inductive hypothesis A ⊆ A′, B ⊆ B′

and C ⊆ C ′ and by Lemma 7.4.31 A′ ⊆ A′′, B′ ⊆ B′′ and C ′ ⊆ C ′′. It then follows that

A ⊆ A′′, B ⊆ B′′ and C ⊆ C ′′ which established property (iv).

Let vi and vj be anti-complete vertices. Lemma 7.4.35 showed how we can enrich

A, B, and C so that NG[vi] − (A ∪ B ∪ C ∪ V) and NG[vj] − (A ∪ B ∪ C ∪ V) are far

apart in G − (A ∪ B ∪ C ∪ V). This next lemma shows how we can further enrich A,

B, and C so that no component of G − (A ∪ B ∪ C ∪ V) contains both a vertex from

NG[vi]− (A∪B ∪C ∪ V) and from NG[vj]− (A∪B ∪C ∪ V). To make the proof easier,

417

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

we will prove something slightly more general that what was just stated.

Lemma 7.4.36. Let G be a k-creature free graph, let A,B,C ⊆ V (G), let G have µ

minimal separators that are consistent with A,B, and C, let Y1 and Y2 be anti-complete

connected subsets of V (G), and let Z ⊆ V (G) be disjoint from NG(Y1) ∩ NG(Y2). Then

there exists sets A′, B′, C ′ ⊆ V (G) with the following properties:

(i) G has at least µ/(12n(k+1))2k log(n) log(|Z|) minimal separators that are consistent with

A′, B′, and C ′.

(ii) The number of components of G[A′ ∪ B′] is at most 2k log(n) log(|Z|) more than

the number of components of G[A ∪B].

(iii) Every path from Y1 to Y2 in G[Y1 ∪ Y2 ∪ Z] has an internal vertex that belongs to

(A′ ∪B′ ∪ C ′).

(iv) A ⊆ A′, B ⊆ B′, and C ⊆ C ′.

Proof: Let G be a k-creature free graph, let A,B,C ⊆ V (G), let G have µ minimal

separators that are consistent with A,B, and C, let Y1 and Y2 be anti-complete connected

subsets of V (G), and let Z ⊆ V (G) be disjoint from NG(Y1) ∩NG(Y2).

We prove the statement of the lemma by induction on |Z|. If Z = ∅ then A, B and C

already satisfy the conclusion of the lemma. Therefore, assume that Z ̸= ∅ and that the

statement of the lemma holds for sets Z ′ such that |Z ′| < |Z|. We apply Lemma 7.4.35 to

G, A, B, C, i = 2, Y1, Y2 and Z to get sets A′, B′ and C ′ that satisfy properties (i)-(iv)

of Lemma 7.4.35. We set Z ′ = Z−(A′∪B′∪C ′) and G′ = G[Y1∪Y2∪Z ′]. From property

(iii) of Lemma 7.4.35 it follows that every path from Y1 to Y2 in G′ has length at least

six. If there does not exist a path from Y1 to Y2 in G′ then using properties (i), (ii) and

(iv) of Lemma 7.4.35 it can be verified that sets A′, B′, and C ′ satisfy the conclusions of

this lemma. Therefore we may assume that Y1 and Y2 are in the same component of G′.

418

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

We define X1 = NG′(Y1), X2 = NG′(Y1 ∪X1), X
′
1 = NG′(Y2), and X ′

2 = NG′(Y2 ∪X ′
1),

since every path from Y1 to Y2 in G′ has length at least six, X1, X2, X
′
1, and X ′

2 are

mutually disjoint. Furthermore, observe that X2 = NG′(X1) − Y1 and similarly that

X ′
2 = NG′(X ′

1)− Y2. By definition of X1, X2, X
′
1, and X ′

2 it holds that every connected

component C of G′ − (Y1 ∪ X1 ∪ X2 ∪ Y2 ∪ X ′
1 ∪ X ′

2) satisfies NG′(C) ⊆ X2 ∪ X ′
2 (any

vertex outside of Y1 that has a neighbor in Y1 would belong to X1 and any vertex outside

of Y1 ∪X1 that has a neighbor in X1 would belong to X2, similar statements hold for X ′
1

and X ′
2). Let Z1 contain X1 ∪X2 as well as the union of the vertex sets of all connected

components, C, of G′ − (Y1 ∪ X1 ∪ X2 ∪ Y2 ∪ X ′
1 ∪ X ′

2) that satisfy ∅ ⊂ NG′(C) ⊆ X2.

Similarly, let Z2 contain X ′
1 ∪X ′

2 as well as the union of the vertex sets of all connected

components, C, of G′ − (Y1 ∪ X1 ∪ X2 ∪ Y2 ∪ X ′
1 ∪ X ′

2) that satisfy ∅ ⊂ NG′(C) ⊆ X ′
2.

Observe that no component of G′ − (Y1 ∪X1 ∪X2 ∪ Y2 ∪X ′
1 ∪X ′

2) is added to both Z1

and to Z2. Since every path from Y1 to Y2 in G′ has length at least six, it follows that

X1 ∪ X2 and X ′
1 ∪ X ′

2 are disjoint. Therefore Z1 ∩ Z2 = ∅. Without loss of generality

|Z1| ⩽ |Z2|. Hence, since Z1 ∪ Z2 ⊆ Z ′ ⊆ Z and it follows that |Z1| ⩽ |Z|/2 < |Z|.

We define Y ′
2 to be the connected component of G′ − (Y1 ∪ Z1) that contains Y2. We

claim that Q = Y1 ∪ Z1 ∪ Y ′
2 is equal to the component, T , of G′ that contains Y1 ∪ Y2

(recall that by the discussion of the second paragraph, we can assume Y1 and Y2 belong

to the same component of G′). First, to see that that every vertex of Q belongs to T

note that Y ′
2 to be the connected component of G′ − (Y1 ∪ Z1) that contains Y2, hence

Y ′
2 ⊆ C, Z1 is a connected set and since X1 ⊆ Z1, Z1 has neighbors in Y1, hence Z1 ⊆ Y1,

and clearly Y1 ⊆ T . Next, we verify that no vertex of G′ outside of Q belongs to T . Let

v be a vertex of G′ outside of Q had a neighbor in T . As noted before, Y ′
2 contains X ′

1

and X ′
2 and by definition Z1 contains X1 and X2, so we may assume that v belongs to a

component of G′−(Y1∪X1∪X2∪Y2∪X ′
1∪X ′

2), hence, by the definition of Z1, we can see

that this implies that if v has a neighbor in Z1 then v must belong to Z1. Next, if v has

419

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

a neighbor in Y ′
2 , then, by definition of Y ′

2 , v would be apart of Y ′
2 , so this is impossible.

Lastly, if v had a neighbor with Y1 then v would be in X1 ⊆ Z1 and therefore in T , so

this is impossible. It now follows that Q = Y1 ∪Z1 ∪ Y ′
2 is equal to the component, T , of

G′ that contains Y1 ∪ Y2.

Since Y1, Z1, and Y ′
2 are disjoint, it follows that these sets partition the component

that Y1 ∪ Y2 belong to in G′. We have that Y ′
2 is connected, that Y1 and Y ′

2 are anti-

complete (because X1 ⊆ Z1), and that Y1 and Y ′
2 do not have common neighbors in Z1

(because X1 ⊆ Z1 and X2 ⊆ Z2). We may therefore apply the induction hypothesis to G,

A′, B′, C ′, Y1, Y
′
2 and Z1. Let A′′, B′′ and C ′′ be the sets that satisfy properties (i)-(iv)

of this lemma when applied to G, A′, B′, C ′, Y1, Y
′
2 and Z1. We prove that A′′, B′′ and

C ′′ satisfy the conclusion of the lemma (when applied to G, A, B, C, Y1, Y2 and Z).

We first prove property (iii), that every path P from Y1 to Y2 in G[Y1 ∪ Y2 ∪ Z]

contains an internal vertex in (A′′ ∪ B′′ ∪ C ′′). Suppose for contradiction that this is

not the case, and let P be a path from Y1 to Y2 in G[Y1 ∪ Y2 ∪ Z] with internal vertices

disjoint from (A′′ ∪B′′ ∪C ′′). Without loss of generality we assume the first vertex of P

is in Y1, the last is in Y2, and all internal vertices of P are in Z − (Y1 ∪ Y2). Since P is

internally vertex disjoint from (A′′ ∪B′′ ∪C ′′) and by the induction hypothesis A′ ⊆ A′′,

B′ ⊆ B′′, and C ′ ⊆ C ′′ we have that P is internally vertex disjoint from (A′ ∪ B′ ∪ C ′),

and that therefore P is a path from Y1 to Y2 in G′.

The first vertex of P lies in Y1, while the last vertex of P is in Y2, which is in in Y ′
2 .

Define v to be the first vertex on P in Y ′
2 and let P ′ be the sub-path of P that starts in

Y1 and ends in v. We have that P ′ lies in the component of G′ that contains Y1 and Y2.

We argue that all internal vertices of P ′ lie in Z1. Indeed, none of the internal vertices of

P ′ lie in Y1 (since only the first vertex of P is in Y1), and none of the internal vertices of

P ′ lie in Y ′
2 by the choice of v. But, as we claimed just after the definition of Y ′

2 , we have

that Y1, Y
′
2 and Z1 partition the component of G′ that contain Y1∪Y2 (and therefore P ′)

420

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

and hence all internal vertices of P ′ are in Z1. But then P ′ contradicts property (iii) of

the inductive hypothesis, namely that every path from Y1 to Y ′
2 in G[Y1 ∪ Y ′

2 ∪ Z1] has

an internal vertex that belongs to (A′′ ∪B′′ ∪C ′′). We conclude that every path P from

Y1 to Y2 in G[Y1 ∪ Y2 ∪ Z] contains an internal vertex in (A′′ ∪ B′′ ∪ C ′′), which proves

property (iii) in the statement of the lemma.

We check the remaining properties of the statement of the Lemma. Property (iv)

follows from the fact that A ⊆ A′, B ⊆ B′, C ⊆ C ′ (by Lemma 7.4.35) and that A′ ⊆ A′′,

B′ ⊆ B′′, C ′ ⊆ C ′′ by the inductive hypothesis.

For property (i), Lemma 7.4.35 yields that the number of separators in G consistent

with A′, B′ and C ′ in G is at least µ/(12n(k+1))2k log(n). The induction hypothesis now

yields that there are at least

µ/(12n(k+1))2k log(n)

(12n(k+1))2k log(n) log(|Z1|)
⩾

µ/(12n(k+1))2k log(n)

(12n(k+1))2k log(n) log(|Z|/2)
=

µ

(12n(k+1))2k log(n) log(|Z|)

minimal separators in G consistent with A′′, B′′ and C ′′.

For property (ii) we have that G[A′∪B′] has at most 2k log n more components than

G[A ∪ B]. By the inductive hypothesis G[A′′ ∪ B′′] has at most 2k log n log |Z1| more

components than G[A′ ∪B′]. However |Z1| ⩽ |Z| so log(|Z1|) ⩽ log |Z| − 1 and therefore

G[A′′ ∪B′′] has at most 2k log n log |Z| more components than G[A∪B]. This concludes

the proof.

If A, B, and C and S are the outputs of Lemma 7.4.14 then Lemma 7.4.36 shows us

how we can enrich A, B, and C so that for each Si, Sj ∈ S and for each vertex vi ∈ Si

and vj ∈ Sj, no component of G′ = G− (A′ ∪ B′ ∪ C ′ ∪ V) contains both a vertex from

NG′ [vi] and NG′ [vj] where V = NG[vi] ∩ NG[vj] (A, B, and C are enriched by applying

Lemma 7.4.36 for each pair of vertices vi and vj). After doing this the next lemma shows

us why this is sufficient to guarantee that G− (A ∪B ∪ C) has no large component.

421

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Lemma 7.4.37. Let G be a graph with n vertices, let δ > 1, and let S be a vertex list of

n/δ-balanced separators of G such that no vertex of G belongs to every balanced separator

of S. If for every pair Si, Sj ∈ S it holds that no component of G − (Si ∩ Sj) contains

a vertex from both Si − (Si ∩ Sj) and Sj − (Si ∩ Sj), then G has no component of size

greater than n/δ.

Proof: Let G be a graph with n vertices, let δ > 1, let S be a list of n/δ-balanced

separators of G such that no vertex of G belongs to every balanced separator of S, and

for every pair Si, Sj ∈ S it holds that no component of G − (Si ∩ Sj) contains a vertex

from both Si − (Si ∩ Sj) and Sj − (Si ∩ Sj). Assume, for a contradiction then G has a

component, X, of size greater than n/δ.

Since X is a component of size greater than n/δ, every n/δ-balanced separator must

have at least one vertex in X. Let v be a vertex of X that belongs the largest number of

sets of S as possible. By how S was defined, there is some S ∈ S such that v /∈ S. Let

P be a shortest path from v to S and let s be the endpoint of P that belongs to S.

Since v was chosen to be a vertex of X that belongs the largest number of sets of S

as possible, there must be a set S ′ ∈ S such that v ∈ S ′ and s /∈ S ′. Since we also have

that v /∈ S, there must be a subpath P ∗ of P with endpoints s and v′ where v′ ∈ S ′,

v′ ̸= s, and no internal vertex of P ∗ belongs to S ′ or S (recall P is a shortest path from

v to S). It follows that P ∗ is a path in G − (S ∩ S ′) and therefore since neither v′ nor

s belong to S ∩ S ′, v′ and s are in the same connected component in G − (S ∩ S ′), a

contradiction to how S was defined.

We are now ready to prove Lemma 7.4.6. As indicated before, the proof works by

taking A, B, and C and S, the outputs of Lemma 7.4.14, then for each Si, Sj ∈ S

and for each vertex vi ∈ Si and vj ∈ Sj, applying Lemma 7.4.36 to vi and vj. The

graph G − (A ∪ B ∪ C) along with the vertex list S will then satisfy the conditions of

422

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Lemma 7.4.37.

Proof: [Proof of Lemma 7.4.6] Let G be a k-creature free graph, k ⩾ 2, with n ⩾ 2

vertices and µ minimal separators and let δ > 1. Apply Lemma 7.4.14 to G and δ to get

sets A, B, and C and an anti-complete list S that satisfy properties (i)-(vi) of Lemma

7.4.14.

We wish to “enrich” A, B, and C so that for each unordered pair of vertices x and

y where x belongs to some set of S and y belong to a different set of S, it will hold

that no vertex of NG[x] and NG[y] will be in the same component of G− (A ∪ B ∪ C ∪

(NG[x]∩NG[y]). To do this we go through each pair of vertices, x, y, and after considering

the ith pair we will have vertex sets Ai, Bi and Ci such that for any pair x, y that have

previously been considered it holds that no vertex of NG[x] and NG[y] will be in the same

component of G− (A ∪B ∪ C ∪ (NG[x] ∩NG[y]).

More formally, we set A0 = A, B0 = B and C0 = C. Assume that we have already

considered i − 1 unordered vertex pairs x and y where x belongs to some set of S and

y belong to a different set of S and we have sets Ai−1, Bi−1 and Ci−1. Since S is an

anti-complete vertex list, x and y are anti-complete, so we set Y1 = x, Y2 = y, and

Z = V (G)− (NG[x]∩NG[y]) and apply Lemma 7.4.36 to Ai−1, Bi−1, Ci−1, Y1, Y2, and Z

to get the sets Ai, Bi, and Ci which satisfy properties (i)-(iv) of Lemma 7.4.36.

Assume that there are ℓ unordered vertex pairs x and y where x belongs to some set

of S and y belong to a different set of S. We show that the sets Aℓ, Bℓ, and Cℓ satisfy

properties (i)-(iii) of Lemma 7.4.6.

We first show property (i) is satisfied. We can see that by properties (iii) and (iv) of

Lemma 7.4.36 that for any pair of vertices x and y where x belongs to some set of S and

y belong to a different set of S, it holds that no vertex of NG[x] − (Aℓ ∪ Bℓ ∪ Cℓ ∪ V)

and NG[y]− (Aℓ ∪Bℓ ∪Cℓ ∪V) will be in the same component of G− (Aℓ ∪Bℓ ∪Cℓ ∪V)

where V = NG[x] ∩NG[y]. It then follows that for any two distinct sets Si, Sj ∈ NG(S)

423

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

that no vertex of Si− (Aℓ∪Bℓ∪Cℓ∪V ′) and Sj− (Aℓ∪Bℓ∪Cℓ∪V ′) belong to the same

component in G− (Aℓ ∪ Bℓ ∪ Cℓ ∪ V ′) where V ′ = Si ∩ Sj. Since A ⊆ Aℓ, B ⊆ Bℓ, and

C ⊆ Cℓ, if G′ = G − (Aℓ ∪ Bℓ ∪ Cℓ) then it follows from property (i) of Lemma 7.4.14

that for all S ∈ S NG[S] − (Aℓ ∪ Bℓ ∪ Cℓ) is an n/δ-balanced separator of G′ and no

vertex of G′ belongs to all sets of NG′ [S]. It follows from Lemma 7.4.37 that no vertex

of G′ has over n/δ components.

Next we show property (ii) and (iii) are satisfied. By properties (ii) and (iii) of

Lemma 7.4.14 there are at least µ/(4(3n(k+1))160k
2δ2 log3(n)+2) minimal separators that

are consistent with A,B, and C and G[A ∪ B] contains at most 260k2δ2 log(n)3 + 2

components. Furthermore, by properties (i) and (ii) of Lemma 7.4.36 if there are µ′

minimal separators that are consistent with Ai−1, Bi−1 and Ci−1 then there are at least

µ′/(12n(k+1))2k log
2(n) minimal separators that are consistent with Ai, Bi, and Ci and there

are at most 2k log(n)2 more minimal separators in G[Ai ∪ Bi] than in G[Ai−1 ∪ Bi−1].

Since each S ∈ S has size at most 8kδ and S has size log(n) + 1, ℓ must be less than

(8kδ log(n))2. Hence G has at least

µ

4(3n(k+1))160k2δ2 log
3(n)+2)(12n(k+1))(2k log

2(n))(8kδ log(n))2

⩾
µ

((12n(k+1))160k2δ2 log
3(n)+2)(12n(k+1))(128k3 log

4(n)))
⩾

µ

(12n(k+1))400k3δ2 log
4(n)

minimal separators that are consistent with Aℓ, Bℓ, Cℓ, and G[Aℓ ∪Bℓ] has at most

260k2δ2 log(n)3 + 2 + (2k log2(n))(8kδ log(n))2 ⩽ 400k3δ2 log(n)4

components.

424

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

7.4.2 Constructing the Generalized ω-Creature

In this section we will prove that if G is a k-creature free graph with n vertices and

a sufficient number of minimal separators, then we can find a generalized ω-creature in

G. We do this by taking the output of Lemma 7.4.6 from the previous subsection giving

us A,B, and C such that G− (A∪B ∪C) has no component with over ≈ n/2ω vertices

and a large fraction of minimal separators of G are consistent with A, B, and C. This

already gives us something close to a generalized ω-creature. Setting H to be an ω-bistar

and φ to be a function that maps A and B to cA and cB (the two central vertices of H)

respectively and ω of the components of G− (A∪B ∪C) to the ω peripheral vertices of

H gives us something close to a generalized ω-creature, we are just missing the special

sets S1 and S2. If there are at least ω components, X, of G − (A ∪ B ∪ C) such that

at least two minimal separators, SX and S ′
X (SX and S ′

X can depend on the specific X

chosen), of G are consistent A,B, and C and SX ∩ X ̸= S ′
X ∩ X (plus an additional

property which will be describe later on), then we can in fact show that we can construct

a generalized ω-creature.

On the other hand, if we cannot find such a set of ω components of G− (A∪B ∪C)

then this implies all minimal separators S of G that are consistent with A, B, and C

intersect all but ω components G − (A ∪ B ∪ C) in the exact same “unique” way. We

will show that we can allocate the vertices of these “uniquely” intersected components

of G − (A ∪ B ∪ C) to makes sets A′, B′, and C ′ such that any minimal separator of

G that was consistent with A, B, and C will be consistent with A′, B′ and C ′. Since

each component of G− (A∪B ∪C) has at most n/2ω, this implies that over half of the

vertices of G belong to A′, B′, or C ′. Lemmas 7.4.4 and 7.4.5 then allow us to making an

induced minor, G′, of G with at most half the vertices of G but still maintaining a large

fraction of G’s minimal separators. Since we only sacrificed a small fraction of minimal

425

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

separators to drop the number of vertices in the graph by a factor of 2, repeating this

process at most log(n) times then must result in us finding a generalized ω-creature for

some large value of ω (or else we would end up with an empty graph with a supposedly

large number of minimal separators).

Unfortunately, this isn’t quite enough for our purposes. We will require not just any

generalized ω-creature, but one with a bit more structure, which will force us to do some

more pre-processing before constructing our generalized ω-creature. We call this more

structured object a connected good generalized ω-creature, which we now define.

Good Components and Connected, Good, Full Generalized ω-Creatures.

Definition 7.4.38 (Full generalized ω-creatures). A generalized ω-creature is full if, for

every peripheral vertex, u, of H, φ−1(u)∩S1 and φ−1(u)∩S2 are distinct Aφ, Bφ-minimal

separators in G[Aφ ∪Bφ ∪ φ−1(u)].

Note that a generalized ω-creature being full just means that the witness separators

S⋆1 and S⋆2 in property (i) of generalized ω-creatures are precisely S1 and S2.

Let G be a graph, let A,B,⊆ V (G), and let X be a component of G − (A ∪ B). X

is called a non-leaf component of G− (A ∪ B) with respect to A and B if it has at least

two distinct neighbors in G[A ∪ B]. A component of G[X − N2
G[A ∪ B]] is said to be a

sub-component of X with respect to A and B. A sub-component, Y , of X with respect to

A and B is called a non-leaf sub-component with respect to A and B if Y has neighbors

in at least two distinct components of G[N2
G[A∪B]]. X is said to be good with respect to

A and B if X has at most one non-leaf sub-component with respect to A and B and for

every pair of components P and Q of G[A∪B] it holds that N2
G[P]∩X is anti-complete

with N2
G[Q] ∩X.

426

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Definition 7.4.39 (Connected, Good). Let W = (G,H, φ, S1, S2) be a generalized ω-

creature. If for all peripheral vertices, u, of H it holds that φ−1(u) is a connected vertex

set (which implies that the vertex sets φ−1(u) are the components of G− (Aφ∪Bφ)) then

we call W a connected generalized ω-creature. If W is a connected generalized ω-creature

and all components of G− (Aφ ∪Bφ) are good with respect to Aφ and Bφ, then we call

W a connected good generalized ω-creature.

We will find it useful to make the definitions just given slightly more flexible by

allowing us to incorporate an additional set C into these definitions. Let G be a graph,

let A, B, C, X, Y be vertex sets, and let G′ = G − C. We will say that X is a non-

leaf component of G − (A ∪ B ∪ C) if X is a non-leaf component of G′ − (A ∪ B) with

respect to A and B. We say Y is a sub-component of X with respect to A, B and C

if Y is a sub-component of X with respect to A and B in G′. We say Y is a non-leaf

sub-component of X with respect to A, B and C, if Y is a non-leaf sub-component of X

with respect to A and B in G′. We say X is good with respect to A, B, and C if X is

good with respect to A and B in G′.

Our main result this subsection is to prove that any graph with a sufficient number of

minimal separators will contain a connected, good, full generalized ω-creature for large ω.

In particular, we will prove Lemma 7.3.2, which is the only lemma from this subsection

that will be used outside of this subsection. We repeat the statement of Lemma 7.3.2

here for convenience.

Lemma 7.3.2. Let G be a k-creature free graph with n vertices, let ω > 1 and δ = 3ω, let

c be an integer large enough so that 400k3δ2 log4(c) < c/6, let x = 400k3δ2 log4(n), and let

G have at least 2c(12n)6k
2x4 log(n) minimal separators. Then there exists an induced minor

G′ of G such that (G′, H, φ, S1, S2) is a connected, good, full generalized ω-creature.

427

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Making the Components of G− (A ∪B ∪ C) Good

Let G be a graph with n vertices and a large number of minimal separators. Our

first step toward proving Lemma 7.3.2 is to apply Lemma 7.4.6 to G with δ ≈ ω to get

the sets A, B, and C. We then enrich A, B, and C to ensure that all components of

G− (A ∪B ∪ C) are good components. In particular, we prove the following lemma.

Lemma 7.4.40. Let G be a k-creature free graph (assume k ⩾ 2) with n ⩾ 2 vertices,

let δ > 1, and let G have µ minimal separators. Then there exist A,B,C ⊆ V (G) such

that the following conditions hold:

(i) No component in G− (A ∪B ∪ C) has over n/δ vertices.

(ii) Let x = 400k3δ2 log4(n). Then G has at least µ/(12n)5k
2x4 minimal separators that

are consistent with A,B, and C.

(iii) G[A ∪B] has at most 400k3δ2 log4(n) components.

(iv) All components, X, of G− (A ∪B ∪ C) are good with respect to A, B, and C.

(v) There are at most k(400k3δ2 log4(n))2 components of G− (A ∪B ∪ C).

Notice that properties (i)-(iii) are similar to what Lemma 7.4.6 can guarantee us.

So, in order to prove Lemma 7.4.40 we assume that we have a k-creature free graph, G,

and that we have been given sets A, B, and C (which will come from Lemma 7.4.6) and

we want to find sets A′, B′, and C ′ which contain A, B, and C respectively and satisfy

the properties of Lemma 7.4.40, in particular, some effort is required in order to satisfy

properties (iv) and (v). In order to do this we must study what happens as we grow A

and B by successively taking their neighborhoods in a specially chosen induced subgraph

of G. We will need the following lemma to determine this induced subgraph of G (which

will end up being G− C ′, where C ′ is a set produced by the following lemma).

428

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Lemma 7.4.41. Let G be a graph, let A,B,C ⊆ V (G) such that G has µ ⩾ 1 minimal

separators that are consistent with A,B, and C, and let r be a natural number. Then

there exists A′, B′, C ′ ⊆ V (G) where the following conditions hold:

(i) Let G[A ∪ B] have c components, then G has at least µ/nrkc minimal separators

that are consistent with A′, B′, and C ′.

(ii) C ′ ∩ A = ∅ and C ′ ∩B = ∅.

(iii) Let G′ = G− C ′ then A′ = N r
G′ [A] and B′ = N r

G′ [B].

Proof: Let G be a graph, let A,B,C ⊆ V (G) such that G has µ > 0 minimal

separators that are consistent with A,B, and C, let G[A ∪ B] have c components, and

let r be a natural number. We will show by induction on r that there exists sets A′,

B′, and C ′ that satisfy conditions (i)-(iii) of this lemma. Recall for a set X ⊆ V (G)

that we define N0
G[X] = X. It follows that taking A′ = A, B′ = B and C ′ = C satisfies

conditions (i)-(iii) of this lemma for the base case when r = 0. Now assume this holds

for all r less than some r′ > 0. We will show it holds for r = r′.

We use the inductive hypothesis to find sets A′, B′, and C ′ such that (i) G has at

least µ/n(r−1)kc minimal separators that are consistent with A′, B′ and C ′ (let S be the

set of these minimal separators) (ii) C ′ ∩A = ∅ and C ′ ∩B = ∅, and (iii) if G′ = G−C ′

then A′ = N r−1
G′ [A] and B′ = N r−1

G′ [B]. Since G[A ∪ B] has c components, condition

(iii) shows that G[A′ ∪B′] has at most c components. By definition of consistent, for all

S ∈ S it holds that A′ ∩ S = ∅ and B′ ∩ S = ∅, so we may then apply Lemma 7.4.10

with U = A′ ∪ B′ (and using the fact that U ∩ S = ∅ for S ∈ S to conclude the set

SU = {NG(U)∩S|S ∈ S} has size |SU | ⩽ nkc. Since |SU | ⩽ nkc there is an X ∈ SU such

that at least |S|/nkc ⩾ µ/nrkc (by the inductive hypothesis) minimal separators S ∈ S

have the property that NG(U)∩S = X. Denote this subset of S as SX , so |SX | ⩾ µ/nrkc.

429

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

We will show that NG′ [A′] − X, NG′ [B′] − X, and C ∪ X satisfy the properties of this

lemma.

We first establish property (i). We have that for all S ∈ SX , since S is consistent with

A′, B′, and C ′ and NG(A′∪B′)∩S = X, it follows that S is consistent with NG[A′]−X,

NG[B′] − X, and C ∪ X and therefore, since NG′ [A′] ⊆ NG[A′] and NG′ [B′] ⊆ NG[B′],

S is consistent with NG′ [A′] − X, NG′ [B′] − X, and C ∪ X. Since |SX | ⩾ µ/nrkc this

established condition (i).

To see that property (ii) holds note that since A′ and B′ are both disjoint from S ∈ S

and from C ′ we have that X ∩A′ = X ∩B′ = ∅, it holds that (C ′∪X)∩ (NG′ [A′]−X) =

(C ′ ∪X) ∩ (NG′ [B′]−X) = ∅. This establishes condition (ii).

Lastly, we establish condition (iii). Since, by the inductive hypothesis, A′ = N r−1
G′ [A],

B′ = N r−1
G′ [B], and X ∩ (A′ ∪B′) = ∅ it follows that if G′′ = G′−X then NG′ [A′]−X =

N r
G′′ [A] and NG′ [B′]−X = N r

G′′ [B] which establishes condition (iii).

We now define a sequence which we will study in order to prove Lemma 7.4.40. Let

G be a k-creature free graph, let A,B,C ⊆ V (G) where G has µ ⩾ 1 minimal separators

that are consistent with A,B, and C, let A′, B′, and C ′ be the sets returned by applying

Lemma 7.4.41 to G, A, B, C, and 2r = 2(kc3 + c) and let G′ = G − C ′. We define a

sequence, seq3(G,A,B,C), to be a sequence of tuples where the ith tuple, 1 ⩽ i ⩽ r, is

defined to be (Ai, Bi) where Ai = N2i
G′ [A] and Bi = N2i

G′ [B]. The sets A′, B′, and C ′ will

be referred to as the core sets of seq3(G,A,B,C) and the graph G′ will be referred to as

the core graph of seq3(G,A,B,C).

We now prove a series of lemmas which will eventually allow us to show that there ex-

ists some tuple (Aj, Bj) of seq3(G,A,B,C) such that Aj, Bj, and C ′ satisfy the properties

of Lemma 7.4.40, assume that the sets A,B, and C were obtained from Lemma 7.4.6.

Lemma 7.4.42. Let G be a k-creature free graph and let A,B,C ⊆ V (G) where G has

430

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

µ ⩾ 1 minimal separators that are consistent with A, B, and C. Then for a tuple (Ai, Bi)

of seq3(G,A,B,C) it holds that Ai is anti-complete with Bi.

Proof: Let G be a k-creature free graph, let A,B,C ⊆ V (G) where G has µ ⩾ 1

minimal separators that are consistent with A, B, and C, and let A′, B′, and C ′ be the

core sets of seq3(G,A,B,C). If G[A∪B] has c components then by property (i) of Lemma

7.4.41 G has at least µ/n2(kc3+c)kc > 0 minimal separators that are consistent with A′,

B′, and C ′, hence G has at least one minimal separator that is consistent with A′, B′,

and C ′. It follows that A′ and B′ must be anti-complete. By property (iii) of Lemma

7.4.41 we can see that for a tuple (Ai, Bi) of seq3(G,A,B,C) it holds that Ai ⊆ A′ and

Bi ⊆ B′, hence Ai is anti-complete with Bi.

Lemma 7.4.43. Let G be a k-creature free graph, let A,B,C ⊆ V (G) where G has µ ⩾ 1

minimal separators that are consistent with A, B, and C, and let (Ai, Bi) be a tuple of

seq3(G,A,B,C). Then |CC(G[Ai ∪Bi])| is a non-increasing sequence in i.

Proof: Let G be a k-creature free graph, let A,B,C ⊆ V (G) where G has µ ⩾ 1

minimal separators that are consistent with A, B, and C, let (Ai, Bi) and (Ai+1, Bi+1)

be tuples of seq3(G,A,B,C), and let G′ be the core graph of seq3(G,A,B,C). Then

Ai+1 = N2
G′ [Ai] and Bi+1 = N2

G′ [Bi] and it follows that G[Ai+1 ∪ Bi+1] has at most as

many components as G[Ai ∪Bi] which proves the lemma.

Let G be a k-creature free graph, let A,B,C ⊆ V (G) where G has µ ⩾ 1 minimal

separators that are consistent with A, B, and C. We define the ith critical number,

ci, of seq3(G,A,B,C) to be the ith number such that the number of components of

G[Aci ∪Bci] is strictly less than the number of components of G[A(ci)+1 ∪B(ci)+1] for the

tuples (Aci , Bci) and (A(ci)+1 ∪ B(ci)+1) of seq3(G,A,B,C). In other words, the critical

numbers denote indexes of seq3(G,A,B,C) where the number of components strictly

decreases. For convenience, we also let 0 be a critical number of seq3(G,A,B,C) as well

431

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

as the index, r, of the last tuple of seq3(G,A,B,C) in order to have the fact that every

index of the sequence seq3(G,A,B,C) is either a critical number or lies between two

critical numbers. Let seq3(G,A,B,C) have t critical numbers other than 0 and r. We

will call 0 the 0th critical number and will be denoted by c0 and we will call r the t+ 1th

critical number and will be denoted by ct+1. The following corollary follows from the fact

that if there are c components of G[A∪B] then seq3(G,A,B,C) has r = kc3+c elements,

Lemma 7.4.43, and the fact that no graph can have a negative number of components.

Corollary 7.4.44. Let G be a k-creature free graph, let A,B,C ⊆ V (G), A,B ̸= ∅,

where G has µ ⩾ 1 minimal separators that are consistent with A, B, and C, and let

there be c components of G[A ∪ B]. Then there exists critical numbers ci and ci+1 of

seq3(G,A,B,C) such that ci+1 − ci > kc2 + 1.

Proof: Let G be a k-creature free graph, let A,B,C ⊆ V (G), A,B ̸= ∅, where G

has µ ⩾ 1 minimal separators that are consistent with A, B, and C, and let there be c

components of G[A ∪ B]. Since for each tuple (Ai, Bi) of seq3(G,A,B,C) we have that

Ai, Bi ̸= ∅ and Ai and Bi are anti-complete by Lemma 7.4.42 it follows that G[Ai ∪ Bi]

must have at least two components. Hence there can be at most c critical numbers

(including 0 and r = kc3 + c) of seq3(G,A,B,C). Since seq3(G,A,B,C) has kc3 + c

elements, it follows that there must be some critical numbers ci and ci+1 such that

ci+1 − ci > kc2 + 1.

Lemma 7.4.45. Let G be a k-creature free graph, let A,B,C ⊆ V (G) where G has

µ ⩾ 1 minimal separators that are consistent with A, B, and C, let ci and ci+1 be critical

numbers of seq3(G,A,B,C), and let G′ be the core graph of seq3(G,A,B,C). If (Aj, Bj)

is a tuple of seq3(G,A,B,C) where ci < j < ci+1 then for all pairs of components P,Q

of G[Aj ∪Bj] it holds that N2
G′ [P] is anti-complete with N2

G′ [Q].

Proof: Let G be a k-creature free graph, let A,B,C ⊆ V (G) where G has µ ⩾ 1

432

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

minimal separators that are consistent with A, B, and C, let ci and ci+1 be critical num-

bers of seq3(G,A,B,C), let G′ be the core graph of seq3(G,A,B,C), and let (Aj, Bj) and

(Aj+1, Bj+1) be tuples of seq3(G,A,B,C) where ci < j < ci+1 (in particular, this imples

that j is not a critical number). Assume for a contradiction that there are components

P,Q of G[Aj ∪ Bj] such that P ′ = N2
G′ [P] is not anti-complete with Q′ = N2

G′ [Q]. It

follows that G[P ′ ∪ Q′] is connected and therefore only contains one component. Since

Aj+1 = N2
G′ [Aj] and Bj+1 = N2

G′ [Bj], this implies that the number of components of

G[Aj+1 ∪ Bj+1] is strickly less that the number of components of G[Aj ∪ Bj]. But this

contradicts the fact that j is not a critical number.

The following lemma will be needed to prove property (v) of Lemma 7.4.40.

Lemma 7.4.46. Let G be a k-creature free graph, let A,B,C ⊆ V (G) where G has

µ ⩾ 1 minimal separators that are consistent with A, B, and C, let c denote the number

of components of G[A∪B], let G′ be the core graph of seq3(G,A,B,C), and let ci and ci+1

be critical numbers of seq3(G,A,B,C). If (Aj, Bj) is a tuple of seq3(G,A,B,C) where

ci < j < ci+1. Then there are less than kc2 non-leaf components of G′ − (Aj ∪ Bj) with

respect to Aj and Bj.

Proof: Let G be a k-creature free graph, let A,B,C ⊆ V (G) where G has µ ⩾ 1

minimal separators that are consistent with A, B, and C, let c denote the number of

components of G[A ∪ B], let G′ be the core graph of seq3(G,A,B,C), let ci and ci+1 be

critical numbers of seq3(G,A,B,C), and let (Aj, Bj) be a tuple of seq3(G,A,B,C) where

ci < j < ci+1. Assume for a contradiction that there are at least kc2 non-leaf components

of G′ − (Aj ∪Bj) with respect to Aj and Bj. Since there are c components of G[A ∪B],

by Lemma 7.4.43 there are at most c components of G[Aj ∪ Bj]. It follows there are

(c2 − c)/2 pairs of distinct components of G[Aj ∪ Bj], so by the pigeon hole principle,

there exists components P and Q of G[Aj ∪ Bj] such that there are at least k non-leaf

433

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

components, X1, X2, . . . , Xk, of G′− (Aj ∪Bj) that have neighbors in both P and Q. Let

Yi denote an induced path from P to Q whose internal vertices are contained in Xi, so

the internal vertices of Yt are anti-complete with the internal vertices of Yt′ for t ̸= t′. By

Lemma 7.4.45 each Yi must have at least six vertices. So, since P and Q are connected,

P is anti-complete with Q, the internal vertices of Yt are anti-complete with the internal

vertices of Yt′ for t ̸= t′, and the Yi’s are induced paths from P to Q of length at least

six, we can see that this implies that G contains a k-creature, which is a contradiction.

Lemma 7.4.47. Let G be a k-creature free graph, let A,B,C ⊆ V (G) where G has

µ ⩾ 1 minimal separators that are consistent with A, B, and C, let G′ be the core graph

of seq3(G,A,B,C), let ci and ci+1 be critical numbers of seq3(G,A,B,C), and let (Aj, Bj)

and (Aj+1, Bj+1) be tuples of seq3(G,A,B,C) where ci < j < ci+1. Then every non-leaf

component of G′−(Aj∪Bj) with respect to Aj and Bj contains a non-leaf sub-component

with respect to Aj and Bj. Furthermore, if X is a component of G′ − (Aj ∪ Bj) then

every non-leaf sub-component of X with respect to Aj and Bj is a non-leaf component of

G′ − (Aj+1 ∪Bj+1) with respect to Aj+1 and Bj+1.

Proof: Let G be a k-creature free graph, let A,B,C ⊆ V (G) where G has µ ⩾ 1

minimal separators that are consistent with A, B, and C, let G′ be the core graph of

seq3(G,A,B,C), let ci and ci+1 be critical numbers of seq3(G,A,B,C), and let (Aj, Bj)

and (Aj+1, Bj+1) be tuples of seq3(G,A,B,C) where ci < j < ci+1. Assume X is a

component of G′ − (Aj ∪ Bj) and let Y be a non-leaf sub-component of X with respect

to Aj and Bj.

First we show that every non-leaf sub-component of X with respect to Aj and Bj is a

non-leaf component of G′−(Aj+1∪Bj+1) with respect to Aj+1 and Bj+1. By definition, Y

is a component ofG[X−N2
G′ [Aj∪Bj]] =G[X−(N2

G′ [Aj]∪N2
G′ [Bj])] =G[X−(Aj+1∪Bj+1)],

434

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

and therefore Y is a component of G′− (Aj+1∪Bj+1). Furthermore, by definition, Y has

neighbors in two components of G[N2
G′ [Aj∪Bj]] = G[N2

G′ [Aj]∪N2
G′ [Bj]] = G[Aj+1∪Bj+1],

so Y is a non-leaf component of G′ − (Aj+1 ∪Bj+1) with respect to Aj+1 and Bj+1.

Next, we show that if X is a non-leaf component of G′−(Aj∪Bj) then X must contain

a non-leaf sub-component with respect to Aj and Bj. Let Z denote the set of vertices that

belong to a component of G[Aj ∪Bj] that has at least one neighbor in X, so G[Z] has at

least two components since X is a non-leaf component and G[X− (N2
G′ [Ai]∪N2

G′ [Bi])] =

G[X−N2
G′ [Z]]. Since G[X∪Z] is connected, G[(X−N2

G′ [Z])∪N2
G′ [Z]] = G[X∪N2

G′ [Z]] is

connected and it follows from Lemma 7.4.45 that since G[Z] has at least two components,

G[N2
G′ [Z]] has at least two components. It follows there must be at least one component

of G[X−N2
G′ [Z]] = G[X−N2

G′ [Aj∪Bj]] that has at least one neighbor in two components

of G[N2
G′ [Z]] (or else G[(X − N2

G′ [Z]) ∪ N2
G′ [Z]] would not be connected) and therefore

has at least one neighbor in two components of G[N2
G′ [Aj+1 ∪Bj+1]].

