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SEQUENTIAL CLASSIFICATION ON PARTIALLY ORDERED SETS

Curtis Tatsuoka1 and Thomas Ferguson2

1Department of Statistics, The George Washington University, Washington, DC 20052, USA
2Department of Statistics, UCLA, Los Angeles, CA 90095, USA

Abstract

A general theorem on asymptotically optimal sequential selection of experiments is pre-
sented and applied to a Bayesian classification problem when the parameter space is a
finite partially ordered set. The main results include establishing conditions under which
the posterior probability of the true state converges to one almost surely, and determining
optimal rates of convergence. Properties of various classes of experiment selection rules
are explored.

KEY WORDS: partially ordered set, cognitive diagnosis, group testing, sequential
selection of experiment, optimal rates of convergence, Kullback-Leibler information.

1. Introduction: Background and Motivation.

Partially ordered sets are natural models for many statistical applications. As an
example of how partially ordered sets (posets) can be used in cognitively diagnostic analysis
and computerized intelligent tutoring systems, consider the following example (e.g. see K.
Tatsuoka (1995)). Suppose a student is to be tested on a certain subject domain for which
there is a known finite set of knowledge states, denoted by S. It is of interest to determine
the student’s knowledge state in S. Responses from sequentially selected test items (i.e.
experiments) will be used to classify the person into one of the states. A natural model
for S is to assume that certain states are at higher levels than others. Two states i and j
in S may be related to each other in the following manner. If a student in state i has the
knowledge to answer correctly all the test items that a student can who is in state j, we
denote this by j ≤ i. It is thus natural to assume that S is a partially ordered set.

Another example of the use of partially ordered sets in statistics with a rich body of
literature, is group testing, originated by Dorfman (1943) (see also Ungar (1960), Sobel
and Groll (1959) and (1966), Yao and Hwang (1990), and Gastwirth and Johnson (1994)).
This is the problem of identifying all defectives in a set of finite objects by experiments
that find for a given subset if there is at least one defective in the subset. Note that the
classification states, consisting of all subsets of the objects, can also be viewed as partially
ordered.

In general, an experiment consists in observing a random variable or vector, X, whose
distribution depends on the true unknown state, call it s ∈ S. We assume that for each
experiment e and state s ∈ S, the corresponding class conditional response distribution of
X has some density f(x|e, s). We assume that the prior distribution of the true state is
known, and consider the Bayesian approach. The basic problem is to choose a sequence
of experiments sequentially and a stopping rule to determine the true state as quickly as
possible.
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An experiment is said to partition S in the sense that states in the same partition
share the same response distribution. We give special consideration to the case when S is
a finite poset and experiments are associated with a state e ∈ S in such a way that the
distribution of X has density f(x) if e ≤ s, and density g(x) otherwise. Such experiments
partition S into two subsets. In the context of cognitive diagnosis, this can be interpreted
as an experiment, e ∈ S, eliciting one distribution of response, f(x), if the true state of
the subject has at least the knowledge contained in state e, and another distribution of
response, g(x), otherwise. As an example, f and g could be the densities for Bernoulli
responses with corresponding probabilities of success pu and pl, where pu > pl. The value
1 − pu could represent the probability of making a careless mistake on a test item, while
pl could represent the probability of making a lucky guess. In group testing, experiments
also have two partitions in S. One of these partitions consists of the union of the states
which contain at least one of the objects being tested.

The most basic partially ordered set of interest is the two-element lattice, S = {0̂, 1̂}
with 0̂ < 1̂. For this particular model, there is no choice of experiment to complicate the
analysis, since experiments associated with state 0̂ give no information. Indeed, it is a test
of two simple hypotheses, and the literature concerning the sequential probability ratio
test (SPRT) applies directly here (as in Ferguson (1967) or Chernoff (1972)).

This research is an extension of the work done in cognitive diagnosis by Tatsuoka
and Tatsuoka (1987), Tatsuoka (1990), and Tatsuoka (1995). In those papers, student
misconceptions are diagnosed using responses to test items. The classification states are
collections of discrete cognitive attributes related to the subject domain, and represented
by ideal response patterns. Other literature of interest in the area of cognitive modeling
includes Falmagne and Doignon (1988). Their work discusses models in which states are
partially ordered and closed under union.

In the next section, we present some general theorems on sequential selection of ex-
periments where the state space, S, and the set of experiments, E, are arbitrary finite sets.
The concept of separation is introduced and it is noted that an infinite sequence of experi-
ments identifies the true state with probability one if and only if the true state is separated
from all the other states infinitely often. We then consider the rate of convergence and
find the optimal rate of convergence of the posterior probability of the true state to one.
In Section 3, these results are applied to a special case when the experimental response
distributions reflect the order structure of an underlying poset model.

In Section 4, we suggest a class of ad hoc rules that have nice asymptotic properties.
The rules are simple and shown to be asymptotically consistent. When the state space is
a lattice, these rules achieve the optimal rate of convergence as well. However, an example
is given to show that when S is not a lattice, the optimal rate may not be achieved in
general by a member of this class. All proofs are contained in the Appendix.

