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Ghost admixture in eastern gorillas

Harvinder Pawar1, Aigerim Rymbekova    2,3, Sebastian Cuadros-Espinoza1, 
Xin Huang    2,3, Marc de Manuel1, Tom van der Valk4,5, Irene Lobon    1, 
Marina Alvarez-Estape1, Marc Haber6, Olga Dolgova7, Sojung Han    1,2,3, 
Paula Esteller-Cucala    1, David Juan    1, Qasim Ayub    8,9, Ruben Bautista    8, 
Joanna L. Kelley    10, Omar E. Cornejo    10, Oscar Lao1, Aida M. Andrés11, 
Katerina Guschanski    12,13,14, Benard Ssebide15, Mike Cranfield16, 
Chris Tyler-Smith8, Yali Xue8, Javier Prado-Martinez1,8, 
Tomas Marques-Bonet    1,17,18,19,20   & Martin Kuhlwilm    1,2,3,20 

Archaic admixture has had a substantial impact on human evolution with 
multiple events across different clades, including from extinct hominins 
such as Neanderthals and Denisovans into modern humans. In great apes, 
archaic admixture has been identified in chimpanzees and bonobos but the 
possibility of such events has not been explored in other species. Here, we 
address this question using high-coverage whole-genome sequences from 
all four extant gorilla subspecies, including six newly sequenced eastern 
gorillas from previously unsampled geographic regions. Using approximate 
Bayesian computation with neural networks to model the demographic 
history of gorillas, we find a signature of admixture from an archaic ‘ghost’ 
lineage into the common ancestor of eastern gorillas but not western gorillas. 
We infer that up to 3% of the genome of these individuals is introgressed 
from an archaic lineage that diverged more than 3 million years ago from the 
common ancestor of all extant gorillas. This introgression event took place 
before the split of mountain and eastern lowland gorillas, probably more 
than 40 thousand years ago and may have influenced perception of bitter 
taste in eastern gorillas. When comparing the introgression landscapes of 
gorillas, humans and bonobos, we find a consistent depletion of introgressed 
fragments on the X chromosome across these species. However, depletion 
in protein-coding content is not detectable in eastern gorillas, possibly as a 
consequence of stronger genetic drift in this species.

Gorillas are a member of the great apes and form a sister clade to Homo 
(human) and Pan (chimpanzees and bonobos). Extant gorillas consist 
of four recognized subspecies, which cluster into two species, a west-
ern species of western lowland (Gorilla gorilla gorilla) and Cross River 
(Gorilla gorilla diehli) gorillas and an eastern species of eastern low-
land (Gorilla beringei graueri) and mountain gorillas (Gorilla beringei 
beringei)1. All gorilla subspecies are either endangered or critically 
endangered under IUCN criteria2–4.

The subspecies are distributed across western and eastern Africa 
in a non-continuous manner (Fig. 1a). The current geographic ranges of 
the different subspecies differ by size, continuity and ecology, impact-
ing connectivity and population sizes5. Western lowland gorillas are 
endemic to a largely continuous range of considerable size, whereas the 
other subspecies have much more fragmented distributions6. Likewise, 
western lowland gorillas exhibit the highest genetic diversity of the 
subspecies5,7,8, indicative of long-term high effective population sizes, 
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eastern lowland gorillas (Extended Data Table 1). We performed a princi-
pal component analysis (PCA; Methods) to ascertain whether the newly 
sequenced individuals cluster with individuals from the same subspe-
cies. The first PC separates western and eastern gorillas, as previously 
observed, and the second PC separates mountain gorillas from eastern 
lowland gorillas (Fig. 1b). Since the new individual from the isolated 
Mount Tshiaberimu population clusters within the distribution of the 
other eastern lowland gorillas (Fig. 1b), this individual is, as expected, 
considered a representative of this subspecies. The third PC reflects 
population stratification within western lowland gorillas, whereas 
the fourth PC separates the eastern gorillas, with the two mountain 
gorilla populations from Virunga and Bwindi at the extremes (Fig. 1c), 
explaining 3.2% of the variance. This is well in agreement with previ-
ous studies7,8.

ABC modelling favours a ghost lineage in eastern gorillas
To infer a demographic model for the four extant gorilla subspecies, we 
used a neural-network based ABC modelling strategy using windowed 
summary statistics and extensive simulations (Methods; Extended Data 
Fig. 1), based on a previous implementation in the Pan clade22. A main 
improvement is the implementation of a broad range of informative 
summary statistics (Supplementary Table 5), as is common practice 
for ABC studies in modern and ancient humans23.

We first established a demographic null model of the four popula-
tions (Extended Data Fig. 2a and Supplementary Fig. 5), on the basis 
of previous studies3,7,8,24–27. Notably, although none of these studies 
incorporated whole-genome data from all subspecies, our inferred 
parameters are largely coherent with previous work (Supplementary 
Tables 1 and 2). Nevertheless, unaccounted demographic events such 
as ancient population structure or ghost admixture could affect param-
eter estimates16, particularly given evidence in other great apes22. Initial 
exploratory analyses with f4-statistics and admixture graphs (Supple-
mentary Section 2) did not show any asymmetries between the four 
gorilla terminal populations, which would arise if ghost admixture had 
occurred in any of the individual subspecies. However, this does not 
exclude the possibility of ghost admixture into the common ancestor 
of eastern or western gorillas, which these methods cannot assess. To 
account for this and explicitly test if ghost admixture could improve 
the inferred null demographic model (model A), we considered two 

while eastern gorilla effective population sizes are smaller9. Mountain 
gorillas are currently isolated in two discrete areas, the Virunga Volca-
noes Massif and the Bwindi Impenetrable National Park. The Bwindi 
National Park is located at a lower elevation than the Virunga Volca-
noes and as such has warmer temperatures10,11. Previous studies of the 
demographic history of gorillas did not incorporate information from 
all subspecies and were not conclusive, especially about the divergence 
time between the eastern and western clade9,12–15. This might be due 
to gene flow from unsampled lineages, which is probably widespread 
but is often insufficiently considered in evolutionary studies16,17. While 
uncovering such hidden introgression events in gorillas is not pos-
sible from ancient DNA from fossil remains, as has been performed in 
humans18, it is possible to address such questions using genomic data 
from present-day individuals19–22.

To address this question, we use high-coverage whole-genome 
sequences of 28 western and 21 eastern gorillas. In addition to previ-
ously published genomes7,8, we sequenced the genomes of five moun-
tain gorillas from the Bwindi National Park and one eastern lowland 
gorilla from the isolated population of Mount Tshiaberimu. These 
new genomes contribute to a more complete representation of the 
genomic diversity of eastern gorillas. Using this expanded dataset, 
representing all four known gorilla subspecies, we explored the 
demographic history of gorillas and specifically the hypothesis of 
ghost introgression, defined as gene flow from an unsampled archaic 
lineage. Given its substantial impact in their sister taxa of Pan and 
Homo as well as many other species18,21,22, such ghost introgression 
events may explain some of the uncertainties in previous demo-
graphic models for gorillas. Using an approximate Bayesian com-
putation (ABC) approach, we find evidence for introgression from 
an extinct lineage into the common ancestor of eastern gorillas and 
characterize some of the functional consequences of this introgressed  
genetic material.

