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A B S T R A C T   

Background: Oxidative stress from excess reactive oxygen species (ROS) is a hypothesized contributor to preterm 
birth. Per- and polyfluoroalkyl substances (PFAS) exposure is reported to generate ROS in laboratory settings, 
and is linked to adverse birth outcomes globally. However, to our knowledge, the relationship between PFAS and 
oxidative stress has not been examined in the context of human pregnancy. 
Objective: To investigate the associations between prenatal PFAS exposure and oxidative stress biomarkers among 
pregnant people. 
Methods: Our analytic sample included 428 participants enrolled in the Illinois Kids Development Study and 
Chemicals In Our Bodies prospective birth cohorts between 2014 and 2019. Twelve PFAS were measured in 
second trimester serum. We focused on seven PFAS that were detected in >65 % of participants. Urinary levels of 
8-isoprostane-prostaglandin-F2α, prostaglandin-F2α, 2,3-dinor-8-iso-PGF2α, and 2,3-dinor-5,6-dihydro-8-iso-PGF2α 
were measured in the second and third trimesters as biomarkers of oxidative stress. We fit linear mixed-effects 
models to estimate individual associations between PFAS and oxidative stress biomarkers. We used quantile g- 
computation and Bayesian kernel machine regression (BKMR) to assess associations between the PFAS mixture 
and averaged oxidative stress biomarkers. 
Results: Linear mixed-effects models showed that an interquartile range increase in perfluorooctane sulfonic acid 
(PFOS) was associated with an increase in 8-isoprostane-prostaglandin-F2α (β = 0.10, 95 % confidence interval =
0, 0.20). In both quantile g-computation and BKMR, and across all oxidative stress biomarkers, PFOS contributed 
the most to the overall mixture effect. The six remaining PFAS were not significantly associated with changes in 
oxidative stress biomarkers. 
Conclusions: Our study is the first to investigate the relationship between PFAS exposure and biomarkers of 
oxidative stress during human pregnancy. We found that PFOS was associated with elevated levels of oxidative 
stress, which is consistent with prior work in animal models and cell lines. Future research is needed to un-
derstand how prenatal PFAS exposure and maternal oxidative stress may affect fetal development.   
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1. Introduction 

Per- and polyfluoroalkyl substances (PFAS) are environmental 
chemicals of public health concern and clinical significance because of 
their ubiquity, toxicity, and persistence in humans (Sunderland et al., 
2019). Over 9,000 PFAS are in existence, and they are used in the 
manufacturing of consumer goods, where they are released into the 
environment and slow to break down (Sunderland et al., 2019). The 
most common exposure route is ingestion of water and food contami-
nated with PFAS, which poses a health risk for the mother and fetus 
during pregnancy. (Sunderland et al., 2019). An estimated 99 % of 
pregnant people are exposed to perfluorooctanoic acid (PFOA), per-
fluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), and 
perfluorohexane sulfonic acid (PFHxS) (Woodruff et al., 2011). These 
PFAS have also been found in follicular fluid, amniotic fluid, cord blood, 
fetal tissues, placenta, and breastmilk (Petro et al., 2014; Zhang et al., 
2013; Tao et al., 2008; Panagopoulos Abrahamsson et al., 2021). Studies 
show that these toxicants increase risk of reproductive disorders, 
including preeclampsia, miscarriage, preterm birth, and reduced fetal 
growth, which are the leading morbidities among mothers and infants 
worldwide (Chambers et al., 2021; Bommarito et al., Oct 2021; Gao 
et al., 2021). The cause of such adverse pregnancy outcomes is multi-
factorial, and therefore the underlying molecular mechanisms have been 
difficult to elucidate, but mounting evidence suggests prenatal PFAS 
exposure is a contributing factor (Gao et al., 2021). 

Oxidative stress in utero impacts the integrity and function of bio-
molecules and cells, thereby altering the normal course of pregnancy 
(Go and Jones, 2017; Marseglia et al., 2014). Environmental toxicants 
are a source of excess reactive oxygen species (ROS) in the perinatal 
period, as evidenced by recent population-based studies that demon-
strate metals, phthalates, organophosphate esters, polycyclic aromatic 
hydrocarbons, parabens, and phenols are associated with oxidative 
stress and its sequelae, oxidative damage and inflammation (Aung et al., 
2021; Ingle et al., 2020; Ferguson et al., Dec 2016; Watkins et al., 2015). 
Several adverse pregnancy and birth outcomes that are characterized by 
elevated levels of oxidative stress have also been linked to a high PFAS 
body burden (Aouache et al., 2018; Lembo et al., 2021; Eick et al., 
2020). Hence, there is growing interest in determining if oxidative stress 
arises from PFAS exposure during pregnancy. 

Experimental research and preliminary epidemiologic studies sug-
gest a relationship between PFAS exposure and oxidative stress based on 
systemic responses and cellular reactions. For example, blood PFAS 
levels perturbed redox-related pathways and biomarkers in proteomic, 
metabolomic, and lipidomic studies conducted in adults, including 
pregnant people (Salihovic et al., Dec 2020; Lu et al., 2019; Chang et al., 
2022). Cross-sectional studies have found that PFAS exposure is posi-
tively correlated with circulating levels of inflammatory and prooxidant 
markers in humans, albeit none have used isoprostanes, well-studied 
biomarkers of lipid peroxidation (Lu et al., 2019; Omoike et al., 2021; 
Lin et al., 2020). Other studies have reported higher immune cell counts 
and altered inflammatory responses among pregnant people, post-
partum mothers, and children environmentally exposed to PFAS 
(Omoike et al., 2021; Zota et al., 2018). In laboratory settings, PFAS 
have been shown to generate ROS and elicit inflammation in vivo and in 
vitro (Jiao et al., 2021; Kleszczynski et al., 2009; Ojo et al., 2021; Xu 
et al., 2022). Taken altogether, the growing body of literature indicates 
that PFAS exposure promotes oxidative stress, which may be particu-
larly detrimental to maternal and fetal health. 

