
Lawrence Berkeley National Laboratory
Recent Work

Title
A MAX-IV DISC CACHE

Permalink
https://escholarship.org/uc/item/0kk952mq

Author
Jacobson, Van.

Publication Date
1982-10-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0kk952mq
https://escholarship.org
http://www.cdlib.org/

~
'

·_ .· .

j

LBL-15552
('·d--

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Engineering & Technical
Services Division

A MAX-IV DISC CACHE

Van Jacobson

October 1982

Rl~CEIVED
LAWi~ENCE

BERi{;:-: C"V I .f.;P·~t:;ai\Tf")~y

MAR 21 1983
LIBRARY ,IJ.ND

DOCUMENTS SECTrON

TWO-WEEK LOAN COPY

This is a Library Circulating Copy

which may be borrowed for two weeks.

For a personal retention copy, call

Tech. Info. Division, Ext. 6782.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

·•

A Ma.~-IV Disc Cache
Yen Jo.cob1on

Real Time Systems Gzvup
Lawrence Berkeley Labora,ory

University of California
Berkeley, California 114720

LBL-15552

This note describes some design considerations for routines to •cache" sectors of disc in
main memory on a Modcomp-IV or Classic running Max-IV. Anyone who has used the Tools
under Max-IV or has a real time system which does a lot of disc I/0 (like the NBS system)
is aware of the pathetic disc performance. The CPU utili,ation, even with 6 or 6 users,
rarely exceeds 30% (limited by disc saturation). The reasons for this poor performance are
probably:

(1) A small disc block size {256 bytes). This generates a lot of I/0 requests. (most
machines consider 512 to lK bytes the absolute minimum block size).

{2) The worst possible disc layout. All of the space for file system data structures is
allocated when the disc pack is •labelled". This space must be contiguous and must
be relatively large (since when you run out, the disc is useless). Thus you negate the
•clumping" effect of a reasonable space allocator and guarantee long seeks (from the
data space to the file system space & back).

(3) Coarse space allocation granularity. The minimum practical allocation unit is a track.
This guarantees that a seek must be done for every context switch (2 users' files can't
share the same track). Measurements indicate that heavily used files are small (the
•dynamic" average file si'e is 4-6 sectors) and several could share one track.

(4) Bi,arre file system data structures. All the file system internal data structures are
built of linked lists of discontiguous sectors. Thus, even on discs with hardware
buffering, the file system internals can't take advantage of it. Also, the data structures
weren't designed for speedy operation (they probably weren't designed at all): It takes
a minimum of 2 disc accesses to look up each simple name of a file in a directory. It
typically takes 8-10 disc accesses to open a file.

(6) Few 'in-core' file system data structures. Virtually the only file system info maintained
in core is a pointer to the root directory.

The idea of a cache is to use memory & CPU cycles to reduce the number of disc
seeks. As the number of seeks goes up, the system performance degrades dramatically. For
example, say 2 processes each need to read 4 sectors from different files. If the processes
execute sequentially, each requires

28ms seek + 8ms rot. = 36mB

for the 1st sector & lOOps for each remaining sector. If they exactly interleave their disc
requests, a seek has to be done for each read and the total time to execute goes from 72ms
to 288ms- a factor of 4 increase to accomplish exactly the same result. A similar non-linear
degradation happens when the average seek length is changed- a short seek takes 10-15m.s,

This manuscript was printed from originals provided by the author.

VenioD 2.1 - 1- LBL-RTSG

A Max-IV Disc Cache Odober, 1082

a long seek 50-60ms.

1. Considerations

We have 2 types of discs and the cache must work with both. Since they both have
the same sector size, this isn't a big deal: there's nothing in a caching algorithm that cares
about the disc hardware- it only needs access to an 1/0 operation at appropriate points.
The disc parameters are:

7We ·Size

4138 80mb
4134 40mb

Avg
See/c
28ms
32ms

Mu
Seek
56ms
58ms

Avg
Rot.
8ms
16ms

Xfer
Rate

800kbs
300kbs

The 4138 controller also includes a buffer capable of holdi~g 1 track's worth of data so
successive reads from the same track go at the transfer rate (roughly IOOp.s / sector). The
Modcomp 1/0 channel is essentially a separate computer with its own port to memory, so
disc tranfers cost nothing in terms of CPU cycles.

