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Half-filled Landau levels: a continuum and sign-free regularization for 3D quantum
critical points

Matteo Ippoliti1, Roger S. K. Mong2, Fakher F. Assaad3 and Michael P. Zaletel1,4
1Department of Physics, Princeton University, Princeton, NJ 08544, USA

2Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
3Institut für Theoretische Physik und Astrophysik,

Universität Würzburg, 97074 Würzburg, Germany and
4Department of Physics, University of California, Berkeley, CA 94720, USA

We explore a method for regulating 2+1D quantum critical points in which the ultra-violet cutoff
is provided by the finite density of states of particles in a magnetic field, rather than by a lattice.
Such Landau level quantization allows for numerical computations on arbitrary manifolds, like
spheres, without introducing lattice defects. In particular, when half-filling a Landau level with
N = 4 electron flavors, with appropriate interaction anisotropies in flavor space, we obtain a fully
continuum regularization of the O(5) non-linear sigma-model with a topological term, which has been
conjectured to flow to a deconfined quantum critical point. We demonstrate that this model can be
solved by both infinite density matrix renormalization group calculations and sign-free determinantal
quantum Monte Carlo. DMRG calculations estimate the scaling dimension of the O(5) vector
operator to be in the range ∆V ∼ 0.55 − 0.7 depending on the stiffness of the non-linear sigma
model. Future Monte Carlo simulations will be required to determine whether this dependence is a
finite-size effect or further evidence for a weakly first-order transition.

I. INTRODUCTION

Understanding the space of two-plus-one dimensional
conformal field theories (CFT) remains a central chal-
lenge in strongly-interacting physics. In contrast to two-
dimensions,1 comparatively little is known about the
space of possible fixed points beyond large-N , super-
symmetric, and perturbative approaches. Where avail-
able our knowledge relies heavily on numerical Monte-
Carlo simulations, and more recently, the conformal
bootstrap, making it possible to compare numerical esti-
mates of scaling exponents with rigorous analytic bounds.
A class of particular interest are the “deconfined quantum
critical points” (DQCP) which are of interest both to
condensed matter, where they arise as Landau-forbidden
phase transitions between magnetic orders with differ-
ing order parameters, and high-energy, where they are
thought to provide realizations of the non-compact CP1

non-linear sigma model and QED3.2–5 While numerics
support the basic picture of an emergent SO(4) or SO(5)
symmetry larger than the microscopic one,6–8 it has
proven difficult to obtain converged scaling exponents,
or even conclusively determine whether the transition is
a CFT7,9–11. Perplexingly, numerical estimates of the
vector operator’s scaling dimension appear to contradict
bounds from the conformal bootstrap.12–14

Previous numerical studies of the DCQP considered
lattice models of spins6,15–24, 3D loop models,7,8,11 hard-
core bosons25 or fermions26,27. In these models many
of the symmetries, both internal and space-time, emerge
only in the IR. In this work we consider a continuum
regularization of the DQCP and other 3D CFTs which
preserves these symmetries exactly in the UV: rather
than discretizing space, the Hilbert space is made finite
by Landau level (LL) quantization. The idea is to em-
bed the critical fluctuations into an N -component “fla-

vor” degree of freedom carried by itinerant fermions in
the continuum.28 The motion of the fermions is then
quenched by a strong magnetic field. When the fermions
fill N/2 of the N -fold degenerate LLs (“half-filling”), fluc-
tuations in the flavor-space give rise to a non-linear sigma
model (NLSM). This is the famous problem of quantum
Hall ferromagnetism29 realized experimentally both in
GaAs (N = 2) and graphene (N = 4). In the N = 4 case,
the resulting SO(5) NLSM has the Wess-Zumino-Witten
term thought to stabilize a DQCP.30–33 We demonstrate
that this model can be studied with both density-matrix
renormalization group calculations and sign-free deter-
minantal quantum Monte-Carlo (DQMC).

Models with exact UV-symmetries have several po-
tential numerical advantages. The continuum formula-
tion allows for the model to be defined on any mani-
fold, such as a sphere, without introducing lattice de-
fects. This should enable scaling dimensions to be mea-
sured using the operator-state correspondence, as well as
explorations of the F -theorem.34 Second, this realization
of the DQCP has an exact SO(4) or SO(5) symmetry,
whereas on a lattice it putatively emerges only in the IR
at the critical point. Because the model is essentially an
explicit regularization of an SO(5)-NLSM, it straightfor-
ward to identify the microscopic operators corresponding
to the stiffness, vector, and symmetric-tensor perturba-
tions of the NLSM. As such the DQCP should exist as a
phase, e.g., without tuning, which greatly simplifies scal-
ing collapses, and the chief question is whether the model
actually flows to a CFT.

The paper is structured as follows. In Sec. II we review
the model of electrons in graphene with N = 4 flavors,
its Neél and valence bond solid (VBS) ordered phases,
and the SU(N) anisotropies that drive the transition be-
tween them. Sec. III contains the results of infinite den-
sity matrix renormalization group (DMRG) simulations,
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which are consistent with a direct, continuous transition
between a Néel and VBS phase up to the largest system
sizes. However, our estimate of the SO(5) vector op-
erator’s scaling dimension ranges from ∆V ∼ 0.55 − 0.7
(with 2∆V = 1+η), depending on model parameters (es-
sentially the stiffness of the NLSM). Due to the limited
DMRG system size (cylinder circumference L . 12`B),
it is unclear whether this is a finite-size artifact or a sig-
nature of a weakly-first order transition. In Sec. IV we
show that the model can be solved with sign-free deter-
minantal quantum Monte Carlo, allowing for simulations
with polynomial-complexity in system size, for which we
present a numerical benchmark and discuss the prospects
for large-scale simulations. We conclude by summarizing
our results and discussing future directions in Sec. V.

II. MODEL

The model is motivated by the physics of graphene in
a magnetic field, where N = 4 flavors of two-component
Dirac fermion Ψa, a = 1, 2, 3, 4, arise from the combi-
nation of valley and spin degeneracy.33,35–37 To rough
approximation they are related by an U(4) flavor sym-
metry; letting Pauli matrices τµ act on valley and σµ on
spin (µ = 0 indicates the identity), the generators are the
1 + 15 bilinears τµσν . In reality the SU(4) part is broken
down to spin SO(3) (generated by σµ) and a near-exact
SO(2) valley-conservation (generated by τz).38 Micro-
scopically, the two strongest instabilities35–37,39,40 which
may spontaneously break the SO(3) × SO(2) symmetry
are antiferromagnetism, with three-component Néel vec-
tor N = τzσ, and the Kekule valence-bond-solid (VBS)
with order parameter eiφK = τx+iτy (because the valleys
are at different momenta, inter-valley coherence produces
a VBS distortion.) Together these form a maximal set
of anti-commuting terms Γi = {τzσx, τzσy, τzσz, τx, τy},
the Clifford algebra for SO(5).