Results
Eastern gorillas form two population clusters
We newly sequenced six eastern gorillas to high coverage (on average, 
28.6×). After reprocessing the sequencing data from previous studies 
(Methods), we obtained a dataset of 49 individuals, with 27 western 
lowland gorillas, one Cross River gorilla, 12 mountain gorillas and nine 
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Fig. 1 | Gorilla samples used in this study. a, Present geographic distribution 
of eastern gorillas, with that of the four gorilla subspecies shown in the inset. 
The newly sequenced samples are given in black, numbers of previously 
sequenced eastern gorillas are given in colour. GBG, Gorilla beringei graueri 
(Eastern lowland gorilla, n = 9); GBB, Gorilla beringei beringei (Mountain gorilla, 

n = 12); GGG, Gorilla gorilla gorilla (Western lowland gorilla, n = 27); GGD, Gorilla 
gorilla diehli (Cross River gorilla, n = 1). Shape files for the distribution of gorilla 
subspecies were obtained from IUCN. b, PCA with PCs 1 and 2 shown. c, PCA with 
PCs 3 and 4 shown.

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-023-02145-2

more complex demographic models, in which we added the possibility 
of ‘ghost’ introgression into the common ancestor of eastern gorillas 
(model B) and western gorillas (model C). We assessed the robustness 
of our ghost models B and C using a wider parameter space (Supple-
mentary Figs. 8–10; Methods), resulting in coherent posteriors with 
those observed in models B and C (Supplementary Table 2), albeit 
with wider confidence intervals (CIs), as expected given the increased 
model complexity (Supplementary Fig. 8). We performed a formal 
comparison of these models (Methods), to determine which fits the 
empirical data best. Model B, with archaic gene flow to the common 
eastern ancestor had the highest posterior model probability of 0.9973, 
compared to models A (0.0027) and C (0) and a substantially higher 
Bayes factor (374 versus 0.0027 for model A and 0 for model C). In a 
cross-validation analysis, the model with archaic introgression into 
eastern gorillas was clearly distinguishable from the model without 
(Supplementary Table 3). We conclude that a model with archaic intro-
gression into the common eastern ancestor best explains the observed 
summary statistics in the empirical data (for full posterior distributions 
see Extended Data Fig. 3).

We infer that eastern gorillas experienced bottlenecks and gener-
ally had lower effective population sizes than western gorillas, while 
mountain gorillas and eastern lowland gorillas experienced a par-
ticularly strong population decrease (Supplementary Tables 1 and 2), 
as described previously8,24. We infer that the eastern subspecies split 
at 15,000 years ago (ka) (14–16 ka, 95% credible interval (CrI), Supple-
mentary Tables 1 and 2). In agreement with previous studies13, we see 
a population expansion in western lowland gorillas ~40 ka. Our null 
demographic model infers a large ancestral population size for western 
gorillas (effective population size, Ne = 98,135), in comparison to that of 
other gorilla populations, as well as a split between the western gorilla 
subspecies at ~454 ka (448–456 ka 95% CrI). Considering that not all 
summary statistics could be calculated for Cross River gorillas (where 
only one sample was available) and gene flow between western gorilla 
subspecies was not modelled, we caution that the confidence in this 
split time might be low. Finally, we infer that gorillas diverged into two 
species ~965 ka (729–1,104 ka 95% CrI), which is within the higher range 
of previous estimates9,12,28.

For simplicity, we modelled extant admixture as single migration 
pulses over one generation, finding a small contribution of gene flow 
from the common eastern ancestor to the western lowland gorillas of 
0.80% (0.06–2.14% 95% CrI), as well as from western lowland gorillas  
to the common eastern ancestor of 0.27% (0.22–0.43% 95% CrI). We  
infer a contribution of 2.47% of gene flow from an archaic source into  
the common ancestor of eastern gorillas, with a narrow 95% CrI of  
2.38–2.49% (Fig. 2c). We infer that this ghost population diverged from  
the extant gorilla lineages ~3.4 million years ago (Ma) (2.98–3.8 Ma, 95%  
CrI). We estimate the timing of this ghost gene flow to have occurred  
38,281 years ago, although the CrIs for this parameter are wide  
(22–108 ka, 95% CrI) (Fig. 2a,c). By contrast, the posterior distribu-
tions for the archaic introgression proportion and the gorilla–ghost 
divergence time have narrow CrIs, indicating a strong support with 
clear peaks for these parameters (Fig. 2c). In contrast, our ABC analysis 
of model C does not confidently infer a contribution of a deeply diver-
gent external lineage into the common ancestor of western gorillas. 
Instead, the best fit of this model suggests a 0.17% (0.09–0.4%, 95% CrI)  
contribution from an external lineage at ~1.1 Ma into the common 
ancestor of all extant gorillas (Supplementary Table 2). This marginal 
contribution is inferred to originate from an external lineage which 
diverged from extant gorillas 1.9 Ma (1.5–3 Ma 95% CrI).

The ghost introgression landscape in eastern gorillas
Having established that a model of ghost introgression into the com-
mon eastern ancestor provided the best fit to the empirical data, we 
aimed to identify the putative introgressed fragments in the genomes 
of eastern gorillas. To explore this landscape of ghost introgression, 

we implemented two independent approaches: the S* statistic19,20,29 
and the SkovHMM method or hmmix30. The S* statistic detects highly 
divergent windows relative to an outgroup, under a given demographic 
model, as introgressed sites19,20,29. Hence, the S* approach depends 
on the availability of a demographic model. By contrast, hmmix does 
not rely on a demographic model to identify putatively introgressed 
regions but instead uses the density of private mutations in the ingroup 
to partition the genome into ‘internal’ and ‘external’ fractions, walking 
in small windows of 1,000 base pairs (bp) along the genomes30. Hence, 
although both S* and hmmix target the same signature of ghost intro-
gression, the algorithms are distinct.

We simulated the expected null distribution of S* scores for east-
ern gorillas with posterior parameter estimates from model A, that 
is a model without ghost introgression. This yields insights into the 
presence of any outlier windows in our empirical data using the 99% 
confidence interval (CI) for expected S* scores, given the mutation 
density (number of segregating sites) in each window (Supplementary 
Fig. 11; Methods). Indeed, at this threshold we identify an excess of S* 
outlier windows, suggestive of introgression from an external source 
into the common ancestor of eastern gorillas: windows which fall 
outside the null expectation constitute, on average, 1.64% of eastern 
lowland genomes and 2.36% of mountain gorilla genomes, respectively 
(Supplementary Table 9).

We assessed the performance of the S* statistic using coales-
cent simulations where we could trace the introgressed fragments  
(Methods). The precision and recall are high, with a 90.96% detec-
tion rate of true introgressed fragments for eastern lowland gorillas 
(91.06% for mountain gorillas) at the 99% quantile (Fig. 2b, Extended 
Data Fig. 4 and Supplementary Table 7; Methods), comparable to the 
human–Neanderthal scenario31. Since the CrIs of the null demographic 
model encompass larger effective population sizes, which would lead 
to inflated rates of incomplete lineage sorting that might affect the 
expected distribution of S* scores, we also assessed how these param-
eters influence our findings. Using the maximum values within the 
95% CrIs, we find that the recall of the S* statistic remains high, while 
the precision falls to 55.82% for eastern lowland gorillas (53.33% for 
mountain gorillas), reflecting an increase in the false discovery rate, as 
expected. We conclude that the S* statistic performed well in detecting 
introgressed fragments under our null model, even when assuming 
misspecification of the null model.