In general, if one plots system performance VB. cache size, the curve is "S" shaped. For
a small cache, sectors are replaced before they have a chance to be re-used and performance
is degraded (by the time necessary to copy sectors into the cache). At some point, the time
saved from getting high use sectors from the cache exceeds the time spent putting data in
the cache and the performance improves. The rate of improvement depends on the relative
sector access frequencies (if a few sectors are accessed a lot, the improvement is more rapid)
and the cost (in cpu cycles) of maintaining the cache. At some point, all of the frequently
used sectors are coming from the cache and there's nothing to be gained by increasing its
size. Inspection of the system code 8l Bob Belshe's disc trace both suggest that the minimum
cache size is 100 to 200 sectors. Rule of thumb (from Coflman & Denning's Operating Syatem
Principle&} would say the maximum will be about 400-500 sectors. These numbers obviously
have to be determined after the cache is installed but these bounds give guidance in selecting

·an algorithm (e.g., if the lower limits were 20-30 sectors, one would be thinking of putting
the buffers in map 0 or 7 and using simple arrays with linear or binary search for the data
structures. For 400 sectors, one thinks of buffers in actual memory, linked lists and hashing).

This brings up an important point: the caching has a definite cost (in terms of system
performance). It takes memory (but we have enough so there should be no impact) and it
takes CPU cycles. If everything comes from the cache, one simply trades disc saturation for
cpu .saturation. There's a gain due to the shorter "seek" time of sectors in. core but there's
a loss of the parallel 1/0 processor. If the system does enough multi-tasking or is close to
CPU saturation, this loss can be significant. I.e., if there was always a task that needed to
do 30ms of computing during someone else's seek, there would be no need for a cache).

The two big users of cpu cycles in the caching process are searching the cache for a
sector and copying sectors to/from the user fromfto the cache. The tightest search loop
one can do a Modcomp-IV takes about 10p.s / comparison. To search a 400 sector cache
linearly would take at least 2ms av. Any algorithm that orders the sectors to get log(n)
search time is going to suffer from the frequent re-orderings required as the LRU algorithm
adds and deletes sectors (one should expect about a 50-60% hit rate in a well-tuned cache).
Since we're throwing memory at this problem anyway, we might as well pick some sort of

Venioa 2.1 - 2- LBL-RTSG

·.• 'i

, I
~·

•

I J.• ...

r

\ .•)

A Max-IV Disc Cache October, 1082

hashing algorithm to find the sectors: a uniform hashing function with a 200 word index
table should give <lOOJ.&s search times on a MC-IV.

The other cpu eater, data copying, is particularly nasty. The fastest that one can
move 128 words on a MC-IV is 2181'8. This isn't bad but, unfortunately, the instructions
to do this only work in your virtual address space. The cache is required to move data
between 2 different virtual address spaces: the system's (where the cache code & disc handler
are executing) and the user's (where the 1/0 buffer is). This restricts the set of available
instructions & requires adding some context switching instructions to the loop. The most
straight forward loop (the one in the existing cache) takes about 900J.&s. Being clever, one
can get this down to about 400J.&s. By doing things which are almost incomprehensible and
taking some liberties with a system data structure, one can get this down to about 250J.&s.

Since the use of the cache has to be indivisible and Max-IV has nothing resembling
a semaphore, all of the cache operations either have to be done at interrupt level or with
interrupts locked out. Thus'900J.&s copy+ 1001's search means we'll be locked up at interrupt
level for a milli-second and may start dropping characters from 9600 baud async lines (which
have to interrupt every character). This is probably unacceptable. The 4001'8 loop might
work- it will probably be the first cut.

A last consideration: what Units to cache in. Various alternatives are sectors, tracks,
cylinders or user defined "chunks" (like the large core image records on a TOC file). The
disc trace shows the (dynamic) average file size to be 4 sectors (statically, the average size is
more like 12 sectors- apparently a lot more 1/0 is done to short files than long files. This
is reasonable if you consider that :AR and :VA are read by every tool and many of the pipe
temp files are short). Since tiles always start at track boundaries, a track cache will waste
90% (38/ 42) of its space on the ~Nerage -we don't have that much memory. In addition, to
read those 4 sectors, we had to open the file and that took 8-10 accesses to the management
space (250% overhead!). Since the management space is organized as linked sectors strewn
randomly across track & cylinder boundaries, a sector cache is obviously optimal for it.