The next corollary follows immediately from Lemma 7.4.47

Corollary 7.4.48. Let G be a k-creature free graph, let A,B,C ⊆ V (G) where G has

µ ⩾ 1 minimal separators that are consistent with A, B, and C, let G′ be the core

graph of seq3(G,A,B,C), let ci and ci+1 be critical numbers of seq3(G,A,B,C), and let

(Aj, Bj) be a tuple of seq3(G,A,B,C) where ci < j < ci+1. Then the number of non-leaf

components of G′ − (Aj ∪Bj) with respect to Aj and Bj is a non-decreasing sequence in

j (when the possible values of j are restricted to lie between ci and ci+1).

The following lemma is the main lemma that we need to prove Lemma 7.4.40. Namely,

that we can find an (Aj, Bj) of seq3(G,A,B,C) has the property that all components of

G′ − (Aj ∪Bj) are good, where G′ is the core graph of seq3(G,A,B,C).

Lemma 7.4.49. Let G be a k-creature free graph, let A,B,C ⊆ V (G), A,B ̸= ∅, where

G has µ ⩾ 1 minimal separators that are consistent with A, B, and C, and let G′ be the

435

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

core graph of seq3(G,A,B,C). Then there exists an integer j such that the tuple (Aj, Bj)

of seq3(G,A,B,C) has the property that all components of G′ − (Aj ∪Bj) are good with

respect to Aj and Bj.

Proof: Let G be a k-creature free graph, let A,B,C ⊆ V (G), A,B ̸= ∅, where G

has µ ⩾ 1 minimal separators that are consistent with A, B, and C, let c denote the

number of components of G[A ∪ B], and let G′ be the core graph of seq3(G,A,B,C).

By Corollary 7.4.44 there exists two critical numbers ci and ci+1 of seq3(G,A,B,C)

such that ci+1− ci > kc2 + 1. By Lemma 7.4.46 for any (Aj, Bj) in seq3(G,A,B,C) with

ci < j < ci+1 there are less than kc2 non-leaf components of G′−(Aj∪Bj) with respect to

Aj and Bj, and by Corollary 7.4.48 the number of non-leaf components of G′− (Aj ∪Bj)

with respect to Aj and Bj is a non-decreasing sequence in j when ci < j < ci+1. It

follows that there must exists some j′, ci < j′ < ci+1 such that the number of non-leaf

components of G′ − (Aj′ ∪ Bj′) is the same as the number of non-leaf components of

G′ − (Aj′+1 ∪Bj′+1).

We now show that all components, X, of G′ − (Aj′ ∪ Bj′) are good with respect to

Aj′ , and Bj′ . Let P and Q be two components of G[Aj′ ∪Bj′]. By Lemma 7.4.45 it holds

that N2
G′ [P] ∩X is anti-complete with N2

G′ [Q] ∩X. Next, it follows from Lemma 7.4.47

that if X has two non-leaf sub-components with respect to Aj′ and Bj′ , then the number

of non-leaf components of G′ − (Aj′ ∪ Bj′) with respect to Aj′ and Bj′ is strictly less

than the number of non-leaf components of G′ − (Aj′+1 ∪ Bj′+1) with respect to Aj′+1

and Bj′+1, which is a contradiction. It follows that X is a good component.

Let G be a k-creature free graph with many minimal separators, and let A, B, and

C be the sets obtained from Lemma 7.4.6 applied to G. We will show that the tuple

(Aj, Bj) obtained from Lemma 7.4.49 almost satisfies the properties of Lemma 7.4.40.

The problem is that G′−(Aj∪Bj) could have a large number of components, so property

436

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

(v) of Lemma 7.4.40 might not be satisfied. But Lemma 7.4.46 shows that not many

components of G′ − (Aj ∪Bj) have neighbors in both Aj and Bj. The next lemma show

how we get rid of the components of G′ − (Aj ∪ Bj) that do not have neighbors in both

Aj and Bj.

Lemma 7.4.50. Let G be a graph, let A,B,C ⊆ V (G), A,B ̸= ∅, and let S be a minimal

separator of G that is consistent with A,B, and C. Let A∗, B∗, and C∗ be the sets of

vertices that belong to a component of G−(A∪B∪C) that has neighbors in A and not B,

that has neighbors in B and not A, and that does not have neighbor B ∪ A respectively.

Then S is consistent with A ∪ A∗, B ∪B∗, and C ∪ C∗.

Proof: Let G be a graph, let A,B,C ⊆ V (G), A,B ̸= ∅, and let S be a minimal

separator of G that is consistent with A,B, and C. Let A∗, B∗, and C∗ be the sets of

vertices that belong to a component of G−(A∪B∪C) that has neighbors in A and not B,

that has neighbors in B and not A, and that does not have neighbor B ∪A respectively.

First, we show that S∩A∗ = ∅. Assume for a contradiction that there is an s ∈ S∩A∗.

Since S is consistent with A, B, and C, B belongs to an S-full component, call it B′, of

G − S which does not contain any vertex from A nor C. So, there must be some path,

P from B to s such that the internal vertices of P are contained in B′ and therefore

disjoint from A and C. But, since s lies in a component, Q, of G − (A ∪ B ∪ C) such

that NG(Q) ⊆ A ∪ C, any path from B to Q must contain a vertex from A ∪ C, hence

such a path P cannot exists.

A symmetric argument shows that S ∩ B∗ = ∅. Now since S does not contain any

vertex from A∗ ∪B∗, we can see that A∗ and A belong to the same component of G− S

and B∗ and B belong to the same component of G−S. Hence S is consistent with A∪A∗,

B ∪B∗ and C. All that needs to be shown to complete the proof is that no vertex of C∗

belongs to the same component that A nor B belongs to G− S.

437

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

So, assume for a contradiction that there is a c ∈ C∗ − S that belongs to the same

component that either A or B does in G − S, without loss of generality assume that s

belongs to the same component A does in G− S. So, there must be some path, P from

A to c such that the internal vertices of P are contained in the component A belongs to

in G− S and therefore is disjoint from B and C. But, since c lies in a component, Q, of

G − (A ∪ B ∪ C) such that NG(Q) ⊆ C, any path from A to Q must contain a vertex

from C, hence such a path P cannot exists.

We are now ready to prove Lemma 7.4.40

Proof: [Proof of Lemma 7.4.40] Let G be a k-creature free graph, k ⩾ 2, with

n ⩾ 2 vertices, let δ > 1, and let G have µ minimal separators. Apply Lemma 7.4.6

to G and δ to get sets A,B, and C that satisfy properties (i)-(iii) of Lemma 7.4.6.

Let G′ be the core graph of seq3(G,A,B,C) and let A′, B′, and C ′ be the core sets of

seq3(G,A,B,C). By Lemma 7.4.49 there exists a tuple (Aj, Bj) of seq3(G,A,B,C) such

that all components of G′ − (Aj ∪ Bj) are good with respect to Aj and Bj, hence all

components of G − (Aj ∪ Bj ∪ C ′) are good with respect to Aj, Bj, and C ′. Let A∗

be the set of all vertices that belong to a component, X, of G − (Aj ∪ Bj ∪ C ′) such

that X has neighbors in A and no neighbors in B, let B∗ be the set of all vertices that

belong to a component, X, of G − (Aj ∪ Bj ∪ C ′) such that X has neighbors in B and

no neighbors in A, and let C∗ be the set of all vertices that belong to a component, X,

of G− (Aj ∪ Bj ∪ C ′) such that X has no neighbors A ∪ B. We will show that the sets

A′′ = Aj ∪A∗, B′′ = Bj ∪B∗, and C ′′ = C ′ ∪C∗ satisfy properties (i)-(v) of this lemma.

We first establish property (i) of this lemma. By property (i) of Lemma 7.4.6 no

component of G− (A∪B ∪C) has over n/δ vertices. By property (iii) of Lemma 7.4.41

and the definition of seq3(G,A,B,C) it follows that A ⊆ Aj, B ⊆ Bj, and C ⊆ C ′, hence

no component of G− (A′′ ∪B′′ ∪C ′′) has over n/δ vertices. This establishes property (i)

of this lemma.

438

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Next, we establish properties (ii). Let x = 400k3δ2 log4(n). Then by property (ii) of

Lemma 7.4.6, G has at most µ/(12n(k+1))x minimal separators that are consistent with

A, B, and C, and property (iii) of Lemma 7.4.6 G[A∪B] has at most x components. So

by property (i) of Lemma 7.4.41 and by how A′, B′ and C ′ were defined, G has at least

µ

(12n(k+1))xn2(kx3+x)kx)
⩾

µ

(12n)(k+1)x+2(kx3+x)kx
⩾

µ

(12n)5k2x4

minimal separators that are consistent with A′, B′, and C ′. Since Aj ⊆ A′ and Bj ⊆ B′,

G has at least µ/(12n)5k
2x4 minimal separators that are consistent with Aj, Bj, and

C ′. Lastly, by Lemma 7.4.50 G has at least µ/(12n)5k
2x4 minimal separators that are

consistent with A′′ = Aj ∪ A∗, B′′ = Bj ∪ B∗, and C ′′ = C ′ ∪ C∗. Hence property (ii) of

this lemma is satisfied.

Now, we establish property (iii). By property (iii) of Lemma 7.4.6, G[A ∪ B] has

at most 400k3δ2 log4(n) components. By how Aj and Bj are defined, we have that

Aj = N2j
G′ [A] and Bj = N2j

G′ [B], so it follows that G[Aj ∪ Bj] has less than or equal

to 400k3δ2 log4(n) components. It can then be seen by the definition of A∗ and B∗

that G[A′′ ∪ B′′] has less than or equal to 400k3δ2 log4(n) components. This established

property (iii).

Next, we prove property (iv). It follows from the definitions of A∗, B∗, and C∗ that

CC(G − (A′′ ∪ B′′ ∪ C ′′)) is a subset of CC(G − (Aj ∪ Bj ∪ C ′)), and NG(A∗) ⊆ Aj ∪ C ′

and NG(B∗) ⊆ Bj ∪ C ′. Let G′′ = G − C ′′. Since C ′′ ⊆ C ′ we have that NG′′(A∗) ⊆ Aj

and NG′′(B∗) ⊆ Bj. Then for a component, X, of G − (A′′ ∪ B′′ ∪ C ′′), we have that

N2
G′′ [A′′ ∪ B′′] ∩X = N2

G′′ [Aj ∪ Bj] ∩X, and since X is a component of G′′ − (Aj ∪ Bj)

and of G′ − (Aj ∪ Bj) it follows that N2
G′′ [Aj ∪ Bj] ∩ X = N2

G′ [Aj ∪ Bj] ∩ X. Hence

N2
G′′ [A′′ ∪B′′] ∩X = N2

G′ [Aj ∪Bj] ∩X.

So, in G, any non-leaf sub-component of X with respect to A′′, B′′, and C ′′ must be

439

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

a non-leaf sub-component of X with respect to Aj, Bj, and C ′ and for any components

P,Q of G[A′′ ∪ B′′] it holds that N2
G′′ [P] ∩X is anti-complete with N2

G′′ [Q] ∩X (or else

we could find components P ′, Q′ of G[Aj ∪Bj] such that N2
G′ [P ′]∩X is not anti-complete

with N2
G′ [Q′]∩X, contradicting the fact that X is good with respect to Aj, Bj, and C ′).

It follows that all components of G − (A′′ ∪ B′′ ∪ C ′′) are good with respect to A′′, B′′,

and C ′′.

Lastly, we verify property (v). Note that by the definition of A∗, B∗ and C∗, the

components of G− (A′′ ∪ B′′ ∪ C ′′) are precisely the components of G− (Aj ∪ Bj ∪ C ′)

that have neighbors in both Aj and Bj, and therefore in A′′ and B′′. This implies that

every component of G−(A′′∪B′′∪C ′′) is a non-leaf component of G′−(Aj∪Bj) in G′ with

respect to Aj and Bj, of which there are at most k|CC(G[Aj ∪ Bj])|2 such component

by Lemma 7.4.46. As noted when proving property (iii) of this lemma, G[Aj ∪ Bj]

has at most 400k3δ2 log4(n) components, hence there are at most k(400k3δ2 log4(n))2

components of G− (A′′ ∪B′′ ∪ C ′′), which establishes property (v).

Finding the Sets S1 and S2 for a Generalized ω-Creature

Let G be a k-creature free graph with many minimal separators and let A, B, and

C be the output of applying Lemma 7.4.40 to G. We outlined at the start of 7.4.2 how

we can use A, B, and C to construct a connected, good, full generalized ω-creature.

The pieces right now that we are missing are the special sets S1 and S2. We claimed

that if there are at least ω components, X, of G − (A ∪ B ∪ C) such that at least two

minimal separators, SX and S ′
X (SX and S ′

X can depend on the specific X chosen), of G

are consistent A,B, and C and SX ∩ X ̸= S ′
X ∩ X (plus an additional property), then

we can in fact show that we can construct a good connected generalized ω-creature. The

following definition is the additional property that we need the minimal separators to

satisfy, it essentially forces all pairs of minimal separators that we consider to satisfy

440

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

property (iii) of Definition 7.3.1.

Signatures Let G be a graph, let A,B,C ⊆ V (G), and let M ⊆ (CC(G[A]) ×

CC(G[A]) ∪ CC(G[B]) × CC(G[B])). We call M a mark for A and B. Let S be a

minimal separator of G that is consistent with A,B, and C and let X be a compo-

nent of G − (A ∪ B ∪ C). If M is the mark with the property that the pair (U, V) of

(CC(G[A])×CC(G[A])∪CC(G[B])×CC(G[B])) is inM if and only if U ̸= V and there is

a path from U to V through X − S, then we callM the mark of S with respect to X,A,

and B.

Definition 7.4.51. Let G be a graph, and let A,B,C ⊆ V (G). Define a function T from

the set of components of G− (A ∪ B ∪ C) to the set of marks for A and B, so for each

component X of G− (A ∪ B ∪ C), T (X) is a mark for A and B. We call T a signature

for G,A, B, and C. We say that a minimal separator S of G agrees with A,B,C, and

T if S is consistent with A, B, and C, and for all components X of G− (A ∪ B ∪ C) it

holds that T (X) is equal to the mark of S with respect to X,A, and B.

Let G be a graph, let A,B,C ⊆ V (G), let T be a signature of G, A, B, and C, and

let S1 and S2 be two minimal separators of G that agree with A, B, C, and T . Notice

that for any component X of G− (A ∪ B ∪ C), for all pair of components C1 and C2 of

G[A ∪ B] there is a path from C1 to C2 through X − S1 in G if and only if there is a

path from C1 to C2 through X − S2 in G which is what property (iii) of Definition 7.3.1

requires of generalized ω-creatures.

The next few lemmas show that if G has many minimal separators that are consistent

with A, B, and C, then there exists a signature T for G, A, B, and C so that G has

many minimal separators that agree with A, B, C, and T . We begin with the following

observation about signature functions which we will use without explicitly reference. The

proof follows easily from the definition of signatures.

441

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Observation 7.4.52. Let G be a graph, let A,B,C ⊆ V (G), and let S be a minimal sep-

arator of G that is consistent with A,B, and C. Then there exists exactly one signature,

T , for G,A,B, and C such that S agrees with A,B,C, and T .

Lemma 7.4.53. Let G be a graph, let A,B,C ⊆ V (G) where A is anti-complete with B

and let there be x components of G[A∪B] and y components of G− (A∪B ∪C). Then

there are 2x
2y functions that are signatures for G,A, B, and C.

Proof: Let G be a graph, let A,B,C ⊆ V (G) where A is anti-complete with B and

let there be x components of G[A ∪ B] and y components of G − (A ∪ B ∪ C). Let

T be a signature for G,A, B, and C. The domain of T is the set of components of

G− (A ∪B ∪ C), which by assumption has y elements, and the range of T is the power

set of (CC(G[A])×CC(G[A])∪ CC(G[B])×CC(G[B])), which by assumption has at most

2x
2

elements. So for each of the y elements of the domain there is a choice of 2x
2

elements

to map it to, hence there are at most 2x
2y possible signatures for G,A, B, and C.

Lemma 7.4.54. Let G be a k-creature free graph (assume k ⩾ 2) with n ⩾ 2 vertices,

let δ > 1, and let G have µ minimal separators. Then there exist A,B,C ⊆ V (G) and

signature T for G,A,B, and C such that the following conditions hold:

(i) No component of G− (A ∪B ∪ C) has over n/δ vertices.

(ii) Let x = 400k3δ2 log4(n). Then G has at least µ/(12n)6k
2x4 minimal separators that

agree with A,B, C, and T .

(iii) G[A ∪B] has at most 400k3δ2 log4(n) components.

(iv) All components of G− (A ∪B ∪ C) are good with respect to A, B, and C.

Proof: Let G be a k-creature free graph (assume k ⩾ 2) with n ⩾ 2 vertices, let

δ > 1, and let G have µ minimal separators. We apply Lemma 7.4.40 using G and δ to

442

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

gets sets A, B, and C that satisfy properties (i)-(v) of Lemma 7.4.40. We can see that

this implies the sets A, B, and C satisfy properties (i), (iii), and (iv) of this lemma, so

we are left with finding a suitable signature T to satisfy property (iii).

Let x = 400k3δ2 log4(n), then by property (i) of Lemma 7.4.40, there are at least

µ/(12n)5k
2x4 minimal separators that are consistent with A, B, and C. Furthermore, by

properties (iii) and (iv) of Lemma 7.4.40 there are x components of G[A ∪ B] and kx2

components of G− (A∪B ∪C), hence, by Lemma 7.4.53 there are 2x
2kx2 = 2x

4k possible

signature functions for G, A, B, and C. It follows that there is some signature function

T such that there are at least

µ

(12n)5k2x4
1

2x4k
⩾

µ

(12n)6k2x4

minimal separators of G that agrees with A, B, C, and T .

If G is a k-creature free graph with many minimal separators, then by Lemma 7.4.54

there are sets A,B,C ⊆ V (G) and signature T for G, A, B, and C such that G has

many minimal separtors that agree with A, B, C, and T . Let S1 and S2 be two minimal

separators of G that agree with A, B, C, and T . As stated previously, for any component,

X, of G− (A∪B ∪C), for all pair of components C1 and C2 of G[A∪B] there is a path

from C1 to C2 through X − S1 in G if and only if there is a path from C1 to C2 through

X − S2 in G which is what property (iii) of Definition 7.3.1 requires of generalized ω-

creatures. The problem we have is that there may be components X of G− (A∪B ∪C)

such that S1 ∩ X = S2 ∩ X, and so S1 and S2 will fail property (i) of Definition 7.3.1.

The following lemma and corollary will help us fix this problem.

Lemma 7.4.55. Let G be a graph, let A,B ⊆ V (G), let T be a signature for G,A,B, and

C = ∅, let X be a component of G− (A∪B), and let S1, S2 be two minimal separators of

G that agree with A, B, C, and T . Let S1∩X = S ′
1 and S2∩X = S ′

2. Then (S1−S ′
1)∪S ′

2

443

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

is a minimal separator that agrees with A,B,C, and T .

Proof: Let G be a graph, let A,B ⊆ V (G), let T be a signature for G,A,B, and

C = ∅, let X be a component of G−(A∪B), and let S1, S2 be two minimal separators of G

that agree with A, B, C, and T . Let S1∩X = S ′
1 and S2∩X = S ′

2. Let S = (S1−S ′
1)∪S ′

2.

We first show that there is some component of G− S that contains A. An identical

argument shows that there is some component of G − S that contains B. Let A1 and

A2 be two components of G[A], and let P be a path from A1 to A2 in G − S1. We

show how to get a path P ′ from A1 to A2 in G − S by replacing portions of P . Let P ∗

be a maximal subpath such that no internal vertex of P ∗ is contained in A, let A′
1 and

A′
2 be the components of G[A] that the endpoints of P ∗ belong to. Since S1 is an A,

B-separator, we have that all internal vertices of P ∗ are contained in G − (A ∪ B). It

follows that the internal vertices of P ∗ belong to some component X ′ of G − (A ∪ B).

If X ′ = X by assumption T (X) is the mark of both S1 and S2 for X, A, and B, so P ∗

can be replaced with some other path from A′
1 to A′

2 with internal vertices contained in

X ′ − S2. If X ′ ̸= X, then it follows that P ∗ is also a path in G− S so it does not need

to be replaced. We can see that we can replace the portions of P that do not belong to

A in this manner to get a path P ′ from A1 to A2 in G− S.

We now show that S separates A from B. Assume for a contradiction that there is

a path from A to B in G − S, let P be a shortest such path so we may assume that

the end points of P are in A and B and all internal vertices are in G− (S ∪ A ∪ B). It

follows that all the internal vertices of P must be contained in some component X ′ of

G − (A ∪ B), but if X ′ = X then such a path must contain a vertex from S2, else S2

would not be consistent with A, B, and C, and if X ′ ̸= X then such a path must contain

a vertex from S1, else S1 would not be consistent with A, B, and C. From the definition

of S it follows that no such path can exist, hence A and B are contained in different

444

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

components of G− S.

Now we show that A and B belong to two S-full components of G−S. We show that

the component A is contained in in G − S dominates S, an identical argument proves

the component B is contained in dominates S. Let s ∈ S and let X ′ be the component

that s belongs to in G − (A ∪ B). If X ′ = X, then since A is an S2-full component of

G− S2 there is path P from A to s in G− S2 whose internal vertices belong to X ′ − S2.

If X ′ ̸= X, then since A is an S1-full component of G− S1 there must be a path from A

to s in G− S1 whose internal vertices belong to X ′ − S1. It follows that the component

A belongs to in G− S dominates S.

Together, this proves that S is a minimal separator of G that is consistent with A,

B, and C = ∅. To show that S agrees with A, B, C, and T , we must show that for all

components, X ′, of G − (A ∪ B) the mark of S with respect to X, A, and B is T (X ′).

This follows from the fact that if X ′ = X, then the mark of S with respect to X ′, A,

and B is the same as the mark of S2 with respect to X ′, A, and B, which is T (X ′), and

if X ′ ̸= X, then the mark of S with respect to X ′, A, and B is the same as the mark of

S1 with respect to X ′, A, and B, which is again T (X ′).

Corollary 7.4.56. Let G be a graph, let A,B ⊆ V (G), and let T be a signature for

G,A,B, and C = ∅. If for all components, X, of G − (A ∪ B) there are minimal

separators SX and S ′
X (SX and S ′

X can depend on the choice of X) of G that agree with

A, B, C, and T , where SX ∩X ̸= S2 ∩X, then there exist minimal separators S1 and S2

of G that agree with A, B, C, and T , such that for all components, X, of G − (A ∪ B)

S1 ∩X ̸= S2 ∩X.

Proof: Let G be a graph, let A,B ⊆ V (G), and let T be a signature for G,A,B, and

C = ∅. Assume for all components, X, of G− (A ∪B) there are minimal separators SX

and S ′
X (SX and S ′

X can depend on the choice of X) of G that agree with A, B, C, and

445

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

T , where SX ∩X ̸= S2 ∩X.

Let S1 and S2 be two minimal separators of G that agree with A, B, C, and T that

maximize the number of components, X, of G − (A ∪ B) such that S1 ∩ X ̸= S2 ∩ X.

Assume for a contradiction that there is an X, of G− (A∪B) such that S1∩X = S2∩X.

By Assumption, there is an S3 that agrees with A, B, C, and T and if S ′
3 = S3 ∩X and

S ′
2 = S2 ∩X then S ′

3 ̸= S ′
2. By Lemma 7.4.55 S ′′

2 = (S2−S ′
2)∪S ′

3 is a minimal separator

that agrees with A, B, C, and T . But then the number of components, X, of G−(A∪B)

such that S1∩X ̸= S ′′
2 ∩X is greater than the number of components, X, of G− (A∪B)

such that S1 ∩X ̸= S2 ∩X, a contradiction.

Lemma 7.4.57. Let G be a graph, let A,B,C ⊆ V (G), A,B ̸= ∅, let Y be a set of

components of G − (A ∪ B ∪ C), let Ŷ =
⋃
Y ∈Y

Y , let T be a signature for G, A, B, and

C, and let S and S ′ be a minimal separators of G that agrees with A, B, C, and T

such that S ∩ Ŷ = S ′ ∩ Ŷ . Furthermore, let A∗ be the set of all vertices that belong to

a component of G[Ŷ − S] = G[Ŷ − S ′] that has a neighbor in A, let B∗ be the set of all

vertices that belong to a component of G[Ŷ −S] = G[Ŷ −S ′] that has a neighbor in B, and

let C∗ = Ŷ − (A∗ ∪B∗). Then there is a signature T ′ for G, A′ = A ∪A∗, B′ = B ∪B∗,

and C ′ = C ∪ C∗ such that S and S ′ agree with A′, B′, C ′, and T ′.

Proof: Let G be a graph, let A,B,C ⊆ V (G), A,B ̸= ∅, let Y be a set of components

of G− (A ∪ B ∪ C), let Ŷ =
⋃
Y ∈Y

Y , let T be a signature for G, A, B, and C, and let S

and S ′ be a minimal separators of G that agrees with A, B, C, and T such that S ∩ Ŷ

= S ′ ∩ Ŷ . Furthermore, let A∗ be the set of all vertices that belong to a component

of G[Ŷ − S] = G[Ŷ − S ′] that has a neighbor in A, let B∗ be the set of all vertices

that belong to a component of G[Ŷ − S] = G[Ŷ − S ′] that has a neighbor in B, and let

C∗ = Ŷ − (A∗ ∪B∗).

Now, let CY = S∩ Ŷ = S ′∩ Ŷ , so S and S ′ are consistent with A, B, and C ∪CY and

446

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

observe that CC(G[Ŷ − S]) = CC(G[Ŷ − S ′]) is a subset of CC(G− (A ∪B ∪ (C ∪CY))).

So, if we let A∗∗, B∗∗, and C∗∗ be the sets of vertices that belong to a component of

G− (A∪B ∪ (C ∪CY)) that has neighbors in A and not B, that has neighbors in B and

not A, and that does not have neighbor B ∪A respectively, then it holds that A∗ ⊆ A∗∗,

B∗ ⊆ B∗∗, and C∗ ⊆ C∗∗ ∪ CY . Furthermore, by Lemma 7.4.50, S and S ′ are both

consistent with A∪A∗∗, B ∪B∗∗, and C ∪CY ∪C∗∗, hence S and S ′ are consistent with

A′ = A ∪ A∗, B′ = B ∪B∗, and C ′ = C ∪ C∗.

Lastly, we show for each component, X, of G− (A′ ∪B′ ∪C ′) that S and S ′ have the

same mark with respect to X, A′, and B′. It will then follow that there is a signature T ′

for G, A′, B′, and C ′ such that S and S ′ agree with A′, B′, C ′, and T ′.

Observe that since A∗ ∪ B∗ ∪ C∗ = Ŷ we have that CC(G − (A′ ∪ B′ ∪ C ′)) =

CC(G − (A ∪ B ∪ C)) − Y . This implies that A∗, B∗, and C∗ must be anti-complete

with the component, X, of G − (A′ ∪ B′ ∪ C ′). Hence NG[A′] ∩ X = NG[A] ∩ X and

NG[B′] ∩X = NG[B] ∩X and that X must also be a component of G− (A ∪B ∪C). It

follows that if there are components P,Q of G[A′ ∪B′] such that there is a path from P

to Q through X − S, then there are components P ′, Q′ of G[A ∪ B] such that P ′ ⊂ P

and Q′ ⊂ Q and there is a path from P ′ to Q′ through X − S. Since S and S ′ have the

same mark with respect to X, A, and B, namely T (X), it follows that there is a path

from P ′ to Q′ through X − S ′. Therefore, there is a path from P to Q through X − S ′.

Hence S and S ′ have the same mark with respect to X, A′, and B′.

Lemma 7.4.58. Let G be a graph with n vertices, let δ > 1, let A,B,C ⊆ V (G),

A,B ̸= ∅, such that no component of G − (A ∪ B ∪ C) has over n/3δ vertices and

G[A ∪ B] has at most n/6 components, and let G have µ minimal separators that are

consistent with A,B, and C. Furthermore, let X be the set that contains all components,

X, of G− (A∪B ∪C) such that there exists at least two minimal separators SX and S ′
X

447

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

that are consistent with A, B, and C and S ∩X ̸= S ′ ∩X (SX and S ′
X may depend on

the component X). If |X | < δ then there is an induced minor G′ of G with at least µ

minimal separators and G′ has at most n/2 vertices.

Proof: Let G be a graph with n vertices, let δ > 1, let A,B,C ⊆ V (G), A,B ̸= ∅,

such that no component of G−(A∪B∪C) has over n/3δ vertices and G[A∪B] has at most

n/6 components, and let G have µ minimal separators that are consistent with A,B, and

C. Furthermore, let X be the set that contains all components, X, of G− (A ∪ B ∪ C)

such that there exists at least two minimal separators SX and S ′
X that are consistent

with A, B, and C and SX ∩X ̸= S ′
X ∩X, and assume that |X | < δ.

Let X̂ =
⋃
X∈X

X. We first show that we can find sets A ⊆ A′, B ⊆ B′, and C ⊆ C ′

such that X̂ = V (G)− (A′ ∪B′ ∪C ′) and all minimal separators of G that are consistent

with A, B, and C are consistent with A′, B′, and C ′. Let Y = CC(G− (A∪B ∪C))−X

and let Ŷ =
⋃
Y ∈Y

Y . It follows by assumption that for any two minimal separators S and

S ′ that are consistent with A, B, and C we have that S ∩ Ŷ = S ′∩ Ŷ . Let A∗ denote the

set of all vertices that belong to a component of G[Ŷ −S] = G[Ŷ −S ′] that has at least one

neighbor in A, let B∗ denote the set of all vertices that belong to a component of G[Ŷ −S]

= G[Ŷ − S ′] that has at least one neighbor in B, and let C∗ = Ŷ − (A∗ ∪B∗). Then by

Lemma 7.4.57 and the fact that G[Ŷ − S] = G[Ŷ − S ′], the µ minimal separators of G

that are consistent with A, B, and C are consistent with A′ = A∪A∗, B′ = B ∪B∗, and

C ′ = C ∪C∗. Additionally, Ŷ = (A∗ ∪B∗ ∪C∗), so we have that X̂ = G− (A′ ∪B′ ∪C ′),

as desired.

Now, by Lemma 7.4.4 G− C ′ has µ minimal separators that are consistent with A′,

B′, and ∅ and by Lemma 7.4.5, if G′ is the graph that results from contracting each

component of G[A] and G[B] in G, then G′ has at least µ minimal separators.

Since X̂ = G− (A′ ∪B′ ∪C ′), |X̂| ⩽ n/3, and G[A] and G[B] together have at most

448

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

n/6 components, it follows that G′ has at most n/3+n/6 = n/2 vertices. This completes

the lemma.

The following lemma is a slight strengthening of Lemma 7.4.4 that we will require.

Lemma 7.4.59. Let G be a graph, let A,B,C ⊆ V (G) with A,B ̸= ∅, let T be a signature

for G, A, B, and C, and let S be a minimal separator that agrees with T , A, B, and C.

Then S − C is a minimal separator of G− C that agrees with A,B, ∅, and T .

Proof: Let G be a graph, let A,B,C ⊆ V (G) with A,B ̸= ∅, let T be a signature

for G, A, B, and C, and let S be a minimal separator that agrees with T , A, B, and C.

By Lemma 7.4.4 we have that S−C is a minimal separator of G−C that is consistent

with A, B, and ∅. Let G′ = G−C. Since G− (A∪B ∪C) = G′− (A∪B) we have that

for a component, X, of G′− (A∪B), the mark of S with respect to X, A, and B in G is

T (X). Since X ∩C = ∅ the mark of S−C with respect to X, A, and B is also T (X).

The following lemma comes from [127], where the authors prove a tighter bound, for

our purposes the following bound is easier to use and sufficient.

Lemma 7.4.60 ([127]). Every graph G on n vertices has at most 2n minimal separators.

Lemma 7.4.61. Let G be a k-creature free graph with n vertices, let ω ⩾ 1, let δ = 3ω,

let c be a natural number large enough to satisfy the inequality 400k3δ2 log4(c) < c/6, let

x = 400k3δ2 log4(n), and let G have at least 2c(12n)6k
2x4 log(n) minimal separators. Then

there exists an induced minor G′ of G, A,B ⊆ V (G′), and a signature T for G′, A, B,

and C = ∅, such that the following properties hold:

(i) There are at least ω components of G′ − (A ∪B).

(ii) For all components, X, of G′ − (A ∪ B) there are two minimal separators SX and

S ′
X , SX ∩ X ̸= S ′

X ∩ X (SX and S ′
X may depend on the choice of X), that agree

with A, B, C = ∅, and T .

449

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

(iii) All components of G′ − (A ∪B) are good with respect to A and B.

Proof: Let ω > 1, let δ = 3ω, and let c be an natural number large enough to the

satisfies the inequality 400k3δ2 log4(c) < c/6. Note that for all c′ > c that 400k3δ2 log4(c′)

< c′/6 also holds. We first show, by a proof by contradiction, that for any k-creature

free graph G with n vertices and at least 2c(12n)6k
2x4 log(n) minimal separators, where x

= 400k3δ2 log4(n), that there exists an induced minor G′ of G, sets A,B,C ⊆ V (G′),

and signature T for G′, A,B, and C such that (1) there are at least ω components, X,

of G′ − (A ∪ B ∪ C) such that there are minimal separators SX and S ′
X that agree with

A, B, C, and T (the minimal separators may depend on X) where SX ∩X ̸= S ′
X ∩X,

and (2) all components of G′ − (A ∪B ∪ C) are good with respect to A, B, and C.

So, assume for a contradiction, that G is a k-creature free graph with n vertices and

at least 2c(12n)6k
2x4 log(n) minimal separators where G is chosen with as few vertices as

possible so that no induced minor G′ of G and sets A,B,C ⊆ V (G′), and signature T

for G′, A,B, and C satisfy (1) and (2). Since G has at least 2c minimal separators, by

Lemma 7.4.60 we have that n ⩾ c, hence n is large enough to satisfy the inequality

400k3δ2 log4(n) < n/6.

We now apply Lemma 7.4.54 to G and δ = 3ω to gets sets A,B,C ⊆ V (G) and

signature T for G, A, B, and C that satisfy properties (i) − (iv) of Lemma 7.4.54. Let

X be the set of components, X, of G − (A ∪ B ∪ C) such that there exists at least two

minimal separators S and S ′ that agree with A,B,C, and T and S ∩X ̸= S ′ ∩X. Since

(2) holds by property (iv) of Lemma 7.4.54 it must be that property (1) fails, hence

|X | < ω. So, since 400k3δ2 log4(n) < n/6, by property (iii) of Lemma 7.4.54 G[A ∪ B]

has less than n/6 vertices so we may apply Lemma 7.4.58 to find an induced minor G′

450

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

of G which has n′ ⩽ n/2 vertices at and least

2c(12n)6k
2x4 log(n)

(12n)6k2x4
= 2c(12n)6k

2x4(log(n)−1) ⩾ 2c(12n′)6k
2x4 log(n′)

minimal separators (because any minimal separator that agrees with T , A, B, and C is

consistent with A, B, and C). Since G was chosen as small as possible so that no induced

minor of G satisfies (1) and (2), |V (G′)| < |V (G)|, and G′ has at least 2c(12n′x)2k
2x4 log(n′)

minimal separators, it follows that there must be an induced minor of G′ that satisfies

(1) and (2). But then this implies that there is an induced minor of G that satisfied (1)

and (2), a contradiction.

We may then assume that G has an induced minor G′ and sets A,B,C ⊆ V (G′), and

signature T for G′, A,B, and C such that (1) and (2) hold. Again, let X be the set of

components, X, of G′−(A∪B∪C) such that there exists at least two minimal separators

S and S ′ of G′ that agree with A,B,C, and T and S ∩X ̸= S ′ ∩X. By assumption |X |

⩾ ω. Let Ŷ denote the set of vertices that belong to a component, Y , of G′− (A∪B∪C)

such that Y /∈ X , hence for all minimal separators SY and S ′
Y that agree with A, B, C,

and T it holds that SY ∩ Y = S ′
Y ∩ Y . It follows that we may apply Lemma 7.4.57 to

show that there exists a partition of Ŷ into sets A∗, B∗, and C∗ and a signature T ′ for

G′, A′ = A∪A∗, B′ = B ∪B∗, and C ′ = C ∪C∗ such that if S agrees with A, B, C, and

T , then S agrees with A′, B′, C ′, and T ′. Let G′′ = G′ − C ′. We now show that G′′, A′,

B′, and T ′ satisfies properties (i) - (iii) of this lemma.

First, we make two needed observations which follow from how we defined Ŷ and the

fact that A∗, B∗, and C∗ are a partition of Ŷ . The first is that X = CC(G′−(A′∪B′∪C ′))

= CC(G′′ − (A′ ∪ B′)). The second is that for all components, X, of G′′ − (A′ ∪ B′) it

holds that N2
G′′ [A′∪B′]∩X = N2

G′′ [A∪B]∩X = N2
G′ [A∪B]∩X (the first equality holds

because NG′(A∗) and NG′(B∗) are contained in A∪B∪C, and C ′ ⊆ C hence NG′(A∗) and

451

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

NG′(B∗) are contained in A ∪ B. The second equality holds because X is a component

of both G′′ − (A ∪B) and of G′ − (A ∪B)) .

We now verify properties (i)-(iii). Property (i) holds since by assumption, |X | ⩾ ω.

Next, we establish property (ii). Let X be a component of G′′− (A′∪B′), so X ∈ X .

It follows that in G′ there are two minimal separators, SX and S ′
X where SX∩X ̸= S ′

X∩X

and SX and S ′
X agree with A, B, C, and T and therefore SX and S ′

X agree with A′, B′,

C ′, an T ′. By Lemma 7.4.59 SX − C ′ and S ′
X − C ′ are minimal separators of G′′ that

agree with A′, B′, ∅, and T ′. Since X ⊆ V (G′′) we have that C ′ ∩X = ∅ and it follows

that (SX − C ′) ∩X ̸= (S ′
X − C ′) ∩X. This established property (ii).

Lastly, we show property (iii) holds. Let X be a component of G′′ − (A′ ∪B′), so X

is a component of G′− (A∪B ∪C) and therefore X is good with respect to A, B, and C

in G′. Since N2
G′′ [A′ ∪ B′] ∩X = NG′ [A ∪ B] ∩X it follows that X is good with respect

to A′ and B′ in G′′.

Lemma 7.4.62. Let G be a graph with n vertices and let A,B,C ⊆ V (G). If S ⊂ V (G)

is a minimal separator that is consistent with A, B, and C then for each component, X,

of G− (A ∪B ∪ C), S ∩X is a minimal A,B-separator of G[A ∪B ∪X].

Proof: Let G be a graph with n vertices and let A,B,C ⊆ V (G), let S be a minimal

separator of G that is consistent with A, B, and C, and let X be a component of

G − (A ∪ B ∪ C). If S ∩ X is not an A,B-separator of G[A ∪ B ∪ X], then there is a

path, P from A to B through X − S, hence there is a path from A to B in G − S, so

which contradicts the assumption that S is consistent with A, B, and C, hence S ∩X is

an A,B-separator of G[A ∪B ∪X].

Now let s ∈ S∩X and assume for a contradiction that (S∩X)−s is an A,B-separator

of G[A ∪ B ∪X]. Let A′ and B′ be the S-full components of G− S that contain A and

B respectively. Let PA and PB be shortest paths from A to s and B to s such that

452

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

all internal vertices are contained in A′ and B′ respectively. It follows that all internal

vertices of PA and PB belong to G − (A ∪ B ∪ C ∪ S). Therefore all internal vertices

of PA and PB belong to X − S. It follows that (S ∩X) − s is not an A,B-separator of

G[A ∪B ∪X]. Hence S ∩X is an A,B-minimal separator of G[A ∪B ∪X].

We are now ready to prove Lemma 7.3.2.

Proof: [Proof of Lemma 7.3.2] Let G be a k-creature free graph with n vertices, let

ω > 1 and δ = 3ω, let c be an integer large enough so that 400k3δ2 log4(c) < c/6, let x =

400k3δ2 log4(n), and let G have at least 2c(12n)6k
2x4 log(n) minimal separators. We may

then apply Lemma 7.4.61 to G and ω to get an induced minor G′ of G sets A,B ⊆ V (G′)

an signature T for G′, A, B, and C = ∅ that satisfy properties (i)-(iv) of Lemma 7.4.61.