A framework for model-fitting and analysis of experiments has been developed in C.
Tatsuoka (2002). Using data of actual student responses to test items described in K.
Tatsuoka (1990), the proposed sequential methods have been applied to partially ordered
cognitive models. Markov Chain Monte Carlo parameter estimation techniques incorpo-
rating order constraints have been employed, as described in Gelfand et al. (1992). Poset
models and corresponding techniques can be employed in other contexts. One such area
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is in medical diagnosis. It may also be useful to use poset models and sequential meth-
ods in determining neuropsychological performance (e.g. see The Diabetes Control and
Complications Trial Research Group (1996) and Jaeger et al. (1992)).

2. Optimal Rates for Experiment Selection.

We present some general results on sequential selection of experiments. Let E =
{1, 2, . . . ,m} be a finite class of experiments, let S be a finite parameter space, and for
e ∈ E, let f(x|e, j) for j ∈ S be a family of probability densities with respect to a σ-finite
measure µe on a measurable space (Xe,Be).

Let π0(j) denote the prior distribution of j ∈ S. We assume π0(j) > 0 for all
j ∈ S. At the first stage, an experiment e1 ∈ E is chosen and a random variable
X1 having density f(x|e1 , s) is observed. The posterior distribution on the parame-
ter space, denoted by π1(j), is proportional to the prior times the likelihood, that is,
π1(j) ∝ π0(j)f(x1 |e1, j), where x1 represents the observed value of X1. Inductively, at
stage n for n > 1, conditionally on having chosen experiments e1, e2,. . . , en−1, and having
observed X1 = x1,X2 = x2, . . . ,Xn−1 = xn−1, an experiment en ∈ E is chosen and Xn

with density f(x|en , s) is observed. The posterior distribution then becomes

πn(j) ∝ π0(j)
n

∏

i=1

f(xi|ei, j). (1)

The posterior probability structure on S at stage n will be denoted by πn.
Let s ∈ S denote the true parameter value. We seek a sequential selection of exper-

iments, e1, e2, . . ., for which the posterior probability of the true state, πn(s), converges
a.s. to 1 at the fastest rate. Typically, 1 − πn(s) converges to zero at the order e−αn for
some α, and α is called the rate of convergence. The mathematical definition of the rate
of convergence is taken to be

α = lim inf
n→∞

− 1
n

log(1 − πn(s)). (2)

The basic notion for the following theorems is separation.

Definition. An experiment, e ∈ E, is said to separate two states, i ∈ S and j ∈ S, if the
probability distributions f(x|e, i) and f(x|e, j) are distinct.

In order to obtain convergence, it is sufficient for the sequence of administered exper-
iments to separate the true state, s, from all the others infinitely often (i.o.). If we rule
out the case in which there is an experiment, e, and a state, j, such that one observation
using e distinguishes between s and j with probability one, the result to follow establishes
that doing so is necessary as well as sufficient.

Theorem 2.1. Let s ∈ S denote the true state, and let e = {em}∞m=1 denote a fixed
sequence of experiments. Then πn(s) → 1 a.s. as n → ∞ if e separates s from j i.o. for all
j ∈ S\{s}. Conversely, if for all e ∈ E and j ∈ S the distributions f(x|e, s) and f(x|e, j)
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are not mutually singular, then πn(s) → 1 a.s. as n → ∞ only if e separates s from j i.o.
for all j ∈ S\{s}.

The proof follows from standard martingale arguments (e.g. Neveu (1974)), and is
omitted. An experiment selection procedure which separates i.o. the true state from all
others with probability one, no matter what be the true state, is called convergent.

Let K(f, g) represent the Kullback-Leibler information for distinguishing f and g
when f is true, defined as

K(f, g) =
∫

log(f(x)/g(x))f(x)µ(dx), (3)

where µ is a σ-finite measure. The basic property we use of Kullback-Leibler Information
is that K(f, g) ≥ 0 (possibly +∞) for all f and g, and that K(f, g) = 0 if and only if f
and g are identical as probability measures. We will be dealing with distributions f and
g chosen from f(x|e, j), and we use the notation, Ke,j(s) to denote the Kullback-Leibler
information for distinguishing states s and j when s is true and experiment e is used,

Ke,j(s) = K(f(·|e, s), f(·|e, j)). (4)

For e ∈ E, let ne denote the number of administrations of experiment e in the first n
stages.

Definition. An experiment is said to be chosen in limiting proportion β ≥ 0 if β =
lim infn→∞ ne/n. If β > 0, the experiment is said to be administered in positive limiting
proportion.

The optimal rate of convergence of πn(s) to 1 is related to the following linear program:
Find p1, . . . , pm and v to

maximize v (5)

subject to

p1 ≥ 0, p2 ≥ 0, . . . , pm ≥ 0 and
m

∑

e=1

pe = 1 (6)

and

v ≤
m

∑

e=1

peKe,j(s) for j ∈ S, j (= s. (7)

The following theorem gives the optimal rate when the true state s ∈ S is known. In
Theorem 2.3, we note that the optimal rate can be achieved even when the true state is
unknown.

Theorem 2.2. Assume all Ke,j(s) are finite. Let v∗(s), p∗1(s), . . . , p∗m(s) be any solution
to the linear program (5)-(7). Then if v∗(s) > 0, the optimal rate of convergence of πn(s)
to 1 is v∗(s) a.s., attained by any sequential experimental selection procedure for which
the limiting proportion of experiment e is p∗e(s) for all e ∈ E.
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Remarks.