The last possibility above, TOC files, aren't good candidates for the cache: They are
read via a single read (like .tsk files in RSX-llM & .exe files on the Vax) and their average
size is about 40kbytes. The cache is useful only when the Seek Time to Transfer Time ratio
is large. It's at least 10 times dower to copy data from the cache than to read it from disc
(ignoring seek time). Reading 40kb from the disc will take 2Sms (seek) + SOms (xfer) =
75ms. Reading it from the cache will take SOOms of CPU time.

(Actually, the most compelling reason for using a sector cache is the simplicity of the
implementation: the disc handler is, in general, handling user requests to read & write
sectors. If the cache can simply steal those sectors from the user's buJJer, it will be almost
entirely deeoupled from the 1/0 system. If the cache works in units other than sectors,
it has to substitute it's own buffers for the user's, then fool the 1/0 system into putting
the appropriate amount of data in the right place. By the time you coordinate this with
1/0 rundown and swapping, you've either re-written the 1/0 system or, if you ignore these
problems, created a system that maybe works for 10 minutes on alternate Thursdays) ..

Venioa. 2.1 -3- LBL-RTSG

A Max-IV Due: Cache Odober, 1082

2. The Caehe Routines

. This section describes the proposed cache routines. Before it can do this, some back­
ground on the Modcomp 1/0 system is needed. The Modcomp has no operating system in
the usual sense of an •executive" process which services requests from •user" processes. It
is built of 2 classes of things:

• privileged, re-entrant subroutines. The user gets to these routines by executing a trap
instruction (a REX) and supplies arguments either by loading the registers or putting
them after the REX instruction (the type of system call determines the argument
passing mechanism). So far, this looks like a conventional system call. However, on
most systems the trap will be serviced by something that has its own identity (e.g., has
its own register & memory context) and, by implication, processes requests serially.
On the Modcomp, the ttap is serviced by a subroutine (e.g., has the same register
& memory context as the user). Among other things, t~s means that anytime that·
shared data structures (like 1/0 queues) need to be accessed, the routine has to disable
context switching to prevent other routines (or even other incarnations of itself) from
accessing the data.

• interrupt service routines. Like the old Sigma-2 system, most of the conventional
•system" functions (scheduler, 1/0 handlers, etc.) are performed in the service routine
of a hardware interrupt. To make something happen (like starting an 1/0 operation),
the user (executing one of the subroutines described above) must issue instructions
which generate the interrupt. There are 16 interrupt levels (0 = highest priority;
15 = lowest priority) and interrupts are vectored. Two of the levels, 12 & 13, are
assigned to 1/0 devices. The device address determines the interrupt vector address
(like on a PDP-11). When an interrupt is active on some level, no other interrupt
can occur on that level or lower levels. Level 13 ("Service Interrupt" level) is used for
the operating system interface portion oU/0 handlers (e.g., 1/0 request initiation &
completion) and level12 ("Data Interrupt" level) is used for the data transfer portion
of handlers that service non-DMA devices (it is unused for DMA devices).

The cache is obviously a shared data structure. The cache code could go 2 places: in
the subroutine portion which queues the 1/0 operation & triggers the interrupt to start
the handler or in the Service Interrupt portion of the handler. If it goes in the subroutine
portion, it has to execute with context switching disabled and will not be able to put data
read in •quick mode" into the cache (you're out of the subroutine by the time the data
arrives). Since the main use of the subroutine phase is to gain context switching, the cache
code might as well go in the interrupt portion of the bander. This lets it get at all the 1/0
requests and, since interrupts are serial, removes problems of the cache being 'shared'.

There are several possible states for a handler to go through. The two interesting ones
for caching are 1/0 request initiation and 1/0 request termination. At initiation, you want
to determine if data can be supplied from the cache and, if it can, finish up the request
without disturbing the disc. At termination, you want to put the newly transferred data
into the cache.

2.1 The Cache Do.to. Structure

There are 7 1/0 requests to worry about. Of these, two (rea.d 8 write) transfer data.

Venioa 2.1 - 4 - LBL-RTSG

')
.1'

\I ...

A Mu:-IV Disc Cache October, Ul82

Four (advance record, advance file, bacbpace record 8 bru:kapru:e file) essentially do a 0
word read to find out if there is an EOF mark. The last, write eo/, puts an EOF mark on
a sector. The cache has to worry about 129 words of information for each sector: the 128
words of data and 1 word of 'marks' (EOF, EOI and EOR).