For numerical purposes the Dirac fermions must be
regularized, but rather than falling back to the honey-
comb lattice, we instead stick to the continuum and intro-
duce a uniform background magnetic field B orthogonal
to the manifold. The single particle spectrum collapses
into N = 4-fold degenerate Landau levels, with energy
spectrum εn = ~v

`B
sign(n)

√
2|n|, where `B is the mag-

netic length and v is the Dirac velocity. At zero density,
the fermions should fill two of the four n = 0 LLs, i.e.,
half-fill the zeroth-LL (ZLL).

When the interactions are weak compared with to the
cyclotron splitting ~v/`B , we can project them into the
ZLL. A phenomenological model capturing the resulting
Néel and Kekule instabilities is an SU(4)-symmetric con-
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FIG. 1. Schematics of two possible phase diagrams of the
model. (a) DQCP scenario. The AF and VBS orders are sep-
arated by a line (uN = uK) with manifest O(5) symmetry.
For ui/U < w the symmetry is spontaneously broken, giving
a first-order “spin-flop” transition (solid line); for ui/U > w
there is a continuous transition characterized by an O(5)-
symmetric CFT (dotted line). This line realizes the DQCP.
Alternatively, it may be that a true CFT does not exist and
the transition is weakly first-order for all U . (b) A Landau-
allowed scenario. For ui/U > w the AF and VBS phases are
separated by two independent continuous transitions (dotted
lines) to a gapped paramagnetic phase, with a multicritical
point at uN = uK = wU .

tact interaction U and anisotropies ui,

HZLL =
U

2

[ 4∑
a=1

ψ†a(x)ψa(x)

]2

−
5∑
i=1

ui
2

[ 4∑
a,b=1

ψ†a(x)Γiabψb(x)

]2

. (1)

Here ψa(x) is the field-operator of the ZLL, which can be
decomposed as ψa(x) =

∑Nφ
m=1 φm(x)ĉa,m for LL-orbitals

φm on a system pierced byNφ = BV/2π`2B flux quanta.41
Because each LL has one state per magnetic flux the
Hilbert space is now completely finite, with NNφ single
particle states on a surface pierced by Nφ flux.

The anisotropies ui favor either Néel (u1 = u2 = u3 =
uN > 0) or Kekule (u4 = u5 = uK > 0) order. A tran-
sition between the two orders is driven by the difference
uN − uK , and for uN = uK there is an exact O(5) sym-
metry (the inversion element arises from the anti-unitary
particle-hole symmetry ψ → ψ†). Alternatively, taking
u3 < u1 = u2, we have an “easy-plane” model with at-
most SO(4) symmetry.

The magnetic field quenches the kinetic energy, driving
quantum Hall (anti)-ferromagnetism, ni = 〈ψ†Γiψ〉 6=
0.29,42 The order parameter n encodes which two of
the four LLs are filled. However, in contrast to the
SU(4) symmetric case (ui = 0), where the order param-
eter commutes with H and hence doesn’t fluctuate, the
anisotropies lead to fluctuations. Extending the stan-
dard N = 2 theory of quantum Hall ferromagnetism,29
on the O(5)-line these fluctuations are captured by an
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SO(5)-NLSM (Euclidean) action,33,37

S =
1

2γ

∫
d3r(∂n)2 + SWZW[n] + . . . , (2)

SWZW[n] =
2πi

vol(S4)

∫
dt d3r εabcdena∂sn

b∂xn
c∂yn

d∂tn
e.

SWZW is the SO(5) Wess-Zumino-Witten term, whose
presence we explain shortly.33 Note that with a mag-
netic field, the particle-hole symmetry CT still ensures
the symmetry n→ −n.

The stiffness 1/γ of the NLSM is controlled by the re-
pulsion U ; the exchange energy from large-U leads to a
stiff (small γ) NLSM.29 Perturbing away from the O(5)-
line, uN 6= uK , will generate the “symmetric tensor”
anisotropies L 3 −(

∑
i uin

i)2. Hence there is a direct
correspondence between the microscopic parameters U ,
ui and the stiffness and symmetric-tensor perturbations
of the NLSM respectively.

The SO(5)-NLSM with topological term has been ar-
gued to flow to the DCQP - unless it is too stiff, in
which case the SO(5) may break spontaneously.31,32 So
we conjecture a two-parameter phase diagram in uN/U
and uK/U shown in Fig. 1(a). Away from the O(5)-line,
the anisotropies reduce the fluctuations and render the
WZW term inoperative, so we expect Néel or Kekule or-
der. The O(5)-line is a direct transition between the two,
which may either be first or second order. If the NLSM
is stiff (small ui/U) the O(5) symmetry will be spon-
taneously broken,37 which corresponds to a first-order
spin-flop transition. If the NLSM is floppy (large ui/U),
the putative existence of DQCP could lead to a con-
tinuous transition which will manifest as a critical line
uN/U = uK/U > u∗/U described by an O(5)-symmetric
CFT on which the scaling dimensions are constant.

In contrast, the conventional Landau-Ginzburg-Wilson
theory of phase transitions requires either a first-order
transition, or two independent continuous transitions.
The two transitions will generically be separated either
by a region of phase coexistence with both Néel and
Kekule order, or by a gapped (possibly topologically or-
dered) symmetric paramagnet, a possibility illustrated in
Fig. 1(b). The transitions can only coincide when fine-
tuned to a multi-critical point. As we will see, the nu-
merics are in fact consistent with a direct transition along
the whole O(5) line, though (at present) we cannot pre-
cisely determine whether the transition at high-ui is truly
continuous or just weakly first-order.

