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Two novel scale-bridging algorithms to model reaction-diffusion transport in porous media are presented. The algorithms are based on
direct numerical simulations and couple the information of a micro-scale model, which accounts for the large field of view provided
by micro X-ray computed tomography (X-ray CT), and a nano-scale model, which locally resolves transport in the fine structure
extracted from nano X-ray CT. The micro-scale model is discretized in the through-plane direction into a 1D grid, where effective
properties and internal boundaries are determined based on the results from the nano-scale model. The validated algorithms are
used to examine transport of oxygen in precious group metal-free electrodes considering both zero- and first-order kinetics. Unlike
conventional methods, the results show that the effective diffusivity is not a passive property but increases in regions where the
reaction-rate coefficient is large. The proposed algorithms account for the multiscale coupling of reaction-diffusion transport and
material microstructure, thus improving the predictions compared to conventional methods.
© The Author(s) 2019. Published by ECS. This is an open access article distributed under the terms of the Creative Commons
Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any
medium, provided the original work is properly cited. [DOI: 10.1149/2.0242001JES]

Manuscript submitted June 6, 2019; revised manuscript received November 12, 2019. Published December 10, 2019. This paper is
part of the JES Focus Issue on Mathematical Modeling of Electrochemical Systems at Multiple Scales in Honor of Richard Alkire.

Understanding transport in porous media is relevant to many
fields, such as geological systems, energy conversion and storage and
bioengineering.1 Complex reactive transport of species requires ana-
lyzing physics over several length scales. According to the Interna-
tional Union of Pure and Applied Chemistry (IUPAC), pores with a
diameter below 2 nm are micropores, pores between 2–50 nm are
mesopores and pores larger than 50 nm are macropores. To inves-
tigate pore-size distributions (PSDs) and structures various imaging
techniques are used. FIB-SEM is the most applicable tool to resolve
the pores that span micro- and meso-scale ranges due to the tech-
nique’s high resolution of ∼5 nm/voxel. State-of-the-art nano X-ray
computed tomography (X-ray CT) has a resolution of 50–60 nm, re-
solving meso- and small macro-pores having a field-of-view (FOV)
of around 80 μm. Micro X-ray CT does not have the resolution to
capture micro- and meso-pore networks but is ideal to characterize
large macropores and cracks with a resolution of 1.3 μm/voxel and
1- 4 mm FOV.2–4 In this work, we bridge micro and nano scales from
micro X-ray CT and nano X-ray CT. Hence, in contrast to the IUPAC
definition, we refer to the pores resolved by micro X-ray CT and nano
X-ray CT as micro-scale pores and nano-scale pores, respectively.

Segmented image-stacks are used to directly mesh the physical
domains or to create representative virtual structures through pore-
network models (PNMs).5–8 For direct numerical simulation (DNS),
either computational fluid dynamics (CFDs)9,10 or Lattice Boltzmann
(LB)11,12 methods are commonly employed. Simulations are run on a
representative elementary volume (REV), which is the smallest vol-
ume of the sample that is representative of the material.1 Most of ge-
ological porous media (e.g., shale rocks) and electrochemical porous
electrodes in fuel cells and batteries are hierarchical, requiring scale-
bridging algorithms to model reaction-diffusion transport from both
micro- and macro-scales imaged data inputs.

Merging the experimental imaging tools to reconstruct pores that
range three orders of magnitude is a challenge for constructing a repre-
sentative grid over these length and time scales. PNMs can potentially
bridge these scales in a computationally efficient way, as they can
represent the smallest pores as network elements without the loss of
accuracy. PNMs are built with a network of pores and throats connect-
ing these pores, where a PSD is typically extracted experimentally for
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the modeled domain and fed into the model. Several recent studies pro-
posed a workflow for dual pore network models (D-PNMs) to fuse two
or more networks into one with a cross-scale connection structure.6,8,13

Because this framework accounts for each nano-pore individually, the
number of network elements grows quickly, which is computation-
ally demanding for a REV. Recognizing the computational challenge
of direct merging across the scales of PNMs, an alternative method
was proposed, where macropores with radii larger than micro X-ray
CT resolution were described with a PNM, and pores smaller than
the micro X-ray CT resolution were described with continuum theory,
characterized by porosity, PSD and permeability.14 In this framework,
a percentage of throats were represented with continuum theory, which
works well when species transport takes place in parallel through
meso- and micro-pores, but large error is expected when this is not
the case. More recently, Bultreys et al.2,15,16 also used the continuum
approach for describing micropores and PNM for larger macropores.
However, they connected these pores with so-called “micro-links”–
elements that have properties of micro-pores represented by contin-
uum modeling. Balhoff et al.17 discretized a large pore network into
smaller networks that can be solved in parallel and then used 2D finite
element mortars18 to weakly match the interface fluxes. Effective prop-
erties were proved to be dependent on local boundary conditions.17,19

Several issues were addressed to successfully represent the hierarchi-
cal domain using PNM: simplified physics for micropores, reliable
method to extract parameters for the grid generation, and rigorous
spatial correlations between scales.13

The lattice Boltzmann method (LBM) is an alternative, which is
applied on voxelized regular grids, where single and more expensive
multiple-relaxation schemes are used to model physical phenomena
based on a discretized Boltzmann equation.20 A more straight-forward
approach is direct finite volume (FVM) or element (FEM) mesh gener-
ation for three-dimensional pore spaces.21–25 These classical methods
have higher degree of fidelity when solving a single-phase flow in a
heterogeneous media. The computational expense is reasonable and
conversion between structure observed through imaging and the mod-
eled domain is direct and accurate for single-phase flow.