Let ω′ denote the number of components of G′ − (A ∪ B), so ω′ ⩾ ω by property (i)

of Lemma 7.4.61. Let H be an ω′-bistar with central vertices cA and cB and exactly ω′

peripheral vertices, and for each component X of G′ − (A ∪ B), let vx denote a unique

peripheral vertex of H. Let φ be the function that maps the vertices of A to cA, the

vertices of B to cB and the vertices of X ∈ CC(G′ − (A ∪ B)) to vx. Lastly, for each

component X of G′ − (A ∪ B), by property (ii) of Lemma 7.4.61 there are two minimal

separators SX , S
′
X , SX ∩ X ̸= S ′

X ∩ X that agree with A, B, C = ∅ and T . Hence, by

Lemma 7.4.55 there exists minimal separators S1 and S2 that agree with A, B, C = ∅,

and T and for each component, X, of G′ − (A ∪B), it holds that S1 ∩X ̸= S2 ∩X. We

will show that W = (G′, H, φ, S1, S2) is a connected, good, full generalized ω-creature.

To see that property (i) of Definition 7.3.1 holds let S∗
1 = S1 and S∗

2 = S2 and let u

be a peripheral vertex of H. By how S1 and S2 were defined φ−1(u) ∩ S1 ̸= φ−1(u) ∩ S2

and by Lemma 7.4.62 they are Aφ, Bφ-minimal separators in G[Aφ ∪Bφ ∪φ−1(u)]. Note

that this implies that W is a full generalized ω-creature.

Property (ii) of Definition 7.3.1 follows from the fact that S1 and S2 are minimal

separators that agree with Aφ, Bφ, and C = ∅.
453

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

That property (iii) of Definition 7.3.1 holds follows directly from the fact that S1 and

S2 are both agree with A, B, C = ∅, and T , in particular, for every component X of

G′− (A∪B) = G′− (Aφ ∪B−φ), the mark of S1 and S2 with respect to X, Aφ and Bφ

is T (X).

Next, we show that property (iv) of Definition 7.3.1 is satisfied. If there was a

peripheral vertex, u, such that φ−1(u) did not have neighbors in both Aφ = A and

Bφ = B, then we can see that no minimal separator that is consistent with A, B, and

C = ∅ would contain a vertex from φ−1(u). But S1 and S2 are minimal separators that

are consistent with A, B, and C = ∅ and for every peripheral vertex, u, of H, we have

by property (i) that φ−1(u) ∩ S1 ̸= φ−1(u) ∩ S2, therefore φ−1(u) ∩ S1 and φ−1(u) ∩ S2

are not both empty sets. It follows that φ−1(u) must have neighbors in both Aφ and Bφ.

Lastly, that for every peripheral vertex u ∈ H, φ−1(u) is a connected vertex set follows

directly from how we defined φ, hence W is connected. The fact that each component

of G′ − (Aφ ∪ Bφ) = G′ − (A ∪ B) is good follows from property (iii) of Lemma 7.4.61,

hence W is good. That W is full was observed when proving property (i).

It now follows that W is a connected, good, full generalized ω-creature.

7.5 Extracting Critters from Generalized Creatures

7.5.1 Generalized ω-Creatures and Their Properties

We have already seen the definition of generalized ω-creatures, and three properties

that they might or might not have; being full, connected and good. In this subsection

we introduce two more properties of generalized ω-creatures, being disjoint and adhesion

size α for some integer α > 0. We will also prove some basic properties of generalized

ω-creatures that will be used in order to extract a sufficiently large critter from them.

454

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Definition 7.5.1. (Adhesion Size) Let W = (G,H, φ, S1, S2) be a generalized ω-creature.

For each peripheral vertex u of H the adhesion size of u is the number of distinct con-

nected components of G[Aφ ∪ Bφ] containing at least one neighbor of φ−1(u). The

adhesion size of the generalized ω-creature (G,H, φ, S1, S2) is the maximum adhesion

size of its peripheral vertices.

Definition 7.5.2. (Disjoint Generalized ω-Creatures) Let W = (G,H, φ, S1, S2) be a

generalized ω-creature. If S1 ∩ S2 = ∅ then W is called a disjoint generalized ω-creature.

The definition of generalized ω-creatures would lead a reader to have some expectation

of what a “typical” generalized ω-creature would look like, and also imagine some strange

corner cases that could occur. Over the next few lemmas we rule out some corner cases;

e.g. we show (lemmas that imply) that in a generalzied ω-creature Aφ and Bφ are non-

empty and that every peripheral vertex u of H satisfies that there exists a path from Aφ

to Bφ through φ−1(u).

Observation 7.5.3. Let W = (G,H, φ, S1, S2) be a generalized ω-creature. Then, S1

and S2 are disjoint from Aφ and Bφ.

Proof: The statement follows directly from property (ii) of generalized ω-creatures.

Lemma 7.5.4. Let W = (G,H, φ, S1, S2) be a generalized ω-creature. Then, for every

peripheral vertex u ∈ H, φ−1(u) has a neighbor in Aφ and a neighbor in Bφ.

Proof: By property (i) exists S⋆1 ⊆ S1 and S⋆2 ⊆ S2 such that φ−1(u) ∩ S⋆1 and

φ−1(u) ∩ S⋆2 are distinct Aφ, Bφ-minimal separators in G[Aφ ∪ Bφ ∪ φ−1(u)]. Thus both

φ−1(u) ∩ S⋆1 and φ−1(u) ∩ S⋆2 are non-empty. Since φ−1(u) ∩ S⋆1 ̸= ∅, minimality of

φ−1(u)∩S⋆1 implies that there is a path from Aφ to Bφ in G[Aφ∪Bφ∪φ−1(u)]. Let P be

a shortest such path, then the first vertex of P is in Aφ, the last is in Bφ, and all internal

455

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

vertices of P are in φ−1(u). Since S⋆1 is disjoint from Aφ ∪ Bφ it follows that P has at

least one internal vertex. Thus the first and last vertices of P are neighbors of φ−1(u) in

Aφ and Bφ respectively.

Observation 7.5.5. For every generalized ω-creature W = (G,H, φ, S1, S2), peripheral

vertex u of H, and component C of G[φ−1(u)]− (S1 ∪S2), either N(C)∩Aφ is empty or

N(C) ∩Bφ is empty.

Proof: Suppose that N(C) ∩ Aφ ̸= ∅ and N(C) ∩ Bφ ̸= ∅ for some component C of

G[φ−1(u)]− (S1 ∪ S2). This contradicts property (i) of generalized ω-creatures.

Lemma 7.5.6. Let G be a graph and (H,φ) be an ω-bistar partition of G. Let X be a

vertex set in G disjoint from Aφ ∪Bφ. Then X is a Aφ-Bφ-separator in G if and only if

X ∩ φ−1(u) is a Aφ-Bφ-separator in G[Aφ ∪ Bφ ∪ φ−1(u)] for every peripheral vertex u

of H.

Proof: We prove instead the equivalence of the negations: that there is a path from

Aφ to Bφ in G−X if and only if there exists a peripheral vertex u of H and a path from

Aφ to Bφ in G[Aφ ∪Bφ ∪ φ−1(u)]−X.

The backward direction is trivial. For the forward direction, let P be a shortest

path from Aφ to Bφ in G −X. Then none of the internal vertices of P lie in Aφ ∪ Bφ.

Since NG(φ−1(u)) ⊆ Aφ ∪Bφ for every peripheral vertex u, it follows that there exists a

peripheral vertex u such that V (P) ⊆ Aφ ∪Bφ ∪ φ−1(u). This concludes the proof.

Definition 7.5.7 (Flipping). Let W = (G,H, φ, S1, S2) be a generalized ω-creature, and

v be a peripheral vertex of H. Flipping W at v results in the tuple W ′ = (G,H, φ, S ′
1, S

′
2)

where

S ′
1 = (S1 − φ−1(v)) ∪ (S2 ∩ φ−1(v)) and S ′

2 = (S2 − φ−1(v)) ∪ (S1 ∩ φ−1(v)).

456

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Let S⋆1 and S⋆2 be witness separators for W . Flipping S⋆1 and S⋆2 at v results in

S ′⋆
1 = (S⋆1 − φ−1(v)) ∪ (S⋆2 ∩ φ−1(v)) and S ′⋆

2 = (S⋆2 − φ−1(v)) ∪ (S⋆1 ∩ φ−1(v)).

Lemma 7.5.8. Let W = (G,H, φ, S1, S2) be a generalized ω-creature, v be a periph-

eral vertex of H, and W ′ = (G,H, φ, S ′
1, S

′
2) be the result of flipping W at v. Then:

Furthermore,

• W ′ is a generalized ω-creature.

• If S⋆1 and S⋆2 are witness separators for W and S ′⋆
1 and S ′⋆

2 are the result of flipping

S⋆1 and S⋆2 at v, then S ′⋆
1 and S ′⋆

2 are witness separators for W ′.

• If W is a disjoint generalized ω-creature then W ′ is a disjoint generalized ω-creature.

Proof: Let S⋆1 ⊆ S1 and S⋆2 ⊆ S2 be witness separators for W and S ′⋆
1 and S ′⋆

2 be the

result of flipping S⋆1 and S⋆2 at v.

We observe that for every peripheral vertex u of H we have that

{φ−1(u) ∩ S1, φ
−1(u) ∩ S2} = {φ−1(u) ∩ S ′

1, φ
−1(u) ∩ S ′

2}

and that

{φ−1(u) ∩ S⋆1 , φ−1(u) ∩ S⋆2} = {φ−1(u) ∩ S ′⋆
1 , φ

−1(u) ∩ S ′⋆
2 }.

From this it immediately follows that S ′⋆
1 and S ′⋆

2 satisfy property (i) for W ′, and that

W ′ additionally satisfies properties (iii), and (iv). For property (ii), Lemma 7.5.6 implies

that S ′
1 and S ′

2 are both Aφ,Bφ-separators.

We argue that all of Aφ is in the same connected component of G−S ′
1. By assumption

all of Aφ is in the same connected component of G − S1. Consider an arbitrary pair a,

a′ of vertices in A. Since all of Aφ is in the same connected component of G− S1 there

457

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

exists a sequence a1, a2, . . . at of vertices in A such that a1 = a, at = a′, and for every

pair ai, ai+1 of consecutive vertices in the sequence it holds that aiai+1 is an edge or

there exists a peripheral vertex u of H such that there is a path from ai to ai+1 through

φ−1(u)−S1. In the second case, by property (iii) it holds that aiai+1 there is a path from

ai to ai+1 through φ−1(u)−S2. Thus, since φ−1(u)∩S ′
1 ∈ {φ−1(u)∩S1, φ

−1(u)∩S2} we

have that there is a path from ai to ai+1 through φ−1(u) − S ′
1. It follows that a and a′

are in the same component of G − S ′
1. But then all of Aφ is in the same component of

G− S ′
1. Identical proofs show that Aφ is in the same component of G− S ′

2, and that Bφ

is in one component of G− S ′
1 and of G− S ′

2. Hence W ′ satisfies property (ii) and is a

generalized ω-creature.

Finally we show that if W is a disjoint generalized ω-creature then W ′ is a disjoint

generalized ω-creature. Suppose that W is a disjoint generalized ω-creature. We then

have that

S ′
1 ∩ S ′

2 =
(
(S1 − φ−1(v)) ∪ (S2 ∩ φ−1(v))

)
∩
(
(S2 − φ−1(v)) ∪ (S1 ∩ φ−1(v))

)
But (S1 − φ−1(v)) is disjoint with (S2 − φ−1(v) and (S2 ∩ φ−1(v)) is disjoint with (S1 ∩

φ−1(v)) because S1 is disjoint with S2, and (S1−φ−1(v)) is disjoint with (S1∩φ−1(v)) and

(S2∩φ−1(v)) is disjoint with (S2−φ−1(v)) because φ−1(v) is disjoint from its complement.

So S ′
1 and S ′

2 are disjoint and hence W ′ is a disjoint generalized ω-creature.

7.5.2 Properties of Good Connected Generalized ω-Creatures

Let (G,H, φ, S1, S2) be a good connected generalized ω-creature and let X be a com-

ponent of G− (Aφ ∪Bφ). Since X is good with respect to A and B we have that X has

at most one non-leaf sub-component. We now show that X has precisely one non-leaf

sub-component.

458

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Lemma 7.5.9. Let W = (G,H, φ, S1, S2) be a good connected generalized ω-creature and

let X be a component of G−(Aφ∪Bφ). Then X has precisely one non-leaf sub-component

Y .

Proof: By definition of good, X has at most one non-leaf sub-component. By

Lemma 7.5.4 X has a neighbor in Aφ and a neighbor in Bφ. Let XA = N2
G[Aφ] ∩ X

and XB = N2
G[Bφ] ∩X. We have that XA and XB are non-empty, and since W is good

it follows that XA and XB are anti-complete. Since W is connected there exists a path

P from XA to XB through X − (XA ∪ XB). Let P ′ be the sub-path of P obtained by

removing the endpoints of P . Then P ′ is a connected set in X − N2
G[Aφ ∪ Bφ] with

neighbors in two distinct components of G[X ∩N2
G[Aφ ∪Bφ]]. Thus P ′ is contained in a

non-leaf sub-component of X.

In light of Lemma 7.5.9 we can give the unique non-leaf sub-component of X a name.

Definition 7.5.10. Let (G,H, φ, S1, S2) be a good connected generalized ω-creature and

let X be a component of G − (Aφ ∪ Bφ). Then the kernel of X is the unique non-leaf

sub-component of X.

Lemma 7.5.11. Let (G,H, φ, S1, S2) be a good generalized ω-creature, and X be a com-

ponent of G− (Aφ∪Bφ). Then, for each connected component C of G[X ∩N2
G[Aφ∪Bφ]]

there is precisely one component Y in G[Aφ ∪Bφ] such that NG[X] ∩ Y ̸= ∅.

Proof: We first argue that there exist at least one component Y in G[Aφ ∪Bφ] such

that NG[X] ∩ Y ̸= ∅. Let x ∈ X. Since x /∈ (Aφ ∪ Bφ) we have that x ∈ NG(Aφ ∪ Bφ)

or x ∈ N2
G(Aφ ∪ Bφ). If x ∈ N2

G(Aφ ∪ Bφ) then x has a neighbor y in NG(Aφ ∪ Bφ),

and y ∈ X. We may then choose y as x instead, and therefore, without loss of generality

x ∈ NG(Aφ ∪Bφ). x has a neighbor in Aφ ∪Bφ establishing the existence of at least one

component Y in G[Aφ ∪Bφ] such that NG[X] ∩ Y ̸= ∅.

459

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

We now prove that Y is unique. Suppose for contradiction that there exists a compo-

nent Y ′ ̸= Y of G[Aφ ∪Bφ] such that NG[X]∩Y ′ ̸= ∅. Let P be a path from NG(Y)∩X

to NG(Y ′)∩X. Let q be the first vertex on P such that q ∈ N2
G[Y ′′] for some component

Y ′′ ̸= Y of G[Aφ ∪ Bφ]. If q is the first vertex of P then q ∈ NG(Y) contradicting that

N2
G[Y] ∩N2

G[Y ′′] ∩X is empty (because the generalized ω-creature is good). Otherwise,

let p be the predecessor of q on P . We have that p ∈ N2
G[Y] because p ∈ N2

G[Aφ ∪ Bφ]

and q is the first on P such that q ∈ N2
G[Y ′′] for some component Y ′′ ̸= Y of G[Aφ ∪Bφ].

But then p and q contradict that there is no edge from N2
G[Y]∩X to N2

G[Y ′′]∩X (which

should have been true, because the generalized ω-creature is good).

Lemma 7.5.12. Let (G,H, φ, S1, S2) be a good generalized ω-creature and X be a com-

ponent of G − (Aφ ∪ Bφ). For every pair C1, C2 of distinct components of G[Aφ ∪ Bφ]

and path P from C1 to C2 through X, P contains an internal vertex in the kernel of X.

Proof: Let s and t be the first and last vertex of P , respectively. Since NG
2 [C1] and

NG
2 [C2] are disjoint and anti-complete, P has at least 7 vertices. Let s′ and t′ be the

successor of s on P and the predecessor of t on P , respectively. Let x be the last vertex

of P in NG
2 [C1] ∩ X. The vertex x is well defined because s′ is in NG

2 [C1] ∩ X. Let y

be the first vertex in N2
G[Aφ ∪ Bφ − C1] ∩ X on the sub-path of P from x to t. Since

t′ ∈ N2
G[C2] ∩ X, y is well defined. Since NG

2 [C1] ∩ X and NG
2 [Aφ ∪ Bφ − C1] ∩ X are

anti-complete we have y ̸= x and xy is not an edge of G. Let P ′ be the subpath of P

from x to y. Since xy is not an edge, P ′ contains at least one internal vertex. Furthemore

P ′ is a path from N2
G[C1]∩X to N2

G[Aφ ∪Bφ−C1]∩X through X −N2
G[Aφ ∪Bφ]. Thus

all the internal vertices of P ′ are contained in a non-leaf sub-component of X, namely

the kernel of X, as claimed.

Lemma 7.5.13. Let G be a k-creature free graph, (G,H, φ, S1, S2) be a good generalized

ω-creature, and X be a component of G − (Aφ ∪ Bφ). Let C be the kernel of X. Then

460

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

each connected component Y of G[X ∩N2
G[Aφ ∪Bφ]] has at least one neighbor in C.

Proof: Since G[X] is connected there exists a path in G[X] that starts in Y and

ends in C. Let P be a shortest such path. In particular, only the first vertex of P is in Y

and only the last is in C. If P has no internal vertices then the first and last vertex of P

are adjacent, proving the statement of the lemma. We now show that P has no internal

vertices.

Suppose for contradiction that P has an internal vertex, let a be the endpoint of P

which is in Y , and let q be the internal vertex in P which is adjacent to a. Since q ∈ X−Y

and Y is a connected component of G[X ∩N2
G[Aφ∪Bφ]] it follows that q /∈ N2

G[Aφ∪Bφ].

Then q is in a connected component Z of G[X−N2
G[Aφ∪Bφ]]. Since q /∈ C we have that

Z ̸= C and so Z is not the kernel of X. But then NG(Z) ⊆ Y and the first vertex on P

outside of Z is in Y , contradicting that only the first vertex of P is in Y . We conclude

that P has no internal vertices, and this shows the statement of the lemma.

7.5.3 Dissolving a Peripheral Vertex

Definition 7.5.14. Let W = (G,H, φ, S1, S2) be a generalized ω-creature, and let u be

a peripheral vertex of H. Dissolving u in H produces a tuple W ′ = (G′, H ′, φ′, S ′
1, S

′
2)

where:

• G′ = G− (φ−1(u)− (A1(W) ∪B1(W))),

• H ′ = H − u.

461

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

• For all v ∈ (V (G′),

φ′(v) =

cA if v ∈ φ−1(u) ∩ A1(W)

cB if v ∈ φ−1(u) ∩B1(W)

φ′(v) otherwise

• S ′
1 = S1 − φ−1(u) and S ′

2 = S2 − φ−1(u).

Lemma 7.5.15. Let W = (G,H, φ, S1, S2) be a generalized ω-creature and let u be a

peripheral vertex of H. Let W ′ = (G′, H ′, φ′, S ′
1, S

′
2) be the result of dissolving u in W .

Then H ′ is a (w − 1)-bistar partition of G′. Furthermore, for every peripheral vertex v

of H ′ it holds that

• NG′ [φ′−1(v)] = NG[φ−1(v)],

• NG′ [φ′−1(v)] ∩ Aφ′ = NG[φ−1(v)] ∩ Aφ,

• and NG′ [φ′−1(v)] ∩Bφ′ = NG[φ−1(v)] ∩Bφ.

Proof: We first show that H ′ is a (w − 1)-bistar partition of G′. Let xy ∈ E(G′). If

neither φ(x) nor φ(y) is equal to u then φ′(x) = φ(x) and φ′(y) = φ(y) so φ′(x) = φ′(y) or

φ′(x)φ′(y) ∈ E(H ′). If both φ(x) and φ(y) are equal to u then {x, y} ⊆ (A1(W)∪B1(w))∩

φ−1(u). But A1(W) and B1(w) are disjoint and anticomplete so {x, y} ⊆ A1(W)∩φ−1(u)

or {x, y} ⊆ B1(W) ∩ φ−1(u). In the first case φ′(x) = φ′(y) = cA, in the second φ′(x) =

φ′(y) = cB. If φ(x) = u and φ(y) ̸= u then φ(y) ∈ {cA, cB}. If φ(y) = cA then y ∈ Aφ

and hence, since xy ∈ E(G), x ∈ A1(W). But then φ′(x) = φ′(y) = cA. If φ(y) = cB

then y ∈ Bφ and hence, since xy ∈ E(G), x ∈ B1(W). But then φ′(x) = φ′(y) = cB.

Finally, V (H ′) = V (H)−{u}. Thus we conclude that H ′ is a (w− 1)-bistar partition of

G′.

462

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

For the second part of the statement, We have that φ′−1(v) = φ−1(v) and that

φ−1(u) = φ−1(v) are disjoint and anticomplete. Furthermore, since (H ′φ′) is an (ω− 1)-

bistar partition of G′ we have that NG′(φ′−1(v)) ⊆ Aφ′ ∪ Bφ′ . Since Aφ′ ⊆ Aφ ∪ φ−1(u)

and Bφ′ ⊆ Bφ ∪ φ−1(u) it follows that N ′
G(φ′−1(v)) ⊆ Aφ ∪Bφ. But then NG′ [φ′−1(v)] =

NG[φ−1(v)], NG′ [φ′−1(v)]∩Aφ′ = NG[φ−1(v)]∩Aφ, and NG′ [φ′−1(v)]∩Bφ′ = NG[φ−1(v)]∩

Bφ. This completes the proof.

Lemma 7.5.16. Let W = (G,H, φ, S1, S2) be a generalized ω-creature and let u be a

peripheral vertex of H. Let W ′ = (G′, H ′, φ′, S ′
1, S

′
2) be the result of dissolving u in W .

Then

• W ′ is a generalized (ω − 1)-creature. Furthermore,

• if W is a full generalized ω-creature then W ′ is a full generalized (ω − 1)-creature,

• if W is a good generalized ω-creature then W ′ is a good generalized (ω−1)-creature,

• if W is a disjoint generalized ω-creature then W ′ is a disjoint generalized (ω − 1)-

creature,

• if W is a good connected generalized ω-creature then W ′ is a good connected gen-

eralized (ω − 1)-creature,

• if W has adhesion size α then W ′ has adhesion size α. For every peripheral vertex

v of H ′ its adhesion size in W ′ is at most its adhesion size in W .

Proof: By Lemma 7.5.15 we have that H ′ is a (w − 1)-bistar partition of G′. We

now check the properties of generalized (ω − 1) creatures for W ′.

• For property (i) let S⋆1 , S
⋆
2 be witness separators for W , and set S ′⋆

1 = S⋆1 − φ−1(u)

and S ′⋆
2 = S⋆2 − φ−1(u). We claim that S ′⋆

1 and S ′⋆
2 are witness separators for W ′.

Let v′ be a peripheral vertex of H ′. Let Z = NG[φ−1(v)]. By Lemma 7.5.15 we have

463

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Z = NG′ [φ′−1(v)]. Since S⋆1 and S⋆2 are witness separators for W it follows that

S⋆1 ∩φ−1(v) and S⋆2 ∩φ−1(v) are distinct minimal Aφ, Bφ-separators in G[Aφ∪Bφ∪

φ−1(v)]. Then S⋆1 ∩ φ−1(v) and S⋆2 ∩ φ−1(v) are distinct minimal Aφ ∩ Z,Bφ ∩ Z-

separators in G[(Aφ∪Bφ∪φ−1(v))∩Z]. Since Z = NG′ [φ′−1(v)] and S ′⋆
1 ∩Z = S⋆1∩Z

and S ′⋆
2 ∩ Z = S⋆2 ∩ Z it follows that S ′⋆

1 ∩ φ′−1(v) and S ′⋆
2 ∩ φ′−1(v) are distinct

minimal Aφ′ ∩ Z,Bφ′ ∩ Z-separators in G′[(Aφ′ ∪ Bφ′ ∪ φ′−1(v)) ∩ Z]. Since every

path from Aφ′ to Bφ′ through φ′−1(v) is a path from Aφ′ ∩ Z to Bφ′ ∩ Z through

φ′−1(v) ∩ Z it follows that S ′⋆
1 ∩ φ′−1(v) and S ′⋆

2 ∩ φ′−1(v) are distinct minimal

Aφ′ ,Bφ′-separators in G′[Aφ′ ∪Bφ′ ∪ φ′−1(v) ∩ Z].

• For property (ii) we observe that

A1(W
′) ∩ φ−1(u) = Aφ′ ∩ φ−1(u) = A1(W) ∩ φ−1(u),

B1(W
′) ∩ φ−1(u) = Bφ′ ∩ φ−1(u) = B1(W) ∩ φ−1(u),

Aφ′ − φ−1(u) = Aφ − φ−1(u), Bφ′ − φ−1(u) = Bφ − φ−1(u), and G′ − φ−1(u) =

G − φ−1(u). Thus A1(W
′) = A1(W) and B1(W

′) = B1(W). Since Aφ′ ⊆ A1(W)

and Bφ′ ⊆ B1(W) we conclude that W ′ satisfies property (ii).

• For property (iii) let C1 and C2 be components of G[A′
φ ∪ B′

φ] and let v be a

peripheral vertex of H ′. Let Z = N ′
G[φ′−1(v)], by Lemma 7.5.15 we have Z =

NG[φ−1(v)]. Suppose there is a path P in G′ from C1 to C2 through φ′−1(v)− S ′
1.

Then P is a path in G′ from C1∩Z to C2∩Z through (φ′−1(v)−S ′
1)∩Z. Hence P

is a path in G from C1∩Z to C2∩Z through (φ−1(v)−S ′
1)∩Z. But φ−1(v)∩S ′

1 =

φ−1(v) = ∩S1, so P is a path in G from C1 to C2 through (φ−1(v)− S1).

By Property (iii) applied to W there exists a path P ′ from C1 to C2 through

(φ−1(v)−S2). Then P ′ is a path inG from C1∩Z to C2∩Z through (φ−1(v)−S2)∩Z.

464

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Hence P ′ is a path in G′ from C1 ∩ Z to C2 ∩ Z through (φ′−1(v) − S2) ∩ Z. But

φ′−1(v) ∩ S2 = φ′−1(v) = ∩S ′
2, so P ′ is a path in G′ from C1 to C2 through

(φ′−1(v)− S ′
2).

The proof that if there is a path P in G′ from C1 to C2 through φ′−1(v)− S ′
2 then

there exists a path P ′ in G′ from C1 to C2 through φ′−1(v)− S ′
1 is symmetric.

• For property (iv) consider a peripheral vertex v of H ′ and a component CA of

G[Aφ′] that has a neighbor in φ′−1(v) in G′. Let x be a vertex in CA that has a

neighbor in φ′−1(v) in G′. Since φ′−1(v) and φ−1(u) are disjoint and anticomplete,

and x ∈ Aφ∪φ−1(u) it follows that x ∈ Aφ. Let C ′
A be the component of G[Aφ] that

contains x. Since φ−1(v) = φ′−1(v) the component C ′
A has a neighbor in φ−1(v)

in G. By Property (iv) applied to W there is a path P from C ′
A to Bφ through

φ−1(v).

Since C ′
A ⊆ Aφ ⊆ Aφ′ , Bφ ⊆ Bφ′ , and φ−1(v) = φ′−1(v), it follows that P is a path

in G′ from C ′
A to Bφ′ through φ′−1(v). But C ′

A ⊆ Aφ ⊆ Aφ′ implies that C ′
A ⊆ CA

so P is a path in G′ from CA to Bφ′ through φ′−1(v).

The proof that if a component CB of G[Bφ′] has a neighbor in φ′−1(v) in G′, then

there exists a path in G′ from CB to Aφ′ through φ′−1(v) is symmetric.

Next we verify that whenever W is full, or good, or disjoint, or connected, or has

adhesion size α then W ′ has the same property.

• First, suppose that W is full and let S⋆1 = S1, S
⋆
2 = S2 be witness separators for

W . In the proof that W ′ had property (i) we showed that S ′⋆
1 = S⋆1 − φ−1(u) and

S ′⋆
2 = S⋆2 −φ−1(u) are witness separators for W ′. Then S ′⋆

1 = S1−φ−1(u) = S ′
1 and

S ′⋆
2 = S2 − φ−1(u) = S ′

2, so W ′ is full as well.

465

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

• Suppose now that W is disjoint. Then S1 ∩ S2 = ∅. Since S ′
1 ⊆ S1 and S ′

2 ⊆ S2,

W ′ is also disjoint.

• If W is connected then, for every peripheral vertex v of H ′, G′[φ′−1(v)] = G[φ−1(v)]

so W ′ is connected as well.

• For bounding the adhesion size of W ′ let v be a peripheral vertex of H ′. By

Lemma 7.5.15 we have thatNG′(φ′−1(v)) = NG(φ−1(v)) ⊆ Aφ∪Bφ. Since Aφ∪Bφ ⊆

Aφ′ ∪ Bφ′ , every connected component of Aφ ∪ Bφ is contained in some connected

component of Aφ′ ∪Bφ′ . Hence the adhesion size of v in W ′ is at most v’s adhesion

size in W . Therefore, if W has adhesion size α then the adhesion size of W ′ is at

most α.s

• If W is a good connected generalized ω-creature we have already shown that W ′

is connected. We now show that W ′ is also good. Let v be a peripheral vertex

of H ′ and X = φ′−1(v). Since X = φ′−1(v) = φ−1(v) and W is connected it

follows that X is a component of G − (Aφ ∪ Bφ). Since W ′ is connected X is a

component of G′ − (Aφ′ ∪ Bφ′). By Lemma 7.5.15 we have that NG′ [X] = NG[X],

NG′X]∩Aφ′ = NG[X]∩Aφ, and NG′ [X]∩Bφ′ = NG[X]∩Bφ. Thus N2
G′ [Aφ′∪Bφ′]∩

X = N2
G[Aφ ∪ Bφ] ∩X. Hence every sub-component Y of X in G′ with respect to

Aφ′ and Bφ′ is also a sub-component of X in G with respect to Aφ and Bφ. Since

W is good it follows that X has at most one non-leaf sub-component in G with

respect to Aφ and Bφ. Thus X has at most one non-leaf sub-component in G′ with

respect to Aφ′ and Bφ′

Suppose now for contradiction that there are two components C1 and C2 of G′[Aφ′∪

Bφ′] such that N2
G′ [C1] ∩X is not anticomplete with N2

G′ [C2] ∩X. Then there is a

path P on at most 6 vertices from C1 to C2 through X. Let x be the first vertex of

466

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

P and y be the last vertex of P . By Lemma 7.5.15 both x and y are in Aφ ∪ Bφ.

But then P is a path on at most 6 vertices from x to y through X in G. Since x and

y are in different components of G′[Aφ′∪Bφ′], they are also in different components

C ′
1 and C ′

2 of G[Aφ∪Bφ]. But then P is a path on at most 6 vertices from C ′
1 to C ′

2

through X in G, contradicting that N2
G[C ′

1] ∩X is anticomplete with N2
G[C ′

2] ∩X.

7.5.4 Absorbing a Component

Definition 7.5.17. Let W = (G,H, φ, S1, S2) be a generalized ω-creature with ω ⩾ 2.

We say a component C of G[Aφ ∪Bφ] is absorbable if there exists a peripheral vertex, u,

of H where NG(C) ⊆ φ−1(u).

Let C be an absorbable component of G[Aφ ∪ Bφ] and let u ∈ H be the vertex such

that NG(C) ⊆ φ−1(u). Absorbing C in W produces a tuple W ′ = (G,H, φ′, S1, S2) where

φ′(x) = φ(x) for all x ∈ G− C and φ′(x) = v for all x ∈ C.

Lemma 7.5.18. Let ω ⩾ 2 and W = (G,H, φ, S1, S2) be a generalized ω-creature, and

C be an absorbable component of G[Aφ ∪Bφ]. Let W ′ = (G,H, φ′, S1, S2) be the result of

absorbing U in W . Then

• W ′ is a generalized ω-creature. Furthermore,

• if W is a full generalized ω-creature then W ′ is a full generalized ω-creature,

• if W is a good generalized ω-creature then W ′ is a good generalized ω-creature,

• if W is a disjoint generalized ω-creature then W ′ is a disjoint generalized ω-creature,

• if W is a connected generalized ω-creature then W ′ is a connected generalized ω-

creature,

467

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

• if W has adhesion size α then W ′ has adhesion size α. For every peripheral vertex

v of H its adhesion size in W ′ is at most its adhesion size in W .

Proof: We prove the statement of the lemma for C being a component of G[Aφ]. We

show that (H,φ′) is an ω-bistar partition of G. Let xy ∈ E(G). If x and y are both in C

then φ′(x) = φ′(y) = v. If neither x nor y are in C then φ′(x) = φ(x), φ′(y) = φ(y) and

therefore either φ′(x)φ′(y) is an edge of H or φ′(x) = φ′(y). If x ∈ C and y /∈ C then

φ′(y) = φ(y) = v and φ′(x) = v. Hence (H,φ′) is an ω-bistar partition of G.

Let u be the peripheral vertex of H such that NG(C) ⊆ φ−1(u). Before proving that

W ′ satisfies the properties of generalized ω-creatures we show that Aφ′ is non-empty.

Since ω ⩾ 2 there exists a peripheral vertex v ̸= u of H. By Lemma 7.5.4 v has a

neighbor in Aφ. Since v ̸= u this neighbor is not in C, and hence Aφ′ is non-empty.

Let S⋆1 ⊆ S1 and S⋆2 ⊆ S2 be witness separators for W . We now proceed to verify

that W ′ satisfies the properties of generalized ω-creatures.

• For property (i) let v be a peripheral vertex of H. Suppose first v ̸= u. Then

G[Aφ′ ∪ Bφ′ ∪ φ′−1(v)] = G[Aφ ∪ Bφ ∪ φ−1(v)] − C. Further, C is a connected

component of G[Aφ ∪ Bφ ∪ φ−1(v)] since NG(C) ⊆ φ−1(u). So S⋆1 and S⋆2 are

minimal Aφ′ ,Bφ′-separators in G[Aφ′ ∪Bφ′ ∪ φ′−1(v)].

We now consider the case that v = u. We have that S⋆1 and S⋆2 separate Aφ from Bφ.

Additionally Aφ′ ⊆ Aφ and Bφ′ ⊆ Bφ. So S⋆1 and S⋆2 are Aφ′ ,Bφ′ separators in G and

hence S⋆1 ∩φ′−1(v) and S⋆2 ∩φ′−1(v) are Aφ′ ,Bφ′-separators in G[Aφ′∪Bφ′∪φ′−1(v)].

We prove that S⋆1 ∩φ−1(v) is a minimal Aφ′ ,Bφ′-separator in G[Aφ′ ∪Bφ′ ∪φ′−1(v)].

Suppose for contradiction that a proper subset Ŝ1 of S⋆1 ∩φ−1(v) is also an Aφ′ ,Bφ′-

separator in G[Aφ′∪Bφ′∪φ′−1(v)]. Then there exists a partition of Aφ′∪Bφ′∪φ′−1(v)

into L, R, and Ŝ1 such that Aφ′ ⊆ L, Bφ′ ⊆ R, and there are no edges from L to

R. Since G[C] is connected we have that C ⊆ L or C ⊆ R. If C ⊆ L then Ŝ1 is

468

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

separates Aφ′∪C = Aφ from Bφ′ = Bφ, contradicting that S⋆1 ∩φ−1(v) is a minimal

Aφ,Bφ-separator in G[Aφ ∪Bφ ∪ φ−1(v)].

Thus C ⊆ R. However, since Aφ′ is non-empty and Aφ is contained in a connected

component of G − S1 (by property (ii) applied to W), there is a path P ′ from

Aφ − C = Aφ′ to C in G[A1(W)]. Since A1(W) is disjoint from Bφ and NG(C) ⊆

φ−1(u) = φ−1(v) the path P ′ is a path from Aφ′ to C through φ−1(v)− S1. Since

V (P ′) is disjoint from S1 and Ŝ1 ⊆ S1 it follows that all of P ′ must lie in R. But

then the endpoint of P ′ in Aφ′ must be in R, contradicting that Aφ′ ⊆ L. Hence

S⋆1 ∩ φ−1(v) is a minimal Aφ′ ,Bφ′-separator in G[Aφ′ ∪Bφ′ ∪ φ′−1(v)].

The proof that S⋆2 ∩φ−1(v) is a minimal Aφ′ ,Bφ′-separator in G[Aφ′ ∪Bφ′ ∪φ′−1(v)]

is symmetric.

• For property (ii) it is sufficient to observe that

Aφ′ = Aφ − C ⊆ A1(W) and Aφ′ = Aφ − C ⊆ A2(W),

Bφ′ = Bφ ⊆ B1(W) and Bφ′ = Bφ ⊆ B2(W).

Further A1(W) and B1(W) are components of G − S1, while A2(W) and B2(W)

are components of G− S2.

• For property (iii) let v be a peripheral vertex of H, and C1 and C2 be components

of G[Aφ′(v) ∪Bφ′] such that there is a path P from C1 to C2 through φ′−1(v)− S1.

Note that C1 and C2 are also components of G[Aφ(v) ∪ Bφ] and that C1 ̸= C and

C2 ̸= C because they are components of G[Aφ′ ∪Bφ′].

If V (P) does not intersect C then P is a path in G from C1 to C2 through φ−1(v)−

S1. By Property (iii) applied to W there exists a path P ′ in G from C1 to C2

469

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

through φ−1(v)− S2 ⊆ φ′−1(v)− S2.

If V (P) intersects C then C ⊆ φ′−1(v) so v = u. We have that P contains a

path P1 from C1 to C through φ′−1(v) − (S1 ∪ C) and a path P2 from C to C2

through φ′−1(v)− (S1 ∪ C). But φ′−1(v)− C = φ−1(v) so P1 is a path from C1 to

C through φ−1(v) − S1 and P2 is a path from C to C2 through φ−1(v) − S1. By

Property (iii) applied to W there exist paths P ′
1 from C1 to C through φ−1(v)−S2

and P ′
2 from C to C2 through φ−1(v) − S2. But then C1 and C are in the same

component of G[C1∪C∪C2∪φ−1(v)]−S2 and C and C2 are in the same component

of G[C1 ∪ C ∪ C2 ∪ φ−1(v)] − S2, so C1 and C2 are in the same component of

G[C1 ∪ C ∪ C2 ∪ φ−1(v)]− S2. We have that C ∪ φ−1(v) = φ′−1(v) so there exists

a path P ′ from C1 to C2 through φ′−1(v)− S2.

The proof that if there exists a path from C1 to C2 through φ′−1(v)−S2 then there

exists a path from C1 to C2 through φ′−1(v)− S1 is symmetric.

• For property (iv) let CB be a component of G[Aφ′ ∪ Bφ′] and v be a peripheral

vertex of H such that CB has a neighbor in φ′−1(v).

We first prove that if CB is a component of G[Aφ′] then there exists a path from

CB to Bφ′ through φ′−1(v). We have that CB is also a component of G[Aφ] and,

and that C and CB are anti-complete. Since φ−1(v) = φ′−1(v) − C it follows that

CB has a neighbor in φ−1(v). By property (iv) applied to W there is a path P from

CB to Bφ through φ−1(v). Since Bφ′ = Bφ this path P is also a path from CB to

Bφ through φ′−1(v).

We prove that if CB is a component of G[Bφ′] then there exists a path from CB

to Aφ′ through φ′−1(v). We have that CB is also a component of G[Bφ], and that

C and CB are anti-complete. Since φ−1(v) = φ′−1(v)− C it follows that CB has a

neighbor in φ−1(v). By property (iv) applied to W there is a path P from CB to

470

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Aφ through φ−1(v). Let x be the endpoint of P in Aφ. If x /∈ C then x ∈ Aφ′ and

thus P is a path from CB to Aφ′ through φ′−1(v).

If x ∈ C then v = u (since C has a neighbor in φ−1(v)) and C ⊆ φ′−1(v). Since Aφ′

is non-empty and Aφ is contained in a connected component of G−S1 (by property

(ii) applied to W), there is a path P ′ from C to Aφ−C = Aφ′ in G[A1(W)]. Since

A1(W) is disjoint from Bφ and NG(C) ⊆ φ−1(u) = φ−1(v) the path P ′ is a path

from C to Aφ′ through φ−1(v).

Consider now the walk P ′′ that starts in CB, follows P to C, goes through C to

the startpoint of P ′ and then follows P ′ to Aφ′ . Since all internal vertices of P are

in φ−1(v) ⊆ φ′−1(v), C is a subset of φ′−1(v), and all internal vertices of P ′ are in

φ−1(v) ⊆ φ′−1(v) we have that P ′′ is a walk from CB to Aφ′ through φ′−1(v). Then

V (P ′′) contains a path from CB to Aφ′ through φ′−1(v).