The presence of the SWZW term can be inferred
by extending the theory of N = 2 ferromagnetic
skyrmions29,43 to N = 4.33 When half-filling N = 2 fla-
vors, it is well known that skyrmions in the ferromag-
netic O(3) order parameter n = ψ†σψ carry electrical
charge.29 This response is captured by the topological
term Ltopo = A(n)·∂tn+ εµνρ

8π Aµn·∂νn×∂ρn, where A is
the vector-potential of a monopole and A is a probe U(1)
gauge-field. Moving on to N = 4, consider a skyrmion
in the anti -ferromagnetic order N = ψ†τzσψ. The anti-
ferromagnet has filling ν = 1 in each valley, but with

opposite spin. So the N = 4 skyrmion is equivalent to an
N = 2 skyrmion in each valley independently, but with
opposite handedness (due to τz). Thus in contrast to
a ferromagnetic skyrmion, the total charge is zero, but
there is valley-polarization 1 − (−1) = 2 under τz, the
generator of the symmetry relating τx/y. More generally,
we invoke SO(5) to conclude a skyrmion in any 3 of the
5 components induces charge under the remaining two,
and a vortex (meron) under 2 of the 5 components carries
spin-1/2 under the remaining three. This is the physics
of SWZW. A second consequence of anti-ferromagnetism
is the cancellation of the A · ∂tn term to leading order,
with fluctuations generating (∂tn)2.44

III. INFINITE DMRG SIMULATIONS

In this Section we study the model on an infinitely-long
cylinder of circumference L in order to use infinite den-
sity matrix renormalization group (iDMRG)45 numeri-
cal simulations. The difficulty of the DMRG blows up
exponentially with the circumference, which (relative to
the UV cutoff `B) restricts us to smaller system sizes
(L ∼ 12`B) than previous lattice Monte-Carlo simula-
tions. Nevertheless our results appear consistent with
the conjectured phase diagram of Fig. 1a).

A. Method

After projecting the Hamiltonian in Eq. (1) into the
n = 0 LL, the contact interactions become familiar
Haldane V0 pseudopotentials. We then solve for the
ground state on an infinitely-long cylinder of circumfer-
ence L using the iDMRG algorithm developed for multi-
component quantum Hall states46,47. Our numerics ex-
actly conserve the quantum numbers of charge, spin, and
valley, while the rest of the O(N) symmetry becomes
manifest as the numerics converge.

Infinite-cylinder DMRG has two IR cut-offs: the cylin-
der circumference L, and the finite “bond-dimension”
χ (e.g., accuracy) of the DMRG numerics. The lat-
ter is the dimension of the matrices used in the matrix
product state (MPS) variational ansatz, which limits the
amount of entanglement in the state to S ∼ logχ, while
the computation time goes as χ3. By construction, an
MPS with finite χ has exponentially decaying correla-
tions, 〈O(r)O(0)〉 ≤ ae−r/ξ at large r for some ξ called
the “MPS correlation length.” Thus at a 1+1D criti-
cal point, where the system has algebraic correlations
〈O(r)O(0)〉 ∼ r−∆O along the length of the cylinder,
the MPS ansatz can only capture the power-law decay
out to a finite length ξ(χ). This leads to the idea of
“finite-entanglement scaling” (FES)48,49: near a critical
point, the bond dimension χ introduces an additional
χ-dependent length scale ξ, which can then be factored
into any scaling collapse. In the present case, the puta-
tive 2+1D critical point does not actually dimensionally
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reduce to a 1+1D critical point on the cylinder (see be-
low). Nevertheless, at finite χ and large L, the ξ of the
MPS is not that of the true ground state, so we extract
properties from two-parameter scaling collapses in L and
ξ.

B. Cylinder diagnostics of the 2D phases

The 2+1D phases we wish to distinguish are: (1) an
ordered phase in which SO(2) is spontaneously broken
(e.g. VBS, XY, or Kekule order); (2) an ordered phase in
which an SO(N) symmetry for N = 3, 4 or 5 is broken;
(3) a gapped paramagnetic phase; and (4) an SO(N)-
CFT. The subtlety, however, is that for fixed cylinder
circumference L, each of 2, 3, 4 dimensionally reduces
to a 1+1D gapped, symmetric paramagnet, so we must
elucidate how we distinguish them within our numerics.

To do so we place the O(N)-NLSM of Eq. (2) on a
cylinder. If the symmetry is spontaneously broken in
2+1D, then we can take ∂yn ∼ 0 where y runs around
the cylinder, and obtain

Scyl =
L

2γ

∫
dxdt(∂n(x, t))2 + · · · (3)

Here ∂ is the derivative in 1+1D, and the WZW term
vanishes because ∂yn = 0 (the skyrmions are gapped
on the cylinder). This is a 1+1D O(N) NLSM with-
out a topological term, and with stiffness L/γ. For
N > 2 this model is gapped, with a finite correlation
length ξ1D ∼ ae2π N

N−2
L
γ .50 For N = 2 the system will

have algebraic order, unless L/γ is small enough to drive
a Berezinskii-Kosterlitz-Thouless transition into a disor-
dered phase. Hence for cases (1) and (2), 2+1D spon-
taneous symmetry breaking will manifest as a ξ1D which
scales exponentially with L (N > 2) or may be infinite
(N = 2).

In contrast, for case (3), a 2+1D gapped paramagnet,
the ξ1D will saturate with L to the true ξ of the 2+1D
phase.

Finally, for case (4) the system is a 2+1D CFT and we
cannot approximate ∂yn = 0. Scale invariance instead
dictates that ξ1D ∝ L, and the behavior of other observ-
ables can be determined by conformal finite-size scaling
in L.

C. Continuous transition

To assess the plausibility of the scenario shown in
Fig. 1(a) we first measure the scaling of ξ1D with L. We
set u1 = u2 = ū + m and u4 = u5 = ū − m, so that
the AF-VBS transition is driven by m (m = 0 defines
the critical point), while u3 ≤ ū can be used to introduce
easy-plane anisotropy. The repulsion U sets the overall
spin stiffness. In Fig. 2 we show the correlation length ξ,
defined by the dominant eigenvalue of the MPS transfer
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FIG. 2. Correlation length as a function of cylinder cir-
cumference L and bond dimension χ, obtained from numer-
ical iDMRG simulations. (a) On the O(5) line, with small
stiffness: U = 2, ū = u3 = 1, m = 0. As χ is increased, ξ
approaches a linear dependence on size, ξ ∼ αL (dashed line),
consistent with a CFT on the cylinder. (b) On the O(5) line,
with large stiffness: U = 10, ū = u3 = 1, m = 0. ξ(L) is
concave-up (dashed line is an exponential fit to the first 4
points at largest χ), consistent with a weakly-first-order tran-
sition. (c) On the VBS side: U = 2, ū = 1, u3 = 0, m = −0.1.
The correlation length in the valley channel ξV diverges expo-
nentially with L (inset shows a semilogarithmic plot), clearly
indicating a symmetry-broken state.

matrix,51 for several representative points. For m = 0
and small U (i.e., on the putative critical line), the scal-
ing of ξ ∝ L is perfectly linear. In contrast, for m 6= 0
(i.e., in an ordered phase), or for m = 0 and large U (i.e.,
on the putative first-order transition line), ξ grows super-
linearly and is well fit by an exponential dependence in
both cases. For m 6= 0 the the exponential form is clear
over more than a decade, while for m = 0, large U , we
can really only detect a positive curvature, or concavity.