Most of the studies reviewed so far focused on species trans-
port in geological formations. In the electrochemical energy field, the
challenges of multi-scale modeling are more pronounced because the
porous media within electrochemical devices (fuel cells and batteries)
are hierarchical but relatively thin (5-300 μm). Moreover, two-phase,
reaction-diffusion phenomena are present in the porous electrode of
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polymer electrolyte fuel cells (PEFCs), gas is a reactant and liquid wa-
ter is a by-product of the reaction. The cathode electrode is the most
critical one because the sluggish oxygen reduction reaction (ORR) is
the rate-limiting step. Providing sufficient reactant to the reactive sites
while efficiently removing water is crucial to achieving high power
densities. Precious group metal (PGM)-free electrodes26–30 are an al-
ternative material to reduce the cost of traditional Pt-based electrocat-
alysts. PGM-free electrodes usually have an order of magnitude larger
thickness (∼100 μm) compared to conventional electrodes (∼10 μm)
due to higher loading of the electrocatalyst. The transport processes in
these materials are dictated by multi-scale morphology, so combining
information from different scales is indispensable for understanding
the behavior of PGM-free electrodes during operation.

Traditionally, the upscaling method consists of treating the cata-
lyst layer (CL) as a volume-averaged porous medium, where effective
properties are obtained through direct numerical simulations over the
electrode microstructure. Significant effort was dedicated toward mod-
eling transport in the porous components in a PEFC,11,31–43 trying to
relate the effective properties with the microstructure. Although these
studies improved modeling predictions, the upscaling used therein
was simply based on effective properties obtained by solving Laplace
equation without reaction term. Recently, the authors have shown that
catalyst layer effective properties can be eventually a function of reac-
tion rate when Thiele modulus is higher than one.44–46 Current density
depends on local reactive conditions, which are captured using effec-
tive transport properties.47,48 Whitaker’s closure method46,49 can be
used to study effective properties under reactive conditions, however
it is hard to implement in complex geometries due to the need to apply
boundary conditions at every fluid-solid interface.

Previous works on catalytic porous media have tried to combine
the information from different scales to create comprehensive scale-
bridging models. Zenyuk et al.50 presented three iterative methods to
scale-bridge 2D continuum PEFC model and PNM. Babu et al.32 stud-
ied the relationship between the composition and morphology of the
cathode electrode with PEFC performance by building a hierarchical
agglomerate model with parameters extracted from nano X-ray CT.
Chen et al.51 proposed a method to couple FVM and LBM, which were
applied to different regions of fuel cells by transferring boundary con-
ditions between them. Pereira et al.52 studied multi-scale modeling of
reaction-diffusion in catalytic porous layers, where CO oxidation takes
place. Novák et al.53 did similar research but using a different recon-
struction method. Becker et al.54 presented a multi-scale method for
gas diffusion layer (GDL) modeling, including the microporous layer
(MPL) with small pore sizes. Some of these studies used idealized pore
networks or stochastically reconstructed geometries. Others neglected
the fact that numerical models show different effective transport prop-
erties at different reaction conditions,44–46 which will be discussed in
the following sections.

In this work, we bridge micro and nano scales obtained with X-ray
CT to model reaction-diffusion transport in thin porous electrodes
to better understand the influence of electrode microstructure and
through-thickness inhomogeneity at an acceptable computational ex-
pense. First, the general framework is presented and validated against
analytical solutions. Then, it is applied to PGM-free electrodes used
in PEFCs. The computational domains are meshed with image data
obtained from micro and nano X-ray CT.

Model Formulation

Two scale-bridging algorithms based on 1D Poisson’s equation
are presented to couple reaction-diffusion transport at micro and nano
scales, where material structures are obtained from three-dimensional
X-ray CT images. The methodology can also be used for other combi-
nation of length scales. As shown in Figure 1, the micro-scale model
(MS model) is discretized in the direction of interest (z-direction)
into a grid with a predefined number of elements, where the nano-
scale model (NS model) captures the fine-scale transport processes
that take place in each element. Both numerical models are coupled
through local effective properties (effective diffusivity and effective

Figure 1. (a) The MS model is discretized in z-direction into a grid of elements,
where the fine-scale transport processes in each element are described by (b)
the NS model. The models at the two scales are coupled through local effective
properties and local BC’s. As shown in (a), global Dirichlet and Neumann BC’s
are prescribed at the top and bottom surfaces of the MS model.

reaction rate) that act inside elements and boundary conditions (BC’s)
that act on element surfaces (hereafter denoted as nodes). These values
are updated during the iterative solution scheme. Two internal bound-
ary conditions, either Dirichlet (concentration) or Neumann (flux),
are used to link both models in z-direction. External Dirichlet and
Neumann BC’s are always prescribed at the exterior (top and bottom)
surfaces of the domain.

Governing equations and boundary conditions.—Poisson’s equa-
tion is used to model transport of dilute species featuring a volumetric
(i.e., homogeneous) reaction term,55–57 since the surface of catalyst
nanoparticles could not be resolved due to the limited resolution of
nano X-ray CT (60 nm).9,38,58 This is important to capture the reaction
front within agglomerates at low-to-medium current densities. Other
physics could also be modeled on the same basis, such as heat con-
duction or electron transport.32,36 The governing equations include the
species mass conservation equation and Fick’s first law:

∇ · (−D∇C) = R [1]

N = −D∇C [2]

where C is the species concentration, D is the mass diffusivity, R is
the source/sink reaction term and N is the molar flux (N denotes the
magnitude of N).