Each 1/0 request has 2 positions associated with it: the location of the sector on the
disc (called the DPI) and the relative position of the sector in the requestor's file (called the
FPI). Sectors in the cache are identified by the DPI. To keep big files (which are unlikely
to get high use) from evicting useful sectors from the cache, the FPI can be tested to make
sure it's below some limit before putting sectors in the cache.

Each sector in the cache has to be accessed 2 ways: via the hash table to see if it exists
and to get its data and via the LRU list to evict it to make room for a different sector. In
both lists we need to be able to delete nodes from the middle (when we access a sector we
want to move it from whereever it is in the LRU list to the front and when we get a new
sector (or delete an old one, depending on the algorithm) we need to move it from whatever
hash list it's on to the correct one). This suggests that we use doubly-linked lists. The buffers
for data should probably sit in actual memory (i.e., not be part of any virtual memory map)
since we can map over them whenever we want to move data in and out and, if in a map,
the size of the cache is limited by the MK virtual address space to 500 sectors.

Based on the last paragraph, the cache data structure could look like:

• The DPI of the sector associated with this cache entry. Disc addresses are 24 bits+
4 bits of disc unit number so this entry will be 2 words. ·

• The hash linkage. A forward pointer to the next entry whose DPI hashed to the same
value (0 if none). A back pointer to the last entry whose DPI hashed to the same
value. ·

• The LRU linkage. A forward pointer to an older entry. A backward pointer to a
younger entry.

• The buffer address (a 128 word copy of the sector data in actual memory).

• The 'flags' word (EOF, EOI and EOR status for the sector).

All sectors are on both the LRU and hash lists. When things start up (before there have
been enough disc operations to fill the cache), all the sectors are put on the Oth hash list
with an impossible DPI (-1). The lists are initialized and the memory allocated whenever
the system is restarted.

2.2 The Cru:he Code

With the preceding in mind, the cache code looks something like:

On Requeat Initia.tion:

if sector 1D cache then

moTe sector to front of LRU chain

Version 2.1 - 5- LBL-RTSG

A Max-IV .Disc Cache

Venioa 2.1

if operation is read. a we <= 128 or operation is
a.vr or bkr then

move da.ta. a uft status !rom cache to user
fake I/0 completion

-6-

Odober, 1082

"I

I i

!-

v

LBL-RTSG

\ J ..

I)

A Mu:-IV Din: Cache Onober, 1082

On Reque.t Terminuticm:

II The cri taria. !or putting the data. from the currant
II request into the cache are:
II
II All requests:
II Reads:
II lritas:
II

no error
word count = 128
word count <= 128

II The ideas behind this are that only full sectors
II are useful (a.ny write is zero padded by the disc hardwaza to
II the next sector boundary)

if no error a (.(op =read a we= 128)
I Cop = write a we <= 128)) then

II Thera's a.n efficiency possible hera since we know
II that no 'read' type operation is in the cache (if
II it ha.d been, it would have bean picked up. at raq.
II initiation a we would never get hera). This means
II we only have to search the cache for 'DPI' on write
II a.nd write eo! operations. Ia assume that the search
II time is small a don't take advantage of this.

sector := find sector in cache
if sector not in cache then

sector := oldest entry in LRU list
move sector to appropriate hash list

move contents of user buffer to cache buffer for sector
move uaer'.s u!t status to flags word !or sector

else if (error I we > 128) a

Veniou 2.1

(op = write op = no!) then

II since we've just changed some data on disc but the
II operation wasn't considered ''cache-able'', we want
II to delete a.ny affected sector(s) in the cache so
II the contents of the cache will always agree with the
II contents of the disc . lore than one sector may
II be affected 1! the word count was > 128 words.

for each sector of operation do
if sector in cache than

evict sector from cache

-1- LBL-RTSG

A Max-IV Disc Cache Odober, 1082

a. Post-Implementation Notes

The cache was implemented pretty much as described above during the '81-82 Christmas
break. The program name, conforming to our 'alphabet soup' naming convention, is FHL. It
is about 800 lines of assembly language (this is twice the size I'd hoped it would be) and adds
about 1K to Map 0 (800 words of code & 200 of tables). The 2 disc handlers, MH.HAN and
LD .HAN, had to be modified to call the cache code at request initiation and termination -
about 10 lines of code were added to each handler.

