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Remote sensing-based forest modeling reveals positive
effects of functional diversity on productivity at local

spatial scale
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Key Points:

• We explored forest functional diversity-productivity relationships using a terres-
trial biosphere model initialized with remote sensing

• Higher functional diversity at 20×20-m to 30×30-m scale was associated with higher
productivity (p < 0.001) across all simulations

• Soil depth and texture were the main drivers of productivity at the hectare scale,
while functional diversity saturated at coarser scales

Corresponding author: Fabian D. Schneider, fabian.schneider@jpl.nasa.gov

–1–

A
cc

ep
te

d
 A

rt
ic

le
 

 

 

 

 

 

 

This article has been accepted for publication and undergone full peer review but has not been through
the copyediting, typesetting, pagination and proofreading process, which may lead to differences between
this version and the Version of Record. Please cite this article as doi: 10.1029/2023JG007421.

This article is protected by copyright. All rights reserved.

https://doi.org/10.1029/2023JG007421
https://doi.org/10.1029/2023JG007421
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2023JG007421&domain=pdf&date_stamp=2023-05-08


A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Biogeosciences

Abstract
Forest biodiversity is critical for many ecosystem functions and services. Yet, it remains
uncertain how plant functional diversity influences ecosystem functioning across envi-
ronmental gradients and contiguous larger areas. We integrated remote sensing and ter-
restrial biosphere modeling to explore functional diversity–productivity relationships at
multiple spatial scales for a heterogeneous forest ecosystem in Switzerland. We initial-
ized forest structure and composition in the ecosystem demography model (ED2) through
a combination of ground-based surveys, airborne laser scanning and imaging spectroscopy
for forest patches at 10×10-m spatial grain. We derived morphological and physiolog-
ical forest traits and productivity from model simulations at patch-level to relate mor-
phological and physiological aspects of functional diversity to the average productivity
from 2006–2015 at 20×20-m to 100×100-m spatial extent. We did this for model sim-
ulations under observed and experimental conditions (mono-soils, mono-cultures and mono-
structures). Functional diversity increased productivity significantly (p < 0.001) across
all simulations at 20×20-m to 30×30-m scale, but at 100×100-m scale positive relation-
ships disappeared under homogeneous soil conditions potentially due to the low beta di-
versity of this forest and the saturation of functional richness represented in the model.
Although local functional diversity was an important driver of productivity, environmen-
tal context underpinned the variation of productivity (and functional diversity) at larger
spatial scales. In this study, we could show that the integration of remotely-sensed in-
formation on forest composition and structure into terrestrial biosphere models is im-
portant to fill knowledge gaps about how plant biodiversity affects carbon cycling and
biosphere feedbacks onto climate over large contiguous areas.

Plain Language Summary

We explored relationships between forest biodiversity and productivity at multi-
ple spatial scales to better understand how plant traits and their diversity influence the
functioning of forest ecosystems. To do this across large contiguous areas, we simulated
a temperate mixed forest by combining process-based terrestrial biosphere modeling with
remotely sensed information about forest structure and composition. We found that higher
functional diversity was associated with higher productivity at local spatial scale (tens
of meters), while soil depth and texture were the main drivers of productivity at the hectare
scale. At this larger scale, functional diversity tended to be saturated due to the low turnover
of species and functional traits of the temperate mixed forest and the limited represen-
tation of physiological diversity in the model.

1 Introduction

Biodiversity is a key property of forests that affects important ecosystem services,
including provisioning services such as timber supply or water purification, cultural ser-
vices of recreational and spiritual value, and regulating services such as carbon seques-
tration (Hooper et al., 2005; Cardinale et al., 2012; Chamagne et al., 2017; Aerts et al.,
2018; Isbell et al., 2017). Biodiversity also plays an important role in the carbon cycle
and influences vegetation–atmosphere interactions and feedbacks (Schimel et al., 2015).
For example, higher biodiversity may increase the resistance and resilience of ecosystems
to climate change and increase carbon sequestration contributing to climate change mit-
igation (Isbell et al., 2015; Liang et al., 2016; J. Liu et al., 2018; Huang et al., 2018). How-
ever, earth’s biodiversity is declining rapidly with negative consequences for ecosystem
functions and services (Cardinale et al., 2012; Ceballos et al., 2015; Díaz et al., 2019a).
Thus, losses in biodiversity may contribute to accelerating impacts of climate change on
forest ecosystems (Mori, 2020), triggering potentially additional species losses (Trisos et
al., 2020; Arneth et al., 2020). Despite recognized importance of plant diversity to help
ecosystems provide multiple functions and services (Hautier et al., 2018; Díaz et al., 2019b),
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there is still considerable uncertainty in understanding and predicting the mechanistic
relationship between biodiversity and ecosystem functioning, such as productivity or biomass
production, (BEF) and the role of different aspects of biodiversity such as functional,
genetic, phylogenetic or taxonomic diversity. Specifically, there is a need to improve our
understanding of how BEF relationships scale up from plot-level to large contiguous ar-
eas of forest, how BEF relationships may be modified by environmental variation and
change, which measures of biodiversity can be used for large-scale assessments, and how
biodiversity effects are represented in mechanistic demographic modeling of forest dy-
namics that can be used for predicting future scenarios and changes.

Positive effects of species richness on ecosystem functioning and stability have been
reported widely at plot scale, while mostly focusing at biomass production as an indi-
cator of ecosystem functioning and stability. Initially, results were published mainly from
experimental studies (Balvanera et al., 2006; Cardinale et al., 2011; Tilman et al., 2014)
but recently also from observational studies (e.g. Grace et al., 2016; Liang et al., 2016;
Duffy et al., 2017; van der Plas, 2019). Jochum et al. (2020) showed that results from
grassland experiments represent realistic species compositions and Liang et al. (2016);
Oehri et al. (2020) found positive effects when controlling for differences in climate across
sites, but it is unclear whether the relationships will hold within natural ecosystems that
extend beyond the typical plot-scale (Gonzalez et al., 2020), and very few studies explic-
itly test plot-size effects (e.g. Huang et al., 2018; Chisholm et al., 2013; Poorter et al.,
2015). Therefore, scaling up BEF relationships remains a major challenge. We expect
BEF relationships to span multiple scales, but the form and strength of the relationship
might change across scales, biomes and diversity metrics (Gonzalez et al., 2020). There
have been a number of studies addressing environmental context in BEF studies (see Hong
et al., 2022, for a recent meta-analysis), but few focused on forests. Paquette and Messier
(2011), Ratcliffe et al. (2017), and Mina et al. (2017) found that the mechanisms and
BEF effects varied with environmental conditions and stress. Yet, whether or not forests
will remain a carbon sink under future climate remains uncertain (Brienen et al., 2015;
Sabatini et al., 2019; Arora et al., 2020; Hubau et al., 2020), and this uncertainty may
be at least partially attributable to BEF.

