
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Primal-Dual Trust-Region Methods For Nonlinear Programming

Permalink
https://escholarship.org/uc/item/0km1140x

Author
Huang, Yesheng

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0km1140x
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Primal-Dual Trust-Region Methods For Nonlinear Programming

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Mathematics

by

Yesheng Huang

Committee in charge:

Professor Philip E. Gill, Chair
Professor Randolph Edwin Bank
Professor Michael Holst
Professor Ronghui Xu
Professor Danna Zhang

2023

Copyright

Yesheng Huang, 2023

All rights reserved.

The Dissertation of Yesheng Huang is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2023

iii

DEDICATION

My best friend in the past year, Shovel.

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Vita . x

Abstract of the Dissertation . xi

Chapter 1 Introduction . 1
1.1 Overview . 1
1.2 Contributions of This Dissertation . 2

1.2.1 Notation and terminology . 3

Chapter 2 Background . 4
2.1 Unconstrained Optimization . 4

2.1.1 Preliminaries . 4
2.1.2 Two Basic Optimization Methods . 5
2.1.3 Combination of Trust Region and Line Search . 9

2.2 Constrained Optimization . 9
2.2.1 Preliminaries . 10
2.2.2 Problems with Equality Constraints . 13
2.2.3 The Method of Newton-Lagrange . 14
2.2.4 Optimization Problems with Inequality Constraints 19
2.2.5 Modified Barrier Function . 21

Chapter 3 Computing the Trust-Region Step . 23
3.1 Solving the Trust-Region Subproblem . 24

3.1.1 A method based on zero-finding. 25
3.1.2 The degenerate case. 32

3.2 The Method of Moré and Sorensen . 35
3.2.1 Approximate solution of the trust-region subproblem. 36

3.3 A safeguarded Newton iteration. 42
3.4 The Implementation of the Moré-Sorensen Method . 48
3.5 Adapting Trust-Region Methods for Constrained Problems 49

Chapter 4 Primal-Dual Methods for Constrained Problems with Slacks 53

v

4.1 A Modified Newton Method . 56
4.1.1 Definition of the modified-Newton matrix . 57
4.1.2 Solving the modified-Newton equations . 58
4.1.3 Relationship to primal-dual path-following . 60

4.2 A Line-Search Modified Newton Method . 61
4.3 A Trust-Region Modified-Newton Method . 66

Chapter 5 Primal-Dual Methods for Constrained Problems with Shifts 75
5.1 Preliminaries . 78
5.2 A Line-Search Method . 80
5.3 Approximate Solutions of the Trust Region Subproblem . 84

5.3.1 The path-following equations . 92
5.4 Form of General Problems . 95

5.4.1 Upper and Lower Bounds on Constraints and Variables 95

Chapter 6 Numerical Experiments . 96
6.1 The implementation . 96
6.2 Numerical results . 98

Appendix A Computation of Upper and Lower Bounds on Contraints and Variables . . 103

Bibliography . 111

vi

LIST OF FIGURES

Figure 6.1. Performance profiles for the primal-dual interior algorithms pdb, pdbtr, and
pdbtrChol applied to 171 unconstrained (UC) problems from the CUTEst
test set. 100

Figure 6.2. Performance profiles for the primal-dual interior algorithms pdb and pdbtr

applied to 124 Hock-Schittkowski (HS) problems from the CUTEst test set. 100

Figure 6.3. Performance profiles for the primal-dual interior algorithms pdb and pdbtr

applied to 135 bound-constrained (BC) problems from the CUTEst test set. 101

Figure 6.4. Performance profiles for the primal-dual interior algorithms pdb and pdbtr

applied to 115 quadratic programs (QC) from the CUTEst test set. 101

Figure 6.5. Performance profiles for the primal-dual interior algorithms pdb and pdbtr

applied to 213 linearly-constrained (LC) problems from the CUTEst test set. 102

Figure 6.6. Performance profiles for the primal-dual interior algorithms pdb and pdbtr

applied to 375 nonlinearly-constrained (NC) problems from the CUTEst test
set. 102

vii

LIST OF TABLES

Table 6.1. Control parameters for Algorithms pdb and pdbtr. 99

viii

ACKNOWLEDGEMENTS

This thesis is a witness of the help and supports I have received over the years, during

which I had been combating serious mental problems, which made me slow in making progress.

Firstly, I have to pay gratitude to my advisor, Professor Philip Gill for his instructions

as well as his patience and tolerance with me. He helped me through many academic and

administrative affairs during possibly the hardest time in my life.

Secondly, I am very grateful to Mr. Scott Rollans and Mr. Mark Whelan, for their help

and support in administrative affairs. They, along with Prof.Gill, helped me figure out how to

apply for extension due to my illness.

Thirdly, I am thankful to the committee for their time to review and assess.

Finally, I want to thank Shovel, a maltipoo dog(the cross breed between maltese and

poodle), who is actually not even mine, for the time we spent together and the comfort he offered

in the past year.

ix

VITA

2015 Bachelor of Science in Mathematics, Fudan University

2023 Doctor of Philosophy in Mathematics, University of California San Diego

x

ABSTRACT OF THE DISSERTATION

Primal-Dual Trust-Region Methods For Nonlinear Programming

by

Yesheng Huang

Doctor of Philosophy in Mathematics

University of California San Diego, 2023

Professor Philip E. Gill, Chair

The goal of this dissertation is to investigate the formulation and analysis of a trust-

region interior-point method for solving nonconvex optimization problems with a mixture of

equality and inequality constraints. The proposed method is based on minimizing a merit

function that may be interpreted as a shifted primal-dual penalty-barrier function. The method

generates a sequence of iterates with limit points that are either infeasible stationary points

or complementary approximate Karush-Kuhn-Tucker points, i.e., every limit point satisfies

reasonable stopping criteria and is a Karush-Kuhn-Tucker point under a regularity condition that

is the weakest constraint qualification associated with sequential optimality conditions. Under

suitable additional assumptions, the method is equivalent to a shifted variant of the primal-dual

xi

path-following method in the neighborhood of a solution.

The proposed method has an inner/outer iteration structure. The outer iteration specifies

the form of the merit function. The inner iteration optimizes the merit function with fixed

parameters using a trust-region method. The algorithm for solving the trust-region subproblem

involves a procedure based on the application of a one-dimensional Newton’s method. Methods

are proposed for treating the so-called ”hard case” in which no root of the one dimensional

equation exists.

xii

Chapter 1

Introduction

1.1 Overview

An optimization problem begins with a set of independent variables, and often includes

conditions or restrictions that define acceptable values of the variables. Such restrictions are

known as the constraints of the problem. The other essential component of an optimization

problem is a single measure of “goodness”, termed the objective function, which depends in

some way on the variables. The solution of an optimization problem is a set of allowed values

of the variables for which the objective function assumes its “optimal” value. In mathematical

terms, this usually involves maximizing or minimizing. The optimization problem considered in

this thesis has the form:
minimize

x∈Rn
f (x)

subject to ci(x) = 0, i ∈ E ,

ci(x)≥ 0, i ∈I ,

where it is assumed that the scalar-valued functions f and {ci(x)} are at least twice-continuously

differentiable.

One special case is that there are no constraints at all. In this case, the problem is called

unconstrained. Two of the most widely used methods to solve unconstrained problems are

line-search methods and trust-region methods. Both are iterative and model-based. Line-search

methods first compute a descent direction, and then find a suitable step along this direction that

1

gives a sufficient decrease of the objective function. Trust-region methods find a minimizer of a

model of the objective function subject to a constraint that attempts to define a neighborhood in

which the model may be “trusted” as a good approximation of the objective function. The size

of this neighborhood is reduced or enlarged depending on whether the approximate minimizer

gives a sufficient decrease of the objective function.

Unconstrained problems are important in the sense that constrained problems can be

transformed into a sequence of unconstrained problems. Constrained optimization problems

can be classified into nonlinear equality constrained problems (NEP) and nonlinear inequality

constrained problems (NIP). One popular approach is to incorporate constraints into the objective

function. For equality constrained problems and inequality constrained problems, penalty terms

and barrier terms can be added respectively to the objective functions. Both of these approaches

associate a high cost for violating the constraints.

1.2 Contributions of This Dissertation

Chapter 2 concerns background material in optimization and introduces methods that

generalize the penalty-function method of Gill & Robinson [14], and the penalty-barrier method

of Gill, Kungurtsev & Robinson [13]. These methods inherit some features of augmented

Lagrangian methods and modified barrier methods. In particular, it is not necessary for the

penalty parameter to go to infinity or the barrier parameter to go zero. The algorithm treats

the primal and dual variables as being independent and updates them simultaneously. At each

iteration, a model-based subproblem is solved using a trust-region method.

Chapter 3 investigates numerical methods to solve a trust-region subproblem in which

the trust-region constraint involves an elliptic norm. Particular attention is paid to degenerate

cases and safeguarded methods are adopted to guarantee stability.

Chapter 4 describes a shifted primal-dual penalty-barrier function with slacks on con-

straints introduced in Gill, Kungurtsev & Robinson [13]. In this method, line-search method is

2

used to minimize a sequence of unconstrained optimization problems.

In Chapter 5 a primal-dual penalty-barrier function is proposed that uses shifts on the

constraints instead of slacks.

1.2.1 Notation and terminology

Given vectors x and y, the vector consisting of x augmented by y is denoted by (x,y).

The subscript i is appended to vectors to denote the i-th component of that vector, whereas the

subscript k is appended to a vector to denote its value during the k-th iteration of an algorithm,

e.g., xk represents the value for x during the k-th iteration, whereas compxki denotes the i-

th component of the vector xk. Given vectors a and b with the same dimension, the vector

with i-th component aibi is denoted by a · b. Similarly, min(a,b) is a vector with components

min(ai,bi). The vector e denotes the column vector of ones, and I denotes the identity matrix.

The dimensions of e and I are defined by the context. The vector two-norm or its induced matrix

norm are denoted by ∥ · ∥. The inertia of a real symmetric matrix A, denoted by In(A), is the

integer triple (a+,a−,a0) giving the number of positive, negative and zero eigenvalues of A. The

vector g(x) is used to denote ∇f (x), the gradient of f (x). The matrix J(x) denotes the m× n

constraint Jacobian, which has i-th row ∇ci(x)T. Let {α j} j≥0 be a sequence of scalars, vectors,

or matrices and let {β j} j≥0 be a sequence of positive scalars. If there exists a positive constant

γ such that ∥α j∥ ≤ γβ j, we write α j = O
(
β j
)
. If there exists a sequence {γ j} → 0 such that

∥α j∥ ≤ γ jβ j, we say that α j = o(β j). If there exists a positive sequence {σ j}→ 0 and a positive

constant β such that β j > βσ j, we write β j = Ω(σ j).

3

Chapter 2

Background

2.1 Unconstrained Optimization

This section gives a brief review of methods for unconstrained optimization. Methods for

unconstrained problems are basis for many constrained optimization methods.

2.1.1 Preliminaries

Definition of a minimizer

In an unconstrained problem, a function f : D ⊂ Rn→ R is to be minimized within in

the domain D of f .

Definition 2.1.1. Given a continuous function f : D ⊂Rn→R, x∗ ∈D is a global unconstrained

minimizer of f on D if f (x∗) ≤ f (x) for all x ∈ D . If x∗ is a global unconstrained minimizer,

then f (x∗) is the global unconstrained minimum.

Unless f is convex, the problem of finding a global minimizer is generally intractable.

Instead, most methods focus on finding a point that minimizes f on some neighborhood of that

point.

Definition 2.1.2. Given f : D → R, x∗ is a local unconstrained minimizer of f if there exists an

open ball B(x∗,δ), such that f (x∗)≤ f (x) for all x ∈B(x∗,δ).

In what follows, all minimizers are meant to be local minimizers.

4

Optimality Conditions

In general, the verification of optimality involves comparing f (x∗) with every value of f

in the neighborhood of x∗ is impossible. However, when f is sufficiently smooth, there are ways

to determine whether x∗ is a minimizer or not, using its derivatives.

The first result gives a necessary condition for a local minimizer when f is differentiable

at x∗.

Theorem 2.1.1. Given f : D → R, assume that x∗ is a minimizer and f is differentiable at x∗.

Then ∇f (x∗) = 0.

Below a necessary condition and a sufficient condition are given when f has second

derivatives at x∗.

Theorem 2.1.2. Given f : D → R, assume that x∗ is an unconstrained minimizer of f , and f

has second derivatives at x∗. Then ∇f (x∗) = 0 and ∇2f (x∗) is positive semidefinite.

Theorem 2.1.3. Given f : D → R, and f has second derivatives at x∗. Assume ∇f (x∗) = 0 and

∇2f (x∗) is positive definite, then x∗ is an unconstrained minimizer.

2.1.2 Two Basic Optimization Methods

In most cases, a search direction is found by minimizing a local model. This direction is

used to determine a new point that gives a sufficient decrease in the objective function. Line-

search and trust-region methods are two of the most widely used approaches. Minimizers of

the local model must exist and be easy to compute, and solutions of the local models should

heuristically approach the solution of the original problem. For simplicity in this section, the

local model is assumed to be

qk(x) = f (xk)+∇f (xk)
T(x− xk)+

1
2
(x− xk)

THk(x− xk),

5

where Hk is the symmetric positive definite approximation of ∇2f (xk), and the difference of

qk(xk) and qk(xk +d) is denoted by

Qk(d) := qk(xk +d)−qk(xk) = ∇f (xk)
Td +

1
2

dTHkd.

Line-Search Methods

In a line-search method, a search direction is computed (e.g., the steepest-descent direc-

tion) and a scalar step along this direction is adjusted to ensure that there is a sufficient decrease

in the objective function after taking the step. The scalar γc in the algorithm is a contraction

factor that is used to decrease the step length when there is not sufficient decrease in the objective

function, and ηs is the reduction factor in that the step length will be reduced if the actual

decrease in objective function is less than ηs times the reduction in the model function. Let pk

be the descent direction found at the k-th iteration. After each inner iteration, the inequality

f (xk)− f (xk +αk pk)≥ ηs
(
qk(xk)−qk(xk +αk pk)

)
holds, which means sufficient decrease. The algorithm is given in Algorithm 2.1

Algorithm 2.1. Basic Line-Search Algorithm.
1: procedure LINE SEARCH(x0)
2: Specify 0 < ηs,γc < 1;
3: k← 0;
4: while not converged do
5: pk = argmin{qk(xk +d)};
6: αk← 1;
7: ρk =

(
f (xk)− f (xk +αk pk)

)
/
(
q(xk)−q(xk +αk pk)

)
;

8: while ρk < ηs do
9: αk+1← γcαk;

10: end while
11: xk+1← xk +αk pk;
12: k← k+1;
13: end while
14: end procedure

6

Trust-Region Methods

Trust-region methods explicitly limit the length of the step by defining dk as an approxi-

mate solution of the constrained minimization problem:

minimize
d∈Rn

qk(xk +d) subject to ∥d∥ ≤ δk.

Once the trust-region step dk has been computed, the ratio of the actual and predicted reduction

in f is computed as

ρk =
f (xk)− f (xk +dk)

qk(xk)−qk(xk +dk)
. (2.1)

As long as the actual reduction is at least ηA times the predicted reduction, i.e., ρk ≥ ηA, then

xk +dk is selected as the new point xk+1. If the test fails, i.e., if ρk < ηA, the trust-region radius

is decreased by a contraction factor γc and the current trust-region subproblem is terminated

with xk+1 = xk. This strategy is based on the observation that the value of qk(xk +dk) for the

next subproblem will be a better approximation to f (xk +dk). It may be necessary to re-solve

the subproblem several times before the predicted and actual reductions are comparable. It is

important to note that, unlike a line-search method, the variables do not necessarily change at

every iteration. The algorithm is given in Algorithm 2.2.

Algorithm 2.2. Basic Trust-Region Algorithm.

Specify constants 0 < ηA < ηE < 1, 0 < ηA <
1
2 , 0 < γc < 1 < γe;

k← 0; δk← 1;
while not converged do

Compute dk as an approximate solution of mind {qk(xk +d) : ∥d∥ ≤ δk};
ρk←

(
f (xk)− f (xk +dk)

)
/
(
qk(xk)−qk(xk +dk)

)
;

if ρk ≥ ηA then
xk+1← xk +dk; [Successful iteration.]
if ρk ≥ ηE then δk+1 = max

{
δk,γe∥dk∥

}
else δk+1← δk end if

else
xk+1← xk; δk+1← γc∥dk∥;

end if
k← k+1;

end while

7

For computational efficiency, the trust-region subproblem is not solved exactly. The

amount of computation is limited without compromising the overall convergence. One concept

here is called the Cauchy step. A step dC
k is called Cauchy step if it’s the solution to the

trust-region subproblem

Qk(dC
k) = min

d,α
{Qk(d) : d =−α∇f (xk), ||d|| ≤ δk}. (2.2)

It can be calculated that dC
k =−α∗k gk, where

α
∗
k =

gT

k gk/gT
k Hkgk gT

k gk/gT
k Hkgk ≤ δk/||gk||, and gT

k Hkgk > 0,

δk/||gk|| otherwise,
(2.3)

where gk =−∇f (xk). One property of the Cauchy step is given in the following lemma.

Lemma 2.1.4. Given any norm || · ||, let κ be a constant such that ||d||2 ≥ κ||d|| for all d. If dC
k

is the Cauchy step, then

Qk(dC
k)≤−

1
2

κ
2||gk||min{δk, ||gk||/||Hk||2}.

Convergence for trust-region methods depends on how accurate dk is a s a solution to

the trust-region algorithm. One weak requirement, proposed by Powell [29], requires for some

τ > 0 the following holds:

−Qk(dk)≥ τ||gk||min{δk, ||gk||/||Hk||}, and ||dk|| ≤ δk. (2.4)

Theorem 2.1.5 (Gill & Wright [17]). Let f : D ⊆ Rn→ R be continuously differentiable on the

open convex set D . Let {xk} ⊂D be a sequence of iterates generated by the basic trust-region

method of the above algorithm. Assume that an approximate solution dk of the subproblem

satisfies (2.4). Assume further that the sequence {||Hk||} is bounded. If f is bounded below in D ,

then either liminfk→∞ ||∇f (xk)||= 0 or some xk satisfies the algorithm’s convergence criterion

and the algorithm terminates.

8

2.1.3 Combination of Trust Region and Line Search

In Nocedal & Yuan [27], it was proposed to use a combination of trust region and line

search method. Trust region has the advantage that it can handle ill-conditioned cases, but in

each iteration, it’s expensive to solve the trust region equation. The basic idea is that, in the

trust region iteration, if the step does not give sufficient decrease of the function, the algorithm

switches to line search method rather than change the trust region radius, which makes the

computation faster. Gertz [11] proposed a backtracking method based on Armijo condition and

Wolfe condition.

Gertz & Gill [12] proposed a combined trust region and line search method for use with

a primal-dual interior method. The trust-region subproblem is

minimize
x∈Rn

Q(x)

subject to ||x||T ≤ δ .

(2.5)

The Armijo-style condition is

f (v)− f (v+αs)≥−η1Q(αs)), (2.6)

where T is a positive definite matrix and ||s||T := (sTT s)
1
2 and δ is the trust-region radius.

2.2 Constrained Optimization

As said in the beginning chapter, the goal is to solve problems of the form:

minimize
x∈Rn

f (x)

subject to ci(x) = 0, i ∈ E ,

ci(x)≥ 0, i ∈I ,

(2.7)

where it’s assumed that both f and ci’s are at least twice continuously differentiable.

The first part goes through some commonly used definitions and results in nonlinear

optimizations, along with the notations will be used. Later parts introduce methods used to

9

solve optimization problems that motivate the algorithm proposed in this thesis. Although our

ultimate aim is to deal with constraints that involve both equalities and inequalities, it would be

good to first investigate them separately, because they require different methods that contribute

to the general problems. Methods that motivate the algorithm of this thesis will be discussed

respectively in these parts.

2.2.1 Preliminaries

The gradient of f is defined to be a column vector as follows:

g(x) = ∇f (x).

The Jacobian matrix related to the constraints is a matrix

J(x) =

∇c1(x)T

∇c2(x)T

...

∇ci(x)T

...

∇c(||E ||+||I ||)(x)T

,

where i = 1, 2, . . . , ||E ||+ ||I ||.

The Hessian of the objective function is denoted by

H(x) = ∇
2f (x).

The Lagrangian function is defined as

L(x,y) = f (x)− ∑
i∈E∪I

yici(x),

and the Hessian of the Lagrangian function with respect to x is given by

H(x,y) = H(x)− ∑
i∈E∪I

yi∇
2ci(x).

10

Below are definitions of minimizers for constrained optimization problems. These

definitions are similar to those for unconstrained problems, but require an additional requirement

that the optimal point satisfies the constraints.

Definition 2.2.1 (Feasible Region). The feasible region is defined to be the set

F := {x ∈ Rn | ci(x) = 0, ∀i ∈ E , ci(x)≥ 0, ∀i ∈I }.

Definition 2.2.2 (Feasible Path). A feasible path is a directed twice-differentiable curve x(α)

starting at a feasible point x, such that

• x(0) = x and x(α) is feasible for all 0≤ α < α̂ , for some α̂ > 0.

•
d

dα
x(α)

∣∣
α=0 is a nonzero vector.

Definition 2.2.3 (Constrained Global Minimizer). A point x∗ is called a constrained global

minimizer, if x∗ ∈F and

f (x∗)≤ f (x), ∀x ∈F .

Furthermore, f (x∗) the called a global minimum of f .

Definition 2.2.4 (Constrained Local Minimizer). A point x∗ is called a constrained local mini-

mizer if x∗ ∈F and there exists δ > 0 such that

f (x∗)≤ f (x), ∀x ∈F ∩B(x∗,δ).

For constrained optimization, the constraints are expected to satisfy certain regularity

assumptions called constraint qualifications, under which optimality conditions can be easily

characterized. These assumptions are about cones, which are important geometric concepts in

optimizations. Some related definitions are given below.

Definition 2.2.5 (Cone). A set C is called a cone if ∀x ∈ C ,∀θ ≥ 0⇒ θx ∈ C .

Definition 2.2.6 (Convex Cone). A set C is a convex cone if it’s a cone and convex.

11

Definition 2.2.7 (Dual Cone). The dual cone C ∗ of C is defined as C ∗ = {y | xTy≥ 0, ∀x ∈ C }.

It’s obvious C ∗ is a convex cone.

Definition 2.2.8 (Tangent Cone). A tangent cone at a feasible point x is

T (x) =
{

p | ∃zn feasibleandtn↘ 0, p = lim
n→∞

zn− x
tn

}
.

Definition 2.2.9 (Linear Cone). A linear cone at a feasible point x is

TL(x) = {p | ∇ci(x)T p = 0,∀i ∈ E , ∇ci(x)T p≥ 0,∀ j ∈I0(x)}.

It’s easy to see x∗ is a local minimizer only if ∇ f (x∗)T p≥ 0 for all p ∈ T (x∗), which

implies ∇ f (x∗) ∈ T ∗(x∗). But this is hard to verify, so it’s usually assumed that T ∗
L (x∗) =

T ∗(x∗) and the only thing need to check is whether or not ∇ f (x∗) ∈T ∗
L (x∗).

This leads to a constraint qualification (the weakest one that one can expect):

Definition 2.2.10 (Guignard Constraint Qualification (GCQ)). GCQ holds at a feasible point x if

T ∗(x) = T ∗
L (x).

Two of the most widely used constraint qualifications are LICQ and MFCQ, as given

below.

Definition 2.2.11 (MFCQ). Let x∗ be a feasible point of the program (2.7). The Mangasarian-

Fromovitz constraint qualification (MFCQ) holds at x∗ if the gradient vectors

∇ci(x), i ∈ E

are linearly independent and there exists a vector d ∈ Rn such that

∇ci(x)Td < 0, ∀i ∈I0,

∇ci(x)Td = 0, ∀i ∈ E .

12

Definition 2.2.12 (LICQ). Let x∗ be a feasible point of the program (2.7). The linear indepen-

dence constraint qualification (LICQ) holds at x∗ if the constraint gradient vectors

∇ci(x∗), i ∈ E ∪I0

are linearly independent, where

I0 := {i ∈I | ci(x) = 0}

is the active set of inequality constraints.

Proposition 2.2.1. There is the implication

LICQ⇒MFCQ⇒ GCQ.

2.2.2 Problems with Equality Constraints

This part focuses on the treatment of equality constraints. In the most general case, the

optimization problem to be considered is a nonlinear equality constrained problem (NEP), which

is written in the form:

minimize
x∈D⊆Rn

f (x) subject to ci(x) = 0, i = 1,2, . . . ,m, (NEP)

where each ci(x) is a (possibly) nonlinear function of the n variables x1, x2, . . . , xn. For

convenience, we will often consider the vector-valued function c(x) that has the constraint

function ci(x) as its i-th component, i.e., c : D ⊆ Rn 7→ Rm.

Now, optimality conditions can be given. More details can be found in Gill & Wright [17].

Definition 2.2.13 (KKT point for (NEP)). A feasible point x∗ such that ∇f (x∗) = J(x∗)Ty∗ for

some m-vector y∗ is called a first-order KKT point (or just a KKT point) for (NEP). Equivalently,

if the columns of Z(x∗) form a basis for the null-space of J(x∗), then x∗ is a KKT point if

Z(x∗)T∇f (x∗) = 0.