To our knowledge, no study has investigated PFAS as promoters of 
oxidative stress during pregnancy, an important developmental period 
that necessitates improved risk assessment. We sought to address this 
gap by leveraging two integrated, prospective birth cohorts, the Illinois 
Kids Development Study (IKIDS) and Chemicals In Our Bodies (CIOB), to 
test the hypothesis that prenatal PFAS exposure is associated with 
elevated levels of oxidative stress biomarkers during pregnancy. 
Oxidative stress was assessed through the quantification of urinary F2- 

Isoprostanes (F2-IsoPs), which are often considered the “gold standard” 
biomarkers of oxidative stress since they indicate lipid peroxidation. The 
NIEHS-sponsored Biomarkers of Oxidative Stress Study (BOSS) 
compared commonly used biomarkers of oxidative stress and F2-IsoPs 
were shown to reflect endogenous lipid peroxidation – a hallmark of 
oxidative stress – in a time- and dose-dependent manner. Importantly, 
urinary F2-IsoPs are stable and specific molecules that are not affected 
by dietary lipids in humans, allowing for direct comparison across 
different populations, which is particularly advantageous for epidemi-
ological work (Roberts and Morrow, 2000). Herein, we included 8-iso-
prostaglandin-F2α (8-iso-PGF2α), an abundant and the most well-studied 
F2-IsoP isomer (Roberts and Morrow, 2000). We additionally included 
two of the major 8-iso-PGF2α metabolites, as they may be more sensitive 
than the parent compound when measured in urine (Dorjgochoo et al., 
2012). Finally, we included prostaglandin F-2α (PGF2α) as the fourth 
biomarker since it is isomeric to 8-iso-PGF2α and enzymatically derived, 
thereby reflecting inflammation pathways. 

2. Methods 

2.1. Study design and population 

Participants included in our study were a subset of participants 
enrolled in CIOB and IKIDS, which together make up the ECHO.CA.IL 
cohort (Eick et al., 2021). This subset includes those for whom serum 
PFAS and urinary levels of oxidative stress biomarkers were available 
(Total N = 428 with 225 from IKIDS and 203 from CIOB; Figure S1). 

A detailed description of the ECHO.CA.IL participants is provided 
elsewhere (Eick et al., 2021). Briefly, our study population is comprised 
of pregnant people with diverse sociodemographic backgrounds and 
geographic locations. Recruitment for IKIDS took place in Urbana- 
Champaign, Illinois at Christie Clinic and Carle Physicians Group 
while recruitment for CIOB took place in San Francisco, California at 
Zuckerberg San Francisco General, Moffitt Long, and Mission Bay Hos-
pitals. Inclusion criteria for IKIDS were as follows: less than 15 weeks 
gestation, between 18 and 40 years of age, not pregnant with multiples, 
spoke English as a primary language, low-risk pregnancy, not already 
enrolled in the study with another child, and resided within a 30-minute 
drive of Champaign, IL. Pregnant people were eligible for inclusion in 
CIOB if they were in their second trimester, at least 18 years of age, 
English or Spanish speaking, and not pregnant with multiples. The 
Institutional Review Boards at the University of Illinois at Urbana- 
Champaign approved IKIDS and the University of California, San Fran-
cisco, and Berkeley approved CIOB (approval numbers 09498, 10- 
00861, 2010-05-04, respectively). 

Upon enrollment in both cohorts, participants completed self- 
reported interview questionnaires that were used to ascertain informa-
tion on maternal age at delivery (years), maternal education (<college 
degree, college degree, or graduate degree), maternal race and ethnicity 
(white, Black, Asian/Pacific Islander, Latina, other/multi-racial), cur-
rent smoking status (yes, no), marital status (married or cohabitating 
with partner, single). Information regarding parity (no prior births, at 
least one prior birth) and pre-pregnancy body mass index (BMI, kg/m2) 
was obtained via medical record abstraction in CIOB and calculated 
from pre-pregnancy weight and height obtained via questionnaire in 
IKIDS. 

2.2. Measurement of PFAS exposure 

Serum samples were obtained from participants during the second 
trimester (median: 18 weeks gestation) and frozen at − 80 ◦C until 
analysis. Twelve PFAS were quantified at the Environmental Chemical 
Laboratory at the California Department of Toxic Substances Control 
(DTSC) using methods previously described in detail (Morello-Frosch 
et al., 2016). Briefly, the serum was thawed, then spiked with internal 
standards, and denatured. Extractions were subsequently obtained from 
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an automated Biotage rapid trace SPE Work Station and injected onto an 
automated on-line solid phase extraction method coupled to liquid 
chromatography and tandem mass spectrometry. 