1. When some of the Kullback-Leibler numbers are allowed to be infinite, the conclu-
sion of this theorem still holds, but under a slight modification. If Ke,k(s), say, is infinite,
then πn(k) can be made to converge to zero faster than any linear rate, using rules that
use experiment e infinitely often but with limiting proportion zero. Such a state, k, can
be taken care of using e occasionally, without sacrificing any positive limiting proportion
for any of the other states. In other words, in finding the correct limiting proportion for
the other states, variable k may be removed from S in (7). When all such variables are
removed from S, the linear program gives the correct value for v∗(s) as the optimal rate.
If all of S is removed by this process, then v∗(s) = ∞ and one can obtain a superlinear
rate of convergence.

2. Note that experiment e separates states s1 and s2 if and only if Ke,s1(s2) > 0, or
equivalently, if Ke,s2(s1) > 0. We say that a state s1 ∈ S is identifiable through E if for
every s2 (= s1, there exists an experiment e ∈ E that separates s1 and s2. We say that S
is identifiable through E if every s ∈ S is identifiable through E.

The hypothesis v∗(s) > 0 in the above theorem is equivalent to the assumption that s
be identifiable through E. This is because if s is identifiable through E, then the simple rule
that cycles through the experiments in E indefinitely yields a positive rate of convergence.

3. We would like to find an experiment selection rule that achieves the optimal rate
without knowing in advance the true state. If S is identifiable through E, then a rule that
presumes the most probable state is the true one and acts in some appropriate way will
achieve the optimal rate not knowing the true state. For example, consider the following
simple randomized sequential rule for selecting experiments.

R: At stage n + 1, find any state k̂n ∈ S with the largest posterior probability,
πn(k̂n) = max{πn(k) : k ∈ S}. Then choose as en+1 an experiment e ∈ E according to the
probability distribution p∗e(k̂n).

Theorem 2.3. If S is identifiable through E, and if Ke,j(s) is finite for all e, j and s, then
R attains the optimal rate of convergence no matter which state s ∈ S is the true state.

A related procedure is described in Chernoff (1972, p. 72) for the problem of testing
multiple hypotheses. Though R achieves the optimal rate not knowing the true state,
it is unlikely to be efficient for small samples. We would like to choose an experiment
that separates the most likely state from those that are next most likely, but R gives no
consideration to those other states. In the next section, we specialize to a class of problems
structured by a partial order. For these problems, we suggest in Section 4 some efficient
algorithms for finding the true state quickly.

3. A Poset of Experiments and States.

For a complete discussion of partially ordered set theory, see Davey and Priestley
(1990) or Stanley (1986). Briefly, let S be a partially ordered set. For an element i ∈ S,
the set, ↑i = {j ∈ S : i ≤ j}, is known as the up-set of i. The set ↓i = {j ∈ S : j ≤ i}, is
known as the down-set of i. If there exists a greatest element 1̂ in S such that i ≤ 1̂ for
all i ∈ S, 1̂ will be referred to as the top element. Similarly, if there exists a least element
0̂ in S such that 0̂ ≤ i for all i ∈ S, 0̂ will be referred to as the bottom element. A lattice
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is a poset such that any two elements have both a unique least upper bound (join) and a
unique greatest lower bound (meet). Note that a finite lattice has both a top and a bottom
element.

We assume that the set of classification states, S, is a finite poset containing at least
two elements. Experiments are identified with states in S as follows. If X represents the
response random variable, then the density of X for a given experiment e ∈ S and true
state s ∈ S is given by

fX(x|e, s) =
{

f(x) if e ≤ s
g(x) otherwise. (9)

If S has a bottom element 0̂, then the experiment e = 0̂ gives no information since all
states in S will have the same response distribution f . Thus we may take E = S\{0̂} as
the set of experiments. The Kullback-Leibler numbers simplify to

Ke,j(s) =

{

K(f, g) if e ≤ s and e (≤ j
K(g, f) if e (≤ s and e ≤ j
0 otherwise.

(10)

We assume f and g are not identical distributions and not mutually singular. We note
that e separates j and s if the up-set of e contains exactly one of j and s.

An element j is said to cover i if i < j and there does not exist another k ∈ S such
that i < k < j. We denote the set, possibly empty, of all covers of an element i ∈ S by Ci.
The cover separators of i are

Ki = {k ∈ S : k ≤ c for some c ∈ Ci and k (≤ i}. (11)

As an illustration, consider Figure 3.1 (a lattice). CA = {D,E}, and KA = {B,C,D,E}.

0̂

1̂

A B C

D E F

Figure 3.1

If S is a lattice, each element in Ks separates s from exactly one cover in Cs. To see
this, suppose there exists an experiment type j ∈ Ks that separates s from two or more
covers. Since s is the greatest lower bound of the two covers, and j is a lower bound of the
two covers, we must have j ≤ s by the lattice property. This contradicts the assumption
that j ∈ Ks. Because of this property, a solution to the linear program of Theorem 2.2
can be found explicitly for such models.
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Theorem 3.1. Suppose that S is a lattice and that both Kullback-Leibler information
numbers, K(f, g) and K(g, f), are finite. Let s ∈ S denote the true state.