Analogous to previous work22, we also used hmmix to detect intro-
gressed windows30, which performs well for the given demographic 
model (Fig. 2b), with precision and recall well above 80% (Supplemen-
tary Table 8). Considering the strong support for ghost admixture 
into eastern gorillas, we again used western lowland gorillas as the 
outgroup and eastern gorillas as the ingroup. We find that 1.48–2.97% 
of the individual eastern gorilla genomes are inferred as external at a 
strict threshold for the mean probability of 0.95, with an estimated 
introgression time of 37–41 ka.

While we observe sharing of the putative introgressed regions 
across the eastern species, sharing is higher within each subspecies, 
which again is more pronounced in the mountain gorillas than in the 
eastern lowland gorillas (Fig. 3a). This indicates that most of the puta-
tive introgressed regions are segregating rather than fixed. Pairwise 
nucleotide differences are elevated between eastern and western 
gorillas in putative introgressed regions in eastern gorillas, compared 
to random regions (Fig. 3b). Likewise, there is an excess of nucleo-
tide differences between individuals of the eastern subspecies in the 
putative introgressed regions, indicative of an archaic origin of these 
regions (Fig. 3b).

The overlap of the autosomal hmmix fragments and the S* outliers 
within each individual is, on average, 42% for eastern lowland gorillas 
and 51% for mountain gorillas (Supplementary Table 11). For random 
genomic regions passing filtering criteria, the observed overlap is, on 
average, 6% for eastern lowland and 8% for mountain gorillas, suggesting 
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that both methods detect to a large degree the same regions (Fig. 3c  
and Supplementary Table 14). We thus consider the regions in the 
intersect of the hmmix outliers and S* outliers as our high-confidence 
putative introgressed regions. The overlap between the two methods 
increases to 59% for eastern lowland and 68% for mountain gorillas, 
when using more lenient cutoffs for both methods, that is hmmix 
fragments of at least 40 kilobases (kb) and 95% CI S* outliers (Supple-
mentary Table 12). Mountain gorillas (with the exception of Turimaso) 
consistently exhibit higher proportions of overlapping base pairs of 
the two methods than do the eastern lowland gorillas (Supplementary 
Tables 11 and 12).

The interaction of selection and introgression
In contrast to archaic introgressed regions identified in humans and 
bonobos, the putative introgressed regions in eastern gorillas are not 
significantly depleted in genic content compared to random genomic 
regions (Fig. 3d). However, we find 127 megabases (Mb) of autosomal 
segments longer than 5 Mb that are depleted for introgressed frag-
ments (Fig. 4). Further, we observe a signal of depletion in archaic 
fragments on the X chromosome (Fig. 3f), on a scale comparable to 
observations in modern humans32 and bonobos22. The putative intro-
gressed regions of eastern lowland gorillas exhibit a slightly higher 
proportion of likely deleterious sites than do mountain gorillas, as esti-
mated by the GERP score (Fig. 3e). However, under alternate measures 

of mutational conservation (SIFT, PolyPhen-2 and LINSIGHT scores) the 
putative introgressed regions of both eastern gorilla subspecies follow 
random expectation (Supplementary Fig. 19). We also investigated 
the distribution of gorilla-defined regulatory element annotations 
from another study33. Here, across categories and populations, we 
only observe an excess of strong enhancers (sE) in mountain gorilla 
introgressed regions, compared to random regions (Supplementary 
Fig. 20). These are largely intragenic enhancers (Supplementary  
Fig. 21), which agrees with patterns of regulatory architecture observed 
in primate sE33.

Introgressed fragments can carry beneficial alleles and to explore 
signatures of adaptive introgression within eastern gorillas we applied 
the method VolcanoFinder34. VolcanoFinder scans the genome for 
a signal of a distorted local site frequency spectrum consistent with 
a selective sweep surrounding an introgressed allele. Outliers of the 
VolcanoFinder approach (95% composite likelihood ratio) within the 
putative introgressed regions identified above were considered puta-
tive targets of adaptive introgression. We identify seven candidate 
regions for adaptive introgression (Extended Data Table 2), three of 
which are shared between eastern lowland and mountain gorillas. The 
region with the highest likelihood ratio (LR) in VolcanoFinder (chr. 12: 
11090005–11324172; maximum LR = 246.2) contains the bitter taste 
receptor TAS2R14, within which we find several protein-coding changes 
(Supplementary Table 15).
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Fig. 2 | ABC-based demographic model. a, Model of gorilla population history 
with archaic admixture from an unsampled ‘ghost’ lineage into the common 
ancestor of eastern gorillas. The 95% CrI are shown for the archaic introgression 
proportion, timing of archaic introgression and archaic divergence (purple 
timeframes), inferred under ABC modelling. Numbers on blocks represent 
effective population sizes. b, Precision and recall of hmmix (at the 95% posterior 
probability cutoff) and S* (at the 99% quantile using sstar31) in simulated data 
using msprime. Precision (percentage of recovered introgressed fragments) and 
recall (percentage of true among inferred introgressed fragments) for hmmix 
and S* (for ELG, eastern lowland gorilla and MG, mountain gorilla). Dark bars 

represent performance using the model presented in a, light bars represent the 
‘worst’ model with large Ne, in the case of hmmix to simulate the data to detect 
fragments, in the case of S* to obtain the expected distribution of S* scores. 
c, Posterior distributions for the archaic introgression proportion, time of 
archaic introgression and gorilla–ghost split time. The grey line indicates the 
prior distribution. The red line represents the posterior inferred with neural 
networks. Neural networks reduce the dimensionality of the summary statistics 
used and account for possible mismatch between the observed and simulated 
summary statistics54.
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Discussion
Here, we present a demographic model inferred from representatives of 
all four extant gorilla subspecies, leveraging the most comprehensive 
dataset of gorilla genomes available to date and an improved estimate 
for gorilla mutation rate from extended pedigree data35. The newly 
sequenced whole genomes of mountain gorillas from Bwindi National 
Park are genetically close to those from Virunga but form a distinct 
cluster within their subspecies (Fig. 1b,c), confirming earlier results 
from microsatellite data36. Eastern lowland gorillas, as represented in 
our dataset, seem to form a genetically less differentiated population, 
which includes the individual from Mount Tshiaberimu. Nonetheless, 
sample size remains a limitation, as high-quality invasive samples are 
highly restricted for endangered species, given ethical and logistical 
constraints. A more fine-grained analysis of the evolutionary history 
and population structure of gorillas necessitates denser sampling, 
which most likely will only be possible through advances in the use of 
non-invasive samples. For example, a reconstruction of recent pat-
terns of connectivity has been demonstrated from a large panel of 
faecal samples from chimpanzees37. Furthermore, considering the 
rapid decline of great ape populations over the past centuries, more 

temporal sampling from historical specimens24,25 has the potential to 
be highly informative on variation lost over time.