The linear-L behavior for small U is consistent with
scenario Fig. 1a), though we cannot rule out a gapped
paramagnet, Fig. 1b), with a correlation length ξ2D &
12`B greater than the circumference we can access. Like-
wise, while the super-linear behavior for large U indicates
a region of first-order behavior, we cannot rule out a tran-
sition which is weakly first-order along the whole m = 0
line. As U varies along the m = 0 line, the curvature in
ξ(L) onsets smoothly, and becomes clear in our numerics
for U & 5ū.
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D. Scaling dimensions

To investigate the intriguing possibility of a CFT in the
small-U regime, we attempt to measure the scaling di-
mension ∆V of the vector operator ni(r) = ψ†(r)Γiψ(r).
Assuming conformal invariance, on the plane the two-
point function is

Cij(r) = 〈ni(r) nj(0)〉 ∝ δijr−2∆V

where ∆V is the scaling dimension. Since the SO(5) sym-
metry is exact in our numerics, we can restrict to a single
Cii (for SO(4), i 6= 3). On the cylinder, we measure ∆V

via the total squared “magnetization” Mi,

M2
i (L) ≡

∫
R
dx

∫ L

0

dy Cii(x, y) . (4)

The dependence on the cylinder circumference L is easily
isolated via scaling collapse:

M2
i (L) = L2−2∆VM2

i (1). (5)

Thus in principle ∆V can be extracted fromM2
i (L) using

a one-parameter finite-size scaling collapse.
This picture is complicated by the finite bond dimen-

sion χ in our iDMRG numerics, which as discussed ear-
lier introduces a second length cutoff in the problem in
the form of a finite correlation length ξ. So we calculate
M2
i (L) for a range of values of L and χ, with the lat-

ter parameterized via the MPS correlation length ξ, and
collapse the data using the scaling form

M2
i (L, ξ) = L2−2∆V f(ξ/L) . (6)

For large enough circumference (L & 8`B), we find that
there exists a value of ∆V , typically determined to within
±0.01, such that the data for different L up to 12`B col-
lapse onto the scaling form of Eq. (6). An example is
shown in Fig. 3. Similar behavior is found across much of
the parameter space (we sit at the critical point, m = 0,
and assume ū > 0, leaving the two independent parame-
ters U/ū and u3/ū).

In Fig. 4 we show the variation of the estimated ∆V

along two cuts in parameter space, one on the O(5)-line
and one in the SO(4)-region. The value of the scaling
dimension ∆V (as well as the accuracy of the collapse)
drifts with U, u3, with large-U having lower ∆V and
worse collapse. The conjectured O(N)-symmetric CFT
should yield one well defined value for ∆V for N = 4, 5
respectively, so the dependence we observe is either a
finite-size artifact or evidence that a weakly-first order
transition persists to higher ui/U that can be detected
from the super-linear scaling of ξ. Indeed, at large U ,
∆V violates the unitarity bound ∆V ≥ d

2 − 1 = 1
2 , while

lowering U takes ∆V up to ∼ 0.7 (U can be reduced down
to U ' −2.6ū, at which point the attractive interaction
leads to phase separation). Due to the limited system
size, it is difficult to determine where (if anywhere) the
weakly first-order line becomes a CFT.
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FIG. 3. Two-parameter scaling collapse of M2
i on the SO(5)

line, ui ≡ ū, with U = 0.5ū. The data is obtained from
iDMRG simulations with bond dimensions χ ranging from
2000 to 32000 (leftmost to rightmost points at each size). The
solid line shows a polynomial fit to data points with L ≥ 8`B
and represents the scaling function f(ξ/L) in Eq. (6); ∆V

is chosen so as to minimize the error of the fit. Inset: data
for U = 10ū (large stiffness) shows poor collapse and returns
an estimate of ∆V in severe violation of the unitarity bound,
∆V > 0.5.
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refer to U/ui as the stiffness, making the region U < 0 seem
unphysical, the ui themselves lead to a repulsive interaction
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the system polarizes into an easy-axis Néel state.
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The easy-plane anisotropy (u3 < ū) breaks O(5) down
to SO(4) and makes the model stiffer. A moderate value
like u3 = 0.9ū (used in Fig. 4) lowers ∆V slightly, while a
large anisotropy like u3 = 0 makes the transition strongly
first-order.

In conclusion, while iDMRG simulations do not pro-
vide a definitive numerical prediction for the scaling
dimension ∆V , they are consistent with a continuous
transition characterized by an exponent ∆V somewhat
larger than the unitarity bound, in agreement with ear-
lier calculations on the cubic dimer model52,53, the JQ
model16,54–56, loop models8 or large-N expansion of the
CPN−1 field theory57, all of which place the vector di-
mension ∆V in the range 0.57 to 0.68.

IV. SIGN-FREE DETERMINANTAL
QUANTUM MONTE CARLO

We now show that the model is amenable to sign-free
determinantal quantum Monte Carlo, due to a combina-
tion of particle-hole and flavor symmetry, leading to an
algorithm with polynomial complexity in system size.

We consider a quantum Hall Hamiltonian of the gen-
eral form

H =
1

2

∑
i

∫
d2r ni(r)U i(r− r′)ni(r′) (7)

=
1

2V

∑
i

∫
d2q ni−qU

i(q)niq (8)

in real and Fourier space respectively (V is volume).
On the sphere, the Fourier transformation can be re-
placed by a spherical harmonic decomposition. Here
ni(r) = ψ†(r)Oiψ(r), where O acts on the flavor index.
Without loss of generality we take O = O†, so that n
is Hermitian. After LL-projection on a circumference L
cylinder in Landau gauge, the single particle orbitals are
labelled by their momenta around the cylinder, k = 2π

L m
for m ∈ Z, and flavor index a. The density operators are
expanded in annihilation operators ĉk,a as58

niq = e−q
2`2B/2

∑
a,b,k

e−ikqx`
2
B ĉ†k+qy/2,a

Oiabĉk−qy/2,b. (9)

On the torus the same form carries through after identi-
fying k ∼ k + L/`2B , up to exponentially small terms in
`B/L.

In the auxiliary field method the interactions are de-
coupled using bosonic Hubbard-Stratonovich fields “φ.”
There are a variety of possible channels for this decom-
position, including the Cooper channel, but as a proof-
of-principle we present here the obvious choice nqi -
n−qi. We introduce Hermitian Hubbard-Stratonovich
fields φqi = φ̄−qi for each operator type, so that a small

time step can be decomposed as

e−dτH ∼
∏
i,q′

∫
dφqi e

−dτ |φqi|2+dτ
√
−Ui(q)/V (niqφ̄qi+h.c.)