(i) If s = 0̂, then the optimal rate of convergence is K(g, f)/|Cs|, attained a.s. by
experiment selection rules that use the elements in Cs in limiting proportion 1/|Cs| each.

(ii) Otherwise, the optimal rate is K(f, g) ·K(g, f)/(|Cs | · K(f, g) + K(g, f)). A rule
attains the optimal rate if and only if it uses s itself in limiting proportion K(g, f)/(|Cs| ·
K(f, g)+K(g, f)), and separates each cover of s from s in limiting proportion K(f, g)/(|Cs|·
K(f, g) + K(g, f)). (Note that if s = 1̂, then |Cs| is zero, in which case using s in limiting
proportion one attains the optimal rate, K(f, g).)

If K(f, g) = ∞ and s = 1̂ in case (ii), then we can get superlinear convergence of
πn(s) to 1 a.s.; in fact, if log(f(x)/g(x)) = ∞ with positive probability under f , then we
get the best rate possible: πn(s) will be equal to 1 from some n on a.s. Similarly for case
(i) if K(g, f) = ∞.

If s (= 1̂ in case (ii), the convergence will be linear unless both K(f, g) = ∞ and
K(g, f) = ∞. If K(f, g) < ∞ and K(g, f) = ∞, then the optimal rate is K(f, g) attained
using experiment s in limiting proportion one, provided the covers of s are taken infinitely
often. If K(f, g) = ∞ and K(g, f) < ∞, the optimal rate is K(g, f)/|Cs|, attained for
instance by using the covers of s in limiting proportions 1/|Cs| each, provided s is taken
infinitely often.

Although in part (ii) of Theorem 3.1, the optimal rate is attained using any of the
cover separators in the correct proportions, second order considerations imply that a cover
itself should not be used if there is another separator for that cover. Consider Figure 3.1
with A as the true state. The covers are D and E. But use of B and C instead, has the
advantage of making πn(F ) go down faster. For small samples, such considerations may
lead to substantial improvement. In general, let Gs be the set of all minimal elements of
Ks, s ∈ S. Given s is the true state, note that the rules suggested in Section 4 satisfy
these second order considerations, as only experiments of type s or elements in Gs are
used eventually (cf. Proposition 2 in the Appendix).

Consider again the problem of cognitive diagnosis, and suppose that a discrete set of
cognitive attributes has been identified for a given subject domain. Knowledge states can
then be associated with subsets of the attributes that are mastered. If all possible subsets
of attributes are represented, such a model would be a lattice. For instance, if three
attributes are identified, the lattice would be isomorphic to Figure 3.1, and a student in
the top element would have mastery of all of the attributes. As for the exponential rates of
convergence for these models, this has significant practical ramifications for reducing the
number of test items that need to be administered through the use of sequential methods
(cf. Tatsuoka (2002)).

A Bayesian formulation of the group testing problem can be treated using (9) by
considering the true state, s, as the set of non-defective objects. An experiment, e is just
a subset of the objects. The outcome has one distribution if e ⊆ s (no defectives in e)
and another if e (⊆ s (at least one defective in e). Taking the partial order to be that of
inclusion, e ⊆ s is identified with e ≤ s, giving (9).
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4. Experiment Selection Procedures.

Below, several heuristic approaches to the problem of sequential selection of exper-
iments in the poset model of Section 3 are considered. These methods depend on the
quantity

mn(e) =
∑

j≥e

πn(j),

the mass on ↑e, e ∈ S, at stage n.
The first heuristic to be proposed is very intuitive. It will be referred to as the halving

algorithm H : πn → E, and it chooses the experiment that minimizes

h(πn, e) = |mn(e) − 0.5|, (12)

for e ∈ E and where mn(e) is viewed as a function on E. The heuristic H thus selects
the experiment that partitions the poset into two parts closest to one-half in terms of
mass. Computationally this algorithm is very simple. It does not depend on f or g except
through the posterior distributions πn.

The basis for the second experiment selection rule to be studied comes from informa-
tion theory. Denote Shannon entropy by En(πn) =

∑

j∈S(− log(πn(j)) · πn(j)). Define
the Shannon entropy procedure Sh : πn → E to select the experiment e ∈ E that minimizes

sh(πn, e) =
∫

En(πn+1(e, x))(f(x)mn(e) + g(x)(1 − mn(e)))µ(dx) (13)

where πn+1(e, x) denotes the posterior probability distribution updated to stage n + 1
given en+1 = e and Xn+1 = x. Note that the function sh is just the expected entropy
taken with respect to the marginal distribution of Xn+1 having the mixed density

fXn+1(x|πn, en+1 = e) = f(x) ·mn(e) + g(x) · (1 − mn(e)). (14)

A related version of sh is

sh∗(πn, e) = sh(πn, e) − En(πn).

Since En(πn) is not a function of e ∈ E, one may equivalently minimize sh∗ over E in
experiment selection. This heuristic does depend on f and g and thus is more sensitive
than H. The advantage of sh∗ over sh is that sh∗(πn, e) depends on πn only through
mn(e) as in the following lemma (given without proof).