A limit of detection (LOD) was calculated for each PFAS equal to 
three times the standard deviation of the blank concentration (Morello- 
Frosch et al., 2016). For values below the LOD, the machine read value 
was used if a signal was detected. If a machine read value was unavai-
lable, measurements were imputed with LOD/

̅̅̅
2

√
(Hornung and Reed, 

1990). A total of twelve PFAS were measured, including PFNA, PFOA, 
PFHxS, PFOS, 2-N-methyl-perfluorooctane sulfonamido acetic acid (Me- 
PFOSA-AcOH), perfluorodecanoic acid (PFDeA), and per-
fluoroundecanoic acid (PFUdA), perfluorododecanoic acid (PFDoA), 
perfluorooctane sulfonamide (PFOSA), perfluorobutane sulfonic acid 
(PFBS), 2-N-ethyl-perfluorooctane sulfonamido acetic acid (Et-PFOSA- 
AcOH), perfluoroheptanoic acid (PFHpA). We restricted our analysis to 
PFAS analytes detected in ≥65% of participants, which included PFNA, 
PFOA, PFHxS, PFOA, Me-PFOSA-AcOH, PFDeA, and PFUdA. 

2.3. Measurement of oxidative stress biomarkers 

Urine samples collected at up to two timepoints during pregnancy 
were analyzed for oxidative stress biomarkers by the Eicosanoid Core 
Laboratory at Vanderbilt University Medical Center (median 18 and 26 
weeks gestation, respectively). Prior to analysis, urine samples were 
frozen at − 80 ◦C. Liquid chromatography–triple quadrupole tandem 
mass spectrometry (LC/MS-MS) was used to quantify urinary levels of 8- 
iso-PGF2α, its two major metabolites 2,3-dinor-5,6-dihydro-8-iso-
prostane-prostaglandin-F2α (2,3-dinor-5,6-dihydro-8-iso-PGF2α) and 
2,3-dinor-8-isoprostane-prostaglandin-F2α (2,3-dinor-8-iso-PGF2α), and 
PGF2α. 

Prior to LC/MS analysis, the samples were purified by extraction on a 
Waters HLB 96-well microelution plate (Waters Corporation, Milford, 
MA USA). Sample wells were first washed methanol (200uL × 2) fol-
lowed by 25 % methanol in water (200uL × 2). The sample was then 
loaded into the well and washed with 400uL of a solution of 0.1 % formic 
acid/methanol (95/5, v/v). The wells were then washed with 200uL 
hexanes. Isoprostanes and metabolites were eluted from the plate with 
30uL 2-propanol/acetonitrile (50/50, v/v) into a 96-well collection 
plate containing 30uL water in each well. LC/MS was performed on a 
Waters Xevo TQ-XS triple quadrupole mass spectrometer connected to a 
Waters Acquity I-Class UPLC (Waters Corp., Milford, MA USA). Sepa-
ration of analytes was obtained using a Waters BEH C18 UPLC column 
(1.0 × 100 mm, 1.7um) with mobile phase A being 0.01 % formic acid in 
water and mobile phase B acetonitrile. The gradient elution began with 
30 % B and progressed linearly to 95 % B over 8 min at a flow rate of 
0.300 mL/min. 

Because 8-iso-PGF2α is synthesized from both non-enzymatic lipid 
peroxidation and prostaglandin-endoperoxide synthases pathways, we 
conducted a sensitivity analysis where we quantified the proportions of 
8-iso-PGF2α derived from each of the respective pathways using a ratio 
formula of 8-iso-PGF2α to PGF2α (van ’t Erve et al., 2015). First, we 
calculated the ratio of chemical lipid peroxidation (CLP) to 
prostaglandin-endoperoxide synthases (PGHS) with the equation CLP

PGHS =

− 0.996*(8− iso− PGF2α/PGF2α) +0.004
0.507*(8− iso− PGF2α/PGF2α) − 0.493 (van ’t Erve et al., 2015). Second, we 
calculated the absolute contribution of PGHS and CLP using a custom 
interface for the R package “Constrained Linear Mixed Effects” (CLME) 
that has been described in detail by (van ’t Erve et al., 2015). The 
“chemical fraction” reflects non-enzymatic lipid peroxidation resulting 
from oxidative stress involving free radicals, whereas the “enzymatic 
fraction” reflects prostaglandin-endoperoxide synthases and is more 
reflective of inflammation (van ’t Erve et al., 2017). 

Measured oxidative stress biomarkers with values below the LOD 
were imputed with LOD/

̅̅̅
2

√
(Hornung and Reed, 1990). We accounted 

for urinary dilution by correcting for specific gravity with the equation 

Oxc = Ox
(

SpGMedian − 1
SpG− 1

)
; where SpGMedian is the SpG population median 

(1.012 and 1.015 for CIOB and IKIDS, respectively). Ox is the uncor-
rected oxidative stress biomarker level and Oxc is the SpG-corrected 
oxidative stress biomarker level. For participants with oxidative stress 
biomarkers available at both timepoints (N = 428 unique participants, 
of which 225 had a measurement available at both timepoints; 
Figure S1), we used the geometric mean (GM) of the biomarker con-
centrations (Eick et al., 2020) as the primary outcome in our mixture 
analyses. If oxidative stress biomarkers were measured once, we used 
only that measure. 