(10)

up to normalization and the usual Trotter errors. Note
that because of LL-projection, [ni(r), ni(r′)] 6= 0. Multi-
plying over imaginary time-steps and integrating out the
fermions, we obtain an auxiliary field path integral of the
general form

Z = Tr
(
e−βH

)
=

∫
D[φ]e−S[φ]M [φ] (11)

S[φ] =
∑
i,q

∫
dτ |φqi(τ)|2 (12)

whereM [φ] is the fermion determinant for auxiliary field
space-time configuration φq(τ).

The problem is sign free if M [φ] ≥ 0 for all φ. A
sufficient criteria for a sign-free determinant is the ex-
istence of two anti-unitary symmetries T1, T2 such that
T 2

1 = T 2
2 = −1 and T1T2 = −T2T1. The symme-

try must exist for any auxiliary field configuration.59–61
Time-reversal is broken by the magnetic field, but at half-
filling there is an anti-unitary particle-hole operation PH
which exchanges empty and filled states of the LL:

PH αψa(r) PH−1 = ᾱψ†a(r) (13)

PHĉkaPH−1 = ĉ†ka (14)

For Hermitian ni, PH acts as PHni(r)PH−1 = −ni(r),
or PHniq PH

−1 = −ni−q. (If Tr(Oi) 6= 0, the op-
erators first need to be shifted according to ni(r) →
ni(r) − Tr(Oi); we leave this shift implicit). PH can be
combined with a unitary transformation X acting on the
flavor index, and we will take Tg = XgPH, g = 1, 2. The
symmetry condition is

Oi = sign
(
U i(q)

)
XgO

iX†g (15)

For a repulsive channel (U i > 0), Oi must be even
under Xg, while for an attractive one (U i < 0), Oi must
be odd. To be sign-free, we must have T 2

g = XgXg = −1
and T1T2 = X1X2 = −X2X1 = −T2T1. Note that PH
is different than time-reversal in this respect; the first
condition can always be satisfied by a phase redefinition
Xg → iXg.

For the problem at hand it seems we have Oi = Γi,
i = 1, · · · , 5 with U i(q) = −ui < 0, plus the density
channel O0 = 1. But with this decomposition it is im-
possible to find the two requiredXg, because the Γ are by
definition a maximally anti-commuting set. Fortunately,
for contact interactions we may use a Fierz identity (see
appendix A) and instead consider37

H =
g

2
(ψ†ψ)2 +

1

2

∑
µ=x,y,z

gµ(ψ†τµψ)2 (16)
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where g = U + uN , gx = −uN − u4, gy = −uN − u5, and
gz = 2uN . The region of interest is g, gz > 0 and gx, gy <
0. Decomposing in the density channels associated to
these g, it is now easy to verify that X1 = iτzσx and
X2 = iτzσy satisfies the sign free condition. To handle
the SO(4) case, we can reduce |g4| from it’s SO(5) value.

The sign-free condition can be seen more explicitly
from Eq. (16) because the determinant M factorizes by
spin, M [φ] = M↑[φ]M↓[φ]. This is because the Oi are
all diagonal in spin along direction σz, so the densities
decompose as ni = ni↑ + ni↓, [ni↑, n

j
↓] = 0. The spin-

exchanging anti-unitaries Tg ensure M↑ = M∗↓ , so the
partition function can be evaluated by restricting to the
↑ orbitals,

Z =

∫
D[φ]e−S[φ]|M↑[φ]|2 (17)

This restriction reduces the dimension of the linear alge-
bra routines from 4Nφ → 2Nφ.

Note the same reasoning carries through for projector
(zero-temperature) DQMC. Restricting to spin ↑, an ad-
missible starting state |Ω〉 is a single filled-LL pointing
along an arbitrary direction in valley-space.

A. Implementation

The structure of the determinant is rather different
than the Hubbard model’s, so we discuss and demon-
strate a naive implementation of the DQMC as a proof
of principle. An optimized large-scale implementation
will be presented in future work.

We first analyze the number of fields φiq required for
each time-step. On an L × L torus pierced by Nφ =
L2/2π`2B flux, the fields niq in-principle run over the in-
finite set of momenta q ∈ 2π

L (m,n) (though only N2
φ of

these are linearly independent). However, from Eq. (9)
we see that the interaction strength is effectively

U iLLL(q) ≡ U i(q)e−
1
2 q

2`2B (18)

Thus the component of the interaction with q < Λ`−1
B

is cut off and we can safely keep only Nq = NφΛ of the
modes with an error that decreases exponentially with Λ.
There are now O(Nφ) auxiliary fields per time-slice, just
as there would be in the Hubbard model.

However, in contrast to the real-space density opera-
tors of the Hubbard model, the single-particle operators
niq are full-rank. For low-rank operators the Sherman-
Morrison formula can be used to update each of the Nφ
HS fields in time N2

φ, while for a generic full-rank up-
date takes time N3

φ. As a result, for inverse temperature
β and system size V = 2Nφ, the highly naive imple-
mentation we demonstrate here (a brute force recalcula-
tion of the determinant via an LU decomposition!) scales
as O(βV 4) per sweep, while the usual Hubbard DQMC
scales as O(βV 3).59 Although slow, this single spin flip
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FIG. 5. DQMC result for the embedding of the transverse
field Ising model into the half-filled Landau level. We plot the
squared Ising magnetization M2 at transverse field h = 0.1,
as a function of the Ising coupling J . Data is scaled by L2∆−2,
where ∆ ∼ 0.259 is the known scaling dimension of the Ising
magnetization. As expected, the data shows a crossing around
J ∼ 1.

DQMC allows for the use of discrete fields and can be
implemented in the ALF package.62

However, the niq do have special structure - they can be
diagonalized by a fast-Fourier transform - which allows
for matrix-vector products in time Nφ log(Nφ) rather
than the genericN2

φ. This has for consequence that forces
required for a Langevin or hybrid Monte Carlo step63
can be computed at a cost set by O(βV 3). At face value
Langevin and hybrid Monte Carlo sampling seem more
efficient, but can suffer from singularities in the forces as
well as ergodicity issues.64 A detailed analysis of the most
efficient way to implement the DQMC for the present
problem is left for future work.

As a simple test of the proposal we consider the 2+1D
transverse field Ising model, which can be embedded into
the N = 4 model by choosing U = 0, u1 = u2 = u3 =
u4 = 0, u5 = J , and introducing an additional transverse
field hψ†τxψ (fields along τx/y preserve the sign-free con-
dition). The ratio h/J should tune an ordered-disordered
transition with Ising order parameter M = 〈n5〉.

