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ABSTRACT OF THE DISSERTATION

Assessing Interpretability Through Physical Model Analysis

by

Ryan Wilkinson

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2022

Professor Marcus L. Roper, Chair

Understanding complex data requires some form of model analysis, whether it be with ma-

chine learning, statistical, or physical models. Such analysis is useful for producing predic-

tions, identifying dynamics from noise, and understanding the system in question. Complex

or “black box” models can accurately predict dynamics of the world around us, and are use-

ful tools when matching data is the primary goal. However, these models fail at increasing

understanding of the system of study.

This thesis is dedicated to the analysis of simple models, and when, how, and why they

work to represent data. Herein, we analyze the application of the simple SIR epidemic

model to complex epidemiological dynamics present in the COVID-19 pandemic in the U.S.

We show that, despite the model’s simplicity and apparently violated assumptions, it still

has a place in matching and predicting real data, and we can learn key intuition from this

fact. We also identify key contraction arrangements in the network-like slime mold Physarum

polycephalum using a low Reynolds number flow model. These contraction arrangements, or

modes, are key to understanding how, exactly, the organism gets its wide array of different

behaviors. Our analysis places these modes in a simple, physically-understandable context
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that will allow researchers to connect measurable physical features to real complex behavior.
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CHAPTER 1

Introduction

The universe is filled with complicated dynamics that are important to understand. From

the way our body transports blood to survive, to the plethora of factors contributing to the

warming climate, to the spread of COVID-19: we seek ways of describing and understanding

the world around us. With the recent exponential boom in computing power and memory,

we are increasingly able to store and analyze these dynamics in their entirety despite the

staggering complexity and size of data sets. Our limitation now rests upon the methods we

use to analyze such data sets.

Machine learning, for example, is a powerful and ubiquitous tool that produces highly

accurate predictions that can capture complex systems with high fidelity. For example,

machine learning can be used to translate speech to text (often used in modern-day smart

phones) [TPS18], track objects in a video to avoid collisions [DCO18], and extract smooth

trajectories from noisy data [BKS20]. The results from these algorithms are so good that

they can seem almost magical—and they may as well be. Machine learning is commonly

thought of as a “black box” that takes in data and outputs a neat, usually highly accurate

result. The alchemy happening inside the black box, however, is notoriously difficult to make

sense of, and provides no understanding of the data along the way.

Classical statistical models for understanding data are easier to understand than models

from machine learning, but are still difficult and sometimes impossible to disentangle. In

[FKW22], for example, a classical method known as Principal Component Analysis (PCA)

was performed on image sequences of the organism Physarum polycephalum, a network-like

1



organism known for its large array of different behaviors [NG08, NYT00, RMM16, BMV12,

DLB10, TTS10]. PCA was meant to identify “modes” of contraction of P. polycephalum in

an effort to understand how these modes correlated to a variety of behaviors, and it did just

that. However, despite the successful identification of contraction modes, questions remained

as to why these were the modes chosen; the statistics yielded no insight to this end. Another

high-profile example of a statistical model that had an impact on the everyday lives of U.S.

citizens is that employed by the IHME during the COVID pandemic [IM20b, IM20a], which

used a purely statistical kernel to provide COVID forecasts that directly impacted federal

policy. While effective at making these predictions, the model, again, yielded no insights as

to which sociodemographic/dynamic patterns were contributing to the forecast.

To get a clear understanding of the why of our data, models that assign parameter

values to physical and interpretable quantities are required. Even these, however, can be

rendered opaque by model complexity. The epidemiological dynamics present in the COVID

pandemic, for example, can be well-described by physical models (as in [BFM20]) that take

into account varied subcommunity interaction structures to predict disease spread. The fits

of these models, however, yield a large array of parameter values that is hard to describe

concretely, although they are more interpretable still than statistical models.