The external BC’s are prescribed at the top (‘top’) and bot-
tom (‘bot’) surfaces of the MS domain, corresponding to the cata-
lyst layer|gas diffusion layer (CL|GDL) and catalyst layer|membrane
(CL|MEM) interfaces in a PEFC, respectively. In the former, a Dirich-
let BC is set according to the specified inlet oxygen concentration.
In the latter, a no-flux BC is set assuming that the membrane is fully
impermeable to gas species. That is,

C
(
ztop

) = Ctop [3]

∂C

∂n

∣∣∣∣
zbot

= 0 [4]

The BC’s on the internal surfaces of the MS model as well as the
top and bottom surfaces of the NS model are determined as part of the
scale-bridging algorithms, which are presented in the next section. In
addition, no-flux BC’s are applied on the lateral surfaces of the MS and
NS domains. This assumption is based on the much smaller fluxes ex-
isting in the material plane (x-y plane) compared to the through-plane
direction (z-direction) due to the high aspect ratio of thin electrodes
(width/thickness∼10 cm/10−2 cm ∼ 103).

Algorithm 1.—In the first algorithm, the MS model provides
Dirichlet and Neumann BC’s for the NS model at the upper and lower
surfaces of each element i (between nodes i and i+1), respectively.
This information is used by the NS model to update the Dirichlet
BC’s at nodes i + 1 and the local effective properties in each element
i, De f f

i and Re f f
i . Hence, as shown in Figure 2, starting from a solution
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Figure 2. Schematic of the iterative algorithms: (a) algorithm 1 and (b) algorithm 2. In algorithm 1, the concentration and flux are calculated at nodes i and i + 1,
respectively, from the MS model. Then, the NS model feeds back the concentration at nodes i + 1 and the local effective properties, De f f

i and Re f f
i . In algorithm 2,

the concentrations are calculated at both nodes i and i + 1 with the MS model. The NS model feeds back the flux at nodes i + 1 and the local effective properties.

of the MS model (corresponding to an initial guess for the local ef-
fective properties), the steps involved in the algorithm are as follows:
(1) for each element i, the Dirichlet BC’s at nodes i and the Neumann
BC’s at nodes i + 1 are evaluated in the MS model and transferred to
the NS model; (2) the NS model is solved locally with these BC’s to
update the Dirichlet BC’s at nodes i + 1 and the effective diffusivity
and reaction rate in each element i; (3) the three updated quantities
are then fed back to each element of the MS model; (4) the MS model
is solved on an element basis from top (CL|GDL interface) to bottom
(CL|MEM interface) to renew the Neumann BC’s at nodes i +1. Note
that the Dirichlet BC’s at nodes i are directly extracted from the Dirich-
let BC’s at nodes i + 1 provided by the NS model. Steps (1)–(4) are
repeated until convergence is reached, keeping unchanged the BC’s
at the external nodes of the domain. Species continuity in the internal
nodes is ensured by setting the same concentration at node i as part of
its upper and lower neighboring elements. In addition, flux continuity
is preserved by taking the flux at node i as the average of the fluxes
from the contiguous elements (e.g., the flux at node 2 is calculated as
the average of the flux at the lower surface of element 1 and the flux
at the upper surface of element 2). This condition guarantees that the
fluxes at the upper and lower surfaces of each node are equal when
convergence is reached; see Supplementary Material. The boundary
conditions in algorithm 1 are summarized below:

MS model

(1) Top surface of the whole MS model. This surface corresponds
to the CL|GDL interface, and it is set as a constant concentration
boundary condition, C(ztop) = Ctop.

(2) Bottom surface of the whole MS model. This surface corresponds
to the CL|MEM interface, and it is set as a no-flux boundary
condition, ∂C

∂n |zbot = 0.
(3) Top and bottom surfaces of the MS blocks. These surfaces corre-

spond to nodes i and i+1, respectively. The boundary conditions
are calculated in the iterative process as described by algorithm
1, i.e., both top and bottom surfaces have concentration bound-
ary conditions. The boundary condition at the bottom surface is
updated by the NS model.

(4) The lateral walls are set as no-flux boundary conditions.

NS model

(1) All the boundary conditions in the NS model are calculated in the
iterative process as described in algorithm 1. The top and bottom
surfaces in the NS model correspond to the nodes i and i + 1 in
the MS model, respectively. Therefore, at the top surface we set
CNS

top = CMS
i , and at the bottom surface we set NNS

bot = NMS
i+1.

(2) The lateral walls are set as no-flux boundaries.

Algorithm 2.—As shown in Figure 2, algorithm 2 is conceptually
similar to algorithm 1 but the information that is exchanged between
both models is different. In this case, the MS model provides Dirichlet
BC’s for the NS model on both sides of each element i, which uses
these data to update the Neumann BC’s at nodes i + 1 as well as the

local effective properties in each element i. Therefore, starting from
an initial solution of the MS model, the steps involved in algorithm
2 are as follows: (1) for each element i, the Dirichlet BC’s at nodes
i and i + 1 are evaluated in the MS model and transferred to the NS
model; (2) the NS model is solved locally with these BC’s to update the
Neumann BC’s at nodes i + 1 as well as De f f

i and Re f f
i ; (3) these three

updated quantities are fed back to the MS model; (4) the MS model is
solved numerically on an element basis from top to bottom to renew
the Dirichlet BC’s at nodes i + 1. As in algorithm 1, steps (1)–(4)
are repeated until convergence is reached, while keeping unchanged
the BC’s at the external nodes and preserving concentration and flux
continuity. The boundary conditions in algorithm 2 are summarized
below:

MS model

(1) Top surface of the whole MS model. This surface corresponds
to the CL|GDL interface, and it is set as a constant concentration
boundary condition, C(ztop) = Ctop.