Previous BEF literature explored which components of biodiversity are most pre-
dictive for ecosystem functioning, but no single component is consistently the best (Craven
et al., 2018). Functional diversity is often considered promising (Loreau, 2000; Hooper
et al., 2005), and in a review of 258 BEF studies of naturally assembled communities,
van der Plas (2019) found that, while most studies focused on the effects of taxonomic
diversity, metrics of functional diversity were generally stronger predictors of ecosystem
functioning. This is in line with early findings from grassland experiments. For exam-
ple, Tilman, Knops, et al. (1997) found that functional composition and functional di-
versity were the principal factors explaining plant productivity and Petchey et al. (2004)
found that functional diversity explained greater variation in biomass production than
species richness. Yet, forest functional diversity is rarely assessed explicitly and indepen-
dent of taxonomy (but see Schneider et al., 2017; Guillén-Escribà et al., 2021). Most plant
studies thus far have focused on the effects of species richness (as a measure of biodiver-
sity) on biomass (as a measure of ecosystem function) in grassland ecosystems, mostly
under uniform abiotic conditions. Therefore, little is known about other dimensions of
diversity and function, and their relationships in forests across a larger range of environ-
mental gradients and spatial scales (Sheil & Bongers, 2020).

Regarding underlying mechanisms behind BEF relationships, the theoretical rea-
soning suggests that niche complementarity (complementary traits lead to better resource
use of a community as a whole), selection probability (higher likelihood to have highly
productive individuals), and ecological insurance (higher likelihood to adapt to or recover
from fluctuating environmental conditions or disturbance) underpin biodiversity effects
on ecosystem functioning and stability (Tilman, Lehman, & Thomson, 1997; Yachi &
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Loreau, 1999; Loreau, 2000). However, integration of observed biodiversity patterns into
terrestrial biosphere models and direct demographic modeling of these mechanisms still
represents a challenge, but it is critically important.

Simulations and model experiments using process-based models can help fill some
of these knowledge gaps, especially since diversity experiments and measurements of plant
functional traits, diversity and functioning are difficult to conduct in forest ecosystems.
Morin et al. (2011), for example, used a process-based dynamic vegetation model to sim-
ulate biodiversity experiments for a range of sites and species in Europe, finding consis-
tent positive effects of biodiversity on productivity due to complementarity. Extending
this approach to larger scales, Levine et al. (2016), Sakschewski et al. (2016) and Longo
et al. (2018) found that ecosystem heterogeneity and diversity were important to pre-
dict forest resilience to climate change including extreme drought events in the Amazon.
Many terrestrial biosphere models, however, are not able to resolve this level of detail,
or only allow to simulate potential vegetation, which can lead to uncertainties in the pre-
diction of the carbon cycle (Braghiere et al., 2019) and climate change feedbacks (Schimel
et al., 2019; Fisher & Koven, 2020). The integration of remote observations of forest com-
position and structure, such as from imaging spectroscopy and lidar, into models holds
great promise to improve our understanding of patterns and drivers of forest diversity
and productivity. Previous studies have shown that incorporating such measurements
into biosphere models, such as the ecosystem demography model version 2 (ED2), sub-
stantially improved their predictions of forest carbon fluxes (A. Antonarakis, 2014; A. S. An-
tonarakis et al., 2022; Rödig et al., 2018).

In this study, we investigate the relationship between forest functional diversity,
as a measure of biodiversity, and productivity, as a measure of ecosystem functioning,
across spatial scales and environmental gradients by integrating remotely sensed mea-
sures of forest structure and composition in the terrestrial biosphere model ED2 (Fig.
1). Analyses of the model outputs enabled us to address the two main research questions:
(1) What is the relationship between functional diversity and productivity at different
spatial scales? (2) How does the relationship between diversity and productivity vary
across environmental and ecological gradients involving different soil types, plant func-
tional types (PFTs) and canopy structural types? We expect a positive relationship be-
tween functional diversity and productivity over longer time scales, since diversity pro-
motes spatial and temporal complementarity and stability in light and water use as sim-
ulated among different plant functional and structural types in ED2 (Longo et al., 2020;
Meunier et al., 2021; A. S. Antonarakis et al., 2022). We also expect differences in soil
types to influence both diversity and productivity, especially if water availability is lim-
ited. For example, simulations by Longo et al. (2018) showed that forests on sandier soils
were more resilient to drought, and Medvigy et al. (2019) found that variation in soil prop-
erties caused variation in biomass and ecosystem composition in simulations of forest suc-
cession. Based on Chisholm et al. (2013), we would expect sampling effects and niche
complementarity to dominate at small scales, while environmental gradients should drive
patterns at large scales. However, this has not been tested in terrestrial biosphere mod-
els and in observational studies it is often difficult to disentangle effects of composition
and environment.

Materials and methods

We combine field data with high-spatial resolution airborne laser scanning and imag-
ing spectroscopy measurements to derive estimates of temperate forest structure (i.e. stem
density and diameter at breast height) and composition (i.e. plant functional types) that
we use as initial conditions in the process-based terrestrial biosphere model ED2 (Fig.
1, Longo, Knox, Medvigy, et al., 2019). ED2 models dynamic interactions, niche com-
plementarity and competition for resources (light and water) (Longo, Knox, Medvigy,
et al., 2019; Longo, Knox, Levine, et al., 2019). We simulate gross primary productiv-
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Figure 1. Forest modeling approach to derive forest diversity and productivity relationships
in a temperate mixed forest. We used airborne imaging spectroscopy and light detection and
ranging (LiDAR) together with field inventory data to derive stem density, tree diameters at
breast height (DBH) and plant functional types (PFT). These variables were used to represent
the forest in the ED2 terrestrial biosphere model in 10×10 m patches and vertically resolved
cohorts within patches, on different soil types. Forest productivity was then simulated as gross
primary productivity (GPP) based on hourly meteorological drivers and averaged over 10 years.
Together with traits retrieved from the model (morphological: basal area (BA), leaf area index
(LAI), foliage height diversity (FHD), and physiological: VCmax, specific leaf area (SLA)), this
allowed us to relate the morphological and physiological diversity to the simulated long-term
forest productivity. The visualization shows an example based on data and simulations conducted
in this study.
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ity (GPP) under observed meteorological boundary conditions from 2006 to 2015 (Fig.
1) for forests across a range of observed soil depths and textures (Fig. 2). We evaluate
the model’s ability to simulate carbon dynamics and seasonality of the studied temper-
ate mixed forest as measured at the eddy covariance flux tower at the Laegern forest in
Switzerland. To explore what is driving the spatial variation in forest GPP at 20×20 to
100×100-m spatial scale, we run and analyze simulations based on observed soil, forest
structure and composition as well as model experiments where we test combinations of
homogenized soil types (mono-soils), plant functional types (mono-cultures), and canopy
structural types (mono-structures). We then use the model simulation outputs to inves-
tigate the role of different aspects of forest functional diversity on spatial patterns of for-
est productivity at local to landscape scales (Fig. 1). For this, we analyzed the simulated
diversity–productivity relationships using general linear models and random forest mod-
els. In terms of functional diversity metrics, we investigate the role of richness, diver-
gence and evenness (see Schneider et al., 2017) derived from morphological traits, namely
leaf area index (LAI), basal area (BA) and foliage height diversity (FHD), and physi-
ological traits, namely maximum leaf Rubisco carboxylation rate (VCmax) and specific
leaf area (SLA), modeled at cohort-level. In the following sections, we provide a detailed
description and methodology of the study area, the terrestrial biosphere model, the in-
tegration of remote sensing data into the model, model evaluation and simulations, and
how we derived and analyzed the model outputs with regard to morphological and phys-
iological diversity and productivity.