13

Theorem 2.2.2 (First-order necessary optimality conditions for (NEP)). If a constraint qualifica-

tion holds at x∗, then x∗ is a local solution of (NEP) only if x∗ is a KKT point.

Theorem 2.2.3 (Second-order necessary conditions for (NEP)). If a constraint qualification

holds at x∗, then x∗ is a local solution of (NEP) only if:

(a) x∗ is feasible, i.e., c(x∗) = 0;

(b) there exists a vector y∗ such that ∇f (x∗) = J(x∗)Ty∗; and

(c) for the y∗ of part (b), pTH(x∗,y∗)p≥ 0 for every vector p satisfying J(x∗)p = 0.

Theorem 2.2.4 (Sufficient conditions for a strict local minimizer). A point x∗ is a strict local

minimizer of (NEP) if

(a) x∗ is feasible, i.e., c(x∗) = 0;

(b) there exists a vector y∗ such that ∇f (x∗) = J(x∗)Ty∗; and

(c) for the y∗ of part ((b)), the strict inequality pTH(x∗,y∗)p > 0 holds for every p ̸= 0 such

that J(x∗)p = 0.

2.2.3 The Method of Newton-Lagrange

When minimizing a function without constraints, a standard approach is to use the first-

order optimality conditions to define a system of nonlinear equations ∇f (x) = 0 whose solution

is a first-order optimal point x∗. In the constrained case, the relevant system involves the gradient

of the Lagrangian, which expresses the first-order feasibility and optimality conditions satisfied

by x∗ and y∗. Theorem 2.2.2 implies that the n+m vector (x∗,y∗) is a solution of the n+m

nonlinear equations F(x,y) = 0, where

F(x,y) = ∇L(x,y) =

∇f (x)− J(x)Ty

−c(x)

 . (2.8)

14

It follows that one approach to finding (x∗,y∗) is to apply Newton’s method to find a zero of F .

Let v denote an (n+m)-vector (x,y). Given an initial estimate v0 = (x0,y0) of a zero v∗= (x∗,y∗),

Newton’s method generates a sequence of iterates vk such that

vk+1 = vk +αk∆vk, where F ′(vk)∆vk =−F(vk).

It only remains to compute the (n+m)× (n+m) Jacobian F ′(v). Differentiating (2.8) with

respect to x and y gives F ′(v) = F ′(x,y) as

F ′(x,y) =

∇
2f (x)−

m

∑
i=1

yi∇
2ci(x) −J(x)T

−J(x) 0

 .

Using this Jacobian in the Newton equations givesH(xk,yk) −J(xk)
T

−J(xk) 0

∆xk

∆yk

=−

∇f (xk)− J(xk)
Tyk

−c(xk)

 .

The algorithm of Newton-Lagrange is given in Algorithm 2.3.

Algorithm 2.3. Method of Newton-Lagrange.

Fix ηA and γc such that 0 < ηA <
1
2 and 0 < γc < 1;

Choose x0 and y0;
x← x0; y← y0;
k← 0;
while not converged do

Solve the KKT system
(

H(x,y) J(x)T

J(x) 0

)(
∆x
−∆y

)
=−

(
∇f (x)− J(x)Ty

c(x)

)
;

α ← 1;
while ∥F(vk)∥−∥F(vk +αk∆vk)∥< ηA

(
∥Mk(vk)∥−∥Mk(vk +αk∆vk)∥

)
do

α ← γcα;
end while
x← x+α∆x; y← y+α∆y;
k← k+1;

end while

15

Penalty Method

One method is to solve a sequence of unconstrained problems by adding constraints to the

objectives. Those added terms are called penalties. Parameters associated with the penalties are

to be increased dynamically to enforce feasibility. One popular penalty method is the quadratic

penalty method, which is given as follows:

P2(x ;ρ) = f (x)+ 1
2ρ

m

∑
i=1

ci(x)2 = f (x)+ 1
2ρc(x)Tc(x) = f (x)+ 1

2ρ∥c(x)∥2
2, (2.9)

where the nonnegative scalar ρ is called the penalty parameter. In the “classical” penalty-

function method, P2(x ;ρ) is minimized for each of a sequence of increasing values of ρ using

an unconstrained minimization method. Let x(ρ) denote an unconstrained minimizer of P2(x ;ρ).

The main property expected, for a given sequence
{

ρk
}

, is that

lim
k→∞

x(ρk) = x∗.

Differentiation of P2(x ;ρ) gives

∇P2(x ;ρ) = ∇f (x)+
m

∑
i=1

ρ∇ci(x)ci(x) = ∇f (x)+ρJ(x)Tc(x) (2.10)

∇
2P2(x ;ρ) = ∇

2f (x)+
m

∑
i=1

ρci(x)∇2ci(x)+ρJ(x)TJ(x). (2.11)

As P2 is continuously differentiable, its gradient must vanish at the unconstrained mini-

mizer x(ρ). It follows from (2.10) that

∇f
(
x(ρ)

)
=−ρJ

(
x(ρ)

)Tc
(
x(ρ)

)
,

If the constraint qualification holds, this condition has the same form as the first-order necessary

condition ∇f (x∗) = J(x∗)Ty∗ (see Theorem 2.2.2). A comparison of these two optimality

conditions indicates that the quantity πi(x ;ρ) △=−ρci(x), i = 1, . . . , m, may be viewed as an

estimate of the i-th Lagrange multiplier at x∗.

16

The Newton equation to be solved is

∇
2P2(xk ;ρ)∆xk =−∇P2(xk ;ρ).

Written in terms of xk and π(xk), the Newton equation is

(
H(xk,π(xk))+ρJ(xk)

TJ(xk)
)
∆xk =−

(
∇f (xk)− J(xk)

T
π(xk)

)
. (2.12)

Lemma 2.2.5 (Debreu [7]). Given an m×n matrix A and an n×n symmetric matrix H, then

xTHx > 0 for all nonzero x satisfying Ax = 0 if and only if there is a finite ρ̄ ≥ 0 such that

H +ρATA is positive definite for all ρ ≥ ρ̄ .

Debreu’s lemma (Lema 2.2.5) implies that if ρ is sufficiently large, these equations are

positive definite in the neighborhood of a strict minimizer, i.e., the penalty term adds positive

curvature to H(x∗,y∗) in directions orthogonal to null
(
J(x∗)

)
.

Algorithm 2.4. Classical Newton Penalty Method.

Fix ηA, γc, γ and ε such that 0 < ηA <
1
2 , 0 < γc < 1, γ > 1, and 0 < ε ≪ 1;

Choose x0, ρ (ρ > 0);
x← x0; k← 0;
while not converged do

while ∥∇P2(x ;ρ)∥> ε do
Compute P2(x ;ρ), ∇P2(x ;ρ);
Define E such that ∇2P2(x ;ρ)+Ek is positive definite;
Solve (∇2P2(x ;ρ)+Ek)∆x =−∇P2(x ;ρ);
α ← 1;
while P2(x+α∆x ;ρ)> P2(x ;ρ)+ηAα∇P2(x ;ρ)T∆x do

α ← γcα;
end while
x← x+α∆x;
k← k+1;

end while
ρ ← γρ;

end while

17

Augmented Lagrangian Method

The numerical performance of the classical quadratic penalty method becomes poor as

ρ → ∞. In order to overcome this difficulty, the augmented Lagrangian method was introduced.

This method may be viewed as a shifted penalty function method, which does not require

µ = 1/ρ to go to zero by updating the estimate value of multiplier y in each iteration, and avoid

the ill-conditioning. The corresponding problem can be written as

minimize
x∈Rn

f (x)

subject to c(x)− s = 0,
(2.13)

where s is a vector of shifts and hence the shifted penalty function is

P2(x; µ,s) := f (x)+
1
2

ρ
(
c(x)− s

)T(c(x)− s
)
,

and

yE := ρs

may be regarded as an estimate of the Lagrange multiplier.

Expand the shifted penalty function and ignore the constant term sTs, it can be seen

minimizing the augmented Lagrangian function is equivalent to minimizing the function below:

LA(x ;y,ρ) = f (x)− c(x)Ty+ 1
2ρc(x)Tc(x), (2.14)

The presence of the penalty term in LA(x ;yE,ρ) has the effect of increasing the (possibly

negative) eigenvalues of H(x∗,y∗) corresponding to eigenvectors in the range space of J(x∗)T,

while leaving the other eigenvalues unchanged. Using this property, under mild conditions there

exists a finite ρ̄ such that x∗ is an unconstrained minimizer of LA(x ;y∗,ρ) for all ρ > ρ̄ . This

property is formalized in the following result.

Theorem 2.2.6 (Properties of the augmented Lagrangian (Gill & Wright [17])). Assume that

x∗ satisfies the second-order sufficient conditions for a strict minimizer of (NEP). Let y∗ be

18

Lagrange multipliers at x∗. There is a finite ρ̄ such that, for every ρ > ρ̄ , a solution x∗ of (NEP)

is an isolated local unconstrained minimizer of the augmented Lagrangian function LA(x ;y∗,ρ).

2.2.4 Optimization Problems with Inequality Constraints

Next we focus on the nonlinear inequality constrained problem (NIP) written in the

general form:

minimize
x∈Rn

f (x) subject to c(x)≥ 0, (NIP)

where c(x) has m components ci(x), and f and {ci(x)} are smooth functions. The matrix J(x)

will denote the Jacobian of the constraint vector c(x). The feasible region for this problem is

given by

F =
{

x : ci(x)≥ 0, i = 1,2, . . . ,m
}
.

Definition 2.2.14. The constraint ci(x)≥ 0 is said to be satisfied at x̄ if ci(x̄)≥ 0, active (binding,

satisfied exactly) if ci(x̄) = 0, inactive if ci(x̄)> 0, and violated if ci(x̄)< 0.

Definition 2.2.15 (First-order KKT point for (NIP)). The first-order KKT conditions for the

inequality-constrained problem (NIP) hold at the point x∗, or, equivalently, x∗ is a (first-order)

KKT point, if there exists an ma-vector y∗a, called a Lagrange multiplier vector, such that

c(x∗)≥ 0, ca(x∗) = 0, (feasibility) (2.15a)

∇f (x∗) = Ja(x∗)Ty∗a, (stationarity) (2.15b)

y∗a ≥ 0. (nonnegativity of the multipliers) (2.15c)

Definition 2.2.16 (Acceptable Lagrange multipliers). Given a KKT point x∗ for problem (NIP),

the set of acceptable Lagrange multipliers is defined as

Y (x∗) =
{

y ∈ Rm : ∇f (x∗) = J(x∗)Ty, y≥ 0, and c(x∗) · y = 0
}
. (2.16)

At any KKT point x, choose some y ∈ Y (x) and let A+(x,y) denote the set of indices

of active constraints with positive Lagrange multipliers and let J+(x) denote the corresponding

19

matrix of constraint gradients. Similarly, let A0(x,y) denote the set of indices of active constraints

with zero multipliers, and let J0(x) denote the associated matrix of constraint gradients.

Theorem 2.2.7 (First-order necessary conditions). Let x∗ be a point such that c(x∗)≥ 0, with

ca(x) = 0. If the Abadie constraint qualification holds at x∗, then x∗ is a local minimizer of (NIP)

only if x∗ is a first-order KKT point, i.e., there exists a vector y∗a such that

∇f (x∗) = Ja(x∗)Ty∗a, with y∗a ≥ 0. (2.17)

Definition 2.2.17 (Second-order constraint qualification (SOCQ)). The second-order constraint

qualification for inequality constraints holds at a KKT point x if, for all y ∈ Y (x), every nonzero

p satisfying J+(x)p = 0 and J0(x)p≥ 0 is tangent to a twice-differentiable path x(α) such that

c+

(
x(α)

)
= 0 and c0

(
x(α)

)
≥ 0 for all 0 < α ≤ α̂ .

Theorem 2.2.8 (Second-order necessary conditions for (NIP)). If the first- and second-order

constraint qualifications hold at x∗, then x∗ is a local solution of (NIP) only if

(a) x∗ is a KKT point, i.e., c(x∗)≥ 0 and there exists a nonempty set Y (x∗) of multipliers y

satisfying y≥ 0, c(x∗) · y = 0, and ∇f (x∗) = J(x∗)Ty;

(b) for some y ∈ Y (x∗) and all p ̸= 0 satisfying ∇f (x∗)T p = 0 and Ja(x∗)p≥ 0, it holds that

pTH(x∗,y)p≥ 0.

Theorem 2.2.9 (Sufficient conditions for a strict minimizer of (NIP)). A point x∗ is a strict local

constrained minimizer of (NIP) if

(a) x∗ is a KKT point, i.e., c(x∗)≥ 0 and there exists a nonempty set Y (x∗) of multipliers y

satisfying y≥ 0, c(x∗) · y = 0, and ∇f (x∗) = J(x∗)Ty.

(b) There exists a vector y ∈ Y (x∗) such that for all p ̸= 0 satisfying ∇f (x∗)T p = 0 and

Ja(x∗)p≥ 0, there is an ω > 0 such that pTH(x∗,y)p≥ ω∥p∥2.

20

Barrier Methods

For inequality constraints, a barrier method is motivated by unconstrained minimization

of a function combining f and a positively weighted “barrier” that prevents iterates from leaving

the feasible region. Penalty methods, in contrast, are based on minimizing a function that includes

f and a positive penalty if evaluated at any infeasible point.

The overwhelmingly predominant barrier function used today is the logarithmic barrier

function:

B(x ; µ) = f (x)−µ

m

∑
i=1

lnci(x), (2.18)

Algorithm 2.5. Classical barrier algorithm
1: procedure BARRIER METHOD

2: Choose x0 so that c(x0)> 0. Choose µ > 0, 0 < γ < 1;
3: k← 0;
4: while not converged do
5: Compute x(µ), an unconstrained minimizer of B(x; µ);
6: xk+1← x(µ);
7: µ ← γµ;
8: k← k+1;
9: end while

10: end procedure

2.2.5 Modified Barrier Function

The unconstrained minimizers of the classical log barrier function converge to a solution

of the constrained problem only if the barrier parameter µ goes to zero. By contrast, modified

barrier methods [3, 5, 18, 26, 28] define a sequence of unconstrained problems in which the

value of µ remains bounded away from zero, thereby avoiding the need to solve a problem whose

Hessian becomes increasingly ill-conditioned as µ is decreased.

Modified barrier methods are based on the observation that for a fixed positive µ , the

constraints ci(x) ≥ 0 and µ ln
(
1+ ci(x)/µ

)
≥ 0 are equivalent, i.e., their associated sets of

feasible points are identical. Moreover, a KKT point for the original problem (NIP) is also a KKT

21

point for the modified problem

minimize
x∈Rn

f (x) subject to µ ln
(
1+ ci(x)/µ

)
≥ 0, i = 1,2, . . . ,m. (2.19)

This motivates the definition of the modified barrier function:

M(x,y) = f (x)−µ

m

∑
i=1

yi ln
(
1+ ci(x)/µ

)
, (2.20)

which can be interpreted as the conventional Lagrangian function for the modified problem

(2.19).

22

Chapter 3

Computing the Trust-Region Step

This chapter concerns the formulation of methods for solving the trust-regions subprob-

lem. The trust-region subproblem can be written as follows:

minimize
d∈Rn

Q(d) = gTd + 1
2dTHd subject to ∥d∥T ≤ δ , (3.1)

where ∥d∥T = (dTT d)1/2, δ is the trust-region radius, and T is positive definite. If we write

q = Nd, where N is the non-singular matrix such that T = NTN, then the problem (3.1) is

equivalent to

minimize
q∈Rn

Q̂(q) = gTN−1q+ 1
2qTN−THN−1q subject to ∥q∥ ≤ δ ,

where ∥ · ∥ denotes the two-norm. This problem is just

minimize
q∈Rn

ĝTq+ 1
2qTĤq subject to ∥q∥ ≤ δ , (3.2)

with ĝ = N−1g and Ĥ = N−THN−1. Let λ1 ≥ λ2 ≥ ·· · ≥ λn and û1, û2, . . . , ûn denote the

eigenvalues and eigenvectors of Ĥ. If ui = N−1ûi, then Hui = λiNTNui. The least eigenvalue of

Ĥ +σ I satisfies the identity

ωn = min
y∈Rn

y̸=0

yT(Ĥ +σ I
)
y

∥y∥2
= min

x∈Rn

x ̸=0

xT(H +σNTN
)
x

∥x∥2
T

. (3.3)

In this note, we discuss the details of an iterative method for finding a solution of problem

23

(3.2). The notation H(σ) = H +σNTN will be used when convenient.

The method we use to find an approximate global solution of the trust-region subproblem

is based on an algorithm proposed by Moré and Sorensen [25].

3.1 Solving the Trust-Region Subproblem

Algorithms for finding a global solution of the trust-region subproblem (3.1) are based

on the following theorem.

Result 3.1.1. A vector d∗ is a global minimizer of the trust-region subproblem if and only if

∥d∗∥T ≤ δ and there is a σ∗ ≥ 0 such that

(H +σ
∗T)d∗ =−g and σ

∗(δ −∥d∗∥T) = 0, (3.4)

with H +σ∗T positive semi-definite. Moreover, if H +σ∗T is positive definite, then the global

minimizer is unique.

If λn denotes λmin(N−THN−1), then −λn is the unique value such that H +σNTN is

positive semidefinite if σ ≥−λn, and singular if σ =−λn. For σ >−λn we define the vector

sσ =−(H +σNTN)−1g,

which is a unique function of σ . Similarly, we define the scalar-valued function

ψ(σ) = ∥Nsσ∥−δ = ∥sσ∥T −δ ,

which is well-defined for all σ >−λn. If σ∗ ̸= 0 and σ∗ ̸=−λn, then ψ(σ∗) = 0.

The function ψ(σ) may be written as an explicit function of the eigenvalues and eigen-

24

vectors of Ĥ. We have

sσ =−(H +σT)−1g =−(H +σNTN)−1g

=−
(
NT(Ĥ +σ I)N

)−1g

=−N−1(Ĥ +σ I
)−1N−Tg

=−N−1(Û(Λ +σ I)−1Û TN−Tg

=−N−1Û(Λ +σ I)−1U Tg,

where U and Û are the matrices with columns
{

ui
}

and
{

ûi
}

, respectively. Then

Nsσ =−Û(Λ +σ I)−1U Tg =−
n

∑
i=1

uT
i g

σ +λi
ûi =−

n

∑
i=1

γi

σ +λi
ûi, (3.5)

where γi = uT
i g. It follows that ∥Nsσ∥ is a well-defined function of σ for σ >−λn, with

∥sσ∥2
T = ∥Nsσ∥2 =

γ2
1

(λ1 +σ)2 +
γ2

2
(λ2 +σ)2 + · · ·+

γ2
n

(λn +σ)2 . (3.6)

3.1.1 A method based on zero-finding.

We have shown that if σ∗ ̸= 0 and σ∗ ̸= −λn, then ψ(σ∗) = 0, and the trust-region

subproblem is equivalent to finding a zero of ψ(σ). Suppose that σ̂ is a zero of ψ(σ) such that

H + σ̂T is positive semidefinite—i.e., ψ(σ̂) = 0 and σ̂ ≥−λn. Then σ∗ = max
{

0, σ̂
}

is the

unique value of σ discussed in Result 3.1.1

The following result shows that if g ̸= 0, the function ψ(σ) is strictly decreasing and

strictly convex on (−λn,∞).

Result 3.1.2. The function ψ(σ) = ∥sσ∥T −δ is nonincreasing and convex on (−λn,∞). More-

over, if g ̸= 0, then ψ(σ) is strictly decreasing and strictly convex on (−λn,∞).

Proof. If g = 0, ψ(σ) is constant, which is trivially nonincreasing and convex. For the remainder

of the proof, we assume that g ̸= 0. First we show that ψ ′(σ)< 0 for all σ ∈ (−λn,∞). For all

such σ , the matrix H +σT is positive definite and the vector sσ is well-defined with ∥sσ∥T > 0.

25

Differentiating ψ(σ) = ∥sσ∥T −δ with respect to σ gives

ψ
′(σ) =

d
dσ

(
∥sσ∥T

)
. (3.7)

The derivative of ∥sσ∥T is given by

d
dσ

(∥sσ∥T) =
1
2

1
∥sσ∥T

d
dσ

(
sT

σ T sσ

)
=

1
2

1
∥sσ∥T

((d
dσ

sσ

)
TT sσ + sT

σ T
d

dσ
sσ

)
=

1
∥sσ∥T

wT
σ T sσ , (3.8)

where wσ = dsσ/dσ . In order to obtain an expression for wσ , we differentiate the equation

(H +σT)sσ =−g with respect to σ to obtain

(H +σT)
d

dσ
sσ +T sσ = 0,

in which case

(H +σT)wσ =−T sσ , i.e., wσ =−(H +σT)−1T sσ . (3.9)

Forming the inner product of wσ from (3.9) with T sσ gives wT
σ T sσ = −sT

σ T (H +σT)−1T sσ ,

and ψ ′(σ) may be written as

ψ
′(σ) =−sT

σ T (H +σT)−1T sσ

∥sσ∥T
. (3.10)

An alternative form for ψ ′(σ) may be determined by forming the inner product of wσ with the

first expression of (3.9) to give wT
σ T sσ =−wT

σ (H +σT)wσ . It follows from (3.7) and (3.8) that

ψ ′(σ) may be written as

ψ
′(σ) =−wT

σ (H +σT)wσ

∥sσ∥T
. (3.11)

As H +σT is positive definite for every σ ∈ (−λn,∞), it follows that ψ ′(σ)< 0 and ψ

is strictly decreasing for all σ ∈ (−λn,∞).

For the second derivative we differentiate ψ ′(σ) stated in the form (3.8) and use (3.9) to

26

give

ψ
′′(σ) =− 1

∥sσ∥2
T

(wT
σ T sσ)

d
dσ

(∥sσ∥T)+
1
∥sσ∥T

(
sT

σ T
(

dwσ

dσ

)
+wT

σ Twσ

)
=− 1
∥sσ∥3

T

(wT
σ T sσ)

2 +
1
∥sσ∥T

(
sT

σ T
(

dwσ

dσ

)
+wT

σ Twσ

)
. (3.12)

Similarly, differentiating the identity (H +σT)wσ =−T sσ from (3.9) with respect to σ gives

(H +σT)
dwσ

dσ
+Twσ +T

d
dσ

sσ = (H +σT)
dwσ

dσ
+2Twσ = 0.

Premultiplying by wT
σ and using the expression wσ =−(H +σT)−1T sσ from (3.9) yields

wT
σ (H +σT)

dwσ

dσ
+2wT

σ Twσ = 0, or, equivalently, sT
σ T
(

dwσ

dσ

)
= 2wT

σ Twσ .

If this expression is substituted in (3.12) we get

ψ
′′(σ) =

3wT
σ Twσ

∥sσ∥T
− (wT

σ T sσ)
2

∥sσ∥3
T

=
1
∥sσ∥3

T

(
2(wT

σ Twσ)(sT
σ T sσ)+(wT

σ Twσ)(s
T
σ T sσ)− (wT

σ T sσ)
2) . (3.13)

From (3.6) and the assumption that g ̸= 0, it must hold that both ∥sσ∥T and ∥wσ∥T are nonzero.

Moreover, the Cauchy-Schwartz inequality implies that (wT
σ Twσ)(s

T
σ T sσ)− (wT

σ T sσ)
2 ≥ 0. It

follows that ψ ′′(σ) is positive and hence ψ(σ) is strictly convex for all σ ∈ (−λn,∞).

The next result gives conditions under which the existence of a zero σ̂ of ψ(σ) in (−λn,∞) is

guaranteed.

Result 3.1.3. If limσ→−λn ∥sσ∥T > δ then ψ(σ) has a unique zero in (−λn,∞).

Proof. The expansion (3.6) implies that limσ→∞ ∥sσ∥T = 0 and hence limσ→∞ ψ(σ) =−δ < 0.

If limσ→−λn ∥sσ∥T > δ , then limσ→−λn ψ(σ) > 0 and it follows that ψ(σ) changes sign on

(−λn,∞). Moreover, from Result 3.1.2, ψ(σ) is convex and therefore continuous on (−λn,∞).

The intermediate-value theorem then implies that ψ(σ) must have at least one zero in (−λn,∞).

The uniqueness now follows from the fact that ψ(σ) is strictly decreasing on (−λn,∞).

27

The zero of ψ(σ) may be found using an appropriate method for one-dimensional zero-

finding. The usual strategy is to attempt to solve ψ(σ) = 0 for σ̂ using some variant of Newton’s

method, and set σ = 0 during the computation if it appears that the iterates are converging to a

negative value of σ̂ . Suppose that σ j ∈ (−λn,∞) is the jth estimate of σ̂ . Newton’s method for

finding a zero of ψ(σ) defines the new estimate σ N
j+1 = σ j−ψ(σ j)/ψ ′(σ j), which is the zero

of the affine model ψ(σ j)+ψ ′(σ j)(σ −σ j). Note that σ N
j+1 is well-defined because ψ ′(σ j) ̸= 0

from Result 3.1.2. Newton’s method has special properties when used to find the zero of a strictly

decreasing convex function. These properties are summarized in the following result.

Result 3.1.4. Suppose that there exists a σ̂ ∈ (−λn,∞) such that ψ(σ̂) = 0. Let σ N
j+1 = σ j−

ψ(σ j)/ψ ′(σ j) denote the Newton iterate defined at some σ j ∈ (−λn,∞). Then

(a) if σ j ̸= σ̂ , the product ψ(σ j)(σ j− σ̂) is negative;

(b) if σ j > σ̂ then σ N
j+1 < σ̂ ;

(c) if σ j ∈ (−λn, σ̂) then σ N
j+1 > σ j and σ N

j+1 ∈ (−λn, σ̂); and

(d) if σ j ∈ (−λn, σ̂) then all subsequent Newton iterates increase monotonically and converge

to σ̂ .