(2) Bottom surface of the whole MS model. This surface corresponds
to the CL|MEM interface, and it is set as a no-flux boundary
condition, ∂C

∂n |zbot = 0.
(3) Top and bottom surfaces of the MS blocks. These surfaces corre-

spond to nodes i and i+1, respectively. The boundary conditions
are calculated in the iterative process as described by algorithm
2, i.e., the top surface has a concentration boundary condition
and the bottom surface has a flux boundary condition updated
by the NS model.

(4) The lateral walls are set as no-flux boundary conditions.

NS model

(1) All the boundary conditions in the NS model are calculated in
the iterative process as described by algorithm 2. The top and
bottom surfaces in the NS model correspond to the nodes i and
i +1 in the MS model, respectively. Therefore, at the top surface
we set CNS

top = CMS
i , and at the bottom surface we set CNS

bot = CMS
i+1.

(2) The lateral walls are set as no-flux boundaries.

Calculation of effective properties.—The expressions for the local
effective diffusivity and reaction rate are derived from the analytical
solution to the 1D Poisson’s equation on each element i. As illustrated
in Figures 3a–3b, Dirichlet and Neumann BC’s are set on nodes i and
i + 1 in algorithm 1, respectively, while Dirichlet BC’s are set on
both nodes in algorithm 2. However, the equations that determine the
effective properties hold in one case or another. The reader is referred
to Supplementary Material for further details. The only assumption
is 1D transport, which is reasonable due to the high aspect ratio of
catalyst layers (width/thickness∼10 cm/10−2 cm ∼ 103). No further
approximation is made. The resulting expressions are as follows:

Re f f
i = Ni − Ni+1

zi − zi+1
[5]
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Figure 3. Schematic of the calculation of effective properties in (a) algorithm 1 and (b) algorithm 2, where black fonts denote NS model settings and blue fonts
denote NS model outputs. (c) Different properties in the fluid and solid regions of the MS domain. Interstitial flux is used to link the NS model and the solid portion
of the MS model. There is no reaction (R = 0) in the fluid region of the MS model and the flux there is calculated by Fick’s law.

De f f
i = −

(
Ni + Ni+1

2

)
zi − zi+1

Ci − Ci+1
[6]

where zi and zi+1 are the z-coordinates of nodes i and i + 1, respec-
tively. The MS and NS models themselves are 3D models and the
scale-bridging algorithms are 1D schemes. Therefore, the boundary
conditions in Eqs. 5–6, i.e., Ci, Ci+1, Ni, Ni+1, are surface-averaged
values over the boundary surfaces. To make the algorithms more gen-
eral, we map different kinetics-orders of reaction (in the permeable
solid phase of the NS domain) to zero-order kinetics (in the effective
MS model), so we are not restricted to first-order kinetics. Therefore,
different kinetics can be applied in the NS model, and then they are
mapped to zero-order reaction. As a result, in every single MS element,
the effective reaction rate is a constant as shown in Eq. 5, although it
can vary from element to element.

Connection of micro- and nano-scale fluxes.—As shown in
Figure 3c, the MS porosity of the material must be taken into account
when coupling transport phenomena between the two scales. Specifi-
cally, the interstitial flux in the solid region of the MS model must be
equal to the surface-averaged flux (i.e., including both fluid and solid
regions) in the NS model. In addition, no reaction term is specified in
the fluid region (cracks) of the MS model, where the mass diffusivity
is simply set equal to the bulk diffusivity. Consequently, the surface-
averaged flux evaluated with the MS model in algorithm 1, NMS

i , is
corrected for MS porosity to determine the interstitial flux through the
solid region that is used for calculations in the NS model, NNS

i . The
expression that links NMS

i and NNS
i after subtracting the contribution

of the interstitial flux through the fluid space, NMS,bulk
i , is given by

NNS
i = NMS

i − εMS
i NMS,bulk

i

1 − εMS
i

[7]

where εMS
i is the MS porosity of element i. Using forward difference,

the bulk flux can be calculated as NMS,bulk
i = −Dbulk (Ci − Ci+1)/h,

where h = zi − zi+1 is the z-spacing between nodes i and i + 1. In
algorithm 2, the surface-averaged flux computed with the NS model,
NNS

i , is directly applied on the solid region of the MS model, while the
interstitial flux through the fluid space (cracks) of the MS model is also
determined as NMS,bulk

i = −Dbulk (Ci−Ci+1)/h. In both algorithms, flux
continuity over the MS surface-averaged flux, NMS

i = εMS
i NMS,bulk

i +
(1 − εMS

i )NNS
i , is satisfied in order to conserve overall mass.

Case Studies

Two case studies are examined. First, the algorithms are validated
considering an idealized geometry composed of homogeneous do-
mains. Second, reaction-diffusion transport in state-of-the-art cathode
PGM-free electrodes is analyzed using image data from micro and
nano X-ray CT.