Next we verify that whenever W is full, or good, or disjoint, or connected, or has

adhesion size α then W ′ has the same property.

• If W is a full generalized ω-creature, then S⋆1 = S1 and S⋆2 = S2, so W ′ is also a

full generalized ω-creature.

• If W is a disjoint generalized ω-creature, then S1 ∩ S2 = ∅ and therefore W ′ is also

disjoint generalized ω-creature.

• If W is a connected generalized ω-creature, then for every peripheral vertex v ̸= u,

G[φ′−1(v)] = G[φ−1(v)] is connected. Furthermore, G[φ′−1(u)] = G[φ−1(u) ∪ C],

G[φ−1(u)] is connected because W is connected, G[C] is connected because it is a

connected component. Finally C has a neighbor in G[φ−1(u)] because NG(C) ⊆

φ−1(u), Aφ−C is non-empty, and A1(W) is a connected subgraph of G that contains

471

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Aφ. Hence G[φ′−1(u)] is connected and therefore then W ′ is a connected generalized

ω-creature.

• Suppose that W is a good connected generalized ω-creature. Let v be a peripheral

vertex of H. We show that φ′−1(v) good with respect to Aφ′ and Bφ′ . If v ̸= u

then G[Aφ′ ∪Bφ′ ∪φ′−1(v)] = G[Aφ ∪Bφ ∪φ−1(v)]−C. Further, C is a connected

component of G[Aφ ∪ Bφ ∪ φ−1(v)] since NG(C) ⊆ φ−1(u). Thus, since φ−1(v) is

good with respect to Aφ and Bφ, φ′−1(v) = φ−1(v) is also good with respect to Aφ′

and Bφ′ .

We now consider the case when v = u. We have that φ′−1(u) = φ−1(u) ∪ C. We

have already shown that G[φ′−1(u)] is connected. First, suppose for contradiction

that there exist two components C1 and C2 of G[Aφ′ ∪ Bφ′] such that N2
G[C1] ∩

φ′−1(u) is not anti-complete with N2
G[C2] ∩ φ′−1(u). Then there exists a path P

on at most six vertices from C1 to C2 through φ′−1(u). If P does not contain any

internal vertices in C then all internal vertices in P are in φ−1(u). This contradicts

that N2
G[C1] ∩ φ−1(u) is anti-complete with N2

G[C2] ∩ φ−1(u). So P contains an

internal vertex in C. But then P contains a sub-path on at most 5 vertices from

C1 to C through φ−1(u), contradicting that N2
G[C1]∩ φ−1(u) is anti-complete with

N2
G[C]∩φ−1(u). Hence every pair C1 and C2 of distinct components of G[Aφ′∪Bφ′]

satisfy that N2
G[C1] ∩ φ′−1(u) is anti-complete with N2

G[C2] ∩ φ′−1(u).

Suppose now for contradiction that φ′−1(u) contains two distinct non-leaf sub-

components Z1 and Z2 with respect to Aφ′ and Bφ′ . Since Aφ′ ∪ Bφ′ ⊆ Aφ ∪ Bφ

it follows that N2
G[Aφ′ ∪ Bφ′] ⊆ N2

G[Aφ ∪ Bφ]. Thus φ−1(u) − N2
G[Aφ ∪ Bφ] ⊆

φ′−1(u)−N2
G[Aφ′ ∪Bφ′]. Hence every sub-component of φ−1(u) with respect to Aφ

and Bφ is contained in a sub-component of φ′−1(u) with respect to Aφ′ and Bφ′ .

Since W is good, Lemma 7.5.9 yields that φ−1(u) has a kernel, namely a unique

472

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

non-leaf sub-component Z with respect to Aφ and Bφ. Since Z is fully contained

in a sub-component of φ′−1(u) with respect to Aφ′ and Bφ′ , at least one of Z1 and

Z2 is disjoint from Z. Without loss of generality, Z1 ∩ Z = ∅.

Since Z1 is a non-leaf sub-component of φ′−1(u) with respect to Aφ′ and Bφ′ , there

exist two components C1 and C2 of G[Aφ′∪Bφ′] such that there is a path P from C1

to C2 through (N2
G[C1]∩ φ′−1(u))∪Z1 ∪ (N2

G[C2]∩ φ′−1(u)). Notably, P is disjoint

from the kernel Z of φ−1(u) with respect to Aφ and Bφ. If P does not contain

any vertices of C then P is a path from C1 to C2 through φ−1(u), contradicting

Lemma 7.5.12 which states that every path from C1 to C2 through φ−1(u) must

intersect the kernel Z of φ−1(u). If P does contain a vertex of C then P contains a

sub-path P ′ from C1 to C through φ−1(u), again contradicting Lemma 7.5.12 which

states that every path from C1 to C through φ−1(u) must intersect the kernel Z of

φ−1(u). Thus W ′ is a good connected generalized ω-creature

• We now bound the adhesion size of (every peripheral vertex of) W ′. For every

peripheral vertex v of H with v ̸= u we have N(φ′−1(v)) = N(φ−1(v)). For u we

haveN(φ′−1(u)) = N(φ−1(v))−C. Since every connected component ofG[Aφ′∪Bφ′]

is a component of G[Aφ ∪ Bφ] it follows that the adhesion size of every peripheral

vertex v of H in W ′ is at most its adhesion size in W . Hence, if W has adhesion

size α then W ′ has adhesion size α.

The proof for the case when C is a component of G[Bφ] is symmetric.

473

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

7.5.5 Extracting a Generalized ω-Creature with Bounded Ad-

hesion Size.

Let G be a k-creature free graph, and W = (G,H, φ, S1, S2) be a connected good full

generalized ω-creature. Our goal this subsection is to show that we can extract from W

a connected good full (ω/2)-creature with adhesion size 2k. This result is encapsulated

in Lemma 7.5.20, which is the only lemma that will be used outside of this section.

Lemma 7.5.19. Let W = (G,H, φ, S1, S2) be a good generalized ω-creature, let X be a

component of G−(Aφ∪Bφ), and let C be a component of G−X. Then there do not exist

k distinct components D1, D2, . . ., Dk of G[Aφ ∪Bφ] such that D1 ∪D2 ∪ . . . ∪Dk ⊆ C

and N(X) ∩Di ̸= ∅ for every i.

Proof: Suppose for contradiction that D1, D2, . . ., Dk exist. Let Â be the kernel of

X.

For every i ⩽ k let Yi be a connected component of G[X ∩ N2
G[Aφ ∪ Bφ]] that

has a neighbor in Di. By Lemma 7.5.11 the components Y1, . . . , Yk are distinct. By

Lemma 7.5.13 each Yi has a neighbor ai in Â. The vertices a1, . . . , ak need not be dis-

tinct.

For every i, ai has a neighbor xi in Yi. We have that xi is either in the first or second

neighborhood of Aφ∪Bφ. However, xi can’t be in the first neighborhood of Aφ∪Bφ since

then ai would be in the second, and it is not (since ai ∈ Â). Thus xi is in the second

neighborhood of Aφ ∪ Bφ. Then xi has a neighbor yi in NG(Aφ ∪ Bφ), and therefore

yi ∈ Yi. Since yi ∈ NG(Aφ ∪ Bφ) it follows that yi has a neighbor di ∈ Aφ ∪ Bφ. By

Lemma 7.5.11, di ∈ Di.

We show that (Â, {x1, . . . , xk}, {y1, . . . , yk}, C) is a k-creature. The sets G[Â] and

G[C] are connected (by definition of Â and C) and anti-complete. Further Â and

{y1, . . . , yk} are anti-complete because {y1, . . . , yk} ⊆ NG[Aφ ∪ Bφ] while Â ∩ NG[Aφ ∪
474

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Bφ] = ∅. Similarly C and {x1, . . . , xk} are anti-complete because {x1, . . . , xk} ⊆ N2
G(Aφ∪

Bφ) while C ⊆ (Aφ ∪ Bφ). Every x1 has a neighbor ai in Â, and every yi has a neigh-

bor di ∈ C. Finally xiyi is an edge and xiyj is not an edge for i ̸= j because xi ∈ Yi

while yj ∈ Yj there are no edges from Yi to Yj since they are distinct components of

N2
G[Aφ ∪ Bφ]]. Thus (Â, {x1, . . . , xk}, {y1, . . . , yk}, C) is a k-creature, contradicting that

G is k-creature free. The statement of the lemma follows.

Lemma 7.5.20. Let W = (G,H, φ, S1, S2) be a connected, good, and full generalized

ω-creature. Then there exists an induced subgraph G′ of G and connected, good and full

generalized (ω/2)-creature W ′ = (G′, H ′, φ′, S ′
1, S

′
2) with max adhesion size 2k.

Proof: Without loss of generality, W has no absorbable components. If W has

absorbable components, let Ŵ be the result of absorbing all absorbable components in

W . By Lemma 7.5.18, Ŵ is a connected, good and full generalized ω-creature, and Ŵ

has no absorbable components. Then G, Ŵ also satisfy the premise of the lemma. We

may therefore assume that W has no absorbable components.

Claim 7.5.21. For every peripheral vertex u of H and every component C of G−φ−1(u),

there exists a peripheral vertex v in H such that φ−1(v) ⊆ C.

Proof: Suppose for contradiction that there exists a peripheral vertex u of H and a

component C of G−φ−1(u) such that there does not exist a peripheral vertex v satisfying

φ−1(v) ⊆ C.

For every peripheral vertex v of H we have that φ−1(v) ∩ φ−1(u) = ∅ and that

G[φ−1(v)] is connected (since W is connected). Thus φ−1(v) ⊆ C or φ−1(v)∩C = ∅. By

our assumption φ−1(v) ∩ C = ∅ for every peripheral vertex v other than u. But then C

is a component of G[A ∪B] and NG(C) ⊆ φ−1(u), so C is absorbable, contradicting the

assumption that W has no absorbable components.

475

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Let S be the set of peripheral vertices u of H such that G− φ−1(u) has at most two

connected components.

Claim 7.5.22. |S| ⩾ ω/2.

Proof: Let Ĝ be the (bipartite) graph that has, on one side, a vertex xu for every

peripheral vertex u of H, and on the other side a vertex vC for every connected component

C of G[A ∪B]. There is an edge from xu to xC in Ĝ if and only if there is an edge from

φ−1(u) to C in G. Let P̂ = {xu : u ∈ V (G)−{cA, cB}}. That is, P̂ is the set of vertices

of Ĝ corresponding to peripheral vertices of H.

Note that Ĝ is obtained from G by contracting every edge uv ∈ E(G) such that

φ−1(u) = φ−1(v). Thus Ĝ is connected. Let T̂ be an inclusion minimal connected

subgraph of G such that P̂ ⊆ V (T̂). We have that T̂ is a tree (since removing an edge

of a cycle preserves connectivity) and that every leaf of T̂ is in P̂ (since removing a leaf

from a tree preserves connectivity).

We claim that for every peripheral vertex u if H which is not in S, the degree of xu in

T̂ is at least 3. Suppose not, and let C1, C2, C3 be distinct components of G−φ−1(u) (the

components C1, C2, C3 are well defined because u /∈ S). Let v1, v2, and v3 be peripheral

vertices of H such that φ−1(v1) ⊆ C1, φ
−1(v2) ⊆ C2, and φ−1(v3) ⊆ C3. The vertices v1,

v2, v3 exist by Claim 7.5.21.

Since the degree of xu in T̂ is at most two, T̂ − xu has at most two connected

components. By the pigeon hole principle two of the vertices {xv1 , xv2 , xv3} appear in

the same component of T̂ − xu. Without loss of generality, this is xv1 and xv2 . But then

there is a path from xv1 to xv2 in Ĝ avoiding xu, and therefore a path from φ−1(v1) to

φ−1(v2) in G avoiding φ−1(u). But this contradicts that φ−1(v1) and φ−1(v2) are subsets

of different components of G−φ−1(u). We conclude that for every peripheral vertex u if

H which is not in S the degree of xu in T̂ is at least 3.

476

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Let P̂3 be the set of vertices in P̂ that have degree at least 3 in T̂ . A well known

fact about trees is that every tree has more leaves than vertices of degree at least 3 (See

e.g. [124], Chapter 1, Exercise 17). Therefore, T̂ has at least |P̂3| leaves. For every leaf

xℓ of T̂ , we have that ℓ is a peripheral vertex of H and that ℓ ∈ S because the degree

of xℓ in T̂ is 1. It follows that |S| ⩾ |P̂3|, while |P̂3| is at least the number of peripheral

vertices of H which are not in S. It follows that |S| ⩾ ω/2.

We can now finish the proof of the Lemma. By Lemma 7.5.19, the adhesion size

(in W) of every u ∈ S is at most 2k. Let W ′ be the generalized |S|-creature obtained

from W by dissolving every peripheral vertex not in S. By Lemma 7.5.16 W ′ is in fact

a connected, good and full generalized |S|-creature, by Claim 7.5.22 we have |S| ⩾ ω/2,

and finally (again by Lemma 7.5.16) the adhesion size (in W ′) of every u ∈ S is at most

2k. The statement of the lemma follows.

7.5.6 Extracting a Disjoint Generalized ω-Creature.

Lemma 7.5.23. Let W = (G,H, φ, S1, S2) be a full generalized ω-creature, u be a periph-

eral vertex of H, and C be a component of G[φ−1(u)]− (S1∪S2) such that N(C)∩ (Aφ∪

Bφ) ̸= ∅ and N(C) ∩ φ−1(u) ⊆ S1 ∩ S2. Define φ′(v) = φ(v) for every v ∈ V (G) − C.

If N(C) ∩ Aφ ̸= ∅ let φ′(v) = cA for every v ∈ C. If N(C) ∩ Bφ ̸= ∅ set φ′(v) = cB for

every v ∈ C. Then W ′ = (G,H, φ′, S1, S2) is a full generalized ω-creature. Further the

max adhesion size of W ′ is at most the max adhesion size of W .

Before proving Lemma 7.5.23, observe that by Observation 7.5.5 precisely one of the

cases N(C) ∩ Aφ ̸= ∅ and N(C) ∩Bφ ̸= ∅ in the statement of Lemma 7.5.23 will apply.

Proof: [Proof of Lemma 7.5.23] We prove the statement of the lemma for the case

that N(C)∩Aφ ̸= ∅. Then, by Observation 7.5.5 we have N(C)∩Aφ = ∅. First we show

that (H,φ′) is an ω-bistar partition of G. Let xy be an edge of G. If neither x nor y are

477

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

in C then φ′(x) = φ(y) and φ′(x) = φ(y), and therefore φ′(x) = φ′(y) or φ′(x)φ′(y) is an

edge of H. If both x and y are in C then φ′(x) = φ′(y) = cA. Thus, suppose that x ∈ C

and y /∈ C. We have that N(C) ⊆ φ−1(u) ∪ Aφ and therefore, y ∈ Aφ or y ∈ φ−1(u). In

the former case we have φ′(x) = φ′(y) = cA, while in the latter case we have φ′(x) = cA

while φ′(y) = u, and cAu is an edge of H. Next we check that W ′ satisfies the properties

of full generalized ω-creatures.

• Property (i) clearly holds for all peripheral vertices of H other than u (with S⋆1 = S1

and S⋆2 = S2). For u observe that G[Aφ′ ∪Bφ′ ∪φ′−1(u)] = [Aφ ∪Bφ ∪φ−1(u)] and

that φ′−1(u)∩S1 = φ−1(u)∩S1 and φ′−1(u)∩S2 = φ−1(u)∩S2. Thus φ′−1(u)∩S1

and φ′−1(u)∩S2 are distinct minimal Aφ′ ,Bφ′ separators in G[Aφ′ ∪Bφ′ ∪φ′−1(u)].

• For property (ii) observe that G, S1, S2 are the same for W and W ′. Further,

Bφ′ = Bφ and Aφ′ = Aφ ∪ C. Thus Bφ′ is entirely contained in a component of

G − S1, and Aφ is entirely contained in a different component of G − S1. Since

C is disjoint from S1 and has a neighbor in Aφ, all of Aφ′ is contained in the

same component of G−S1 as Aφ. An identical argument shows that Bφ′ is entirely

contained in a component of G−S2, and that Aφ′ is entirely contained in a different

component of G− S2.

• For property (iii), let C1 and C2 be components ofG[Aφ′∪Bφ′], and v be a peripheral

vertex of H such that there is a path P from C1 to C2 through φ′−1(v)−S1. Observe

now that C does not have any neighbors in φ′−1(v) − S1. Indeed, if v ̸= u then

φ′−1(v) = φ−1(v) is anticomplete with φ−1(u), and C ⊆ φ−1(u). If v = u then

N(C) ∩ φ′−1(u) ⊆ S1 ∩ S2 by assumption. Thus C does not have any neighbors in

φ′−1(v)−S1. Thus the path P starts and ends in G[Aφ∪Bφ]. Let C ′
1 and C ′

2 be the

components of G[Aφ ∪ Bφ] containing the first and last vertex of P , respectively.

Note that C ′
1 ⊆ C1 and that C ′

2 ⊆ C2.

478

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Since φ′−1(v) ⊆ φ−1(v) we have that P is a path from C ′
1 to C ′

2 through φ−1(v)−S1.

Therefore (by property (iii) applied to W) there is a path P ′ from C ′
1 to C ′

2 through

φ−1(v)− S2. Since C is a component of G[φ−1(u)]− S2. we have that the internal

vertices of P ′ are either entirely inside C or disjoint from C. However all internal

vertices of P ′ cannot be inside C, because then the endpoints of P ′ are in the

same component of G[Aφ′] contradicting that C1 and C2 are distinct components

of G[Aφ′]. Hence P ′ is a path from C ′
1 to C ′

2 through φ′−1(v)− S2.

The proof for the reverse direction of the equivalence, namely that if there is a path

P from C1 to C2 through φ′−1(v) − S2, then there also is a path from C1 to C2

through φ′−1(v)− S1, is identical.

• For property (iv), let XA be a component of G[Aφ′] and v be a peripheral vertex

of H such that XA has a neighbor in φ′−1(v). Let xy be an edge of G with x ∈ XA

and y ∈ φ′−1(v). There are two cases, either x ∈ C or x ∈ Aφ. If x ∈ C then v = u

and y ∈ S1. By property (i) applied to W and S⋆1 = S1, there is a path P from

y to Bφ through φ−1(u) ∩ B1(u). But C ⊆ A1(u) and φ′−1(u) = φ−1(u) − C, and

therefore P is a path from y to Bφ = Bφ′ through φ′−1(u).

If x ∈ Aφ, let X ′
A be the component of G[Aφ] that contains x. We have that

X ′
A ⊆ XA. Furthermore, y ∈ φ−1(v) because φ′−1(v) ⊆ φ−1(v). Thus X ′

A has a

neighbor in φ−1(v), and hence, by property (iv) applied to W , there is a path P

from X ′
A to Bφ through φ−1(v).

If P has no internal vertices in C then P is a path from X ′
A to Bφ′ = Bφ through

φ′−1(v). If P has internal vertices in C, then v = u. Since x ∈ XA, y ∈ C and

xy is an edge, we have that C ⊆ XA. Let x′ be the last vertex of XA on P . The

sub-path of P from x′ to Bφ′ = Bφ is a path from XA to Bφ′ through φ′−1(v).

Consider now a component XB of G[Bφ′] and let v be a peripheral vertex of H

479

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

such that XB has a neighbor in φ′−1(v). XB is also a component of G[Bφ] and

φ′−1(v) ⊆ φ−1(v), so by property (iv) applied to W there exists a path P from XB

to Aφ through φ−1(v). Let x′ be the first vertex on P from Aφ′ . The sub-path of

P that ends in x′ is a path from XB to Aφ′ through φ′−1(v).

Finally we upper bound the max adhesion size of W . Note that every component of

G[A′
φ ∪B′

φ] is a component of G[Aφ ∪Bφ], with the exception of the unique component

X of G[A′
φ∪B′

φ] which contains C. The component X is equal to C plus the union of all

components of G[Aφ ∪ Bφ] which contain a neighbor of C. By assumption there exists

at least one component of G[Aφ ∪Bφ] which contain a neighbor of C.

Since C does not have any neighbors in φ−1(v) for any peripheral vertex v ̸= u, the

adhesion size of every peripheral vertex v ̸= u in W ′ is at most its adhesion size in W .

For u, every component of G[A′
φ ∪ B′

φ] that contains a neighbor of φ′−1(u) contains a

component of G[Aφ ∪Bφ] that contains a neighbor of φ−1(u). Thus the adhesion size of

u in W ′ is at most its adhesion size in W . This completes the proof for the case that

N(C) ∩ A ̸= ∅. The proof for the case where N(C) ∩B ̸= ∅ is symmetric.

Lemma 7.5.24 (Extract Disjoint ω-Creature). Let W = (G,H, φ, S1, S2) be a full gen-

eralized ω-creature of max adhesion size α. Then there exists a full disjoint generalized

ω-creature, W ′ = (G′, H, φ′, S ′
1, S

′
2), of max adhesion size α such that G′ is an induced

subgraph of G.

Proof: Without loss of generality W satisfies the following additional property: there

does not exist a peripheral vertex u, and component C of G[φ−1(u)] − (S1 ∪ S2) such

that N(C) ∩ (Aφ ∪ Bφ) ̸= ∅ and N(C) ∩ φ−1(u) ⊆ S1 ∩ S2. Indeed, if such a u and C

exists then Lemma 7.5.23 yields a full generalized ω-creature with the same graph G,

adhesion size at most α, and strictly larger |Aφ ∪ Bφ|. Since |Aφ ∪ Bφ| ⩽ |V (G)| there

must exist a full generalized ω-creature W ⋆ = (G,H, φ⋆, S1, S2) on the same graph G

480

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

that additionally satisfies the additional property. Since W ⋆ satisfies the premise of the

lemma we may assume that W = W ⋆.

We set G′ = G − (S1 ∩ S2), φ
′(v) = φ(v) for every v ∈ V (G′), S ′

1 = S1 − S2 and

S ′
2 = S2−S1. We claim that W ′ = (G′, H, φ′, S ′

1, S
′
2) satisfies the conclusion of the lemma.

We first prove that it is a full sugeneralized ω-creature. Indeed, G′ is an induced subgraph

of G, and (H,φ′) is an ω-bistar partition of G. Note that Aφ′ = Aφ and Bφ′ = Bφ.

• For property (i) we have that for every peripheral vertex, u, of H, G′[Aφ′ ∪ Bφ′ ∪

φ′−1(u)]− (φ′−1(u)∩S ′
1) is equal to G[Aφ∪Bφ∪φ−1(u)]− (φ−1(u)∩S1), and so S ′

1

is a minimal separator in G′[Aφ′ ∪Bφ′ ∪φ′−1(u)]. Similarly, φ′−1(u)∩S ′
2 a minimal

separator in G′[Aφ′ ∪ Bφ′ ∪ φ′−1(u)]. Finally, φ′−1(u) ∩ S ′
1 and φ′−1(u) ∩ S ′

2 are

distinct because φ−1(u) ∩ S1 and φ′−1(u) ∩ S2 are distinct.

• Property (ii) is satisfied by W ′ because G′ − S ′
1 = G− S1, and G′ − S ′

2 = G− S2.

• Property (iii) is satisfied by W ′ because every pair of components C1 and C2 of

G′[Aφ′ ∪ Bφ′] are components of G[Aφ ∪ Bφ], and for every peripheral vertex u of

H we have φ′−1(u)− S ′
1 = φ−1(u)− S1 and φ′−1(u)− S ′

2 = φ−1(u)− S2.

• For property (iv), let u be a peripheral vertex and XA be a component of G′[Aφ′]

that has a neighbor in φ′−1(u).

Let xy be an edge of G′ with x ∈ XA and y ∈ φ′−1(u). We claim that there exists a

path in G′ from XA to S1∪S2 through φ′−1(u). If y ∈ S1∪S2 then xy is the desired

path, so suppose y ∈ φ′−1(u) − S1 ∪ S2. Let C be the connected component of

φ−1(u)− (S1∪S2) that contains u. The property of W discussed at the start of the

proof ensures that C has at least one neighbor z in φ′−1(u)∩ (S1 ∪ S2)− (S1 ∩ S2).

Let P now be a path from x to z through C. P does not contain any vertices of

S1 ∩ S2 and hence it is a path in G′ from XA to S1 ∪ S2 through φ′−1(u).

481

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Let z be the endpoint of the path P in S1 ∪S2. If z is in S1 then, by minimality of

S1 ∩ φ−1(u) (here we use that W is full), there exists a path P ′ in G from z to Bφ

through φ−1(u) − S1. But P ′ does not contain any vertices of S1 ∩ S2 and hence

P ′ is a path from z to Bφ′ through φ′−1(u). An identical argument shows that if

z is in S2 then there exists a path P ′ from z to Bφ′ through φ′−1(u). But then P ,

followed by P ′ is a path in G′ from XA to Bφ′ through φ′−1(u).

The proof of the analogous statement for peripheral vertex u and component XB

of G′[Bφ′] that has a neighbor in φ′−1(u) is identical.

Having shown that W ′ = (G′, H, φ′, S ′
1, S

′
2) is a full generalized ω-creature, note that

S ′
1 and S ′

2 are disjoint. Further the adhesion size of every peripheral vertex v of H in W ′

is at most its adhesion size in W , since Aφ′ = Aφ, Bφ′ = Vφ, and φ′−1(v) ⊆ φ−1(v). This

concludes the proof of the lemma.

7.5.7 Connectivity Graphs and Long Induced Paths in them

Definition 7.5.25 (Realize). Let W be a generalized ω-creature W = (G,H, φ, S1, S2).

A peripheral vertex u of H realizes an (unordered) pair of distinct components {C1, C2}

of G[Aφ ∪Bφ] if there is a path in G from C1 to C2 through φ−1(u)− S1.

Note that by property (i) of generalized ω-creatures, if u realizes {C1, C2}, then C1

and C2 are either both components of G[Aφ] or both components of G[Bφ].

Definition 7.5.26 (Connectivity Graph). The A-connectivity graph of a generalized ω-

creature W = (G,H, φ, S1, S2) is a graph CA. The vertices of CA are the connected

components of G[Aφ]. Two components C1 and C2 of G[Aφ] are connected by an edge in

CA if there exists a peripheral vertex u of H that realizes {C1, C2}.

482

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

The B-connectivity graph CB of W is defined similarly, with vertices of CB being

components of G[Bφ], and two components C1 and C2 are connected by an edge in CB if

there exists a peripheral vertex u of H that realizes {C1, C2}.

The A-connectivity graphs tracks which pairs {C1, C2} of components of G[Aφ] are

realized by some peripheral vertex of H. We will (towards the end of the proof) also be

interested in precisely which peripheral vertices realize a given pair. We encapsulate this

in the notion of labeled connectivity graphs.

Definition 7.5.27 (Labeled Connectivity Graph). The labeled A-connectivity graph of

a generalized ω-creature W = (G,H, φ, S1, S2) is a pair (CA, λ) where CA is the A-

connectivity graph of W , and λ : E(CA) → 2V (H) takes as input an edge {C1, C2} and

outputs the subset of peripheral vertices u of H that realize {C1, C2}.

The labeled B-connectivity graph W is a pair (CB, λ) where CB is the B-connectivity

graph of W , and λ : E(CB) → 2V (H) takes as input an edge {C1, C2} and outputs the

subset of peripheral vertices u of H that realize {C1, C2}.

We will occasionally be interested in the subgraph of the A-connectivity graph CA of

a generalized ω-creature W induced by a vertex set Z. Just as for normal graphs, we

will denote the induced subgraph by CA[Z]. We can treat such an induced subgraph as a

labeled induced subgraph by dropping from the domain of the labeling λ all edges that

do not appear in the considered induced subgraph. We will denote this labeled induced

subgraph by (CA, λ)[Z].

Lemma 7.5.28. Let W = (G,H, φ, S1, S2) be a disjoint generalized ω-creature. Then

the A-connectivity graph CA and the B-connectivity graph CB of W are connected.

Proof: This follows immediately from Property (ii) of generalized ω-creatures.

483

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Lemma 7.5.29. Let G be k-creature free, W = (G,H, φ, S1, S2) be a disjoint generalized

ω-creature and C be a component of G[Aφ ∪ Bφ]. Let Z be the set of peripheral vertices

u of H such that φ−1(u) contains a neighbor of C in G. Then |Z| < k.

Proof: Suppose for contradiction that |Z| ⩾ k, and let z1, . . . , zk be k distinct vertices

in Z. Let S⋆1 ⊆ S1 and S⋆2 ⊆ S2 be witness separators for W . For each i ⩽ k proceed as

follows. Since C has a neighbor in φ−1(zi), by property (iv) of generalized ω-creatures,

there is a path from C to Bφ through φ−1(zi). By property (i) this path contains at least

one vertex of S⋆1 (and at least one vertex of S⋆2). Thus, there exists a path from C to

S⋆1 ∪ S⋆2 in G[C ∪ φ−1(zi)]. Let P 1
i be a shortest such path.

Let xi be the last vertex of P 1
i , without loss of generality xi is in S⋆1 . If it is in S⋆2 we

instead consider the generalized ω-creature resulting from flipping W (and S⋆1 and S⋆2) at

zi (see Lemma 7.5.8). Since this changes S1 ∩ φ−1(zi) to S2 ∩ φ−1(zi), and S⋆1 ∩ φ−1(zi)

to S⋆2 ∩ φ−1(zi), and vice versa (and changes nothing else), we may now assume that xi

is in S⋆1 .

By property (i) of generalized ω-creatures we have that φ−1(zi) ∩ S⋆1 is an Aφ, Bφ-

minimal separator in G[Aφ ∪ Bφ ∪ φ−1(zi)]. Thus there exists an induced path P 2
i from

xi to Bφ in G[Bφ ∪ φ−1(zi)] that does not contain any vertices of S⋆1 . We select P 2
i such

that only the last vertex of P 2
i is in Bφ.

Notice now that P i
1 followed by P i

2 is a path from Aφ to Bφ in G[Aφ ∪Bφ ∪ φ−1(zi)].

Let yi be the vertex immediately after xi on the path P i
2. The vertex yi can not be the

last vertex of P i
2, since then P i

1P
i
2 is a path from Aφ to Bφ in G[Aφ∪Bφ∪φ−1(zi)] disjoint

from S⋆2 .

We define

A = C ∪
⋃
i⩽k

P i
1 − {xi}

484

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

B = B⋆
2(W) ∪

⋃
i⩽k

P i
2 − {xi, yi}

and claim that (A,B, {x1, . . . , xk}, {y1, . . . , yk}) forms a k-creature. We check the prop-

erties of k-creatures one by one:

• A is disjoint from {x1, . . . , xk} ∪ {y1, . . . , yk} ∪ B because A ⊆ A⋆1(W) while

{x1, . . . , xk} ∪ {y1, . . . , yk} ∪B ⊆ S⋆1 ∪B⋆
1(W).

• {x1, . . . , xk} is disjoint from {y1, . . . , yk} because yi is the successor of xi on P i
2.

For j ̸= i we have that xi ∈ φ−1(zi) while yj ∈ φ−1(zj), which are disjoint and

anticomplete. This shows not only that {x1, . . . , xk} is disjoint from {y1, . . . , yk},

but also that xiyj is an edge if and only if i = j.

• {y1, . . . , yk} is disjoint from B because {y1, . . . , yk} ⊆ A⋆2(W) ∪ S2, while B =

B⋆
2(W) ∪

⋃
i⩽k P

i
2 − {xi, yi}.

• G[A] is connected because C is connected and each P i
1 is a path that starts from

C.

• G[B] is connected because B⋆
2(W) is connected and each P i

2−{xi, yi} is a path that

ends in Bφ ⊆ B⋆
2(W).

• A andB∪{y1, . . . , yk} are anticomplete: indeedA ⊆ A⋆1(W) whileB∪{y1, . . . , yk} ⊆

B⋆
1(W), and A⋆1(W) and B⋆

1(W) are anticomplete.

• B and A ∪ {x1, . . . , xk} are anticomplete: since we have already shown that A

and B are anticomplete it suffices to show that B and {x1, . . . , xk} are anticom-

plete. Suppose for contradiction that xjb is an edge with b ∈ B. We have that

{x1, . . . , xk} ⊆ A⋆2(W), so {x1, . . . , xk} is anticomplete with B⋆
2(W). We conclude

that b ∈ (P i
2 − {xi, yi}). Since b /∈ B⋆

2(W) we have that b cannot be the last vertex

485

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

of P i
2 − {xi, yi}, and therefore b ∈ φ−1(zi). But xj ∈ φ−1(zj) and φ−1(zi) and

φ−1(zj) are anticomplete unless i = j, contradicting that xib is an edge. So i = j

and b is a vertex on P i
2 − {xi, yi}. However yi is the only vertex on P i

2 adjacent to

xi, and b ̸= yi yielding a contradiction. Thus B and {x1, . . . , xk} are anticomplete.

• Each xi has a neighbor in A, namely its predecessor in P i
1, and each yi has a

neighbor in B, namely its successor in P i
1.

We conclude that (A,B, {x1, . . . , xk}, {y1, . . . , yk}) forms a k-creature in G, contra-

dicting that G is k-creature free.

Lemma 7.5.30. Let G be a k-creature free graph and W = (G,H, φ, S1, S2) be a disjoint

generalized ω-creature with adhesion size at most α. Then the the A-connectivity graph

CA of W (and the B-connectivity graph CB of W) contains an induced path of length at

least logkα(ω/k)− 1.

Proof: We prove the statement for the A-connectivity graph CA of W . First, by

Lemma 7.5.28 CA is connected. Next we show that CA has at least ω/kω vertices. By

Lemma 7.5.4 each peripheral vertex v of H satisfies that φ−1(v) has a neighbor in Aφ.

On the other hand, for every component C of G[Aφ], Lemma 7.5.29 yields that there are

at most k − 1 peripheral vertices v such that φ−1(v) has a neighbor in C. Thus, G[Aφ]

has at least ω/k components, and so the A-connectivity graph CA of W has at least ω/k

vertices.

Next, we show that the maximum degree of CA is at most kα. Indeed, consider a

component C of G[Aφ], and another component C ′ of G[Aφ] such that C and C ′ are

adjacent in CA. Then there exists a peripheral vertex v of H such that φ−1(v) has a

neighbor both in C and in C ′. By Lemma 7.5.29 there are at most k − 1 vertices u such

486

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

that φ−1(u) has a neighbor in C. For each such peripheral vertex u, there are at most

α components C ′′ of G[Aφ] that have a neighbor in φ−1(u). Thus there are at most kα

components C ′ adjacent to C in CA.

We have that CA is a connected graph with at least ω/k vertices and maximum degree

at most kα. Pick any vertex C of CA. For every d ⩾ 1, the number of vertices at distance

exactly d from C in CA is at most (kα)d, and therefore the number of vertices at distance

at most d is at most (kα)d+1. Let C ′ be the vertex of CA furthest away from C in CA, and

let d be the distance from C to C ′ in CA. We have that ω/k ⩽ (kα)d+1, and therefore

logkα(ω/k) ⩽ d + 1. Thus a shortest path from C to C ′ in CA satisfies the conclusion of

the lemma. The proof for the B-connectivity graph CB of W is identical.

7.5.8 Erasing Components

We will work towards extracting fromW a generalized ω′-creature whoseA-connectivity

graph is a path. Towards this we will identify a long induced path P in the A-connectivity

graph of G, and delete all components of G[Aφ] that are not on the path P . However,

when we delete components of G[Aφ] we need to appropriately modify the generalized

ω-creature in the peripheral vertices in order to ensure that the result of path-filtering is

still a generalized ω-creature.

Let W = (G,H, φ, S1, S2) be a generalized ω-creature. A component C of G[Aφ]

is erasable if CA − {C} is connected. Similarly, a component C of G[Bφ] is erasable if

CB − {C} is connected. For an induced path P in the A-connectivity graph CA of W , or

the B-connectivity graph CB of W , a component C of G[Aφ ∪ Bφ] is P -erasable if C is

erasable and C /∈ V (P).

Lemma 7.5.31. Let W = (G,H, φ, S1, S2) be a generalized ω-creature. If P is an induced

path in the A-connectivity graph CA of W and there exists a component C of G[Aφ] not

487

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

in V (P) then there exists a P -erasable component C ′ of G[Aφ]. If P is an induced path

in the B-connectivity graph CB of W and there exists a component C of G[Bφ] not in

V (P) then there exists a P -erasable component C ′ of G[Bφ].

Proof: We prove the statement for P being a path in CA. By Lemma 7.5.28 CA is

connected. Therefore it has a spanning tree T that contains all the edges of P . Since

there exists a component C of G[Aφ] not in V (P), T has a leaf C ′ not in V (P). Since

T − {C ′} is connected, CA − {C ′} is connected as well. Hence C ′ is erasable. The proof

for statement for P being a path in CB is identical.

We are aiming at an operation that will delete all of the vertices of a P -erasable

component C from the graph G of a generalized ω-creature. Simply deleting all vertices

of C from G does not immediately work, because some peripheral vertices of H might

violate property (iv) of generalized ω-creatures after such a deletion. The next definitions

aim to highlight the peripheral vertices for which such a problem could occur.

Definition 7.5.32 (Chunk). Let W = (G,H, φ, S1, S2) be a generalized ω-creature and

v be a peripheral vertex of H. A chunk of v is a connected component of G[φ−1(v)]. A

chunk of W is a chunk of v for some peripheral vertex v of H.

Let W = (G,H, φ, S1, S2) be a generalized ω-creature, and C be a component of

G[Aφ ∪ Bφ]. A peripheral vertex u of H is C-dependent if C ⊆ Aφ and C contains

N(φ−1(u)) ∩Aφ or C ⊆ Bφ and C contains N(φ−1(u)) ∩Bφ. The set D(C) denotes the

set of all C-dependent peripheral vertices in H. Similarly, a chunk Z of W is C-dependent

if C ⊆ Aφ and C contains N(φ−1(u)) ∩ Aφ or C ⊆ Bφ and C contains N(φ−1(u)) ∩ Bφ.

The set DS(C) denotes the set of all C-dependent chunks of W . Note that despite the

similar names D(C) and DS(C) are objects of different types. More concretely D(C) is

a set of vertices of H while DS(C) is a set of vertex sets. We are now ready to define the

operation of erasing a component.

488

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Definition 7.5.33 (Erasing Component). Let W = (G,H, φ, S1, S2) be a disjoint gen-

eralized ω-creature, and let C be an erasable component of G[Aφ ∪Bφ]. We define X to

be the union of all C-dependent chunks of W , If C is a component of G[Aφ] we define Y

to be the union of all C-dependent chunks of W that have at least one neighbor in Bφ.

If C is a component of G[Bφ] we define Y to be the the union of all C-dependent chunks

of W that have at least one neighbor in Bφ. We set

• G′ = (G− C)− (X − Y), and

• H ′ = H −D(C).

• For every v ∈ Y we set φ′(v) = cB if C ⊆ Aφ and φ′(v) = cA if C ⊆ Bφ. For every

v ∈ V (G′)− Y we set φ′(v) = φ(v).

• We set S ′
1 = S1 −X and S ′

2 = S2 −X.

Lemma 7.5.34. Let W = (G,H, φ, S1, S2) be a disjoint generalized ω-creature, and

let C be an erasable component of G[Aφ] or of G[Bφ]. Let W ′ = (G′, H ′, φ′, S ′
1, S

′
2) be

obtained from W by erasing C. Then W ′ is a disjoint generalized ω′-creature, where

ω′ = ω − |D(C)|. Further for every peripheral vertex u of H ′ its adhesion size in W ′ is

at most its adhesion size in W .

Proof: We prove the statement of the lemma for the case when C is a component

of G[Aφ]. First we show that (H ′, φ′) is a ω′-bistar partition of G′. Note that every

peripheral vertex of H, except the vertices in D(C), is a peripheral vertex of H ′. Thus

H ′ has ω′ peripheral vertices. Consider an arbitrary edge uv ∈ E(G′). If φ(u) /∈ Y and

φ(v) /∈ Y then φ′(u) = φ(u), φ′(v) = φ(v), so φ′(u) = φ′(v) or φ′(u)φ′(v) ∈ E(H ′). If

φ(u) ∈ Y and φ(v) ∈ Y then φ′(u) = φ′(v) = cB. Suppose now that φ(u) ∈ Y and

φ(v) /∈ Y . But then u is in a C-dependent chunk of W , and therefore v ∈ Bφ. But then

φ′(u) = φ′(v) = cB. Thus (H ′, φ′) is an ω′-bistar partition of G′.

489

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Next observe that S ′
1 and S ′

2 are disjoint because S ′
1 ⊆ S1, S

′
2 ⊆ S2, and S1 and S2

are disjoint. Both S ′
1 and S ′

2 are disjoint from Aφ′ ∪Bφ′ because Aφ′ ∪Bφ′ ⊆ Aφ∪Bφ∪X

while S ′
1 = S1−X and S ′

2 = S2−X. We now verify that W ′ = (G′, H ′, φ′, S ′
1, S

′
2) satisfies

the properties of generalized ω′-creatures.