A safeguarded Newton method based on Result 3.1.4 is given in Algorithm 3.1.

Algorithm 3.1. Safeguarded Newton method.

Choose σ0 ≥−λn;
converged← false; j← 0;
while not converged do

σ N
j+1← σ j−ψ(σ j)/ψ ′(σ j); [σ N

j+1 < σ̂ , but σ N
j+1 may not lie in (−λn,∞).]

σ j+1← if σ N
j+1 >−λn then σ N

j+1 else 1
2(σ j−λn);

j← j+1;
end while

28

Improving the efficiency of Newton’s method for finding σ̂ .

Unfortunately, the nonlinear equation ψ(σ) = 0 cannot be solved efficiently using

Newton’s method. Implicitly, an iteration of Newton’s method involves finding the zero of a

linear model of ψ at σ N
j . The expression (3.6) implies that ψ(σ) has a pole at −λn, and so ψ(σ)

cannot be approximated very accurately by a linear function near −λn. Hebden [22] avoids this

difficulty by using a local model of ψ(σ) that also has a pole but provides a better approximation

of ψ(σ). An equivalent approach is to search for a zero of the function

ϕ(σ) =
1
δ
− 1
∥sσ∥T

(see Reinsch [30]). This function has no poles and has the same roots as ψ . Note that ϕ is not

differentiable at σ =−λn.

Result 3.1.5. The function ϕ ′(σ) is nonincreasing and convex on (−λn,∞). Moreover, if g ̸= 0,

then ϕ(σ) is strictly decreasing and strictly convex on (−λn,∞).

Proof. First, we derive ϕ ′(σ) and ϕ ′′(σ). Assume that H +σT is nonsingular. Differentiating

ϕ(σ) with respect to σ gives

ϕ
′(σ) =− d

dσ

(
∥sσ∥−1

T

)
=

1
∥sσ∥2

T

d
dσ

(
∥sσ∥T

)
. (3.14)

From (3.8) and (3.9), the derivative of ∥sσ∥T is given by

d
dσ

(∥sσ∥T) =
1
∥sσ∥T

wT
σ T sσ , where wσ =

d
dσ

sσ =−(H +σT)−1T sσ . (3.15)

It follows from this last identity and (3.14) that

ϕ
′(σ) =

1
∥sσ∥3

T

wT
σ T sσ . (3.16)

Forming the inner-product of wσ and T sσ gives wT
σ T sσ =−sT

σ T (H +σT)−1T sσ , which may

be used to write (3.16) as

ϕ
′(σ) =−sT

σ T (H +σT)−1T sσ

∥sσ∥3
T

. (3.17)

29

An alternative form for ϕ ′(σ) may be determined by forming the inner product of wσ with

the first expression of (3.9) to give wT
σ T sσ =−wT

σ (H +σT)wσ . It follows that (3.16) may be

written as

ϕ
′(σ) =−wT

σ (H +σT)wσ

∥sσ∥3
T

. (3.18)

In order to show that ϕ is strictly convex we show that ϕ ′′(σ) is strictly positive for all

σ > −λn. For the second derivative we differentiate ϕ ′(σ) stated in the form (3.16) and use

(3.15) to give

ϕ
′′(σ) =− 3

∥sσ∥4
T

(wT
σ T sσ)

d
dσ

(∥sσ∥T)+
1
∥sσ∥3

T

(
sT

σ T
(

dwσ

dσ

)
+wT

σ Twσ

)
=− 3
∥sσ∥5

T

(wT
σ T sσ)

2 +
1
∥sσ∥3

T

(
sT

σ T
(

dwσ

dσ

)
+wT

σ Twσ

)
. (3.19)

Similarly, differentiating the identity (H +σT)wσ =−T sσ from (3.9) with respect to σ gives

(H +σT)
dwσ

dσ
+Twσ +T

d
dσ

sσ = (H +σT)
dwσ

dσ
+2Twσ = 0.

Premultiplying by wT
σ and using the expression wσ =−(H +σT)−1T sσ from (3.9) yields

wT
σ (H +σT)

dwσ

dσ
+2wT

σ Twσ = 0, or, equivalently, sT
σ T
(

dwσ

dσ

)
= 2wT

σ Twσ .

If this expression is substituted in (3.19), ϕ ′′ may be rearranged so that

ϕ
′′(σ) =

3
∥sσ∥5

T

(
(wT

σ Twσ)(s
T
σ T sσ)− (wT

σ T sσ)
2
)
. (3.20)

From the definition of sσ the expression (3.6) gives

∥sσ∥2
T = ∥(H +σNTN)−1g∥2

T =
n

∑
i=1

(uT
i g)2

(σ +λi)2 .

If uT
n g ̸= 0, the definition of ϕ(σ) implies that

lim
σ→−λn

ϕ(σ) =
1
δ
, lim

σ→+∞
ϕ(σ) =−∞

and the intermediate-value theorem implies that there exists at least one zero of ϕ(σ) in (−λn,∞).

30

From (3.18), the first derivative of ϕ(σ) is

ϕ
′(σ) =−wT

σ (H +σT)wσ

∥sσ∥3
T

,

which is strictly negative for all σ ∈ (−λn,∞). It follows that ϕ(σ) is strictly decreasing in

(−λn,∞). Similarly, the second derivative of ϕ(σ) is given by

ϕ
′′(σ) =

3
∥sσ∥5

T

(
(wT

σ Twσ)(s
T
σ T sσ)− (wT

σ T sσ)
2
)

(see (3.20)). The Cauchy-Schwartz inequality implies

(wT
σ Twσ)(s

T
σ T sσ)− (wT

σ T sσ)
2 ≥ 0,

with equality only if Nwσ is a multiple of Nsσ . If Nwσ were a multiple of Nsσ , equation (3.9)

would imply that Nsσ is an eigenvector of Ĥ +σ I and hence a multiple of N−Tg. This would

imply that uT
n g = 0, which violates the assumption that uT

n g ̸= 0. Hence ϕ ′′(σ) is strictly positive

for all σ >−λn. It follows that ϕ is strictly decreasing and strictly convex in (−λn,∞).

Result 3.1.6. If uT
n g ̸= 0, then ϕ has a unique zero σ̂ in (−λn,∞).

Proof. We have shown that ϕ is strictly decreasing and strictly convex in (−λn,∞), i.e., ϕ ′(σ)<

0 and ϕ ′′(σ) > 0 for all σ ∈ (−λn,∞). It follows that ϕ(σ) must have a unique zero in

(−λn,∞).

The equation ϕ(σ) = 0 is solved using Newton’s method. The Newton step is given by

σ j+1 = σ j−ϕ(σ j)/ϕ ′(σ j). The work is all in evaluating ϕ ′(σ). As in the proof of Result 3.1.5,

differentiating ϕ(σ) with respect to σ gives

ϕ
′(σ) =−wT(H +σNTN)w

∥Nsσ∥3 .

31

Substituting for ϕ and ϕ ′ in the Newton equation gives

σ j+1 = σ j +
∥Ns j∥2

wT
j (H +σ jNTN)w j

(
∥Ns j∥−δ

δ

)
= σ j +

∥Ns j∥2

sT
j NTN(H +σ jNTN)−1NTNs j

(
∥Ns j∥−δ

δ

)
= σ j +

∥s j∥2
T

sT
j T (H +σ jT)−1T s j

(
∥s j∥T −δ

δ

)
,

as required.

If there is any value of σ >−λn for which ∥Nsσ∥= δ , then that value is unique. Clearly

then, the solution of ψ(σ) = 0 in the interval [−λn,∞] is also unique if it exists. Let this value

be σ̄ . If σ̄ > 0, then σ∗ = σ̄ . If σ̄ < 0, then σ∗ = 0. If σ̄ does not exist, then either σ∗ = 0

or H(−λn)s =−g is compatible and σ∗ =−λn. It will be shown that a Newton iteration will

always detect σ∗ = 0, whether or not σ̄ exists, but if σ∗ =−λn, additional techniques must be

employed to find a solution to the trust-region subproblem.

3.1.2 The degenerate case.

If the least eigenvalue of H is distinct, i.e., λn−1 > λn, the expansion (3.6) implies that if

uT
n g ̸= 0, then limσ→−λn ∥sσ∥T = ∞, and hence, from Result 3.1.3, that ψ(σ) has a unique zero

in (−λn,∞). If uT
n g = 0, then un is orthogonal to the gradient and ∥sσ∥T has no pole at σ =−λn,

which implies that ∥sσ∥T approaches a finite value s† as σ →−λn.

The properties of ψ(σ) and ∥sσ∥T as σ →−λn depend on the relationship between g

and the invariant subspace

Sn =
{

u : Hu = λnTu
}
= null(H−λnT)

associated with the linear matrix pencil H−λT .

Result 3.1.7. The quantity ∥sσ∥T = ∥(H +σT)−1g∥T is finite as σ →−λn if and only if g lies

in S ⊥
n .

32

Proof. If ∥sσ∥T is finite as σ →−λn then the definition (3.6) of ∥sσ∥T in terms of the spectral

decomposition of H implies that uT
i g = 0 for all ui ∈Sn. As these ui form a basis for Sn, it

must hold that every u ∈Sn must satisfy uTg = 0. Conversely, if ∥sσ∥T → ∞ as σ →−λn then

(3.6) implies that uT
i g ̸= 0 for at least one ui ∈Sn.

If ∥sσ∥T is finite as σ →−λn, then the trust-region subproblem is said to be degenerate.

Result 3.1.8. Let ψ(σ) = ∥(H +σT)−1g∥T −δ = ∥sσ∥T −δ .

(a) The quantity limσ→−λn ψ(σ) is finite if and only if the linear equations (H−λnT)d =−g

are compatible.

(b) Moreover, if limσ→−λn ψ(σ) is finite, then limσ→−λn sσ exists and is given by the vector

s† =−(H−λnT)†g, where (H−λnT)† denotes the pseudoinverse of H−λnT .

Proof. For part (a), if ψ(σ) is finite as σ →−λn, then Result 3.1.7 implies that uT
i g = 0 for all

ui ∈Sn. As Sn is just the null space of H−λnT , it follows that

g ∈ null(H−λnT)⊥ = range(H−λnT),

and the system (H−λnT)d =−g must be compatible. Conversely, if ψ(σ)→ ∞ as σ →−λn,

then Result 3.1.7 implies that there must exist a u ∈Sn such that uTg ̸= 0. The vector g can

be expressed uniquely as g = gR+gN, where gN ∈ null(H−λnT) and gR ∈ range(H−λnT).

Clearly, uTg = uTgR+uTgN= uTgN ̸= 0, which implies that gN ̸= 0. If gN is nonzero, then

g ̸= gR and g ̸∈ range(H−λnT).

For part (b) assume that λn, the least eigenvalue of N−THN−1, has multiplicity n− r. If

N−THN−1 = ÛΛÛ T, then, for every σ >−λn, the matrix H +σT is nonsingular, with

sσ =−(H +σT)−1g =−N−1Û(Λ +σ I)−1Û TN−Tg.

33

Consider the following partitions of Λ and Û

Λ =

Λr 0

0 Λn−r

=

Λr 0

0 λnIn−r

 and Û =
(

Ûr︸︷︷︸
n×r

Ûn−r︸︷︷︸
n×(n−r)

)
.

It follows that

H−λnT = NTÛ

Λr−λnIr 0

0 0

(NTÛ)T

=

(
NTÛr NTÛn−r

)Λr−λnIr 0

0 0

 Û T

r N

Û T
n−rN

 ,

in which case NTÛr and NTÛn−r define bases for range(H−λnT) and null(H−λnT). If ψ(σ)

is finite as σ →−λn, then part (a) implies that g∈ range(H−λnT), and so Û T
n−rN

−Tg = 0. Then

sσ =−N−1Û(Λ +σ I)−1Û TN−Tg

=−
(

N−1Ûr N−1Ûn−r

)Λr +σ Ir 0

0 (λn +σ)In−r

−1Û T

r N−Tg

Û T
n−rN

−Tg

=−N−1Ûr(Λr +σ Ir)

−1Û T
r N−Tg− 1

σ +λn
N−1Ûn−rÛ

T
n−rN

−Tg

=−N−1Ûr(Λr +σ Ir)
−1Û T

r N−Tg.

As the matrix Λr−λnIr is nonsingular, we may take the limit as σ →−λn to give

s† =−N−1Ûr(Λr−λnIr)
−1Û T

r N−Tg

=−N−1Û

(Λr−λnIr)
−1 0

0 0

Û TN−Tg

=−(H−λnT)†g,

as required.

34

If g ∈S ⊥
n and ∥s†∥T < δ , then ψ(σ) has no zero in [−λn,∞). This situation is often referred to

as the “hard case”.

In the hard case, two situations are possible. If λn is positive, the quantities σ∗ = 0 and

d∗ =−H−1g satisfy the optimality condition (3.4) because

∥d∗∥T = ∥N−1ÛrΛ
−1
r Û T

r N−Tg∥T

≤ ∥N−1Ûr(Λr−λnIr)
−1Û T

r N−Tg∥T = ∥s†∥T < δ .

On the other hand, if λn is negative or zero, the system (H−λnT)d = −g is compatible but

cannot be used alone to determine d∗. However, as H−λnT is singular, there is a null vector z

of H−λnT of unit length and a scalar τ for which

(H−λnT)(s† + τz) =−g and ∥s† + τz∥T = δ .

Then σ∗ =−λn and d∗ = s† + τz satisfy optimality conditions (3.4) and hence define a global

minimizer of the trust-region subproblem. Any null vector for H−λnT is also a null vector

for (H−λnT)†, and hence zTs† =−zT(H−λnT)†g = 0. This identity can be used to provide a

simple expression for τ . From the definition of d∗ we have

∥d∗∥2
T = ∥s† + τz∥2

T = ∥s†∥2
T + τ

2∥z∥2
T = ∥s†∥2

T + τ
2 = δ

2,

which fixes τ =±(δ 2−∥s†∥2
T)

1/2. In this situation, the trust-region step is not unique because

both d∗ = s† + |τ|z and d∗ = s†−|τ|z satisfy (3.4) and define the same global minimum of the

quadratic model. In two dimensions, the direction of z is unique and there are just two solutions

in the hard case.

3.2 The Method of Moré and Sorensen

The method of Moré and Sorensen [25] is widely regarded as the “standard” method for

solving the trust-region subproblem in unconstrained optimization. A trust-region subproblem

35

may be regarded as having three distinct properties.

• There does or does not exist a σ̂ ≥−λn such that ψ(σ̂) = 0.

• The optimal value σ∗ does or does not equal zero.

• The equations (H−λnT)s =−g are either compatible or incompatible.

The Moré-Sorensen algorithm may be considered as having three distinct parts, corresponding to

the three properties listed above:

• A safeguarded Newton iteration attempts to find σ̂ ≥−λn for which ψ(σ̂) = 0.

• If the current Newton iterate is σ j, a test is performed on σ j to keep σ j ≥ 0 and terminate

the algorithm if σ∗ = 0.

• If the current Newton iterate is σ j and s j is a solution of the equations (H +σ jT)s j =−g,

then an alternative method is used to find an acceptable step if ∥s j∥T < δ . This method is

most likely to succeed if the equations (H−λnT)s j =−g are nearly compatible and σ j is

near −λn.

3.2.1 Approximate solution of the trust-region subproblem.

In practice, it is not possible to compute an exact solution of the trust-region subproblem.

There are two reasons for this. First, methods for finding a point σ̂ such that ψ(σ̂) = 0 generate

an infinite sequence that must be terminated after a finite number steps. The termination point

will not be an exact zero of the equations and may not satisfy the trust-region constraint exactly.

Second, the solution of the subproblem in the hard case requires the calculation of a vector in the

invariant subspace (i.e., eigenspace) associated with λn, the least eigenvalue of H. However, λn

cannot be computed explicitly and it is not possible to define z j so that (H−λnT)z j = 0.

This means that any practical procedure must compute a vector d that approximates

solution of the trust-region subproblem. In this section, procedures will be formulated that

36

provide an approximate global minimizer d in the sense that Q(d)≤ τQ(d∗) for some 0 < τ < 1.

However, it must be emphasized that d will not, in general, satisfy the optimality conditions for

d∗ with high accuracy.

In order to simplify the discussion we will consider each source of error in d separately.

First, methods for finding a zero of ψ or ϕ generate an infinite sequence {σ j} that is terminated

when |ψ| is smaller than some preassigned tolerance. Unfortunately, as the final value of ψ will

not be exactly zero, the resulting estimate of σ may violate the trust-region bound by an amount

that depends on the tolerance. To allow for this, we find the approximate zero of ψ defined with

a scalar δ̃ that is a slightly smaller than the trust-region radius δ . Given some tolerance ε such

that 0 < ε < 1, suppose that the safeguarded Newton iteration is terminated when σ satisfies

|ψ̃(σ)| ≤ ε, where ψ̃(σ) =
∥sσ∥T − δ̃

δ̃
, with (H +σT)sσ =−g. (3.21)

Then it must hold that ∥sσ∥T satisfies (1− ε)δ̃ ≤ ∥sσ∥T ≤ (1+ ε)δ̃ . If δ̃ is chosen such that

δ = (1+ ε)δ̃ , then sσ satisfies ∥sσ∥T ≤ δ as required. This observation implies that the zero-

finding method should be used to find an approximate solution of the perturbed trust-region

subproblem mind∈Rn
{

Q(d) : ∥d∥T ≤ δ̃
}

. The solution of this problem is denoted by d̃, i.e.,

Q(d̃) = min
d∈Rn

{
Q(d) : ∥d∥T ≤ δ̃

}
, (3.22)

and σ̃ is used to denote the nonnegative scalar associated with the optimality conditions

(
H + σ̃T

)
d̃ =−g and σ̃

(
δ̃ −∥d̃∥T

)
= 0 (3.23)

of Result 3.1.1. The properties of an approximate solution of (3.22) are the focus of the next

result.

Result 3.2.1 (Moré and Sorensen [25]). Let δ̃ = δ/(1+ ε) where ε is any scalar such that

0 < ε < 1. Consider the vector sσ such that

(H +σT)sσ =−g and
|∥sσ∥T − δ̃ |

δ̃
≤ ε,

37

with H +σT positive semidefinite. Then sσ satisfies the inequality

Q(sσ)≤ (1− ε)2Q(d̃), where Q(d̃) = min
d∈Rn

{
Q(d) : ∥d∥T ≤ δ̃

}
. (3.24)

Moreover, Q(sσ) approximates the unique global minimum

Q∗ = min
d∈Rn

{
Q(d) : ∥d∥T ≤ δ

}
in the sense that

Q(sσ)≤ τQ∗ and ∥sσ∥T ≤ δ , (3.25)

with τ = (1− ε)2/(1+ ε)2.

Proof. The step sσ solves the problem mind∈Rn
{

Q(d) : ∥d∥T ≤ ∥sσ∥T

}
. From the definition of

sσ we have ∥sσ∥T ≥ (1− ε)δ̃ ≥ ∥(1− ε)d̃∥T , and hence

Q(sσ)≤Q
(
(1− ε)d̃

)
= (1− ε)gTd̃ + 1

2(1− ε)2d̃THd̃.

The optimality conditions (3.23) imply that gTd̃ = −d̃T(H + σ̃T)d̃ ≤ 0. Then, under the

assumption that (1− ε)< 1, it must hold that (1− ε)gTd̃ < (1− ε)2gTd̃ and

Q(sσ)≤ (1− ε)2Q(d̃) and ∥sσ∥T ≤ (1+ ε)δ̃ ,

which establishes (3.24).

Let d∗ be such that Q(d∗) = Q∗ = mind∈Rn
{

Q(d) : ∥d∥T ≤ δ
}

, where δ = (1+ ε)δ̃ .

By definition, d∗ must satisfy ∥d∗∥T ≤ (1+ ε)δ̃ , so that ∥d∗/(1+ ε)∥T ≤ δ̃ . The definition of d̃

now yields the inequality

Q(d̃)≤Q
(
d∗/(1+ ε)

)
= gTd∗/(1+ ε)+ 1

2d∗THd∗/(1+ ε)2 ≤Q(d∗)/(1+ ε)2.

Combining the bounds on Q(sσ) and Q(d̃) gives

Q(sσ)≤ (1− ε)2Q(d̃)≤
(
(1− ε)/(1+ ε)

)2Q∗,

38

and the result follows from the definition τ = (1− ε)2/(1+ ε)2.

This result implies that the (implicit) condition for d to be an acceptable step becomes

Q(d)≤ τQ(d∗) and ∥d∥T ≤ (1+ ε)δ̃ , (3.26)

where τ = (1− ε)2/(1+ ε)2.

Next we consider the error induced by using an approximate null vector z in the degenerate

case. Let σ j be the current best estimate of σ̃ , with σ j > 0 and σ j > −λn. Let s j satisfy

(H +σ jT)s j =−g. The resolution of the hard case discussed in Section 3.1 suggests a strategy

in which the occurrence of an s j such that ∥s j∥T < δ̃ , initiates the search for a vector z j for which

the step s j + z j satisfies ∥s j + z j∥T = δ̃ and the decrease criterion (3.24). The complication is

that λn is not known explicitly and it is not possible to define z j so that (H−λnT)z j = 0.

Let z j be any vector such that ∥s j + z j∥T = δ̃ . We emphasize that, in general, z j will not

be a null vector of H +σ jT . A suitable z j can be viewed as a solution of a minimization problem.

In particular, the identity (H +σ jT)s j = −g and the definition of Q(d) may be combined to

give the expression

Q(s j + z j) =−1
2sT

j (H +σ jT)s j− 1
2σ jδ̃

2 + 1
2zT

j (H +σ jT)z j. (3.27)

This implies that the z j minimizing Q(d) is z j = d̃− s j, i.e., choosing z j so that d̃ = s j + z j

gives the exact minimum of the trust-region subproblem. However, as d̃ is not known, we

search for other values of z j that make Q(d) small. One approach is to find a vector y j such

that yT
j (H +σ jT)y j is a small as possible. The vector z j is then taken to be τy j where τ is a

scalar such that ∥s j + τy j∥T = δ̃ . The expression (3.27) may be used to quantify how small

zT
j (H +σ jT)z j must be to provide an acceptable value of s j + z j. Because zT

j (H +σ jT)z j ≥ 0

for all choices of z j (including the choice z j = d̃− s j) it must hold that

−1
2sT

j (H +σ jT)s j− 1
2σ jδ̃

2 ≤Q(d̃).

39

Suppose that we can find a z j such that

zT
j (H +σ jT)z j ≤ ε(2− ε)

(
sT

j (H +σ jT)s j +σ jδ̃
2). (3.28)

Then this value may be used in equation (3.27) to obtain

Q(s j + z j)≤−(1− ε)2(1
2sT

j (H +σ jT)s j +
1
2σ jδ̃

2)≤ (1− ε)2Q(d̃).

Therefore s j + z j satisfies the sufficient decrease condition (3.24) if z j satisfies condition (3.28).

If λn is the least eigenvalue of Ĥ, then the vector un associated with the linear matrix

pencil Hun = λnNTNun minimizes zT(H +σ jT)z and gives the corresponding minimum value

λn +σ j. If H +σ jT is nearly singular, i.e., if σ j is close to −λn, then a vector z that makes

zT(H +σ jT)z small can be found without the need to compute un (see Sections 3.2 and 3.5).

Properties of an approximate solution.

Let ε be a fixed scalar such that 0 < ε < 1. Given the sequence
{

σ j
}

, the scalar σ = σ j

is considered to be an approximate zero of ϕ(σ) (with d = s j the associated step) if the condition

(C1) |ψ̃(σ j)| ≤ ε .

is satisfied.

In addition to this convergence condition, there are two situations in which the Newton

iteration is terminated prior to convergence, in particular,

(T1) if σ j = 0 and ψ̃(σ j)< ε; or

(T2) if σ j > 0, ψ̃(σ j)<−ε and there exists a sufficiently accurate approximate null vector z j

of H +σ jT (see the condition (3.30) below).

When termination occurs because of condition (T1), the scalar σ = 0 and vector d = s j satisfy

the optimality conditions of Result 3.1.1.

For termination under condition (T2), the vector s j associated with the final σ j is an

approximation to s† (see Result 3.1.8) and the approximate null vector z j is scaled so that

40

∥s j +z j∥T = δ . In this case, we use σ j and s j +z j as approximate values of σ∗ and d∗. Condition

(T2) makes the algorithm well-defined when σ∗ = −λn, and often allows the algorithm to

terminate without the need to compute an accurate zero of ϕ(σ). If σ j ∈
(
−λn, σ̃

]
, then the

Newton iteration will converge to σ̃ , but if σ̃ is close to −λn, then σ j is likely to be greater

than σ̃ , and a safeguarded Newton method will require a large number of iterations to produce

an iterate in
(
−λn, σ̃

]
. If σ j > σ̃ then ∥s j∥T < δ̃ j and if a z j is computed in this situation, a

vector s j + z j is likely to be found that satisfies condition (3.28) in a few iterations, long before a

safeguarded Newton method would produces an iterate in
(
−λn, σ̃

]
.