Idealized geometry.—An idealized geometry composed of square-
shaped homogeneous blocks with a customized element division is
used to assess the algorithms’ effectiveness, stability and convergence
rate. As shown in Figure 4, the MS model is discretized into 4 elements
in z-direction, each block corresponding to the domain covered by

the local NS model. Since the algorithms work for any combination
of length scales, 1 × 1 × 1 mm3 cubic blocks are used here as an
example. The coupling between both models is established on the
internal surfaces, z = 1, 2 and 3 mm, whereas the external BC’s are
applied at z = 0 and z = 4 mm. The extent of each NS element ranges
from z = 0 to z = 1 mm. Moreover, the entire domain is assumed to
be accessible to gas species by setting porosity equal to 1 and 0 in the
NS and MS models, respectively. Accordingly, the surface-averaged
flux in the MS domain is equal to the interstitial flux through the solid
region, and no further consideration of the impact of MS porosity
is required. For the initial guess, different effective diffusivities and
reaction rates are tested in the MS and NS models to examine the
behavior of the algorithms.

PGM-free electrodes.—Micro X-ray CT images were acquired at
beamline 8.3.2 at Advanced Light Source (ALS), Lawrence Berkeley
National Laboratory. Nano X-ray CT images were taken at beamline
32-ID at Advanced Photon Source (APS), Argonne National Labo-
ratory. Details of the preparation of the materials, characterization,
operating conditions, and integration into the cell, as well as the imag-
ing set-up, can be found elsewhere.47,59 TomoPy60 was used for image
reconstructions, while ImageJ61,62 was used for image-stack cropping,
rotation and thresholding. Figure 5 shows a micro X-ray CT image,
where the channels, lands, GDLs, catalyst layers and membrane are
identified in the large field of view (3.2 mm). As can be seen, the
1.3 μm voxel size provided by micro X-ray CT offers enough resolu-
tion to resolve large micro-scale pores and cracks in the catalyst layer
but is insufficient to capture nano-scale pores. In contrast, the 60 nm
resolution of nano X-ray CT can resolve the nano-scale structure of
the secondary pores between agglomerates, thus complementing the
information obtained from micro X-ray CT.

The microstructures of the MS and NS domains used in the simu-
lations are shown in Figure 6, indicating the fluid and solid phases in
white and black, respectively. The red dashed lines show the discretiza-
tion of the MS model. The global and local boundary conditions are
indicated with red arrows showing the information transferred from
the MS model to the NS model and blue arrows showing the informa-

Figure 4. Idealized geometry composed of 4 square-shaped homogeneous el-
ements used to validate the algorithms considering zero-order kinetics: (a) MS
domain and (b) NS domain.



Journal of The Electrochemical Society, 2020 167 013524

Figure 5. Images from (a) micro and (b) nano X-ray CT. The micro X-ray CT
image shows the channels, lands, GDLs, catalyst layers and membrane in the
large field of view, while the nano X-ray CT image shows the structure of the
secondary pores in the cathode PGM-free electrode.

tion transferred from the NS model to the MS model. The boundary
conditions at node i + 1 for algorithm 1 and algorithm 2 are indicated
inside solid and dashed boxes, respectively. The same representative
NS domain was used here for all the elements of the MS domain,
even though different NS microstructures from different locations of
the material could also be used. The thickness of the MS and NS do-
mains are equal to 91 μm (70 slices of 1.3 μm voxel size) and 13 μm
(217 slices of 60 nm voxel size), resulting in a discretization of the
MS model into 7 elements. The average porosities of the MS and NS
domains are equal to εMS

avg = 0.068 and εNS
avg = 0.52, respectively. Note

that the small porosity in the MS domain, εMS
avg = 0.068, only accounts

for the micro-scale pores and cracks that are resolved by micro X-ray
CT, excluding nano-scale pores resolved by nano X-ray CT.

Numerical implementation and model settings.—Numerical sim-
ulations were carried out with the Transport of Diluted Species mod-
ule in COMSOL Multiphysics 5.1 (COMSOL, Inc., Burlington, MA),
using the MATLAB Live-Link for the implementation of the scale-
bridging algorithms. Fine meshes with an inflation layer at the top
and bottom surfaces were used to capture the complex geometry of
the PGM-free electrodes. The total number of computational elements
was equal to 206,150 and 1,905,813 in the MS and NS models, re-
spectively. Note that all elements in the MS domain within each dis-
cretized block are subjected to the same effective properties in our 1D
approach. In contrast, coarse meshes with only a few computational
elements were used in the validation simulations with the idealized
geometry. Simulations were performed on a desktop computer with
64 GB RAM and Intel i7-6900K 3.2GHz 2-Core processors.

Table I shows the model settings, including boundary conditions,
diffusivities and effective properties used for the solution initializa-

tion. For PEFC modeling, the oxygen concentration at the CL|GDL
interface is fixed to 1 mol/m3, which is in the order typically found
in air-feed PEFCs, while the oxygen diffusivity is set to 10−5 m2/s
in the bulk fluid.33,63 In addition, a small effective diffusivity of 5 ×
10−7 m2/s is assumed in the solid region of the NS model to account
for diffusion in pores smaller than 60 nm that were not captured by
imaging. Reaction only takes place in the solid phase, since it is where
the catalyst is deposited. The reaction rate in the NS model is set to
800 mol/(m3·s), while two different initializations are used in the MS
model considering different initial guesses for the effective reaction
rates, 600 and 100 mol/(m3·s). The actual effective diffusivity and re-
action rate in the solid phase of the MS model are calculated by Eqs. 5
and 6 in the iteration process.

Results and Discussion

The discussion of results is organized as follows. First, the results
of the validation studies using the idealized geometry are presented
and compared to the corresponding analytical solution. Next, the two
scale-bridging algorithms are applied on PGM-free electrodes, con-
sidering either zero- or first-order kinetics. In addition, a comparison
is established with the results of a conventional model that neglects
the effect of reaction on effective diffusivity, i.e., it assumes effective
diffusivity as a passive property exclusively dictated by the geometry
of the material.