We present the results of a small projector DQMC
simulation in Fig. 5. Rather than extrapolate to zero-
temperature, we evolve a transverse-polarized state |→〉
to finite β ∝

√
Nφ, e.g. |β〉 = e−βĤ |→〉. In units with

`B = e2

4πε0`b
= 1, we take β = 5

√
Nφ and ∆τ = 0.25

with a 2nd-order Trotter decomposition and measure the
total magnetization-squared M2 = 〈

(
n5
q=0

)2〉Nφ . After
scaling the data shows the crossing predicted by an Ising
transition.

In addition, we have also checked the energy against
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exact diagonalization for Nφ ≤ 3 for both the Ising model
and for SO(5)-symmetric ui.

V. DISCUSSION

In this work we have discussed how several 2+1D quan-
tum phase transitions, including deconfined quantum
critical points, can be realized in half-filled continuum
Landau levels which exactly preserve internal and spa-
tial symmetries which would otherwise be realized only
in the IR. The approach can be understood as a fully
continuum regularization of an O(N) non-linear sigma
model. These models can be studied using DMRG, and
despite the broken time-reversal, sign-free determinantal
quantum Monte Carlo.

To our knowledge, our DMRG results are the first
study of a putative DCQP beyond QMC. While the
DMRG system size (L = 12`B) is much smaller than
previous QMC results, we do see behavior in rough agree-
ment. Specifically, in QMC exponents drift slowly with
system size (∆V flows downward) indicating that the
transition is either weakly first-order or has unconven-
tional corrections to scaling.8 While we cannot detect
such a finite-size drift given our small L, we do observe
a complementary phenomenon. Our model allows us to
tune a parameter, the stiffness U , which (if the DCQP
exists) should be irrelevant. The estimate of the scaling
dimension ∆V instead changes with U ; for large U , ∆V

is reduced and eventually violates the unitarity bound
before the transition becomes clearly first-order. The
largest value we observe is ∆V ∼ 0.7, or η ∼ 0.4. This
estimate still slightly violates the best bounds from con-
formal bootstrap when assuming SO(5) symmetry.12–14

Going forward, the crucial question is whether sign-free
DQMC simulations will be able to reach the system sizes
required to shed new light on this issue. If so, the contin-
uum realization may have significant advantages because
we can directly identify the NLSM stiffness, SO(5) vec-
tor operator, and symmetric-tensor perturbations with-
out tuning. This should greatly simplify the scaling anal-
ysis in order to investigate, for instance, whether a nearby
non-unitary CFT generates a conformal window at scales
above the first-order transition.5,7,11,65 The stiffness U
could be used to control how long the flow stays in the
conformal window.

A second question is which other CFTs might be real-
ized in this fashion. When half-fillingN = 4 LLs, we have
a sign-free realization of the O(M) Wilson-Fisher fixed
point for M = 1, 2, 3 and O(M) DCQPs for M = 4, 5.
It will be interesting to investigate what other models
are sign-free when using N > 4LLs, or even attacking 5-
dimensional CFTs using the quantum Hall effect in 4 + 1
dimensions.
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Appendix A: Equivalent parametrizations of SU(4) anisotropies

Here we review the Fierz identities used to relate the two parametrizations of SU(4) anisotropies used in this paper,
e.g., that Eq. (1) is equivalent to

H = H0 +
1

2

∑
µ=x,y,z

gµ(ψ†τµψ)2 ,

with gx = gy ≡ g⊥. This parametrization allows a more direct conversion to experimental parameters39,40, and is
crucial in the implementation of sign-free determinant quantum Monte Carlo in Sec. IV.

The equivalence can be proven by making use of a version of the Fierz identities, which we derive in the following.
We start by considering the set of matrices {Oi} = {σaτ b}, with a, b ∈ {0, 1, 2, 3}. These form a basis of 4 × 4
matrices. Therefore the tensor products {Oi⊗Oj} form a basis of 16×16 matrices, and one can perform the following
decomposition:

OiαβO
i
γδ =

∑
j,k

bijkO
j
αδO

k
γβ , (A1)

where the greek indices run over electron flavors and b is a matrix of coefficients. We insert OmδαO
n
βγ on both sides of

Eq. (A1) and contract all flavor indices, obtaining

Tr(OiOnOiOm) =
∑
j,k

bijkTr(OjOm)Tr(OkOn) .
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The Oi are trace-orthogonal, with Tr(OiOj) = 4δij . Moreover, any two O operators either commute or anti-commute,
and each O squares to the identity. Using these facts we obtain

bimn =
1

16
Tr(OiOmOiOn) = ± 1

16
Tr(OmOn) = ±1

4
δmn ,

with the ± sign decided by whether Oi and Om commute or anti-commute. We can finally rewrite Eq. (A1) as

(ψ†(x)Oiψ(x))2 = −
∑
j

bij(ψ
†(x)Ojψ(x))2 , (A2)

bij =

{
+ 1/4 if OiOj = OjOi ,

− 1/4 if OjOi = −OiOj .
(A3)

The extra sign comes from the Fermi statistics of the ψ operators.
Direct application of Eq. (A2) shows that

(ψ†τzψ)2 −
∑
a=4,5

(ψ†Γaψ)2 + (ψ†ψ)2 = −(ψ†τzψ)2 −
∑

a=1,2,3

(ψ†Γaψ)2 ,

which implies

(ψ†τzψ)2 = −1

2
(ψ†ψ)2 − 1

2

∑
a=1,2,3

(ψ†Γaψ)2 +
1

2

∑
a=4,5

(ψ†Γaψ)2 (A4)

This identity allows us to map the two parametrizations:

V

2
(ψ†ψ)2 +

g⊥
2

∑
µ=x,y

(ψ†τµψ)2 +
gz
2

(ψ†τzψ)2 =
U

2
(ψ†ψ)− uN

2

∑
a=1,2,3

(ψ†Γaψ)2 − uK
2

∑
a=4,5

(ψ†Γaψ)2 (A5)

with

U = V − 1

2
gz, uN =

1

2
gz, uK = −g⊥ −

1

2
gz . (A6)

1 P. Di Francesco, P. Mathieu, and D. Senechal, Conformal
field theory (Springer, New York, 1997).

2 T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and
M. P. A. Fisher, Science 303, 1490 (2004).

3 T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and
M. P. A. Fisher, Phys. Rev. B 70, 144407 (2004).

4 O. I. Motrunich and A. Vishwanath, Phys. Rev. B 70,
075104 (2004).

5 C. Wang, A. Nahum, M. A. Metlitski, C. Xu, and
T. Senthil, Phys. Rev. X 7, 031051 (2017).

6 A. W. Sandvik, Phys. Rev. Lett. 98, 227202 (2007).
7 A. Nahum, P. Serna, J. T. Chalker, M. Ortuño, and A. M.
Somoza, Phys. Rev. Lett. 115, 267203 (2015).