As long as σ j > σ̃ , the next iterate satisfies σ j+1 <σ j. Thus if σ j+1 > σ̃ , then the smallest

eigenvalue of H +σ j+1T is positive and smaller than the smallest eigenvalue of H +σ jT . The

algorithm used to find a y such that yT(H +σ j+1T)y is small should be more likely to give a z j

such that s j + z j is an acceptable step.

The algorithm also handles the case in which σ̃ =−λn. In that case

lim
σ→−λ

+
n

ψ(σ)< 0.

As σ j ≥ −λn, as long as σ j ̸= −λn, the vector s j is defined and ∥Ns j∥ < δ̃ . But then the

safeguarded Newton method produces a sequence of matrices H+σ jT whose smallest eigenvalue

remains positive but becomes increasingly close to zero.

Given δ and ε , the convergence and termination conditions given in the previous section

provide a nonnegative scalar σ and vector sσ + z that satisfy the conditions

(H +σT)sσ =−g and ∥sσ + z∥T ≤ (1+ ε)δ̃ , (3.29)

where H +σT is positive semidefinite, and the (possibly zero) vector z is chosen to satisfy the

approximate null-vector condition

zT(H +σT)z≤ ε(2− ε)
(
sT

σ (H +σT)sσ +σδ̃
2). (3.30)

More precisely, if we write d = sσ + z, the cases may be summarized as follows. If σ = 0, then

41

z = 0 and the upper bound on ∥d∥T is (1− ε)δ̃ ; if σ > 0 and ∥d∥T ≥ (1− ε)δ̃ then z = 0 and

(1− ε)δ̃ ≤ ∥d∥T ≤ (1+ ε)δ̃ ; finally, if σ > 0 and ∥d∥T < (1− ε)δ̃ , then z ̸= 0 and ∥d∥T = δ̃ .

The next result summarizes the properties of the approximate solution and states that any

d satisfying the conditions (3.29) and (3.30) also satisfies condition

Q(d)≤ τQ(d∗) and ∥d∥T ≤ δ , (3.31)

for a certain τ and trust-region radius δ .

Lemma 3.2.1 (Moré and Sorensen [25]). Let ε be a fixed scalar such that 0 < ε < 1. Consider

any σ ≥ 0 and vector sσ + z satisfying (3.29) and (3.30) with H +σT positive semidefinite. Then

sσ + z satisfies

Q(sσ + z)≤ τQ∗ and ∥sσ + z∥T ≤ δ ,

where τ =
(
(1− ε)/(1+ ε)

)2, δ = (1+ ε)δ̃ and Q∗ = mind∈Rn
{

Q(d) : ∥d∥T ≤ δ
}

.

This result implies that the approximate solution of the trust-region subproblem satisfies the

decrease requirement (3.31) with a slightly larger value of the trust-region radius. Condition

(3.31) is simpler to use when proving theoretical results, but conditions (3.29) and (3.30) are

more appropriate for the discussion of the practical algorithm for the trust-region subproblem.

3.3 A safeguarded Newton iteration.

Next we consider a method for finding the vector d̃ and scalar σ̃ of (3.23) based on

finding a zero of the scalar-valued function

ϕ̃(σ) =
1
δ̃
− 1
∥sσ∥T

.

If a nonnegative σ̂ exists such that ϕ̃(σ̂) = 0, then it may be computed efficiently using a

safeguarded Newton method. In this scheme a sequence of intervals of uncertainty I j = [a j,b j]

are constructed with I j+1 ⊂ I j and σ̂ ∈ I j. Clearly, if any b j is negative, then it follows that

42

λn > 0 and the sequence can be terminated with σ̂ = 0. If σ0 ∈ (−λn, σ̂) then all subsequent

iterates lie in (−λn, σ̂) and Newton’s method converges.

In a conventional safeguarded iteration ϕ̃ is not evaluated at a j or b j because it has

already been computed there. In the trust-region calculation there is the additional consideration

that a j may define a “phantom root” associated with the root σ̂ such that σ̂ < −λn. To allow

for the hard case, in the initial stages when a j remains fixed at zero and I j is being reduced by

decreasing b j, we assume the possibility of a “phantom root” at a j = 0.

The next result concerns the value of the function ψ̃(σ) used in the termination condition.

Lemma 3.3.1. Suppose there is no σ̂ ∈ (−λn,∞) such that ψ̃(σ̂) = 0. If σ j >−λn, then ψ̃(σ j)

is negative, and the Newton step σ N
j+1 = σ j− ψ̃(σ j)/ψ̃(σ j) satisfies σ N

j+1 < −λn. The same

result holds for the Newton step σ N
j+1 = σ j− ϕ̃(σ j)/ϕ̃(σ j).

Corollary 3.3.1.1. If σ̂ = 0 and σ j > 0, then σ N
j+1 < 0 and both ϕ̃(σ j) and ψ̃(σ j) are negative.

The goal of the safeguarding procedure is to provide a valid iterate in situations where

σ N
j+1 <−λn or σ N

j+1 < 0. The safeguarded iteration generates a nested sequence of half-open

intervals
{

I j
}

such that I j =
(

a j,b j
]

with I j+1 ⊂I j. If σ N
j+1 is not a valid iterate, then σ j+1

is chosen as a positive weighted average of the endpoints a j+1 and b j+1 lying in the interior of

I j+1.

Result 3.1.4 implies that if σ̃ ̸= 0 and σ̃ ̸= −λn, then σ̃ = σ̂ and there is a nonempty

interval G =
(

max
{

0,−λn
}
, σ̂
]

of desirable starting points for which an unmodified Newton

iteration will be well-defined and converge to σ̂ . Suppose that G is nonempty. Then by design

there is an interval Ĝ ⊂ G of positive length such that Ĝ ⊂I j for all j. In Theorem 3.3.3, it

is shown that sequences
{

I j
}

and
{

σ j
}

are generated so that if σ j ̸∈ G , then σ j ∈ I j and

b j+2−a j+2 ≤ γ(b j−a j) for some 0 < γ < 1. It follows that there is some finite iteration index

q for which σq ∈ Ĝ ⊂ G . Care must be taken to ensure that the algorithm converges when G is

43

empty; i.e., when σ̃ = 0 or σ̃ =−λn. These cases are the subject of Theorems 3.3.4 and 3.3.5

respectively.

The algorithm requires routines λ̄n(H) and znull(H,T,σ ,s j, δ̃). The routine λ̄n(H) com-

putes an estimate of the least eigenvalue of a symmetric matrix H, i.e., λn(H) ≤ λ̄n(H). The

routine znull(H,T,σ ,s j, δ̃) computes a scaled approximate null-vector z j of H +σT . In particu-

lar, z j is such that zT
j (H +σT)z j is small and ∥s j + z j∥T = δ̃ . Then under suitable conditions, if

g ̸= 0 the following algorithm will produce a step d∗ that satisfies condition (3.29).

We briefly describe the convergence properties of the safeguarding techniques.

Lemma 3.3.2. Suppose g is nonzero. Define the interval G =
(

max
{

0,−λn
}
, σ̃
]
, where G is

empty if σ̃ = 0 or σ̃ =−λn. Let q be the smallest iteration index for which σq ∈ G , with q = ∞

if no such index exists. Suppose G ⊂I0 =
(

a0,b0
]
. Then for i < q, it holds that the intervals{

I j
}

are ordered by inclusion, that G ⊂I j and that both σ j ∈I j and σ̃ ∈I j. Moreover,

b j+2−a j+2 ≤max
{1

2 ,1−ω
}
(b j−a j) (3.32)

for all i≥ 0 for which i+2 < q.

Proof. We proceed by induction. By assumption, G ⊂I0 and σ̃ ∈I0. The choice of σ0 and

I0 immediately gives σ0 ∈
(

a0,b0
]
.

Suppose G ⊂I j, σ j ∈I j and σ̃ ∈I j. Three cases are possible. If σ j ∈ G , then i≥ q

and there is nothing to prove. Otherwise, it must hold that either σ j ≤−λn or σ j > σ̃ .

If σ j ≤−λn, then σ j+1 is chosen by bisection and

b j+1−a j+1 =
1
2(b j−σ j)<

1
2(b j−a j).

In this case, I j+1 is updated as b j+1 = b j and a j+1 = σ j ≤−λn, and it follows that G ∈I j+1 ⊂

I j, σ j+1 ∈
(

a j+1,b j+1
]

and σ̃ ∈
(

a j+1,b j+1
]
.

If σ j > σ̃ , then by Result 3.1.4, ψ̃(σ j) is negative, with

[a j+1,b j+1] = [max
{

a j, ā j
}
,σ j], (3.33)

44

Algorithm 3.2. Solution of the trust-region subproblem.

Specify constants 0 < ε < 1, and 0 < ω < 1;
Choose σ0 ≥ 0;
b̄← 1.05×max

(
1,−λ̄n(Ĥ)

)
/(1−ω); [a0,b0]← [−1,max

{
σ0, b̄

}
];

converged← false; j← 0;
while not converged do

Compute (n+,n−,n0), the inertia of H +σ jT ;
if n+ < n then [Check if H +σ jT is not positive definite]

[a j+1,b j+1]← [σ j,b j]; σ j+1← 1
2(a j+1 +b j+1);

else [H +σ jT is positive definite]
Solve (H +σ jT)s j =−g;
if |ψ̃(σ j)|< ε or

(
ψ̃(σ j)< ε and σ j = 0

)
then

d← s j; converged← true;
else if ψ̃(σ j)≤−ε and σ j > 0 then

z j← znull
(
H,T,σ j,s j, δ̃

)
;

if zT
j (H +σ jT)z j > ε(2− ε)

(
sT

j (H +σ jT)s j +σ jδ̃
2) then

ā j← σ j− zT
j (H +σ jT)z j/∥z j∥2

T ;
[a j+1,b j+1]←

[
max

{
a j, ā j

}
,σ j
]
;

else
d← s j + z j; converged← true;

end if
else

[a j+1,b j+1]←
[
a j,b j

]
;

end if
if not converged then

σ N
j+1← σ j− ϕ̃(σ j)/ϕ̃ ′(σ j);

σ̄ j+1←max
{

0,σ N
j+1
}

;
if σ̄ j+1 > a j+1 then

σ j+1← σ̄ j+1
else

σ j+1← ωa j+1 +(1−ω)b j+1;
end if

end if
end if
j← j+1;

end while

45

where ā j = σ j− zT(H +σ jI)z/∥z∥2
T . It is not difficult to see that ā j ≤−λn ≤ 0 (see Moré and

Sorensen [25] for details). Hence G ⊂ I j+1 ⊂ I j. Moreover, σ N
j+1 < σ̃ < σ j ≤ b j and so

σ̄ j+1 ≤ σ j. However, in this case the rule

σ j+1 =

σ̄ j+1 if σ̄ j+1 > a j;

ωa j+1 +(1−ω)b j+1 otherwise,

implies that σ j+1 ∈
(

a j+1,b j+1
]
. Hence, for i < q we may conclude that the intervals

{
I j
}

are ordered by inclusion, that G ⊂I j and that both σ j ∈I j and σ̃ ∈I j. It remains to show

that the inequality (3.32) holds.

Now consider the length of I j+2. Observe that for any ℓ > 0, if σℓ ≤ σ̃ then either

σℓ ∈ G or σℓ < −λn. If σℓ ∈ G then all subsequent iterates are in G and the inequality (3.32)

is irrelevant. If σℓ < −λn then both σℓ+1 and
(

aℓ+1,bℓ+1
]

are chosen by bisection and the

inequality (3.32) will hold for both iterations i = ℓ and i = ℓ−1.

Thus, we need only consider the case in which both σ j > σ̃ and σ j+1 > σ̃ . If σ j > σ̃ ,

then two situations are possible. If σ j+1 = max
{

0,σ N
j+1
}

, then from Result 3.1.4 and the

assumption that σ̃ > 0, it follows that σ j+1 ≤ σ̃ . Otherwise, σ j+1 is defined by the rule

σ j+1 = ωa j+1 +(1−ω)b j+1. Suppose σ j+1 > σ̃ . In this case, ψ̃(σ j+1) is negative, the interval

I j+2 is defined by (3.33) and

b j+2−a j+2 > σ j+1−a j+1 = (1−ω)b j+1 +ωa j+1−a j+1 ≥ (1−ω)(b j−a j).

Thus (3.32) holds and the lemma is proved.

Theorem 3.3.3. Suppose g is nonzero. Define the interval G =
(

max
{

0,−λn
}
, σ̃
]
. If

max
{

0,−λn
}
< σ̃ then Algorithm 3.2 will produce an iterate σq ∈ G or terminate under

conditions (T1) or (T2) before that occurs.

Proof. Assume that Algorithm 3.2 does not terminate before producing an iterate σq ∈ G .

If b0 ≥ σ̃ , then the conditions of Lemma 3.3.2 are met. But then, because σ̃ >

46

max
{

0,−λn
}

, the interval G has a positive length and so the bound (3.32) together with

the inclusions σ0 ∈
(

a0,b0
]

and G ⊂I0 imply that q is finite.

If, on the other hand, b0 < σ̃ , then either σ0 ∈ G or σ0 ≤ −λn. In the latter case,

the iterates are chosen by repeatedly bisecting the intervals I j until σ j > −λn, and hence

σ j ∈ G .

If σ̃ = 0 or σ̃ =−λn, then G is empty and Theorem 3.3.3 does not apply. The case in which σ̃ = 0

is a desirable special case, because then d is an unmodified Newton iterate for the underlying

optimization algorithm. Therefore, Algorithm 3.2 has been designed to favor σ = 0 as a solution

to the subproblem.

Theorem 3.3.4. If σ̃ = 0, then either σ0 or σ1 is zero.

Proof. If σ0 ̸= 0 and σ̃ = 0, then σ0 > σ̃ ≥ −λn and so σ̄1 = max
{

0,σ N
1
}

is defined. But

by Corollary 3.3.1.1, the Newton step σ N
1 is negative and hence σ̄1 = 0. Furthermore, a1 =

max
{

a1, ā1
}

, where ā1 = σ0− zT
1 (H + σ1T)z1/∥z1∥2

T . As discussed in the proof of Theo-

rem 3.3.3, ā1 ≤−λn. Therefore a j+1 ≤ 0 = σ̄1, and hence σ1 = 0.

If σ̃ = 0 > −λn, then σ = 0 and d̃ = sσ = −H−1g satisfy conditions (3.29) and (3.30), and

Algorithm 3.2 will terminate. Neither Theorem 3.3.3 nor Theorem 3.3.4 implies convergence

when σ̃ =−λn. Theorem 3.3.3 cannot be applied because G is empty. Theorem 3.3.4 implies

that if σ̃ =−λn = 0, then either σ0 or σ1 will be zero. However, if λn = 0 then H is not invertible

and sσ cannot be defined as −H−1g.

Theorem 3.3.5. If σ̃ =−λn then either Algorithm 3.2 finds a point satisfying the convergence

criteria in a finite number of iterations, or supi≥ j σ j converges to σ̃ from above.

Proof. Suppose the algorithm does not find a point that satisfies the convergence criteria. The

interval G is empty and so the conditions of Lemma 3.3.2 are trivially met. We may therefore

conclude that lim j→∞ σ j = σ̃ . We must now show that σ j > σ̃ infinitely often. But if σ j ≤ σ̃ =

−λn, subsequent iterates are chosen by bisection until one is greater than −λn.

47

It is important that σ j > σ̃ holds infinitely often, because znull(·) is only defined for σ j >−λn.

If the znull(·) routine can be guaranteed to produces a z j satisfying

zT
j (H +σ jT)z j ≤ ε(2− ε)

(
sT

j (H +σ jT)s j +σ jδ̃
2)

as σ j converges to −λn from above, then Theorem 3.3.5 guarantees that Algorithm 3.2 must

terminate after finitely many iterations.

3.4 The Implementation of the Moré-Sorensen Method

The method of Moré and Sorensen uses the Cholesky factorization RT
j R j = H +σ jT to

compute the vectors s j and z j. The vector y j that makes yT
j (H+σ jT)y j as small as possible is the

eigenvector corresponding to the smallest eigenvalue of H +σ jT (see (3.3)). The corresponding

minimum value of yT
j (H +σ jT)y j is the smallest eigenvalue of H +σ jT . However, it is not

necessary to solve an eigenproblem to find an acceptable y j. Moré and Sorensen generate an

appropriate y j by employing a method proposed by Cline, Moler, Stewart and Wilkinson [4] to

estimate the condition number of a matrix. An implementation of this method is included in the

software library LINPACK.

Given a matrix A and its Cholesky factorization RTR, the LINPACK algorithm attempts to

find a vector b of unit norm and a vector w = A−1b for which ∥w∥ is as large as possible. The

vector y is then w normalized. The vector b is chosen to be a vector with entries equal to ±1,

where the sign of each element of b is chosen to cause growth during the process of solving

the system RTv = b. The vector w is then found by solving the system Rw = v. The method

is somewhat more sophisticated than simply choosing bi to maximize ûi because many simple

examples were found that caused the obvious method to fail. Furthermore, the authors frequently

rescale v and b to avoid overflow. A forward and backward substitution each requires O(1
2n2)

multiplications, and so the entire process of finding an appropriate z requires work proportional

to n2 and may be considered relatively inexpensive.

48

Moré and Sorensen prove the value of y found by the algorithm of Cline et. al. will

eventually produce a z j that satisfies (3.28) and consequently and s j + z j that satisfies condi-

tion (3.26). In this way, the case in which σ̃ =−λn mimics the usual behavior of the algorithm

when σ̃ ≈−λn.

We observe that although in some cases σ̃ =−λn, we reject out of hand any proposed

iterate σ+ for which σ+ =−λn. The safeguarding algorithm then produces the next value of σ+,

and the procedure outlined above eventually finds an acceptable z j and an acceptable s j. While in

theory if σ+ =−λn and (H +σ+T)s =−g is compatible, we might attempt to find an acceptable

value of s, in practice, it is usually not possible to determine numerically whether a given system

(H +σ+T)s = −g is exactly singular but compatible. A variation on Moré and Sorensen’s

algorithm might attempt to search for an acceptable s in the rare instance in which σ+ =−λn

and (H +σ+T)s =−g is determined numerically to be compatible. Such a modification to the

algorithm seems unlikely to have any positive practical effect.

3.5 Adapting Trust-Region Methods for Constrained Prob-
lems

The proposed method involves two modifications to the Moré and Sorensen’s algorithm.

The first modification is fundamental for the efficient solution of the constrained problem. The

conventional Moré-Sorensen method cannot be used in the constrained case because the trust-

region matrix H is the approximate Hessian of the primal-dual merit function, which has a

doubly-augmented structure. This makes it impractical to compute a Cholesky factorization of

H +σT . Instead, systems of the form (H +σT)s =−g are solved by factoring a transformed

system. As an alternative, we propose that an approximate null vector be determined as a

by-product of a method proposed by Hager [21] (and modified by Higham [23]) to estimate the

one-norm condition number of an n× n matrix B. Given an n× n matrix B, Hager’s method

49

computes an estimate γ of the norm

∥B∥1 = max
x ̸=0

∥Bx∥1
∥x∥1

= max
∥x∥1=1

∥Bx∥1.

Hager’s algorithm attempts to compute ∥B∥1 efficiently without computing the elements of B. In

particular, only matrix-vector products of the form Bv and BTv are required.

A by-product of the computation is an estimate y = Bw, where γ = ∥y∥1/∥w∥1 =

∥y∥1/∥B−1y∥1. If B = A−1 and γ is large, then

∥Ay∥1
∥y∥1

=
1
γ
,

and y is an approximate null vector of A. Hager’s method requires at most five matrix-vector

products, which makes the work proportional to a small multiple of n2.

Hager’s method

For any n×n matrix B, the one-norm ∥B∥1 is the global maximum of the convex function

f (x) = ∥Bx∥1 over the convex set Ω =
{

x : ∥x∥1 ≤ 1
}
.

This suggests using an optimization approach to estimate ∥B∥1, i.e., iteratively move from one

point in Ω to another where f is greater, testing for optimality at each stage. Hager [21] derives

such an algorithm by exploiting properties of f and Ω .

Algorithm 3.3. Hager’s method for maximizing ∥A−1x∥1/∥x∥1.

Choose x with ∥x∥1 = 1;
repeat

Solve Ay = x; γ = ∥y∥1; [y is A−1x]
ξ = sign(y);
Solve ATg = ξ ; [g is a subgradient of ∥A−1x∥1]
x = e j, where g j = ∥y∥∞;

until ∥g∥∞ ≤ gTx

Algorithm 3.4 gives the Hager-Higham method for computing an approximate null-vector

of a matrix A. Algorithm 3.4 computes at most five such products, and so the work associated

50

Algorithm 3.4. The Higham-Hager method for maximizing ∥A−1x∥1/∥x∥1.

Solve Ay = 1
ne; γ = ∥y∥1;

if n = 1 then stop;
ξ = sign(y); Solve ATg = ξ ; [g is a subgradient of ∥A−1y∥1]
k = 2;
repeat

j = min
{

i : |gi|= ∥g∥∞

}
;

Solve Ay = e j;
γ̄ = γ; γ = ∥y∥1;
if sign(y) = ξ or γ ≤ γ̄ then break; [avoids repeating the solve]
ξ = sign(y); Solve ATg = ξ ; [g is a subgradient of ∥A−1y∥1]
k← k+1;

until ∥g∥∞ = g j or k > 5

for i← 1 : n do
xi = (−1)i+1

(
1+

i−1
n−1

)
;

end for;
Solve Au = x; [∥x∥1 =

3
2n]

if 2∥u∥1/(3n)> γ then
y = u; γ = 2∥u∥1/(3n);

end if

with Hager’s algorithm proportional to a small multiple of n2. If N ̸= I, the Algorithm 3.4

will often compute better values of y than the LINPACK algorithm. The LINPACK algorithm

uses a Cholesky factorization of H +σT to attempt to find a vector y such that ∥y∥ = 1 and

yT(H +σT)y is a small as possible. A lower bound on λn is then

λ̄ =
yT(H +σT)y
∥Ny∥2 −σ .

From this expression, however, it is clear that λ̄ will usually be a better bound on −λn if y is

chosen so that ∥Ny∥ = 1 and yT(H +σT)y is as small as possible. The LINPACK algorithm

is not very effective at computing such a y from a Cholesky factorization of H +σT . On the

other hand, given a factorization of H +σT we may easily compute such a y by performing

Hager’s algorithm on the system N−T(H +σT)N−1 and transforming the result. It is clear

how to compute matrix-vector products with N(H +σT)−1N given a Cholesky factorization of

H +σT .

51

The disadvantage of using Hager’s algorithm is theoretical. The algorithm for computing

a solution for the trust-region subproblem has been proven to converge for any value of σ̃ if the

algorithm of Cline et. al. is used to find a value of z j. We are aware of no comparable proof

for Hager’s algorithm. The difficulty is that Hager’s algorithm may be fooled, and terminate

with a w for which ∥w∥1 ̸= ∥A−1∥1. Higham’s modifications make the algorithm more likely to

succeed, and make it likely that ∥w∥1 is large even if ∥w∥1 ̸= ∥A−1∥. The algorithm of Cline et

al. may also be fooled into producing poor values of y. Still, Moré and Sorensen are able to show

that if σ̃ = −λn, and the LINPACK algorithm is used to find z j, then zT
j (H +σ jT)z j→ 0. We

have observed good performance from Hager’s algorithm. Moreover, while Moré and Sorensen

do show that with the LINPACK algorithm, zT
j (H +σ jT)z j→ 0, their proof presents a worst case

rate of convergence that is so slow that the algorithm would be completely impractical if it ever

approached that rate of convergence. Thus, while we would prefer to have a theoretical guarantee

of convergence, practical considerations lead us to prefer Hager’s algorithm.

The second modification is minor. Whenever ∥s j∥T < δ̃ , the procedure outlined above is

used to attempt to find a z j and an acceptable step d j = s j + z j. However, if ∥s j∥T ≥ (1− ε)δ̃ ,

then d j = s j is already an acceptable step. In this situation, we take d j = s j. Moré and Sorensen

compute z j and compare Q(s j) to Q(s j + z j). They then let d j be the vector that produces the

smaller value of Q. We choose not to compute z j because this choice makes the logic of the

algorithm simpler, and because s j is the minimizer of Q(d) subject to ∥d∥T ≤ ∥s∥T . Theory does

not provide any compelling reason for making either choice.

52

Chapter 4

Primal-Dual Methods for Constrained
Problems with Slacks

In this chapter, we consider the use of primal-dual shifted penalty-barrier methods for

the solution of optimization problems with nonlinear inequality constraints. Although the focus

is on the treatment of inequality constraints, it must be emphasized that the methods are easily

extended to problems with a mixture of equality and inequality constraints. A merit function is

defined as the sum of the objective function and certain shifted penalty and barrier functions. A

fundamental property of the merit function is that an unconstrained minimizer satisfies perturbed

KKT conditions for the constrained problem with perturbations equal to the values of the penalty

and barrier parameters.