Study area

We conducted this study at the Laegern temperate mixed forest in Switzerland (47◦28’43.0
N, 8◦21’53.2 E), which is located on a mountain range representing broad ecological and
environmental gradients (Fig. 2). The study area is characterized by increasing soil depth
(40 to 75 cm) and soil grain size (clayey to sandy loam), and mean tree stem diameter
and abundance of conifers from high to low elevation (850–450 m above sea level). The
vegetation consists of diverse beech forests with a total of 13 tree species and about 70%
deciduous broadleaf and 30% evergreen coniferous tree individuals. The dominant de-
ciduous species are common beech (Fagus sylvatica L.), European ash (Fraxinus excel-
sior L.), and sycamore maple (Acer pseudoplatanus L.). The dominant coniferous species
are Norway spruce (Picea abies (L.) H. Karst) and silver fir (Abies alba Mill.).

Laegern is a key ecological and remote sensing site in central Europe (Morsdorf et
al., 2020), which has been studied extensively in terms of 3D structure and radiative trans-
fer (Schneider et al., 2014; Fawcett et al., 2018; Schneider et al., 2019; Kükenbrink et al.,
2021), functional and genetic diversity (Schneider et al., 2017; Czyz et al., 2020; Guillén-
Escribà et al., 2021; Helfenstein et al., 2022; Czyż et al., 2023), and carbon and water
fluxes (Paul-Limoges et al., 2018; Damm et al., 2020; Paul-Limoges et al., 2020). The
study area has a fluxtower (CH-LAE; Paul-Limoges et al., 2020) equipped with eddy-
covariance instruments and a meteorological station, as well as a 5.5-ha field plot, where
1307 canopy trees were mapped by stem location, crown extent, diameter at breast height
(DBH) and species identity (Morsdorf et al., 2020; Guillén-Escribà et al., 2021).

We selected five regions to study diversity–productivity relationships, covering the
range of soil characteristics and the ecological gradient from shorter deciduous broadleaf
forest on top of the ridge to taller mixed communities in lower elevations. Each region
was sub-divided into three 100×100-m sites, selected to minimize environmental hetero-
geneity within regions and maximize the range of abiotic and biotic variation between
regions and sites, respectively (Fig. 2).

–6–

 21698961, ja, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JG

007421 by U
niv of C

alifornia L
aw

rence B
erkeley N

ational L
ab, W

iley O
nline L

ibrary on [09/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Biogeosciences

Figure 2. Study regions at the Laegern mountain, Switzerland, covering a gradient in soil,
structure, composition and diversity of the temperate mixed forest. The three-dimensional sur-
face topography is colored by the four plant functional types: late-successional conifers, early-,
mid- and late-successional hardwoods. Regions 1–5 are each comprised of three 1-ha sites (white
boxes) and show a shift from shorter deciduous broadleaf forest on top of the mountain (1) to
taller evergreen coniferous forest at lower elevation (5) following a gradient in soils from shallow
clayey loam (1) to deeper sandy loam (5). The histograms show the distribution of basal area per
tree diameter at breast height (DBH) for the four plant functional types. The Laegern fluxtower
is located at the north-east corner of region three (pink triangle). Model evaluation was per-
formed using forest composition and structure representative of the fluxtower footprint, shown as
black outline at 70% flux density. The map (top-right) shows the location of Laegern north-west
of Zurich, with respect to the country border of Switzerland.
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Model description

The ED2 model is a process-based terrestrial biosphere model that represents in-
dividual plant-level dynamics (growth, mortality and recruitment), and associated ecosystem-
level carbon, water and energy fluxes over time scales ranging from hours to centuries
(Fig.1; Longo, Knox, Medvigy, et al., 2019). In contrast to conventional ‘ecosystem as
big leaf’ models that represent the canopy in a highly aggregated manner, the ecosys-
tem demography (ED) model utilizes the concept introduced by Moorcroft et al. (2001),
in which vegetation is represented as cohorts of plants of similar height and plant func-
tional type, grouped in patches that can be initialized with spatially explicit remote ob-
servations, within a site of homogeneous environmental conditions with regard to soil,
topography and meteorology (Longo, Knox, Medvigy, et al., 2019). Forest patches and
cohorts are initialized by PFTs, which have constant plant functional traits associated
to them that do not vary within PFT, and DBH and stem density, which vary dynam-
ically over time. Plant growth, mortality and recruitment dynamics are simulated as part
of vegetation dynamics. The model can be run with vegetation dynamics off, where only
phenological and physiological dynamics are simulated.

The size- and age-structured representation allows us to incorporate fine-scale spa-
tial variation in canopy structure and composition arising from disturbance processes and
spatially-localized, size-dependent competition for light within the above-ground plant
canopy and below-ground for water (bigger trees have deeper roots and thus can access
water in deeper soil layers). To improve vegetation dynamics regarding canopy struc-
ture and light availability compared to previous ED modeling schemes, heterogeneity in
horizontal and vertical micro-climate environments has been introduced in ED2 (Medvigy
et al., 2009; Longo, Knox, Medvigy, et al., 2019). The ED2 biosphere model has shown
good conservation of energy, water and carbon (Longo, Knox, Medvigy, et al., 2019; Longo,
Knox, Levine, et al., 2019) and has been successfully run with initial conditions from forest-
stand data as observed from remote sensing (Longo et al., 2020), field plots (Meunier et
al., 2021) or a combination of both (Bogan et al., 2019; Meunier et al., 2022).

Integration of remote sensing data into the model

The ED2 model can be initialized by prescribing the plant functional types (PFTs),
tree stem diameter (DBH) and stem density organized as tree cohorts within forest patches.
We derived forest composition (PFTs) and structure (DBH and stem density) using a
combination of field data, airborne imaging spectroscopy, and laser scanning (ALS) at
high spatial resolution of 2×2-m (Fig. S1). We then integrated these empirical data into
the model as initial conditions of tree cohorts within forest patches of 10×10-m (Figs.
S2, S3).

Forest composition was integrated into the model based on a classification of ED2-
PFTs originally defined for Harvard forest (Medvigy et al., 2009), namely: late-successional
conifers and early-, mid-, and late-successional hardwoods (LCf, EHw, MHw, LHw, re-
spectively). These four ED2-PFTs and corresponding physiological traits have been ex-
tensively used and tested in temperate forests in North America and Europe (e.g. Med-
vigy et al., 2009, 2010; A. Antonarakis, 2014; Jin et al., 2017; Paul-Limoges et al., 2020).
A. Antonarakis (2014) noted the importance of high-resolution PFT classification and
forest structure estimates to capture fine-scale (<10×10-m) PFT-specific variation in for-
est canopy composition and structure. In this study, we address this requirement by per-
forming the PFT classification at high (2×2-m) spatial resolution using a random for-
est classifier with remotely sensed input features, trained and validated based on field
data of 1307 identified trees (Morsdorf et al., 2020; Guillén-Escribà et al., 2021) and 73
forest stand polygons (Schneider et al., 2017). From 81 possible input features, we se-
lected 27 relevant features (see Table 1) that yielded the best model results, including
physiological and morphological forest traits (leaf chlorophylls, carotenoids, water and
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Table 1. Remote sensing input features used for the random forest classification of plant func-
tional types. We used three morphological and three physiological forest traits from Schneider
et al. (2017), and their filtered version applying a median filter with a window size of 7×7 pix-
els. We also used selected principal components of surface reflectance and continuum-removed
reflectance from APEX, data described in Supporting Note 1 and Helfenstein et al. (2022).