Model validation: idealized geometry with zero-order kinetics.—
The idealized geometry shown in Figure 4 was used to validate the
implementation of the algorithms considering zero-order kinetics. The
solution to Eqs. 1-2 subjected to BC’s (3)–(4) depends on Damköhler
number, defined as Da = RH2

DbulkCtop
, where H is the thickness of the

MS domain and Ctop is the concentration at Z = 1. Introducing Da, the
quadratic expression for the dimensionless concentration, θ = C/Ctop,
can be written as follows:

θ = −Da

2
Z2 + Da

2
+ 1 [8]

where Z is the dimensionless z-coordinate, Z = z/H .
Figure 7 compares the numerical results of the two algorithms with

the analytical solution at several locations along the z-axis for five dif-
ferent Da, ranging from −0.2 to −2. A constant negative sink reaction
term, R, was used, thus leading to a decrease of species concentration
from Z = 1 toward Z = 0. The higher the value of Da, the larger the
concentration drop due to the stronger effect of reaction compared to
diffusion. Excellent agreement between the numerical results and the
analytical solution is found in the full Da range, thereby confirming
the proper functioning of the algorithms. For further comparison, a

Figure 6. Reconstructed geometries used in the simulations of (a) MS and (b) NS models. The fluid and solid phases are shown in white and black, respectively.
The MS model is discretized into 7 elements in z-direction as shown by the red dashed lines. The global and local boundary conditions are also indicated. The red
arrows show the information transferred from the MS model to the NS model, while the blue arrows show the information transferred from the NS model to the
MS model. The boundary conditions at node i+1 for algorithm 1 and algorithm 2 are indicated inside solid and dashed boxes, respectively.
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Table I. Specifications used in the MS and NS models. Two set-ups with different effective reaction rates were used in the MS model to examine
the implementation of the algorithms.

MS model (set-up 1) MS model (set-up 2) NS model Units

Top surface concentration, Ctop 1 1 - mol/m3

Bottom surface flux, Nbot 0 0 - mol/(m2·s)
Diffusivity in fluid phase, Dbulk 1 × 10−5 1 × 10−5 1 × 10−5 m2/s
Diffusivity in solid phase, Dsolid - - 5 × 10−7 m2/s
Initial effective diffusivity, De f f 3 × 10−6 3 × 10−6 - m2/s
Reaction rate in solid phase, R - - 800 mol/(m3·s)
Initial effective reaction rate, Re f f 600 100 - mol/(m3·s)

MS model with the correct local effective properties (from the NS
model) and without being separated into blocks is also studied. The
results are shown as unfilled black symbols. We can see that the ana-
lytical solution (exact solution), the algorithm results, and the results
from the MS model without discretization are the same. This vali-
dates that the overall conservation equation is met in the MS model
in our algorithms and also further validates the effectiveness of the
algorithms.

Figure 8 shows the variation of the relative error, E (t ) =
abs( C(t+1)−C(t )

C(t ) ) with the iteration number t and the computational time
for Da = −1. The convergence criterion is established as E(t) ≤ 0.1%
for every node. The surface-averaged concentration at the middle plane
(Z = 0.5) was selected to track the evolution of the error. As can be
seen, algorithm 2 has twice larger relative error (5%) than algorithm 1
(2%) in the first few iterations, even though the relative error of both
algorithms is below 0.1% after 15 iterations. These illustrative results
show that the transmission of Dirichlet and Neumann BC’s from the
MS model to the NS model is somewhat more efficient, so algorithm
1 is recommended to speed-up numerical convergence.

PGM-free electrodes: zero-order reaction rate.—In this section,
the results of the two algorithms for the PGM-free electrodes are
examined considering zero-order kinetics in the NS model, R =
800 mol/(m3 · s) (see Table I). The predictions of the algorithms
are compared to those of a conventional method, where the effec-
tive diffusivity is assumed to be reaction-independent. Accordingly,
the effective diffusivity was computed once on the NS domain under
non-reactive conditions, and the resulting value was used in the entire
MS domain regardless of the local reaction rate. The local reaction rate
was multiplied by the solid volume fraction, 1 − εNS

avg, given that reac-
tion only takes place in the catalytic solid region. This is different from
the two algorithms presented here, where reaction-diffusion transport
is resolved in the NS model, and the effective properties and inter-

nal boundary conditions are coupled at both scales in the numerical
scheme.

Figure 9 shows the average concentration at the bottom surface
of the MS model as a function of the iteration step. Both algorithms
are convergent and stable, leading to similar results regardless of the
initial set-up used in the simulations. For the selected case, the reaction
rate is small, and the effective diffusivity remains virtually unchanged
in the domain. Accordingly, the results of the two algorithms and
that of the conventional method are equal.44–46 The resulting effective
diffusivity is 4.35 × 10−6 m2/s, which corresponds to a tortuosity
factor, τ = (Dbulk/De f f )εNS

avg, of 1.2. The effective reaction rate is equal
to 381.3 mol/(m3·s), whose corresponding current density is given by

j = 4FHRavg [9]

where F is Faraday’s constant and Ravg is the average reaction rate. The
current density is equal to 1.34 A/cm2, which is in the range usually
found in PEFCs.