The problem to be solved is

minimize
x∈Rn

f (x) subject to c(x)≥ 0,

where c : Rn→ Rm and f : Rn→ R are both smooth. In order to avoid the need to find a strictly

feasible point for the constraints of (NIP), each inequality ci(x) ≥ 0 is written in terms of an

equality and nonnegative slack variable ci(x)− si = 0 and si ≥ 0. This gives the equivalent

problem

minimize
x∈Rn,s∈Rm

f (x) subject to c(x)− s = 0, s≥ 0. (NIPs)

53

The vector (x∗,s∗,y∗,w∗) is called a first-order KKT point for problem (NIPs) when

c(x∗)− s∗ = 0, s∗ ≥ 0, (4.1a)

g(x∗)− J(x∗)Ty∗ = 0, y∗−w∗ = 0, (4.1b)

s∗ · w∗ = 0, w∗ ≥ 0. (4.1c)

The vectors y∗ and w∗ constitute the Lagrange multiplier vectors for, respectively, the equality

constraints c(x)− s = 0 and non-negativity constraints s≥ 0. The vector (xk,sk,yk,wk) will be

used to denote the k-th primal-dual iterate computed by the proposed algorithm, with the aim of

giving limit points of
{
(xk,sk,yk,wk)

}∞

k=0 that are first-order KKT points for problem (NIPs),

i.e., limit points that satisfy (4.1).

An important concept related to the design of efficient algorithms for computing first-

order KKT points for problem (NIPs) is that of perturbed optimality conditions. An appropriate

set of perturbed conditions for (4.1) is given by

g(x)− J(x)Ty = 0, y−w = 0,

c(x)− s = µ
P(yE− y), s≥ 0,

s · w = µ
B(wE−w), w≥ 0,

(4.2)

where yE ∈ Rm is an estimate of a Lagrange multiplier vector for the constraint c(x)− s = 0,

wE ∈ Rm is an estimate of a Lagrange multiplier for the constraint s≥ 0, and the scalars µP and

µB are positive penalty and barrier parameters, respectively. (The interpretation of µP and µB as

penalty and barrier parameters is discussed below.) In the neighborhood of a first-order KKT

point it is well-known that computing the search direction as the solution of the Newton equations

for a zero of the perturbed optimality conditions provides the favorable local convergence rate

associated with Newton’s method. At the same time, to ensure convergence to a first-order KKT

point from an arbitrary starting point, an algorithm must include a strategy for deciding when

one iterate is preferable to another. These considerations motivate the formulation of the new

54

shifted primal-dual penalty-barrier function

M(x,s,y,w ;yE,wE,µP,µB) = f (x)︸︷︷︸
(A)

− (c(x)− s)TyE︸ ︷︷ ︸
(B)

+
1

2µP
∥c(x)− s∥2︸ ︷︷ ︸
(C)

+
1

2µP
∥c(x)− s+µ

P(y− yE)∥2︸ ︷︷ ︸
(D)

−
m

∑
i=1

µ
BwE

i ln
(
si +µ

B
)

︸ ︷︷ ︸
(E)

−
m

∑
i=1

µ
BwE

i ln
(
wi(si +µ

B)
)

︸ ︷︷ ︸
(F)

+
m

∑
i=1

wi(si +µ
B)︸ ︷︷ ︸

(G)

.

It is shown in Section 4.1.3 that in the neighborhood of a minimizer of (NIPs) satisfying certain

second-order optimality conditions, the Newton equations for a zero of the perturbed optimality

conditions (4.2) are equivalent to the Newton equations for a minimizer of M. Also, it is shown

in Section 4.1 that if the parameters yE, wE, µP, and µB are updated appropriately, then stationary

points of M have properties that may be used in the formulation of a globally convergent

algorithm for (NIPs).

Let S and W denote diagonal matrices with diagonal entries s and w (i.e., S = diag(s)

and W = diag(w)) such that si +µB > 0 and wi > 0. Define the positive-definite matrices

DP = µ
PI and DB = (S+µ

BI)W−1,

and auxiliary vectors

π
Y = π

Y(x,s) = yE− 1
µP

(
c(x)− s

)
and π

W = π
W(s) = µ

B(S+µ
BI)−1wE.

Then ∇M(x,s,y,w ;yE,wE,µP,µB) may be written as

∇M =

g− JT(πY +(πY− y)
)

(
πY− y

)
+
(
πY−πW

)
+
(
w−πW)

)
−DP(π

Y− y)

−DB(π
W−w)

, (4.3)

55

with g= g(x) and J = J(x). The purpose of writing the gradient ∇M in this form is to highlight the

quantities πY− y and πW−w, which are important in the analysis. Similarly, the penalty-barrier

function Hessian ∇2M(x,s,y,w ;yE,wE,µP,µB) is written in the form

∇
2M =

H +2JTD−1
P J −2JTD−1

P JT 0

−2D−1
P J 2(D−1

P +D−1
B W−1Π W) −I I

J −I DP 0

0 I 0 DBW−1Π W

, (4.4)

where H = H
(
x,πY +(πY− y)

)
and Π W = diag(πW).

In developing algorithms, the goal is to achieve rapid convergence to a solution of

(NIPs) without the need for µP and µB to go to zero. The underlying mechanism for ensuring

convergence is the minimization of M for fixed parameters.

4.1 A Modified Newton Method

This section concerns the properties of a modified Newton method for the minimization

of M for fixed parameters yE, wE, µP and µB. In this case the notation can be simplified by

omitting the reference to yE, wE, µP and µB when writing M, ∇M and ∇2M.

At the start of iteration k, given the primal-dual iterate vk = (xk,sk,yk,wk), the search

direction dk = (∆xk,∆sk,∆yk,∆wk) is computed by solving the linear system of equations

ĤM
k dk =−∇M(vk), (4.5)

where ĤM
k is a positive-definite approximation of the matrix ∇2M(xk,sk,yk,wk). (The definition

of ĤM
k and the properties of the equations (4.5) are discussed in Section 4.1.1 below.)

Subsection 4.1.1 focuses on the properties of the modified-Newton matrix, while sub-

section 4.1.2 discusses an efficient method for solving the resulting modified-Newton equations

for the primal-dual search direction. Finally, subsection 4.1.3 establishes the relationship be-

tween the computed search direction and a shifted variant of the conventional primal-dual

56

path-following equations. As this section is concerned with details of only a single iteration,

the notation is simplified by omitting the dependence on the iteration k. In particular, we write

v = vk, yE = yE
k , wE = wE

k , πY = πY
k , πW = πW

k , d = dk, c = c(xk), J = J(xk), g = g(xk), DP = µP
k I,

DB = (Sk +µB
k I)W−1

k , and ĤM = ĤM
k .

4.1.1 Definition of the modified-Newton matrix

The choice of ĤM in the equations ĤMd =−∇M(v) is based on making two modifications

to ∇2M. The first involves substituting y for πY and w for πW in (4.4). (Lemma 4.2.2 and

the discussion of subsection 4.1.3 below provide justification for this choice.) The second

modification is to replace the modified Hessian H(x,y) by a symmetric Ĥ such that Ĥ ≈ H(x,y)

and ĤM is positive definite. These modifications give an ĤM in the form

ĤM =

Ĥ +2JTD−1
P J −2JTD−1

P JT 0

−2D−1
P J 2(D−1

P +D−1
B) −I I

J −I DP 0

0 I 0 DB

. (4.6)

Practical conditions for the choice of a positive-definite Ĥ are based on the next result, which is

established in Gill, Kungurtsev & Robinson [13].

Theorem 4.1.1. The matrix ĤM in (4.6) is positive definite if and only if

In(K) = In(n,m,0), where K =

Ĥ JT

J −(DB +DP)

 , (4.7)

which holds if and only if Ĥ + JT(DP +DB)
−1JT is positive definite.

There are a number of alternative approaches for choosing Ĥ based on computing a factorization

of the (n+m) by (n+m) matrix K (4.7) (see, e.g., Gill and Robinson [15, Section 4], Forsgren [9],

Forsgren and Gill [10], Gould [19], Gill and Wong [16], and Wächter and Biegler [31]). All of

these methods use Ĥ = H(x,y) if this gives a sufficiently positive-definite ĤM. The next result

57

shows that Ĥ = H(x,y) gives a positive-definite ĤM in a sufficiently small neighborhood of a

solution satisfying second-order sufficient optimality conditions and strict complementarity. The

proof can be found in Gill, Kungurtsev & Robinson [13].

Theorem 4.1.2. The matrix ĤM in (4.6) with the choice Ĥ = H(x,y) is positive definite for all

u = (x,s,y,w,yE,wE,µP,µB) sufficiently close to u∗ = (x∗, s∗, y∗, w∗, y∗, w∗, 0, 0), when (x∗, s∗,

y∗, w∗) is a solution of problem (NIPs) that satisfies second-order sufficient optimality conditions

and strict complementarity.

4.1.2 Solving the modified-Newton equations

The modified-Newton equations (4.5) defined with ĤM from (4.6) should not be solved

directly because of the potential for numerical instability. Instead, an equivalent transformed

system should be solved based on the transformation

U =

I 0 −2JTD−1
P 0

0 I 2D−1
P −2D−1

B

0 0 I 0

0 0 0 W

.

As U is nonsingular, the modified-Newton direction d from (4.5) satisfies

UĤMd =−U∇M(x,s,y,w;yE,wE,µP,µB),

which, upon multiplication and application of the identity WDB = S+µBI, yields

Ĥ 0 −JT 0

0 0 I −I

J −I DP 0

0 W 0 S+µBI

∆x

∆s

∆y

∆w

=−

g− JTy

y−w

c− s+µP(y− yE)

s · w+µB(w−wE)

. (4.8)

The solution of this transformed system may be found by solving two sets of equations, one

diagonal and the other of order n+m. To see this, first observe that the equations (4.8) may be

58

written in the form

Ĥ 0 −JT 0

0 0 I −I

J −I DP 0

0 I 0 DB

∆x

∆s

∆y

∆w

=−

g− JTy

y−w

c− s+µP(y− yE)

W−1(s · w+µB(w−wE)
)

. (4.9)

The solution of (4.9) is given by

∆w = y−w+∆y and ∆s =−W−1(s ·(y+∆y)+µ
B(y+∆y−wE)

)
, (4.10)

where ∆x and ∆y satisfy the equationsĤ −JT

J DP +DB

∆x

∆y

=−

 g− JTy

c− s+µP(y− yE)+W−1(s · y+µB(y−wE)
)
 ,

or, equivalently, the symmetric equationsĤ JT

J −(DP +DB)

 ∆x

−∆y

=−

 g− JTy

DP(y−πY)+DB

(
y−πW

)
 . (4.11)

Solving this (n+m)× (n+m) symmetric system is the dominant cost of an iteration. The

identity w+∆w = y+∆y implies that if the initial values satisfy y0 = w0 and yE
0 = wE

0, and

the positive safeguarding values in (4.15) satisfy ymax = wmax, then all subsequent iterates will

satisfy w = y.

59

4.1.3 Relationship to primal-dual path-following

Consider the perturbed optimality conditions (4.2) and their associated primal-dual

path-following equations

F(x,s,y,w ;yE,wE,µP,µB) =

g(x)− J(x)Ty

y−w

c(x)− s+µP(y− yE)

s · w+µB(w−wE)

=

0

0

0

0

.

A zero (x,s,y,w) of F satisfying s> 0 and w> 0 approximates a solution to problem (NIPs), with

the approximation becoming increasingly accurate as both µP(y− yE)→ 0 and µB(w−wE)→ 0.

If v = (x,s,y,w) is a given approximate zero of F such that s+µBe > 0 and w > 0, the Newton

equations for the change in variables d = (∆x,∆s,∆y,∆w) are given by F ′(v)d =−F(v), i.e.,

H(x,y) 0 −J(x)T 0

0 0 I −I

J(x) −I µPI 0

0 W 0 S+µBI

∆x

∆s

∆y

∆w

=−

g(x)− J(x)Ty

y−w

c(x)− s+µP(y− yE)

s · w+µB(w−wE)

.

These equations are identical to the modified-Newton equations (4.8) for minimizing M when

Ĥ = H(x,y). Theorem 4.1.2 shows that the choice Ĥ = H(x,y) is allowed in the neighborhood

of a solution satisfying certain second-order optimality conditions, and it follows that the

modified-Newton direction used in the proposed method is equivalent asymptotically to the

shifted primal-dual path-following directions.

At this point, it is helpful to define some notation that will be useful for later parts of the

60

chapter.

HM =

H +2JTD−1
P J −2JTD−1

P JT 0

−2D−1
P J 2(D−1

P +D−1
B) −I I

J −I DP 0

0 I 0 DB

≈ ∇

2M,

ḡ =

g

0

 , H̄ =

H 0

0 0

 , J̄ =

J −I

0 I

 , D̄ =

DP 0

0 DB

x̄ =

x

s

 , ȳ =

y

w

 , π̄ =

 π̄Y

π̄W

 , ∆x̄ =

∆x

∆s

 , ∆ ȳ =

∆y

∆w

 ,

M j =

I 0

0 I

 , N j =

DP 0

0 DB

 ,

HM =

H̄ +2J̄D̄−1J̄ J̄T

J̄ D̄

 , Tj = diag(M j,N j) =

I 0 0 0

0 I 0 0

0 0 DP 0

0 0 0 DB

.

4.2 A Line-Search Modified Newton Method

In Gill, Kungurtsev & Robinson [13], a line-search algorithm was proposed to minimize

the shifted primal-dual penalty-barrier function. The inner iteration minimizes the merit function

with fixed penalty and barrier parameters and multiplier estimates.

Three assumptions are required to prove the convergence of the inner iterations, and they

are given as follows:

Assumption 4.2.1. The functions f and c are twice continuously differentiable.

61

Algorithm 4.1. Minimizing M for fixed parameters yE, wE, µP, and µB (line search).
1: procedure MERIT-LS(x0,s0,y0,w0)
2: Restrictions: s0 +µBe > 0, w0 > 0 and wE > 0;
3: Constants: {η ,γ} ∈ (0,1);
4: Set v0← (x0,s0,y0,w0);
5: while ∥∇M(vk)∥> 0 do
6: Choose ĤM

k ≻ 0, and then compute the search direction dk from (4.5);
7: Set αk← 1;
8: loop
9: if sk +αk∆sk +µBe > 0 and wk +αk∆wk > 0 then

10: if M(vk +αkdk)≤M(vk)+ηαk∇M(vk)
Tdk then break;

11: end if
12: Set αk← γαk;
13: end loop
14: Set vk+1← vk +αkdk;
15: Set ŝk+1← c(xk+1)−µP

(
yE + 1

2(wk+1− yk+1)
)
;

16: Perform a slack reset sk+1←max{sk+1, ŝk+1};
17: Set vk+1← (xk+1,sk+1,yk+1,wk+1);
18: end while
19: end procedure

Assumption 4.2.2. The sequence of matrices
{

HM
k

}
k≥0 used in (4.5) are chosen to be uniformly

positive definite and bounded in norm.

Assumption 4.2.3. The sequence of iterates {xk} is contained in a bounded set.

The main convergence result is:

Theorem 4.2.1 (Gill, Kungurtsev & Robinson [13]). Under Assumptions 4.2.1–4.2.3, the

sequence of iterates {vk} satisfies limk→∞ ∇M(vk) = 0.

In the outer iteration, the algorithm defines quantities to measure the proximity to

feasibility, stationarity, and complementarity.

χfeas(vk+1) = ∥c(xk+1)− sk+1∥,

χstny(vk+1) = max
(
∥g(xk+1)− J(xk+1)

Tyk+1∥,∥yk+1−wk+1∥
)
, and

χcomp(vk+1,µ
B
k) = ∥min

(
q1(vk+1),q2(vk+1,µ

B
k)
)
∥,

62

where

q1(vk+1) = max
(
|min(sk+1,wk+1,0)|, |sk+1 ·wk+1|

)
and

q2(vk+1,µ
B
k) = max

(
µ

B
k e, |min(sk+1 +µ

B
k e,wk+1,0)|, |(sk+1 +µ

B
k e) ·wk+1|

)
.

A first-order KKT point vk+1 for problem (NIPs) satisfies χ(vk+1,µ
B
k) = 0, where

χ(v,µ) = χfeas(v)+χstny(v)+χcomp(v,µ). (4.12)

With these definitions in hand, the kth iteration is designated as an O-iteration if

χ(vk+1,µ
B
k)≤ χmax

k , where {χmax
k } is a monotonically decreasing positive sequence. The point

vk+1 is called an O-iterate.

If the condition for an O-iteration does not hold, a test is made to determine if vk+1 =

(xk+1,sk+1,yk+1,wk+1) is an approximate first-order solution of the problem

minimize
v=(x,s,y,w)

M(v ;yE
k,w

E
k,µ

P
k ,µ

B
k). (4.13)

In particular, the kth iteration is called an M-iteration if vk+1 satisfies

∥∇xM(vk+1 ;yE
k,w

E
k,µ

P
k ,µ

B
k)∥∞ ≤ τk, (4.14a)

∥∇sM(vk+1 ;yE
k,w

E
k,µ

P
k ,µ

B
k)∥∞ ≤ τk, (4.14b)

∥∇yM(vk+1 ;yE
k,w

E
k,µ

P
k ,µ

B
k)∥∞ ≤ τk∥DP

k+1∥∞, and (4.14c)

∥∇wM(vk+1 ;yE
k,w

E
k,µ

P
k ,µ

B
k)∥∞ ≤ τk∥DB

k+1∥∞, (4.14d)

where τk is a positive tolerance, DP
k+1 = µP

k I, and DB
k+1 = (Sk+1 +µB

k I)W−1
k+1. (See Lemma 4.2.2

for a justification of (4.14).) In this case vk+1 is called an M-iterate because it is an approxi-

mate first-order solution of (4.13). The multiplier estimates yE
k+1 and wE

k+1 are defined by the

safeguarded values

yE
k+1 = max

(
− ymaxe,min(yk+1,ymaxe)

)
and wE

k+1 = min(wk+1,wmaxe) (4.15)

63

for some positive constants ymax and wmax.

An iteration that is not an O- or M-iteration is called an F-iteration. In an F-iteration

none of the merit function parameters are changed, so that progress is measured solely in terms

of the reduction in the merit function.

Algorithm 4.2. A shifted primal-dual penalty-barrier method.
1: procedure PDB(x0,s0,y0,w0)
2: Restrictions: s0 > 0 and w0 > 0;
3: Constants: {η ,γ} ⊂ (0,1) and {ymax,wmax} ⊂ (0,∞);
4: Choose yE

0, wE
0 > 0; χmax

0 > 0; τ0 > 0; and {µP
0 ,µ

B
0} ⊂ (0,∞);

5: Set v0 = (x0,s0,y0,w0); k← 0;
6: while ∥∇M(vk)∥> 0 do
7: (yE,wE,µP,µB)← (yE

k,w
E
k,µ

P
k ,µ

B
k);

8: Compute vk+1 = (xk+1,sk+1,yk+1,wk+1) in Steps 6–17 of Algorithm 4.1;
9: if χ(vk+1,µ

B
k)≤ χmax

k then [O-iterate]
10: (χmax

k+1 ,y
E
k+1,w

E
k+1,µ

P
k+1,µ

B
k+1,τk+1)← (1

2 χmax
k ,yk+1,wk+1,µ

P
k ,µ

B
k ,τk);

11: else if vk+1 satisfies (4.14) then [M-iterate]
12: Set (χmax

k+1 ,τk+1) = (χmax
k , 1

2τk); Set yE
k+1 and wE

k+1 using (4.15);
13: if χfeas(vk+1)≤ τk then µP

k+1← µP
k else µP

k+1←
1
2 µP

k end if
14: if χcomp(vk+1,µ

B
k)≤ τk and sk+1 ≥−τke then

15: µB
k+1← µB

k ;
16: else
17: µB

k+1←
1
2 µB

k ; Reset sk+1 so that sk+1 +µB
k+1e > 0;

18: end if
19: else [F-iterate]
20: (χmax

k+1 ,y
E
k+1,w

E
k+1,µ

P
k+1,µ

B
k+1,τk+1)← (χmax

k ,yE
k,w

E
k,µ

P
k ,µ

B
k ,τk);

21: end if
22: end while
23: end procedure

Define

O = {k : iteration k is an O-iteration},

M = {k : iteration k is an M-iteration}, and

F = {k : iteration k is an F-iteration}.

The following lemma justifies the substitution used at the beginning of the chapter:

64

Lemma 4.2.2 (Gill, Kungurtsev & Robinson [13]). If |M |= ∞ then

lim
k∈M
|πY

k+1− yk+1|= lim
k∈M
|πW

k+1−wk+1|= lim
k∈M
|πY

k+1−π
W
k+1|= lim

k∈M
|yk+1−wk+1|= 0.

Convergence of the iterates is established using the properties of the complementary

approximate KKT (CAKKT) condition proposed by Andreani, Martı́nez and Svaiter [1], as

described next.

Definition 4.2.1 (CAKKT condition). A feasible point (x∗,s∗) (i.e., a point such that s∗ ≥ 0 and

c(x∗)− s∗ = 0) is said to satisfy the CAKKT condition if there exists a sequence {(x j,s j,u j,z j)}

with {x j}→ x∗ and {s j}→ s∗ such that

{g(x j)− J(x j)
Tu j}→ 0, (4.16)

{u j− z j}→ 0, (4.17)

{z j} ≥ 0, and (4.18)

{z j · s j}→ 0. (4.19)

Any (x∗,s∗) satisfying these conditions is called a CAKKT point.

The main result is given as follows:

Theorem 4.2.3 (Gill, Kungurtsev & Robinson [13]). Under Assumptions 4.2.1– 4.2.3, one of

the following occurs.

(i) |O| = ∞, limit points of {(xk+1,sk+1)}k∈O exist, and every such limit point (x∗,s∗) is a

CAKKT point for problem (NIPs). If, in addition, CAKKT holds at (x∗,s∗), then (x∗,s∗) is a

KKT point for problem (NIPs).

(ii) |O| < ∞, |M | = ∞, limit points of {(xk+1,sk+1)}k∈M exist, and every such limit point

(x∗,s∗) is an infeasible stationary point.

65

4.3 A Trust-Region Modified-Newton Method

In the line-search algorithm, there is a crucial assumption that HM is positive definite.

However, this assumption may not hold at points that are far from the solution. Algorithm 4.3 is

proposed to overcome this difficulty.

Algorithm 4.3. Minimizing M for fixed yE, wE, µP, µB (trust-region)
1: procedure MERIT-TR(x0,s0,y0,w0)
2: Restrictions: s0 +µBe > 0, w0 > 0, wE > 0;
3: Choose constants 0 < ηA < ηE < 1, γ ∈ (0,1), {γ̄,ν} ⊂ (1,∞), and γν < 1.
4: Set v0← (x0,s0,y0,w0);
5: while not converged do
6: Compute an approximate solution dk = (∆xk,∆sk,∆yk,∆wk) of the problem
7: mind

{
∇M(vk)

Td + 1
2dTHMd : ∥d∥Tk ≤ δ j

}
;

8: ρk←
(
M(vk +dk)−M(vk)

)
/
(
qk(vk +dk)−qk(vk)

)
;

9: if ρk ≥ ηA then
10: Successful iteration vk+1← vk +dk;
11: if ρk ≥ ηE then
12: Set δk←max{δk, γ̄∥dk∥Tk};
13: else
14: δk+1← δk;
15: end if
16: else
17: vk+1← vk,δk+1← γ∥dk∥Tk ;
18: end if
19: end while
20: Set ŝk+1← c(xk+1)−µP

(
yE + 1

2(wk+1− yk+1)
)
;

21: Reset sk+1←max{sk+1, ŝk+1};
22: Set v j+1 = (xk+1,sk+1,yk+1);
23: end procedure

The trust region equation can actually be shrunk into a 2 by 2 block matrix, i.e., the

equation (HM +σT)p =−∇M can be written in the formH̄ +σ I −J̄T

J̄ σ̄D̄

∆ x̄

∆ ŷ

=−

 ḡ− J̄Tȳ

D̄(ȳ− π̄)

 , (4.20)

where σ̄ = (1+σ)/(1+2σ) and ∆ ŷ = (1+2σ)∆ ȳ. the unsymmetric equations (4.20) may be

66

Algorithm 4.4. Shifted primal-dual penalty-barrier with a trust region
1: procedure PDBTR(x0,s0,y0,w0)
2: Choose yE

0, wE
0 > 0, χmax

0 > 0, µP
0 , µB

0 > 0;
3: Set v0 = (x0,s0,y0,w0);
4: (yE,wE,µP,µB)← (yE

k,w
E
k,µ

P
k ,µ

B
k);

5: while not converged do
6: Compute vk+1 = (xk+1,sk+1,yk+1,wk+1) using Algorithm 4.3;
7: if χ(vk+1,µ

B
k)≤ χmax

k then; [O-iterate]
8: Set (yE

k+1,w
E
k+1,µ

P
k+1,µ

B
k+1)← (yk+1,wk+1,µ

P
k ,µ

B
k);

9: Set (χmax
k+1 ,τk+1)← (1

2 χmax
k ,τk)

10: else if vk+1 satisfies certain condition for ∇M then [M-iterate]
11: Set (χmax

k+1 ,τk+1)← (χmax
k , 1

2τk)
12: Replace yE

k+1, wE
k+1 by safeguarded values

13: if χfeas(vk+1)≤ τk then
14: µP

k+1← µP
k ;

15: else
16: µP

k+1←
1
2 µP

k ;
17: end if
18: if χcomp(vk+1,µ

B
k)≤ τk and sk+1 ≥−τke then

19: Set µB
k+1← µB

k ;
20: else
21: Set µB

k+1←
1
2 µB

k ;
22: Reset sk+1 so that sk+1 +µB

k+1e > 0;
23: end if
24: else [F-iterate]
25: Set (yE

k+1,w
E
k+1,µ

P
k+1,µ

B
k+1)← (yk+1,wk+1,µ

P
k ,µ

B
k)

26: Set (χmax
k+1 ,τk+1)← (χmax

k ,τk)
27: end if
28: end while
29: end procedure

67

written as

H +σ I 0 −JT 0

0 σ I I −I

J −I σ̄DP 0

0 I 0 σ̄DB

∆x

∆s

∆ ŷ

∆ ŵ

=−

g− JTy

y−w

DP(y−πY)

DB(w−πW)

, (4.21)

where σ̄ = (1+σ)/(1+2σ). Using block elimination, the solution of these equations is given

by

∆w =
(
I +σσ̄DB

)−1(y+∆y−w−σW−1(s+µ
B(w−wE))

)
(4.22)

and

∆s =−W−1(s ·(w+ σ̄∆w)+µ
B(w+ σ̄∆w−wE)

)
, (4.23)

where ∆x and ∆y satisfy the equationsH +σ I −JT

J DP + D̂B

∆ x̂

∆ ŷ

=−

 g− JTy

D̂B

(
y−w−σDB(w−wE)

)
+DP

(
y−πY

)
+DB

(
w−πW

)
 , (4.24)

with D̂B = σ̄DB(I +σσ̄DB)
−1.