In this dissertation, we seek to analyze the derivation of models with few parameters and

their application to complex data in an endeavor to form simple conclusions and intuitions

about complicated situations. We study two systems in the following: the COVID-19 pan-

demic in the U.S., and the flow/contraction dynamics of the slime mold P. polycephalum.

Herein, we develop a rationale for the application of the mean-field SIR model to complex

COVID data, and a physically-constrained modal analysis of the contractions of P. poly-

cephalum and their resultant cytoplasmic flow.

The rest of the dissertation is organized into 3 parts and a concluding chapter:

Chapter 2: We compare COVID-19 case-curves between different US states, by cluster-

ing case surges between March 2020 and March 2021 into groups with similar dynamics. We

2



advance the hypothesis that each surge is driven by a subpopulation of COVID-19 contact-

ing individuals, and make detecting the size of that population a step within our clustering

algorithm. Clustering reveals that case trajectories in each state conform to one of a small

number (4-6) of archetypal dynamics. Our results suggest that, while the spread of COVID-

19 in different states is heterogeneous, there are underlying universalities in the spread of

the disease that may yet be predictable by models with reduced mathematical complexity.

These universalities also prove to be surprisingly robust to school closures, which we choose

as a common, but high social cost, public health measure.

Chapter 3: We study the SIR-compartment model, which is among the simplest models

that describe the spread of a disease through a population. The model makes the unrealistic

assumption that the population through which the disease is spreading is well-mixed. Al-

though real populations have heterogeneities in contacts not represented in the SIR model,

it nevertheless fits real U.S. state data well at multiple points throughout the pandemic. In

this chapter, we demonstrate mathematically how closely the continuous SIR model approx-

imates a model which includes heterogeneous contacts, and provide insight onto how one

can interpret parameters gleaned from regression in the context of heterogeneous dynamics.

Chapter 4: We study Physarum polycephalum, a foraging, network-forming organism

known for its ability to make complex decisions and maintain memory of past stimuli without

use of a complex nervous system. Self-organized peristaltic flows within the network trans-

port nutrients throughout the organism and initiate locomotion and morphological changes.

A key step in understanding P. polycephalum’s ability to change behavior is therefore form-

ing descriptors of this peristaltic flow. In this chapter, we develop a dynamic network-based

method for describing organism-wide patterns of tube contractions from videos of P. poly-

cephalum. Our tool provides robust readouts of the diversity of global modes of tube con-

traction that could occur within a given network, based on its geometry and topology, and

sensitively identifies when global peristaltic patterns emerge and dissipate.
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CHAPTER 2

Modeling Insights from COVID-19 Incidence Data:

Part I - Comparing COVID-19 Cases Between

Different-Sized Populations

2.1 Introduction

The different approaches that different US states have taken to controlling or mitigating

the spread of COVID-19 have created a test-bed for evaluating public health responses

to future diseases. It is natural to ask, and many headline writers have already [Woo21,

Bro21], whether specific states have done better or worse than others. California and Florida

have been objects of frequent comparison, because of their similar mild winter weather

and highly diverse populations, but stark policy differences on school re-openings, masking

and indoor dining. However, to compare number of COVID cases, or number of deaths,

between different populations, it is necessary to normalize by some measure of population

size. Simply dividing by the total state populations, shows slightly larger case rates and

much higher death rates in Florida (Table 2.1). By dividing by the total population of the

state, we effectively treat the population of the state as a single entity, but both states have

highly heterogeneous distributions of cases 2.1: in Florida both cases and case rates are

concentrated in Miami-Dade county, while in California, case rates are highest in two low

density rural counties (Imperial County and King’s County), though the greatest number

of cases occurs again in a single large metropolitan area (Los Angeles). Dividing the total

number of cases (dominated by a few urban hotspots) by a total state population leads to
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a misleading picture of COVID-19 incidence. When comparing COVID incidences between

different populations, we would like the population size that we normalize by to reflect a

well-mixed subpopulation of individuals with similar levels of exposure and susceptibility to

the disease. However, isolating these populations is not straightforward: even we study a

single metropolitan area (e.g. Los Angeles county), we find widely different COVID case

rates between different neighborhoods, separated only by miles (Fig 2.1).