Random forest feature Remote Sensing

Canopy height (CH) Airborne Laser Scanning

CH 7×7 median filtered Airborne Laser Scanning

Plant Area Index (PAI) Airborne Laser Scanning

PAI 7×7 median filtered Airborne Laser Scanning

Foliage Height Diversity (FHD) Airborne Laser Scanning

FHD 7×7 median filtered Airborne Laser Scanning

Leaf Chlorophylls (CHL) Imaging Spectroscopy

CHL 7×7 median filtered Imaging Spectroscopy

Leaf Carotenoids (CAR) Imaging Spectroscopy

CAR 7×7 median filtered Imaging Spectroscopy

Leaf Water (LWC) Imaging Spectroscopy

LWC 7×7 median filtered Imaging Spectroscopy

Reflectance principal components 1-9, 13, 18 Imaging Spectroscopy

Continuum-removed reflectance principal components 1, 2, 4, 10 Imaging Spectroscopy

canopy height, plant area index, foliage height diversity, see Schneider et al., 2017), prin-
cipal components of surface reflectance and continuum-removed reflectance acquired by
the airborne imaging spectrometer APEX (Schaepman et al., 2015). The imaging spec-
troscopy data was processed following Hueni et al. (2009, 2013) and geometrically cor-
rected following Schläpfer and Richter (2002), for more details see Supporting Note 1.
The classifier had an overall accuracy of 74% and a Cohen’s kappa coefficient of 61% for
the classification of plant functional types over the whole forest. Further details are pro-
vided on data in Supporting Note 1, Schneider et al. (2017); Helfenstein et al. (2022),
on the classification approach in Supporting Note 2, on the remote sensing workflow in
Fig. S1, and on the random forest classification accuracy in Fig. S4. The classified map
of plant functional types is shown in Fig. S5.

Forest structure was integrated into the model as initial conditions of DBH and
stem density estimated from ALS and field data. DBH values were estimated from ALS-
derived canopy height using an exponential model that was fitted to field inventory data
of 159 late conifers, 253 early hardwoods, 328 mid hardwoods and 566 late hardwoods:

DBH = a · CHb + ε(σ, γ, κ), (1)

where CH is canopy height, a and b are coefficients and ε is the residual distribution around
the mean. To predict not only the mean but a realistic DBH distribution, we derived the
standard deviation σ, skewness γ and kurtosis κ of the distribution to model ε (Matlab
R2017a, pearsrnd). The resulting values for a, b, σ, γ and κ are summarized in Table
S1. We applied this approach to predict a DBH value for each 2×2-m pixel based on its
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remotely sensed canopy height. Single-tree delineation was applied to the ALS point cloud
to estimate the density of stems of different sizes (i.e. canopy height classes) across each
1-ha site (Morsdorf et al., 2004; Kaartinen et al., 2012; Y. Wang et al., 2016). The method
had a detection rate of 79% overall, 83% for trees ≥ 35 m and 76% for trees < 35 m. We
show a comparison between the field data and predicted stem density and DBH in Fig-
ures S6 and S7. We then assigned stem density to each 2×2-m pixel based on canopy
height, by assigning the average density estimate per 1-m canopy height class derived
at each study region. For more information on the forest structure estimation, see Sup-
porting Note 1 and Kükenbrink et al. (2017) for the underlying lidar data, see Support-
ing Note 3 for more details on the stem segmentation and basal area calculation, and see
Figure S1 for a workflow overview.

Finally, values were aggregated as cohorts in discrete 10×10-m forest patches across
each 100×100-m site by averaging DBH and stem density for each plant functional type
and 10-cm DBH class (Fig. S2), which were used as initial conditions in the model (Fig.
S3). This approach reduces the number of cohorts to simulate in the model, reduces com-
putational expenses, and better approximates the individual tree scale of the forest while
preserving plant functional type distributions within patches. The cohort-based nature
of the ED2 model means that forest canopy structure can be prescribed from spatially-
resolved field or remote sensing measurements of DBH and stem density. Therefore, the
current state of the forest’s morphological diversity can be directly incorporated into the
model simulation, thereby accounting for impacts of past disturbances and forest man-
agement on canopy structure. All other structural attributes, such as tree height, leaf
area index (LAI) and biomass, are then calculated by ED2 using the model’s allomet-
ric relationships that are part of the definition of each PFT (Fig. S3).

Meteorological drivers should reflect short-term (hourly-to-weekly) meteorolog-
ical variability, which has an important effect on ecosystem functioning such as carbon
sequestration, and, over decadal timescales, can drive shifts in forest structure and com-
position (Medvigy et al., 2010). Therefore, we used hourly meteorological variables mea-
sured between 2006 and 2015 as boundary conditions. Atmospheric pressure at field el-
evation (hPa), air temperature (◦C), relative humidity (%), average wind speed (m s−1),
and precipitation (mm) were measured at 10-minute intervals on the Laegern fluxtower
as part of the national air pollution monitoring network (NABEL) of Switzerland. In-
coming shortwave (W m−2) and longwave radiation fluxes (W m−2) were measured at
1-minute intervals. For gap filling of missing values (<2%), we used meteorological data
from nearby meteorological stations (Supporting Note 4, Fig. S8). All meteorological vari-
ables were averaged to one hour for input into the ED2 model. Atmospheric CO2 was
assumed constant at 391µmolmol−1, consistent with the average background values ob-
served at Mauna Loa between 2006 and 2015 (Tans & Keeling, 2020).

Soil information was used from FOAG (1996) to specify spatial variation in soil
depth and texture (relative sand, loam, clay content) as the main ED2 inputs (Fig. 2).

Model evaluation

We evaluated the model’s carbon flux predictions for the period 2006–2015 against
corresponding estimates from eddy-covariance fluxes (Baldocchi, 2003) measured con-
tinuously at the Laegern flux tower. Flux quality post-processing was done following Vickers
and Mahrt (1997). Standardized gap filling and partitioning of the net ecosystem CO2

exchange into GPP and ecosystem respiration were done using the method from Barr
et al. (2004). We ran the flux footprint prediction model FFP (Kljun et al., 2015) to es-
timate the average proportions of PFTs, DBH and stem density within the footprint based
on the 2×2-m remote sensing maps (Fig. S1). The predicted average daytime fluxtower
footprint is shown in Figure S9. We then selected a sample of 200 representative forest
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Table 2. Model simulations under observed initial conditions and experiments run using ED2
on five regions each comprised by three 1-ha sites (15 total) to produce monthly outputs for
the years 2006–2015. Multiple entries separated by | represent multiple simulations in a set.
Mono-soils were simulated at three depths (40, 51, 75 cm) and three textures (.-clayey loam,
o-loam, O-sandy loam), and the combinations thereof. Monocultures were simulated for early-,
mid- and late-successional hardwoods (EHw, MHw, LHw) and late-successional conifers (LCf).
Mono-structures were simulated for sparse, medium and dense canopies.

Simulation Composition Structure Soil
Vegetation
dynamics

Observed as observed as observed as observed on | off

Experiment
Mono-soil as observed as observed

40 . | 40 o | 40 O

off51 . | 51 o | 51 O

75 . | 75 o | 75 O

Experiment
Mono-culture

EHw | MHw
as observed 40 . | 51 o | 75 O off

LHw | LCf

Experiment
Mono-structure as observed

sparse | medium
40 . | 51 o | 75 O off

dense

patches for simulation in ED2 and comparison to fluxtower estimates that resembled the
average forest composition within the footprint as shown in Figure S10.