Lemma 4.1. The function sh∗(πn, e) depends on πn only through mn(e) and is convex
in mn(e) for mn(e) ∈ [0, 1]. Moreover, sh∗(πn, e) = 0 if mn(e) = 0 or 1.

We can thus define a class of experiment selection procedures U that contains H and
Sh as special cases. Let experiment selection procedures in U be those that choose e ∈ E
at stage n to maximize U(mn(e)) for some continuous function U , defined on [0, 1], such

8



that (1) U(0) = U(1) = 0, (2) U attains a unique maximum in (0,1), and (3) there exist
numbers 0 < k0 < k′

0 < ∞ and 0 < k1 < k′
1 < ∞ such that

k0x < U(x) < k′
0x

k1(1 − x) < U(x) < k′
1(1 − x)

for all x sufficiently close to 0
for all x sufficiently close to 1.

We take U to be the class of all such selection procedures. The halving algorithm, H,
for example, is a member of U associated with the function U(x) = 0.5 − |x − 0.5|. This
class of heuristics shares some nice properties.

Theorem 4.1. Every experiment selection procedure in U is convergent.

Another level of analysis is determining whether procedures in U attain optimal rates
of convergence. When the underlying model is a lattice, they do.

Theorem 4.2. If S is a lattice, every experiment selection procedure in U achieves the
optimal rate of convergence for each state in S.

When the underlying model is a poset but not a lattice, procedures in U may not
always attain the fastest rate. Consider the following example.

Example 4.1. Consider the poset in Figure 4.1. It is assumed that s is the true state,
and that π0(s) is close to 1. Suppose f and g are Bernoulli with respective parameters pu

and pl, pu = 1− pl = .99, that π0(3) = (.5) ·π0(5), π0(4) = (.5) ·π0(3), π0(6) = (.5) ·π0(2),
π0(7) = (.5) · π0(6), π0(2) = π0(5), and that π0(A),π0(B),π0(C),π0(a),π0(b) are very
small. It follows that π0(5) > π0(3) + π0(4) and π0(2) > π0(6) + π0(7). Thus, for any
procedure in U , the prior values can be chosen so that experiment A is the most attractive
choice. Experiment A will continue to be selected until one more failure than success
is observed, after which experiment B then becomes most attractive. By Theorem 4.1,
this occurs with probability one. Similarly, once one more failure than success is seen
for experiment B, experiment C becomes the best choice. It follows that experiment A
will next be most attractive again and so on. Thus, procedures in U will cycle through
experiments A, B and C . Yet, the optimal rate of convergence is obtained instead by
administering the set {a, b} in equal positive limiting proportion. Thus, procedures in U
do not obtain the optimal rate in this situation.

2 3 4 5 6 7

s A a B b C
Figure 4.1

9



DeGroot (1962) describes a class of experiment selection rules that are based on
measurable, concave functions on the space of all probability distributions on S. Shannon
entropy gives an example of such a function. This class of procedures can be applied under
the general conditions of Section 2. For procedures based on strictly concave functions, it
can be established that they are convergent using the arguments of DeGroot (p. 406) and
Theorem 4.1. See Ben-Bassat (1982) for other classes of experiment selection rules that
can be employed under general experimental assumptions.

Appendix. Proofs.

Proof of Theorem 2.2. The rate of convergence is the rate at which πn(s) converges to

one. This is the same as the rate at which
1 − πn(s)
πn(s)

=
∑

j (=s

πn(j)
πn(s)

converges to zero.

1 − πn(s)
πn(s)

=
∑

j (=s

π0(j)
π0(s)

·
n

∏

i=1

f(xi|ei, j)
f(xi|ei, s)

=
∑

j (=s

π0(j)
π0(s)

exp{−Zj},

where

Zj =
n

∑

i=1

log
f(xi|ei, s)
f(xi|ei, j)

. (18)

Let n(e) be the (random) number of times that experiment e is used in the first n
experiments. Then,

Zj =
m

∑

e=1

n(e)
∑

i=1

log
f(xe,i|e, s)
f(xe,i|e, j)

,

where xe,1, . . . , xe,n(e) are the n(e) observations among x1, . . . , xn that are taken using
experiment e.

Let Z = minj (=s Zj . Then

1
n

log
1 − πn(s)
πn(s)

= − 1
n

Z +
1
n

log
∑

j (=s

π0(j)
π0(s)

exp{−(Zj − Z)}.

The second term on the right converges a.s. to 0 as n → ∞ since the sum is bounded above
by 1/π0(s) and below by minj π0(j)/π0(s). The problem then is to choose the sequence of
experiments to maximize the lim inf as n → ∞ of

1
n

Z = min
j (=s

m
∑

e=1

pe,n
1

n(e)

n(e)
∑

i=1

log
f(xe,i|e, s)
f(xe,i|e, j)

where pe,n = n(e)/n is the proportion of experiments allocated to experiment e among the
first n experiments and n(e)−1

∑n(e)
i=1 log(f(xe,i|e, s)/f(xe,i |e, j)) is defined as 0 if n(e) = 0.