• For property (i) we first show that S ′
1 and S ′

2 separate Aφ′ from Bφ′ in G′. Suppose

for contradiction that there exists a path P from Aφ′ to Bφ′ in G′−S ′
1. Since (H ′, φ′)

is an ω′-bistar partition of G′ the path P has at least three vertices. Further we

may select P such that none of the internal vertices of P are in Aφ′ ∪ Bφ′ . Thus,

since (H ′, φ′) is an ω′-bistar partition of G′ there exists a peripheral vertex u of H ′

such that P is a path in G′ from Aφ′ to Bφ′ through φ′−1(u). But φ′−1(u) ⊆ φ−1(u)

and G′ is an induced subgraph of G, so

NG′(φ′−1(u)) ⊆ NG(φ−1(u)) ⊆ Aφ ∪Bφ

It follows that P is a path in G from Aφ to Bφ through φ−1(u). Let Q be the chunk

of u that contains P . Since P is a path in G′ its last endpoint is in Aφ − C, and

therefore Q is not C-dependent. But then Q ∩ S1 = Q ∩ S ′
1 and thus P is a path

in G from Aφ to Bφ through φ−1(u)−S1, contradicting property (i) applied to W .

The proof that S ′
2 is a Aφ′ , Bφ′-separator in G′ is symmetric.

Next we show that for every peripheral vertex u ∈ H ′ there exists a path from Aφ′

to Bφ′ through φ′−1(u). Since u is a peripheral vertex of H ′ it is not C-dependent in

A, and therefore there exists a component C ′ of G[Aφ] other than C with a neighbor

in Aφ. By property (iv) applied to W there is a path P from C ′ to Bφ through

φ−1(u). The internal vertices of P are contained in a chunk Q of u, and this chunk

is not C-dependent because Q has a neighbor in C ′. But then Q ⊆ φ′−1(u) so P

is a path in G′ from Aφ′ to Bφ′ through φ′−1(u). This implies that every minimal

490

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Aφ′ ,Bφ′ separator in G[Aφ′ ∪Bφ′ ∪ φ−1(u)] is non-empty.

Since S ′
1 is an Aφ′ , Bφ′-separator in G it follows that for every peripheral vertex u of

H ′, S ′
1∩φ−1(u) is an Aφ′ , Bφ′-separator in G[Aφ′ ∪Bφ′ ∪φ−1(u)]. Thus S ′

1∩φ−1(u)

contains a minimal Aφ′ , Bφ′-separator S ′⋆
1,u in G[Aφ′ ∪ Bφ′ ∪ φ−1(u)]. Similarly,

S ′
2 ∩ φ−1(u) contains a minimal Aφ′ , Bφ′-separator S ′⋆

2,u in G[Aφ′ ∪ Bφ′ ∪ φ−1(u)].

Since S ′
1 and S ′

2 are disjoint while S ′⋆
1,u ⊆ S ′

1 and S ′⋆
2,u ⊆ S ′

2 are nonempty, S ′⋆
1,u and

S ′⋆
2,u are distinct. Let S ′⋆

1 =
⋃
u S

′⋆
1,u and S ′⋆

2 =
⋃
u S

′⋆
2,u, where the union is taken

over all peripheral vertices u of H ′. Then S ′⋆
1 and S ′⋆

2 are witness separators for W ′.

• For property (ii) we first prove that Aφ′ is contained in a connected component of

G′ − S ′
1.

Observe that the A-connectivity graph CA of W satisfies that CA−{C} is connected,

and that Aφ′ = Aφ−C. Thus, for every pair of components C1, C2 of G′[Aφ′] there

is a sequence R1, R2, . . . , Rt of components of G′[Aφ′], such that C1 = R1, C2 = Rt,

and for every i < t there exists a peripheral vertex u of H a path P in G from Ri to

Ri+1 through φ−1(u) − S1. The internal vertices of the path P are contained in a

chunk Q ⊆ φ−1(u) of W . Since Q has a neighbor in Ri it is not C-dependent, and

therefore Q ⊆ φ′−1(u). But then P is a path from Ri to Ri+1 through φ′−1(u)−S1.

Further S ′
1 ⊆ S1 and therefore P is a path from Ri to Ri+1 through φ′−1(u) − S ′

1.

So Ri and Ri+1 are contained in the same component of G′ − S ′
1, and therefore

so are C1 and C2. But C1 and C2 were arbitrarily chosen components in G′[Aφ′],

hence Aφ′ is contained in a connected component of G′−S ′
1. The proof that Aφ′ is

contained in a connected component of G′ − S ′
2 is identical.

We now prove that Bφ′ is contained in a connected component of G′ − S ′
1. First

note that Bφ ⊆ Bφ′ and therefore every connected component of G′[Bφ′] contains

a connected component of G[Bφ]. Further, by Lemma 7.5.28 for every pair of

491

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

components C1, C2 of G[Bφ] there is a sequence R1, R2, . . . , Rt of components of

G[Bφ], such that R1 = C1, Rt = C2, and for every i < t there exists a peripheral

vertex u of H and a path P in G from Ri to Ri+1 through φ−1(u)−S1. The internal

vertices of the path P are contained in a chunk Q ⊆ φ−1(u) of W . Since Q has

a neighbor in Ri, Q is not C-dependent, and therefore Q ⊆ φ′−1(u). But then P

is a path from Ri to Ri+1 through φ′−1(u)− S1. Further S ′
1 ⊆ S1 and therefore P

is a path from Ri to Ri+1 through φ′−1(u) − S ′
1. So Ri and Ri+1 are contained in

the same component of G′ − S ′
1, and therefore so are C1 and C2. But C1 and C2

were arbitrarily chosen components in G[Bφ′], hence Bφ is contained in a connected

component of G′ − S ′
1. But every component of G[Bφ] contains a component of

G[Bφ′], so all of Bφ′ is contained in one connected component of G′−S ′
1. The proof

that Bφ′ is contained in one connected component of G′ − S ′
2 is identical.

• For property (iii) let u be a peripheral vertex of H ′ and let C1 and C2 be components

of G′[Aφ′ ∪ Bφ′]. Suppose there is a path P from C1 to C2 through φ′−1(u) − S ′
1

in G′ Since φ′−1(u) ⊆ φ−1(u) and NG′(φ′−1(u)) ⊆ NG(φ−1(u)) ⊆ Aφ ∪ Bφ the first

and last vertices of P are in Aφ ∪ Bφ. Let C ′
1 be the connected component of

G[Aφ ∪Bφ] that contains the first vertex of P and C ′
2 be the connected component

of G[Aφ ∪ Bφ] that contains the last vertex of P . Note that every component of

G[Aφ ∪Bφ], with the exception of C, is contained in a component of G[Aφ′ ∪Bφ′],

and that therefore C ′
1 ⊆ C1 and C ′

2 ⊆ C2. By property (iii) applied to W there is

a path P ′ in G from C ′
1 to C ′

2 through φ−1(u) − S2 in G. The internal vertices of

the path P ′ are contained in a chunk Q ⊆ φ−1(u) of W . Since Q has a neighbor

in C ′
1, Q is not C-dependent, and therefore Q ⊆ φ′−1(u). Thus P ′ is a path in G′

from C ′
1 to C ′

2 through φ′−1(u)− S2. Since S ′
2 ⊆ S2 it follows that P ′ is a path in

G′ from C ′
1 through C ′

2 in φ′−1(u)− S ′
2. Since C ′

1 ⊆ C1 and C ′
2 ⊆ C2, P

′ is a path

492

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

in G′ from C1 to C2 through φ′−1(u)−S ′
2. An identical proof shows that if there is

a path in G′ from C1 and C2 through φ′−1(u)− S ′
2, then there is also a path in G′

from C1 and C2 through φ′−1(u)− S ′
1.

• For property (iv) let u be a peripheral vertex of H ′ and CA be a component of

G′[Aφ′] with a neighbor in φ′−1(u). Then, by property (iv) applied to W there is

a path P in G from CA to Bφ through φ−1(u). The internal vertices of the path

P are contained in a chunk Q ⊆ φ−1(u) of W . Since Q has a neighbor in CA, Q is

not C-dependent, and therefore Q ⊆ φ′−1(u). Since Bφ ⊆ Bφ′ it follows that P is

a path in G′ from CA to Bφ′ through φ′−1(u).

Consider now a peripheral vertex u of H ′ and a component CB of G′[Bφ′] with

a neighbor y in φ′−1(u). Let Q be the connected component of G′[φ′−1(u)] that

contains y. Then Q is a chunk of u in W , and furthermore, because Q ⊆ φ′−1(u),

Q is not C-dependent. Therefore Q has a neighbor in Aφ − C = Aφ′ , and so there

is a path in G′ from CB to Aφ′ through φ′−1(u).

The proof for the case where C is a component of G[Bφ] is symmetric.

For the upper bound on the adhesion size of every peripheral vertex u it is sufficient

to observe that every connected component of G′[Aφ′ ∪ Bφ′] that contains a neighbor

of φ′−1(u) contains a connected component of G[Aφ′ ∪ Bφ′] that contains a neighbor of

φ−1(u).

Next we track what erasing a component of G[Aφ ∪ Bφ] does to the labeled connec-

tivity graph. We will only track the effect on the connectivity graph for the side of the

component C that we erase.

Lemma 7.5.35. Let W = (G,H, φ, S1, S2) be a disjoint generalized ω-creature, and let

C be an erasable component of G[Aφ]. Let W ′ = (G′, H ′, φ′, S ′
1, S

′
2) be the generalized ω′-

493

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

creature resulting from erasing C. Let (CA, λ) be the labeled A-connectivity graph of W ,

and let (C ′A, λ′) be the labeled A-connectivity graph of W ′. Then (C ′A, λ′) = (CA, λ)−{C}.

Proof: The components of G′[Aφ′] are precisely the components of G[Aφ], except for

C. Thus the vertex sets of (C ′A, λ′) and (CA, λ) are equal.

We first prove that for every pair of components C1, C2 of G′[Aφ′], if u is a peripheral

vertex of H that realizes {C1, C2} (in W) then u is also a peripheral vertex of H ′ that

realizes {C1, C2} in W ′. Towards this aim, suppose that there exists a path P in G from

C1 to C2 through φ−1(u)− S1. Then the internal vertices of P are contained in a chunk

Q of u. The chunk Q has a neighbor in C1 and therefore it is not C-dependent. Thus

u /∈ D(C), so u is a peripheral vertex in H ′ and P is a path from C1 to C2 through

φ′−1(u). Since S ′
1 ⊆ S1 we conclude that P is a path from C1 to C2 through φ′−1(u)−S ′

1,

and u realizes {C1, C2} in W ′.

Next we show that for every pair of components C1, C2 of G′[Aφ′], if u is a peripheral

vertex of H that realizes {C1, C2} in W ′ then u also realizes {C1, C2} in W . Towards

this goal suppose that there exists a path P in G′ from C1 to C2 through φ′−1(u′). Then

all internal vertices of P lie in a chunk Q of u′. Then Q is also a chunk of W , and since

Q has a neighbor in C1 it is not C-dependent. Thus S1 ∩Q = S ′
1 ∩Q and so P is a path

in G from C1 to C2 through φ−1(u′). Hence u realizes {C1, C2} in W . This concludes

the proof.

Finally we track how erasing a component in G[Aφ] affects which peripheral vertices

have neighbors in which components of G[Aφ].

Lemma 7.5.36. Let W = (G,H, φ, S1, S2) be a disjoint generalized ω-creature, and let

C be an erasable component of G[Aφ]. Let W ′ = (G′, H ′, φ′, S ′
1, S

′
2) be the generalized

ω′-creature resulting from erasing C. Then, for every peripheral vertex u in H and every

component C ′ in G[Aφ] with C ′ ̸= C it holds C ′ has a neighbor in φ−1(u) in G if and

494

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

only if u is a peripheral vertex of H ′ and C ′ has a neighbor in φ′−1(u) in G′.

Proof: For the forward direction, suppose φ′−1(u) has a neighbor in C ′ in G′. Then

u is not C-dependent and therefore u is a peripheral vertex of H ′. Furthermore, φ−1(u)

contains a chunk Q that has a neighbor in C ′. Q is not C-dependent, and therefore

Q ⊆ φ′−1(u). Thus φ′−1(u) has a neighbor of C ′ in G′.

For the reverse direction suppose that u is a peripheral vertex of H ′ and C ′ has a

neighbor in φ′−1(u) in G′. Since φ′−1(u) ⊆ φ−1(u) it follows that C ′ has a neighbor in

φ−1(u) in G.

7.5.9 Path Filtering: Extracting an A-Path-Like ω-creature.

Definition 7.5.37. We will say that a generalized ω-creature W is A-path-like if the

A-connectivity graph of W is a path.

Definition 7.5.38. A disjoint ω′-creature W ′ = (G′, H ′, φ′, S ′
1, S

′
2) is an A-descendant

of a disjoint generalized ω-creature W = (G,H, φ, S1, S2) if W ′ can be obtained from W

by any sequence of dissolving peripheral vertices, erasing erasable components of G[φA],

absorbing absorbable components of G[φA].

At a later stage in the proof we will show that if W has some nice properties (to be

defined later) and W ′ is a descendant of W , then W ′ also has these properties. Note that

the erasing component operation only applies to disjoint generalized ω-creatures, so the

notion of descendant is only well defined for disjoint generalized ω-creatures. For now

we will make the following simple observation.

Lemma 7.5.39. If a disjoint ω′-creature W ′ = (G′, H ′, φ′, S ′
1, S

′
2) is an A-descendant

of a disjoint ω′-creature W = (G,H, φ, S1, S2) then G′ is an induced subgraph of G.

Furthermore, if W has adhesion size α then W ′ has adhesion size α

495

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Proof: Dissolving peripheral vertices and erasing erasable components of a dis-

joint generalized ω-creature W = (G,H, φ, S1, S2) produces a generalized ω̂-creature

Ŵ = (Ĝ, Ĥ, φ̂, Ŝ1, Ŝ2) where Ĝ is an induced subgraph of G. Absorbing an absorbable

component of G[φA] produces a generalized ω̂-creature Ŵ = (Ĝ, Ĥ, φ̂, Ŝ1, Ŝ2) where Ĝ is

equal to G. The fact that G′ is an induced subgraph of G now follows by induction on

the number of operations used to obtain W ′ from W .

For the bound on the adhesion size, by Lemma 7.5.16 dissolving a peripheral ver-

tex does not increase adhesion size, by Lemma 7.5.18 absorbing a component does not

increase adhesion size, and by Lemma 7.5.34 erasing an erasable component does not

increase adhesion size. The bound on the adhesion size of W ′ now follows by induction

on the number of operations used to obtain W ′ from W .

Lemma 7.5.40 (Path Filtering). Let W = (G,H, φ, S1, S2) be a disjoint generalized ω-

creature with adhesion size α, let (CA, λ) be the labeled A-connectivity graph of W . Let

(P, λ) be an induced path in (CA, λ) Then there exists a disjoint generalized ω′-creature

W ′ = (G′, H ′, φ′, S ′
1, S

′
2) such that

• W ′ is A-path-like.

• W ′ is an A-descendant of W .

• Aφ′ =
⋃
C∈V (P)C

• Every peripheral vertex u of H ′ is a peripheral vertex of H.

• The labeled A-connectivity graph of W ′ is equal to (P, λ).

• For every peripheral vertex u of H and component C ′ ∈ V (P) it holds that C ′ has

a neighbor in φ−1(u) in G if and only if u is a peripheral vertex of H ′ and C ′ has

a neighbor in φ′−1(u) in G′.

496

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Proof: We prove the lemma by induction on the number of components in G[Aφ].

For the base case, if P = CA, then W satisfies the conclusion of the lemma. So suppose

that |V (CA)| > |V (P)|. Then, by Lemma 7.5.31, G[Aφ] has a P -erasable component

C. By Lemma 7.5.34, erasing C from W yields a disjoint generalized ω̂-creature Ŵ =

(Ĝ, Ĥ, φ̂, Ŝ1, Ŝ2) of adhesion size at most α. By Lemma 7.5.35 the labeled A-connectivity

graph ĈA of Ŵ is equal to (ĈA, λ) − {C}. Therefore (P, λ) is an induced subgraph of

(ĈA, λ). Since the number of components of Ĝ[Aφ̂] is less than the number of components

in G[Aφ], the induction hypothesis implies that there exists a disjoint generalized ω′-

creature W ′ = (G′, H ′, φ′, S ′
1, S

′
2) such that

• W ′ is A-path-like,

• W ′ is an A-descendant of Ŵ (and therefore also of W),

• Aφ′ =
⋃
C∈V (P)C,

• every peripheral vertex u of H ′ is a peripheral vertex of Ĥ (and thererfore also of

H),

• the labeled A-connectivity graph of W ′ is equal to (P, λ), and

• for every peripheral vertex u of Ĥ and component C ′ ∈ V (P) it holds that C ′ has

a neighbor in φ̂−1(u) in Ĝ if and only if u is a peripheral vertex of H ′ and C ′ has

a neighbor in φ′−1(u) in G′.

For the last point, by By Lemma 7.5.36 we have that for every peripheral vertex u

of H and component C ′ ∈ V (P) it holds that C ′ has a neighbor in φ−1(u) in G if and

only if u is a peripheral vertex of Ĥ and C ′ has a neighbor in φ̂−1(u) in Ĝ. We conclude

that For every peripheral vertex u of H and component C ′ ∈ V (P) it holds that C ′ has a

neighbor in φ−1(u) in G if and only if u is a peripheral vertex of H ′ and C ′ has a neighbor

in φ′−1(u) in G′. Thus W ′ satisfies the conclusion of the lemma.

497

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Lemma 7.5.41. Let G be a k-creature free graph and W = (G,H, φ, S1, S2) be a disjoint

generalized ω-creature with adhesion size α. Then there exists an A-path-like disjoint

generalized ω′-creature W ′ = (G′, H ′, φ′, S ′
1, S

′
2) with adhesion size α, such that W ′ is an

A-descendant of G. Further, ω′ ⩾ logkα(ω)−3
α

.

Proof: By Lemma 7.5.30, the A-connectivity graph of W contains a path P on at

least logkα(ω/k)− 1 vertices, and thus at least logkα(ω/k)− 2 edges. By Lemma 7.5.40

there exists an A-path-like disjoint generalized ω′-creature W ′ = (G′, H ′, φ′, S ′
1, S

′
2) with

adhesion size α, such that W ′ is an A-descendant of G. For every edge CiCj of P there is

a peripheral vertex u of H ′ that realizes the edge. Then φ′−1(u) has neighbors in Ci and

Cj (in G′). Hence, for every integer x, if u realizes x edges of P then u has neighbors in at

least x+1 vertices of P (recall that vertices of P are components of G′[Aφ′]). But W ′ has

adhesion size α and therefore each peripheral vertex of H ′ realizes at most α− 1 edges of

P . But then the number of peripheral vertices of H ′ is at least logkα(ω/k)−2
α−1

⩾ logkα(ω)−3
α

.

7.5.10 Effect of Dissolve on the Connectivity Graph

We will use Lemma 7.5.41 to extract an A-path-like generalized ω-creature W . This

gets us quite far towards making W a critter, but there are still many irregularities to

clean up. For this we will use the “dissolve” operation, but now we need to be careful

not to destroy the progress that we have already made. Since this progress is in the

connectivity graph (in particular the connectivity graph is a path), we need to track how

dissolving a peripheral vertex affects the connectivity graph.

At this point we will need to make a small detour and analyze how dissolving a

peripheral vertex affects the (labeled) connectivity graph.

498

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Lemma 7.5.42. Let W = (G,H, φ, S1, S2) be a generalized ω-creature with labeled A-

connectivity graph (CA, λA) and labeled B-connectivity graph (CB, λB), and let u be a

peripheral vertex of H. Let W ′ = (G′, H ′, φ′, S ′
1, S

′
2) be the generalized (ω − 1)-creature

resulting from dissolving u in W . Then,

(i) for every connected component C of G[Aφ] there is a connected component C ′ of

G[Aφ′] such that C ⊆ C ′.

(ii) Every connected component C ′ of G[Aφ′] contains a connected component C of

G[Aφ].

(iii) For every pair of connected components C1, C2 of G[Aφ] there exists a connected

component C ′ of G[Aφ′] such that C1 ∪ C2 ⊆ C ′ if and only if there exists a

path P from C1 to C2 in (CA, λA) such that every edge {Z,Z ′} of P satisfies

u ∈ λA({Z,Z ′}).

(iv) For every pair of distinct connected components C ′
1 and C ′

2 of G[A′
φ] and peripheral

vertex v of H ′, v realizes {C ′
1, C

′
2} in W ′ if and only if there exist components C1

and C2 of G[Aφ] such that C1 ⊆ C ′
1, C2 ⊆ C ′

2 and v realizes {C1, C2} in W .

(v) For every connected component C ′ of G[Aφ′] and peripheral vertex v of H ′, φ′−1(v)

has a neighbor in C ′ in G′ if and only if C ′ contains a component C of G[Aφ] such

that φ−1(v) has a neighbor in C.

Furthermore, all of the above statements hold with A replaced by B (and Aφ by Bφ and

Aφ′ by Bφ).

Proof: Since Aφ ⊆ A′
φ it follows immediately that for every connected component C

of G[Aφ] there is a connected component C ′ of G[A′
φ] such that C ⊆ C ′.

Consider now a connected component C ′ of G[Aφ′]. If C ′ does not contain a vertex

from A′
φ − Aφ then C ′ ⊆ Aφ and therefore C ′ is a component of G[Aφ]. If C ′ contains a

499

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

vertex a of A′
φ−Aφ, then a ∈ A1(W)∩φ−1(u). Since G[A1(W)] is connected, contains Aφ,

and is disjoint from Bφ, the connected component of G[A1(W) ∩ φ−1(u)] that contains

a has a neighbor a′ in Aφ. But then C ′ contains a′ and therefore also the connected

component C of G[Aφ] that contains a′

Let C1 and C2 be connected components of G[Aφ]. Suppose there exists a connected

component C ′ of G[A′
φ] such that C1 ∪C2 ⊆ C ′. Let Q be a path from C1 to C2 through

C ′ − (C1 ∪ C2). Let q1, q2, . . . , qℓ be the vertices of Q that are also vertices of Aφ, in

the order that they appear on Q. For every vertex qi ∈ {q1, . . . , qℓ} define Zi to be the

connected component of G[Aφ] that contains q. Then, for every i < ℓ it holds that either

Zi = Zi+1 or the subpath of Q from qi to qi+1 is a path from Zi to Zi+1 through Aφ′−Aφ.

But Aφ′ − Aφ ⊆ φ−1(u) − S1. Thus, if Zi ̸= Zi+1 then {Zi, Zi+1} is an edge of CA and

u realizes {Zi, Zi+1}, so u ∈ λA({Zi, Zi+1}). Hence there exists a walk from Z1 = C1 to

Zℓ = C2 in CA such that every edge {Zi, Zi+1} of the walk satisfies u ∈ {Zi, Zi+1}. But

then there also exists such a path from C1 to C2.

For the reverse direction let C1 and C2 be connected components of G[Aφ] such that

there exists a path P in CA from C1 to C2 such that every edge {Z,Z ′} of P satisfies

u ∈ λA({Z,Z ′}) For each edge {Z,Z ′} of P there exists a path Q from Z to Z ′ through

φ−1(u)−S1. The component of G[φ−1(u)−S1] that contains Q is in A1(W) and therefore

Q ⊆ Aφ′ . Hence Z and Z ′ are contained in the same component of G[Aφ′]. But then all

vertices of P (including C1 and C2) are contained in the same component of G[Aφ′].

Next, let C ′
1 and C ′

2 be a pair of distinct components of G[A′
φ], and v be a peripheral

vertex of H ′. We prove the fourth statement.

For the forward direction, suppose v realizes {C ′
1, C

′
2} in W ′. Let P be a path in G′

from C ′
1 to C ′

2 through φ′−1(v) − S ′
1. Let s be the first vertex of P and t be the last

vertex of P . Since φ′−1(v) = φ−1(v), A′
φ ⊆ Aφ ∪ φ−1(u) and φ−1(v) and φ−1(u) are

500

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

anti-complete, it follows that NG′(φ′−1(v)) ∩Aφ′ ⊆ NG(φ−1(v)) ∩Aφ. Hence s and t are

both elements of Aφ. Let C1 and C2 be the components of G[Aφ] that contain s and t

respectively. We have that C1 ⊆ C ′
1 and C2 ⊆ C ′

2. Then P is a path in G from C1 to C2

through φ′−1(v)− S ′
1 = φ−1(v)− S1, so v realizes {C1, C2} in W .

For the reverse direction, suppose there exist components C1 and C2 of G[Aφ] such

that C1 ⊆ C ′
1, C2 ⊆ C ′

2 and v realizes {C1, C2} in W . Let P be a path in G from C1 to

C2 through φ−1(v)− S1. Then P is a path in G′ from C1 to C2 through φ−1(v)− S1 =

φ′−1(v)− S ′
1. Since C1 ⊆ C ′

1, C2 ⊆ C ′
2 it follows that v realizes {C ′

1, C
′
2} in W ′.

Now we show the fifth property. Let C ′ be a connected component of G[Aφ′] and v

be peripheral vertex v of H ′. For the forward direction suppose that φ′−1(v) contains a

neighbor x in C ′. We have that C ′ ⊆ Aφ ∪ φ−1(u). On the other hand φ′−1(v) = φ−1(v)

and φ−1(u) are anticomplete, so x ∈ Aφ. Let C be the component of G[Aφ] that contains

x. By property (i) C ⊆ C ′ and C.

For the reverse direction suppose that C ′ contains a component C of G[Aφ] such that

φ−1(v) has a neighbor in C. Then φ′−1(v) = φ−1(v) has a neighbor in C ⊆ C ′ in G′.

The proofs of the corresponding statements for Bφ and B′
φ are symmetric.

Next we need a lemma that tracks the effect on the connectivity graph if we dissolve

many peripheral vertices instead of just one. To avoid a (slightly) technical induction we

do not fully generalize Lemma 7.5.42 to dissolving sets of peripheral vertices, and instead

prove a slightly weaker set of statements that are still sufficient for our needs.

Lemma 7.5.43. Let W = (G,H, φ, S1, S2) be a generalized ω-creature with labeled A-

connectivity graph (CA, λA) and labeled B-connectivity graph (CB, λB), and let U be a set

of peripheral vertices of H. Let W ′ = (G′, H ′, φ′, S ′
1, S

′
2) be the generalized (ω − |U |)-

creature resulting from dissolving all peripheral vertices u ∈ U in W . Then,

(i) for every connected component C of G[Aφ] there is a connected component C ′ of

501

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

G[Aφ′] such that C ⊆ C ′.

(ii) Every connected component C ′ of G[Aφ′] contains a connected component C of

G[Aφ].

(iii) For every pair of connected components C1, C2 of G[Aφ] if there exists a path P

from C1 to C2 in (CA, λA) such that for every edge {Z,Z ′} of P there exists a u ∈ U

such that u ∈ λA({Z,Z ′}), then there exists a connected component C ′ of G[Aφ′]

such that C1 ∪ C2 ⊆ C ′.

Furthermore, all of the above statements hold with A replaced by B (and Aφ by Bφ and

Aφ′ by Bφ).

Proof: We prove the statements (i) and (ii) of the lemma by induction on |U |. If

|U | = 1 the statements follows by Lemma 7.5.42. So suppose that the |U | ⩾ 2 and that

the statement of the lemma holds for all smaller values of |U |.

Let W = (G,H, φ, S1, S2) be a generalized ω-creature with labeled A-connectivity

graph (CA, λA) and labeled B-connectivity graph (CB, λB), and let U be a set of peripheral

vertices of H. Let v be a vertex in U and U ′ = U−{v}. Let Ŵ = (Ĝ, Ĥ, φ̂, Ŝ1, Ŝ2) be the

generalized (ω−1)-creature resulting from dissolving u in W . Let W ′ = (G′, H ′, φ′, S ′
1, S

′
2)

be generalized (ω−|U |)-creature resulting from dissolving all peripheral vertices u ∈ U in

W . Observe that W ′ is also the (ω−|U |)-creature resulting from dissolving all peripheral

vertices u ∈ U ′ in Ŵ .

Statement (i): Let C be a connected component C of G[Aφ]. By Lemma 7.5.42 there

exists connected component Ĉ of Ĝ[Aφ̂] such that C ⊆ Ĉ. By the induction hypothesis

there exists a connected component C ′ of G[Aφ′] such that Ĉ ⊆ C ′. But then C ⊆ C ′.

Statement (ii): Let C ′ be a connected component of G[Aφ′]. By the induction hy-

pothesis C ′ contains a connected component Ĉ of Ĝ[Aφ̂]. By Lemma 7.5.42 Ĉ contains

a connected component C of G[Aφ]. But then C ⊆ C ′.

502

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Statement (iii): Let C1 and C2 be connected components of G[Aφ] such that there

exists a path P in CA from C1 to C2 such that every edge {Z,Z ′} of P satisfies u ∈

λA({Z,Z ′}) For each edge {Z,Z ′} of P there exists a u ∈ U and a path Q from Z to Z ′

through φ−1(u)−S1. The component of G[φ−1(u)−S1] that contains Q is in A1(W) and

therefore (since u ∈ U) we have that Q ⊆ Aφ′ . Hence Z and Z ′ are contained in the same

component of G[Aφ′]. But then all vertices of P (including C1 and C2) are contained in

the same component of G[Aφ′].

The proofs of the corresponding statements for Bφ and B′
φ are symmetric.

The next lemma shows that if we have already made an A-path-like or B-path-like

creature then dissolving peripheral vertices will not break this property.

Lemma 7.5.44. Let W = (G,H, φ, S1, S2) be a disjoint generalized ω-creature, U be a set

of peripheral vertices of H, and W ′ = (G,H, φ, S1, S2) be the disjoint generalized (ω−1)-

creature resulting from dissolving u in W . If W is A-path-like then W ′ is A-path-like. If

W is B-path-like then W ′ is B-path-like.

Proof: We show that if W is A-path-like then W ′ is A-path-like. We only show the

statement for U = {u}. The full statement for arbitrary sets U then follows immediately

by induction on |U |.

Let CA and C ′A be the A-connectivity graphs of W and W ′ respectively. We define a

function f that assigns to every component C ′ of G[A′
φ] the set of components C of G[Aφ]

such that C ⊆ C ′. By statement (i) of Lemma 7.5.42 f(C ′) is non-empty. The definition

of f immediately implies that for two distinct components C ′
1 and C ′

2 of G[A′
φ] the output

of f(C ′
1) and of f(C ′

2) are disjoint. By statement (iii) of Lemma 7.5.42, f(C ′) induces a

connected subgraph of CA. By statement (iv) of Lemma 7.5.42, if {C ′
1, C

′
2} is an edge of

C ′A then there exists an edge from some vertex C1 ∈ f(C ′
1) to a vertex C2 ∈ f(C ′

2) in C ′A.

Hence f is a minor model of C ′A in CA. Since W is path-like, CA is a path. Since C ′A is a

503

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

minor of CA, every connected component of C ′A is a path as well. Since C ′A is connected

(by Lemma 7.5.28), C ′A is a path, and we conclude that W ′ is A-path-like.

The proof that if W is B-path-like then W ′ is B-path-like is symmetric.

7.5.11 From Path-Like to Irreducible

Let W = (G,H, φ, S1, S2) be an A-path-like, disjoint generalized ω-creature, and

(CA, λ) be the labeled A-connectivity graph of W . Recall that vertices in the connectivity

graph CA are components of G[Aφ]. We may therefore talk about vertices of CA being

adjacent to vertices in G, or having neighbors in vertex sets in G. A path P in CA reduces

a peripheral vertex u of H if P has at least two vertices, φ−1(u) has a neighbor in the

first vertex of P and a neighbor in the last vertex of P , and for every edge {C1, C2} of

P there is a peripheral vertex y ̸= x that realizes {C1, C2}. An A-reduction pair of W is

a pair (u, P) where u is a peripheral vertex of H and P is a path in CA that reduces u.

When W is clear from context we will simply say that (u, P) is a A-reduction pair.

We say that a path-like, disjoint generalized ω-creature is A-irreducible if there does

not exist a reduction pair (u, P) of W An A-reduction packing is a set P of reduction

pairs such that for every pair (u1, P1), (u2, P2) of distinct A-reduction pairs in P , V (P1)∩

V (P2) = ∅. In other words an A-reduction packing is a set of A-reduction pairs whose

paths are pairwise vertex-disjoint. An A-reduction hitting set for W is a set X ⊆ V (CA)

such that for every A-reduction pair (u, P) of W we have X ∩ V (P) ̸= ∅.

Lemma 7.5.45. Let W = (G,H, φ, S1, S2) be a path-like, disjoint generalized ω-creature,

and (CA, λ) be the labeled A-connectivity graph of W . For every integer p ⩾ 1 there either

exists an A-reduction packing P of size p or an A-reduction hitting set X of size p− 1.

Proof: The lemma follows directly from the well-known fact (see e.g. [52]) that for

every set S of intervals on the real line and integer p, there either exists a subset S ′ ⊆ S
504

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

of p pairwise disjoint intervals, or there exists a set X ⊆ R such that |X| < p and every

interval in S contains an element of X.

Indeed we associate every vertex of CA with an integer, namely the position of this

vertex in the path CA. Every A-reduction pair (u, P) is associated with the interval

from the first to the last vertex of P . A set of disjoint intervals now corresponds to

an A-reduction packing of the same cardinality. Similarly, since every interval starts

and ends at an integer position, every set of reals that intersect all intervals can be

assumed without loss of generality to be a set of integers, and therefore corresponds to

an A-reduction hitting set of the same size.

AnA-reduction pair (u1, P1) conflicts with anotherA-reduction pair (u2, P2) if φ−1(u1)

has a neighbor in a vertex of P2 or φ−1(u2) has a neighbor in a vertex of P1. Note that

the conflict relation is symmetric - if (u1, P1) conflicts with (u2, P2) then (u2, P2) conflicts

with (u1, P1).

Lemma 7.5.46. Let W = (G,H, φ, S1, S2) be a path-like, disjoint generalized ω-creature

with adhesion size α, and P be an A-reduction packing of W . Then there exists an

A-reduction pair (u, P) in P that conflicts with at most 2α− 1 A-reduction pairs in P.

Proof: Given the A-reduction packing P , define for every peripheral vertex u of H

the set

Q(u) = {(u′, P ′) ∈ P : φ−1(u) has a neighbor in a vertex of P ′}

Note that in an A-reduction packing P the paths in the A-reduction pairs are all vertex

disjoint. Therefore, since u has adhesion size at most α it follows that |Q(u)| ⩽ α for

every peripheral vertex u of H. For every path P in the A-connectivity graph CA of W ,

define

Q(P) = {(u′, P ′) ∈ P : φ−1(u′) has a neighbor in a vertex of P}

505

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

We have that

∑
(u,P)∈P

|Q(P)| =
∑

(u,P)∈P

∑
(u′,P ′)∈P

1 if φ−1(u′) has a neighbor in a vertex of P

0 otherwise

=
∑

(u′,P ′)∈P

|Q(u′)|

⩽ |P|α

Thus there exists a (u, P) ∈ P such that |Q(P)| ⩽ α. Every A-reduction pair (u′, P ′) that

conflicts with (u, P) is in Q(u) ∪ Q(P). Indeed, if φ−1(u) has a neighbor in a vertex of

P ′ then (u′, P ′) ∈ Q(u). If φ−1(u′) has a neighbor in a vertex of P then (u′, P ′) ∈ Q(P).

But |Q(u) ∪ Q(P)| ⩽ 2α, and (u, P) ∈ Q(u), so (u, P) conflicts with at most 2α − 1

A-reduction pairs in P , as claimed.

An A-reduction packing P is conflict free if no A-reduction pair in P conflicts with

another A-reduction pair in P .

Lemma 7.5.47. Let W = (G,H, φ, S1, S2) be a path-like, disjoint generalized ω-creature

of adhesion size α and P be an A-reduction packing of W . Then there exists a conflict

free A-reduction packing P ′ ⊆ P such that |P ′| ⩾ P/2α.

Proof: We prove the lemma by induction on |P|. For |P| = 0 the statement trivially

holds, so suppose that |P| > 0. By Lemma 7.5.46 there exists an A-reduction pair

(u, P) ∈ P that conflicts with at most 2α − 1 A-reduction pairs in P . Let P⋆ be the

subset of all A-reduction pairs in P −{(u, P)} that do not conflict with (u, P). We have

that |P| − 2α ⩽ |P⋆| < |P|. By the induction hypothesis P⋆ contains a conflict free

A-reduction packing P ′ of size at least |P⋆|/2α ⩾ (|P|/2α) − 1. Since (u, P) does not

conflict with any A-reduction pair in P ′ it follows that P ′ ∪{(u, P)} is a conflict packing

of size at least P/2α, and that P ′ ∪ {(u, P)} ⊆ P . This concludes the proof.

506

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Lemma 7.5.48. Let W = (G,H, φ, S1, S2) be a path-like, disjoint generalized ω-creature

of adhesion size α and P be a conflict free A-reduction packing of W . Then there exists

a path-like disjoint, generalized ω′-creature W ′ = (G′, H ′, φ′, S ′
1, S

′
2) with adhesion size

α− 1 and ω′ = |P|. Furthermore, W ′ is an A-descendant of W .

Proof: Define R to be the set of all peripheral vertices u of H such that there exists

an A-reduction pair (u, P) ∈ P . Since P is conflict free we have that for every u ∈ R

there is precisely one A-reduction pair (u, P) in P . Indeed, if there were two such pairs

(u, P1) and (u, P2) then (u, P1) would conflict with (u, P2) because φ−1(u) has a neighbor

in the first vertex of P2. Hence |R| = P We set U to be the set of all peripheral vertices

of H that are not in R, and obtain W ′ = (G′, H ′, φ′, S ′
1, S

′
2) by dissolving all peripheral

vertices in u. By Lemma 7.5.16 W ′ is a disjoint generalized |R|-creature. By definition

of A-descendants, W ′ is an A-descendant of W . By Lemma 7.5.44 W ′ is A-path-like.

It remains to show that the adhesion size of W ′ is at most α−1. Let v be a peripheral

vertex of H ′ with maximum adhesion size in W ′, and let (CA, λ) be the labeled A-

connectivity graph of W . Let C1, C2, . . . , Cℓ be the connected components of G[Aφ ∪

Bφ] that contain NG[φ−1(v)]. Since W has adhesion size α we have that ℓ ⩽ α. By

Lemma 7.5.43 there exist components C ′
1, C

′
2 . . . , C

′
ℓ of G′[Aφ′ ∪ Bφ′] such that Ci ⊆ C ′

i

for every i. Furthermore NG[φ−1(v)] ⊆ Aφ ∪ Bφ, G′ is an induced subgraph of G,

and φ′−1(v) = φ−1(v). Thus NG′ [φ′−1(v)] ⊆ NG[φ−1(v)]. Hence C ′
1, C

′
2 . . . , C

′
ℓ contain

NG′ [φ′−1(v)].

Since v ∈ R there is a A-reduction pair (v, P) ∈ P . The endpoints of P are compo-

nents of G[Aφ] that contain neighbors of φ−1(v) in G. Without loss of generality, C1 and

C2 are the two endpoints of P . Since (v, P) is a A-reduction pair we have that for every

edge {Z,Z ′} of P there exists a peripheral vertex u ̸= v of H such that u ∈ λ({Z,Z ′}).

We claim that u ∈ U . Suppose not, then there exists an A-reduction pair (u, P ′) ∈ P .

507

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

But φ−1(u) has a neighbor in Z (since u realizes {Z,Z ′}) and therefore (u, P ′) conflicts

with (v, P), contradicting that P is conflict free. We conclude that u ∈ U .

But then, for every edge {Z,Z ′} of P there exists a peripheral vertex u ∈ U such that

u ∈ λ({Z,Z ′}). By statement (iii) of Lemma 7.5.43 C1 and C2 are contained in the same

component of G[Aφ′]. But then C ′
1 = C ′

2 and therefore there are at most ℓ − 1 = α − 1

components of G[Aφ′ ∪Bφ′] that contain neighbors of φ′−1(v) in G′. Hence the adhesion

size of v in W ′ is at most α − 1. Since v was the vertex in H ′ with maximum adhesion

size, the adhesion size of W ′ is at most α− 1 as claimed.

Lemma 7.5.49. Let W = (G,H, φ, S1, S2) be a path-like, disjoint generalized ω-creature

of adhesion size α, X ⊆ V (P), X be an A-reduction hitting set for W and P be a path in

the A-connectivity graph CA of W such that V (P) is disjoint from X. Then there exists

an A-irreducible path-like disjoint generalized ω′ creature W ′ which is A-descendant of

W , with adhesion size α and ω′ ⩾ |V (P)|/α.