Previous estimates of demographic parameters varied greatly 
under different models, methods and input data9,13–15. The ABC 
approach presented here leverages population-wise summary statis-
tics. However, since high-coverage, population-level whole genomes 
are not currently available for Cross River gorillas, a subset of the 
statistics could not be obtained for this subspecies (Methods; Supple-
mentary Table 5) and those calculated may be relatively less informative 
(for example, number of segregating sites). For all other populations, 
multiple individuals were included, yielding a better representation 
of their diversity in the summary statistics. As such, we have lower 
confidence in parameters involving Cross River gorillas, such as the 
relatively large divergence time inferred for the western lowland–Cross 
River split. This divergence time represents 47% of the inferred eastern–
western species split, compared to 26% estimated in a previous study 
which also inferred a more recent species split time13. We note that this 
difference may be attributed to our inclusion of more western lowlands 
gorillas, known to have high levels of population structure9,38,39. We 
also do not include gene flow between western lowlands and Cross 
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Fig. 3 | Characterization of introgressed fragments. a, Sharing of putative 
introgressed regions across eastern gorillas for autosomal regions detected 
using the S* statistic and hmmix. b, Pairwise nucleotide differences in 
introgressed regions (x axis) and in random regions (y axis) matched for length 
and proportion of positions with sufficient coverage (avoiding genomic regions 
without callable sites). Colours indicate the comparison: among eastern gorillas 
(EG–EG, green), among western gorillas (WG–WG, orange) and between eastern 
and western gorillas (EG–WG, purple). c, Percentage of overlapping base  
pairs in introgressed regions (red lines) and random regions (violin plots) for 
eastern gorillas. For details of the definition of random regions see Methods.  
d, Percentage of protein-coding content detected in introgressed regions  
(red lines) and random regions (violin plots) for eastern gorillas. e, Percentage 

of high impact GERP content detected in introgressed regions (red lines) 
and random regions (violin plots) for eastern gorillas. f, Autosome: X ratio of 
introgressed fragments inferred using hmmix for eastern gorillas (violin plots), 
with reference lines for the equivalent values for bonobos (red line) and humans 
(distribution as grey bar). In c–f: MG, mountain gorillas; EL, eastern lowlands. In 
c–f, data are presented in violin plots with overlaid boxplots, which represent 
the median and interquartile range (25th and 75th percentiles). In f, individual 
datapoints are additionally plotted as black circles. For c–e, the data in violin 
plots consist of population-wise means for n = 100 iterations of random genomic 
regions; for f, the data consist of hmmix fragments for n = 12 mountain gorillas 
and n = 9 eastern lowland gorillas.
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River gorillas as a parameter in our modelling, which would reduce 
divergence estimates.

The inferred deep divergence time between the two species is at 
the upper end of previous estimates and conservative for the detection 
of putatively introgressed windows under the null model, since larger 
S* scores would be expected to result from an increased number of seg-
regating sites22. Indeed, even approximate demographic models with 
large divergence times may allow a detection of external gene flow into 
a target population31. We demonstrate that the S* statistic performed 
well in detecting introgression under the null model inferred herein 
(model A), even if the true demography was deviating in terms of ances-
tral effective population sizes. Demographic modelling presented 
here finds the best model for gorilla demography to include archaic 
introgression from an unsampled ‘ghost’ lineage into the common 
ancestor of eastern gorillas. This accords with a growing literature on 
the prevalence of introgression from extinct lineages in humans21,40, 

bonobos22 and other species41,42, as well as theoretical predictions and 
simulations showing an impact of admixture from unsampled lineages 
that is probably common rather than exceptional16,17. Using extensive 
simulations, we find strong support for a model including archaic 
admixture into eastern gorillas, compared to a null model without such 
ghost admixture or a model of such an event in western gorillas. The 
latter may be rather considered similar to a model of deep substructure 
within gorillas, given the shallower times and small amounts of external 
gene flow inferred. However, we note that further ghost introgression 
events may exist beyond what we describe, for example with regards 
to much smaller amounts of ghost admixture into gorillas or with shal-
lower divergence times of the ghost lineages or in the context of larger 
effective population sizes in western gorillas.

Our inference of 2.47% of ghost introgression is associated with 
high confidence as the posterior distribution is well differentiated from 
that of the prior (Fig. 2c). This estimate agrees well with the estimates 
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Fig. 4 | Distribution of introgressed fragments. Outer circle: karyogram of 
the autosomes based on the human genome (hg19). Second circle from outside: 
introgression landscape in mountain gorillas (blue), as cumulative amount 
of introgressed material in sliding windows of 2 million base pairs, Mb). Third 
circle from outside: introgression landscape in eastern lowland gorillas (green) 

in sliding windows of 2 Mb. Inner circle: long regions depleted of introgression 
content are shown in orange (length ≥5 Mb) and purple (length ≥8 Mb). Grey: 
genomic regions with sufficient data (>20% of 40 kb windows passing threshold). 
White: genomic regions without sufficient data.
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of genome-wide introgression proportions per individual inferred 
using the S* statistic and hmmix (Supplementary Table 9). We probably 
underestimate the timing of archaic introgression, since shorter intro-
gressed fragments are more likely to be missed and another potential 
complication might be relatively high levels of homozygosity in eastern 
gorillas8, leading to increased haplotype lengths. Our definition of 
putative introgressed regions as the overlap of outliers inferred with 
both the S* and hmmix methods (Fig. 3c) is conservative and on the 
order expected for these methods, considering their relatively high 
false-positive rates31. Nonetheless, these methods are currently the 
only reliable tools available for detecting introgressed fragments in 
comparably small datasets of non-human species, without the avail-
ability of a source genome31.

A higher degree of sharing of putative introgressed fragments 
is observed among mountain gorillas than in eastern lowlands (Fig. 
3a). This is consistent with smaller effective population sizes of these 
populations, increasing the impact of drift on introgressed genetic 
variation18. High levels of genetic drift and reduced efficacy of natural 
selection probably also explain the absence of a detectable depletion 
of genic content in introgressed regions, in contrast to observations 
in introgressed material of humans and bonobos. Likewise, we do not 
observe a coherent signature in mutational tolerance in gorilla intro-
gressed material across different metrics, possibly due to genetic drift. 
Despite this, we do find some ‘introgression deserts’, that is regions 
depleted of introgressed material in the population (Fig. 4), possibly 
as a result of purifying selection18 shortly after the introgression took 
place. Furthermore, we observe a reduction of introgression on the X 
chromosome, as also seen in humans and bonobos22,30,32. This is prob-
ably a result of strong purifying selection against introgressed varia-
tion, as seen in humans and other species18,30,43, possibly as a result of 
a combination with multiple factors44. Biased dispersal patterns45 and 
high reproductive skew of gorilla males46 might have led to a further 
reduction of the male-haploid X chromosome in introgressed material. 
Even though the observed patterns are probably a combination of these 
factors, we can currently not discern their respective contributions.