PGM-free electrodes: first-order reaction rate.—Next, the effect
of first-order kinetics is analyzed, so the reaction rate in the NS model
is linearly proportional to the species concentration:

R = −kC [10]

where k is the reaction-rate coefficient. Here, k is assumed to vary
spatially across the thickness of the catalyst layer to account for the
decrease of proton concentration from the membrane side (element 7)
toward the GDL side (element 1). From Tafel equation, the reaction
rate coefficient can be written as:

k = k1 × 10− η
b [11]

where b is the Tafel slope and η is the overpotential. The derivation
of Eq. 11 can be found in Supplementary Material. For a PGM-free

Figure 7. Dimensionless concentration distribution, θ(Z), for different Damköhler numbers, Da, corresponding to the validation campaign with the idealized
geometry: (a) algorithm 1 and (b) algorithm 2. The symbols and the solid lines with different colors represent the numerical (algorithms) and analytical results,
respectively. A MS model without being separated into blocks and with the correct local effective properties (from the NS model) is also studied for further
comparison. The results are shown as black unfilled symbols.
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Figure 8. Relative error versus (a) iteration number and (b) CPU time for algorithms 1 and 2, corresponding to the validation campaign with the idealized geometry.
Both algorithms reach convergence after approximately 15 iterations.

electrode, the Tafel slope is ∼132 mv/decade, while η values are ob-
tained from our previous work.64 At a cell potential of 0.3V, η varies
from −0.856 V at the membrane side to −0.643 V at the GDL side. k1

is a pre-factor and is chosen to have the total current density within a
reasonable range ( k1 = 0.03 s−1). Moreover, we consider a 0.5 water
saturation and the diffusivity is related to the liquid water saturation
as

Dwet = Ddry · (1 − SL )1.5 [12]

Figure 9. Variation of the average concentration at the CL|MEM interface
with the iteration number corresponding to the PGM-free CL model with zero-
order kinetics. The initial conditions are listed in Table I. The dashed line shows
the solution predicted by a conventional method where the effective diffusivity
does not depend on reaction.

The diffusivity of oxygen in water (5 × 10−9 m2/s)65 is set in the
fluid space in the MS model, since the large micro-scale pores and
cracks would be flooded first in this hydrophobic electrode. In the
simulations with the conventional approach, the effective diffusivity
was fixed to Deff = 1.55 ×10−6 m2/s, which is the effective diffusivity
under non-reactive conditions, and the reaction rate coefficient was
equal to k = (1 − εNS

avg) × k1 × 10− η
b s−1, considering that reaction is

only in the solid phase.
The spatial distribution is represented in Figure 10. Plot (a) indi-

cates the location in the MS domain corresponding to plots (b) and
(c), which show the flux lines in the MS and NS models, respectively.
The flux lines are colored according to the species concentration. As
can be seen, the high resolution of the NS model captures the complex
tortuous transport of species at the fine scale. In contrast, the flux lines
in the MS model are 1D with a rather linear concentration distribution
across the thickness.

Figure 11a shows the variation of the effective diffusivity and
Thiele modulus in the z-direction. The Thiele modulus measures the
relative magnitude of reaction to diffusion and for first-order reaction is
defined as φ = L

√
k/D, where L is the thickness of the porous medium

(NS domain). As discussed earlier, the reaction rate coefficient de-
creases exponentially from the membrane side (z = 0 μm, k = 1.18×
105 s−1) toward the GDL side (z = 91 μm, k = 2.70 × 103 s−1),
leading to a Thiele modulus larger than 1 in the element next to the
membrane (see, e.g.,44–46). Consequently, the effective diffusivity is
no longer a passive property dictated by the geometry, and the path
lines and the tortuosity factor are significantly impacted by reaction.
Specifically, the effective diffusivity increases (tortuosity factor de-
creases) when the reaction rate is exceedingly high because diffusion
is facilitated by reaction. This effect leads to variations of the effec-
tive diffusivity (and the tortuosity factor) of 43%, which ranges from

Figure 10. Comparison of flux lines in the MS and NS models corresponding to the PGM-free CL model with first-order kinetics. (a) Location of the element in
the MS domain, (b) 1D flux lines in the MS model, and (c) tortuous flux lines in the NS model. The flux lines are colored from blue to red according to the species
concentration.
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Figure 11. Variation of (a) the effective diffusivity and the Thiele modulus, and (b) the tortuosity factor in z-direction, corresponding to the PGM-free CL model
with first-order kinetics. The geometric tortuosity factor under non-reactive conditions is also shown in (b) by a black dashed line.

1.55 × 10−6 m2/s (1.20) on the GDL side to 2.22 × 10−6 m2/s (0.83)
on the membrane side. Figure 11b also shows the geometric tortuos-
ity factor, i.e., the tortuosity factor under non-reactive conditions. As
can be seen, the geometric tortuosity factor and the actual tortuosity
factor on the GDL side are equal to that found in Section 5.2 when the
reaction rate was rather small.

The effective reaction rate is compared to that predicted by the
conventional method in Figure 12. The element next to the mem-
brane, which has large diffusivity variations, along with the two el-
ements next to it are used in the analysis (see Figure 11). As can
be seen, the present algorithm predicts higher effective reaction rates

Figure 12. Comparison of the effective reaction rate in the three elements next
to the membrane (see Figure 11), as predicted by the present algorithm and the
conventional macro-homogeneous method that neglects the impact of reaction
on effective diffusivity.

compared to the conventional method due to the inherent impact of
reaction on the effective diffusivity. Hence, the smaller effective diffu-
sivity prevailing in the conventional method hinders species transport
in these three elements, and the effective reaction rate is underesti-
mated. The difference of the reaction rate between the two models
in the element close to the membrane is 23.8%. The average current
densities calculated with the present algorithm and the conventional
method are 1.77 A/cm2 and 1.66 A/cm2, respectively (around 7%
higher).