2.4. Statistical analysis 

We analyzed the distribution of demographic characteristics using 
descriptive statistics and reported them as mean (±standard deviation 
[SD]) or frequency (%). The distribution of serum PFAS and urinary 
oxidative stress biomarkers were examined with detection frequency 
percentiles, GMs, and geometric standard deviations (GSDs). We natural 
log-transformed PFAS for downstream analyses to address positive 
skewness and improve model fits. Pearson correlation coefficients were 
estimated for PFAS concentrations and averaged oxidative stress 
biomarkers. 

We first modeled the unadjusted and adjusted associations between 
serum PFAS concentrations and urinary oxidative stress biomarkers 
levels using linear mixed-effects models with a random intercept for 
participant ID. This analytical approach allowed us to account for the 
repeated measures of oxidative stress biomarkers and maximize the 
usage of all available data. Covariates retained in adjusted models were 
selected based on the construction of a directed acyclic graph (DAG; 
Figure S2) and included maternal age, education, parity, pre-pregnancy 
BMI, gestational week of sample collection, and cohort. In linear mixed- 
effects models, PFAS were standardized to the population’s interquartile 
range (IQR). All statistical analyses were performed in R (Boston, MA, 
USA, Version 4.1.0). 

2.5. Mixture analysis 

We examined the joint effects of seven PFAS in relation to oxidative 
stress biomarkers using two approaches for modeling and parametrizing 
exposure mixtures, quantile g-computation and Bayesian kernel ma-
chine regression (BKMR). Together, these models inform the partial and 
cumulative dose–response relationships between a mixture of environ-
mental chemicals and health outcomes, which are often obscured by 
single pollutant models. Mixture models can also account for highly 
correlated co-exposures. All mixture models were adjusted for maternal 
age, education, parity, pre-pregnancy BMI, and cohort, and run on 
complete cases (N = 428; Figure S1). 

Our first approach, quantile g-computation, uses a parametric, 
generalized linear model-based implementation of g-computation (Keil 
et al., 2020). Quantile g-computation estimates the overall change in an 
oxidative stress biomarker corresponding to a simultaneous one-quartile 
increase in all PFAS included in the mixture. Quantile g-computation 
also allows each exposure in the mixture to have a positive or negative 
effect on the outcome, which is reflected with relative weights for each 
exposure that sum to one (Keil et al., 2020). 

In our second approach, we implemented BKMR to identify potential 
linear and non-linear associations and interactions between exposures. 
BKMR estimates a non-parametric high-dimensional exposure–response 
function using kernel machine regression (Bobb et al., 2015). BKMR was 
performed with 10,000 iterations and checked for convergence with the 
Markov chain Monte Carlo procedure. Linearity was assessed by exam-
ining univariate exposure–response functions, which reflect the rela-
tionship between levels of a single PFAS and levels of oxidative stress 
biomarkers, holding the remaining PFAS in the mixture constant at the 
median value. We assessed interaction using bivariate 
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exposure–response functions, which indicate evidence of interaction 
when lines are not parallel and/or overlapping. We calculated posterior 
inclusion probabilities (PIPs) to determine the relative importance of a 
given PFAS exposure on oxidative stress biomarkers. A traditional 
threshold of 0.5 was used to identify “important” predictors (Cathey 
et al., 2021). We then estimated the overall effect of the PFAS mixture by 
comparing the expected change in individual oxidative stress bio-
markers when all PFAS exposures were set at the first and third quartiles 
versus fixed at the median value. 

To determine if our results were robust against the influence of one of 
the two cohorts in ECHO.CA.IL, we conducted a series of sensitivity 
analyses in which linear mixed-effects, quantile g-computation, and 
BKMR models were stratified by cohort. Cohort-specific models were 
adjusted for maternal age, education, parity, and pre-pregnancy BMI. 
We also analyzed the single pollutant associations with 8-iso-PGF2α 
using the LOD/

̅̅̅
2

√
imputation procedure for PFAS detected below the 

LOD. 

3. Results 

The sociodemographic and clinical characteristics of the pregnant 
people included in this analysis were representative of all pregnant 
people enrolled in the ECHO.CA.IL cohort (Table 1). Of the 428 par-
ticipants included in our analytic sample, 63.6 % self-identified as white 
and 16.1 % self-identified as Latina. Most participants were married or 
cohabitating with their partner (93.2 %) and had attained a college or 
graduate degree (75.3 %). On average, the participants were 32 years of 
age and delivered at 39 weeks gestation (SD = 2.1) (Table 1). Approx-
imately half of the participants had at least one prior pregnancy (53.5 %) 
and delivered a female infant (54.4 %). The percentage of participants 
with gestational diabetes and gestational hypertension in the analytic 
sample was 15.7 % and 7.0 %, respectively. The sociodemographic 
characteristics were similar across the cohorts, although CIOB was more 
racially and ethnically diverse and a larger percentage of IKIDS partic-
ipants had a graduate degree (Table S1). 

Concentrations of PFNA, PFOA, PFHxS, PFOS, Me-PFOSA-AcOH, 
PFDeA, and PFUdA were detected in > 65 % of serum samples 
(Table 2). The GM concentration for these PFAS ranged from 0.05 ng/ 
mL to 2.03 ng/mL, with the highest observed for PFOS and the lowest 
observed for Me-PFOSA-AcOH. Oxidative stress biomarkers had a GM 
concentration between 0.89 ng/mL (for 8-iso-PGF2α) and 4.13 ng/mL 
(for 2,3-dinor-8-iso-PGF2α). The distribution of PFAS were similar when 
stratified by cohort (Table S2). Levels of 2,3-dinor-5,6-dihydro-8-iso- 
PGF2α were higher in CIOB, while levels of additional oxidative stress 
biomarkers were higher in IKIDS (Table S3). PFAS were moderately 
correlated with one another and weakly correlated with oxidative stress 
biomarkers (Figure S3). 