We note that our definition of adaptive introgressed targets is 
highly conservative, as the intersection of the outliers of three differ-
ent methods S*, hmmix and VolcanoFinder as putative adaptive intro-
gressed targets. However, in being conservative we aim to minimize 
the impact of potential false positives, which is a known caveat of the 
VolcanoFinder method34,47. However, at present this is the only method 
available to localize signatures of adaptive introgression without a 
source genome. Interestingly, three candidate genes contain putative 
functional variants segregating in eastern gorillas and fixed ancestral 
in western gorillas. One of these genes is TAS2R14, which encodes a 
taste receptor implicated in perception of bitter tastes48 and contains 
six missense variants. Eastern gorillas typically have more herbaceous 
diets than the frugivorous western gorillas11, as such taste receptors 
are plausible targets of adaptive introgression in eastern gorillas.  
Bitter taste receptors have been suggested as targets of recent positive 
selection in western lowland gorillas as well, including a region encom-
passing TAS2R14 (ref. 13). It is possible that different mutations in the 
same region have been under selection in the different species. This 
could be interpreted in terms of the essential role of taste receptors 
to avoid toxicity. The gene SEMA5A contains a missense variant and a 
splice region variant; this gene has been associated with neural develop-
ment, with implications in autism spectrum disorder49. However, the 
functional impact of these variants in gorillas demands further work in 
the future. Here, we do not find a contribution of adaptive introgression 
to altitude adaptation, a phenomenon observed in humans and other 
species18,50. In mountain gorillas and eastern lowland gorillas at high 
altitude, this adaptation is probably driven by different mechanisms, 
such as the oral microbiome51.

In conclusion, our work contributes improved resolution to our 
understanding of the evolutionary history of eastern gorillas. Across 

individuals, we recover a putative 16.4% of the autosomal genome 
of an extinct lineage (Supplementary Table 13), adding to a growing 
literature revealing unsampled, now extinct lineages via analysis of 
variation present in present-day individuals.

Methods
Samples and sequencing
Six eastern gorillas were sequenced as part of this study. Five Bwindi 
mountain gorillas were sampled after death by the Mountain Gorilla 
Veterinary Project. One Mount Tshiaberimu individual was sampled 
under anaesthesia. Convention on the Trade in Endangered Species of 
Wild Fauna and Flora (CITES) permits were obtained for all samples. 
Sequencing was performed on the Illumina HiSeq X platform. Detailed 
information on all samples is provided in the Supplementary Materials 
(Extended Data Table 1).

Data processing
We integrated the newly sequenced samples alongside previously 
published, high-coverage genomic data7,8. Raw sequencing reads 
were mapped to the human hg19 reference genome, as described 
previously52. Given that the hg19 reference does not belong to any of 
the gorilla subspecies, equal mapping bias will be exerted across all 
gorillas in our dataset. This would not have been the case if the gorilla 
reference genome was used instead, as it might have introduced bias 
in amounts of allele sharing, as observed previously for chimpanzees 
and bonobos52. The final dataset derives from 49 gorillas of known 
subspecies: 12 mountain (Gorilla beringei beringei), 9 eastern lowland 
(Gorilla beringei graueri), 1 Cross River (Gorilla gorilla diehli) and 27 
western lowland (Gorilla gorilla gorilla) gorillas.

Processing of data to obtain genotypes followed procedures 
described in ref. 22. We used bcftools to retain genotypes with a cov-
erage larger than fivefold and lower than 101-fold, a mapping quality 
over 20, a proportion of MQ0 reads <10% and an allele balance >0.1 
at heterozygous positions; bedtools and jvarkit53 to filter the data by 
known repeats (RepeatMasker) and mappability (35 k-mer). Following 
a previous study22, we used the rhesus macaque reference genome 
(Mmul10) to infer ancestral allele states at each site and generate an 
ancestral binary genome, as implemented in the freezing-archer reposi-
tory (https://github.com/bvernot/freezing-archer). Only positions 
with genotype information in all individuals after filtering were used 
for calculating summary statistics for the demographic model and the 
S* analysis. For hmmix, missing data were allowed, genotypes were fil-
tered for known repeats and mappability and then an individual-based 
filtering was applied for sequencing coverage (depth 6–100), mapping 
quality (20) and retained only biallelic single nucleotide variants.

Demographic modelling
Null demographic model. To infer a reliable null demographic model 
for the four extant gorilla subspecies, we performed ABC modelling 
using the R package abc54 with neural networks, following a previously 
described strategy22. Previous demographic models did not include all 
of the four extant gorilla subspecies8,13. We first attempted a merging of 
these models (Supplementary Table 6) but in simulations this proved a 
poor fit to the empirical data in terms of the distributions of segregat-
ing sites, one of the main determinants of S* (Supplementary Fig. 3).

We used ms55 to simulate data and aimed to generate 35,700 coa-
lescent simulation replicates, of which 35,543 were successful, whereby 
per iteration we generated 2,500 windows of length 40 kb, randomly 
sampling from wide uniform priors informed by refs. 8,13,35 (Sup-
plementary Table 2). We sampled local mutation rates from a normal 
distribution with mean of 1.235 × 10–8 (mutation rate per generation), 
recombination rate from a negative binomial distribution with mean of 
9.40 × 10−9 and gamma of 0.5 and assumed a generation time of 19 years 
(ref. 35). We scaled the mean mutation rate to 1.976 (1.235 × 10−8 × win-
dow size of 40 kb × 4 × Ne of 1,000) with a scaled standard deviation of 
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0.460408 (1.976 × 0.233). We also scaled mean recombination rate to 
1.504 (9.40 × 10−9 × 4 × Ne of 1,000 × window size of 40 kb). Per window 
and per population, we calculated the following summary statistics: 
mean and standard deviations of heterozygosity, nucleotide diversity 
(pi) and Tajima’s D, as well as the number of population-wise fixed and 
segregating sites, the number of fixed sites per individual and pairwise 
FST (Supplementary Table 5). These measures constitute the input sum-
mary statistics for all ABC analyses performed in this section. Given 
that only one diploid sample is available for G. gorilla diehli, we did 
not use standard deviations of heterozygosity, nucleotide diversity 
and fixed sites per individual, as well as mean nucleotide diversity for 
this population.

We calculated the equivalent summary statistics normalized by 
data coverage for the empirical data, which had been prefiltered by 
repeats, mappability and sufficiently informative windows (>50% of 
sites with confident genotype calls in all individuals). We also filtered 
by sites fixed across all gorillas relative to the human reference genome. 
We accepted parameter values from the prior distribution if they gen-
erated summary statistics close to those of the empirical data. This 
was assessed using a tolerance of 0.005, logit transformation of all 
parameters and 100 neural networks in the ABC analysis.