We ran a 10-year spin-up phase using the 200 patches as initial condition before
simulating the years 2006–2015 including vegetation dynamics. Longo, Knox, Levine, et
al. (2019) tested the sensitivity of the model with regard to different spin up times from
5 to 60 years and found that the effect was relatively small if the spin up time was at
least 5 years. Demographic rates showed low sensitivity. Also, GPP and the dynamic
of the living trees is not influenced by soil carbon pools, which would take longer to reach
equilibrium. Other studies used similar spin up times. For example, A. S. Antonarakis
and Guizar Coutino (2017) used a 10 year period and Medvigy et al. (2009) used a spin
up of 3 years for grasses.

We also assessed the predicted phenology by comparing ED2’s monthly simulated
LAI with satellite-based LAI estimated using the data assimilation model PhenoAnal-
ysis (Stöckli et al., 2011). We ran the PhenoAnalysis model in the data assimilation mode
to fit an LAI time series to the noisy Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite data taking into account the gap filled meteorological variables from
the fluxtower (Fig. S11).

Model simulations and experiments

For all simulations, we ran the model over a 20-year period by cycling through the
meteorological drivers time series twice. The first 10-year cycle was considered spin-up,
so that the soil moisture and the vegetation dynamics could stabilize after integrating
initial conditions of the forest, and only the second 10-year cycle was considered in the
analyses.
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To address the two research questions and disentangle the effects of forest struc-
ture, composition and soil on productivity, we ran five sets of simulations on the 15 (5×3)
100×100-m sites, summarized in Table 2. The first set of simulations were run with the
observed composition, structure, and soil information for the 15 sites, with both vege-
tation dynamics on and off. Note that with vegetation dynamics off, phenological and
physiological dynamics are still simulated, but the dynamics of mortality, growth and
recruitment are only simulated when vegetation dynamics are on. We then ran three ex-
perimental simulations to which we refer as mono-soils, mono-cultures and mono-structures.
In the mono-soil simulations, the 15 sites were run with observed stand composition and
structures on nine uniform soils (3 soil depths × 3 soil textures). In the mono-culture
simulations, the 15 sites were run with four different uniform PFTs, each on 3 soils (i.e.
4 PFTs × 3 soils × 15 sites). Finally, the mono-structure simulations were run with the
observed composition across the 15 sites, but using three different uniform canopy struc-
tures, each on 3 soils (3 structures × 3 soils × 15 sites). Canopy structure types were
created by replicating the vegetation structure of forest patches that had low (19 m2 ha−1),
medium (39 m2 ha−1) and high (83 m2 ha−1) basal area across all 15 sites, while keep-
ing the PFT-composition as observed. The model experiments were run with vegetation
dynamics off to maintain the specified canopy composition, structure and soil type com-
binations, which might not naturally occur.

Forest functional traits, diversity and productivity

Forest functional traits were calculated as patch-averages at 10×10-m spatial grain
from cohort-level ED2 model outputs. Traits and diversity remained constant in sim-
ulations with vegetation dynamics off, but can vary when vegetation dynamics are sim-
ulated. To improve the comparability and interpretation of the various results, we re-
lated productivity to initial functional diversity of summer 2006. This marks the first
peak growing season of the time series and the initial condition as prescribed by remote
sensing and field data, thus providing valuable insights into how initial diversity predicts
productivity over time (Hagan et al., 2021). The selected traits represent important eco-
logical and model variables for ecosystem functioning, relating to the distribution of leaf
area (LAI), tree diameter and density (basal area, BA), vertical canopy layering (foliage
height diversity, FHD), maximum leaf Rubisco carboxylation rate (VCmax) and specific
leaf area (SLA). The physiological traits VCmax and SLA were derived from the model
values assigned to each PFT and within-patch PFT-mixtures by calculating weighted
averages based on the cohort leaf area index and leaf biomass, respectively (Fig. S3). This
means that the resulting values of VCmax and SLA per forest patch were restricted to
the mixtures of four PFTs and their trait values, which are constant in the model. The
morphological traits were also derived based on the cohorts within each forest patch, with
the difference that they can vary within and between PFTs (based on remotely sensed
tree diameter and density, and PFT-specific model allometries to LAI and height) and
dynamically over time (if vegetation dynamics is simulated). BA and LAI were derived
as cohort averages per patch, and FHD was calculated from the vertical distribution of
cohort LAI values within each patch following Schneider et al. (2017). We then calcu-
lated multi-dimensional functional diversity metrics from those traits (see Fig. S3), specif-
ically morphological and physiological richness, divergence and evenness at 20×20, 30×30,
40×40, 50×50 and 100×100-m spatial extent following Schneider et al. (2017). We de-
fined functional richness as the average of morphological and physiological richness, since
both should receive equal weight but they were calculated with a different number of traits.
For forest productivity, we used cohort-level outputs to calculate monthly GPP per 10×10-
m forest patch and average annual and decadal GPP of 2006–2015. We also calculated
GPP normalized by leaf area, for comparison of leaf-level productivity.
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Statistical analyses

To study the effects of morphological and physiological diversity on GPP, we fit-
ted a linear model (Matlab 2019a, fitlm) with functional diversity metrics (log(richness),
divergence, evenness) as explanatory variables and log(GPP) as the response variable;
and a general linear model (Matlab 2019a, fitglme) with soil depth*texture combinations
and functional diversity metrics as fixed effects. We also analyzed the model outputs with
a random forest model to show the relative feature importance of average functional traits
and diversity for predicting GPP at 20×20 and 100×100-m spatial resolution. The anal-
ysis with and without including average plant functional traits in the random forest model
indicates contributions of functional diversity for predicting GPP in a direct (additional
to mean traits) and indirect (due to correlations to mean traits) way. Predictor impor-
tance was estimated from permutations of out-of-bag predictor observations of 1000 re-
gression trees (Matlab 2019a, fitrensemble, oobPermutedPredictorImportance; Schnei-
der et al., 2020), and scaled relative to the fraction of variance explained (r2) by the model.

We analyzed the effects of morphological and physiological richness on productiv-
ity in model experiments (mono-soil, mono-culture, mono-structure). We fitted general
linear models (Matlab 2019a, fitglme) with log(GPP) as response variable, and soil depth*texture
combinations and log(richness) as fixed effects in mono-soil, soil depth*texture, PFT and
log(richness) in monoculture, and soil depth*texture, structure and log(richness) in mono-
structure experiments, respectively.

Results

Integrating high-resolution remote observations of forest composition and struc-
ture into the terrestrial biosphere model ED2 allowed us to predict the field-measured
size-structure as basal area per diameter class with an r2 of 0.94, ranging from 0.70 to
0.93 for individual plant functional types at the flux tower plot. Figure S12 shows that
we were able to capture the distribution of basal area per DBH and PFT in the model,
and Figure S13 shows the scatter plots and linear model results compared to the field-
based estimates. This allowed us to study the relationships between morphological and
physiological diversity and forest productivity at various spatial scales (20–100-m) along
an environmental gradient (5 soil types) in simulations of observed conditions and model
experiments. We first evaluated the model performance by comparing simulated carbon
fluxes with eddy covariance-based estimates at the temperate mixed forest’s fluxtower
over the course of ten years, which built the basis for the subsequent diversity–productivity
analyses.

Model evaluation

We found that the model was able to accurately predict the carbon dynamics and
seasonality of the Laegern temperate mixed forest averaged across the flux tower foot-
print, explaining 86% and 82% of monthly and diurnal variations in GPP as estimated
at the flux tower using eddy-covariance data from 2006 to 2015. Figure 3 shows the sim-
ulated carbon dynamics with respect to the most important meteorological drivers and
flux tower estimates. The model captured the seasonality of monthly GPP, but was sen-
sitive to water available to the plants, potentially overestimating their physiological re-
sponse.