To prove some boundedness properties in Lemma 4.3.2, the auxiliary function below is

needed:

φi(x;wi,wE
i ,µ

B) =−µ
BwE

i lnx−µ
BwE

i ln(wix)+wix, (4.25)

where wi > 0, wE
i > 0 and µB > 0 are fixed constants. For brevity, this function may just be

denoted by φ(x).

Lemma 4.3.1. The function φi(x) is bounded from below on (0,∞).

68

Proof. Notice φi is the sum of three convex functions and is thus convex. It is obvious that

lim
x→0+

φi(x) = lim
x→∞

φi(x) = +∞.

Also

φ
′(x) =−2µ

BwE
i

1
x
+wi,

and hence the unique minimum is attained at

x =
2
wi

µ
BwE

i .

A proof similar to Lemma 4.2 in Gertz & Gill [12] is given below. Here the indices j for

the j-th iteration are omitted.

Lemma 4.3.2. Assume ci(x) and si generated by the algorithm are always bounded from above,

and f (x) is always bounded from below by, say, f̄ . Then the following holds.

(i) Each component of s+µBe is bounded above and bounded away from zero.

(ii) w ·
(
s+µBe

)
is bounded away from zero and bounded from above.

(iii) w is bounded above and bounded away from zero.

(iv)
si +µB

wi
= Θ

(
(si +µB)2).

(v) The eigenvalues of Tk are all positive, bounded from above and away from zero. Therefore,

there exists a positive constant c (dependent only on k) such that (1/c)||v||2 ≤ ∥v∥Tk ≤

c||v||2.

Proof. The definition of an iteration guarantees that wi, i = 1, 2, . . . , m, is always positive. By

our algorithm, the following inequality

69

M(v0)≥M(v j)≥M(v j+1)≥ f̄ −
(
c(x)− s

)TyE +
1

2µP
∥c(x)− s∥2

+
m

∑
i=1

(
−µ

BwE
i ln(si +µ

B)−µ
BwE

i ln
(
wi(si +µ

B)
)
+wi(si +µ

B)
)
. (4.26)

holds, and may be written as

M(v0)≥ f̄ −
(
c(x)− s

)TyE +
1

2µP
||c(x)− s||2 +

m

∑
i=1

φ(si +µ
B)

On the right-hand side, f̄ and ∑
m
i=1 φ(si +µB) are bounded from below, so ∥c(x)− s∥ must be

bounded, otherwise the right hand side would go to infinity.

1. Now si + µB has to be bounded above and bounded below by zero for all i because

otherwise, from the preceding lemma, the right-hand side of (4.26) would go to infinity.

2. Now (4.26) can be rewritten as

M(v0)≥ f̄ −
(
c(x)− s

)TyE +
1

2µP
∥c(x)− s∥2−

m

∑
i=1

µ
BwE

i ln(si +µ
B)

+
m

∑
i=1

(
−µ

BwE
i ln
(
wi(si +µ

B)
)
+wi(si +µ

B)
)
.

It has been shown that every term except the last is bounded below. If any si +µB is not

bounded from below by zero and bounded away from zero, the last term would become

infinitely large. It follows that w · (s+ µBe) is also bounded from below by zero and

bounded above.

3. Suppose 0 < m1 ≤ wi(si+µB)≤M1, 0 < m2 ≤ wi ≤M2. Take the quotient of wi
(
si+µB

)
and si +µBe, the inequality

0 <
m1

M2
≤ wi ≤

M1

m2
,

which shows wi is also bounded above and bounded away from zero.

4.
si +µB

wi
=

(si +µB)2

wi(si +µB)
= Θ

(
(si +µ

B)2),
70

where the last equality uses the fact that wi(si +µB) is bounded above and away from zero.

5. The last one follows from previous parts. This last result is important, since it shows that

the diagonal matrix DB is bounded away from zero and bounded from above. Since DP is a

constant matrix, it means that Tj-norm and 2-norm are always equivalent. That is to say,

there exists c1 > c2 > 0, such that, for all iterations j,

c1|| · ||Tj ≥ || · ||2 ≥ c2|| · ||Tj .

Define

ĝ = T
− 1

2
j g, B̂ = T

− 1
2

j HMT
− 1

2
j , d̂ = T

1
2

j d,

then the 2-norms of these terms are bounded above by a constant multiple of Tj-norms and

below by another constant multiple of Tj-norms. Those two constants can be chosen so

that they are independent of j.

Now the optimization problem becomes

min
s∈Rm+n

ĝT
j d̂ +

1
2

d̂TB̂ jd̂ s.t. ||d̂||2 ≤ δ j.

Notice

||ĝ j||= ||g j||Tj ≥
1
c1
||g j||,

||B j||= sup
x ̸=0

xTB jx
xTx

= sup
x ̸=0

xTHMx
xTTjx

= sup
x ̸=0

xTBx
||x||2Tj

≤ sup
x ̸=0

||xTB jx||
1
c2

1
||x||2

= c2
1||B j||.

Therefore, if ||g j|| is bounded from below and ||HM|| is bounded from above, so are ||ĝ j||

and ||B j||, respectively. And hence

||ĝ j||/||B j|| ≥
1

c2
1c2
·
||g j||
||B j||

is bounded from below.

71

Theorem 4.3.3. If the iteration does not terminate, and all the assumptions are satisfied, we will

have liminf∥gk∥= 0.

Proof. Suppose not, and we have for some ε > 0, we always have ∥gk∥> ε . Notice that

j

∑
l=0

M(vl)−M(vl+1) = M(v0)−M(v j+1).

Let S denote the set of indices of successful iterations, i.e.

S =
{

j |M(v j)−M(v j+1)≥−η1q j(d j)
}
.

Summing over all successful iterations, we obtain the inequality

∑
j∈S

M(v j)−M(v j+1)≥ τη1 ∑
j∈S
||ĝ j||min

(
δ j, ||ĝ j||/||B j||

)
,

which implies that

∑
j∈S

δ j < ∞.

For any longest sequence of unsuccessful iterations, say from i+1 to k, the inequality

k

∑
j=i+1

δ j ≤
k

∑
j=i+1

γ
j−i−1

2 γ3δi ≤
γ3

1− γ2
δi

holds. Combining the above two gives

∑
k

δk ≤
(

1+
γ3

1− γ2

)
∑

k∈S
δk < ∞.

Notice, in each step, ||dk|| ≤ c1||dk||Tj = c1δk, which implies the convergence of vk.

72

The dual norm of 2-norm is the 2-norm itself. By Taylor expansion,

||M(vk)−M(vk +dk)+qk(dk)|| ≤ ||d j||Tj max
0≤ξ≤1

||ĝ(v j +ξ d j)− ĝ(v j)||+
1
2

δ
2
j ||B̂ j||

≤ δ j max
0≤ξ≤1

||ĝ(v j +ξ d j)− ĝ(v j)||+
1
2

δ
2
j ·

1
c2
||B j||

≤ δ j max
0≤ξ≤1

1
c2
||g(v j +ξ d j)−g(v j)||+

δ 2
j

2c2
||B j||

=
δ j

c2
max

0≤ξ≤1
||g(v j +ξ d j)−g(v j)||+

δ 2
j

2c2
||B j||.

If both sides are divided by −qk(dk), then

||ρk−1|| ≤
δ j

c2||qk(dk)||
max

0≤ξ≤1
||g(v j +ξ d j)−g(v j)||+

1
2

δ 2
j

c2||qk(dk)||
||B j||.

Recall the Cauchy point condition, actually for sufficiently small δk, that

||qk(dk)|| ≥ κδk.

Due to the convergence of vk (and hence uniform convergence), and the fact that δk→ 0, the

limit

max
0≤ξ≤1

||g(v j +ξ d j)−g(v j)|| → 0

holds.

Along with the boundedness of ||B j||, this implies ρ j−1→ 0, but the algorithm implies

if ρk→ 1, then δk ̸→ 0, which is a contradiction.

Lemma 4.3.4. The sequence of trust-region radii {δk} is bounded.

Proof. If k ∈S , then vk+1 = vk +dk. This update and Assumption 4.2.2 imply that {dk}k∈S is

bounded, which combined with Lemma 4.3.2 gives the existence of a positive scalar, call it A,

satisfying {||dk||}k∈S ≤ A. Combining this fact with Lines 12 and 14 of Algorithm 4.3 gives

δk+1 ≤max(δk, γ̄||dk||Tk)≥max(δk, γ̄A), ∀k ∈S . (4.27)

73

Now for a proof by contradiction, suppose that {δk} is unbounded, thus allowing us to define ℓ as

the first iteration such that δℓ > max{δ0, γ̄A}. Since the trust-region radius is decreased during

iterations k /∈S (See Line 17 in Algorithm 4.3), it must hold that (ℓ−1) ∈S . Combining this

with (5.12) shows that δℓ ≤max(δℓ−1, γ̄A). Combining this inequality with δℓ−1 ≤max{δ0, γ̄A}

(recall that ℓ is the first iteration such that δℓ > max{δ0, γ̄A}) shows that δℓ ≤max(δ0, γ̄A), thus

reaching a contradiction.

74

Chapter 5

Primal-Dual Methods for Constrained
Problems with Shifts

In the discussion of interior methods in Chapter 4, it was shown how slack variables can

be used to avoid the need to find an initial interior point for the nonlinear inequality constraints

of the problem

minimize
x∈Rn

f (x) subject to c(x)≥ 0,

where c : Rn→ Rm and f : Rn→ R are both smooth. In this chapter an alternative approach

is proposed in which the nonlinear constraints remain as inequalities, but are shifted so that an

initial interior point is available. In this case additional constraints are imposed to force the

optimal shifts to be zero. The shifted problem is given by

minimize
x∈Rn,s∈Rm

f (x) subject to c(x)+ s≥ 0, s = 0.

An appropriate merit function for this problem is given by

M(x,s,y,w;yE,wE,µP,µB) = f (x)− sTyE +
1

2µP
||s||2

+
1

2µP
||s+µ

P(y− yE)||2 +
m

∑
i=1

wi
(
ci(x)+ si +µ

B
)

−
m

∑
i=1

µ
BwE

i ln(ci(x)+ si +µ
B)−

m

∑
i=1

µ
BwE

i ln
(
wi(ci(x)+ si +µ

B)
)
.

75

The gradient and Hessian of M may be written in terms of the auxiliary quantities

DP = µ
PI, DB = (S+C+µ

BI)W−1, DR = µ
B(C+S+µ

BI)−2wE,

π
Y = π

Y(x,s) = yE− 1
µP

s, and π
W = π

W(s) = µ
B(S+C+µ

BI)−1wE.

Using these definitions, the gradient is given by

∇M =

g−2µBJT(C+S+µBI)−1wE + JTw

2
µP s+(y−2yE)−2µB(C+S+µBI)−1wE +w

s+µP(y− yE)

−µBW−1wE +
(
c(x)+ s+µBe

)

=

g− JT(πW +(πW−w)
)

(y−πY)− (πY +πW)+(w−πW)

−DP(π
Y− y)

−DB(π
W−w)

,

and the Hessian is

∇
2M =

H +2µBJTwE(S+ J+µBI)−2J 2µBJT(C+S+µBI)−2wE 0 JT

2µBwE(C+S+µBI)−2J 2D−1
P +2µB(C+S+µBI)−2wE I I

0 I DP 0

J I 0 DBW−1Π W

=

H +2JTDRJ 2JTDR 0 JT

2DRJ 2D−1
P +2DR I I

0 I DP 0

J I 0 DBW−1Π W

,

76

where H = H
(
x,πW +(πW−w)

)
. The diagonal matrix DR may be written as

DR = µ
BwE(S+ J+µ

BI)−2 = (S+ J+µ
BI)−1

µ
B(S+ J+µ

BI)−1wE

= (S+ J+µ
BI)−1

Π
W ,

Substituting w for πW gives the approximation

DR ≈ (S+ J+µ
BI)−1W = D−1

B .

The approximate Hessian can be written as

HM(vk) =

H +2JTD−1
B J 2JTD−1

B 0. JT

2D−1
B J 2D−1

P +2D−1
B I I.

0 I DP 0.

J I 0 DB

,

which is a function of vk. Sometimes it will be denoted by HM
k for brevity.

ḡ =

g

0

 , H̄ =

H 0

0 0

 , J̄ =

0 I

J I

 , D̄ =

DP 0

0 DB

 ,

and

HM =

H̄ +2J̄TD̄−1J̄ J̄T

J̄ D̄

 ,

Tk = diag(Mk,Nk) =

I 0 0 0

0 I 0 0

0 0 DP 0

0 0 0 DB

.

As before, it’s assumed all f (x) generated by the inner iterations is bounded below by f̄ .

77

5.1 Preliminaries

The proof of Lemma 5.1.1 is independent of whether a trust-region or line-search method

is used to minimize the merit function. Boundedness in the lemma depends only on obtaining a

decrease of the merit function.

The method includes inner and outer iterations. In the inner iteration, the parameters yE,

wE, µP, µB are all fixed. As before, the following assumptions are needed:

• f generated by the inner iteration is bounded below by f̄ ,

• f and c are twice continuously differentiable.

Lemma 5.1.1. If the merit function is decreased in every inner iteration and the conditions

c(x)+ s+µBe and w > 0 are maintained, then the following hold.

(i) s is bounded.

(ii) c(x) is bounded above.

(iii) c(x)+ s+µBe is bounded above and bounded away from zero for each of its component.

(iv) The component-wise product w ·
(
c(x)+ s+µBe

)
is bounded away from zero and bounded

from above.

(v) w is bounded above and away from zero.

(vi) y is bounded.

(vii)
ci(x)+ si +µB

wi
= Θ

(
(ci(x)+ si +µB)2).

(viii) The eigenvalues of Tk are all positive, bounded from above and away from zero. Therefore,

there exists a positive constant c (only dependent on k) such that (1/c)||v||2 ≤ ||v||Tk ≤

c||v||2.

78

(ix) The sequence {∥HM(vk)∥} is bounded. Therefore, there exists a positive constant κ2 such

that ∥HM(vk)∥ ≤ κ2 for all k ≥ 0.

Proof. From the iteration, the following inequality

M(v0)≥M(v j)≥M(v j+1)≥ f̄ − sTyE +
1

2µP
||s||2

−
m

∑
i=1

µ
BwE

i ln(ci(x)+ si +µ
B)−

m

∑
i=1

µ
BwE

i ln
(
wi(ci(x)+ si +µ

B)
)

+
m

∑
i=1

wi(ci(x)+ si +µ
B). (5.1)

holds. It can be written as

M(v0)≥ f̄ − sTyE +
1

2µP
||s||2 +

m

∑
i=1

φi
(
ci(x)+ si +µ

B
)
.

Lemma 5.1.1 shows that φi’s are all bounded from below, and if s is not bounded, then there

is a subsequence such that ||s|| → ∞, which is impossible because f̄ is independent of s, and

the quadratic term 1
2µP ||s||2 grows much faster than the linear term −sTyE, which leads to a

contradiction. It follows that s is bounded. Hence (i) is proved.

It’s already known that s is bounded, it suffices to show ci(x)+ si +µB is bounded above

and away from zero. However, Lemma 4.3.1 shows otherwise φ
(
ci(x)+ si +µB

)
would go to

infinity. This proves (ii).

Equation (5.1) can be rewritten as

M(v0)≥M(v j)≥M(v j+1)≥ f̄ − sTyE +
1

2µP
||s||2−

m

∑
i=1

µ
BwE

i ln(ci(x)+ si +µ
B)

+
m

∑
i=1

(
µ

BwE
i ln
(
wi(ci(x)+ si +µ

B)
)
+

m

∑
i=1

wi(ci(x)+ si +µ
B)
)
. (5.2)

It’s shown every term is bounded above except the last term

m

∑
i=1

(
µ

BwE
i ln
(
wi(ci(x)+ si +µ

B)
)
+

m

∑
i=1

wi(ci(x)+ si +µ
B)
)
.

Similar to function φ , wi(ci(x)+si+µB) has to be bounded above and away from zero, otherwise

79

this sum would go to infinity. This proves (iii).

Suppose 0 < m1 < wi(ci(x)+ si +µB)< M1, 0 < m2 < ci(x)+ si +µB). Then

0 <
m1

M2
≤ wi ≤

M1

m2
,

which proves (v). Also, (iv) is an immediate result from (iii) and (v). Hence (vi) holds.

The bound (ci(x)+ si +µBe)/wi follows from the equation

ci(x)+ si +µB

wi
=

(
ci(x)+ si +µB

)2

wi
(
ci(x)+ si +µB

) = Θ
(
(ci(x)+ si +µ

B)2).
where the last equality uses the fact that wi

(
ci(x)+ si +µB

)
is bounded above and away from

zero.

As Tk is given by

Tk = diag(Mk,Nk) =

I 0 0 0

0 I 0 0

0 0 DP 0

0 0 0 DB

,

previous arguments show the term DB is both bounded from above and bounded away from zero.

As all other diagonal terms are constant, it can be concluded that Tj is uniformly bounded above

and away from zero for all j. This justifies (viii). More precisely, it means that the Tk-norm and

the two-norm are always equivalent, i.e., there exists κ , such that, for all iterations k, then

1/κ1|| · ||2 ≥ || · ||Tk ≥ κ1|| · ||Tk .

(ix) is immediate from assumptions and above results.

5.2 A Line-Search Method

The algorithm is given in Algorithm 5.1. Consider the merit function with terms labeled

as follows:

80

M(x,s,y,w;yE,wE,µP,µB) = f (x)︸︷︷︸
(A)

−sTyE︸ ︷︷ ︸
(B)

+
1

2µP
||s||2︸ ︷︷ ︸

(C)

+
1

2µP
||s+µ

P(y− yE)||2︸ ︷︷ ︸
(D)

+
m

∑
i=1

wi
(
ci(x)+ si +µ

B
)

︸ ︷︷ ︸
(G)

−
m

∑
i=1

µ
BwE

i ln(ci(x)+ si +µ
B)︸ ︷︷ ︸

(E)

−
m

∑
i=1

µ
BwE

i ln
(
wi(ci(x)+ si +µ

B)
)

︸ ︷︷ ︸
(F)

.

Some additional assumptions are needed:

• the matrices HM
k are uniformly positive definite.

• HM
k is bounded from above.

• ∇M and c are Lipschitz continuous with constant L (this condition can be omitted if the

sequence {xk} is bounded.)

Lemma 5.2.1. The sequence of iterates
{

vk
}

satisfies M(vk+1)< M(vk) for all k.

Proof. According to the algorithm, the only possibility that M(vk) does not decrease, is the slack

reset. Notice the ŝk+1 gives a minimizer of the sum of (B), (C), (D) and (G) , and it has no effect

on (A). Also, it can only decrease the value of (E) and (F). Hence, a slack reset can only decrease

the value of M, which concludes the lemma.

Due to the fact that M(vk) is decreasing, Lemma 5.1.1 holds as well.

Lemma 5.2.2. If there exists a positive scalar ε and a subsequence S satisfying

||∇M(vk)|| ≥ ε, ∀k ∈S ,

then the following results hold

(i) The set {||dk||} is uniformly bounded above and bounded away from zero.

81

Algorithm 5.1. Line-Search subproblem for fixed yE, wE, µP, µB (line-search for shifts)
1: procedure LS(x0, s0, y0, w0)
2: Restrictions: wE > 0, w0 > 0, c+ s+µBe > 0
3: Constants : {η ,γ} ⊂ (0,1);
4: Set v0← (x0,s0,y0,w0);
5: while ||M(vk)||> 0 do
6: Choose HM

k ≻ 0, compute ĤM
k dk =−∇M(vk);

7: Choose αk← 1;
8: while true do
9: if c(xk +αk∆xk)+ sk +αk∆sk +µBe > 0, wk +αk∆wk > 0 then

10: if M(vk +αkdk)≤M(vk)+ηαk∇M(vk)
Tdk then

11: Break;
12: end if
13: Set αk← γαk;
14: end if
15: end while
16: Set vk+1← vk +αkdk;
17: Set ŝk+1← µPyE + 1

2 µP(w− y);
18: Perform a slack reset sk+1←max{sk+1, ŝk+1};
19: Set vk+1← vk +αkdk;
20: end while
21: end procedure

(ii) There exists a positive scalar δ > 0 such that ∇M(vk)
Tdk ≤−δ for all k ∈S .

(iii) There exists a positive scalar αmin such that for all k ∈S , the Armijo condition of the

algorithm is satisfied with all αk ≤ αmin.

Proof. The first part comes from the equation

HM
k dk =−∇M(vk).

Hence,

∇M(vk)
Tdk =−dT

k HM
k dk ≤−λmin(HM

k)||dk||2 ≤−δ ,

for some δ > 0 because ||dk|| is bounded below.

For part 3, a standard result of unconstrained optimization is that the Armijo condition is

82

satisfied for all

αk = Ω

(−∇M(vk)
Tdk

||vk||2
)
,

which requires the Lipschitz property of ∇M.

Lemma 5.2.3. Under the assumptions, the sequence of iterates {vk} satisfies limk→∞ ∇M(vk) = 0.

Proof. The proof is done by contradiction. Suppose ||∇M(vk)|| ≥ ε > 0 for some subse-

quence k ∈ S . Because M(vk) is bounded from below, there is some number Mmin such

that limk→∞ M(vk) = Mmin >−∞. Then

lim
k→∞

αk∇M(vk)
Tdk = 0,

which means αk→ 0. However, by the algorithm, it can only happen when at least one of the

feasibility condition is not satisfied.

If wk +αk∆wk > 0 is not satisfied. It would lead to a contradiction. Since it’s proved

wk is always bounded below, say, by η > 0, and since dk is bounded, so is ∆wk. Therefore, for

sufficiently small αk,

wk +αk∆wk > ηe−αk||dk||e > 0.

If ci(xk +αk∆xk)+αksi +∆si + µB > 0 is not satisfied for some i. It would lead to a

contradiction as well. The Lipschitz property of c shows

ci(xk +αk∆xk)+ si +∆si +µ
B = ci(xk)+ [sk]i +µ

B +
(
ci(xk +αk∆xk)− ci(xk)

)
+αk[∆sk]i

say ci + si +µB > η for some η > 0

≥ η +
(
ci(xk +αk∆xk)− ci(xk)

)
+αk[∆sk]i

use Lipschitz property

≥ η−αkL||∆xk||−αk||[∆sk]i||.

83

However, by the boundedness of dk, this will be greater than zero for sufficiently small αk.

5.3 Approximate Solutions of the Trust Region Subproblem

This section concerns a primal-dual path-following method based on an approximate

solution of the trust-region subproblem. Consider the functions Qk(d) and Q̂k(d) such that

Qk(d) = ∇M(vk)
Td +

1
2

dTHM(vk)d,

Q̂k(d) = ∇M(vk)
Td +

1
2

min{0,dTHM(vk)d}.

Using the model Qk, a direction dk = (∆xk,∆sk,∆yk,∆wk) is then computed as an approximate

solution to the trust-region subproblem subproblem

minimize
d∈Rn+3m

Qk(d)

subject to ||d||Tk ≤ δk.

(5.3)

where ||d||Tk = (dTTkd)
1
2 . In particular, dk satisfies the conditions

Qk(dk)≤min{d(1)
k ,d(2)

k } (5.4a)

||dk||Tk ≤ δk, and (5.4b)

either ∇M(vk)
Tdk < 0, or ∇M(vk)

Tdk ≤ 0 and dT
k HM(vk)dk < 0, (5.4c)

where d(1)
k and d(2)

k are given by

d(1)
k =−1

2
||∇M(vk)||2 min

{
δk
||∇M(vk)||2
||∇M(vk)||Tk

,
||∇M(vk)||2
||HM(vk)||2

}
, (5.5)

d(2)
k =

1
2

τλmin
(
HM(vk)

)(||dk||2
||dk||Tk

)2
δ

2
k . (5.6)

The quantity d(1)
k is the model decrease obtained by minimizing Qk along the direction −∇M(vk)

subject to staying within the trust-region constraint. The quantity d(2)
k is τ times the model

decrease obtained by minimizing Qk along the eigenvector associated with the smallest eigenvalue

of HM(vk) subject to staying within the trust-region. A proof of this fact is given below.