If experiment e is taken in limiting proportion p∗e(s), then

1
n

Z
a.s.−→ min

j (=s

m
∑

e=1

p∗e(s)Ke,j(s) = v∗(s).
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So the value v∗(s) is achieved in the limit. Moreover, this is the optimal rate because

lim inf
n→∞

1
n

Z = lim inf
n→∞

min
j (=s

[

m
∑

e=1

pe,nKe,j(s)

+
m

∑

e=1

pe,n





1
n(e)

n(e)
∑

i=1

log
f(xe,i|e, s)
f(xe,i|e, j)

− Ke,j(s)









and the second sum actually converges to zero a.s., and the minimum of the first sum is
for all n at most v∗(s).

Proof of Theorem 2.3. Let s denote the true state in S and let k be an element of S,
k (= s. From the definition of v∗(k) and p∗e(k), we have from (7)

v∗(k) ≤
∑

e∈E
p∗e(k)Ke,s(k).

Since S is identifiable throught E, we have v∗(k) > 0, so that there exists an experiment
e ∈ E such that p∗e(k) > 0 and Ke,s(k) > 0, that is, e separates k and s. If R has k̂n = k
infinitely often, then πn(k)/πn(s) → 0 a.s. as in the proof of Theorem 2.1. But when
πn(k)/πn(s) < 1, we cannot have k̂n = k. Therefore, k̂n = k only finitely often. Since k
is an arbitrary element of S with k (= s, we must have k̂n = s for all n greater than some
large random N . But then clearly R uses experiment e in limiting proportion p∗e(s), and
Theorem 2.2 shows that R achieves the optimal rate.

Proof of Theorem 3.1. Using (10), the main constraints, (7), of the linear program
become

v ≤ K(f, g)
∑

e≤s
e "≤j

pe + K(g, f)
∑

e "≤s
e≤j

pe for all j ∈ S\{s}. (19)

We seek a probability vector, {pe} satisfying (6), to maximize the minimum of the right
side of (19) over j ∈ S\{s}.

(i) Suppose that s = 0̂. Then the first sum on the right of (19) is empty and we seek
to maximize

K(g, f) min
j∈S\{s}

∑

e≤j

pe. (20)

The smallest values of this occur when j are in Cs, the covers of 0̂. Therefore the smallest
terms are maximized by giving pe = 0 for all e not in Cs. The smallest of the terms
K(g, f)pe for e ∈ Cs is maximized subject to

∑

pe = 1 when all the pe are equal for e ∈ Cs.
This common value is 1/|Cs|, and the optimal rate (the maximum v) is K(g, f)/|Cs|.

(ii) Suppose s is not 0̂. Then there is a state j < s. For such a state, the second sum
in (19) vanishes. The term pe for e < s does not occur in (19) unless accompanied in the
sum with ps, so the minimum over j can only be made larger if any mass given to pe for

11



e < s is transferred to ps, i.e. we may take pe = 0 for e < s. When this is done, all the
inequalities (19) for j < s reduce to

v ≤ K(f, g)ps. (21)

For those j not comparable to s, i.e. j (≤ s and s (≤ j, the right side of (19) is at least
K(f, g)ps. Therefore, these terms may be ignored. The remaining j are those such that
s < j. For these, the first sum in (19) disappears and the inequality becomes

v ≤ K(g, f)
∑

e "≤s
e≤j

pe. (22)

For each such j, there is at least one cover c of s such that c ≤ j. Therefore the minimum
of the terms in (22) occurs for some cover of s. If j = c is some cover of s, the sum in (22) is
the sum over the set Ec = {e : e ≤ c, e (≤ s}. Since S is a lattice, these sets are disjoint by
the property mentioned in the paragraph before the statement of the theorem. Therefore
the minimum of the terms in (22) is maximized subject to the sum of the probabilities of
these sets being 1 − ps, if and only if all the sets have the same probability, in which case
the minimum value of (22) is K(g, f)(1− ps)/|Cs|. The maximum of the minimum of this
and (21) occurs when the two are equal, namely when K(f, g)ps = K(g, f)(1 − ps)/|Cs|.
This gives ps = K(g, f)/(|Cs|K(f, g) + K(g, f)). From this, the optimal rate and the
limiting proportions are easily found to be as stated in the theorem.

Proof of Theorem 4.1. Consider the experiment selection rule associated with an ar-
bitrary function U such that U(0) = U(1) and such that U is strictly increasing to a
maximum on (0, 1) and strictly decreasing thereafter.

Suppose that s ∈ S is the true state. Let N ⊆ S be the (random) subset of states not
separated from s i.o. By the argument of Theorem 3.1, with probability one the posterior
probability of any state not in N converges to zero. Suppose an experiment type, k ∈ E
does not separate s from any j ∈ N . Then ↑k either (a) contains both s and N , or (b)
does not contain s nor any element of N . In the former case, mn(k) → 1 and in the latter,
mn(k) → 0. For all other k, we have mn(k) (→ 0 or 1, because ↑k either (a) contains
s and no element of N , or (b) does not contain s but does contain at least one element
of N . Hence as the number of observations n gets large, since S is finite, U(mn(k)) will
be maximized by some k that separates s from N . There can be no upper bound to the
number of times s is separated from N .

We precede the proof of Theorem 4.2 with two propositions the first of which is stated
without proof.