Alternative demographic models. We performed parameter infer-
ence for two further demographic models, in which we allowed gene 
flow from a ‘ghost’ lineage into the common ancestor of (B) eastern 
gorillas (G. beringei beringei and G. beringei graueri) (Supplemen-
tary Table 2) and (C) western gorillas (G. gorilla gorilla and G. gorilla 
diehli) (Supplementary Table 2). For each alternate demographic 
model, as above, we performed ABC analysis using 35,700 simulation 
replicates, whereby per iteration we generated 2,500 windows of 
length 40 kb. We fixed parameters with narrow CrIs from model A, to 
reduce the complexity of these models. To assess the impact of fixing 
well-inferred parameters from the null model on subsequent ghost 
parameter inference and explore the ghost parameter space more 
fully we undertook a revised modelling approach (Supplementary 
Section 3.4). In these revised ghost models, we performed parameter 
inference sampling all parameters from priors, for ghost gene flow 
into the common ancestor of (D) eastern gorillas and (E) western 
gorillas (Supplementary Table 2). We observed a strong correlation 
between the estimated parameters of the original and the revised 
ghost models, albeit with wider posterior distributions for the revised 
models due to increased complexity and larger parameter space 
(Supplementary Section 3.4).

To compare the three main demographic models—(A) null demog-
raphy, (B) ghost gene flow into the eastern common ancestor and (C) 
ghost gene flow into the western common ancestor—we simulated 
10,000 replicates of 250 windows of 40 kb length, fixing the parameters 
as the weighted median posteriors for each model. To achieve an equal 
simulated timeframe (number of generations) in all models under 
comparison, we added a non-interacting ghost population to the null 
demography, with a divergence time between ghost and extant gorillas 
equal to that inferred under Model B above. To determine if the models 
could be differentiated from each other we performed cross-validation 
with the function cv4postpr (nval = 1,000, tol = 0.05, method = “neural-
net”). We calculated the posterior probabilities of each demographic 
model using the function postpr (tol = 0.05, method = “neuralnet”). 
The resulting confusion matrix is shown in Supplementary Table 3. 
We also performed cross-validation and model comparison for the 
five demographic models: (A) null demography, (B) ghost gene flow 
into the eastern common ancestor, (C) ghost gene flow into the west-
ern common ancestor, (D) revised model of ghost gene flow into the 
eastern common ancestor and (E) revised model of ghost gene flow 
into the western common ancestor, where we still observed model B 
having the highest support (Supplementary Table 4 and Supplemen-
tary Section 3.4).

Detecting introgressed fragments
Following refs. 20,22,29 we calculated the S* statistic using a customized 
version of the package freezing-archer, accommodating non-human 
samples. We calculated the S* statistic genome-wide in 40 kb windows, 
sliding every 30 kb, using the following test (i = ingroup) and reference 
(o = outgroup) populations: (1) GBG (G. beringei graueri-i and G. gorilla 
gorilla-o) and (2) GBB (G. beringei beringei-i and G. gorilla gorilla-o). For 
the S* analysis, 15,181,832 variants were included.

Identifying outliers for the S* statistic requires a distribution of 
scores for local mutation densities (represented by numbers of seg-
regating sites in the dataset) under a demographic scenario without 
introgression, as the null model. We used the weighted median poste-
riors for each parameter value from the above ABC analysis to generate 
simulated data, specifying the number of segregating sites in a stepwise 
manner (from 15 to 800 in steps of 5). For each stepwise segregating 
site (158 in total), we simulated 20,000 windows of length 40 kb, to 
which we applied the S* statistic for each of the scenarios (GBG and 
GBB). From this we obtained generalized additive models (GAMs) per 
scenario for three CIs (95%, 99% and 99.5%) using the R package mgcv, 
following the procedures described in detail in refs. 22,29. From these 
GAMs, we predicted the expected S* distributions under the null model 
without archaic introgression. Applying the GAMs to the empirical 
data we inferred whether any windows lay outside the expectation per 
scenario and per confidence interval, assessing CIs of 95%, 99% and 
99.5%. As such, the threshold of significance is defined as the 95%, 99% 
or 99.5% CI from the standard deviation for expected S* scores, given 
the mutation density22,29.

To assess the performance of the S* statistic under our null model 
and its robustness to model misspecifications, we performed valida-
tion analyses following ref. 31, using msprime56,57 simulations with 
explicit tracking of the introgressed fragments. Briefly, we simulated 
expected distributions of S* scores for the null model (model A) and 
for a model where the effective population sizes before 40 ka were set 
to the upper end of the 95% CrI (‘worst’ null model, in terms of highest 
expected amount of incomplete lineage sorting). We then simulated 
datasets of ten outgroup individuals (western lowland gorillas) and 
a single ingroup individual (eastern lowland or mountain gorillas) 
for model B and a model where the effective population sizes before 
40 ka were set to the upper end of the 95% CI (‘worst’ model B). We 
then obtained putatively introgressed fragments using the expected 
scores from either model A or the ‘worst’ null model (Supplementary 
Table 7). For each model, we performed 100 replicates and calcu-
lated the average precision and recall at different thresholds. For the  
S* approach, we used the quantiles of the S* statistic as thresholds, 
which range from 0 to 0.999.

In an independent approach to the S* statistic, we applied hmmix30. 
We obtained the input files for this method: weight files, local muta-
tion rates and individual observations files using scripts provided 
with the repository for hmmix (https://github.com/LauritsSkov/
Introgression-detection, as of 2 August 2018), as well as bcftools, bed-
tools, jvarkit and custom R scripts. The macaque allele (RheMac10 
assembly) was used for polarization of alleles. We then applied the 
method to the eastern gorillas using the following prior parameters: 
starting_probabilities = [0.98, 0.02], transitions = [[0.9995, 0.0005], 
[0.012, 0.988]], emissions = [0.05, 0.5]. We confirmed that using differ-
ent parameters did not affect the results. We used a recombination rate 
of 9.40 × 10−9 per site per generation and 19 years generation time with 
the median fragment length to estimate introgression time. Decod-
ing, that is assigning internal and external states to specific genomic 
regions, was done with the script provided with the repository. Puta-
tive external fragments were filtered for posterior probabilities of 0.9 
(lenient) or 0.95 (strict) and required to contain at least five private 
positions. We also conducted a performance analysis of hmmix on 
introgressed fragments in simulations of either model B or the ‘worst’ 
model B, with results similar to those for S* (Supplementary Table 8). 
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For performance testing the hmmix approach, we used the posterior 
probabilities estimated by hmmix as thresholds, which range from  
0 to 0.9999.

We note that only hmmix could be used to infer archaic intro-
gressed fragments on the X chromosome, due to the lack of a gorilla 
demographic model for the sex chromosomes.

Exploring introgressed regions
To obtain a consensus set of putative introgressed regions, we over-
lapped the autosomal outlier regions inferred under the two methods 
within each eastern gorilla. For this overlap, we calculated the percent-
age of overlapping base pairs, considering in turn each S* confidence 
interval (95%, 99% and 99.5%) and with and without a 40 kb length cutoff 
for hmmix regions identified under the strict threshold. Imposing 
a 40 kb length cutoff retains 76.7% of the total strict hmmix regions 
(Supplementary Tables 9 and 11). We consider the intersect of the S* 
99% outliers with the strict hmmix autosomal outliers, as our putative 
introgressed regions of high confidence. To determine whether the 
overlap obtained differed from random expectation we generated 
intersections of random regions, of equivalent distribution to the 
empirical data, for 100 iterations.