In adjusted linear mixed-effects models, we observed that an IQR 
increase in PFOS was marginally associated with elevated levels of 8-iso- 
PGF2α (β = 0.10, 95 % CI = 0, 0.20) and PGF2α (β = 0.12; 95 % CI =
-0.27, 0.51) (Fig. 1A; Table S4). An IQR increase in PFOA was moder-
ately associated with elevated levels of 8-iso-PGF2α and 2,3-dinor-5,6- 
dihydro-8-iso-PGF2α (β = 0.05, 95 % CI = -0.09, 0.19 and β = 0.56, 95 % 
CI = -0.34, 1.46, respectively) (Fig. 1A; Table S4). In contrast, the 
enzymatic fraction was reduced by each IQR increase in PFOA, PFNA, 
PFDeA, and PFUdA (Fig. 1A; Table S4). In models minimally adjusted for 
cohort, effects were similar to those observed in fully adjusted models 
(Table S4). Stratification by cohort revealed an IQR increase in most 
PFAS was consistently associated with elevated levels of oxidative stress 
biomarkers in IKIDS only, although confidence intervals were imprecise 
(Table S4). Lastly, the effect estimates obtained from linear mixed- 
effects models that included 8-iso-PGF2α as the outcome were similar 
across imputation methods, including machine read values versus LOD/ 
̅̅̅
2

√
(Table S5). 
In quantile g-computation, a simultaneous one-quartile increase in 

all PFAS was associated with a modest increase in 8-iso-PGF2α (β = 0.09, 
95 % CI = -0.07, 0.25) and PGF2α (β = 0.09, 95 % CI = -0.39, 0.56). 
Based on the magnitude of the weights obtained from quantile g- 
computation, the chemical fraction contributed the most to the overall 
mixture effect on 8-iso-PGF2α, which reflects the contribution of oxida-
tive stress (Table 3). Both of the 8-iso-PGF2α metabolites were inversely 
associated with the PFAS mixture, but 95 % confidence intervals 
included the null. Across oxidative stress biomarkers, PFOS was 
consistently identified as having the largest positive weight while PFNA 
was only assigned a negative weight (Fig. 1B). PFUdA had a positive 
partial effect, as suggested by its quantile g-computation weight, on the 
enzymatic fraction, which contrasted with the linear mixed-effect model 
results. This difference may be due to the consideration of co-exposures 

Table 1 
Characteristics of the pregnant people in this analysis and all pregnant people in 
the ECHO.CA.IL cohorts, 2014 – 2019.  

Characteristic Included (N ¼ 428) Overall 
(N ¼ 1,462) 

Maternal Age at Delivery (years) 
Mean (SD) 32 (4.9) 32 (5.1) 
Missing 0 (0) 46 (3.1)  

Pre-pregnancy Body Mass Index (kg/m2) 
Mean (SD) 26 (6.0) 26 (6.1) 
Missing 0 (0) 201 (13.7)  

Gestational Age at Delivery (weeks) 
Mean (SD) 39 (2.1) 39 (1.8) 
Missing 0 (0) 170 (11.6)  

Birth Weight (grams) 
Mean (SD) 3400 (590) 3400 (530) 
Missing 39 (9.1) 222 (15.2)  

Maternal Education 
< College Degree 106 (24.8 %) 405 (27.7 %) 
College Degree 130 (30.4 %) 412 (28.2 %) 
Graduate Degree 192 (44.9 %) 577 (39.5 %) 
Missing 0 (0 %) 68 (4.7 %)  

Maternal Race/Ethnicity 
White 272 (63.6 %) 787 (53.8 %) 
Black 20 (4.7 %) 81 (5.5 %) 
Asian/Pacific Islander 47 (11.0 %) 190 (13.0 %) 
Latina 69 (16.1 %) 321 (22.0 %) 
Other/Multi-Racial 20 (4.7 %) 63 (4.3 %) 
Missing 0 (0 %) 20 (1.4 %)  

Infant Sex 
Male 193 (45.1 %) 664 (45.4 %) 
Female 233 (54.4 %) 682 (46.6 %) 
Missing 2 (0.5 %) 116 (7.9 %)  

Parity 
1 + Births 229 (53.5 %) 726 (49.7 %) 
No Prior Births 199 (46.5 %) 612 (41.9 %) 
Missing 0 (0 %) 124 (8.5 %)  

Smoking Status 
Not Current Smoker 424 (99.1 %) 1236 (84.5 %) 
Current Smoker 4 (0.9 %) 30 (2.1 %) 
Missing 0 (0 %) 196 (13.4 %)  

Marital Status 
Married or Living Together 399 (93.2 %) 1234 (84.4 %) 
Single 29 (6.8 %) 112 (7.7 %) 
Missing 0 (0 %) 116 (7.9 %) 

Abbreviations: SD, standard deviation. 
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Table 2 
Distributions of second trimester serum levels of per- and polyfluoroalkyl substances (PFAS; ng/mL) and second and third trimester urinary oxidative stress biomarkers 
corrected with specific gravity (ng/mL) in the ECHO.CA.IL cohort, 2014 – 2019.       