Proof: Let W ′ = (G′, H ′, φ′, S ′
1, S

′
2) be disjoint the ω′-creature obtained from W

and P by the Path Filtering Lemma (Lemma 7.5.40). We claim that W ′ satisfies the

conclusion of the lemma. From Lemma 7.5.40 we have that:

• W ′ is A-path-like.

• W ′ is an A-descendant of W .

• Aφ′ =
⋃
C∈V (P)C

• Every peripheral vertex u of H ′ is a peripheral vertex of H.

• The labeled A-connectivity graph of W ′ is equal to (P, λ), where (CA, λ) is the

labeled A-connectivity graph of W .

• For every peripheral vertex u of H and component C ′ ∈ V (P) it holds that C ′ has

a neighbor in φ−1(u) in G if and only if u is a peripheral vertex of H ′ and C ′ has

508

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

a neighbor in φ′−1(u) in G′.

By Lemma 7.5.39, the adhesion size of W ′ is at most α.

All that remains to show is that W ′ is A-irreducible, and that ω′ ⩾ |V (P)|/α. To see

that W ′ is A-irreducible, suppose for contradiction that u, P ′ is an A-reduction pair in

W ′. Then u is also a peripheral vertex of H, P ′ is also an induced path in G, φ−1(u) has

a neighbor in the first and last vertex of P ′ in G, and every edge {C1, C2} of p satisfies

that λ({C1, C2})−{u} is non-empty. But then (u, P ′) is an A-reduction pair in W . Since

P ′ is a sub-path of P and V (P) is disjoint from X it follows that V (P ′) is disjoint from

X. This contradicts that X is an A-reduction hitting set for W .

We now show that ω′ ⩾ |V (P)|/α. Indeed, for every edge {C1, C2} of P some periph-

eral vertex u of H ′ realizes {C1, C2} in W ′. Then φ−1u has a neighbor both in C1 and in

C2.

Since every vertex of P is incident to an edge of P it holds that for every vertex C

of P there exists a peripheral vertex u of H ′ such that φ−1u has a neighbor in C. Thus,

since W ′ has adhesion size α, the number of peripheral vertices of H ′ is at least |V (P)|/α.

Hence W ′ is a generalized ω′-creature with ω′ ⩾ |V (P)|/α.

Lemma 7.5.50. Let G be k-creature free, and W = (G,H, φ, S1, S2) be a path-like,

disjoint generalized ω-creature of adhesion size α. Then there exists a path-like disjoint,

A-irreducible generalized ω′ creature W ′ = (G′, H ′, φ′, S ′
1, S

′
2) with adhesion size α, such

that ω′ ⩾ ω1/α

4kα2 . Furthermore W ′ is an A-descendant of W .

Proof: We prove the statement of the lemma by induction on α. If α ⩽ 1 then no

A-reduction pair (u, P) can exist. In particular in every A-reduction pair (u, P), φ−1(u)

has a neighbor in the first and last vertex of P , and these two vertices are distinct. Thus

u has adhesion size at least 2. Thus, if α ⩽ 1 then W already satisfies the conclusion of

the lemma.

509

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Suppose now that α ⩾ 2 and that the statement of the lemma holds for all lower

values of α. Let W = (G,H, φ, S1, S2) be a path-like, disjoint generalized ω-creature of

adhesion size α. If W is A-irreducible it already satisfies the conclusion of the lemma. We

consider the case where W is not A-irreducible, and set p = ω1− 1
α · 2α. By Lemma 7.5.45

there either exists an A-reduction packing P of size p or an A-reduction hitting set X of

size p− 1.

We fist consider the case that there exists an A-reduction packing P of size p. Then,

by Lemma 7.5.47 there exists a conflict-free A-reduction packing P ′ ⊆ P of size at least

|P|/2α. Then, by Lemma 7.5.48 there exists a path-like disjoint generalized ω̂-creature

Ŵ , A-descendant of W , with adhesion size α − 1 and ω̂ = |P ′| ⩾ p/2α ⩾ ω1− 1
α . By

the induction hypothesis applied to Ŵ there exists an A-irreducible path-like disjoint,

generalized ω′ creature W ′ = (G′, H ′, φ′, S ′
1, S

′
2), A-descendant of Ŵ (and therefore of

W) with adhesion size α− 1 and

ω′ ⩾
ω̂

1
α−1

4k(α− 1)2
⩾

(ω1− 1
α)

1
α−1

4kα2
=

ω
1
α

4kα2

We now consider the case that there exists an A-reduction hitting set X of size p. On

one hand, by Lemma 7.5.4, for every peripheral vertex u of H, φ−1(u) has a neighbor in

Aφ. On the other hand, By Lemma 7.5.29, for every a component C of G[Aφ] there are

fewer than k peripheral vertices u of H such that φ−1(u) has a neighbor in C. Therefore

there are at least ω/k vertices in CA. Since CA is a path, it contains a sub-path P on

at least (ω/k)−|X|
|X|+1

> ω
k(p+1)

− 1 vertices disjoint from X. Since the number of vertices

is an integer, P has at least ω
k(p+1)

vertices. Thus, by Lemma 7.5.49 there exists an

A-irreducible, path-like disjoint generalized ω′ creature W ′ which is A-descendant of W ,

with adhesion size α and ω′ ⩾
(

ω
k(p+1)

− 1
)
/α > ω

k(p+1)α
− 1. Since ω′ is an integer it

510

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

follows that

ω′ ⩾
ω

k(p+ 1)α
⩾

ω

2kpα
⩾

ω
1
α

4kα2
.

This concludes the proof.

Lemma 7.5.51. Let W = (G,H, φ, S1, S2) be a disjoint generalized ω-creature with ad-

hesion size α. Then there exists a path-like disjoint, A-irreducible generalized ω′ creature

W ′ = (G′, H ′, φ′, S ′
1, S

′
2) with adhesion size α, such that ω′ ⩾ (logkα(ω)−3)1/α

8kα2 . Furthermore

W ′ is an A-descendant of W .

Proof: Let G be a k-creature free graph and W = (G,H, φ, S1, S2) be a disjoint

generalized ω-creature with adhesion size α. Then, by Lemma 7.5.41 there exists an A-

path-like disjoint generalized ω′′-creature W ′′ = (G′′, H ′′, φ′′, S ′′
1 , S

′′
2) with adhesion size

α, such that W ′′ is an A-descendant of G. Further, ω′′ ⩾ logkα(ω/k)−2
α−1

. By Lemma 7.5.39,

G′′ is an induced subgraph of G and therefore also k-creature free.

By Lemma 7.5.50 applied to W ′′ there exists a path-like disjoint, A-irreducible gen-

eralized ω′ creature W ′ = (G′, H ′, φ′, S ′
1, S

′
2) with adhesion size α, such that

ω′ ⩾
ω′′1/α

4kα2
⩾

(logkα(ω)−3
α

)1/α

4kα2
⩾

(logkα(ω)− 3)1/α

8kα2
.

Thus W ′ satisfies the conclusion of the lemma.

7.5.12 From A-Path-like and A-Irreducible to A-Critter-like

Definition 7.5.52 (A-critter-like and B-critter-like). Let W = (G,H, φ, S1, S2) be a gen-

eralized disjoint ω-creature, and let (CA, λA) and (CB, λB) be the labeled A-connectivity

graph and the labeled B-connectivity graph of W , respectively. W is A-critter-like if:

• CA is a path,

511

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

• Every edge {C1, C2} of CA satisfies |λA({C1, C2})| = 1.

• For every peripheral vertex u of H and pair {C1, C2} of components of G[φA], if

φ−1(u) has a neighbor in C1 and a neighbor in C2 then u realizes {C1, C2} in W .

Similarly, W is B-critter-like if:

• CB is a path,

• Every edge {C1, C2} of CB satisfies |λB({C1, C2})| = 1.

• For every peripheral vertex u of H and pair {C1, C2} of components of G[φB], if

φ−1(u) has a neighbor in C1 and a neighbor in C2 then u realizes {C1, C2} in W .

In this section we show how to extract an A-critter-like disjoint generalized ω′-creature

from an A-path-like disjoint generalized ω′-creature.

We will need to get rid of peripheral vertices of H that do not realize any edges of

CA. More formally, let W = (G,H, φ, S1, S2) be an A-path-like generalized ω-creature,

and let CA be the A-connectivity graph of W . We say that a peripheral vertex u of H

is A-useless if u does not realize any pair {C1, C2} of distinct components of G[Aφ], and

φ−1(u) has no neighbors in the endpoints of CA. We would like to dissolve such peripheral

vertices, thus we need to track what dissolving them does to the connectivity graph.

Lemma 7.5.53. Let W = (G,H, φ, S1, S2) be an A-path-like, A-irreducible disjoint gen-

eralized ω-creature of adhesion size α, and let (CA, λ) be the labeled A-connectivity graph

of W . Let u be an A-useless peripheral vertex of H. Let W ′ = (G′, H ′, φ′, S ′
1, S

′
2) be

the generalized ω-creature resulting from dissolving u in W . Let (C ′A, λ′) be the labeled

A-connectivity graph of W ′. Then W ′ is an A-path-like, A-irreducible, and disjoint gen-

eralized (ω − 1)-creature of adhesion size α. Furthermore, for every peripheral vertex v

of H, if v is not A-useless in W then v is not A-useless in W ′.

512

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Proof: By Lemma 7.5.16 we have that W ′ is a disjoint generalized (ω − 1)-creature

of adhesion size α. By Lemma 7.5.42 statement (i) every connected component of G[Aφ]

is contained in a component of G[Aφ′]. By Lemma 7.5.42 statements (ii) and (iii),

every connected component C ′ of G[Aφ′] contains precisely one component of G[Aφ].

By Lemma 7.5.42 statement (iv) a peripheral vertex v of H ′ realizes a pair {C ′
1, C

′
2} of

components of G[Aφ′] in W ′ if and only if v realizes {C1, C2} in W , where C1 and C2 are

the unique components of G[Aφ] contained in C ′
1 and C ′

2 respectively.

Hence the bijection ψ that maps a component of G[Aφ] to the unique component

of G[Aφ′] that contains it is an isomorphism from (CA, λ) to (C ′A, λ′), in the sense that

{C,C ′} ∈ E(CA) if and only if {ψ(C), ψ(C ′)} ∈ E(CA) and λ({C,C ′}) = λ′({ψ(C), ψ(C ′)}).

Hence W ′ is A-path-like, and every peripheral vertex v which realizes an edge of CA

also realizes the same edge of C ′A. Similarly, every peripheral vertex v with a neighbor

in an endpoint Q of CA has a neighbor in ψ(Q). Hence, if v is not A-useless in W it

is not A-useless in W ′ either. Furthermore, if W ′ has an A-reduction pair (v, P) then

(v, ψ−1(P)) is an A-reduction pair in W . Thus W ′ is A-irreducible.

For this we will absorb absorbable components of G[Aφ]. We therefore need to track

how absorbing a component of G[Aφ] affects the labeled A-connectivity graph.

Lemma 7.5.54. Let ω ⩾ 2 and W = (G,H, φ, S1, S2) be an A-path-like, A-irreducible

disjoint generalized ω-creature of adhesion size α such that H has no A-useless peripheral

vertices. Let C be an absorbable component of G[φA], and u be the peripheral vertex of

H such that N(C) ⊆ φ−1(u). Let W ′ = (G′, H ′, φ′, S ′
1, S

′
2) be the generalized ω-creature

resulting from absorbing C in W . Then W ′ is an A-path-like, A-irreducible, and disjoint

generalized ω-creature of adhesion size α, and H ′ has no A-useless peripheral vertices.

Proof: By Lemma 7.5.18 W ′ is a disjoint generalized ω-creature of adhesion size α.

By definition of absorb, Aφ′ = Aφ − C so the set of connected components of G[Aφ′] is

513

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

precisely the set of connected components of G[Aφ] minus {C}.

We observe that G[Aφ] has at least 2 components. Otherwise C is the only component

of G[Aφ]. Then Lemma 7.5.4 yields that for every peripheral vertex v of H, φ−1(v) has

a neighbor in C, contradicting that C is absorbable.

Let (CA, λ) be the labeled A-connectivity graph of W and (C ′A, λ′) be the labeled

A-connectivity graph of W ′. By assumption CA is a path. We have that S ′
1 = S1 and

for every peripheral vertex v ̸= u of H ′ we have that φ′−1(v) = φ−1(v). Hence for every

pair of components C1, C2 of G[Aφ′] and peripheral vertex v ̸= u we have that v realizes

{C1, C2} in W ′ if and only if v realizes {C1, C2} in W .

There are two cases, C is an endpoint of CA or not. Suppose C is an endpoint of CA.

We claim that for every pair {C1, C2} of components of G[Aφ′], u realizes {C1, C2} in W ′

if and only if u realizes {C1, C2} in W . For the reverse direction, let P be a path from C1

to C2 through φ−1(u)− S1. Then P is also a path from C1 to C2 through φ′−1(u)− S ′
1,

because φ′−1(u) = φ−1(u) ∪ C, S ′
1 = S ′

1 and S1 is disjoint from C. Hence u realizes

{C1, C2} in W ′.

For the forward direction, suppose that u realizes an {C1, C2} in W ′ Then there exists

a path P from C1 to C2 though φ′−1(u)− S ′
1 = (φ−1(u)∪C)− S1. Since C only has one

neighbor in CA, without loss of generality C1 is not a neighbor of C in CA. If P contains

a vertex of C, let P ′ be a shortest sub-path of P with one endpoint in C1 and the other

in C. Then P ′ is a path from C to C1 through φ−1(u) − S1, contradicting that C1 is

non-neighbor of C in CA. Therefore P is disjoint from C. Then P is a path from C1 to

C2 though φ−1(u)− S1, so u realizes {C1, C2} in W .

Thus, when C is an endpoint of CA we get that (C ′A, λ′) = (CA − {C}, λ). Hence

W ′ is path-like. Furthermore every A-reduction pair (v, P) in W ′ is an A-reduction pair

also in W . Hence W ′ is irreducible. It remains to show that no vertices of H ′ are A-

useless. Consider now a peripheral vertex v ̸= u of H. Since v is not A-useless in W , v

514

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

realizes an edge of CA or φ−1(v) has a neighbor in an endpoint of CA. Since v ̸= u and

N(C) ⊆ φ−1(u) we have that v has no neighbors in C. Thus if v realizes an edge {C1, C2}

of CA in W then v realizes {C1, C2} in W ′. If φ−1(v) has a neighbor in an endpoint C ′ of

CA then C ′ ̸= C and v has a neighbor in C ′ in W ′ as well. Hence v is not A-useless in W ′

Finally, let C1 be the unique neighbor of C in CA. Since u realizes the edge {C,C1} in CA,

φ−1(u) has a neighbor in C1, and C1 is an endpoint of C ′A. Therefore u is not A-useless

in W ′. We conclude that in the case when u is an endpoint of CA the statement of the

lemma holds.

Suppose now that C is not an endpoint of CA and let X and Y be the predecessor and

successor of C on the path CA, respectively. We claim that u realizes a pair {C1, C2} of

components of G[Aφ′] if and only if u realizes {C1, C2} in W or {C1, C2} = {X, Y }. For

the reverse direction, suppose u realizes {C1, C2} in W . Let P be a path from C1 to C2

through φ−1(u)−S1. Then P is also a path from C1 to C2 through φ′−1(u)−S ′
1, because

φ′−1(u) = φ−1(u) ∪ C, S ′
1 = S ′

1 and S1 is disjoint from C. Hence u realizes {C1, C2} in

W ′.

Suppose now that C1 = X and C2 = Y . Then there is a path P1 from C1 to C

through φ−1(u) − S1, and a path P2 from C to C2 through φ−1(u) − S1. Since S1 = S ′
1

and φ−1(u) ∪ C = φ′−1(u) there is a walk from C1 to C2 through φ′−1(u), namely P1,

followed by a walk from the end of P1 to the start of P2 in G[C] and then by P2 from C

to C2. Hence u realizes {C1, C2} = {X, Y } in W ′.

For the forward direction, suppose that u realizes an {C1, C2} in W ′ Then there

exists a path P from C1 to C2 though φ′−1(u)− S ′
1 = (φ−1(u) ∪C)− S1. If P is disjoint

from C then P is a path from C1 to C2 though φ−1(u) − S1, so u realizes {C1, C2} in

W . If V (P) intersects with C then P contains a sub-path P1 from C1 to C through

φ′−1(u)− C = φ−1(u) and a path P2 from C2 to C through φ′−1(u)− C = φ−1(u). But

then C1 and C2 are both adjacent to C in CA and therefore {C1, C2} = {X, Y }. Thus,

515

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

when C is not an endpoint of CA we get that (C ′A, λ′) and (CA−{C}, λ) are equal, except

that {X, Y } is a non-edge of CA − {C} and an edge of C ′A with label λ′({X, Y }) = {u}.

Hence W ′ is path-like.

We show that W ′ is A-irreducible. For every A-reduction pair (v, P) in W ′, if {X, Y }

is not an edge of P then (v, P) is also an A-reduction pair in W . If {X, Y } is an edge

of P then (v, P ′) is an A-reduction pair in W , where P ′ is the path obtained from P by

removing the edge {X, Y }, adding the vertex C and the edges {X,C} and {C, Y }. In

particular λ({X,C}) = λ{C, Y } = λ′{X, Y } = {u} Thus, since W is A-irreducible, W ′

is A-irreducible as well.

It remains to show that no vertices of H ′ are A-useless. Consider now a peripheral

vertex v ̸= u of H. Since v is not A-useless in W , v realizes an edge of CA or φ−1(v)

has a neighbor in an endpoint of CA. Since v ̸= u and N(C) ⊆ φ−1(u) we have that v

has no neighbors in C. Thus if v realizes an edge {C1, C2} of CA in W then v realizes

{C1, C2} in W ′. If φ−1(v) has a neighbor in an endpoint C ′ of CA then C ′ ̸= C and v has

a neighbor in C ′ in W ′ as well. Hence v is not A-useless in W ′ Finally observe that u

realizes {X, Y } in W ′ and therefore is not A-useless in W ′. This concludes the proof.

Lemma 7.5.55. If W is an A-path-like, A-irreducible, and disjoint generalized ω-creature

that does not have A-useless peripheral vertices or absorbable components in G[Aφ], then

W is A-critter-like.

Proof: We prove that W satisfies each of the three properties of A-critter-like gen-

eralized ω-creatures. Let (CA, λ) be the A-connectivity graph of W . First, CA is a path

because W is A-path-like. For the second property, let {C1, C2} be an edge of the A-

connectivity graph CA. Since every edge of CA is realized by at least one peripheral vertex

u of H we have that |λA({C1, C2})| ⩾ 1. We now show that |λA({C1, C2})| ⩽ 1. Suppose

for contradiction that there exists a peripheral vertex v ̸= u such that v ∈ λA({C1, C2}).

516

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Since u realizes {C1, C2} we have that φ−1(u) has neighbors both in C1 and in C2. But

then (u,C1C2) is an A-reduction pair, contradicting that W is A-irreducible.

For the third property, suppose for contradiction that there exists a peripheral vertex

u such that φ−1(u) has neighbors in two distinct components C1, C2 of G[Aφ] and u does

not realize {C1, C2}. Let P be the path from C1 to C2 in CA. We consider two cases,

either at least one edge of P is labeled with {v} for some peripheral vertex v ̸= u, or all

edges of P are labeled with {u}.

Suppose first that at least one edge {Z,Z ′} of P is labeled with {v} for some peripheral

vertex v ̸= u. Let P ′ a the shortest sub-path of P that contains the edge {Z,Z ′} such

that the first component C ′
1 of P ′ and the last component C ′

2 have a neighbor in φ−1(u).

Since P itself satisfies the two properties, P ′ is well defined. Since P ′ shortest, no internal

vertex of P ′ can have a neighbor in φ−1(u). But then u does not realize any edge of P ′

and therefore (u, P ′) is an A-reduction pair, contradicting that W is A-irreducible.

Suppose now that all edges of P are labeled with {u}. Since u does not realize

{C1, C2} the path P has at least one internal vertex C. Since C is not absorbable there

exists a peripheral vertex v ̸= u such that C has a neighbor in φ−1(v). Since v is not

A-useless, v realizes at least one edge of CA or φ−1(v) has a neighbor in an endpoint of

CA. If v realizes at an edge of CA then this edge can not be incident to C, because all

edges incident to C are labeled {u}. Hence φ−1(v) has a neighbor in at least one vertex

of CA other than C. If φ−1(v) has a neighbor in an endpoint of CA then this endpoint is

not equal to C, because C is an internal vertex of P . In either case φ−1(v) has a neighbor

in at least one vertex of CA other than C.

Let P ′ be a shortest path in CA from C to another vertex of CA that contains a

neighbor of φ−1(v). None of the edges of P ′ are labeled {v} because only the endpoints

of P ′ contain neighbors of φ−1(v), and one of the endpoints, namely C, is not incident

to any edges labeled {v}. But then (v, P ′) is an A-reduction pair, contradicting that W

517

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

is A-irreducible. We conclude that W is A-critter-like.

Lemma 7.5.56. Let G be k-creature free, and W = (G,H, φ, S1, S2) be an A-path-like,

A-irreducible disjoint generalized ω creature of adhesion size α. Then there exists an

A-critter-like disjoint generalized ω′-creature W ′ = (G′, H ′, φ′, S ′
1, S

′
2) with adhesion size

α, such that ω′ ⩾ ω
kα
− 1. Furthermore W ′ is an A-descendant of W .

Proof: Let G be k-creature free, and W = (G,H, φ, S1, S2) be an A-path-like, A-

irreducible disjoint generalized ω creature of adhesion size α.

We claim that G[Aφ] has at least ω/k components. Indeed, by Lemma 7.5.4 for every

peripheral vertex v of H, φ−1(v) has a neighbor in Aφ, and by Lemma 7.5.29 for each

component C of G[Aφ] there are at most k−1 peripheral vertices v such that φ−1(v) has

a neighbor in C. Thus G[Aφ] has at least ω/k components.

Let Z be the set of all peripheral vertices of H that are not A-useless. We claim that

|Z| ⩾ ω/kα−1. Indeed, CA has at least ω/k−1 edges, and each of these edges is realized

by a peripheral vertex v ∈ Z. Since each peripheral vertex v can realize no more than α

edges of CA it follows that |Z| ⩾ ω
kα
− 1.

Let W ′ = (G′, H ′, φ′, S ′
1, S

′
2) be the result of repeatedly dissolving A-useless peripheral

vertices of H, as long as any are present. By Lemma 7.5.53 no vertices of Z get dissolved

by this process. Furthermore, by Lemma 7.5.53 W ′ is an A-path-like, A-irreducible, and

disjoint generalized ω′-creature of adhesion size α, where ω′ = |Z| ⩾ ω
kα
− 1.

Let W ′′ = (G′′, H ′′, φ′′, S ′′
1 , S

′′
2) be the result of repeatedly absorbing absorbable com-

ponents of G′[Aφ′], as long as any are present. By Lemma 7.5.54 W ′′ is an A-path-like,

A-irreducible, and disjoint generalized ω′-creature of adhesion size α, and H ′′ has no A-

useless peripheral vertices. Furthermore, G′′[Aφ′′] has no absorbable components. Since

W ′′ was obtained by dissolving peripheral vertices and absorbing absorbable components

of G[Aφ], W ′′ is an A-descendant of W . By Lemma 7.5.55 W ′′ satisfies the conclusion of

518

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

the lemma.

Lemma 7.5.57. Let G be k-creature free, and W = (G,H, φ, S1, S2) be a disjoint general-

ized ω creature of adhesion size α. Then there exists an A-critter-like disjoint generalized

ω′-creature W ′ = (G′, H ′, φ′, S ′
1, S

′
2) with adhesion size α, such that ω′ ⩾ (logkα(ω)−3)1/α

8k2α3 −1.

Furthermore W ′ is an A-descendant of W .

Proof: By Lemma 7.5.51 applied to W there exists an A-path-like, A-irreducible dis-

joint generalized ω′ creature W ′′ = (G′′, H ′′, φ′′, S ′′
1 , S

′′
2) with adhesion size α, such that

ω′′ ⩾ (logkα(ω)−3)1/α

8kα2 . Furthermore W ′′ is an A-descendant of W . By Lemma 7.5.56 applied

toW ′′ there exists anA-critter-like disjoint generalized ω′-creatureW ′ = (G′, H ′, φ′, S ′
1, S

′
2)

with adhesion size α, such that ω′ ⩾ ω′′
kα
− 1 ⩾ (logkα(ω)−3)1/α

8k2α3 − 1. Furthermore W ′ is an

A-descendant of W ′′, and hence of W . This completes the proof.

7.5.13 A-Descendents stay B-Critter-Like

Lemma 7.5.58. Let W = (G,H, φ, S1, S2) be a B-critter-like disjoint generalized ω-

creature and u be a peripheral vertex in H. Then either there exists a unique component

C of G[Bφ] such that φ−1(u) has a neighbor in C, or there exist precisely two components

C1, C2 of G[Bφ] such that u realizes {C1, C2}. In this case no other peripheral vertices

of H realize {C1, C2}. Furthermore all of the statements above hold with B replaced by

A.

Proof: Let (CB, λ) be the B-connectivity graph of W . By Lemma 7.5.4 there exists

at least one component C1 such that φ−1(u) has a neighbor in C1. If there exist two

components C1, C2 such that φ−1(u) has a neighbor in C1 and a neighbor in C2, then

by the third property of critter-like generalized ω-creatures u realizes {C1, C2}. Then

{C1, C2} is an edge of CB Further, if another peripheral vertex v also realizes {C1, C2}

then {u, v} ⊆ λ({C1, C2}), contradicting the second property of critter-like generalized

519

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

ω-creatures. If there are exist three components C1, C2, C3 such that φ−1(u) has a

neighbor in each of them then, by the second property, {C1, C2}, {C2, C3} and {C1, C3}

are all edges of CB. But this contradicts the first property, namely that CB is a path.

Lemma 7.5.59. Let W = (G,H, φ, S1, S2) be a B-critter-like disjoint generalized ω-

creature of adhesion size α, and u be a peripheral vertex of H. Let W ′ = (G′, H ′, φ′, S ′
1, S

′
2)

be the result of dissolving u in W . Then W ′ is a B-critter-like disjoint generalized (ω−1)-

creature of adhesion size α. Furthermore, if W is A-critter-like then W ′ is A-critter-like.

Proof: By Lemma 7.5.16 W ′ is a disjoint generalized (ω − 1)-creature of adhesion

size α. It remains to show that it is B-critter-like. Let (CB, λ) and (C ′B, λ′) be the labeled

B-connectivity graphs of W and W ′ respectively. Let C1, C2, . . . , Ct be the components

of G[Bφ] in the order they are visited by the path CB. By Lemma 7.5.42, statement (i)

there exists a sequence of (not necessarily distinct) components C ′
1, C

′
2, . . . , C

′
t of G′[Bφ′]

such that Ci ⊆ C ′
i for every i. Lemma 7.5.42, statement (ii) every component of G′[Bφ′]

appears in the sequence C ′
1, C

′
2, . . . , C

′
t at least once. By Lemma 7.5.58 there are two

cases. Either there exists precisely one component Cr such that φ−1(u) has a neighbor

in Cr, or there exists precisely one component Cr such that φ−1(u) has a neighbor in Cr

and in Cr+1

We first consider the case that there exists precisely one component Cr such that

φ−1(u) has a neighbor in Cr. Because u does not realize any edge of CB, Lemma 7.5.42,

statement (iii) yields that C ′
i ̸= C ′

j for every pair of distinct integers i, j. Lemma 7.5.42,

statement (iv) then yields that the edge set of C ′B is equal to {{C ′
i, C

′
i+1} : i < t} and

every {C ′
i, C

′
i+1} satisfies that λ′({C ′

i, C
′
i+1}) = λ({C ′

i, C
′
i+1}). Thus CB is path-like and

|λ′({C ′
i, C

′
i+1)| ⩽ 1 for every i By Lemma 7.5.42, statement (v) every peripheral vertex v

of H ′ and every component C ′
i satisfies that φ′−1(v) has a neighbor in C ′

i if and only if

φ−1(v) has a neighbor in Ci. Therefore, if φ′−1(v) has a neighbor in C ′
i and in C ′

j then

520

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

{C ′
i, C

′
j} in an edge of C ′B and λ′({C ′

i, C
′
j}) = {v}.

Next we consider the case that there exists precisely one r such that φ−1(u) has a

neighbor in Cr and in Cr+1 Because u realizes the edge {Cr, Cr+1} in CB and no other

edges, Lemma 7.5.42, statement (iii) yields that C ′
r = C ′

r+1 and C ′
i ̸= C ′

j for every pair

of distinct integers i, j such that {i, j} ≠ {r, r + 1}.

Lemma 7.5.42, statement (iv) then yields that the edge set of C ′B is equal to {{C ′
i, C

′
i+1} : i <

t and i ̸= r}. Note here that the edge {C ′
r+1, C

′
r+2}, if r + 2 ⩽ t, is equal to {C ′

r, C
′
r+2},

because Cr = C ′
r+1. Thus C ′B is path-like. Furthermore Lemma 7.5.42, statement (iv)

implies that λ′({C ′
i, C

′
i+1}) = λ({C ′

i, C
′
i+1}) for every i ̸= r (for i = r we have C ′

i = C ′
i+1

and there is no self loop in C ′B). Thus |λ′({C ′
i, C

′
j})| ⩽ 1 for every edge {C ′

i, C
′
j} of C ′B.

By Lemma 7.5.42, statement (v) every peripheral vertex v of H ′ and every component

C ′
i with i /∈ {r, r+1} satisfies that φ′−1(v) has a neighbor in C ′

i if and only if φ−1(v) has a

neighbor in Ci. Furthermore Lemma 7.5.42, statement (v) yields that for every peripheral

vertex v of H ′, φ′−1(v) has a neighbor in C ′
r if and only if φ−1(v) has a neighbor in Cr

or in Cr+1.

For the final property of B-critter-like generalized (ω − 1)-creatures, suppose that

φ′−1(v) has a neighbor in two distinct components C ′
i and in C ′

j of G′[Bφ′]. Without

loss of generality j /∈ {r, r + 1}. Then φ−1(v) has a neighbor in Cj. If C ′
i ̸= C ′

r then

φ−1(v) has a neighbor in Ci in G. Then, since W is B-critter-like it follows that v realizes

{Ci, Cj} in W . But by Lemma 7.5.42, statement (iv) v realizes {C ′
i, C

′
j} in W ′. Suppose

now that C ′
i ̸= C ′

r. Then exists q ∈ {r, r + 1} such that φ−1(v) has a neighbor in Cq

in G. Since q ̸= j and W is B-critter-like it follows that v realizes {Cq, Cj} in W . But

then Lemma 7.5.42, statement (iv) implies that v realizes {C ′
r, C

′
j} in W ′, completing the

proof.

The proof that if W is A-critter-like then W ′ is A-critter-like is symmetric.

521

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Lemma 7.5.60. Let W = (G,H, φ, S1, S2) be a B-critter-like disjoint generalized ω-

creature of adhesion size α, and C be an absorbable component of G[Aφ]. Let W ′ =

(G′, H ′, φ′, S ′
1, S

′
2) be the result of absorbing C in W . Then W ′ is a B-critter-like disjoint

generalized ω-creature of adhesion size α.

Proof: By Lemma 7.5.18 W ′ is a disjoint generalized (ω − 1)-creature of adhesion

size α. It remains to show that it is B-critter-like. Let (CB, λ) and (C ′B, λ′) be the labeled

B-connectivity graphs of W and W ′ respectively. Let C1, C2, . . . , Ct be the components

of G[Bφ] in the order they are visited by the path CB. By Lemma 7.5.58 for every

i < t there exists a unique peripheral vertex vi that realizes {Ci, Ci+1} in W . Again

by Lemma 7.5.58 φ−1(vi) has no neighbors in any components of G[Bφ] other than Ci,

Ci+1, and therefore the vertices v1, . . . , vt−1 are all distinct. Let Q = {v1, . . . , vt−1}. By

Lemma 7.5.58 every peripheral vertex u of H not in Q satisfies that φ−1(u) has neighbors

in precisely one component of G[Bφ].

By definition of absorbing, Bφ′ = Bφ so C1, C2, . . . , Ct are also the components of

G[Bφ]. Since C ∈ Aφ, and Aφ and Bφ are anti-complete, it follows that for every

peripheral vertex v of H and component Ci, φ
′−1(v) has a neighbor in Ci if and only if

φ−1(v) has a neighbor in Ci.

Consider an edge {Ci, Cj} of C ′B, and let v be the peripheral vertex that realizes this

edge. Then φ′−1(v) has neighbors in Ci and Cj, and therefore φ−1(v) has neighbors in

Ci and Cj. Since W is B-critter-like it follows that v realizes {Ci, Cj} in CB.

Hence C ′B is a sub-graph of CB. However CB is a path and C ′B is connected by

Lemma 7.5.28, and therefore C ′B = CB. Further, for every edge {Ci, Ci+1} of CB the

peripheral vertex vi is the only peripheral vertex of H ′ = H such that φ′−1(v) has neigh-

bors in {Ci, Ci+1}. Since every edge of CB is realized by at least one peripheral vertex,

{Ci, Ci+1} is realized by vi and no other peripheral vertices in W ′.

522

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

But then W ′ is path-like, |λ′({Ci, Ci+1})| ⩽ 1 for every i and every peripheral vertex

v such that φ′−1(v) has neighbors in two distinct components {Ci, Cj} realizes the pair

{Ci, Cj} in W ′. Hence W ′ is B-critter-like.

Lemma 7.5.61. Let W = (G,H, φ, S1, S2) be a B-critter-like disjoint generalized ω-

creature of adhesion size α, and C be an erasable component of G[Aφ]. Let W ′ =

(G′, H ′, φ′, S ′
1, S

′
2) be the result of erasing C in W . Then W ′ is a B-critter-like disjoint

generalized ω′-creature of adhesion size α.

Proof: By Lemma 7.5.34 W ′ is a disjoint generalized ω′-creature of adhesion size α.

It remains to show that it is B-critter-like. Let (CB, λ) and (C ′B, λ′) be the labeled B-

connectivity graphs of W and W ′ respectively. Let C1, C2, . . . , Ct be the components of

G[Bφ] in the order they are visited by the path CB. By Lemma 7.5.58 for every i < t there

exists a unique peripheral vertex vi that realizes {Ci, Ci+1} in W . Again by Lemma 7.5.58

φ−1(vi) has no neighbors in any components of G[Bφ] other than Ci, Ci+1, and therefore

the vertices v1, . . . , vt−1 are all distinct. Let Q = {v1, . . . , vt−1}. By Lemma 7.5.58 every

peripheral vertex u of H not in Q satisfies that φ−1(u) has neighbors in precisely one

component of G[Bφ]. We conclude that G − Aφ satisfies the following property: every

path from Ci to Cj (with i ⩽ j) in G− Aφ intersects all components Ci, Ci+1, . . . , Cj.

We will make use of the following properties of the erase operation, all of which are

easily observed directly from the definition of erase.

(i) Bφ ⊆ Bφ′ ⊆ V (G)− Aφ,

(ii) Every connected component of G′[Bφ′ −Bφ] has a neighbor in Bφ

(iii) Every peripheral vertex v of H ′ satisfies φ′−1(v) ⊆ φ−1(v)

By (i) every connected component of G[Bφ] is contained in a connected component

of G′[Bφ′]. By (ii) every connected component of G′[Bφ′] contains at least one connected

component of G[Bφ′].

523

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

We claim that if a peripheral vertex v of H ′ satisfies that φ′−1(v) has a neighbor in

a component C ′ of G′[Bφ′], then C ′ contains a component Ci of G[Bφ] such that φ−1(v)

has a neighbor in Ci. Indeed, suppose that φ′−1(v) has a neighbor x in a component C ′ of

G′[Bφ′]. Then, by (iii) x ∈ Bφ or x ∈ φ−1(v). If x ∈ Bφ then C ′ contains the component

Ci of G[Bφ] that contains x, and φ−1(v) has a neighbor in Ci, namely x. If x ∈ φ−1(v),

let Z be the component of C ′ − Bφ that contains x. Since x ∈ φ−1(v) and Z is disjoint

from Aφ ∪ Bφ it follows that Z ⊆ φ−1(v). By (ii), Z has a neighbor y in Bφ. Then C ′

contains the component Ci of G[Bφ] that contains y, and φ−1(v) has a neighbor in Ci,

namely y.

Let C ′ be a component of G′[Bφ′]. If C ′ contains Ci and Cj it also contains a path

from Ci to Cj in G − Aφ. But this path intersects all components Ci, Ci+1, . . . , Cj, and

therefore

Ci ∪ Ci+1 ∪ . . . ∪ Cj ⊆ C ′.

Thus there exists an ordering of the components of G′[Bφ′] into C ′
1, C

′
2, . . . C

′
t′ and se-

quence 0 = j0 < j1 < j2 < . . . jt′ = t of integers such that for every i ∈ {1, . . . , t} it holds

that

Cji−1+1 ∪ Cji−1+2, . . . ∪ Cji ⊆ C ′
i

Consider now a peripheral vertex v of H ′ and suppose that φ′−1(v) has neighbors

both in C ′
i and C ′

j. Without loss of generality i < j. Then C ′
i contains a component Ci′

of G[Bφ] and C ′
j contains a component Cj′ of G[Bφ] such that φ−1(v) has a neighbor in

Ci′ and in Cj′ . But then i′ = ji′ , j
′ = ji′ + 1 and v = vji′ . Hence j = i + 1. Thus, every

edge of the B-connectivity graph C ′B of W ′ goes from a component C ′
i to a component

C ′
i+1, and if the edge {C ′

i, C
′
i+1} is present then λ′({C ′

i, C
′
i+1}) = vji′ . By Lemma 7.5.28

C ′B is connected and therefore every pair {C ′
i, C

′
i+1} is an edge of C ′B.

Hence we have proved that if, for a peripheral vertex v of H ′, φ′−1(v) has neighbors

524

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

both in C ′
i and C ′

j, then j = i+ 1 and {C ′
i, C

′
i+1} is an edge of C ′B (so v realizes {C ′

i, C
′
j}

and W ′ is B-path-like), and v = vji′ (so |λ′({C ′
i, C

′
i+1})| = 1). This concludes the proof.

Lemma 7.5.62. Let W = (G,H, φ, S1, S2) be a B-critter-like disjoint generalized ω-

creature of adhesion size α, and W ′ = (G′, H ′, φ′, S ′
1, S

′
2) be an A-descendant of W .

Then W ′ is a B-critter-like disjoint generalized ω′-creature of adhesion size α.

Proof: Since W ′ = (G′, H ′, φ′, S ′
1, S

′
2) is an A-descendant of W , W ′ is obtained

from G by a sequence of dissolving peripheral vertices, absorbing absorbable components

of G[Aφ], and erasing components of G[Aφ]. By Lemma 7.5.59, Lemma 7.5.60, and

Lemma 7.5.61, dissolving peripheral vertices, absorbing absorbable components of G[Aφ],

and erasing components of G[Aφ] in a a B-critter-like disjoint generalized ω-creature of

adhesion size α results in a B-critter-like disjoint generalized ω′-creature of adhesion size

α. The statement of the lemma now follows by induction on the number of operations

in the sequence used to obtain W ′ from W .

7.5.14 Making the Generalized Creature Critter-Like on Both

Sides

Lemma 7.5.63. Let G be a k-creature free graph and W = (G,H, φ, S1, S2) be an A-

critter-like disjoint generalized ω-creature with adhesion size α. Then there exists a B-

critter-like disjoint generalized ω-creature W ′ = (G,H, φ′, S1, S2) with adhesion size α.

Proof: We set

φ′(v) =

cB if φ(v) = cA

cA if φ(v) = cB

φ(v) otherwise.

525

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Then Aφ′ = Bφ and Bφ′ = Aφ. Since A and B are interchangeable in the definitions

of (disjoint) generalized ω-creatures, the A- and B-connectivity graphs (CA, λA) and

(CB, λB), A/B-critter-like and adhesion size, W ′ is a B-critter-like disjoint generalized

ω-creature with adhesion size α.

We are now ready to extract a generalized ω-creature that is both A-critter-like and

B-critter-like.

Lemma 7.5.64. Let k ⩾ 2 and G be k-creature free, and W = (G,H, φ, S1, S2) be a

disjoint generalized ω creature of adhesion size α. Then there exists an induced subgraph

G′ of G and an A-critter-like and B-critter-like disjoint generalized ω′-creature W ′ =

(G′, H ′, φ′, S ′
1, S

′
2), where ω′ ⩾ (logkα logkα(ω))

1/α

16k2α3 − 12.