3.1 Change• to the De1ign

The initial intent was to put the cache data structures in Map 7, sharing the map with
the File Manager code. Unfortunately, Map 7 on a Classic has only a 16K address space and
this isn't large enough (it takes 8 words for a sector descriptor and we want to cache about
500 sectors= 4K. The File Manager code is 13K.) With some trepidation, I decided to give
the cache Map 6. This is another useless 16K map on a Classic and, at any rate, Max-N
uses the maps so badly that taking another one has no noticeable impact.

AE. long as there was a map available, it seemed like a good idea to do the best job
possible on the data copy loop. Three pages at the top of the map are used to map over the
cache buffer (1 page) and user buffer (2 pages since the 128 word buffer can span 2 different
pages). The code to do the map-over and copy is fairly involved but very fast: it measures
out at 320ps to copy 128 words on a MC-N /35 including all the setup and mapping time.
(This was measured by putting instructions that output 'signature' levels to an lOIS DAC
at appropriate places in the code, then measuring the resulting pulse widths on a scope. It
wasn't deduced from instruction timings.)

It should have been possible to cache any operation that resulted in an EOF: Program's
are 1uppo1ed to ignore the buffer contents on a read if the EOF bit is set. (If you cache on
a Write EOF you end up with junk in the cache sector buffer because WEOF doesn't have
a write buffer associated with it.) Naturally, at least 2 of Modcomp's programs don't follow
the rules - Lffi and EDI require that data buffer contain e:r:actly the characters "S$" then
127 words of zero in addition to the EOF status in the UFT (This apparently has to do with
the Paper Tape Reader(!) putting some extra status bits in the data buffer on an EOF). It
took 3 or 4 people and several days of looking at revolting assembly language to figure this
out and I was too disgusted to do anything cleverer than simply not cache anything on a
WEOF, AVR or BKR.

It turned out that filtering out sectors based on FPI wasn't a good idea. It takes a lot
of code to get the FPI (it has to come from the task's TAL which is not something you can
get to easily from an 1/0 node) which slows down the cache. More significantly, at NBS the
most useful things to have in the cache were the short •database tables" which, since they
were on the big partition maintained by the DBF routines, all failed the FPI test.

3.2 Cache Performance

A 256 sector cache gets about a 30% hit rate (if more than one user is on the system).
A 512 sector cache gets a 65-75% hit rate. Going to 768 sectors didn't improve the hit rate
so I lelt the cache size at 512 sectors. There was no investigation of sizes between 256 and
512.

VenioD 2.1 - 8- LBL-RTSG

" I

; I
'!

\j

G
'\

A Max-tv Disc Cache O~ober, 11182

Of the operations that miss the cache, I expected the majority to be 'writes' (which
can never be hits). This didn't seem to be the case: Of the misses, 70% are 'reads', 25%
'writes' and 5% 'weofs'. This might mean that 20% (70% of 30%) of the sectors read are
not reused within more than 700 disc requests - a surprisingly high fraction. However, the
statistics don't distinguish between "not in cache" misses and "read > 128 words" misses
(e.g., the load of a TOC file)- most of this 20% may be from loading programs.

The 'Writes' to 'Weofs' ratio above gives another measure of 'dynamic' file size: Since
we almost always write sequentially then terminate a file with an eof, 'weofs' count the
number of files written. Thus, the average number of writes per file is around 6 sectors. This
may be an underestimate since a Tools "create" does an extra 'weof' when it creates the file
but I doubt if it's off by as much as a factor of 2.

Since the File Manager overhead is so high for short files, I had thought that the
majority of sectors in the cache would be from the File Management Space. Actually, only
about 30% of the sectors seem to be Management Space (see fig.1). Most are either short
temporary files ('pipe' files), peoples' :AR (argument passing) and :VA (working directory,
etc.) and TOC file LPRs for the "Root Tasks" and the Shell. (LPRs are the parts of a TOC
file that describe the resources, entry point, etc., of the module. They are sector sized and
good candidates for caching. MORs are the big core-image chunks of a TOC file that are
never cached.) Everybody's shell search path file and all of the directories it mentions end
up in the cache.