For example, annual GPP of the year 2011 was underestimated by 27% (Fig. 3a)
following an exceptionally dry spring with precipitation 63% below the decadal average
(Fig. 3b). The increased water stress was also reflected by the model parameter FSW
(ecosystem-scale down-regulation factor for photosynthesis due to limited soil water avail-
ability; FSW = 1 means no soil water stress), which showed values 13% below the grow-
ing season average, indicating increased drought stress. Similar effects of reduced GPP
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Figure 3. ED2 model evaluation of monthly and diurnal carbon fluxes and monthly leaf area
index (LAI) against eddy covariance tower-based and satellite-based estimates in the context
of meteorological drivers. The panels show (a) monthly simulated gross primary productivity
(GPP, solid red line), heterotrophic and plant respiration (light green area), net ecosystem pro-
ductivity (NEP, dark green area, dotted red line), the flux tower estimates of GPP (solid gray
line) and NEP (dotted gray line); (b) monthly radiation (red area), precipitation (blue area), per-
cent days with snow cover (white bars), and air temperature (solid gray line); (c) modeled GPP
(ED2) against flux tower estimates (Tower) per month and (d) as monthly average diurnal cycle
per hour; (e) modeled LAI (ED2) as monthly average of site-level LAI against satellite-based
LAI using PhenoAnalysis to retrieve LAI from Moderate Resolution Imaging Spectroradiome-
ter (MODIS). The colorscale of wetter to drier months is based on a z-score transformation of
monthly precipitation values from 2006–2015 to a mean of 0 and a standard deviation of 1 for
each month.

–14–

 21698961, ja, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JG

007421 by U
niv of C

alifornia L
aw

rence B
erkeley N

ational L
ab, W

iley O
nline L

ibrary on [09/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Biogeosciences

and FSW were observed for dry summer months in 2006, 2008 and 2014, and an early
GPP drop-off in dry and hot summers of 2013 and 2015. In 2006, the wet spring and fall
(115% and 24% above average precipitation) led to 23% higher annual GPP than esti-
mated by the tower despite hot and dry June and July. In summary, the model overes-
timated tower GPP under wetter conditions and underestimated it under drier condi-
tions, at both monthly (Fig. 3c) and diurnal scales (Fig. 3d), but generally captured the
dynamics with little overall bias. Seasonality was generally well predicted, with a slight
tendency to an extended productivity at the end of season. This is also reflected in a higher
LAI in October in most years due to ED2 predicting delayed leaf fall in comparison with
satellite-based LAI (Fig. 3e).

Here, we focus on GPP, but the model shows a good overall performance in sim-
ulating carbon fluxes including net ecosystem productivity as estimated by the flux tower
(r2 = 0.76), even though respiration is difficult to estimate from fluxes at this particu-
lar site due to the steep slope, dense upper canopy and potential below canopy CO2 drainage
(Paul-Limoges et al., 2017; Etzold et al., 2010).

Diversity–productivity across sites

We found generally positive relationships between functional diversity and produc-
tivity across sites, spatial scales, and functional diversity indices when modeling GPP
with vegetation dynamics and observed soil types. A general linear model showed highly
significant effects of local morphological and physiological richness (p < 0.001) and soil
types (p < 0.001) on average GPP at 20×20-m to 50×50-m scale, when controlling for
different soils between regions (Fig. 4a,b,d,e, Fig. S14; Tab. S2, S3). There is a strong
separation in GPP between regions 1-2 and the rest, following differences in soil matric
potential and depth (Fig. 4i). Functional divergence and evenness effects were less strong
and more variable from positive to neutral (Figs. S15, S16, Tabs. S4, S5, S6, S7).

At 100×100-m scale, we found significant positive relationships with productivity
across sites for morphological (p < 0.001) and physiological (p < 0.05) richness (Fig. 4c,f).
Figure 4g and h show the increase of functional richness and narrowing of the range with
spatial extent. Morphological richness was significantly different between regions with
the shallowest and deepest soils (Fig. 4g), while physiological richness did not differ sig-
nificantly except between region 1 and 3 at 100×100-m (Fig. 4h).

A random forest model analysis showed that environmental variables related to soil
water were the dominant predictors of GPP at 100×100-m scale, but functional diver-
sity still showed a relative importance of 9–18% and up to 17–20% for predicting GPP
when considering indirect effects through correlation to other functional traits (Fig. 5).
At local scale, community-weighted average physiological traits had the highest relative
importance (51%) when predicting GPP with vegetation dynamics enabled, whereas community-
weighted average morphological traits were most important (27%) when vegetation dy-
namics was disabled (Fig. 5). In both cases, the importance of functional diversity strongly
increased when both direct and indirect effects were considered (11–55% with vegeta-
tion dynamics on, 9–26% with vegetation dynamics off). Functional richness was the over-
all most important diversity metric, and both morphological and physiological richness
were important and varied significantly with GPP (Figs. 4, 5).

Diversity–productivity model experiments

In natural ecosystems, co-varying drivers of diversity and productivity, such as dif-
ferent soil characteristics, make it difficult to draw conclusions about diversity effects on
productivity (Loreau, 2000; Grace et al., 2016). The model environment enabled us to
run experiments with homogeneous soils (mono-soils), plant functional types (mono-cultures)
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Figure 4. Relationship between (a-c) morphological and (d-f) physiological richness and
productivity as average annual gross primary productivity (GPP), simulated across five regions
over the course of a decade with vegetation dynamics at (a,d) 20x20-m, (b,e) 50-50-m, and (c,f)
100x100-m scale. Statistics in (a,b,d,e) are based on a general linear model controlling for differ-
ent soils between regions, while (c,f) shows a linear regression across all sites. Panels (g,h) show
the overlap of richness for each region across spatial scales. Significant differences between the
regions within three spatial scales are indicated by the compact letter display based on Fisher’s
least significant difference test. Panel (i) shows soil matric potential as indicator of soil water
available to the plants (more negative numbers mean more strength required to extract water),
and corresponding soil depth of the five regions. Colors are consistent across panels and refer to
the five different regions and their unique soil properties.
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Figure 5. Random forest feature importance to predict average annual gross primary produc-
tivity, based on simulation outputs with vegetation dynamics on (a,b) and off (c,d) at 20 m (a,c)
and 100 m (b,d) spatial scale, scaled by the total variation explained (r2) by the model. The
gray bars indicate unexplained variance. The white numbers indicate the relative importance of
a group of variables, while the partitioning within the group has to be interpreted with care due
to possibly stronger correlations among the different explanatory variables in a group than be-
tween the groups. By including (top of each spatial scale) and excluding (bottom of each spatial
scale) average functional traits, we can see direct and indirect effects of functional diversity on
productivity.

and canopy structural types (mono-structures) to disentangle the effects of soil, morpho-
logical and physiological richness on long-term productivity.

We found that functional richness, as average of morphological and physiological
richness, on mono-soils had a significant positive effect on GPP (p < 0.001) at local scale
(20–30 m, see Fig. 6a, Tab. S8). Only when considering productivity per leaf area, the
richness effect remained strongly positive among all scales (p < 0.001 at 20–100 m, Fig.
S17, Tab. S9). Evenness and divergence showed mixed results from positive to negative
and highly to non-significant relationships without clear patterns (Fig. S18).