Percentile 

Biomarker N % Above LOD % Machine readable Geometric Mean (Geometric SD) 5 25 50 75 95 

PFAS            
PFNA 428  97.90  99.53 0.28 (2.14) 0.08  0.18  0.29  0.42  0.79 
PFOA 428  99.77  99.77 0.75 (2.14) 0.21  0.45  0.81  1.23  2.17 
PFHxS 428  98.60  98.83 0.44 (2.87) 0.09  0.24  0.46  0.83  2.41 
PFOS 428  99.07  99.53 2.03 (2.47) 0.49  1.32  2.20  3.55  7.01 
Me-PFOSA-AcOH 428  90.42  95.79 0.05 (3.20) 0.01  0.02  0.05  0.09  0.25 
PFDeA 428  67.99  92.99 0.10 (2.50) 0.03  0.06  0.10  0.18  0.38 
PFUdA 428  70.33  92.52 0.06 (3.17) 0.01  0.03  0.07  0.14  0.36 
PFDoA 428  3.27  44.63 0.05 (3.66) 0  0.04  0.08  0.14  0.14 
PFOSA 428  7.71  41.36 0.01 (2.81) 0  0.01  0.01  0.02  0.02 
PFBS 428  1.17  42.06 0.01 (2.64) 0  0.01  0.02  0.02  0.02 
Et-PFOSA-AcOH 428  9.11  37.62 0.01 (2.23) 0  0.01  0.01  0.01  0.02 
PFHpA 428  15.19  54.21 0.02 (2.71) 0  0.02  0.02  0.04  0.07  

Oxidative Stress 
Measured 
8-iso-PGF2α 653  97.24  – 0.89 (2.29) 0.26  0.61  0.91  1.45  2.95 
2,3-dinor-5,6-dihydro-8-iso-PGF2α 653  78.10  – 1.09 (8.02) 0.03  0.56  1.45  4.16  21.40 
2,3-dinor-8-iso-PGF2α 653  98.93  – 4.13 (2.42) 1.21  2.77  4.32  6.78  13.13 
PGF2α 653  96.48  – 1.57 (3.77) 0.11  0.81  2.21  3.73  7.21  

Derived 
Chemical fraction 653  –  – 0.52 (2.76) 0.07  0.32  0.57  0.96  2.36 
Enzymatic fraction 653  –  – 0.09 (13.58) 0  0.03  0.32  0.53  1.08 

Abbreviations: SD, standard deviation; LOD, limit of detection. 
Note: There were 425 samples from visit 1 and 228 samples from visit 2. The geometric mean, standard deviation, and percentiles urine concentrations were corrected 
for specific gravity. Geometric mean, geometric SD, and percentile values use the machine read value if it was available. If there was no machine read value, missing 
values were replaced with LOD/square root of 2. 

Fig. 1. Associations between serum levels of per- and polyfluoroalkyl substances (PFAS; ng/mL) and urinary levels of specific gravity corrected oxidative stress 
biomarkers (ng/mL) during pregnancy in the ECHO.CA.IL cohort, 2014 – 2019 (N = 428). (A) Beta and 95 % confidence interval indicating the change in oxidative 
stress biomarkers in association with an interquartile range increase in individual PFAS, estimated using linear mixed-effect models; (B) Positive and negative weights 
representing the partial effects of PFAS in the mixture on individual oxidative stress biomarkers, estimated using quantile g-computation; (C) Cumulative effect and 
95 % credible intervals of the PFAS mixture on individual oxidative stress biomarkers, estimated using Bayesian kernel machine regression (BKMR). Note: Linear 
mixed-effects models adjusted for maternal age, education, parity, pre-pregnancy body mass index, cohort, gestational weeks at sample collection, and including a 
random intercept included for participant ID. Quantile g-computation and BKMR models are adjusted for maternal age, education, parity, pre-pregnancy body mass 
index, and cohort. 
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in the PFAS mixture analysis. In models stratified by cohort, increasing 
all PFAS in the mixture by one quartile was associated with slightly 
elevated levels of oxidative stress biomarkers among IKIDS only 
(Table S6). We observed PFOS to be the strongest driver of the overall 
mixture effect in both ECHO.CA.IL cohorts. Similarly, PFOA was 
assigned a positive weight across all oxidative stress biomarkers among 
IKIDS participants (Figure S4A). 

Using BKMR, we observed a non-significant, inverse association be-
tween the PFAS mixture and levels of 2,3-dinor-8-iso-PGF2α and 2,3- 
dinor-5,6-dihydro-8-iso-PGF2α (Fig. 1C). This trend was pronounced in 
CIOB relative to IKIDS (Figure S4B). The univariate exposure–response 
functions showed that for all oxidative stress biomarkers, PFOS had a 
positive, linear relationship whereas PFNA had a negative, linear rela-
tionship (Fig. 2). We did not observe interaction, as all PFAS had parallel 
bivariate exposure–response functions (Figures S5 – S10). Finally, BKMR 
did not identify any PFAS as being “important” exposures since all PIPs 
were < 0.5 and ranged from 0.01 to 0.49 in the overall sample 
(Table S7). 

Table 3 
Quantile g-computation estimates and 95 % confidence intervals for the change 
in urinary oxidative stress biomarkers corrected with specific gravity for a one 
quantile increase in the per- and polyfluoroalkyl substances mixture in the 
ECHO.CA.IL cohort, 2014 – 2019 (N = 428).  