8 A. Nahum, J. T. Chalker, P. Serna, M. Ortuño, and A. M.
Somoza, Phys. Rev. X 5, 041048 (2015).

9 A. B. Kuklov, M. Matsumoto, N. V. Prokof’ev, B. V.
Svistunov, and M. Troyer, Phys. Rev. Lett. 101, 050405
(2008).

10 F.-J. Jiang, M. Nyfeler, S. Chandrasekharan, and U.-J.
Wiese, Journal of Statistical Mechanics: Theory and Ex-
periment 2008, P02009 (2008).

11 P. Serna and A. Nahum, arXiv preprint arXiv:1805.03759
(2018).

12 Y. Nakayama and T. Ohtsuki, Phys. Rev. Lett. 117,
131601 (2016).

13 D. Poland, S. Rychkov, and A. Vichi, ArXiv e-prints
(2018), arXiv:1805.04405 [hep-th].

14 S. Pufu and L. Iliesiu, (2018), private communication.
15 R. G. Melko and R. K. Kaul, Phys. Rev. Lett. 100, 017203

(2008).
16 J. Lou, A. W. Sandvik, and N. Kawashima, Phys. Rev. B

80, 180414 (2009).
17 A. W. Sandvik, Phys. Rev. Lett. 104, 177201 (2010).
18 A. Banerjee, K. Damle, and F. Alet, Phys. Rev. B 82,

155139 (2010).
19 R. K. Kaul, Phys. Rev. B 85, 180411 (2012).
20 R. K. Kaul and A. W. Sandvik, Phys. Rev. Lett. 108,

137201 (2012).
21 L. Bartosch, Phys. Rev. B 88, 195140 (2013).
22 K. Chen, Y. Huang, Y. Deng, A. B. Kuklov, N. V.

Prokof’ev, and B. V. Svistunov, Phys. Rev. Lett. 110,
185701 (2013).

http://dx.doi.org/ 10.1126/science.1091806
http://dx.doi.org/ 10.1103/PhysRevB.70.144407
http://dx.doi.org/10.1103/PhysRevB.70.075104
http://dx.doi.org/10.1103/PhysRevB.70.075104
http://dx.doi.org/ 10.1103/PhysRevX.7.031051
http://dx.doi.org/10.1103/PhysRevLett.98.227202
http://dx.doi.org/ 10.1103/PhysRevLett.115.267203
http://dx.doi.org/ 10.1103/PhysRevX.5.041048
http://dx.doi.org/ 10.1103/PhysRevLett.101.050405
http://dx.doi.org/ 10.1103/PhysRevLett.101.050405
http://stacks.iop.org/1742-5468/2008/i=02/a=P02009
http://stacks.iop.org/1742-5468/2008/i=02/a=P02009
http://dx.doi.org/10.1103/PhysRevLett.117.131601
http://dx.doi.org/10.1103/PhysRevLett.117.131601
http://arxiv.org/abs/1805.04405
http://dx.doi.org/10.1103/PhysRevLett.100.017203
http://dx.doi.org/10.1103/PhysRevLett.100.017203
http://dx.doi.org/10.1103/PhysRevB.80.180414
http://dx.doi.org/10.1103/PhysRevB.80.180414
http://dx.doi.org/10.1103/PhysRevLett.104.177201
http://dx.doi.org/10.1103/PhysRevB.82.155139
http://dx.doi.org/10.1103/PhysRevB.82.155139
http://dx.doi.org/10.1103/PhysRevB.85.180411
http://dx.doi.org/10.1103/PhysRevLett.108.137201
http://dx.doi.org/10.1103/PhysRevLett.108.137201
http://dx.doi.org/10.1103/PhysRevB.88.195140
http://dx.doi.org/ 10.1103/PhysRevLett.110.185701
http://dx.doi.org/ 10.1103/PhysRevLett.110.185701


10

23 H. Shao, W. Guo, and A. W. Sandvik, Science 352, 213
(2016).

24 L. Wang, Z.-C. Gu, F. Verstraete, and X.-G. Wen, Phys.
Rev. B 94, 075143 (2016).

25 X.-F. Zhang, Y.-C. He, S. Eggert, R. Moessner, and
F. Pollmann, Phys. Rev. Lett. 120, 115702 (2018).

26 F. F. Assaad and T. Grover, Phys. Rev. X 6, 041049
(2016).

27 T. Sato, M. Hohenadler, and F. F. Assaad, Phys. Rev.
Lett. 119, 197203 (2017).

28 We thank Tarun Grover for suggesting a related idea many
years ago.

29 S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H.
Rezayi, Phys. Rev. B 47, 16419 (1993).

30 A. Abanov and P. Wiegmann, Nuclear Physics B 570, 685
(2000).

31 A. Tanaka and X. Hu, Phys. Rev. Lett. 95, 036402 (2005).
32 T. Senthil and M. P. A. Fisher, Phys. Rev. B 74, 064405

(2006).
33 J. Lee and S. Sachdev, Phys. Rev. Lett. 114, 226801

(2015).
34 D. Jafferis, I. Klebanov, S. Pufu, and B. Safdi, J. High

Energ. Phys. 2011, 102 (2011).
35 M. Kharitonov, Phys. Rev. B 85, 155439 (2012).
36 M. Kharitonov, Phys. Rev. Lett. 109, 046803 (2012).
37 F. Wu, I. Sodemann, Y. Araki, A. H. MacDonald, and

T. Jolicoeur, Phys. Rev. B 90, 235432 (2014).
38 Technically, the symmetry group is SU(2) × U(1) ∈

Spin(5) ∈ SU(4) which double covers SO(3)×SO(2). When
restricted to an even number of particles (e.g., filling two
LLs), the Hilbert space is in a bonafide representation of
SO(3)× SO(2).

39 A. Young, J. Sanchez-Yamagishi, B. Hunt, S. Choi,
K. Watanabe, T. Taniguchi, R. Ashoori, and P. Jarillo-
Herrero, Nature 505, 528 (2014).

40 A. Zibrov, E. Spanton, H. Zhou, C. Kometter,
T. Taniguchi, K. Watanabe, and A. Young, Nature Physics
, 1 (2018).

41 On manifolds withe genus not equal to one, there is tech-
nically a “shift” between Nφ and the number of orbitals.

42 V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Phys.
Rev. D 52, 4718 (1995).

43 K. Moon, H. Mori, K. Yang, S. Girvin, A. MacDonald,
L. Zheng, D. Yoshioka, and S.-C. Zhang, Physical Review
B 51, 5138 (1995).