Proposition 1. Let A and B be positive numbers, and a1, a2, . . ., and b1, b2, . . . be arbi-
trary sequences of numbers such that

An =
1
n

n
∑

i=1

ai → A and Bn =
1
n

n
∑

i=1

bi → −B. (23)
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From these, given a number D, define a third sequence, c1, c2, . . ., by

cn =
{

next unused aj if
∑n−1

i=1 ci ≤ D

next unused bj if
∑n−1

i=1 ci > D.
(24)

Then

Cn =
1
n

n
∑

i=1

ci → 0 and a(n)/n → B/(A + B), as n → ∞ (25)

where a(n) is the number of ai used in Cn.

Proposition 2. Let Gs denote the set of all minimal elements of Ks. For true state
0̂ < s < 1̂ and U ∈ U , only experiment types in Gs ∪ {s} are administered eventually a.s.
Moreover, all j ∈ Gs are administered in positive limiting proportion a.s.

Proof. First note that πn(s) converges to 1 a.s. (cf. Theorem 4.1). Using a contradiction
argument, it is straightforward to establish that for U ∈ U , all c ∈ Cs are separated from s
in positive limiting proportion a.s. and that s is administered in positive limiting proportion
a.s. as well. Moreover, for any k ∈ ↑Ks there exists a j ∈ Gs such that ↑k ⊆ ↑j. Similarly,
↑s ⊆ ↑k, k ∈ ↓s. It follows then that among experiment types in ↑Ks, eventually a.s. only
experiment types in Gs will be administered by U ∈ U , and that a.s. only experiment type
s will be administered among those in ↓s.

Suppose some z ∈ {↑Ks ∪ ↓s}c is administered i.o. using U ∈ U . Then πn(j) for
j ∈ ↑z ∩ {↑s}c converges to 0 at a faster rate than πn(j) for j ∈ ↓s\{s}. For j ∈ ↑z ∩ ↑s,
πn(j) converges to 0 at a faster rate than πn(c), where c is any cover of s such that c ≤ j.
Therefore mn(z) eventually remains much smaller than the largest of the πn(c) for all
c ∈ Cs and of the πn(j) for all j ∈ ↓s\{s}. Hence eventually, mn(z) remains smaller than
the largest of the mn(c) for all c ∈ Cs and (k1/k′

0) · (1 − mn(s)). This contradicts the
assumption that z is used i.o. by U ∈ U .

Finally, suppose j1, j2 ∈ Gs, j1 (= j2, separate s from the same cover in Cs, yet only
j1 is administered in positive limiting proportion. Note then that πn(j2) is a dominant
term, as j2 is separated from s only by experiment type s in positive limiting proportion.
Consider now posterior probability terms in ↑j1 ∩ ↑j2

c. If such terms are in ↑j1 ∩ ↑sc,
these terms are not dominant. For terms in ↑j1 ∩ ↑s, note that these terms are in ↑j2 as
well, since j1 and j2 separate the same cover and S is a lattice. Hence, eventually a.s.
experiment type j2 will be more attractive than j1.
Proof of Theorem 4.2. Let s denote the true state in S. The arguments to follow hold
for any U ∈ U , and almost surely. Note if s = 1̂, then by the arguments of Theorem 4.1
eventually only experiment type 1̂ will be used. Similarly, if s = 0̂, asymptotically only the
experiment types in Cs will be administered, and in equal limiting proportion. Henceforth,
assume that 0̂ < s < 1̂.

Let nij = |{m ≤ n : em ≤ i and em (≤ j}|. Let pj(n) = nj/n denote the proportion
of times among the first n trials that experiment type j ∈ S is used, and pcs(n) = ncs/n
denote the proportion of times among the first n trials that a cover c ∈ Cs is separated
from s ∈ S. For c ∈ Cs, let Gcs = {j ∈ Gs : j ≤ c}. Note that Gs =

⋃

c∈Cs
Gcs, and that

since S is a lattice, these sets are disjoint.
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The proof will now proceed as follows. Two procedures will be defined, Procedure
I and II. Referring to Theorem 3.1, it will be shown that both procedures are optimally
convergent given s is the true state. Moreover, these procedures will provide upper and
lower bounds for the limiting proportion that experiment types are administered by U ∈ U .

Define

Lc = {↑c} ∩
⋂

j (≤c,j∈Gs

{↑j}c for c ∈ Cs, and Ls = {↑s}c ∩ {↑Gs}c.

Note Lc and Ls are non-empty, containing at least c and ↓s\{s}, respectively. Lc is the
subset of states in ↑c that are separated from s only by the experiment types in Gcs among
experiment types in Gs. Ls is the set of states that are separated from s only by experiment
s among experiment types in Gs ∪ {s}. Let

Mc
n = |S|k

′
0

k1
· sup

k∈Lc

πn(k) for c ∈ Cs, and Ms
n = |S|k

′
1

k0
· sup

k∈Ls

πn(k).

where k0, k1, k′
0 and k′

1 appear in the definition of U . For some large n on, there exists
jc ∈ Lc and js ∈ Ls independent of n such that

sup
k∈Lc

πn(k) = πn(jc), and sup
k∈Ls

πn(k) = πn(js). (26)

This follows because eventually, from some stage on, posterior probabilities of elements in
Lc and Ls will be updated via Bayes rule with the same multiplier (cf. Proposition 2).