84

Lemma 5.3.1. If dk is the minimizer of Qk along −∇M(vk) with ∥dk∥Tk ≤ δk, then

Qk(dk)≤ d(1)
k . (5.7)

If HM
k has negative eigenvalues, and dk is the minimizer of Qk along the eigenvector with smallest

eigenvalue with ∥dk∥Tk ≤ δk, then

Qk(dk)≤ d(2)
k . (5.8)

Proof. For brevity, the vector gk will be used to denote ∇Mk when needed.

(1) If dk is a multiple of −∇M, condition (5.7) will be satisfied. In this case, it must be a

Cauchy point. Suppose first that ∇M(vk) ̸= 0, and that dk =−α∇M(vk) for some α > 0.

• Suppose first that gT
k HM

k gk > 0. To minimize the quadratic function Qk, by (2.3), the

step length has to be α∗k = gT
k gk/gT

k HM
k gk. If α∗k ≤ δk/||gk||Tk , then ||α∗k gk||Tk ≤ δk, and

αk = α∗k , and the change in the objective is

Qk(−α
∗
k gk) =−α

∗
k gT

k gk +
1
2
(α∗k)

2gT
k HM

k gk =−
1
2

gT
k gk

(gT
k gk

gT
k HM

k gk

)
≤−1

2
||gk||42

||gk||22||HM
k ||2

=−1
2
||gk||22
||HM

k ||2
.

If α∗k > δk/||gk||Tk , then αk = δk/||gk||Tk < α∗k , and the change is

Qk(−αkgk) =−αkgT
k gk +

1
2

α
2
k gkHM

k gk

≤−αkgT
k gk +

1
2

αkα
∗
k gkHM

k gk

=−1
2

δk
||gk||22
||gk||Tk

.

• Suppose that gT
k HM

k gk ≤ 0, and there is no minimizer along −gk, and αk = δk/||gk||Tk ,

there is the same bound for the decrease:

Qk(−αkgk) =−αkgT
k gk +

1
2

α
2
k gT

k Hkgk ≤−αkgT
k gk =−δk

||gk||22
||gk||Tk

<−1
2

δk
||gk||22
||gk||Tk

.

85

(2) If ∇M(vk) = 0, condition (5.8) is statisfied. In this case, dk is an eigenvector associated

to the left-most eigenvalue of HM
k , and ||dk||Tk = δ . In this case the decrease is

Qk(dk) =
1
2

λmin
(
HM

k (vk)
)
||dk||22 =

1
2

λmin
(
HM

k (vk)
) ||dk||22
||dk||2Tk

δ
2
k .

Suppose that f is bounded below by f̄ in all the inner iterations. Still define

φi(x) =−µ
BwE

i lnx−µ
BwE

i ln(wix)+wix,

as in (4.25), where wE
i , wi, µB are all positive.

The outer iteration is similar to Algorithm 4.2 and is given as Algorithm 4.4.

The convergence proofs require some assumptions.

Assumption 1: f and c are twice continuously differentiable.

Assumption 2: The sequence of iterates {xk} is contained in a bounded set.

Define the successful iterations

S :=
{

k | ρk > ηA, c(xk +αk∆xk)+ sk +∆sk +µ
Be > 0, wk +∆wk > 0

}
.

Lemma 5.3.2. If k ̸∈S , then δk+1 ≤ γνδk < δk.

Proof. If k ̸∈S , then αk ≤ γ , and from the definition of the subproblem, ||dk||Tk ≤ δk. It follows

that δk+1 ≤ ν ||αk||Tk = ναk||dk||Tk ≤ νγδk < δk.

Lemma 5.3.3. The algorithm is well defined. Moreover, for each iteration k ≥ 0, it holds that

M(vk+1)≤M(v̂k+1)< M(vk).

Proof. First, consider Line 6 in Algorithm 5.2. As discussed after (5.3), the conditions in Line 6

are satisfied by either the Cauchy point or the eigenpoint as described in [6], which means such

an approximate solution is possible.

86

Algorithm 5.2. Trust-region subproblem for fixed yE, wE, µP, µB (trust-region for shifts)
1: procedure TR-SHIFTS(x0,s0,y0,w0)
2: Restrictions: c(x0)+ s0 +µBe > 0,w0 > 0,wE > 0;
3: Choose constants 0 < ηA < ηE < 1, 0 < ηA <

1
2 , 0 < γ < 1, {γ̄,ν} ⊂ (1,∞) and γν < 1;

4: Set v0← (x0,s0,y0,w0);
5: while not converged do
6: Compute a direction dk = (∆xk, ∆sk, ∆yk, ∆wk) satisfying (5.4).
7: ρk←

(
M(vk +dk)−M(vk)

)
/Qk(dk);

8: if ρk ≥ ηA then
9: vk+1← vk +dk; [Successful iteration]

10: if ρk ≥ ηE then
11: Set δk←max

{
δk, γ̄||dk||Tk

}
; [Very successful iteration]

12: else
13: Set δk+1← δk;
14: end if
15: else
16: αk = 1;
17: while true do
18: if c(xk +αk∆xk)+ sk +αk∆sk +µBe > 0 and wk +αk∆wk > 0 then
19: if M(vk +αkdk)≤M(vk)+ηAQ̂k(αkdk) then
20: Break;
21: end if
22: Set αk← γαk;
23: end if
24: end while
25: Set v̂k+1← vk +αkdk;
26: Set δk+1 ∈

[
∥αkdk∥Tk

,ν ∥αkdk∥Tk

]
;

27: end if
28: end while
29: Set ŝk+1← µP[ŷE − 1

2(ŷk + ŵk)];
30: Slack reset sk+1←max{sk+1, ŝk+1};
31: Set vk+1 = (x̂k+1, sk+1, ŷk+1, ŵk+1);
32: end procedure

87

Algorithm 5.3. A trust-region primal-dual penalty-barrier method for shifted constraints.
1: procedure PDBTR-SHIFTS(x0,s0,y0,w0)
2: Restrictions: s0 > 0 and w0 > 0;
3: Constants: {η ,γ} ⊂ (0,1) and {ymax,wmax} ⊂ (0,∞);
4: Choose yE

0, wE
0 > 0; χmax

0 > 0; τ0 > 0; and {µP
0 ,µ

B
0} ⊂ (0,∞);

5: Set v0 = (x0,s0,y0,w0); k← 0;
6: while ∥∇M(vk)∥> 0 do
7: (yE,wE,µP,µB)← (yE

k,w
E
k,µ

P
k ,µ

B
k);

8: Compute vk+1 = (xk+1,sk+1,yk+1,wk+1) by Algorithm 5.2;
9: if χ(vk+1,µ

B
k)≤ χmax

k then [O-iterate]
10: (χmax

k+1 ,y
E
k+1,w

E
k+1,µ

P
k+1,µ

B
k+1,τk+1)← (1

2 χmax
k ,yk+1,wk+1,µ

P
k ,µ

B
k ,τk);

11: else if vk+1 satisfies (4.14) then [M-iterate]
12: Set (χmax

k+1 ,τk+1) = (χmax
k , 1

2τk); Set yE
k+1 and wE

k+1 using (4.15);
13: if χfeas(vk+1)≤ τk then µP

k+1← µP
k else µP

k+1←
1
2 µP

k end if
14: if χcomp(vk+1,µ

B
k)≤ τk and sk+1 ≥−τke then

15: µB
k+1← µB

k ;
16: else
17: µB

k+1←
1
2 µB

k ; Reset sk+1 so that sk+1 +µB
k+1e > 0;

18: end if
19: else [F-iterate]
20: (χmax

k+1 ,y
E
k+1,w

E
k+1,µ

P
k+1,µ

B
k+1,τk+1)← (χmax

k ,yE
k,w

E
k,µ

P
k ,µ

B
k ,τk);

21: end if
22: end while
23: end procedure

Second, it must be shown that the loop starting in Algorithm 5.2 Line 17 terminates

finitely. It is known that finite termination will occur because either ∇M(vk)
Tdk < 0, or

∇M(vk)
Tdk ≤ 0 and dT

k HM(vk)dk < 0. Note that Q̂k(dk) ≤ Qk(dk) < 0 for all k. If the up-

date in Algorithm 5.2 Line 7 takes place, then it follows from the inequalities ρk ≥ ηA and

Q̂k(dk) < 0 that M(v̂k+1) < M(vk). If the update in Algorithm 5.2, Line 29, takes place, the

line search produces an αk such that v̂k+1 = vk +αkdk satisfies M(v̂k+1) < M(vk). Therefore,

regardless of which update is used, the inequality M(v̂k+1)< M(vk) holds.

The slack reset uses ŝk+1, which is the minimizer of M with respect to s of the sum

of terms (B), (C), (D), (G). Therefore, the sum of these terms cannot increase. Also, (A) is

independent of s. In addition the slack reset cannot decrease the value of s, and hence cannot

decrease the value of (E) or (F). It follows that M(vk+1)≤M(v̂k+1), as required.

88

Lemma 5.3.4. If there exists some ε > 0, such that ||∇M(vk)||2 ≥ ε for all k, then ∑
∞
k=0 δk < ∞,

and the sequence {vk} converges.

Proof. There are two cases, depending on the cardinality of S .

Case 1: Bounded |S |. In this case there exists some k̄ such that k /∈S for all k ≥ k̄, and it

follows that δk+1 < γνδk, and hence δk ≤ (γν)k−k̄δk̄. This leads to the bound
∞

∑
k=k̄

δk < ∞, which

shows
∞

∑
k=1

δk < ∞.

Case 2: Infinite |S |. Summing over all successful iterations shows

M(v0)−Mlow = ∑
j∈S

M(v j)−M(v j+1)≥ ∑
j∈S

M(v j)−M(v̂ j+1)

= ∑
j∈S

(
M(v j)−M(v j +d j)

)
≥− ∑

j∈S
ηAQ j(d j)≥− ∑

j∈S
ηd(1)

k

=
1
2

ηA||∇M(vk)||2 min

{
δk
||∇M(vk)||2
||∇M(vk)||Tk

,
||∇M(vk)||2
||HM(vk)||2

}
. (5.9)

As
||∇M(vk)||2
||∇M(vk)||Tk

is bounded from below and ||∇M(vk)|| ≥ ε , it follows that

∑
j∈S

δ j < ∞. (5.10)

Let {kℓ}∞
ℓ=1 denote the infinite subsequence of iterations consisting of only the successful

iterations. Therefore, for each ℓ≥ 1, it holds that

kℓ ∈S , kℓ+1 ∈S , and j /∈S for all j satisfying kℓ < j < kℓ+1.

Using these properties, the fact that δkℓ+1 ≤ γ̄δkℓ for all ℓ≥ 1 by construction of Algorithm 5.2,

and Lemma 5.3.2, it follows that

kℓ+1−1

∑
k=kℓ

δk ≤ δkℓ +
kℓ+1−1

∑
k=kℓ+1

(γν)k−kℓ−1
γ̄δkℓ ≤ δkℓ +

γ̄δkℓ
1− γν

= cδkℓ, (5.11)

89

where c = (1− γν + γ̄)/(1− γν) ∈ (1,∞). It follows from (5.11) and (5.10) that

∞

∑
k=0

δk =
k1−1

∑
k=0

δk +
∞

∑
ℓ=1

(
kℓ+1−1

∑
k=kℓ

δk

)
≤

k1−1

∑
k=0

δk + c
∞

∑
ℓ=1

δkℓ =
k1−1

∑
k=0

δk + c ∑
k∈S

δk < ∞.

Notice from the Algorithm 5.2, we know (xk,0,yk,wk) is a Cauchy sequence under norm

|| · ||Tk . Since || · ||2 and || · ||Tk are equivalent norms, it’s also convergent under the Euclidean

norm. Line 29 in Algorithm 5.2 shows sk is convergent as well. This shows vk = (xk,sk,yk,wk)

is also convergent, which completes the proof.

Theorem 5.3.5. It holds that liminfk→∞ ||gk||= 0.

Proof. The proof is by contradiction. Suppose that there exists ε > 0 and k̄ such that

||∇M(vk)||2 ≥ ε,

for all k ≥ k̄. A Taylor-series expansion gives

|M(vk)−M(vk +dk)+Qk(dk)| ≤ |M(vk)−
(
M(vk)+∇M(vk)

Tdk
)
− 1

2dT
k HM

k dk|

The remainder theorem implies that there exists ξ ∈ (0,1) such that

|M(vk)−
(
M(vk)+∇M(vk)

Tdk
)
− 1

2dT
k HMdk| ≤

∣∣∣1
2

dT
k ∇

2M(vk +ξkdk)dk−
1
2

dT
k HMdk

∣∣∣
≤ 1

2
||dk||22||∇2M(vk +ξkdk)−HM

k ||2

bound by the trust region radius and use the relationship of 2-norm and Tk-norm

≤ 1
2

κ
2
1 δ

2
k ||∇2M(vk +ξkdk)−HM

k ||2.

The Cauchy-Point condition (2.2) states, for sufficiently small δk, the inequality

||Qk(dk)|| ≥ κδk.

90

holds for some positive constant κ . Dividing both sides by −Qk(dk) gives

||ρk−1|| ≤
κ2

1 δ 2
k ||∇2M(vk +ξkdk)−HM

k ||2
2|Qk(dk)|

= O(δk).

Here, we used the fact that ||∇2M(vk +ξkdk)−HM
k ||2 is bounded, which comes from the fact that

δk→ 0 and boundedness proved in Lemma 5.1.1.

As δk→ 0, it must hold that ρk→ 1. This implies that that for k sufficiently large, k ∈S .

However, in this case δk ̸→ 0, which is a contradiction.

Lemma 5.3.6. The sequence of trust-region radii {δk} is bounded.

Proof. If k ∈S , then vk+1 = vk + dk. This update and Assumption 2 imply that {dk}k∈S is

bounded, which combined with Lemma 5.1.1(viii) gives the existence of a positive scalar, call it

B, satisfying {||dk||}k∈S ≤ B. Combining this fact with Lines 11 and 13 of Algorithm 5.2 gives

δk+1 ≤max(δk, γ̄||dk||Tk)≥max(δk, γ̄B), ∀k ∈S . (5.12)

Now for a proof by contradiction, suppose that {δk} is unbounded, thus allowing us to define ℓ as

the first iteration such that δℓ > max{δ0, γ̄B}. Since the trust-region radius is decreased during

iterations k /∈S (See Lemma 5.3.2), it must hold that (ℓ−1) ∈S . Combining this with (5.12)

shows that δℓ ≤max(δℓ−1, γ̄B). Combining this inequality with δℓ−1 ≤max{δ0, γ̄B} (recall that

ℓ is the first iteration such that δℓ > max{δ0, γ̄B}) shows that δℓ ≤max(δ0, γ̄B), thus reaching a

contradiction.

Lemma 5.3.7. Let ᾱ ∈ (0, 1
ν
). If Algorithm 5.2 returns αk ≥ ᾱ , then

M(vk)−M(vk +αkdk)≥−ηAᾱα1 min{d(1)
k ,d(2)

k }.

Proof. Let k be any iteration such that αk > ᾱ . Since ν ∈ (1,∞) in Algorithm 5.2, it follows that

ᾱ ∈ (0, 1
ν
) ⊂ (0,1). If dT

k HM
k (vk)dk ≥ 0, then it follows from the definition of Q̂k, Q̂k(dk) < 0,

and ᾱ ∈ (0,1) that

ᾱαkQ̂k(dk)≥ αkQ̂k(dk) = αk∇M(vk)
Tdk = ∇M(vk)

T(αkdk) = Q̂k(αkdk).

91

On the other hand, if dT
k HM(vk)dk < 0, then it follows from the definition of Q̂k, ∇M(vk)

Tdk ≤ 0,

ᾱ ∈ (0,1) and αk ≥ ᾱ that

ᾱαkQ̂k(dk) = ᾱαk∇M(vk)
Tdk +

1
2

ᾱαkdT
k HM

k (vk)dk

≥ αk∇M(vk)
Tdk +

1
2

α
2
k dT

k HM
k (vk)dk = Q̂k(αkdk).

Putting these two cases together shows that ᾱαkQ̂k(dk)≥ Q̂k(αkdk) for all k ≥ 0. If the iterate

update in Line 25 in Algorithm 5.2 happens, then M(vk)−M(vk +αkdk)≥−ηAQ̂k(αkdk), which

combined with ᾱαkQ̂k(dk)≥ Q̂k(αkdk) gives the inequality

M(vk)−M(vk +αkdk)≥−ηAQ̂k(dk)≥−ηAᾱαkQ̂k(dk)≥−ηAᾱαkQk(dk).

On the other hand, if the iterate update in Line 9 in Algorithm 5.2 occurs, then

M(vk)−M(vk +αkdk)≥−ηAQk(dk)≥−ηAᾱαkQk(dk).

Regardless of which update occurs, M(vk)−M(dk+αkdk)≥−ηAᾱαkQk(dk). The desired result

follows from this inequality, Q̂k(dk)≤ Qk(dk)≤ 0 and (5.4).

5.3.1 The path-following equations

Recall that the approximate Hessian and the gradient of the merit function are

HM =

H +2JTD−1
B J 2JTD−1

B 0 JT

2D−1
B J 2D−1

P +2D−1
B I I

0 I DP 0

J I 0 DB

,

∇M =

g− JT(πW +(πW−w)
)

(y−πY)− (πY +πW)+(w−πW)

−DP(π
Y− y)

−DB(π
W−w)

,

92

and the approximate Newton equations for minimizing M are

H +2JTD−1
B J 2JTD−1

B 0 JT

2D−1
B J 2D−1

P +2D−1
B I I

0 I DP 0

J I 0 DB

∆x

∆s

∆y

∆w

=

−

g− JT(πW +(πW−w)
)

(y−πY)− (πY +πW)+(w−πW)

−DP(π
Y− y)

−DB(π
W−w)

. (5.13)

Consider the nonsingular upper-triangular matrix

U =

I 0 0 −2JTD−1
B

0 I −2D−1
P −2D−1

B

0 0 I 0

0 0 0 W

,

then the matrix UHM and vector U∇M are given by

H 0 0 −JT

0 0 −I −I

0 I DP 0

WJ W 0 (C+S+µBI)

and

g− JTw

−y−w

s+µP(y− yE)(
c(x)+ s

)
w+µB(w−wE)

. (5.14)

These equations can be interpreted in a different way. Let v∗ = (x∗,s∗,y∗,w∗) be a KKT point,

where w∗ and y∗ are the Lagrange multipliers associated with the constraints c(x)+ s≥ 0 and

s = 0, respectively. The Lagrangian is

L = f (x)−
(
c(x)+ s

)Tw− sTy,

93

and the KKT conditions are

c(x∗)+ s∗ ≥ 0, (feasibility)

s∗ = 0 (feasibility)(
c(x∗)+ s∗

)
·w∗ = 0, (complementarity slackness)

w∗ ≥ 0, (sign of the multipliers)

0 = ∇xL = g− JTw, (optimality)

0 = ∇sL =−w− y. (optimality)

These equations can be perturbed so that

c(x∗)+ s∗ ≥ 0, (feasibility)

s∗ =−µ
P(y− yE), (feasibility)(

c(x∗)+ s∗
)
·w∗ =−µ

B(w−wE), (complementarity slackness)

w∗ ≥ 0, (sign of the multipliers)

0 = ∇xL = g− JTw, (optimality)

0 = ∇sL =−w− y. (optimality)

The application of Newton’s method for a zero of these equations gives Newton equations that

are identical to the equations (5.14) above.

94

5.4 Form of General Problems

5.4.1 Upper and Lower Bounds on Constraints and Variables

Consider the case where there are both upper and lower bounds on constraints and

variables. The problem can be written as

minimize
x∈Rn

f (x)

subject to lC ≤ c(x)≤ uC, lX ≤ x≤ uX .

With shift variables, the problem can be rewritten as follows:

minimize
x∈Rn;lX ,uX∈Rn;lC,uC∈Rm

f (x)

subject to c(x)− lC + s≥ 0, uC− c(x)+ s≥ 0, s = 0

x− lX + t ≥ 0, uX − x+ t ≥ 0, t = 0.

Here LL,LU ,LX are matrices formed from rows of Im and EL,EU ,EX are matrices formed

from rows of In, so that we have upper bounds, lower bounds, and equalities on constraints and

variables respectively.

Appropriate equations can be formulated as described in Chapter 4. The detailed compu-

tations are given in Appendix A.

95

Chapter 6

Numerical Experiments

6.1 The implementation

Numerical results were obtained for the primal-dual trust-region method pdbtr. All

testing was done on problems taken from the CUTEst test collection (see Bongartz, Conn, Gould

and Toint [2] and Gould, Orban and Toint [20]).

Numerical results were obtained for MATLAB implementations of two variants of the

shifted interior method. Algorithm pdb is the shifted primal-dual method of Gill, Kungurtsev

and Robinson [13]. This method uses a modified Newton method with a conventional Armijo

line search. Algorithm pdbtr is the shifted primal-dual method with the trust-region method

discussed above.

Each CUTEst problem may be written in the form

minimize
x

f (x) subject to

ℓX

ℓS

≤
 x

c(x)

≤
uX

uS

 , (6.1)

where c : Rn 7→Rm, f : Rn 7→R, and (ℓX, ℓS) and (uX,uS) are constant vectors of lower and upper

bounds. In this format, a fixed variable or an equality constraint has the same value for its upper

and lower bounds. A variable or constraint with no upper or lower limit is indicated by a bound

of ±1020. The approximate Newton equations for problem (6.1) are derived in Appendix A. As

is the case for problem (NIPs) the principal work at each iteration is the solution of a reduced

96

(n+m)× (n+m) KKT system analogous to (5.13). Each KKT matrix was factored using the

MATLAB built-in command LDL. Exact second derivatives were used for all the runs.

For Algorithm pdb, if the KKT matrix is this matrix is singular or has more than m

negative eigenvalues, the Hessian of the Lagrangian H is modified using the method of Wächter

and Biegler [32, Algorithm IC, p. 36], which factors the KKT matrix with δ In added to H. At

any given iteration the value of δ is increased from zero if necessary until the inertia of the KKT

matrix is correct.

The relative performance of the solvers is summarized using performance profiles (in

log2 scale), which were proposed by Dolan and Moré [8]. Let P denote a set of problems used

for a given numerical experiment. For each method s we define the function πs : [0,rM] 7→ R+

such that

πs(τ) =
1
np

∣∣{ p ∈P : log2(rp,s)≤ τ
}∣∣ ,

where np is the number of problems in the test set and rp,s denotes the ratio of the number of

function evaluations needed to solve problem p with method s and the least number of function

evaluations needed to solve problem p. If method s failed for problem p, then rp,s is set to be

twice of the maximal ratio. The parameter rM is the maximum value of log2(rp,s).

The iterates were terminated at the first point that satisfied the conditions eP(x,s)< τP

and eD(x,s,y,w)< τD, where eP and eD are the primal and dual infeasibilities

eP(x,s) =

∥∥∥∥∥∥∥
 min

{
0, s
}

∥c(x)− s∥∞/max
{

1, ∥s∥∞

}

∥∥∥∥∥∥∥

∞

, (6.2a)

and

eD(x,s,y,w) =

∥∥∥∥∥∥∥∥∥∥

∥∇f (x)− J(x)Ty∥∞/σ

∥w− y∥∞

w ·min
{

1, s
}

∥∥∥∥∥∥∥∥∥∥

∞

, (6.2b)

with σ = max
{

1, ∥∇f (x)∥, max
{

1, ∥y∥
}
∥J(x)∥∞

}
. Similarly, the iterates were terminated at

97

an infeasible stationary point (x,s) if eP(x,s)> τP, min
{

0, s
}
≤ τP and eI(x,s)≤ τinf, where

eI(x,s) =
∥∥J(x)T(c(x)− s) ·min

{
1, s
}∥∥

∞
/σ . (6.3)

6.2 Numerical results

The runs were done using MATLAB version R2022b on an iMac Pro with a 3.0 GHz

Intel Xeon W processor and 128 GB of 800 MHz DDR4 RAM running macOS, version 10.14.6

(64 bit). Results were obtained for six subsets of problems from the CUTEst test collection.

The subsets consisted of 171 problems with no constraints (problems UC); 135 problems with

a general nonlinear objective and upper and lower bounds on the variables (problems BC);

212 problems with a general nonlinear objective, general linear constraints and bounds on the

variables (problems LC); 124 problems formulated by Hock and Schittkowski ([24]) (problems

HS); 372 problems with a general nonlinear objective, general linear and nonlinear constraints

and bounds on the variables (problems NC); and 117 problems with a quadratic objective, general

linear constraints and bounds on the variables (problems QP). The UC, BC, LC, NC and QP

subsets were selected based on the number of variables and general constraints. In particular, a

problem was chosen if the associated KKT system was of the order of 1000 or less. The same

criterion was used to set the dimension of those problems for which the problem size can be

specified. The nonsmooth problem hs87 was excluded from the Hock-Schittkowski problems.

All the MATLAB implementations were initialized with identical parameter values that

were chosen based on the empirical performance on the entire collection of problems. A

summary of the values is given in Table 6.1. The initial primal-dual estimate (x0, y0) was

based on the default initial values supplied by CUTEst. If necessary, x0 was projected onto the

set
{

x : ℓX ≤ x ≤ uX
}

to ensure feasibility with respect to the bounds on x. The iterates were

terminated at the first point that satisfied the conditions (6.2a)–(6.2b) or (6.3) defined in terms of

the constraints associated with problem (6.1).

Figures 6.1–6.6 present the performance profiles for the total number of iterations and

98

Table 6.1. Control parameters for Algorithms pdb and pdbtr.