As a proxy for gene density we calculated the proportion of 
protein-coding base pairs within these regions of high confidence. 
As above, we compared this to the proportion of protein-coding base 
pairs within 100 iterations of random genomic regions, of equal length 
distribution as the putative introgressed regions within each eastern 
gorilla. We calculated pairwise nucleotide differences between indi-
viduals in the putative introgressed regions and in random genomic 
regions of equal length distribution and sufficient callable sites. This 
was conducted for three comparisons: (1) among eastern gorillas, (2) 
among western gorillas and (3) between eastern and western gorillas.

To assess mutational tolerance, we used GERP, SIFT, PolyPhen-2 
and LINSIGHT scores58–61. We calculated the proportion of high impact 
sites for GERP, SIFT and PolyPhen-2 scores and the mean LINSIGHT 
score within putative introgressed regions and random regions of equal 
length distribution and sufficient callable sites. To explore the impact 
of introgression on regulatory elements, we calculated the proportion 
of regulatory base pairs using gorilla-defined regulatory element 
annotations33, within putative introgressed and random regions of 
equivalent length and callability. This was assessed globally and per 
regulatory element type, considering poised, strong and weak, enhanc-
ers and promoters.

We further explored our putative introgressed regions of high 
confidence using PCA (Supplementary Fig. 13). This was generated 
using the biallelic sites in our putative introgressed regions. For com-
parison, we also generated PCAs of one random set of random regions, 
with equal length distribution of random regions as the putative intro-
gressed regions per eastern gorilla. The PCAs in Fig. 1 were generated 
using biallelic SNPs of random genomic regions of equivalent length 
distribution to the putative introgressed regions of GBB Bwiruka. This 
sample of random genomic regions is representative of the whole 
genome. All PCAs were generated with the R package adegenet62. We 
generated phylogenetic trees of our putative introgressed regions and 
one random replicate (Supplementary Fig. 14), using the ‘K80’ model 
of nucleotide substitution, using the adegenet package63. Haplotype 
networks were drawn using pegas64.

We localized introgression deserts by screening 1 Mb 
non-overlapping windows (bins) spanning the genome. We filtered 
out bins overlapping centromeres and those at the end of each chromo-
some which were <1 Mb in size. Per bin we calculated the frequency of 
putative introgressed regions falling within the bin, for each eastern 
gorilla. We also calculated data coverage of the bins and filtered by 
mean callable proportion >0.5. Deserts hence constitute bins where 
no eastern gorilla carried a putative introgressed region and which 
had a reasonable number of callable sites.

Plots were created with ggplot2 (ref. 65), circlize66 and pheatmap 
(https://github.com/raivokolde/pheatmap). Genomic ranges were 
analysed with the GenomicRanges package67.

Adaptive introgression
To explore signatures of adaptive introgression within eastern goril-
las, we applied the genome-wide scan VolcanoFinder34. To do so, we 
polarized the data to two outgroups. First, we polarized the human 
reference allele using the rhesus macaque allele and subsequently 
polarized the gorilla genotypes by this polarized allele representing 
the ancestral state. To obtain the allele frequency input files per chro-
mosome, we then filtered our data to only eastern gorilla genotypes 
at biallelic sites and also filtered out sites with multiple ancestral 
alleles (where polarization would be uncertain) and sites of reference 
homozygotes. The second input file required is an empirical unnormal-
ized site frequency spectrum (SFS), which we generated by obtaining 
the unfolded SFS, normalizing so all site categories sum to 1 and then 
filtering out the first category (the 0 entry). We called VolcanoFinder 
specifying ‘-big 1000, D = −1, P = 1, Model = 1’. For computational effi-
ciency, we performed the VolcanoFinder scan in blocks, whereby each 
chromosome was split into blocks of approximately equal numbers 
of base pairs. We placed a test site every 1,000 bp (-big 1000). We set 
D to −1, so VolcanoFinder iteratively tested a grid of values for genetic 
distance internally and selected the value that maximizes the likeli-
hood ratio34. We set P to 1 as our input data were polarized. We used 
Model = 1, following procedures applied to human data34, as well as 
non-human species68,69.

We took the 95% outliers of composite likelihood ratio scores 
calculated from VolcanoFinder and intersected these regions with our 
putative introgressed regions (identified above), to obtain putative 
adaptive introgressed targets. To explore potential functional con-
sequences, we assessed which genes and which mutations fall within 
the putative adaptive introgressed targets, using the Variant Effect 
Predictor annotation (v.83)70.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The six newly sequenced eastern gorilla samples are publicly available 
in the European Nucleotide Archive (ENA) under the project number: 
PRJEB12821. ENA accession numbers for all samples used in this study 
are given in Extended Data Table 1. The human reference genome (hg19) 
and the rhesus macaque reference genome (Mmul10/rheMac10) were 
downloaded from https://hgdownload.soe.ucsc.edu/goldenPath/. 
Precalculated GERP scores for hg19 were accessed from http://mendel.
stanford.edu/SidowLab/downloads/gerp/ and LINSIGHT scores for 
hg19 from https://rdrr.io/github/rcastelo/GenomicScores/src/inst/
scripts/make-data_linsight.UCSC.hg19.R.

Code availability
Scripts used for data analysis are available on Github under https://
github.com/h-pawar/gor_ghost_introg.
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Extended Data Fig. 2 | Demographic models A and C. A Null model of gorilla 
population history (only extant populations). 95% credible intervals are shown 
for all parameters inferred. B Alternate model allowing the possibility of ghost 
introgression into the common ancestor of western gorillas, resulted in a model 
of ancestral population structure being inferred. We note under a model of 

ghost gene flow to the western common ancestor, the posteriors indicate a small 
contribution to the common ancestor of all gorillas (consistent with ancestral 
substructure), rather than a defined pulse to the western common ancestor. In 
darker colours are the parameters inferred under this alternate model with their 
95% credible intervals.
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Extended Data Fig. 3 | Prior and posterior distributions for model B. 
Parameter distributions for all parameters inferred under the ABC model 
allowing gene flow from a ghost lineage into the common ancestor of eastern 

gorillas. Red indicates the posterior distribution inferred with neural networks. 
Black indicates the posterior distribution inferred under a rejection method. The 
dotted grey line indicates the prior distribution.
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Extended Data Fig. 4 | Performance of S* and hmmix. Precision-recall curves 
for the S* statistic as implemented in sstar31 and for hmmix. Main model refers 
to a model taking the weighted median posteriors from the ABC-based null 
demography presented herein (Extended Data Fig. 2A). Worst model refers to 
a model taking the maximum value of the 95% credible interval for all ancestral 
Ne parameters from the ABC-based null demography. For the S* statistic we 

consider the target population as alternately eastern lowland or mountain 
gorillas, eg Main Model EL. Worst mis-specified is where we generate simulated 
data under the worst model but run the S* analysis using the ‘quantile’ or outlier 
values inferred under the main model. Skov=hmmix method, EL=eastern lowland 
gorillas, M=mountain gorillas.
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Extended Data Table 1 | Information for gorillas analysed herein. 49 samples: 12 Gorilla beringei beringei (mountain 
gorillas), 9 Gorilla beringei graueri (eastern lowland gorillas), 1 Gorilla gorilla diehli (Cross River gorillas), 27 Gorilla gorilla 
gorilla (western lowland gorillas)