Let us now define Procedure I as follows:






en = s if Ms
n > πn(c), all c ∈ Cs;

otherwise, find c ∈ Cs with the largest corresponding πn(c)-value,
and select en by randomizing among j ∈ Gcs with equal probability.

Procedure I is convergent when s is the true state. Given c ∈ Cs, we now apply Proposition
1, first noting that Procedure I only administers experiment types in Gs ∪ {s}, and that

πn(c)
πn(js)

=
π0(c)
π0(js)

· exp{
∑

ei=s

log
f(xi)
g(xi)

+
∑

ei∈Gcs

− log
g(xi)
f(xi)

}, 1 ≤ i ≤ n.

Let
D1 = log[ sup

j∈Ls

π0(j)
π0(c)

· |S|k
′
1

k0
] and D2 = log[ inf

j∈Ls

π0(j)
π0(c)

· |S|k
′
1

k0
].

By applying Proposition 1 with D = D1 and then D = D2, and noting that D2 ≤
log π0(js)

π0(c) · |S|k
′
1

k0
≤ D1, it follows that for c ∈ Cs

ns

ns + ncs
→ K(f, g)

K(f, g) + K(g, f)
a.s.
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Hence, Procedure I is optimally convergent.
Among the terms in {↑s}c, the terms in Ls converge to 0 at the slowest rate since

eventually they are only separated from s by experiment type s. In particular, then,
eventually |S| ·πn(js) > 1−mn(s), where js is as in (26). Also note that for j ≤ c, c ∈ Cs,
mn(j) ≥ πn(c). Thus, eventually,

πn(c) ≥ Ms
n implies mn(j) ≥ (

k′
1

k0
) · (1 − mn(s)) for all j ∈ Gcs.

Hence, for large n, whenever separating a given c ∈ Cs is more attractive than administer-
ing s according to Procedure I, it is more attractive for U ∈ U to do so as well. Following
Proposition 1, this implies that for U ∈ U and any c ∈ Cs,

lim sup
ps(n)
pcs(n)

≤ K(f, g)
K(g, f)

a.s.

Indeed, it is straightforward to see that for U ∈ U ,

lim supps(n)/pcs(n) = K(f, g)/K(g, f) a.s. (27)

(or else mn(j)
1−mn(s) → 0 a.s. for all j ∈ Gcs).

Consider now Procedure II:






en = s if πn(0̂) ≥ Mc
n for all c ∈ Cs;

otherwise, find c ∈ Cs with the largest corresponding Mc
n-value,

and randomize selection of en among j ∈ Gcs with equal probability.

Procedure II is convergent if s is the true state. Further, by again applying Proposition 1,
it can be shown that Procedure II also converges at the optimal rate when s is true.

Given c ∈ Cs, it will now be established that for large n

πn(0̂) ≥ Mc
n for c ∈ Cs implies 1 −mn(s) ≥ k′

0

k1
· mn(j) for all j ∈ Gcs. (28)

First note that if (28) holds at a given stage when n is large, then when it is more attractive
for Procedure II to administer s than to separate c ∈ Cs from s, it is also more attractive
for U ∈ U to do so. Therefore, following Proposition 1, if (28) eventually holds for U ∈ U ,

lim inf ps(n)/pcs(n) ≥ K(f, g)/K(g, f) a.s., (29)

and the optimal rates of convergence are attained.
Given c ∈ Cs, the slowest converging terms in ↑Gcs are either in Lc or ↑Gcs ∩ {↑s}c.

If the slowest converging terms are indeed in Lc, then (28) does eventually hold. Let

δc(n) = inf
j∈Gcs

pj(n).
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The rate of convergence of the slowest converging terms in ↑Gcs ∩ {↑s}c is

lim inf[δc(n)K(g, f) + ps(n)K(f, g)].

Note that lim inf δc(n) > 0 by Proposition 2. On the other hand, the rate of convergence
for the slowest converging terms in Lcs is lim inf pcs(n)K(g, f).

Given U ∈ U , c ∈ Cs, and γ, ε > 0, there thus exists a large n such that with
probability greater than 1 − γ/2, (28) holds for all stages n + k, k ≥ 0, if

ps(n + k)
pcs(n + k)

>
K(f, g)
K(g, f)

− ε.

Also, from (27), there exists a large n such that

ps(n)
pcs(n)

=
ns

ncs
>

K(f, g)
K(g, f)

− ε

4
.

For such an n, let θ(n) be the smallest integer such that

ns

ncs + θ(n)
≤ K(f, g)

K(g, f)
− ε

2
.

Following Proposition 1, n and hence θ(n) can be chosen large enough such that with
probability greater than 1 − γ/2, for each stage n + k, k ≥ 0,

ps(n + k)
pcs(n + k)

>
K(f, g)
K(g, f)

− ε

2
(30)

when (28) holds at each stage. Thus, given sufficiently large n, (30) holds for all stages
n + k, k ≥ 0, with probability greater than 1 − γ. Since γ, ε > 0 were chosen arbitrarily,
(29) is established.
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