Oxidative Stress Biomarker β (95 % CI) 

Measured 
8-iso-PGF2α 0.09 (-0.07, 0.25) 
2,3-dinor-5,6-dihydro-8-iso-PGF2α − 0.04 (-0.69, 0.61) 
2,3-dinor-8-iso-PGF2α − 0.33 (-1.01, 0.34) 
PGF2α 0.09 (-0.39, 0.56) 
Derived 
Chemical fraction 0.07 (-0.04, 0.17) 
Enzymatic fraction 0.02 (-0.06, 0.10) 

Abbreviations: CI, confidence interval. 
Note: Beta estimates are interpreted as the effect on oxidative stress biomarker 
of increasing every exposure in the mixture by one quantile. Models are 
adjusted for maternal age, education, parity, pre-pregnancy BMI, and cohort. 

Fig. 2. Univariate exposure–response functions and 95 % credible intervals for the change in urinary oxidative stress biomarker levels resulting from individual PFAS 
while holding all the remaining exposures in the mixture fixed at their median concentration, estimated using Bayesian kernel machine regression (BKMR) (N = 428). 
Note: Models are adjusted for maternal age, education, parity, pre-pregnancy body mass index, and cohort. 
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4. Discussion 

The objective of our study was to examine the associations between 
prenatal PFAS exposure and oxidative stress biomarkers among preg-
nant people enrolled in the ECHO.CA.IL cohort. We found the PFAS 
exposure mixture was not strongly related to urinary levels of iso-
prostanes during pregnancy. However, there was a consistent and pos-
itive trend between PFOS and biomarkers of oxidative stress throughout 
our single pollutant and mixture analyses, which warrants further 
investigation. 

In the present analysis, we estimated a modest, yet non-significant 
association, between the PFAS mixture and 8-iso-PGF2α. Our findings 
point to the difficulty of studying oxidative stress from environmental 
chemical exposure in humans. It is well-documented that PFAS induce 
ROS and propagate oxidative stress events, including lipid peroxidation, 
DNA damage, mitochondrial destabilization, reduced antioxidant ca-
pacity, and cytotoxicity in vivo and in vitro. For example, a mouse study 
found exposure to PFOA elevated pancreatic and hepatic levels of 8-iso- 
PGF2α (Kamendulis et al., 2014). In primary tilapia hepatocytes, PFOA 
also induced maleic dialdehyde, a biomarker of lipid peroxidation, in 
association with increased cytotoxicity, ROS, and activities of key 
antioxidant enzymes (e.g., superoxide dismutase, catalase and gluta-
thione reductase) (Liu et al., 2007). The two most commonly detected 
PFAS in humans, PFOA and PFOS, generate ROS and impact antioxidant 
defenses in zebrafish embryos and human cells from the liver, micro-
vascular endothelium, and umbilical vein (Shi and Zhou, 2010; Wielsoe 
et al., 2015; Qian et al., 2010; Liao et al., 2012). Exposure to PFAS is 
hypothesized to overwhelm and destabilize the mitochondria, thereby 
limiting the effective management of ROS (Jiao et al., 2021; Souders 
et al., 2021). Prolonged dysregulation of free radicals and antioxidant 
defenses in the mitochondria may prompt a cascade of cell death signals 
and pathways, ultimately resulting in cytotoxic effects (Kleszczynski 
et al., 2009). Select studies have suggested PFAS toxicity occurs inde-
pendently of oxidative stress but there are multiple lines of evidence to 
support these toxicants induce oxidative stress (Ojo et al., 2021; Crebelli 
et al., 2019). Given the inconsistencies in experimental literature and 
paucity of epidemiologic studies, additional research is needed to 
improve our understanding of the redox mechanisms impacted by PFAS 
exposure. 

A limited body of research has investigated the relationships be-
tween PFAS exposure and oxidative stress in humans, with no studies 
conducted among pregnant people or with 8-iso-PGF2α, a highly sensi-
tive and specific biomarker of oxidative stress. Prior work using National 
Health and Nutrition Examination Survey data from 2005 and 2012 
found that circulating levels of PFOS, PFNA, and PFHxS were positively 
correlated with iron, albumin, bilirubin, which suggests that PFAS 
exposure leads to an increase in circulating antioxidants, presumably to 
counteract oxidative stress (Omoike et al., 2021). Another cohort of 
adults from the general population in Taiwan demonstrated that serum 
PFAS concentrations increase levels of 8-hydroxy-2-deoxyguanosine (8- 
OHdG) and 8-nitroguanine, two biomarkers of oxidative and nitrative 
stress (Lin et al., 2020). Similarly, a randomized controlled trial of 141 
senior Koreans with elevated serum PFOS and PFDoDA concentrations 
also had higher urinary levels of malondialdehyde and 8-OHdG (Kim 
et al., 2016). Epidemiologic studies conducted in occupational settings 
have found comparable results. For example, forty adult workers at a 
Chinese fluorochemical manufacturing plant had depleted methionine 
sulfoxide activity, a potent scavenger of ROS (Lu et al., 2019). A separate 
investigation performed in China identified several relationships be-
tween environmental exposure to PFAS and perturbed metabolomic 
pathways involved in oxidative and nitrative stress among 181 adult 
males (Wang et al., 2017). While our study used different biomarkers of 
oxidative stress, our results build upon previous findings that exposure 
to certain PFAS may be associated with a rise in oxidative stress. 