44 S. Das Sarma, S. Sachdev, and L. Zheng, Phys. Rev. B

58, 4672 (1998).
45 I. P. McCulloch, arXiv preprint arXiv:0804.2509 (2008).
46 M. P. Zaletel, R. S. K. Mong, and F. Pollmann, Phys.

Rev. Lett. 110, 236801 (2013).
47 M. P. Zaletel, R. S. K. Mong, F. Pollmann, and E. H.

Rezayi, Phys. Rev. B 91, 045115 (2015).
48 L. Tagliacozzo, T. R. de Oliveira, S. Iblisdir, and J. La-

torre, Physical review b 78, 024410 (2008).
49 F. Pollmann, S. Mukerjee, A. M. Turner, and J. E. Moore,

Phys. Rev. Lett. 102, 255701 (2009).
50 S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cam-

bridge University Press, Cambridge, 2011).
51 U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
52 G. J. Sreejith and S. Powell, Phys. Rev. B 89, 014404

(2014).
53 G. J. Sreejith and S. Powell, Phys. Rev. B 92, 184413

(2015).
54 S. Pujari, K. Damle, and F. Alet, Phys. Rev. Lett. 111,

087203 (2013).
55 S. Pujari, F. Alet, and K. Damle, Phys. Rev. B 91, 104411

(2015).
56 K. Harada, T. Suzuki, T. Okubo, H. Matsuo, J. Lou,

H. Watanabe, S. Todo, and N. Kawashima, Phys. Rev.
B 88, 220408 (2013).

57 E. Dyer, M. Mezei, S. S. Pufu, and S. Sachdev, J. High
Energ. Phys. 2015, 37 (2015).

58 R. E. Prange and S. M. Girvin, The Quantum Hall Effect
(Springer-Verlag, New York, 1987).

59 S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E.
Gubernatis, and R. T. Scalettar, Phys. Rev. B 40, 506
(1989).

60 F. Assaad and H. Evertz, “World-line and determinantal
quantum monte carlo methods for spins, phonons and elec-
trons,” in Computational Many-Particle Physics, edited by
H. Fehske, R. Schneider, and A. Weiße (Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008) pp. 277–356.

61 Z.-X. Li and H. Yao, ArXiv e-prints (2018),
arXiv:1805.08219.

62 M. Bercx, F. Goth, J. S. Hofmann, and F. F. Assaad,
SciPost Phys. 3, 013 (2017).

63 S. Duane and J. B. Kogut, Phys. Rev. Lett. 55, 2774
(1985).

64 S. Beyl, F. Goth, and F. F. Assaad, Phys. Rev. B 97,
085144 (2018).

65 V. Gorbenko, S. Rychkov, and B. Zan, arXiv preprint
arXiv:1807.11512 (2018).

http://dx.doi.org/10.1126/science.aad5007
http://dx.doi.org/10.1126/science.aad5007
http://dx.doi.org/10.1103/PhysRevB.94.075143
http://dx.doi.org/10.1103/PhysRevB.94.075143
http://dx.doi.org/ 10.1103/PhysRevLett.120.115702
http://dx.doi.org/10.1103/PhysRevX.6.041049
http://dx.doi.org/10.1103/PhysRevX.6.041049
http://dx.doi.org/10.1103/PhysRevLett.119.197203
http://dx.doi.org/10.1103/PhysRevLett.119.197203
http://dx.doi.org/10.1103/PhysRevB.47.16419
http://dx.doi.org/https://doi.org/10.1016/S0550-3213(99)00820-2
http://dx.doi.org/https://doi.org/10.1016/S0550-3213(99)00820-2
http://dx.doi.org/10.1103/PhysRevLett.95.036402
http://dx.doi.org/10.1103/PhysRevB.74.064405
http://dx.doi.org/10.1103/PhysRevB.74.064405
http://dx.doi.org/10.1103/PhysRevLett.114.226801
http://dx.doi.org/10.1103/PhysRevLett.114.226801
http://dx.doi.org/ 10.1007/JHEP06(2011)102
http://dx.doi.org/ 10.1007/JHEP06(2011)102
http://dx.doi.org/10.1103/PhysRevB.85.155439
http://dx.doi.org/10.1103/PhysRevLett.109.046803
http://dx.doi.org/ 10.1103/PhysRevB.90.235432
http://dx.doi.org/10.1103/PhysRevD.52.4718
http://dx.doi.org/10.1103/PhysRevD.52.4718
http://dx.doi.org/10.1103/PhysRevB.58.4672
http://dx.doi.org/10.1103/PhysRevB.58.4672
http://dx.doi.org/10.1103/PhysRevLett.110.236801
http://dx.doi.org/10.1103/PhysRevLett.110.236801
http://dx.doi.org/10.1103/PhysRevB.91.045115
http://dx.doi.org/10.1103/PhysRevLett.102.255701
http://dx.doi.org/10.1017/CBO9780511973765
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/PhysRevB.89.014404
http://dx.doi.org/10.1103/PhysRevB.89.014404
http://dx.doi.org/10.1103/PhysRevB.92.184413
http://dx.doi.org/10.1103/PhysRevB.92.184413
http://dx.doi.org/10.1103/PhysRevLett.111.087203
http://dx.doi.org/10.1103/PhysRevLett.111.087203
http://dx.doi.org/10.1103/PhysRevB.91.104411
http://dx.doi.org/10.1103/PhysRevB.91.104411
http://dx.doi.org/10.1103/PhysRevB.88.220408
http://dx.doi.org/10.1103/PhysRevB.88.220408
http://dx.doi.org/10.1007/JHEP06(2015)037
http://dx.doi.org/10.1007/JHEP06(2015)037
http://dx.doi.org/10.1103/PhysRevB.40.506
http://dx.doi.org/10.1103/PhysRevB.40.506
http://dx.doi.org/ 10.1007/978-3-540-74686-7_10
http://arxiv.org/abs/1805.08219
http://dx.doi.org/10.21468/SciPostPhys.3.2.013
http://dx.doi.org/10.1103/PhysRevLett.55.2774
http://dx.doi.org/10.1103/PhysRevLett.55.2774
http://dx.doi.org/10.1103/PhysRevB.97.085144
http://dx.doi.org/10.1103/PhysRevB.97.085144

	Half-filled Landau levels: a continuum and sign-free regularization for 3D quantum critical points
	Abstract
	I Introduction
	II Model
	III Infinite DMRG simulations
	A Method
	B Cylinder diagnostics of the 2D phases
	C Continuous transition
	D Scaling dimensions

	IV Sign-free Determinantal Quantum Monte Carlo
	A Implementation

	V Discussion
	 Acknowledgments
	A Equivalent parametrizations of SU4 anisotropies
	 References