Using a 251 entry hash table for the sector hash gives average queue lengths of 2 entries
(at 10J.'S search time per entry) under load. (See fig.2). The longest queue is 6 entries but 85%
have 3 or fewer entries. The periodicity in the queue lengths (fig.3) shows that the division
hash is doing a lousy job. This is almost certainly because the sector number is being used
as the least significant part of the disc address. Since the average file size is small, only the
least signifcant 3 bits of the 8 bit field are used. Since a division hash works best if the values
in the least significant bits (up the the hash modulus) are uniformly distributed, putting the
track number in the bottom of the disc address would probably cut the queue lenghts by a
factor of 2. Since this would pick up < 15J.'S of a 350J.&s service time, I didn't think it was
worth the trouble to change.

3.3 Bottom Line1

For NBS, the cache made the normal shot sequence go from 22sec. down to 18sec. This
20% improvement doesn't seem to jibe well with the 60% hit rate but it's the usual perfor­
mance improvement problem: as soon as you remove one limit, you bump into another. The
NBS Classic is 100% IIJturllted for the entire 18 seconds after a shot. The next improvement
in the NBS system will have to come from some selective re-coding for speed.

For the Tools' interactive response, there's a similar dismal story. There was a noticeable
improvement in several things: "Who" writes out at the terminal speed rather than I line
per second and the number of directories in your search path no longer seems to have any
effect on the response time. However, the bulk of the response is now due the Shell spawns:
for every command you execute, the entire 64K core image of the shell has to be written
out then, later, read back in. On Dev-ll's 2314 discs, this takes BOOm~ which, of course,
completely overwhelms the cache improvement. The best way to deal with this is probably
either to make the Shell smaller or make it sharable. I.e., reduce the amount that must be

Yenion 2.1 - 9- LBL-RTSG

A Mu-IV Di.c: Cac:he Odober, 1U82

read and written on a spawn. (An easier alternative here is probably just to do as much as
possible on the Vax).

This work was supported by the U.S. Department of Energy under Contract
Number DE-AC03-76SF00098.

VenioA 2.1

(
I

- 10- LBI,.RTSG

v
I

'I
"

·.;

\.!)
:r
J
<
(..)

3S
----38

25-

15-

18 -

s-

---.-
8

T .. acks a" Cache ,fo .. DiSc 2

HR R R R 11

28 49 69 89 198 128

-11-

E

•
t ..
a
• s

" •
Q

• • ..
•

Cache Hash Queue Lengths

28J'an82 21:38

6-,--~------------------~------------~~------~--~

8 58 188 158 288 258

Queue

-12-

q
"

"
E

" t
p ..
• s

8 I 2 3

Queue Le .. ,th

-13-

28.Ja .. 82 21:37

4 5

Cacbe Hit Rote D&st~&but&ow

25~---,
--
-
-

28~~---i

-

1~~~--~ ----
18~~---i

-,
--
- r"'

5~~------------------------------~~--~-----------i
I' -

- F:
-~~ ...

8 28 48 68 88 188
~ H&ts iw 18 sec. Iwte~vel

-14-

,,

I

"

~
I

, I

Q
'I

38

2:5

28

--- I'!; - !\

- ~

- !\
!\ - !\ - ~

18

- f' ~
!\ !\ - I\ !'IIi;!\ - t\ t\!\ - t\ "t\~ ~

--
-

8

D£sc+Cachc ScPvicC Ti•C Dist~ibutioa
(396 opCPati~ftS saaplcd)

~

~'
'~n

~'' '~ ..--.r=il, - -
58 188

sc~vacc y, •• (as)

-15-

~

158

~ hou~ ~t\t'-'1: ""'­
\¢ ~u. ~"'"""Pc.. .. _,

9 ~ k. 1b ·b..l. ~--~c. Op ~ .

i, 3 u.~.or~

_.......Jq

288

I

iii'

Ope~atioft Rate Dist~ibutioft

39"a~82 19:54
17.'5

----1'5.8

----12.5
----18.8

----7.5

----5.8
--
-2.'5

:J -- m]~B - d . ."ll.
- .l.l'l .n.t.m~ K:I'R R rrR, n , , , 11, ,., ., ,., ,,.,.,_ •••
8 28 48 68 88 188 128

Requests/SecoRcl

-16-

'1
"\~

-~

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley.
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval . or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

- -"' '~~-~~

TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

;;;,..-·"""""""

,,

.•.

·-

·,,