The mono-culture simulations further showed that the effect of morphological rich-
ness on productivity was highly significant at local scales (p < 0.001 at 20–40 m, Tab.
S10), but the effect varied by PFT, with no effect for late-successional hardwoods and
the most positive effect for late-successional conifers (Figs. 6b, Fig. S19). A positive ef-
fect was also found for physiological richness across canopy structures (Fig. 6c; Tab. S11),
with strongest positive effect for tall and dense canopies at scales from 20–50 m (Fig.
S20).

In all three experiments, the maximum difference in productivity between the low-
est and highest productivity soils, plant functional types and canopy structures, respec-
tively, was larger than between lowest and highest forest functional diversity (Fig. 6).
Also, there was no diversity effect at 100×-m scale in the experiments (Figs. S17, S19,
S20), indicating that morphological and physiological diversity were especially impor-
tant at local scale.
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Figure 6. Boxplots comparing low, medium and high (a) functional (FRic), (b) morpholog-
ical (MRic) and (c) physiological richness (PRic) with (a) shallow, medium and deep soil, (b)
late-successional conifers (LCf), late-, early- and mid-successional hardwoods (LHw, EHw, MHw)
plant functional types (PFT), and (c) sparse, medium and dense canopy structural types (CST),
respectively, at 20×20-m spatial extent. Diversity values were split into low, medium and high
based on percentiles at 1/3 and 2/3 of the distributions. Simulations were run with single soil
type (mono-soil, each 375 areas at 20×20 m), single PFTs (monoculture, 375 × 3 soils), and
CSTs (mono-structure, 375 × 3 soils). The scatter plots show all data points and linear regres-
sion lines for (a) three soil textures (clayey loam, loam, sandy loam) per soil depth, (b) three soils
per PFT and (c) three soils per CST. The three soils were clayey loam at 40 cm, loam at 51 cm,
and sandy loam at 75 cm depth. P-values are shown based on general linear models controlling
for soil.

Discussion

Our modeling results show that there are significant positive effects of morpholog-
ical and physiological diversity on average annual forest productivity in the 2006–2015
period at local spatial scales (tens of meters), and that this phenomenon holds both within
soil types and across an environmental gradient. Among diversity indices, we found the
strongest and most consistent relationship between functional richness and productiv-
ity, while evenness and divergence showed weaker and less consistent results. Functional
richness is a measure of the total niche space covered in the multivariate trait space, which
can indicate resource use efficiency and utilization through the range of functional strate-
gies and growth forms (Cadotte et al., 2011; Schneider et al., 2017). Therefore, we ex-
pect it to be a good predictor of productivity (Durán et al., 2019). Since evenness and
divergence describe the distribution within the occupied niche, they are less informative
in small niches or with small sample sizes but they can contribute to explaining varia-
tion in forest productivity if richness is large (Fig. 5). These positive diversity effects are
likely stronger in reality, because terrestrial biosphere models do not include all processes
and interactions between species and forest patches, such as the plastic responses of species
traits to environmental conditions and stand diversity (Roscher et al., 2018).

At larger spatial scales (100×100-m), we found overall positive correlations between
functional diversity and productivity along the environmental gradient of differing soil
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textures and depth, comparable to Durán et al. (2019). This effect is more complex, how-
ever, because soils may act as confounding factors as evidenced by the loss of the hectare-
scale diversity–productivity relationship when simulating uniform soil types. In the fol-
lowing sections, we discuss the processes and mechanisms in the terrestrial biosphere model
that drive the influence of morphological, physiological and environmental aspects of the
forest ecosystem on its functioning.

Morphological diversity and productivity

Morphological diversity of the plant canopy structure controls the radiative trans-
fer and light distribution throughout the canopy, with higher diversity in canopy struc-
ture leading to a more even distribution of light throughout the canopy and higher light
use efficiency and productivity (Ishii et al., 2004; Williams et al., 2017; Kükenbrink et
al., 2021). In the ED2 model, higher morphological diversity also relates to higher com-
plementarity in soil water use, as plant size (i.e. tree diameter and height) determines
the plant rooting depth. High local variability in plant size means high variability in root-
ing depth, thus reducing competition for water in the same soil layer, increasing com-
plementarity and overall productivity through reduced stress (Loreau et al., 2001).

The effect of morphological diversity on productivity is likely underestimated in
the model, since interactions between forest patches, such as changed radiative trans-
fer through shading or sun exposure from neighboring patches, were not modeled. How-
ever, the remotely sensed structural information that we used as initial conditions in the
model likely did integrate processes that are not modeled explicitly, such as nutrient cy-
cles, wind throw disturbance or forest management. Morphological diversity effects in
the model are therefore mostly stemming from observed relationships between diversity
and other stand-level structural properties that influence model productivity, such as in-
creased stem density and basal area in structurally more diverse forest areas as observed
in other studies (Barrufol et al., 2013; Morton et al., 2016). Such a limitation is com-
mon in terrestrial biosphere models (Fisher & Koven, 2020) and shows the importance
of integrating empirical observations of forest structural variability into the models (e.g.,
Caylor et al., 2004; Hurtt et al., 2010; Fischer et al., 2016; Levine et al., 2016; Longo et
al., 2018; Braghiere et al., 2019). Additional efforts are needed to map forest structure
and composition repeatedly and to operationalize data-model integration and model bench-
marking over time.

Finally, while tree diameters and density can vary freely and they can be integrated
into the model as initial conditions, other structural variables such as height or biomass
are defined by static PFT-specific allometric relationships. ALS measurements show, how-
ever, a high degree of variability in diameter-height relationships. Incorporating plas-
tic allometry is an interesting area for future model development, since tree heights (and
many other variables of canopy structure) can be derived from laser scanning at differ-
ent spatial scales (e.g. Schneider et al., 2014, 2019, 2020).

Physiological diversity and productivity

The diversity of physiological traits (here only between PFTs, within PFTs these
traits are assumed to be constant) represents the variety of functional strategies and life
forms (Reich et al., 2003; Díaz et al., 2015), influencing an ecosystem’s ability for adap-
tation, defense and recovery that will determine its long-term stability and productiv-
ity (Díaz & Cabido, 2001; Mason & de Bello, 2013). There are two main effects caus-
ing productivity to increase as physiological diversity increases that are captured in the
model: (1) a temporal stability and insurance effect, and (2) a selection and dominance
effect driven by the physiological properties of the model PFTs.
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With respect to (1), the temporal asynchrony of plant communities, species or func-
tional types has been shown to positively influence ecosystem productivity and stabil-
ity (Tilman et al., 2014; Loreau & de Mazancourt, 2013; Craven et al., 2018), and this
effect is also represented by ED2. For example, late-successional conifers can photosyn-
thesize earlier and later in the growing season during leaf development and senescence
of deciduous species, and their productivity is more stable due to lower stomatal con-
ductance that leads to lower drought sensitivity (Fig. 7a). In contrast, deciduous hard-
woods are more productive during peak greenness, but react more strongly to meteoro-
logical variability (Fig. 7a). The ED2 model’s plant functional types represent the dif-
ferent seasonal dynamics and stress responses that can explain positive diversity-effects
at decadal temporal scales, consistent with previous ecological modeling experiments (Cardinale
et al., 2004).
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Figure 7. Annual variability in gross primary productivity (GPP) of plant functional type
(PFT) monocultures and mixtures, and contributions of PFT-mixing to physiological rich-
ness (PRic) and GPP at different spatial scales. a) Annual relative anomaly compared to the
decadal mean GPP of late-successional conifers (LCf), late-, early- and mid-successional hard-
woods (LHw, EHw, MHw), simulated in monocultures, compared to simulations using observed
PFT-mixtures (Mix) on a 51-cm loamy soil. The blue bars and connecting lines show annual
precipitation anomalies for context. b) Cumulative contributions of mixtures of 1-4 PFTs to GPP
by physiological richness across spatial scales from 20×20-m to 100×100-m extent. PRic shows
saturation towards larger scales, where almost all PFTs are present at all sites, even though in
different abundances.