Parameter Description Value

ymax, wmax Maximum allowed yE, wE 1.0e+6
µP

0 Initial penalty parameter for Algorithm 4.4 1.0e-4
µL

0 Initial flexible line-search penalty parameter for Algorithm 4.2 1.0
µB

0 Initial barrier parameter for Algorithm 4.4 1.0e-4
τ0 Initial termination tolerance for specifying an M-iterate 0.5
τP Primal feasibility tolerance (6.2a) 1.0e-4
τD Dual feasibility tolerance (6.2b) 1.0e-4
τinf Infeasible stationary point tolerance (6.3) 1.0e-4
χmax

0 Initial target for an O-iteration 1.0e+3
ηA Line-search Armijo sufficient reduction 1.0e-2
ηF Line-search sufficient reduction for ∥F∥ 1.0e-2
γA Line-search factor for reducing an Armijo step 1.0e-3
funb Unbounded objective 1.0e-9
kmax Iteration limit for all algorithms 500

function evaluations required to solve the 171 UC problems, 135 BC problems, 212 LC problems,

124 HS problems, 372 NC problems, and 115 QP problems successively. The profiles show that

the relative performance of trust-region interior method pdbtr depends on the problem category.

Fewer iterations and function evaluations than pdb are required for UC and BC problems, but

the performance is mixed on general problems. For each type of problems, the left figures give

the profiles for the number of function evaluations, and the right figures give the profiles for the

number of iterations.

99

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

171 UC problems

pdb
pdbtr
M&S

τ 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

171 UC problems

pdb
pdbtr
M&S

τ

Figure 6.1. Performance profiles for the primal-dual interior algorithms pdb, pdbtr, and pdbtrChol applied to 171
unconstrained (UC) problems from the CUTEst test set.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

124 HS problems

pdb
pdbtr

τ 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

124 HS problems

pdb
pdbtr

τ

Figure 6.2. Performance profiles for the primal-dual interior algorithms pdb and pdbtr applied to 124
Hock-Schittkowski (HS) problems from the CUTEst test set.

100

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

135 BC problems

pdb
pdbtr

τ 0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

135 BC problems

pdb
pdbtr

τ

Figure 6.3. Performance profiles for the primal-dual interior algorithms pdb and pdbtr applied to 135
bound-constrained (BC) problems from the CUTEst test set.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

115 QP problems

pdb
pdbtr

τ 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

115 QP problems

pdb
pdbtr

τ

Figure 6.4. Performance profiles for the primal-dual interior algorithms pdb and pdbtr applied to 115 quadratic
programs (QC) from the CUTEst test set.

101

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

213 LC problems

pdb
pdbtr

τ 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

213 LC problems

pdb
pdbtr

τ

Figure 6.5. Performance profiles for the primal-dual interior algorithms pdb and pdbtr applied to 213
linearly-constrained (LC) problems from the CUTEst test set.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

372 NC problems

pdb
pdbtr

τ 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

372 NC problems

pdb
pdbtr

τ

Figure 6.6. Performance profiles for the primal-dual interior algorithms pdb and pdbtr applied to 375
nonlinearly-constrained (NC) problems from the CUTEst test set.

102

Appendix A

Computation of Upper and Lower Bounds
on Contraints and Variables

Generally, problems with mixed constraints can be written as

minimize
x∈Rn

f (x)

subject to LLc(x)≥ ℓC, uC ≥ LUc(x), LXc(x) = hX ,

ELx≥−ℓX, uX ≥−EUx, EXx = bX ,

where LL,LU ,EL,EU are matrices consisting of rows of the identity matrices. The reformulation

and simplification of those equations will be complicated and they don’t change the essence of

the problem. Hence, for brevity, we only focus on the problems with upper and lower constraints:

minimize
x∈Rn

f (x)

subject to lC ≤ c(x)≤ uC, lX ≤ x≤ uX .

We can introduce slack variables to rewrite the problem as follows:

minimize
x∈Rn,lX ,uX∈Rn,lC,uC∈Rm

f (x)

subject to c(x)− lC + s≥ 0,uC− c(x)+ s≥ 0,s = 0,

x− lX + t ≥ 0,uX − x+ t ≥ 0, t = 0.

The computations in the rest of the appendix involve long equations and big matrices, and hence

will be done on landscape pages.

103

T
he

m
er

it
fu

nc
tio

n
is

M
(x
,s
,t
,w
,v
,y

1,
y 2
,z

1,
z 2

;µ
P
,µ

B
)
=

f(
x)
−

w
E

s+
1 2µ

P
∥s
∥2

+
1 2µ

P
∥s

+
µ

P
(w
−

w
E
)∥

2

−
vE

t+
1 2µ

P
∥t
∥2

+
1 2µ

P
∥t
+

µ
P
(v
−

vE
)∥

2

−
m ∑ j=

1

{ µ
B
[y

E 1]
jl

n
([c

(x
)
−

lC
+

s+
µ

B
e]

j) +
µ

B
[y

E 1]
jl

n
([c

(x
)
−

lC
+

s+
µ

B
e]

j·
[y

1]
j) −[

c(
x)
−

lC
+

s+
µ

B
e]

j·
[y

1]
j}

−
m ∑ j=

1

{ µ
B
[y

E 2]
jl

n
([u

C
−

c(
x)
+

s+
µ

B
e]

j) +
µ

B
[y

E 2]
jl

n
([u

C
−

c(
x)
+

s+
µ

B
e]

j·
[y

2]
j) −[

uC
−

c(
x)
+

s+
µ

B
e]

j·
[y

2]
j}

−
n ∑ i=

1

{ µ
B
[z

E 1
] i

ln
([x
−

lX
+

t+
µ

B
e]

i)} +
µ

B
[z

E 1
] i

ln
([x
−

lX
+

t+
µ

B
e]

i·
[z

1]
i) −[

x−
lX

+
t+

µ
B
e]

i·
[z

1]
i}

−
n ∑ i=

1

{ µ
B
[z

E 2
] i

ln
([u

X
−

x+
t+

µ
B
e]

i)} +
µ

B
[z

E 2
] i

ln
([u

X
−

x+
t+

µ
B
e]

i·
[z

2]
i) −[

uX
−

x+
t+

µ
B
e]

i·
[z

2]
i} .

A
s

w
e

di
d

be
fo

re
,w

e
in

tr
od

uc
e

no
ta

tio
ns

an
d

ap
pr

ox
im

at
io

ns
be

lo
w

:

W
=

di
ag
(w

i)
,

W
E
=

di
ag
(w

E i
),

,Y
E 1
=

di
ag
(y

E 1)
,

Y
E 2
=

di
ag
(y

E 2)
,

Y 1
=

di
ag
([

y 1
] j
),

Y 2
=

di
ag
([

y 2
] j
).

C
=

di
ag
(c i

(x
)) ,

X 1
=

di
ag
([

x−
lX

+
t+

µ
B
e]

i)
,

X 2
=

di
ag
([

uX
−

x+
t+

µ
B
e]

i)
,

D
P 1
=

µ
P
I m
,

D
P 2
=

µ
P
I n
.

S
=

di
ag
(s

i)
,

C
1
=

di
ag
([

c(
x)
−

lC
+

s+
µ

B
e]

j)
,

C
2
=

di
ag
([

uC
−

c(
x)
+

s+
µ

B
e]

j)
,

Y 1
=

di
ag
([

y 1
] j
),

Y 2
=

di
ag
([

y 2
] j
).

104

D
B
=
(C
−
L

C
+

S
+

µ
B
I)

Y
−

1
1

,
D

C
=
(U

C
−

C
+

S
+

µ
B
I)

Y
−

1
2

,

D
Q
=

µ
B
(C
−
L

C
+

S
+

µ
B
I)
−

2 Y
E 1
,

D
R
=

µ
B
(U

C
−

C
+

S
+

µ
B
I)
−

2 Y
E 2
,

π
W
=

π
W
(x
,s
)
=

w
E
−

1 µ
P
·s
,

π
V
=

π
V
(x
,t
)
=

vE
−

1 µ
P
·t
,

π
Y 1
=

π
Y 1
(s
)
=

µ
B
(C
−
L

C
+

S
+

µ
B
I)
−

1 yE 1,
π

Y 2
=

π
Y 2
(s
)
=

µ
B
(U

C
−

C
+

S
+

µ
B
I)
−

1 yE 2,

π
Z 1

=
µ

B
(X
−
L

X
+

T
+

µ
B
I n
)−

1 Z
E 1
,

π
Z 2

=
µ

B
(U

X
−

X
+

T
+

µ
B
I n
)−

1 Z
E 2
,

D
E
=
(X
−
L

X
+

T
+

µ
B
I n
)Z
−

1
1

,
D

F
=
(U

X
−

X
+

T
+

µ
B
I n
)Z
−

1
2

,

D
M
=

µ
B
(X
−
L

X
+

T
+

µ
B
I n
)−

2 Z
E 1
,

D
N

=
µ

B
(U

X
−

X
+

T
+

µ
B
I n
)−

2 Z
E 2
,

w
ith

th
e

ap
pr

ox
im

at
io

n
by

su
bs

tit
ut

in
g

π
W

w
ith

w
,a

nd
π

Y 1
,π

Y 2
w

ith
y 1
,y

2,
an

d
he

nc
e

w
e

ge
t

D
Q
=

C
−

1
1
·µ

B C
−

1
1

Y
E 1
=

C
−

1
1

Π
Y 1

≈
C
−

1
1

Y 1
=

D
−

1
B
,

D
R
=

C
−

1
2
·µ

B C
−

1
2

Y
E 2
=

C
−

1
2

Π
Y 2

≈
C
−

1
2

Y 2
=

D
−

1
C

,

µ
B Y
−

2
1

Y
E 1
=

D
B
Y
−

1
1

Π
Y 1
≈

D
B
,

µ
B Y
−

2
2

Y
E 2
=

D
C

Y
−

1
2

Π
Y 2
≈

D
C
,

D
M
=

X
−

1
1

µ
B
X
−

1
1

X
E 1
=

X
−

1
1

Π
Z 1
≈

X
−

1
1

Z 1
=

D
−

1
E
,

D
N
=

X
−

1
2

µ
B
X
−

1
2

X
E 2
=

X
−

1
2

Π
Z 2
≈

X
−

1
2

Z 2
=

D
−

1
F
,

µ
B
Z
−

2
1

Z
E 1
=

D
E

Z
−

1
1

Π
Z 1
≈

D
E
,

µ
B
Z
−

2
2

Z
E 2
=

D
F

Z
−

1
2

Π
Z 2
≈

D
F
.

105

T
hi

s
gi

ve
s

us
th

e
fa

ct
th

at
th

e
pe

rt
ur

be
d

N
ew

to
n’

s
eq

ua
tio

n
co

in
ci

de
w

ith
th

e
pa

th
-f

ol
lo

w
in

g
eq

ua
tio

n,
w

hi
ch

is

∇
F
=

 H
(x
,y

1
−

y 2
)

0
0

0
0
−

JT
JT
−

I n
I n

0
0

0
I m

0
I m

I m
0

0

0
0

0
0

I n
0

0
I n

I n

0
I m

0
D

P
0

0
0

0
0

0
0

I n
0

D
P

0
0

0
0

Y 1
J

Y 1
0

0
0

C
1

0
0

0

−
Y 2

J
Y 2

0
0

0
0

C
2

0
0

Z 1
0

Z 1
0

0
0

0
X 1

0

−
Z 2

0
Z 2

0
0

0
0

0
X 2

 ∆
x

∆
s

∆
t

∆
w

∆
v

∆
y 1

∆
y 2 z 1 z 2

 =
−

g
−

JT
y 1
+

JT
y 2
−

z 1
+

z 2

y 1
+

y 2
+

w

z 1
+

z 2
+

v

s+
µ

P
(w
−

w
E
)

t+
µ

P
(v
−

vE
)

y 1
·(c(

x)
−

lC
+

s) +
µ

B
(y

1
−

yE 1)

y 2
·(uC

−
c(

x)
+

s) +
µ

B
(y

2
−

yE 2)

z 1
·(

x−
lX

+
t)
+

µ
B
(z

1
−

zE 1
)

z 2
·(

uX
−

x+
t)
+

µ
B
(z

2
−

zE 2
)

 .

106

If
w

e
fu

rt
he

ri
nt

ro
du

ce

α
=

∆
y 1
−

∆
y 2
,

β
=

z 1
−

z 2
,

b
=
−

D
B
π

Y 1
+

D
P 1

π
W
+

D
P 1
(2

y 1
+

y 2
),

c
=
−

D
C

π
Y 2
−

D
B
π

Y 1
+

2D
P 1

π
W
+

3D
P 1
(y

1
+

y 2
),

e
=
−

D
E

π
Z 1
+

D
P 2

π
V
+

D
P 2
(2

z 1
+

z 2
),

f
=
−

D
F

π
Z 2
−

D
E

π
Z 1
+

2D
P 2

π
V
+

3D
P 2
(z

1
+

z 2
).

an
d

Λ
=

D
B
+

D
P 1
−
(D

B
+

D
C
+

4D
P 1
)−

1 (
D

B
+

2D
P 1
)2 ,

Θ
=

D
E
+

D
P 2
−
(D

E
+

D
F
+

4D
P 2
)−

1 (
D

E
+

2D
P 2
)2 ,

µ
=

b
−
(D

B
+

2D
P 1
)(

D
B
+

D
C
+

4D
P 1
)−

1 e,

ν
=

e−
(D

E
+

2D
P 2
)(

D
E
+

D
F
+

4D
P 2
)−

1
f,

w
e

ca
n

ha
ve

 H
+

Θ
−

1
−

JT

J
Λ

 ∆
x

α

 =
−

 g
−

JT
y 1
+

JT
y 2
−

z 1
+

z 2
+

Θ
−

1 ν

µ

 ,

107

w
he

re

β
=
−

Θ
−

1 (
∆

x−
ν
),

(D
E
+

D
F
+

4D
P 2
)z 2

=
−

f−
(D

E
+

2D
P 2
)β

,

(D
B
+

D
C
+

4D
P 1
)∆

y 2
=
−

c−
(D

B
+

2D
P 1
)α

,

∆
s
=

µ
P
π

V
+

µ
P
(z

1
+

z 2
)
+

µ
P
(∆

y 1
+

∆
y 2
),

∆
t=

µ
P
π

V
+

µ
P
(z

1
+

z 2
)
+

µ
P
(z 1

+
z 2
),

∆
w
=

w
+

y 1
+

y 2
+

∆
y 1
+

∆
y 2
,

∆
v
=

v+
z 1
+

z 2
+

z 1
+

z 2
.

Th
e

di
m

en
si

on
of

th
e

m
at

rix
eq

ua
tio

n
ha

s
be

en
si

gi
ni

fic
an

tly
re

du
ce

d,
w

he
re

th
e

co
ef

fic
ie

nt
m

at
rix

is
ju

st
a

2
by

2
bl

oc
k

m
at

rix
.

Fo
rt

he
tr

us
tr

eg
io

n
pr

ob
le

m
,w

e
ca

n
de

fin
e

ḡ
=

 g 0 0 ,
H̄

=

 H
0

0

0
0

0

0
0

0 ,
J̄
=

 0
I m

0

0
0

I n

J
I m

0

−
J

I m
0

I n
0

I n

−
I n

0
I n

 ,
D̄
=

 D
P 1

0
0

0
0

0

0
D

P 2
0

0
0

0

0
0

D
B

0
0

0

0
0

0
D

C
0

0

0
0

0
0

D
E

0

0
0

0
0

0
D

F

 .

108

T
he

n
th

e
eq

ua
tio

ns
ca

n
be

w
ri

tte
n

as H̄
+

2J̄
T

D̄
−

1 J̄
J̄T

J̄
D̄

 ∆
x̄

∆
ȳ =

−

 ḡ
−

J̄T
π̄
−

J̄T
(π̄
−

ȳ)

−
D̄
(π̄
−

ȳ)

 ,
w

he
re

x̄
=

 x s t ,
ȳ
=

 w v y 1 y 2 z 1 z 2

 ,
π̄
=

 π
W

π
V

π
Y 1

π
Y 2

π
Z 1

π
Z 2

 .

If
w

e
ch

oo
se

T̄ x
=

I,
T̄ y

=
D̄

,i
tc

an
be

w
ri

tte
n

in
th

e
fo

rm
 H̄

+
σ

I
−

JT

J̄
σ̄

D̄

 ∆
x̄

∆
ŷ =

−

 ḡ
−

J̄T
ȳ

D̄
(ȳ
−

π̄
) ,

w
he

re
σ̄
=
(1

+
σ
)/
(1

+
2σ

),
∆

ŷ
=
(1

+
2σ

)∆
ȳ.

109

D
efi

ne

α
=

∆
ỹ 1
−

∆
ỹ 2
,

β
=

∆
z̃ 1
−

∆
z̃ 2
,

b
=

D
B
(y

1
−

π
Y 1
)
−

σ
−

1 (
w
+

y 1
+

y 2
),

c
=

D
C
(y

2
−

π
Y 2
)
+

D
B
(y

1
−

π
Y 1
)
−

2σ
−

1 (
w
+

y 1
+

y 2
),

e
=

D
E
(z

1
−

π
Z 1
)
−

σ
−

1 (
v+

z 1
+

z 2
),

f
=

D
F
(z

2
−

π
Z 2
)
+

D
E
(z

1
−

π
Z 1
)
−

2σ
−

1 (
v+

z 1
+

z 2
),

an
d

Λ
=

σ̄
D

B
+

2σ
−

1 I m
−
[σ̄

D
B
+

σ̄
D

C
+

4σ
−

1 I m
]−

1 (
σ̄

D
B
+

2σ
−

1 I m
)2 ,

Θ
=

σ̄
D

E
+

2σ
−

1 I n
−
[σ̄

D
E
+

σ̄
D

F
+

4σ
−

1 I n
]−

1 (
σ̄

D
E
+

2σ
−

1 I n
)2 ,

µ
=

b
−
[σ̄

D
B
+

σ̄
D

C
+

4σ
−

1 I m
]−

1 (
σ̄

D
B
+

2σ
−

1 I m
)c
,

ν
=

e−
[σ̄

D
E
+

σ̄
D

F
+

4σ
−

1 I n
]−

1 (
σ̄

D
E
+

2σ
−

1 I n
)

f.

W
e

ca
n

ag
ai

n
si

m
pl

if
y

th
e

m
at

ri
x

eq
ua

tio
n

as
 H

+
Θ
−

1
−

JT

J
Λ

 ∆
x

α

 =
−

 g
−

JT
y 1
+

JT
y 2
−

z 1
+

z 2
+

Θ
−

1 ν

µ

 ,
w

hi
ch

ag
ai

n
on

ly
in

vo
lv

es
a

2
by

2
bl

oc
k

m
at

ri
x.

110

Bibliography

[1] Roberto Andreani, José Mario Martı́nez, and B. F. Svaiter. A new sequential optimality
condition for constrained optimization and algorithmic consequences. SIAM J. Optim.,
20(6):3533–3554, 2010.

[2] I. Bongartz, A. R. Conn, N. I. M. Gould, and Philippe L. Toint. CUTE: Constrained and
unconstrained testing environment. ACM Trans. Math. Software, 21(1):123–160, 1995.

[3] Marc G. Breitfeld and David F. Shanno. Computational experience with penalty-barrier
methods for nonlinear programming. Ann. Oper. Res., 62:439–463, 1996.

[4] A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson. An estimate for the condition
number of a matrix. SIAM J. Numer. Anal., 16(2):368–375, 1979.

[5] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. A globally convergent
Lagrangian barrier algorithm for optimization with general inequality constraints and
simple bounds. Math. Comput., 66(217):261–288, 1997.

[6] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-Region Methods.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.

[7] Gerard Debreu. Definite and semidefinite quadratic forms. Econometrica, 20:295–300,
1952.

[8] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with perfor-
mance profiles. Math. Program., 91(2, Ser. A):201–213, 2002.

[9] Anders Forsgren. Inertia-controlling factorizations for optimization algorithms. Appl.
Numer. Math., 43:91–107, 2002.

[10] Anders Forsgren and Philip E. Gill. Primal-dual interior methods for nonconvex nonlinear
programming. SIAM J. Optim., 8:1132–1152, 1998.

[11] E. Michael Gertz. Combination Trust-Region Line-Search Methods for Unconstrained
Optimization. PhD thesis, Department of Mathematics, University of California, San Diego,

111

1999.

[12] E. Michael Gertz and Philip E. Gill. A primal-dual trust-region algorithm for nonlinear
programming. Math. Program., Ser. B, 100:49–94, 2004.

[13] Philip E. Gill, Vyacheslav Kungurtsev, and Daniel P. Robinson. A shifted primal-dual
penalty-barrier method for nonlinear optimization. SIAM J. Optim., 30(2):1067–1093,
2020.

[14] Philip E. Gill and Daniel P. Robinson. A primal-dual augmented Lagrangian. Numerical
Analysis Report 08-2, Department of Mathematics, University of California, San Diego, La
Jolla, CA, 2008.

[15] Philip E. Gill and Daniel P. Robinson. A globally convergent stabilized SQP method. SIAM
J. Optim., 23(4):1983–2010, 2013.

[16] Philip E. Gill and Elizabeth Wong. Methods for convex and general quadratic programming.
Math. Program. Comput., 7:71–112, 2015.

[17] Philip E. Gill and Margaret H. Wright. Computational Optimization: Nonlinear Pro-
gramming. Cambridge University Press, New York, NY, USA, 2020. To be published in
2023.

[18] Donald Goldfarb, Roman A. Polyak, Katya Scheinberg, and I. Yuzefovich. A modified
barrier-augmented Lagrangian method for constrained minimization. Comput. Optim. Appl.,
14(1):55–74, 1999.

[19] Nicholas I. M. Gould. On modified factorizations for large-scale linearly constrained
optimization. SIAM J. Optim., 9:1041–1063, 1999.

[20] Nicholas I. M. Gould, D. Orban, and Philippe L. Toint. CUTEr and SifDec: A constrained
and unconstrained testing environment, revisited. ACM Trans. Math. Software, 29(4):373–
394, 2003.

[21] William W. Hager. Condition estimates. SIAM J. Sci. Statist. Comput., 5(2):311–316, 1984.

[22] M. D. Hebden. An algorithm for minimization using exact second derivatives. Technical
Report T.P. 515, Atomic Energy Research Establishment, Harwell, England, 1973.

[23] Nicholas J. Higham. FORTRAN codes for estimating the one-norm of a real or complex
matrix, with applications to condition estimation. ACM Trans. Math. Software, 14:381–396,
1988.

[24] W. Hock and K. Schittkowski. Test Examples for Nonlinear Programming Codes. Lecture

112

Notes in Econom. Math. Syst. 187. Springer-Verlag, Berlin, 1981.

[25] Jorge J. Moré and Danny C. Sorensen. Computing a trust region step. SIAM J. Sci. and
Statist. Comput., 4:553–572, 1983.

[26] Stephen G. Nash, Roman Polyak, and Ariela Sofer. Numerical comparison of barrier and
modified-barrier methods for large-scale bound-constrained optimization. In D. W. Hearn
and P. M Pardalos, editors, Large-Scale Optimization: State of the Art, pages 319–338.
Kluwer, Dordrecht, 1994.

[27] Jorge Nocedal and Ya-Xiang Yuan. Combining trust region and line search techniques. In
Advances in Nonlinear Programming (Beijing, 1996), volume 14 of Appl. Optim., pages
153–175. Kluwer Acad. Publ., Dordrecht, 1998.

[28] Roman A. Polyak. Modified barrier functions (theory and methods). Math. Program., 54(2,
Ser. A):177–222, 1992.

[29] Michael J. D. Powell. On the global convergence of trust region algorithms for uncon-
strained minimization. Math. Programming, 29(3):297–303, 1984.

[30] C. H. Reinsch. Smoothing by spline functions II. Numer. Math., 16:451–454, 1971.

[31] Andreas Wächter and Lorenz T. Biegler. Line search filter methods for nonlinear pro-
gramming: motivation and global convergence. SIAM J. Optim., 16(1):1–31 (electronic),
2005.

[32] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Math. Program., 106(1, Ser.
A):25–57, 2006.

113

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Overview
	Contributions of This Dissertation
	Notation and terminology

	Background
	Unconstrained Optimization
	Preliminaries
	Two Basic Optimization Methods
	Combination of Trust Region and Line Search

	Constrained Optimization
	Preliminaries
	Problems with Equality Constraints
	The Method of Newton-Lagrange
	Optimization Problems with Inequality Constraints
	Modified Barrier Function

	Computing the Trust-Region Step
	Solving the Trust-Region Subproblem
	A method based on zero-finding.
	The degenerate case.

	The Method of Moré and Sorensen
	Approximate solution of the trust-region subproblem.

	A safeguarded Newton iteration.
	The Implementation of the Moré-Sorensen Method
	Adapting Trust-Region Methods for Constrained Problems

	Primal-Dual Methods for Constrained Problems with Slacks
	A Modified Newton Method
	Definition of the modified-Newton matrix
	Solving the modified-Newton equations
	Relationship to primal-dual path-following

	A Line-Search Modified Newton Method
	A Trust-Region Modified-Newton Method

	Primal-Dual Methods for Constrained Problems with Shifts
	Preliminaries
	A Line-Search Method
	Approximate Solutions of the Trust Region Subproblem
	The path-following equations

	Form of General Problems
	Upper and Lower Bounds on Constraints and Variables

	Numerical Experiments
	The implementation
	Numerical results

	Computation of Upper and Lower Bounds on Contraints and Variables
	Bibliography