Prior work, including work in this study population, has shown that 
prenatal PFAS exposure is linked to an increased risk of preterm birth 

and restricted fetal growth (Eick et al., 2022; Eick et al., 2020). Sys-
tematic reviews and meta-analyses of pregnancy cohorts have addi-
tionally found mothers exposed to higher levels of PFAS are more likely 
to experience reproductive tract dysfunction and give birth to children 
with acute and chronic health issues (Chambers et al., 2021; Rickard 
et al., 2022; Starnes et al., 2022; Ding et al., 2020; Liew et al., 2018). 
Induction of oxidative stress may provide a mechanistic explanation for 
these associations. Urinary levels of isoprostanes in our study population 
are comparable to other studies which have found increased risk of 
adverse birth outcomes, including preterm birth (Eick et al., 2020; 
Arogbokun et al., 20212021; Morales et al., 2022; Eick et al., 2022). For 
example, prospective cohort studies of pregnant people in the mainland 
United States and Puerto Rico have demonstrated that elevated levels of 
8-iso-PGF2α and 2,3-dinor-5,6-dihydro-8-iso-PGF2α are associated with 
any preterm birth as well as preterm birth of spontaneous origin (Eick 
et al., 2020; Rosen et al., 2019). Second trimester 8-iso-PGF2α levels are 
also higher in preeclamptic pregnancies compared to normotensive 
pregnancies. (Ferguson et al., 2017) Pregnant people with increased 
levels of 8-iso-PGF2α, PGF2α, and 2,3-dinor-5,6-dihydro-8-iso-PGF2α have 
a greater risk of developing intra-amniotic infection and gestational 
diabetes and delivering small-for-gestational age and lower birthweight 
infants (Arogbokun et al., 20212021; Hsieh et al., 2012; Park et al., 
2016; Kapustin et al., 2020). Collectively, these adverse pregnancy and 
birth outcomes constitute a substantial portion of the disease burden in 
pregnant populations and many have been linked to prenatal PFAS 
exposure. Further, infants may be uniquely sensitive to changes in levels 
of isoprostanes, which have bioactive roles in vascularization and res-
piratory development in the postnatal period (Matthews et al., 2016; 
Chen et al., 2012). Hence, it remains an important public health 
initiative to identify risk factors for elevated oxidative stress during 
pregnancy, as this information may aid in the development of preven-
tive, diagnostic, and therapeutic targets for improved maternal and child 
health. 

The present analysis has several strengths. First, we leveraged single 
pollutant models to account for the repeated measures of oxidative stress 
biomarkers in the second and third trimesters among almost half of the 
pregnant participants. Evidence obtained from the linear mixed-effects 
models was further enriched by the two mixture modeling approaches, 
which enabled us to characterize partial and cumulative dose–response 
relationships. Single pollutant models may not accurately portray real- 
life exposures, as in reality, we are exposed to complex mixtures of 
environmental chemicals, the components of which may interact or 
have a joint effect on health outcomes. Second, urinary oxidative stress 
biomarkers were assessed using mass spectrometry. This method is 
preferred over blood samples analyzed by enzyme-linked immunoas-
says, which are subject to auto-oxidation during storage (Morrow et al., 
1990; Klawitter et al., 2011). Third, we included two metabolites of 8- 
iso-PGF2α as they are hypothesized to be more sensitive than the parent 
compound when measured in urine (Dorjgochoo et al., 2012). Lastly, we 
examined the chemical and enzymatic fractions of 8-iso-PGF2α, which 
allowed us to quantify the proportion of 8-iso-PGF2α derived from 
oxidative stress and inflammation pathways. 

We also acknowledge several limitations in our study. Our sample 
size is relatively small, which limited our statistical power, and this 
imprecision is reflected in our confidence intervals. Short chain PFAS, 
including PFDoA, PFOSA, PFBS, Et-PFOSA-AcOH, and PFHpA, were also 
detected in less than 50 % of our participants, which hindered our ability 
to examine their effects on oxidative stress biomarkers. Further, we did 
not correct for multiple comparisons, but rather focused on identifying 
patterns, as opposed to an overreliance on statistical significance 
(Rothman, Jan 1990). The mixture methods applied in our analysis do 
not account for toxicological effects of each PFAS congener. We also do 
not have information on participants’ physical activity, which may have 
an effect on oxidative stress levels. Lastly, as with all observational 
studies, our results may not be generalizable to other populations and 
may be subject to residual confounding. 
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5. Conclusion 

To our knowledge, this is the first study to examine associations 
between prenatal PFAS exposure mixtures and oxidative stress 
biomarker levels. Among participants enrolled in the ECHO.CA.IL birth 
cohort, we observed that prenatal PFOS exposure was associated with 
modestly elevated levels of oxidative stress biomarkers. The six addi-
tional PFAS included in our analysis had null and/or weak associations 
with isoprostanes. Our findings advance the current state of science on 
how PFAS, in particular PFOS, may affect maternal redox homeostasis 
during pregnancy. Quantification of additional PFAS not measured in 
our study may reveal greater insight into cumulative effects on oxidative 
stress. Further research is needed to confirm our findings in other pop-
ulations with larger sample sizes and should investigate oxidative stress 
as a mediating pathway between PFOS exposure and adverse repro-
ductive and perinatal health outcomes. 
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Velasco, J.A., Avilés-Plaza, F.V., Martínez-Villanueva, M., Ballesteros-Meseguer, C., 
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