Proof: By Lemma 7.5.57 there exists an A-critter-like disjoint generalized ω′-creature

W ′ = (G′, H ′, φ′, S ′
1, S

′
2) with adhesion size α, such that ω′ ⩾ (logkα(ω)−3)1/α

8k2α3 − 1. Further-

more W ′ is an A-descendant of W , so G′ is an induced subgraph of G. By Lemma 7.5.63

there exists a B-critter-like disjoint generalized ω′-creature W ′ = (G′, H ′, φ⋆, S ′
1, S

′
2) with

adhesion size α. By Lemma 7.5.57 applied to W ′ there exists an A-critter-like disjoint

generalized ω′′-creature W ′′ = (G′′, H ′′, φ′′, S ′′
1 , S

′′
2) with adhesion size α, such that

ω′′ ⩾
(logkα(ω′)− 3)1/α

8k2α3
− 1

⩾
(logkα

(
(logkα(ω)−3)1/α

8k2α3 − 1
)
− 3)1/α

8k2α3

⩾
(logkα logkα(ω))1/α

16k2α3
− 12

Furthermore W ′′ is an A-descendant of W ′, so G′′ is an induced subgraph of G′,

and therefore of G. Since W ′′ is an A-descendant of W ′ and W ′ is B-critter-like, by

Lemma 7.5.62 W ′′ is B-critter-like. This concludes the proof.

526

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

7.5.15 Coordinating The Orderings

We are almost done, but not quite. In particular the A and B side of W are now

both critter-like, but the peripheral vertices may come in different order on the two sides.

We fix this by finding a large common sub-sequence using the famous Erdös-Szekers

theorem [53], and dissolve all of the peripheral vertices that are not in the sequence. By

Lemma 7.5.59 this maintains the critter-like property both on the A and the B side.

However we do still need to prove that when we dissolve the peripheral vertices that are

out of order, we don’t re-order the ones that are in order.

W = (G,H, φ, S1, S2) be an A-critter-like a disjoint generalized ω creature of adhesion

size α.

An ordering v1, v2, . . . , vω of the peripheral vertices of H is an A-critter ordering if

the following condition is satisfied: if φ−1(vi) and φ−1(vj) both have a neighbor in a

component C of G[Aφ], then all vr ∈ {vi, vi+1 . . . vj} also satisfy that φ−1(vr) has a

neighbor in C. A B-critter ordering is defined similarly, using components C of G[Bφ].

Lemma 7.5.65. Let W = (G,H, φ, S1, S2) be a generalized ω creature. If W is A-critter-

like then W has an A-critter ordering. If W is B-critter-like then W has a B-critter

ordering.

Proof: Suppose W is A-critter-like. Let (CA, λ) be the labeled A-connectivity graph

of W . Let C1, C2, . . . Ct be the order in which the components of G[Aφ] appear on the

path CA.

By Lemma 7.5.58 every peripheral vertex v of H satisfies that either there is a unique

Ci such that φ−1(u) has a neighbor in Ci and in no other components, or there is a unique

Ci such that φ−1(u) has a neighbor in Ci and Ci+1 and in no other components. In the

second case no other peripheral vertex v also satisfies that φ−1(v) has a neighbor both

in Ci and Ci+1.

527

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Consider the following ordering: first take all peripheral vertices u such that C1 is the

only component such that φ−1(u) has a neighbor in it, then take the unique peripheral

vertex u such that φ−1(u) has a neighbor in C1 and C2, then take all peripheral vertices

u such that C2 is the only component such that φ−1(u) has a neighbor in it, and so on.

It is easily verified that this ordering is an A-critter ordering. The proof that if W is

B-critter-like then W has a B-critter ordering is symmetric.

Let X be a set and σ = x1, x2, . . . xt be an ordering of X. Let Y be a subset of X.

Then the sub-ordering of σ induced by Y is denoted by σ[Y] and is the ordering of Y in

which all elements of Y come in the same order as in σ.

Lemma 7.5.66. Let W = (G,H, φ, S1, S2) be an A-critter-like disjoint generalized ω

creature and u be a peripheral vertex in H. Let σ be an A-critter ordering of W . Let

W ′ = (G,H, φ, S1, S2) be the A-critter-like disjoint generalized ω creature resulting from

dissolving u. Then σ[V (H ′)−{cA, cB}] is an A-critter ordering of W ′. Similarly, if W is

B-critter-like and σ is a B-critter ordering of W then σ[V (H ′)−{cA, cB}] is a B-critter

ordering of W ′.

Proof: By Lemma 7.5.59 W ′ is an A-critter-like generalized (ω − 1)-creature. Let

(CA, λ) and (C ′A, λ′) be the labeled A-connectivity graphs of W and W ′ respectively. Let

C1, C2, . . . , Ct be the components of G[Aφ] in the order they are visited by the path

CA. By Lemma 7.5.42, statement (i) there exists a sequence of (not necessarily distinct)

components C ′
1, C

′
2, . . . , C

′
t of G′[Aφ′] such that Ci ⊆ C ′

i for every i. Lemma 7.5.42,

statement (ii) every component of G′[Aφ′] appears in the sequence C ′
1, C

′
2, . . . , C

′
t at least

once. By Lemma 7.5.58 there are two cases. Either there exists precisely one component

Cr such that φ−1(u) has a neighbor in Cr, or there exists precisely one component Cr

such that φ−1(u) has a neighbor in Cr and in Cr+1

We first consider the case that there exists precisely one component Cr such that

528

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

φ−1(u) has a neighbor in Cr. Because u does not realize any edge of CB, Lemma 7.5.42,

statement (iii) yields that C ′
i ̸= C ′

j for every pair of distinct integers i, j. By Lemma 7.5.42,

statement (v) every peripheral vertex v of H ′ and every component C ′
i satisfies that

φ′−1(v) has a neighbor in C ′
i if and only if φ−1(v) has a neighbor in Ci. Therefore

σ[V (H)− {u}] is an A-critter ordering of W .

Next we consider the case that there exists precisely one r such that φ−1(u) has a

neighbor in Cr and in Cr+1 Because u realizes the edge {Cr, Cr+1} in CB and no other

edges, Lemma 7.5.42, statement (iii) yields that C ′
r = C ′

r+1 and C ′
i ̸= C ′

j for every pair

of distinct integers i, j such that {i, j} ≠ {r, r + 1}.

By Lemma 7.5.42, statement (v) every peripheral vertex v of H ′ and every component

C ′
i with i /∈ {r, r+1} satisfies that φ′−1(v) has a neighbor in C ′

i if and only if φ−1(v) has a

neighbor in Ci. Furthermore Lemma 7.5.42, statement (v) yields that for every peripheral

vertex v of H ′, φ′−1(v) has a neighbor in C ′
r if and only if φ−1(v) has a neighbor in Cr

or in Cr+1. Therefore σ[V (H)− {u}] is an A-critter ordering of W .

The proof that if W is B-critter-like and σ is a B-critter ordering of W then σ[V (H ′)−

{cA, cB}] is a B-critter ordering of W ′ is symmetric.

For an ordering σ = x1, x2, . . . , xt of a set X the reverse ordering of σ is the ordering

denoted by σR and defined as σR = xt, xt−1, . . . , x1.

Observation 7.5.67. Let W = (G,H, φ, S1, S2) be a generalized ω creature and σ be an

A-critter ordering of W . Then σR is an A-critter ordering of W .

Proof: Let σ = v1, . . . vω and σR = vt, . . . v1. If φ−1(vi) and φ−1(b) both have

a neighbor in a component C of G[Aφ], then all vr ∈ {vi, vi+1 . . . v} also satisfy that

φ−1(vr) has a neighbor in C. These are precisely the peripheral vertices between vi and

vj both in the ordering σ and in the ordering σR.

Given two orderings σA = xA1 , x
A
2 , . . . , x

A
t and σB = xB1 , x

B
2 , . . . , x

B
t of a set X we say

529

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

that σA and σB agree on a subset Y of X if, for every pair of elements y, y′ ∈ Y , if

y = yAi = yBi′ and y′ = yAj = yBj′ then i < j if and only if i′ < j′. The following theorem

is a re-formulation of the well-known Erdös-Szekers Theorem [53] in terms of orderings.

Theorem 7.5.68 (Erdös-Szekers Theorem [53]). For any two orderings σA, σB of a set

U there exists a subset X of U such that |X|2 ⩾ |U | and either σA and σB agree on X

or the reverse σRA of σA agrees with σB on X.

Lemma 7.5.69. Let W = (G,H, φ, S1, S2) be an A-critter-like and B-critter-like dis-

joint generalized ω-creature. Then there exist an A-critter-like and B-critter-like disjoint

generalized ω′-creature W ′ = (G′, H ′, φ′, S ′
1, S

′
2) and ordering σ of V (H ′) such that G′ is

an induced subgraph of G, ω′ ⩾
√
ω and σ is both an A-critter ordering and a B-critter

ordering of W ′.

Proof: By Lemma 7.5.65 there exists an A-critter ordering σA = vA1 , v
A
2 , . . . v

A
ω and

a B-critter ordering σB = vB1 , v
B
2 , . . . v

B
ω of W . Let σRA be the reverse of σA. By Observa-

tion 7.5.67 σRA is also an A-critter order of W . By Theorem 7.5.68 there exists a subset

X of the peripheral vertices such that |X| ⩾ ω and either σA or σRA agree with σB on X.

Without loss of generality σA agrees with σB on X (otherwise we can simply exchange

σA with σRA). Let ω′ = |X|, we have that ω′ ⩾
√
ω. Let W ′ be the generalized ω′-creature

resulting from dissolving all peripheral vertices of H not in X. By Lemma 7.5.59, W ′

is a disjoint A-critter-like and B-critter-like generalized ω-creature. By Lemma 7.5.66,

σA[X] is an A-critter-order of W ′ and σB[X] is a B-critter-order of W ′. But σA and σB

agree on X, so σA[X] = σB[X].

Lemma 7.5.70. Let k ⩾ 2 and G be k-creature free, and W = (G,H, φ, S1, S2) be a

disjoint generalized ω creature of adhesion size α. Then there exists an induced subgraph

G′ of G and an A-critter-like and B-critter-like disjoint generalized ω′-creature W ′ =

(G′, H ′, φ′, S ′
1, S

′
2), where ω′ ⩾ (logkα logkα(ω))

1/2α

4kα2 − 12.

530

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Furthermore there exists an ordering σ of the peripheral vertices such that σ is both

an A-critter ordering and a B-critter ordering of W .

Proof: By Lemma 7.5.64 there exists an induced subgraph G′ of G and an A-critter-

like and B-critter-like disjoint generalized ω′-creature W ′ = (G′, H ′, φ′, S ′
1, S

′
2), where

ω′ ⩾ (logkα logkα(ω))
1/α

16k2α3 − 12. By Lemma 7.5.69 applied to W ′ there exist an A-critter-

like and B-critter-like disjoint generalized ω′′-creature W ′′ = (G′′, H ′′, φ′′, S ′′
1 , S

′′
2) and

ordering σ of V (H ′′) such that G′′ is an induced subgraph of G′ (and therefore of G),

ω′′ ⩾
√
ω′ ⩾

(logkα logkα(ω))1/2α

4kα2
− 12,

and σ is both an A-critter ordering and a B-critter ordering of W ′′. Hence W ′′ satisfies

the conclusion of the lemma.

7.5.16 Extracting a Critter

The conclusion of Lemma 7.5.69 is almost sufficient for us to directly extract an ω-

critter from it. There is still one complication, namely peripheral vertices that on at least

one side do not realize any edge of the connectivity graph.

Lemma 7.5.71. Let G be a k-creature free graph, and let W = (G,H, φ, S1, S2) be a

disjoint generalized ω-creature Let ZA be the set of all peripheral vertices of H such that

there exists a component CA of G[Aφ] such that N(φ−1(v)) ∩ Aφ ⊆ CA, and ZB be the

set of all peripheral vertices of H such that there exists a component CB of G[Bφ] such

that N(φ−1(v)) ∩Bφ ⊆ CB. Then |ZA| < k and |ZB| < k.

Proof: We prove that |ZA| < k. Suppose for contradiction that |ZA| ⩾ k. Let

W ′ = (G′, H ′, φ′, S ′
1, S

′
2) be the result of dissolving all peripheral vertices not in ZA.

Then, by Lemma 7.5.16 W ′ is a disjoint generalized ω′-creature, where ω′ = |ZA| ⩾ k,

531

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

and G′ is an induced subgraph of G. By Lemma 7.5.28 the connectivity graph CA of W is

connected. Further no vertex of ZA realizes an edge of CA. Therefore, by Lemma 7.5.43,

statement (iii), there exists a component C of G[A′
φ] such that Aφ ⊆ C. But then, by

Lemma 7.5.43, statement (ii), G[A′
φ] = C. This yields a contradiction. On the one hand,

Lemma 7.5.4 shows that each vertex v ∈ ZA satisfies that φ′−1(v) has a neighbor in Aφ′ .

On the other hand, G′ is k-creature free and W ′ is a disjoint generalized ω-creature, and

so by Lemma 7.5.29, there can not be k peripheral vertices v such that φ′−1(v) has a

neighbor in C ′ = Aφ′ . This contradicts the assumption that |ZA| ⩾ k. The proof of the

upper bound for |ZB| is symmetric.

With Lemma 7.5.71 in hand we are ready to extract a critter!

Lemma 7.5.72. Let G be a k-creature free graph and W = (G,H, φ, S1, S2) be an A-

critter-like and B-critter-like disjoint generalized ω-creature, such that there exists an

ordering σ of the peripheral vertices such that σ is both an A-critter ordering and a B-

critter ordering of W . Then there exists an induced subgraph G′ in G, such that G′ is an

ω′-critter, where ω′ ⩾ ω−2k
2k+1

.

Proof: Let (CA, λA) and (CB, λB) be the labeled A-connectivity graph and labeled

B-connectivity graph of W respectively. Let A1, A2, . . . Ap be the components of G[Aφ]

in the order that the appear in on the path CA, and B1, B2, . . . Bq be the components of

G[Bφ] in the order that the appear in on the path CB. Let v1, . . . , vω be an ordering of

the peripheral vertices such that σ is both an A-critter ordering and a B-critter ordering

of W . Let XA be the subset of peripheral vertices such that every vi ∈ XA realizes a pair

{Aj, Aj+1}. Select integers i1 < i2 < . . . < ip−1 such that XA = {vi1 , vi2 , . . . vip−1}.

We claim that either, for every j ∈ {1, . . . , p−1} we have that vij realizes {Aj, Aj+1},

or for every j ∈ {1, . . . , p − 1} we have that vij realizes {Ap−j, Ap+1−1} Suppose via

realizes {Aj, Aj+1} and vib realizes {Aj+1, Aj+2}. If |a− b| > 1 then there exists a vic in

532

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

XA between via and vib in the ordering σ. Since σ is an A-critter ordering φ−1(vic) has a

neighbor in Aj+1. But then φ−1(via), φ
−1(vib) and φ−1(vic) all have a neighbor in Aj+1.

But {φ−1(via), φ
−1(vib), φ

−1(vic)} ⊆ XA} so each of them realize an edge of CA. But

then each of these edges is incident to Aj+1, contradicting that W is A-critter-like. We

conclude that if via realizes {Aj, Aj+1} and vib realizes {Aj+1, Aj+2} then |a− b| ⩽ 1. In

other words, the vertices of XA that realize consecutive edges of CA come consecutively in

the ordering vi1 , vi2 , . . . vip−1 . Hence for every j ∈ {1, . . . , p− 1} we have that vij realizes

{Aj, Aj+1}, or for every j ∈ {1, . . . , p − 1} we have that vij realizes {Ap−j, Ap+1−1}, as

claimed.

Without loss of generality the first of these two cases holds. In the second case we

may re-name for every i the component Ai to Ap+1−i and vice versa (this corresponds

to traversing the path CA from right to left, rather than from left to right). After re-

naming for every j ∈ {1, . . . , p − 1} we have that vij realizes {Aj, Aj+1}. Note that

this does not affect that σ is an A-critter ordering, because the definition of A-critter

orderings is independent of orderings of the components of A. Let XB be the subset of

peripheral vertices such that every vi ∈ XB realizes a pair {Bj, Bj+1}. Select integers

i′1 < i′2 < . . . < i′q−1 such that XB = {vi′1 , vi′2 , . . . vip−1′}. An identical argument to the

one for XA shows that without loss of generality for every j ∈ {1, . . . , q − 1} we have

that vi′j realizes {Bj, Bj+1},

Let ZA be the set of all peripheral vertices of H such that there exists a component

CA of G[Aφ] such that N(φ−1(v))∩Aφ ⊆ CA, and ZB be the set of all peripheral vertices

of H such that there exists a component CB of G[Bφ] such that N(φ−1(v)) ∩ Bφ ⊆ CB.

Then, by Lemma 7.5.71 we have |ZA| < k and |ZB| < k.

Note that all peripheral vertices that are not in ZA ∪ ZB realize an edge in CA and

an edge in CB and therefore are in XA ∩XB. Since |ZA ∪ ZB| < 2k it follows that there

exists a consecutive sub-sequence vℓ, vℓ+1, . . . , vρ of at least ω−2k
2k+1

vertices of XA ∩ XB.

533

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Further, for every j ⩽ p− 1 we have that vij realizes {Aj, Aj+1}, and for every j ⩽ q− 1

we have that vi′j realizes {Bj, Bj+1}. Thus there exist integers a and b such that for every

1 ⩽ c ⩽ ρ + 1 − ℓ it holds that vℓ+c−1 realizes {Aa+c−1, Aa+c} and {Bb+c−1, Bb+c}. Said

more plainly the peripheral vertices vℓ, vℓ+1, . . . , vρ realize the subpath Aa, . . . Aa+ρ+1−ℓ

of CA and the subpath Bb, . . . Bb+ρ+1−ℓ of CB.

We now construct a critter. We set t̂ = ρ + 1 − ℓ and for every 1 ⩽ i ⩽ t̂ + 1 we

set Âi = Aa+i−1 and B̂i = Bb+i−1. For every 1 ⩽ i ⩽ t̂ we set X̂i = φ−1(vℓ+i−1). We

now verify that Â1, . . . Ât̂+1, B̂1, . . . B̂t̂+1, X̂1, . . . X̂t̂ satisfy the properties of a t̂-critter.

For property (i), Âi is anticomplete with Âj for j ̸= i because Âi and Âj are distinct

components of G[Aφ]. Similarly B̂i is anticomplete with B̂j for i ̸= j. Finally, Âi is

anticomplete with B̂j (even for the case i = j) because Aφ is anticomplete with Bφ. For

property (ii) every set Âi and B̂i is connected in G because they are components of G[Aφ]

and G[Bφ] respectively.

For property (iii) we observe that for every 1 ⩽ i ⩽ t, X̂i = φ−1(vℓ+i−1), and (vℓ+i−1

realizes the edges

{Aa+i−1, Aa+i} = {Âi, Âi+1} and

{Bb+i−1, Bb+i} = {B̂i, B̂i+1}

in CA and CB, respectively. Since W is A-critter-like and B-critter-like it follows that

N(X̂i) ⊆ Âi ∪ Âi+1 ∪ B̂i ∪ B̂i+1.

For property (iv), let S⋆1 , S⋆2 be witness separators for W . By property (i) of general-

ized ω-creatures we have that S⋆1 ∩X̂i and S⋆1 ∩X̂i are distinct minimal Aφ, Bφ-separators

in G[Aφ∪Bφ∪X̂i]. Since NG(X̂i) ⊆ Âi∪Âi+1∪B̂i∪B̂i+1 it follows that S⋆1∩X̂i and S⋆1∩X̂i

are distinct minimal (Âi ∪ Âi+1), (B̂i ∪ B̂i+1)-separators in G[X̂i ∪ Âi ∪ Âi+1 ∪ B̂i ∪ B̂i+1].

For the last part of property (iv) note that that X̂i = φ−1(vℓ+i−1) and that vℓ+i−1

realizes the pairs {Âi, Âi+1} and {B̂i, B̂i+1}. Thus (from the definition of A-connectivity

534

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

graphs and B-connectivity graphs) there is a path from Âi to Âi+1 through X̂i − S1 and

from B̂i to B̂i+1 through X̂i − S1. By property (iii) of generalized ω-creatures there is

also a path from Âi to Âi+1 through X̂i−S2 and from B̂i to B̂i+1 through X̂i−S2. Since

S⋆1 ⊆ S1, and S⋆2 ⊆ S2 it follows that there exist paths from Âi to Âi+1 both through

X̂i − S⋆1 and through X̂i − S⋆2 and from B̂i to B̂i+1 both through X̂i − S⋆1 and through

X̂i − S⋆2 .

We conclude that Â1, . . . Ât̂+1, B̂1, . . . B̂t̂+1, X̂1, . . . X̂t̂ is a t̂-critter and t̂ ⩾ ω−2k
2k+1

We are now ready to prove Lemma 7.3.3

Lemma 7.3.3Let k ⩾ 2 and G be a k-creature free graph, and W = (G,H, φ, S1, S2) be

a connected, good, full generalized ω-creature. Then there exists an induced subgraph G′

of G which is a t-critter for t ⩾ (log log(ω))1/4k

96k4
− 4.

Proof: Since W is a connected, good full generalized ω-creature, by Lemma 7.5.20

there exists an induced subgraph G′ of G and a good, full, connected generalized ω′-

creature W ′ with adhesion size α ⩽ 2k and ω′ ⩾ ω/2.

Since W ′ is a full generalized ω′-creature with adhesion size 2k, by Lemma 7.5.24 ap-

plied to W ′ there exists a full disjoint generalized ω′′-creature, W ′′ = (G′′, H ′′, φ′′, S ′′
1 , S

′′
2),

of adhesion size 2k such that G′′ is an induced subgraph of G′ (and therefore of G), and

ω′′ = ω′ ⩾ ω/2k.

Since G′′ is k-creature free and W ′′ is a disjoint generalized ω′′-creature with ad-

hesion size 2k, by Lemma 7.5.70 applied to W ′′ there exists an induced subgraph G′′′

of G′′ and an A-critter-like and B-critter-like disjoint generalized ω′′′-creature W ′′′ =

(G′′′, H ′′′, φ′′′, S ′′′
1 , S

′′′
2), where ω′′′ ⩾ (log2k2 log2k2 (ω/2k))

1/4k

16k3
− 12. Furthermore there exists

an ordering σ of the peripheral vertices such that σ is both an A-critter ordering and a

B-critter ordering of W ′′′.

Therefore, by Lemma 7.5.72 there exists an induced subgraph G⋆ of G′′′ (and therefore

535

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

of G) that is a t-critter for

t ⩾
ω′′′ − 2k

2k + 1
⩾

(log log(ω))1/4k

96k4
− 4

This concludes the proof.

7.6 Families with Creatures or Critters are Feral

7.6.1 Boundaried Graphs, Monadic Second Order Logic, and

Finite State

Towards the proof of Theorem 7.1.5 we first review the definitions of CMSO logic,

boundaried graphs, gluing and finite state.

Definition 7.6.1. [Graph Family] A graph family is a set F of graphs.

Definition 7.6.2. [Boundaried graph] A boundaried graph is a graph G with a set

δ(G) ⊆ V (G) of distinguished vertices called boundary vertices, and an injective labeling

λG : δ(G) → N. The set δ(G) is the boundary of G, and the label set of G is Λ(G) =

{λG(v) | v ∈ δ(G)}.

For ease of presentation, we sometimes abuse notation and treat equally-labeled ver-

tices of different boundaried graphs, as well as the vertex that is the result of the identi-

fication of two such vertices, as the same vertex. Given a finite set I ⊆ N, GI denotes the

class of all boundaried graphs whose label set is I, and G⊆I =
⋃
I′⊆I GI′ . A boundaried

graph in G⊆[t] is called a t-boundaried graph. Finally, G denotes the class of all boundaried

graphs. The main operation employed to unite two boundaried graphs is the one that

glues their boundary vertices together. Formally,

536

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Definition 7.6.3. [Gluing by ⊕] Let G1 and G2 be two boundaried graphs. Then,

G1⊕G2 is the (not-boundaried) graph obtained from the disjoint union of G1 and G2 by

identifying equally-labeled vertices in δ(G1) and δ(G2).

Counting Monadic Second Order Logic The syntax of Monadic Second Order

Logic (MSO) of graphs includes the logical connectives ∨, ∧, ¬, ⇔, ⇒, variables for

vertices, edges, sets of vertices and sets of edges, the quantifiers ∀ and ∃, which can be

applied to these variables, and five binary relations:

1. u ∈ U , where u is a vertex variable and U is a vertex set variable;

2. d ∈ D, where d is an edge variable and D is an edge set variable;

3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation

is that the edge d is incident to u;

4. adj(u, v), where u and v are vertex variables, and the interpretation is that u and

v are adjacent;

5. equality of variables representing vertices, edges, vertex sets and edge sets.

Counting Monadic Second Order Logic (CMSO) extends MSO by including atomic

sentences testing whether the cardinality of a set is equal to q modulo r, where q and r

are integers such that 0 ⩽ q < r and r ⩾ 2. That is, CMSO is MSO with the following

atomic sentence: cardq,r(S) = true if and only if |S| ≡ q (mod r), where S is a set. We

refer to [128, 54, 129] for a detailed introduction to CMSO.

Definition 7.6.4. [Family Fψ] Given a CMSO-formula ψ, the family Fψ is defined as

the set of all graphs G such that G |= ψ.

537

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

For an example the formula

ψ = ∃X1 ⊆ V (G) ∃X2 ⊆ V (G)
[(
∀u ∈ V (G) u ∈ X1 ∨ u ∈ X2

)
∧ ∀u ∈ V (G) ∀v ∈ V (G)(
¬adj(u, v) ∨ (u ∈ X1 ∧ v ∈ X2) ∨ (u ∈ X2 ∧ v ∈ X1)

)]

yields the family Fψ of all bipartite graphs.

Definition 7.6.5. [CMSO-definable family] A family F is CMSO-definable if there

exists a CMSO-formula ψ such that F = Fψ. In this case, we say that ψ defines σ.

Finite State The goal of this subsection is to recall a variant of the classical Courcelle’s

Theorem [54, 130, 129] (see also [104]), which is a central component in the proof of our

main result. This statement essentially says that the canonical equivalence relation over

boundaried graphs defined below has finite index.

Definition 7.6.6. [Canonical equivalence] Given a graph family F , the canonical

equivalence relation ≡F on boundaried graphs is defined as follows. For two boundaried

graphs Gα and Gβ, we say that Gα ≡F Gβ if (i) Λ(Gα) = Λ(Gβ) and (ii) for all

boundaried graphs Gγ we have

Gα ⊕Gγ ∈ F ⇔ Gβ ⊕Gγ ∈ F

It is easy to verify that ≡F is indeed an equivalence relation. Given a family F of

graphs and I ⊆ N, we let E≡σ [G⊆I] denote the set of equivalence classes of ≡F when

restricted to G⊆I .

Definition 7.6.7. [Finite state] A graph property σ has finite state if, for every I ⊆ N,

E≡F [G⊆I] is finite.

538

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Given a CMSO sentence ψ, the canonical equivalence relation associated with ψ is

≡Fψ , and for the sake of simplicity, we denote this relation by ≡ψ. We are now ready

to state the variant of Courcelle’s Theorem which was proven by Bodlaender et al. [131]

(see also [54, 130, 129]) and which we use in this paper.

Theorem 7.6.8 ([131]). Every CMSO-definable graph property has finite state.

Remark 1. Theorem 7.6.8 is stated for graphs here, while it is stated and proved for

more general structures by Bodlaender et al.[131]. Because we do not need the full power

of the theorem of [131], and stating the theorem in its full generality requires an extra

page of definitions we only state it here for the special case of graphs.

Remark 2. We would like to remark that neither the notion of “finite state” nor the

statement of Theorem 7.6.8 should in any way be attributed to Bodlaender et al. [131].

The notion of finite state and a theorem very similar to the statement of Theorem 7.6.8

was stated and proved explicitly by Downey and Fellows [45]. For technical reasons the

precise statement of the theorem(s) of Downey and Fellows [45] does not adequately

suit our needs (or the needs of Bodlaender et al. [131]), nor is it obvious how to derive

Theorem 7.6.8 as a corollary from the results of Downey and Fellows [45]. However the

proof of Theorem 7.6.8 very closely follows proofs of analogous statements by Downey

and Fellows [45].

The fact that every MSO-definable or CMSO-property on graphs has finite state is

implicitly used, if (to the best of our knowledge) never explicitly stated, in every proof

of (variants of) Courcelle’s Theorem [132, 54, 130, 129].

7.6.2 Pumping Proof

Let G be a t-critter with t-critter partition (A1, . . . , At+1, B1, . . . , Bt+1, X1, . . . Xt).

The pair (G,W) is called a witness-minimal t-critter if there does not exist a proper

539

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

induced subgraph G′ of G such that

W ′ = {Ai ∩ V (G′) : i ⩽ t+ 1}, {Bi ∩ V (G′) : i ⩽ t+ 1}, {Xi ∩ V (G′) : i ⩽ t}

is a t-critter partition of G′. A pair (Si1, S
i
2) of vertex subsets of Xi satisfy Xi if Si1, S

i
2

satisfy property (iv) of t-critters for Xi.

Lemma 7.6.9. Let G be a t-critter and W = (A1, . . . , At+1, B1, . . . , Bt+1, X1, . . . Xt) be

a t-critter partition of G such that (G,W) is a witness minimal t-critter. Then, for every

i ⩽ t and pair (Si1, S
i
2) that satisfy Xi we have Si1 ∩ Si2 = ∅.

Proof: Suppose for contradiction that Si1 ∩ Si2 contains a vertex v. We claim that

W ′ = (A1, . . . , At+1, B1, . . . , Bt+1, X1, . . . , Xi − {v}, Xi+1, . . . , Xt)

is a t-critter partition of G− v. Since W satisfies properties (i), (ii), (iii) for G, we have

that W ′ satisfies properties (i), (ii), (iii) for G − v. Thus it is sufficient to argue that

(Si1 − {v}, Si2 − {v}) satisfy Xi − {v} in G− v. Since Si1 is a minimal (Ai ∪ Ai+1),(Bi ∪

Bi+1)-separator in G[Ai ∪ Ai+1 ∪ Bi ∪ Bi+1 ∪ Xi] it follows that Si1 − {v} is a minimal

(Ai∪Ai+1),(Bi∪Bi+1)-separator in (G−v)[Ai∪Ai+1∪Bi∪Bi+1∪Xi−{v}]. Further, since

(G−v)[Ai∪Ai+1∪Bi∪Bi+1∪Xi−{v}]− (Si1−{v}) = G[Ai∪Ai+1∪Bi∪Bi+1∪Xi]−Si1

it follows that there is a path from Ai to Ai+1 through (Xi−{v})− (Si1−{v}) and from

Bi to Bi+1 through (Xi−{v})− (Si1−{v}). A symmetric argument shows that Si2−{v}

is a minimal (Ai∪Ai+1),(Bi∪Bi+1)-separator in (G−v)[Ai∪Ai+1∪Bi∪Bi+1∪Xi−{v}]

and that there is a path from Ai to Ai+1 through (Xi − {v}) − (Si2 − {v}) and from Bi

to Bi+1 through (Xi − {v}) − (S2
1 − {v}). But then G − v is a t-critter, contradicting

witness-minimality of (G,W).

An immediate corollary to Lemma 7.6.9 is that A and B can not have any common

540

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

neighbors.

Lemma 7.6.10. Let G be a t-critter and W = (A1, . . . , At+1, B1, . . . , Bt+1, X1, . . . Xt)

be a t-critter partition of G such that (G,W) is a witness-minimal t-critter. Then,

N(A1 ∪ A2 . . . , At+1) ∩N(B1 ∪B2 . . . , Bt+1) = ∅.

Proof: Suppose for contradiction that there exists a vertex v in the common neigh-

borhood of A1 ∪ A2 . . . , At+1 and of B1 ∪ B2 . . . , Bt+1. Then x ∈ Xi for some i, so

x ∈ N(Ai ∪ Ai+1) ∩ N(Bi ∪ Bi+1) ∩ Xi. Let (Si1, S
i
2) satisfy Xi. Since both Si1, S

i
2 sep-

arate Ai ∪ Ai+1 from Bi ∪ Bi+1 it follows that x ∈ Si1 and x ∈ Si2. This contradicts the

conclusion of Lemma 7.6.9 that Si1 and Si2 are disjoint.

Lemma 7.6.11. Let G be a t-critter and W = (A1, . . . , At+1, B1, . . . , Bt+1, X1, . . . Xt) be

a t-critter partition of G, such that (G,W) is a witness-minimal t-critter. Then, for every

i ⩽ t we have |N(Ai)∩Xi| ⩽ 3, |N(Bi)∩Xi| ⩽ 3, |N(Ai+1)∩Xi| ⩽ 3, |N(Bi+1)∩Xi| ⩽ 3.

Proof: Let (Si1, S
i
2) be a pair that satisfies Xi. Since Si1, S

i
2 are disjoint minimal

(Ai ∪ Ai+1), (Bi ∪ Bi+1)-separators in G[Ai ∪ Ai+1 ∪ Bi ∪ Bi+1 ∪Xi] there exists a path

PAB from A to B through Xi. We select PAB to be the shortest such path, in particular

PAB contains precisely one vertex inN(Ai∪Ai+1) and precisely one vertex inN(Bi∪Bi+1).

Since (Si1, S
i
2) satisfy Xi there exists a path PA1 from Ai to Ai+1 through Xi − Si1, a

path PA2 from Ai to Ai+1 through Xi−Si2, a path PB1 from Bi to Bi+1 through Xi−Si1,

and a path PB2 from Bi to Bi+1 through Xi − Si2. We select PA1, PA2, PB1 and PB2 to

be the shortest such paths, specifically each of PA1 and PA2 contain precisely one vertex

in N(Ai) and precisely one in N(Ai+1). and each of PB1 and PB2 contain precisely one

vertex in N(Bi) and precisely one in N(Bi+1). Note that PA1 and PA2 are disjoint from

N(Bi ∪ Bi+1), and Note that PB1 and PB2 are disjoint from N(Ai ∪ Ai+1) because each

of these paths is disjoint from at least one (Ai ∪ Ai+1), (Bi ∪Bi+1)-separator.

541

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

We prove that |N(Ai) ∩ Xi| ⩽ 3. Let x be the unique vertex in N(Ai ∪ Ai+1) on

PAB, y be the unique vertex in N(Ai) on PA1, and z be the unique vertex in N(Ai)

on PA2. Suppose for contradiction that |N(Ai) ∩ Xi| > 3, and select a vertex v ∈

(N(Ai) ∩Xi)− {x, y, z}. We claim that

W ′ = (A1, . . . , At+1, B1, . . . , Bt+1, X1, . . . , Xi − {v}, Xi+1, . . . , Xt)

is a t-critter partition of G− v.

Since G is a minimal t-critter, by Lemma 7.6.9 Si1 and Si2 are disjoint. Since they

are distinct (by property (iv) of t-critters) they are also non-empty. If v ∈ Si1 then

let Ŝi1 = Si1 − {v}. We have that Ŝi1 is a minimal (Ai ∪ Ai+1),(Bi ∪ Bi+1)-separator in

(G− v)[Ai ∪ Ai+1 ∪ Bi ∪ Bi+1 ∪Xi − {v}]. If v /∈ Si1 then Si1 − {v} is a (not necessarily

minimal) (Ai ∪Ai+1),(Bi ∪Bi+1)-separator in (G− v)[Ai ∪Ai+1 ∪Bi ∪Bi+1 ∪Xi − {v}].

Thus Si1 contains a minimal (Ai ∪Ai+1),(Bi ∪Bi+1)-separator Ŝi1 in (G− v)[Ai ∪Ai+1 ∪

Bi ∪ Bi+1 ∪Xi − {v}]. Since Ŝi1 contains a vertex of PAB we have that Ŝi1 is non-empty.

In either case Si1 contains a non-empty minimal (Ai ∪ Ai+1),(Bi ∪ Bi+1)-separator Ŝi1 in

(G− v)[Ai ∪Ai+1 ∪Bi ∪Bi+1 ∪Xi−{v}]. An identical argument shows that Si2 contains

a non-empty minimal (Ai ∪ Ai+1),(Bi ∪ Bi+1)-separator Ŝi2 in (G − v)[Ai ∪ Ai+1 ∪ Bi ∪

Bi+1 ∪Xi − {v}]. Since Si1 and Si2 are disjoint, so are Ŝi1 and Ŝi2.

Finally, PA1 is a path in G − v from Ai to Ai+1 through (Xi − {v}) − Ŝi1, PA2 is a

path in G− v from Ai to Ai+1 through (Xi − {v})− Ŝi2, PB1 is a path in G− v from Bi

to Bi+1 through (Xi − {v}) − Ŝi1, and PB2 is a path in G − v from Bi to Bi+1 through

(Xi − {v})− Ŝi2. Hence W ′ is a t-critter partition of G− v contradiciting minimality of

(G,W). The proofs that |N(Bi) ∩Xi| ⩽ 3, |N(Ai+1) ∩Xi| ⩽ 3, and |N(Bi+1) ∩Xi| ⩽ 3

are symmetric.

Let s be a positive integer. A t-critter partitionW = (A1, . . . , At+1, B1, . . . , Bt+1, X1, . . . Xt)

542

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

of a graph G is said to be s-size-bounded if |Ai| ⩽ s and |Bi| ⩽ s for i ⩽ t+1 and |Xi| ⩽ s

for i ⩽ t. In other words a A t-critter partition W is s-size bounded if all parts of the

partition have size at most s. An s-size bounded t-critter is a graph G that has an s-size

bounded t-critter partition W .

Lemma 7.6.12. For every CMSO-definable hereditary graph family F there exists an

integer T , such that for every integer s, if there exists an s-size-bounded t-critter G ∈ F

and t > T then there exists an s-size-bounded t-critter G′ ∈ F and t′ > t.

Proof: Let F be a CMSO-definable graph family, and G be a minimal t-critter such

that G ∈ F . Set I = {1, . . . , 6}. Since F is a CMSO-definable graph property, by

Theorem 7.6.8 we have that the number of equivalence classes in E≡F [G⊆I] is finite. Let

γ be the number of equivalence classes in E≡F [G⊆I]. We prove that T = 26γ satisfies the

conclusion of the lemma.

Let G be a graph and W = (A1, . . . , At+1, B1, . . . , Bt+1, X1, . . . Xt) be an s-size

bounded t-critter partition for G. Because σ is hereditary we may assume without loss

of generality that (G,W) is a witness-minimal t-critter. For every 1 ⩽ i ⩽ t we define

Di = N(Ai ∪Bi) ∩Xi,

Zi = Di ∪
⋃
j⩽i

(Aj ∪Bj) ∪
⋃
j<i

Xj, and

Qi = (V (G)− Zi) ∪Di.

By Lemma 7.6.11 |Di| ⩽ 6 for every i, while Lemma 7.6.10 yields that Di ∩ N(Ai) and

Di ∩N(Bi) are disjoint. For each i we define an injective labeling λi : Di → {1, . . . , 6},

such that every v ∈ Di ∩ N(Ai) satisfies λi(v) ∈ {1, 2, 3}, while every v ∈ Di ∩ N(Bi)

satisfies λi(v) ∈ {4, 5, 6}.

For every i ⩽ t we define the boundaried graph Gpre
i = G[Zi] with boundary Di

543

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

and labeling λi and Gpost
i = G[Qi] with boundary Di and labeling λi. Note that for

every i we have G = Gpre
i ⊕ Gpost

i . If t > T = 26γ then there exist i < j ⩽ t such

that Λ(Gpre
i) = Λ(Gpre

j) and Gpre
i ≡F Gpre

j . Let G′ = Gpre
j ⊕ Gpost

i . We claim that

G′ satisfies the conclusion of the Lemma. First, note that G ∈ F by assumption, so

G = (Gpre
i ⊕G

post
i) ∈ F . Since Gpre

j ≡F Gpre
i it follows that (Gpre

j ⊕G
post
i) ∈ F . However,

G′ = Gpre
j ⊕G

post
i and so G′ ∈ F .

We set t̂ = (t+j− i) and show that that G′ is a t̂-critter by giving a t̂-critter partition

Ŵ = Â1, . . . Â ˆt+1, B̂1, . . . B̂ ˆt+1, X̂1, . . . X̂t̂, of G′ For p ⩽ j we set Âp = Ap, B̂p = Bp,

and X̂p = Xp, or rather the copies of Ap, Bp and Xp respectively, in Gpre
j . For p from

j + 1 and up to t̂ + 1 we set Âp = Ap+i−j and B̂p = Bp+i−j, more specifically the copies

of Ap+i−j and Bp+i−j in Gpost
i . For p from j + 1 and up to p we set X̂p to be the copy of

Xp+i−j in Gpost
i . It follows directly from their definitions that

{Âp, B̂p : 1 ⩽ p ⩽ ˆt+ 1} ∪ {X̂p : 1 ⩽ p ⩽ t̂}

is a partition of V (G) and that it satisfies properties (i), (ii) and (iii) of t̂-critter parti-

tions. We now check property (iv).