Subspecies Individual SRA ID Sex Country or origin Project

Mountain gorilla Bwiruka ERR2300765 F Uganda (Bwindi) this paper

Mountain gorilla Imfura ERS168207 M Rwanda (Virunga) Xue et al. 2015

Mountain gorilla Kaboko ERS168410 M DRC (Virunga) Xue et al. 2015

Mountain gorilla Kahungye ERR2300762 F Uganda (Bwindi) this paper

Mountain gorilla Katungi ERR2300763 F Uganda (Bwindi) this paper

Mountain gorilla Maisha ERS525616 F DRC (Virunga) Xue et al. 2015

Mountain gorilla Nyamunwa ERR2300764 F Uganda (Bwindi) this paper

Mountain gorilla Semehe ERR2300766 F Uganda (Bwindi) this paper

Mountain gorilla Tuck ERS168204 F Rwanda (Virunga) Xue et al. 2015

Mountain gorilla Turimaso ERS525618 F Rwanda (Virunga) Xue et al. 2015

Mountain gorilla Umurimo ERS525617 F Rwanda (Virunga) Xue et al. 2015

Mountain gorilla Zirikana ERS168174 M Rwanda (Virunga) Xue et al. 2015

Eastern lowland gorilla 9732_Mkubwa SRS396825 M DRC (Tulakwa) Prado-Martinez et al. 2013

Eastern lowland gorilla A929_Kaisi SRS396605 M DRC (Walikale) Prado-Martinez et al. 2013

Eastern lowland gorilla A967_Victoria SRS396876 F DRC Prado-Martinez et al. 2013

Eastern lowland gorilla Dunia ERS525621 F DRC (Walikale) Xue et al. 2015

Eastern lowland gorilla Itebero ERS168205 F DRC (Kahuzi-Biega) Xue et al. 2015

Eastern lowland gorilla Mukokya ERR2300767 M DRC (Mount Tshiaberimu) this paper

Eastern lowland gorilla Ntabwoba ERS168206 M DRC (Walikale) Xue et al. 2015

Eastern lowland gorilla Pinga ERS525620 F DRC Xue et al. 2015

Eastern lowland gorilla Tumani ERS525619 F DRC (Walikale) Xue et al. 2015

Cross river gorilla B646_Nyango SRS396855 F West Africa Prado-Martinez et al. 2013

Western lowland gorilla 9749_Kowali SRS396819 F unknown Prado-Martinez et al. 2013

Western lowland gorilla 9750_Azizi SRS396821 M Cameroon Prado-Martinez et al. 2013

Western lowland gorilla 9751_Bulera SRS396820 F Cameroon Prado-Martinez et al. 2013

Western lowland gorilla 9752_Suzie SRS394796 F unknown Prado-Martinez et al. 2013

Western lowland gorilla 9753_Kokomo SRS396849 F unknown Prado-Martinez et al. 2013

Western lowland gorilla A930_Sandra SRS396606 F Cameroon Prado-Martinez et al. 2013

Western lowland gorilla A931_Banjo SRS396826 M Cameroon Prado-Martinez et al. 2013

Western lowland gorilla A932_Mimi SRS396827 F Cameroon Prado-Martinez et al. 2013

Western lowland gorilla A933_Dian SRS396828 F Cameroon Prado-Martinez et al. 2013

Western lowland gorilla A934_Delphi SRS396829 F Congo Prado-Martinez et al. 2013

Western lowland gorilla A936_Coco SRS396830 F Equatorial Guinea Prado-Martinez et al. 2013

Western lowland gorilla A937_Kolo SRS396831 F Cameroon Prado-Martinez et al. 2013

Western lowland gorilla A962_Amani SRS396847 F unknown Prado-Martinez et al. 2013

Western lowland gorilla B642_Akiba_Beri SRS396852 F Cameroon Prado-Martinez et al. 2013

Western lowland gorilla B643_Choomba SRS396853 F West Africa Prado-Martinez et al. 2013

Western lowland gorilla B644_Paki SRS396854 F West Africa Prado-Martinez et al. 2013

Western lowland gorilla B647_Anthal SRS396856 F West Africa Prado-Martinez et al. 2013

Western lowland gorilla B650_Katie SRS396857 F West Africa Prado-Martinez et al. 2013

Western lowland gorilla KB3782_Vila SRS396870 F Congo Prado-Martinez et al. 2013

Western lowland gorilla KB3784_Dolly SRS396873 F Congo Prado-Martinez et al. 2013

Western lowland gorilla KB4986_Katie SRS396874 F unknown Prado-Martinez et al. 2013

Western lowland gorilla KB5792_Carolyn SRS396868 F Congo Prado-Martinez et al. 2013

Western lowland gorilla KB5852_Helen SRS396871 F Cameroon Prado-Martinez et al. 2013

Western lowland gorilla KB6039_Oko SRS396872 F unknown Prado-Martinez et al. 2013

Western lowland gorilla KB7973_Porta SRS396869 F unknown Prado-Martinez et al. 2013

Western lowland gorilla X00108_Abe SRS396850 M unknown Prado-Martinez et al. 2013

Western lowland gorilla X00109_Tzambo SRS396851 M unknown Prado-Martinez et al. 2013

SRA ID = Short Read Archive identifier; F = Female; M = Male; DRC = Democratic Republic of the Congo

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-023-02145-2

Extended Data Table 2 | Regions and genes with signatures of putative adaptive introgression

Eastern lowland gorillas

Region Genes Minimum LR Maximum LR

12:11051000-
11122000

TAS2R14, 
PRH2, TAS2R13 24.43 246.15

5:9061000-9111000, 
5:9315000-9503000 SEMA5A 26.75 27.97

1:191807000-
191925000 RP11-541F9.2 25.92 35.06

3:124338000-
124414000 KALRN 24.07 24.07

10:113899000-
113999000 GPAM 24.99 30.16

7:26805000-
27214000

SKAP2, HOXA1-
10 24.65 36.19

Mountain gorillas

12:11075000-
11121000

TAS2R14, 
PRH2, TAS2R13 24.43277 246.15161

5:9038000-9232000, 
5:9249000-9414000, 
5:9436000-9503000

SEMA5A 26.75713 27.97717

4:69349546-
69349547 TMPRSS11E 24.0434 24.0434

3:124318000-
124414000 KALRN 24.07903 24.07903

LR = Likelihood Ratio

http://www.nature.com/natecolevol
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The six newly sequenced eastern gorilla samples are publicly available in the European Nucleotide Archive (ENA) under the project number: PRJEB12821. ENA 
accession numbers for all samples used in this study are given in Table S1. The human reference genome (hg19) and the rhesus macaque reference genome 
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(Mmul10/rheMac10) were downloaded from https://hgdownload.soe.ucsc.edu/goldenPath/. Pre-calculated GERP scores for hg19 were accessed from (http://
mendel.stanford.edu/SidowLab/downloads/gerp/) and LINSIGHT scores for hg19 from (https://rdrr.io/github/rcastelo/GenomicScores/src/inst/scripts/make-
data_linsight.UCSC.hg19.R).
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Data exclusions One sample (Nkuhene) was excluded due to very low quality, with 80% of read duplicates and 2X average coverage.
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Blinding Not applicable, as no experimental conditions apply.
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