With regard to (2), there can be a selection and dominance effect in which dom-
inance by species or plant functional types with particular traits affects ecosystem func-
tioning (selection effect; Loreau et al., 2001). As in most central European temperate
forests, in our study area beech is the dominant late-successional hardwood species. We
modeled late-successional hardwoods with lower VCmax and higher SLA to represent their
lower maximum productivity and higher shade tolerance compared to early- or mid-successional
hardwoods (Peters, 1992; Heiri et al., 2009, see also Fig. 6). The consequence is that early-
and mid-successional hardwoods have higher productivity if enough light is available but
cannot maintain high leaf area and productivity in dense canopies or understory, while
late-successional hardwoods can maintain dense, tall canopies and productivity under
lower light conditions, but with lower maximum productivity. Therefore, lower-diversity
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beech forests will have lower productivity than mixed forests with local disturbance and
location-specific growing conditions that allow early and mid-successional species to com-
pete, co-exist and be highly productive. This diversity of plant community and struc-
ture was captured by the integration of remote observations into the model that capture
different development stages and the effect of local disturbance processes, which is char-
acteristic of productive and sustainable forests over time (Cardinale et al., 2004; Silva Pe-
dro et al., 2016; Dolezal et al., 2020).

Overall, physiological diversity effects may also be underestimated in the model,
since physiological complementarity in nutrient use, complementarity in soil microbial
communities and related co-benefits of microbial diversity, or complementarity in insect
defence strategies were not included in the model formulation. In addition, physiolog-
ical traits were defined by the plant functional type of each tree species, which limits func-
tional diversity in physiological traits to mixtures of typically three to four PFTs, even
when the total species richness may be considerably higher (13 tree species at our study
site). Opportunities exist to implement more flexible traits, for example in terms of within-
canopy trait plasticity with light availability (Berzaghi et al., 2020; Xu et al., 2021). Fur-
ther development is needed, for example towards flexible traits such as leaf mass per area,
nitrogen or Vcmax, as proposed by Sakschewski et al. (2015) and adapted to European
forests by Thonicke et al. (2020). The combined ability to represent plastic trait vari-
ation and integrate it from remote sensing could greatly advance the representation of
forest functional diversity (e.g. Schneider et al., 2017; Durán et al., 2019; Z. Wang et al.,
2020) and the modeling of carbon fluxes and responses to climate change (Schimel et al.,
2019).

Spatial scale and environmental drivers

Our results showed that the diversity effects discussed above primarily act at the
local (sub-hectare) spatial scale, where functional diversity varies within a large range
from low to medium diversity (Fig. 4g,h). This is related to the community structure
of the temperate mixed forest, which has high alpha- and low beta-diversity (Schneider
et al., 2017), a situation that is typical for most temperate forests (Swenson, 2012). Ad-
ditionally, most plant interactions in forests happen at the scale of tens of meters (X. Wang
et al., 2015), and thus our results are consistent with findings from field-based studies
(Chisholm et al., 2013; Poorter et al., 2015; X. Liu et al., 2018). At larger spatial scales,
diversity can be saturated when beta-diversity is low. This can lead to functional redun-
dancy (Rosenfeld, 2002) and a weakening of the diversity–productivity relationship (Jochum
et al., 2020). In our study, a saturation of physiological diversity with increasing spa-
tial extent might have occurred earlier than in reality due to the limited number of plant
functional types (Fig. 7b) and negligence of intraspecific physiological diversity present
at this site (Guillén-Escribà et al., 2021).

The positive correlation between diversity and productivity at the hectare-scale was
considerably weakened when the sites were simulated with uniform environmental con-
ditions, indicating co-variation of soil properties with plant diversity and productivity.
This suggests that the environmental gradient, characterized by variations in soil depth
and texture in the model, was the main driver of productivity at this larger scale, lim-
iting plant productivity through limiting resources such as water availability, while func-
tional diversity was saturated. The effect of soil texture and depth on forest productiv-
ity may be overestimated because the model shows a higher-than-observed sensitivity
of productivity to plant water availability, which is indicated by monthly and diurnal com-
parisons to the fluxtower (Fig. 3) and annual GPP anomalies following precipitation (Fig.
7a). The steep, fractured limestone bedrock might offer the trees opportunities to ac-
cess water below the average soil depth, and this currently cannot be represented by ED2.
Longo et al. (2018) also noted that ED2 might overestimate the compactness of clay-rich
soils, which could exaggerate water limitation in clayey soils. Therefore, the actual trees
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at Laegern may exhibit more resistance to water stress than our analysis implies (Paul-
Limoges et al., 2020).

Conclusions and outlook

Functional diversity had a significant positive effect on decadal forest productiv-
ity at local spatial scales (tens of meters) in terrestrial biosphere simulations in a tem-
perate mixed forest. This result was found across all soil types and including morpho-
logical and physiological diversity, with strongest effects for functional richness. This im-
plies that local functional richness, which can be measured with remote sensing across
large spatial extents and in remote ecosystems, is an important driver of productivity
in temperate mixed forests. This finding is in line with studies that analyzed species richness-
productivity relationships in field plots (Chisholm et al., 2013; Poorter et al., 2015).

At larger spatial scales (hectare-scale and above), our model experiments showed
that diversity’s influence on productivity saturated and that soil depth and texture ap-
peared to be the main drivers of spatial variation in forest productivity at this scale. We
note that the influence of soil properties may be overestimated due to the challenge of
modeling soil water availability to the plants in this complex terrain. The diversity sat-
uration may in part be due to the community structure of this temperate forest and the
limited representation of functional diversity in the model, i.e. physiological diversity be-
ing limited to mixtures of plant functional types. We also note that the saturation of biodiversity–
ecosystem functioning relationship at the larger scale does not imply that this relation-
ship is not important in driving global forest productivity. That is, if diversity is low at
the smaller scale, this also leads to lower productivity at the large scale.

The integration of spatially explicit remotely-sensed trait information in Earth sys-
tem models is crucial to study the role of biodiversity in carbon cycling and to predict
impacts and feedbacks of climate change. The advancement of spaceborne remote sens-
ing will help to characterize plant functional traits and diversity globally, for example
morphological diversity using lidar (Schneider et al., 2020) and radar (Bae et al., 2019)
or physiological diversity using imaging spectroscopy (Cawse-Nicholson et al., 2021), and
will provide new measurements of ecosystem functioning (Schimel et al., 2019) to ini-
tialize and benchmark global terrestrial biosphere models that represent structurally and
functionally diverse ecosystems (Fisher et al., 2018).

2 Open Research

The datasets that support the findings of this study are available online at figshare
(Schneider et al., 2023): https://doi.org/10.6084/m9.figshare.22705024.v1. The
most up-to-date ED2 source code is available at https://github.com/EDmodel/ED2, and
the version used for this study is permanently deposited on https://dx.doi.org/10.5281/
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