For property (iv) we note that for every p < j we have that G′[Âp ∪ Âp+1 ∪ B̂p ∪

B̂p+1 ∪ X̂p] = G[Ap ∪ Ap+1 ∪ Bp ∪ Bp+1 ∪Xi], and that therefore (iv) is satisfied for all

p < j. Similarly, for p > j we have that G′[Âp ∪ Âp+1 ∪ B̂p ∪ B̂p+1 ∪ X̂i] = G[Ap+i−j ∪

Ap+i−j+1 ∪Bp+i−j ∪Bp+i−j+1 ∪Xp+i−j], and that therefore (iv) is satisfied for all p > j.

We are left with verifying property (iv) for p = j. We have that G′[Âj ∪ B̂j] =

G[Aj ∪Bj] and that G′[Âj+1 ∪ B̂j+1 ∪ X̂j] = G[Ai+1 ∪Bi+1 ∪Xi]. Additionally, for every

edge uv ∈ E(Gpre
j) such that u ∈ Aj ∪ Bj and v ∈ Dj the copy u′ of u in Âj ∪ B̂j and

vertex v′ of X̂j corresponding to v are adjacent in G′.

Let Ŝj1 and Ŝj2 be the copies in X̂j of Si1 and Si2 respectively. We claim that Ŝj1 is a

544

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

(Âj ∪ Âj+1), (B̂j ∪ B̂j+1)-separator in G′[Âj ∪ Âj+1 ∪ B̂j ∪ B̂j+1 ∪ X̂j]. Indeed, suppose

there was a path P̂ in G′[X̂j] − Ŝj1 that starts in a neighbor of Âj ∪ Âj+1 and ends in a

neighbor of B̂j ∪ B̂j+1. Then the copy P of P̂ in Xi would be a path that starts in a

neighbor of Âi∪ Âi+1 and ends in a neighbor of B̂i∪ B̂i+1, contradicting that Si1 separates

Âi ∪ Âi+1 from B̂i ∪ B̂i+1 in G[Ai ∪Ai+1 ∪Bj ∪Bi+1 ∪Xi]. For an identical reason Ŝj2 is

a (Âj ∪ Âj+1), (B̂j ∪ B̂j+1)-separator in G′[Âj ∪ Âj+1 ∪ B̂j ∪ B̂j+1 ∪ X̂j].

Since Si1 and Si2 are disjoint, so are Ŝi1 and Ŝi2. Since Xi contains a path from a

neighbor of Ai ∪Ai+1 to a neighbor of Bi ∪Bi+1 in G, it follows that X̂j contains a path

from a neighbor of Âj ∪ Âj+1 to a neighbor of B̂k ∪ B̂j+1 in G. Therefore each of Ŝi1 and

Ŝi2 contains a non-empty minimal (Âj ∪ Âj+1), (B̂j ∪ B̂j+1)-separator in G′[Âj ∪ Âj+1 ∪

B̂j ∪ B̂j+1 ∪ X̂j]. Since Ŝi1 and Ŝi2 are disjoint these minimal separators are distinct.

Finally, Xi − Si1 contains a path P from a neighbor of Ai to a neighbor of Ai+1. The

copy of P in X̂ is a path from a neighbor of Âj to a neighbor of Âj+1 in X̂j− Ŝj1. Identical

arguments yield the existence of a paths from a neighbor of Âj to a neighbor of Âj+1 in

X̂j − Ŝj2, from a neighbor of B̂j to a neighbor of B̂j+1 in X̂j − Ŝj1, and from a neighbor of

B̂j to a neighbor of B̂j+1 in X̂j − Ŝj2. We conclude that Ŵ is a t+ j − i-critter partition

of G′. Since every part of Ŵ is a copy of a part of W and W is s-size-bounded, so is Ŵ .

Lemma 7.6.13. Let G be a t-critter, then G has at least 2t minimal separators.

Proof: Let G be a t-critter and let A1, A2, . . . At+1, B1, B2, . . . Bt+1, X1, X2, . . . , Xt

be the partitioning of its vertices given in Definition 7.1.3. Let S initially be an empty

set, and for each i, 1 ⩽ i ⩽ t, choose either Si1 or Si2 and add this set to S. Since each

choice of adding Si1 or Si2 is made independently, there are 2t choices for S. Let a1 ∈ A1

and b1 ∈ B1, we claim that S is a a1,b1-minimal separator.

It follows from properties (ii) and (iv) of Definition 7.1.3 that the vertices of the Ai’s

545

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

all belong to one component, say A, of G−S and that the vertices of the Bi’s all belong

to one component, say B, of G − S. It follows from properties (i), (iii), and (iv) that

A ̸= B. Hence S is an a1, b1-separator. To see that it is minimal, take some vertex v ∈ S,

say v belongs to Si where Si is either Si1 or Si2 for 1 ⩽ i ⩽ t. Then since Si is a minimal

(Ai ∪ Ai+1), (Bi, Bi+1)-separator in G[Ai ∪ Ai+1 ∪ Bi ∪ Bi+1 ∪ Xi], there will be a path

from either Ai or Ai+1 to either Bi or Bi+1 in G[Ai ∪ Ai+1 ∪ Bi ∪ Bi+1 ∪Xi]− (Si − v).

Since all vertices of the Ai’s belong to one component of G − S and all vertices of the

Bi’s belong to a different component of G − S, there will be a path from a1 to b1 in

G− (S − v). It follows that S is a minimal separator.

Lemma 7.6.14. For every hereditary CMSO-definable family F , if for every t there

exists a t-critter G ∈ F then σ is feral.

Proof: Let F be a hereditary CMSO-definable family. By Lemma 7.6.12 there exists

an integer T , such that for every integer s, if there exists an s-size-bounded t-critter

G ∈ F with t > T then there exists an s-size-bounded t-critter G′ ∈ F with and t′ > t.

Select t = T + 1, then by assumption there exists a t-critter G ∈ F . Let s = |V (G)|,

then G is an s-bounded t-critter with t > T . By Lemma 7.6.12 there exists an s-bounded

t′-critter G′ ∈ F , and t′ ⩾ t + 1. Induction then yields that for every q there exists an

s-bounded n-critter G′ ∈ F , and n ⩾ q. Such an n-critter G′ has at least n and at most

5sn vertices, and at least 2n minimal separators (by Lemma 7.6.13). Thus for every n

there exists a graph G′ ∈ F , at least n vertices, and at least (21/5s)n minimal separators.

Therefore F is feral.

Lemma 7.6.14 handle graph properties that contain arbitrarily large critters. We now

need to handle properties that contain arbitrarily large creatures.

The authors [5] showed that if G contains a k-creature for sufficiently large k, then G

must contain a k′-creature which falls into one out of 6 very structured graph families.

546

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Specifically, The authors proved the following.

Lemma 7.6.15 ([5]). Let k be a natural number. Then there exists a natural number k′

large enough so that if G is a graph that contains a k′-creature (A, B, {x1, x2, . . . , xk′},

{y1, y2, . . . , yk′}), then G contains an induced k-theta, k-prism, k-pyramid, k-ladder-

theta, k-ladder-prism, or a k-ladder.

We do not re-define the graphs listed in Lemma 7.6.15 in this paper, because every-

thing we need to know about them is encapsulated in a simple observation which can

easily be derived by inspection.

To phrase this observation we need a few definitions. A boundaried path is a 2-

boundaried graph G such that G is a path and the endpoints of the path are the boundary

vertices. An apex path is a graph G such that there exists a vertex v such that G − v

is a path and v is adjacent to both endpoints of the path G − v. The vertex v is then

called an apex. The apex may or may not have edges to the internal verties of the path.

A boundaried apex path is a 3-boundaried graph G such that G is an apex path, and

the boundary of G is the apex v as well as the two endpoints of the path G − v. A

shortening of a boundaried path is a boundaried path on fewer vertices. A shortening of

a boundaried apex path is a boundaried apex path on fewer vertices.

An inspection k-thetas, k-prisms, k-pyramids, k-ladder-thetas, k-ladder-prisms, and

k-ladders shows that if G is one of these graphs and G has n >> k vertices, then G either

contains a long induced path P or a long induced apex path P̂ , such that the internal

vertices of P (or P̂) do not have any neighbors outside of P (or P̂). Further, shortening

this path does not destroy the property of G being a k-theta, k-prism, k-pyramid, k-

ladder-theta, k-ladder-prism, and k-ladder. We now formalize this observation in the

language of boundaried graphs.

547

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

Lemma 7.6.16. Let G be a k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism

or k-ladder on n vertices. Then G = P ⊕ R where P is either a boundaried path or a

boundaried apex path on at least n
5k

vertices. Furthermore, for every shortening P ′ of P ,

P ′ ⊕R is a k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism or k-ladder.

Proof: [Proof sketch.] The statement of the lemma immediately follows from the

observation that for each of the listed graphs, the vertex set can be partitioned into

at most 5k induced paths and apex paths, such that for each path/apex path in the

partition only the endpoints and apex have neighbours outside the path/apex path.

Details omitted.

Lemma 7.6.17. Let F be a CMSO-definable graph family. Then there exists a constant

c such that for every k, if there exists a k-theta, k-prism, k-pyramid, k-ladder-theta,

k-ladder-prism or k-ladder G such that σ(G) = true then there exists a k-theta, k-prism,

k-pyramid, k-ladder-theta, k-ladder-prism or k-ladder G′ ∈ F such that |V (G′)| ⩽ ck

Proof: Set I = {1, 2, 3} and consider the equivalence classes E≡F [G⊆I] of≡σ restricted

to I-boundaried graphs. Let γ1 be the maximum, taken over all equivalence classes in

E≡F [G⊆I] that contain at least one boundaried path, of the minimum number of vertices

of a boundaried path in that equivalence class. Similarly, let γ2 be the maximumm taken

over all equivalence classes in E≡F [G⊆I] that contain at least one boundaried apex path,

of the minimum number of vertices of a boundaried apex path in that equivalence class.

We set γ = max(γ1, γ2). From the choice of γ it follows that for every boundaried

path P , if V (P) > γ then there exists a boundaried path P ′ such that P ′ ≡F P and

|V (P ′)| ⩽ γ < |V (P)|. Similarly, for every boundaried apex path P , if V (P) > γ then

there exists a boundaried apex path P ′ such that P ′ ≡F P and |V (P ′)| ⩽ γ < |V (P)|.

We set c = 5γ and claim that c satisfies the conclusion of the lemma. Let k be an

integer and suppose that there exists a graph G ∈ F such that G is a k-theta, k-prism,

548

Graph Classes with Few Minimal Separators. II. A Dichotomy Chapter 7

k-pyramid, k-ladder-theta, k-ladder-prism or k-ladder. Of all such graphs pick G with

the minimum number of vertices. We claim n = |V (G)| ⩽ ck = 5γk.

Suppose not, then by Lemma 7.6.16 we have that G = P ⊕ R, where P is either a

boundaried path or a boundaried apex path on at least n
5k
> 5γk

5k
⩾ γ vertices.

By the choice of γ there exists a shortening P ′ of P such that P ′ ≡F P and |V (P ′)| ⩽

γ < |V (P)|. Since P and P ′ are both boundaried paths or both boundaried apex paths

it follows that the sizes of their boundaries are equal, namely |δ(P)| = |δ(P ′)|. We set

G′ = P ′ ⊕R. We have that

|V (G′)| = |V (P ′)|+ |V (R)| − |δ(P ′)| < |V (P)|+ |V (R)| − |δ(P)| = |V (G)|.

By Lemma 7.6.16, since P ′ is a shortening of P we have that G′ is a k-theta, k-

prism, k-pyramid, k-ladder-theta, k-ladder-prism or k-ladder. Further, since P ′ ≡F P

and σ(P ⊕ R) ∈ F it follows that G′ = (P ′ ⊕ R) ∈ F . But that contradicts the choice

of G as the k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism or k-ladder with

fewest vertices such that G ∈ F .

Lemma 7.6.18. Let G be a k-creature. Then G has at least 2k minimal separators.

Proof: Let G be a k-creature, and let A, X = {x1, x2, . . . , xk}, Y = {y1, y2, . . . , yk},

and B be the partition of V (G) given in Definition 7.1.1. Let a ∈ A and b ∈ B. We can

make a minimal a, b-separator by selecting exactly one vertex from each pair xi and yi,

1 ⩽ i ⩽ k. There are 2k choices for such a minimal separator, which proves the lemma.

Lemma 7.6.19. For every hereditary CMSO-definable graph family F , if for every t

there exists a t-creature G such that G ∈ F then F is feral.

Proof: Let F be a hereditary CMSO-definable graph family such that for every t

549

there exists a t-creature G such that G ∈ F .

We first claim that for every integer k there exists a k-theta, k-prism, k-pyramid,

k-ladder-theta, k-ladder-prism or k-ladder G such that G ∈ F . Towards a proof of this

claim let k be given. By Lemma 7.6.15 there exists a k′ such that every k′-creature G

contains a k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism or k-ladder as an

induced subgraph. By our assumption on σ there exists a k′-creature G such that G ∈ F .

Let G′ be an induced k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism or k-

ladder in G. Since G′ is an induced subgraph of G and F is hereditary it follows that

G′ ∈ F . This proves the claim.

The claim, together with Lemma 7.6.17 yields that there exists a constant c such that

for every k there exists a k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism or

k-ladder G such that G ∈ F and |V (G)| ⩽ ck. However each of k-theta, k-prism, k-

pyramid, k-ladder-theta, k-ladder-prism or k-ladder is a k-creature and therefore has at

least 2k minimal separators by Lemma 7.6.18. Hence, for every n there exists a graph G

on at least n and at most cn vertices such that G ∈ F and G has at least 2n/c minimal

separators. Hence F is feral, as claimed.

Theorem 7.1.4, together with Lemmas 7.6.14 and 7.6.19 together imply Theorem 7.1.5

Proof: [Proof of Theorem 7.1.5] Let F be a CMSO-definable hereditary graph family.

If there exists an integer k such that F neither contains a k-creature nor a k-critter then,

by Theorem 7.1.4 F is quasi-tame. If no such integer k exists it follows that F either

contains a t-critter for every t, or a t-creature for every t. In the first case F is feral by

Lemma 7.6.14, in the second case F is feral by Lemma 7.6.19.

550

Bibliography

[1] P. Gartland and D. Lokshtanov, Independent set on Pk-free graphs in
quasi-polynomial time, in 2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS), pp. 613–624, 2020.

[2] P. Gartland, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and P. Rzażewski,
Finding large induced sparse subgraphs in C>t-free graphs in quasipolynomial
time, in STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, Virtual Event, Italy, June 21–25, 2021 (S. Khuller and V. V.
Williams, eds.), pp. 330–341, ACM, 2021.

[3] P. Gartland, D. Lokshtanov, T. Masař́ık, M. Pilipczuk, M. Pilipczuk, and
P. Rzażewski, Maximum weight independent set in graphs with no long claws in
quasi-polynomial time, arXiv preprint arXiv:2305.15738 (2023).

[4] V. Alekseev, The effect of local constraints on the complexity of determination of
the graph independence number, Combinatorial-algebraic methods in applied
mathematics (1982) 3–13. (in Russian).

[5] P. Gartland and D. Lokshtanov, Graph classes with few minimal separators. I.
finite forbidden induced subgraphs, in Proceedings of the 2023 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 3063–3097.

[6] P. Gartland and D. Lokshtanov, Graph classes with few minimal separators. ii. a
dichotomy, in Proceedings of the 2023 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 3098–3178.

[7] F. V. Fomin, I. Todinca, and Y. Villanger, Large induced subgraphs via
triangulations and CMSO, SIAM J. Comput. 44 (2015), no. 1 54–87.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. Series of Books in the Mathematical Sciences. W. H.
Freeman and Co., 1979.

[9] R. M. Karp, Reducibility among combinatorial problems, in Complexity of
Computer Computations, pp. 85–103, 1972.

551

[10] U. Feige, S. Goldwasser, L. Lovász, and S. S. andF Mario Szegedy, Interactive
proofs and the hardness of approximating cliques, J. ACM 43 (1996), no. 2
268–292.

[11] D. Zuckerman, Linear degree extractors and the inapproximability of max clique
and chromatic number, Theory of Computing 3 (2007), no. 1 103–128.

[12] J. H̊astad, Clique is hard to approximate within n1−ε, Acta Math. 182 (1999),
no. 1 105–142.

[13] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its
consequences in combinatorial optimization., Combinatorica 1 (1981) 169–197.

[14] D. Lokshtanov, M. Vatshelle, and Y. Villanger, Independent set in P5-free graphs
in polynomial time, in Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA,
January 5–7, 2014 (C. Chekuri, ed.), pp. 570–581, SIAM, 2014.

[15] B. S. Baker, Approximation algorithms for np-complete problems on planar
graphs, J. ACM 41 (1994), no. 1 153–180.

[16] P. Gartland, T. Korhonen, and D. Lokshtanov, On induced versions of menger’s
theorem on sparse graphs, 2023.

[17] V. E. Alekseev, Polynomial algorithm for finding the largest independent sets in
graphs without forks, Discrete Applied Mathematics 135 (2004), no. 1-3 3–16.

[18] V. V. Lozin and M. Milanič, A polynomial algorithm to find an independent set of
maximum weight in a fork-free graph, J. Discrete Algorithms 6 (2008), no. 4
595–604.

[19] A. Brandstädt and R. Mosca, Maximum weight independent sets for (P7,
triangle)-free graphs in polynomial time, Discret. Appl. Math. 236 (2018) 57–65.

[20] N. C. Lê, C. Brause, and I. Schiermeyer, The Maximum Independent Set Problem
in subclasses of Si,j,k-free graphs, Electron. Notes Discret. Math. 49 (2015) 43–49.

[21] M. U. Gerber, A. Hertz, and V. V. Lozin, Stable sets in two subclasses of
banner-free graphs, Discrete Applied Mathematics 132 (2003), no. 1-3 121–136.

[22] V. V. Lozin and D. Rautenbach, Some results on graphs without long induced
paths, Inf. Process. Lett. 88 (2003), no. 4 167–171.

[23] F. Maffray and L. Pastor, Maximum weight stable set in (P7, bull)-free graphs,
CoRR abs/1611.09663 (2016).

552

[24] R. Mosca, Stable sets of maximum weight in (P7, banner)-free graphs, Discrete
Mathematics 308 (2008), no. 1 20–33.

[25] V. V. Lozin, M. Milanic, and C. Purcell, Graphs without large apples and the
Maximum Weight Independent Set problem, Graphs Comb. 30 (2014), no. 2
395–410.

[26] V. V. Lozin, J. Monnot, and B. Ries, On the maximum independent set problem
in subclasses of subcubic graphs, J. Discrete Algorithms 31 (2015) 104–112.

[27] A. Harutyunyan, M. Lampis, V. V. Lozin, and J. Monnot, Maximum independent
sets in subcubic graphs: New results, Theor. Comput. Sci. 846 (2020) 14–26.

[28] V. V. Lozin and R. Mosca, Independent sets in extensions of 2K2-free graphs,
Discret. Appl. Math. 146 (2005), no. 1 74–80.

[29] R. Mosca, Stable sets in certain P6-free graphs, Discret. Appl. Math. 92 (1999),
no. 2-3 177–191.

[30] R. Mosca, Independent sets in (P6, diamond)-free graphs, Discret. Math. Theor.
Comput. Sci. 11 (2009), no. 1 125–140.

[31] R. Mosca, Maximum weight independent sets in (P6, co-banner)-free graphs, Inf.
Process. Lett. 113 (2013), no. 3 89–93.

[32] R. Mosca, Independent sets in (P4+4, triangle)-free graphs, Graphs Comb. 37
(2021), no. 6 2173–2189.

[33] V. Bouchitté and I. Todinca, Treewidth and minimum fill-in: Grouping the
minimal separators, SIAM J. Comput. 31 (2001), no. 1 212–232.

[34] A. Grzesik, T. Klimosová, M. Pilipczuk, and M. Pilipczuk, Polynomial-time
algorithm for maximum weight independent set on P6-free graphs, ACM Trans.
Algorithms 18 (2022), no. 1 4:1–4:57.

[35] T. Abrishami, M. Chudnovsky, M. Pilipczuk, P. Rzażewski, and P. D. Seymour,
Induced subgraphs of bounded treewidth and the container method, in Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual
Conference, January 10–13, 2021 (D. Marx, ed.), pp. 1948–1964, SIAM, 2021.

[36] A. Gyárfás, Problems from the world surrounding perfect graphs, Applicationes
Mathematicae 3 (1987), no. 19 413–441.

[37] G. Bacsó, D. Lokshtanov, D. Marx, M. Pilipczuk, Z. Tuza, and E. J. van
Leeuwen, Subexponential-time algorithms for maximum independent set in Pt-free
and broom-free graphs, Algorithmica 81 (2019), no. 2 421–438.

553

[38] M. Chudnovsky, M. Pilipczuk, M. Pilipczuk, and S. Thomassé, Quasi-polynomial
time approximation schemes for the maximum weight independent set problem in
H-free graphs, in Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020
(S. Chawla, ed.), pp. 2260–2278, SIAM, 2020.

[39] M. Chudnovsky and P. D. Seymour, The three-in-a-tree problem, Combinatorica
30 (2010), no. 4 387–417.

[40] T. Abrishami, M. Chudnovsky, C. Dibek, and P. Rzażewski, Polynomial-time
algorithm for maximum independent set in bounded-degree graphs with no long
induced claws, in Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, Virtual Conference, January 9–12, 2022 (N. B. Joseph
(Seffi) Naor, ed.), pp. 1448–1470, SIAM, 2022.

[41] M. Pilipczuk, M. Pilipczuk, and P. Rzażewski, Quasi-polynomial-time algorithm
for independent set in Pt-free graphs via shrinking the space of induced paths, in
4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference,
January 11–12, 2021 (H. V. Le and V. King, eds.), pp. 204–209, SIAM, 2021.

[42] M. Milanic and N. Pivac, Polynomially bounding the number of minimal
separators in graphs: Reductions, sufficient conditions, and a dichotomy theorem,
Electron. J. Comb. 28 (2021), no. 1 1.

[43] T. Abrishami, M. Chudnovsky, C. Dibek, S. Thomassé, N. Trotignon, and
K. Vušković, Graphs with polynomially many minimal separators, J. Comb.
Theory, Ser. B 152 (2022) 248–280.

[44] J. Gajarskỳ, L. Jaffke, P. T. Lima, J. Novotná, M. Pilipczuk, P. Rzażewski, and
U. S. Souza, Taming graphs with no large creatures and skinny ladders, arXiv
preprint arXiv:2205.01191 (2022).

[45] R. G. Downey and M. R. Fellows, Parameterized Complexity. Springer-Verlag,
New York, 1999.

[46] R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential
complexity?, J. Comput. Syst. Sci. 63 (2001), no. 4 512–530.

[47] P. Chalermsook, M. Cygan, G. Kortsarz, B. Laekhanukit, P. Manurangsi,
D. Nanongkai, and L. Trevisan, From gap-eth to fpt-inapproximability: Clique,
dominating set, and more, in 58th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017
(C. Umans, ed.), pp. 743–754, IEEE Computer Society, 2017.

[48] M. R. Garey and D. S. Johnson, The rectilinear steiner tree problem is
np-complete, SIAM Journal on Applied Mathematics 32 (1977), no. 4 826–834.

554

[49] V. Guruswami and A. K. Sinop, The complexity of finding independent sets in
bounded degree (hyper)graphs of low chromatic number, pp. 1615–1626.
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973082.125.

[50] K. Majewski, T. Masař́ık, J. Novotná, K. Okrasa, M. Pilipczuk, P. Rzażewski,
and M. Soko lowski, Max Weight Independent Set in Graphs with No Long Claws:
An Analog of the Gyárfás’ Path Argument, in 49th International Colloquium on
Automata, Languages, and Programming (ICALP 2022) (M. Bojańczyk,
E. Merelli, and D. P. Woodruff, eds.), vol. 229 of Leibniz International
Proceedings in Informatics (LIPIcs), (Dagstuhl, Germany), pp. 93:1–93:19,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

[51] M. Chudnovsky, R. McCarty, M. Pilipczuk, M. Pilipczuk, and P. Rzażewski,
Sparse induced subgraphs in p 6-free graphs, arXiv preprint arXiv:2307.07330
(2023).

[52] M. C. Golumbic, Algorithmic graph theory and perfect graphs. Elsevier, 2004.

[53] P. Erdös and G. Szekeres, A combinatorial problem in geometry, Compositio
mathematica 2 (1935) 463–470.

[54] B. Courcelle, The monadic second-order logic of graphs I: Recognizable sets of
finite graphs, Inform. and Comput. 85 (1990) 12–75.

[55] M. Grohe, K.-i. Kawarabayashi, and B. Reed, A simple algorithm for the graph
minor decomposition- logic meets structural graph theory–, in Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 414–431, SIAM, 2013.

[56] C. Dallard, M. Milanič, and K. Štorgel, Treewidth versus clique number. ii.
tree-independence number, arXiv preprint arXiv:2111.04543v1 (2021).

[57] S. Albrechtsen, T. Huynh, R. W. Jacobs, P. Knappe, and P. Wollan, The induced
two paths problem, arXiv preprint arXiv:2305.04721 (2023).

[58] K. Hendrey, S. Norin, R. Steiner, and J. Turcotte, On an induced version of
menger’s theorem, 2023.

[59] T. Abrishami, M. Chudnovsky, and K. Vušković, Induced subgraphs and tree
decompositions i. even-hole-free graphs of bounded degree, Journal of
Combinatorial Theory, Series B 157 (2022) 144–175.

[60] T. Abrishami, M. Chudnovsky, C. Dibek, S. Hajebi, P. Rzazewski, S. Spirkl, and
K. Vušković, Induced subgraphs and tree decompositions ii. toward walls and their
line graphs in graphs of bounded degree, 2021.

555

http://xxx.lanl.gov/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611973082.125

[61] T. Abrishami, M. Chudnovsky, S. Hajebi, and S. Spirkl, Induced subgraphs and
tree decompositions iii. three-path-configurations and logarithmic treewidth,
Advances in Combinatorics (9, 2022).

[62] T. Abrishami, M. Chudnovsky, S. Hajebi, and S. T. Spirkl, Induced subgraphs and
tree decompositions iv. (even hole, diamond, pyramid)-free graphs, Electron. J.
Comb. 30 (2022).

[63] T. Abrishami, M. Chudnovsky, S. Hajebi, and S. Spirkl, Induced subgraphs and
tree decompositions vi. one neighbor in a hole, arXiv preprint arXiv:2205.04420
(2022).

[64] T. Abrishami, M. Chudnovsky, S. Hajebi, and S. Spirkl, Induced subgraphs and
tree decompositions vi. graphs with 2-cutsets, arXiv preprint arXiv:2207.05538
(2022).

[65] T. Abrishami, B. Alecu, M. Chudnovsky, S. Hajebi, and S. Spirkl, Induced
subgraphs and tree-decompositions vii. basic obstructions in h-free graphs, arXiv
preprint arXiv:2212.02737 (2022).

[66] T. Abrishami, B. Alecu, M. Chudnovsky, S. Hajebi, and S. Spirkl, Induced
subgraphs and tree decompositions viii. excluding a forest in (theta, prism)-free
graphs, arXiv preprint arXiv:2301.02138 (2023).

[67] B. Alecu, M. Chudnovsky, S. Hajebi, and S. Spirkl, Induced subgraphs and tree
decompositions ix. grid theorem for perforated graphs, arXiv preprint
arXiv:2305.15615 (2023).

[68] N. L. D. Sintiari and N. Trotignon, (theta, triangle)-free and (even hole, k 4)-free
graphs—part 1: Layered wheels, Journal of Graph Theory 97 no. 4 475–509,
[https://onlinelibrary.wiley.com/doi/pdf/10.1002/jgt.22666].

[69] T. Korhonen, Grid induced minor theorem for graphs of small degree, Journal of
Combinatorial Theory, Series B 160 (2023) 206–214.

[70] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized Algorithms. Springer, 2015.

[71] M. Grohe and S. Kreutzer, Methods for algorithmic meta theorems, in Model
Theoretic Methods in Finite Combinatorics - AMS-ASL Joint Special Session,
Washington, DC, USA, January 5-8, 2009, vol. 558 of Contemporary
Mathematics, pp. 181–206, American Mathematical Society, 2009.

[72] N. Robertson and P. D. Seymour, Graph minors. XX. Wagner’s conjecture, J.
Comb. Theory, Ser. B 92 (2004), no. 2 325–357.

556

http://xxx.lanl.gov/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/jgt.22666

[73] E. Balas and C. S. Yu, On graphs with polynomially solvable maximal-weight
clique problem, Networks 19 (1989) 247—-253.

[74] B. Courcelle, J. A. Makowsky, and U. Rotics, Linear time solvable optimization
problems on graphs of bounded clique-width, Theory Comput. Syst. 33 (2000),
no. 2 125–150.

[75] A. Brandstädt, J. P. Spinrad, et. al., Graph classes: a survey. No. 3. Siam, 1999.

[76] H. De Ridder et. al., Information system on graph classes and their inclusions),
www.graphclasses.org (2016).

[77] B. N. Clark, C. J. Colbourn, and D. S. Johnson, Unit disk graphs, Discrete Math.
86 (1990), no. 1 – 3 165 – 177.

[78] S. Poljak, A note on stable sets and colorings of graphs, Commentationes
Mathematicae Universitatis Carolinae 15 (1974), no. 2 307 – 309.

[79] H. Broersma, T. Kloks, D. Kratsch, and H. Müller, Independent sets in asteroidal
triple-free graphs, SIAM J. Discrete Math. 12 (1999), no. 2 276–287.

[80] N. Sbihi, Algorithme de recherche d’un stable de cardinalite maximum dans un
graphe sans etoile, Discrete Mathematics 29 (1980), no. 1 53–76. (in French).

[81] G. J. Minty, On maximal independent sets of vertices in claw-free graphs, Journal
of Combinatorial Theory, Series B 28 (1980), no. 3 284 – 304.

[82] D. Corneil, H. Lerchs, and L. Burlingham, Complement reducible graphs, Discrete
Applied Mathematics 3 (1981), no. 3 163 – 174.

[83] R. Boliac and V. V. Lozin, An augmenting graph approach to the stable set
problem in P5-free graphs, Discrete Applied Mathematics 131 (2003), no. 3 567 –
575.

[84] A. Brandstädt and R. Mosca, On the structure and stability number of P5- and
co-chair-free graphs, Discrete Applied Mathematics 132 (2003), no. 1–3 47 – 65.
Stability in Graphs and Related Topics.

[85] M. U. Gerber and V. V. Lozin, On the stable set problem in special P5-free graphs,
Discrete Applied Mathematics 125 (2003), no. 2-3 215–224.

[86] R. Mosca, Some observations on maximum weight stable sets in certain P5-free
graphs, European Journal of Operational Research 184 (2008), no. 3 849 – 859.

[87] B. Randerath and I. Schiermeyer, On maximum independent sets in P5-free
graphs, Discrete Applied Mathematics 158 (2010) 1041–1044.

557

[88] D. Lokshtanov, M. Pilipczuk, and E. J. van Leeuwen, Independence and efficient
domination on P6-free graphs, ACM Trans. Algorithms 14 (2018), no. 1 3:1–3:30.

[89] A. Grzesik, T. Klimosova, M. Pilipczuk, and M. Pilipczuk, Polynomial-time
algorithm for maximum weight independent set on p6-free graphs, in Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019 (T. M. Chan, ed.),
pp. 1257–1271, SIAM, 2019.

[90] A. Grzesik, T. Klimosová, M. Pilipczuk, and M. Pilipczuk, Covering minimal
separators and potential maximal cliques in Pt-free graphs, CoRR
abs/2003.12345 (2020).

[91] C. Brause, A subexponential-time algorithm for the maximum independent set
problem in pt-free graphs, Discret. Appl. Math. 231 (2017) 113–118.

[92] C. Groenland, K. Okrasa, P. Rzazewski, A. D. Scott, P. D. Seymour, and
S. Spirkl, H-colouring pt-free graphs in subexponential time, Discret. Appl. Math.
267 (2019) 184–189.

[93] F. V. Fomin and D. Kratsch, Exact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2010.

[94] J. Edmonds, Paths, trees, and flowers, Canadian Journal of Mathematics 17
(1965) 449–467.

[95] A. Gyárfás, On Ramsey covering-numbers, in Infinite and finite sets (Colloq.,
Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II, no. 10 in
Colloq. Math. Soc. Janos Bolyai, pp. 801–816. North-Holland, Amsterdam, 1975.

[96] C. Chekuri and J. Chuzhoy, Polynomial bounds for the grid-minor theorem, J.
ACM 63 (2016), no. 5 40:1–40:65.

[97] J. Chuzhoy and Z. Tan, Towards tight(er) bounds for the excluded grid theorem, J.
Comb. Theory, Ser. B 146 (2021) 219–265.

[98] N. Robertson and P. D. Seymour, Graph minors. X. obstructions to
tree-decomposition, J. Comb. Theory, Ser. B 52 (1991), no. 2 153–190.

[99] K. Kawarabayashi, R. Thomas, and P. Wollan, Quickly excluding a non-planar
graph, CoRR abs/2010.12397 (2020) [arXiv:2010.1239].

[100] N. Robertson and P. D. Seymour, Graph minors XIII. the disjoint paths problem,
J. Comb. Theory, Ser. B 63 (1995), no. 1 65–110.

[101] M. Chudnovsky and P. D. Seymour, Claw-free graphs. V. Global structure, J.
Comb. Theory, Ser. B 98 (2008), no. 6 1373–1410.

558

http://xxx.lanl.gov/abs/2010.1239

[102] V. E. Alekseev and V. V. Lozin, Augmenting graphs for independent sets, Discrete
Applied Mathematics 145 (2004), no. 1 3 – 10.

[103] J. Novotná, K. Okrasa, M. Pilipczuk, P. Rzażewski, E. J. van Leeuwen, and
B. Walczak, Subexponential-time algorithms for finding large induced sparse
subgraphs, Algorithmica (July, 2020).

[104] B. Courcelle and J. Engelfriet, Graph Structure and Monadic Second-Order Logic
— A Language-Theoretic Approach, vol. 138 of Encyclopedia of Mathematics and
its Applications. Cambridge University Press, 2012.

[105] A. Atminas, V. V. Lozin, and I. Razgon, Linear time algorithm for computing a
small biclique in graphs without long induced paths, in Proceedings of the 13th
Scandinavian Symposium and Workshops Algorithm Theory, SWAT 2012,
vol. 7357 of Lecture Notes in Computer Science, pp. 142–152, Springer, 2012.

[106] G. Ding, Subgraphs and well-quasi-ordering, J. Graph Theory 16 (1992), no. 5
489–502.

[107] J. Nešetřil and P. Ossona de Mendez, Sparsity — Graphs, Structures, and
Algorithms, vol. 28 of Algorithms and combinatorics. Springer, 2012.

[108] M. Hatzel, P. Komosa, M. Pilipczuk, and M. Sorge, Constant congestion
brambles, CoRR abs/2008.02133 (2020) [arXiv:2008.0213].

[109] M. Pilipczuk, M. Pilipczuk, and S. Siebertz, Lecture notes for the course Sparsity,
Winter semester 2019/20. available at:
https://www.mimuw.edu.pl/~mp248287/sparsity2/.

[110] M. Grohe and D. Marx, On tree width, bramble size, and expansion, J. Comb.
Theory, Ser. B 99 (2009), no. 1 218–228.

[111] K. Cameron and P. Hell, Independent packings in structured graphs, Math.
Program. 105 (2006), no. 2-3 201–213.

[112] K. Edwards and G. Farr, Fragmentability of graphs, Journal of Combinatorial
Theory, Series B 82 (2001), no. 1 30 – 37.

[113] M. Milanič and N. Pivač, Minimal separators in graph classes defined by small
forbidden induced subgraphs, in International Workshop on Graph-Theoretic
Concepts in Computer Science, pp. 379–391, Springer, 2019.

[114] M. Chudnovsky, M. Pilipczuk, M. Pilipczuk, and S. Thomassé, On the maximum
weight independent set problem in graphs without induced cycles of length at least
five, SIAM J. Discret. Math. 34 (2020), no. 2 1472–1483.

559

http://xxx.lanl.gov/abs/2008.0213
https://www.mimuw.edu.pl/~mp248287/sparsity2/

[115] K. Menger, Zur allgemeinen kurventheorie, Fundamenta Mathematicae 10 (1927),
no. 1 96–115.

[116] D. Marx, Parameterized graph separation problems, Theor. Comput. Sci. 351
(2006), no. 3 394–406.

[117] D. Lokshtanov, On the complexity of computing treelength, Discret. Appl. Math.
158 (2010), no. 7 820–827.

[118] T. Kloks and D. Kratsch, Finding all minimal separators of a graph, in STACS
94, 11th Annual Symposium on Theoretical Aspects of Computer Science, vol. 775
of Lecture Notes in Computer Science, pp. 759–768, Springer, 1994.

[119] A. Berry, J. P. Bordat, and O. Cogis, Generating all the minimal separators of a
graph, Int. J. Found. Comput. Sci. 11 (2000), no. 3 397–403.

[120] D. Kratsch, The structure of graphs and the design of efficient algorithms,
habilitation, Friedrich-Schiller-University of Jena, Germany (1996).

[121] T. Kloks, D. Kratsch, and C. K. Wong, Minimum fill-in on circle and circular-arc
graphs, J. Algorithms 28 (1998), no. 2 272–289.

[122] K. Suchan, Minimal separators in intersection graphs, Master’s thesis, Akademia
Gorniczo-Hutnicza im. Stanislawa Staszica w Krakowie (2003).

[123] M. Chudnovsky, S. Thomassé, N. Trotignon, and K. Vuskovic, Maximum
independent sets in (pyramid, even hole)-free graphs, CoRR abs/1912.11246
(2019) [arXiv:1912.1124].

[124] R. Diestel, Graph Theory, 4th Edition, vol. 173 of Graduate texts in mathematics.
Springer, 2012.

[125] F. Ramsey, On a problem of formal logic, Proceedings of the London Mathematical
Society s2-30 (1930), no. 1 264–286,
[https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-30.1.264].

[126] N. Sauer, On the density of families of sets, Journal of Combinatorial Theory,
Series A 13 (1972), no. 1 145 – 147.

[127] F. V. Fomin and Y. Villanger, Treewidth computation and extremal
combinatorics, Combinatorica 32 (2012), no. 3 289–308.

[128] S. Arnborg, J. Lagergren, and D. Seese, Easy problems for tree-decomposable
graphs, Journal of Algorithms 12 (1991) 308–340.

[129] B. Courcelle, The expression of graph properties and graph transformations in
monadic second-order logic, in Handbook of graph grammars and computing by
graph transformation, Vol. 1, pp. 313–400. World Sci. Publ, 1997.

560

http://xxx.lanl.gov/abs/1912.1124
http://xxx.lanl.gov/abs/https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-30.1.264

[130] B. Courcelle, The monadic second-order logic of graphs. III. Tree-decompositions,
minors and complexity issues, RAIRO Inform. Théor. Appl. 26 (1992), no. 3
257–286.

[131] H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and
D. M. Thilikos, (meta) kernelization, J. ACM 63 (2016), no. 5 44:1–44:69.

[132] R. B. Borie, R. G. Parker, and C. A. Tovey, Automatic generation of linear-time
algorithms from predicate calculus descriptions of problems on recursively
constructed graph families, Algorithmica 7 (1992), no. 5&6 555–581.

561

	Curriculum Vitae
	Abstract
	Introduction
	Literature Survey
	Independent Set
	Minimal Separators
	Induced Grid Minor Conjecture
	Organization of Chapters

	Preliminaries
	Extended strip decompositions.
	Graph minors
	Treewidth and tree decompositions
	MSO2 and MSO2 types

	Independent Set on Pk-Free Graphs in Quasi-Polynomial Time
	Introduction
	Preliminaries
	Quasi-Polynomial Time Algorithm for Pk-Free Graphs
	Disconnected Forbidden Induced Subgraphs
	Conclusion

	Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time
	Introduction
	Preliminaries
	The Algorithm
	Extended Strip Lemma
	Conclusion

	Finding Sparse Induced Subgraphs in C>k-Free Graphs in Quasi-Polynomial Time
	Introduction
	Overview
	Preliminaries
	Branching framework
	Branching strategies: choosing pivots in Pt-free and C>t-free graphs
	C>t-free graphs of bounded degeneracy have bounded treewidth
	MSO2 and C> t-free graphs
	A simple technique for approximation schemes

	Graph Classes with Few Minimal Separators. I. Finite Forbidden Induced Subgraphs
	Introduction
	Overview
	Preliminaries
	A k-Creature-Free Feral Graph Family
	k-Creature and k-Skinny-Ladder Induced Minor Free Graphs
	Finite Forbidden Induced Subgraphs
	Long Cycle-free Graphs
	Graph With Bounded Clique Size
	Conclusion

	Graph Classes with Few Minimal Separators. II. A Dichotomy
	Introduction
	Preliminaries
	Overview
	Finding A Generalized -Creature
	Extracting Critters from Generalized Creatures
	Families with Creatures or Critters are Feral

	Bibliography