As a final remark, it should be noted that the above differences can
be higher in other scenarios, and their implications can be even more
significant. Firstly, the fraction of the catalyst layer where the effective
diffusivity is affected by reaction can be larger and the correspond-
ing variations of the effective diffusivity can be stronger. This can
affect the predictions of local catalyst degradation rates. Secondly, the
larger local reaction rate can cause local liquid water flooding, which
would have significant influence on cell performance predictions, es-
pecially at low temperatures.66 Lastly, the catalyst particles may not
distribute uniformly in the catalyst layer. The local catalyst distribu-
tion and accessibility can be easily taken into account in the algorithms
presented here since they fully consider the morphology at both mi-
cro and nano scales. However, this information is more difficult to be
incorporated into conventional macro-homogeneous models. A sum-
mary of the main features, advantages and disadvantages of the two
novel algorithms proposed here compared to the conventional method
is presented in Table II.

Conclusions

Two novel, 1D, scale-bridging algorithms to model reaction-
diffusion transport in hierarchical porous media using micro and
nano X-ray computed tomography have been presented and validated

Table II. Comparison between the two scale-bridging algorithms presented in this work and the conventional macro-homogeneous method that
neglects any influence of reaction on the effective diffusivity.

Algorithm 1 Algorithm 2 Conventional method

Main features Full coupling of reaction-diffusion
transport between MS and NS
models: MS model provides
concentration on node i and flux on
node i + 1. NS model feeds back
concentration to node i + 1 and
local effective properties.

Full coupling of reaction-diffusion
transport between MS and NS
models: MS model provides
concentrations on node i and i + 1.
NS model feeds back flux to node
i + 1 and local effective properties.

Neglects inherent coupling of reaction-diffusion
transport between MS and NS models: BC’s are
not connected in the internal nodes of MS and NS
models. Effective diffusivity is determined under
non-reactive conditions in the NS model and
transferred back to the MS model.

Advantages Fully consider the influence of microstructure and spatial variations. Get more
accurate effective properties and more accurate solutions.

Easy to implement and lower computational
resources.

Disadvantages More complex and higher computational resources. Neglects that NS model has different effective
properties at different reaction conditions. Lack in
capturing through-thickness heterogeneity.
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against analytical solutions. The micro-scale (MS) model accounts
for transport in large micro-scale pores and cracks, whereas the nano-
scale (NS) model resolves the detailed transport phenomena in the
fine secondary pores at the nanoscale. The MS model was discretized
across the thickness of the domain into a 1D grid, where the effec-
tive properties (effective reaction rate and diffusivity) and boundary
conditions (BC’s) of the grid elements were used to exchange in-
formation with the NS model. Therefore, the two algorithms couple
multiscale transport processes, incorporating the variations of effec-
tive properties and internal boundary conditions under reactive con-
ditions. This improves the model fidelity compared to conventional
macro-homogeneous methods where the effect of reaction on the ef-
fective diffusivity is generally neglected.

The multi-scale algorithm was then applied to polymer electrolyte
fuel cell (PEFC) electrodes that do not contain precious metals, the
so-called PGM-free electrodes. We compared the results of the multi-
scale framework to the more conventional approach, where NS model
properties are fed into MS model as effective properties, without intro-
ducing reaction dependence. The comparison showed a current density
deviation between the two models of 23.8% at the location of maxi-
mum reaction-rate coefficient. Diffusion was inherently facilitated by
reaction in regions where the reaction rate is high compared to the
diffusion rate.

Future work should consider the effect of in-plane transport, in-
cluding the full discretization of the scale-bridging algorithms in x
and y directions. Moreover, the algorithms can be applied to other
length scales and physics governed by second-order equations. Specif-
ically, the algorithms can be incorporated into a full multiphysics fuel
cell model, where species diffusion, ionic and electronic conduction,
electrochemical reactions, heat transfer and other related physics are
resolved simultaneously.

List of Symbols

C Species concentration (mol/m3)
Ci Concentration at node i (mol/m3)
D Mass diffusivity (m2/s)
Dbulk Bulk diffusivity (m2/s)
Dsolid Diffusivity in solid phase (m2/s)
De f f

i Effective diffusivity of element i between nodes i and i+1
(m2/s)

Dwet Gas diffusivity under partially-saturated conditions (m2/s)
Ddry Gas diffusivity under single-phase conditions (m2 /s)
Da Damköhler number
E Relative error
F Faraday’s constant (C/mol)
h z-spacing between nodes i and i + 1 (m)
H Thickness of the micro-scale model (m)
j Current density (A/cm2)
k Reaction-rate coefficient (1/s)
L Thickness of porous medium (m)
n Surface normal vector
N Molar flux (mol/m2·s)
N Molar flux magnitude (mol/m2·s)
NNS

i Surface-averaged flux at node i evaluated with the nano-
scale model (mol/m2·s)

NMS
i Surface-averaged flux at node i evaluated with the micro-

scale model (mol/m2·s)
NMS,bulk

i Interstitial flux through the fluid space in the micro-scale
model (mol/m2·s)

R Source/sink reaction term (mol/m3·s)
Re f f

i Effective reaction rate of element i between nodes i and
i + 1 (mol/m3·s)

SL Liquid water saturation
z Coordinate in z-direction (m)
Z Dimensionless z-coordinate

Greek Symbols

θ Dimensionless concentration
η Overpotential (V)
ε Porosity
εMS

i Porosity of element i between nodes i and i + 1 in the
micro-scale model

τ Tortuosity factor
φ Thiele modulus
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