Figure 2.1: Normalization of cases by total population of state masks small spatial scale

heterogeneities in case rates. In California, Kings and Imperial Counties have highest case

rates, but numerically largest number of cases is in Los Angeles County (left). Miami-Dade

county has highest case numbers and rates in FL (middle). Case rates in Downtown and

East Los Angeles County neighborhoods are 2-3 times higher than in West and South Bay

neighborhoods (right). Shown: cumulative data number of COVID cases per 100,000 indi-

viduals, on April 24, 2022. Sources: FL and CA county data: New York Times, COVID-19

dashboard, LA neigborhood data, Los Angeles Times, COVID-19 dashboard.

Among mathematical models that have been deployed to predict COVID spread, and

to assist with the allocation of resources, some, such as agent based and network models,

specifically address the role of population heterogeneities in shaping the spread of the disease

[KE05, BBT20, MPV02, ACG20, BGM07, BRP10, Kee05, Li20, VM07]. Other models

upscale heterogeneous populations into single, well-mixed, groups of individuals, trading off

the flexibility in forming the dynamics of interaction that a more complex model affords,
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California Florida

Population 39.19 M 21.48 M

Cases 9,237,030 5,963,941

Deaths 90,706 74,056

Case rate 23,570 27,380

Death rate 231 340

Table 2.1: Cumulative numbers of COVID-19 cases and deaths in California and Florida,

on April 22nd, 2022. Naive comparisons between states are based on case and death rates

/100,000 individuals, calculated by dividing by the total state population. Source: New York

Times COVID-19 dashboard.

against a smaller set of parameters are easier to interpret and to fit against data [BFM20,

SSV13, TL20, Het00a]. A third, influential, class of models is purely data fitted, with no

mechanistic interpretation about how individuals are interacting or transmitting the disease

[IM20b, IM20a].

Here we seek to shed light on both problems: 1. how to compare COVID cases among

two populations of two sizes, and 2. what is the appropriate level of complexity to use in a

mathematical model describing the spread of COVID-19 within a population. Specifically, we

seek to compare the COVID-19 incidence curves between different US states, as paradigms of

large heterogeneous, incompletely mixed populations. Comparing the data reveals that there

are natural normalizations for case curves, which we interpret as the size of the subpopulation

that has contact with COVID-infected individuals. The second goal of our analysis is to

determine how diverse COVID-19 incidence time courses truly are: whether each State

follows a completely distinct disease trajectory, or whether there are common families of

time courses representing quantitatively similar dynamics of disease spread that could put

an upper bound on the complexity of models needed to predict the course of the epidemic.

Our third goal is to make trend-conscious comparisons that could be used to quantitatively
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compare the effectiveness of public health control measures practiced in different populations

based on the time course of the pandemic rather than on single point in time measurements,

such as those given in Table 2.1.

To this end, we analyzed one year of cumulative U.S. State case data (from March 2020

to March 2021) taken from The COVID Tracking Project[The], and isolated the earliest and

last complete waves of spread contained in these data. We clustered case curves of similar

shape, normalizing each case curve by a population-size that was allowed to different from

the overall state population.These clusters revealed surprising case curve homologies that

grouped states with very different voting preferences, urban/rural densities, and demogra-

phies. Comparisons within clusters gave estimates of the sizes of the populations among

which active COVID transmission is occurring, whereas comparisons between clusters may

allow for the evaluation of the effectiveness of public health measures controlling spread.

2.2 Results

2.2.1 U.S. State Clustering

Using methods outlined in Appendix A, we first used theWPGMA algorithm [Sok58] to select

14 groups of case curves from the entire corpus of data with early and late phases included.

The clustering immediately separated early phase from late phase with no exceptions. 6 such

clusters included early phase case curves, and 8 included late phase. Plotting the clusters,

we noticed that 3 early phase clusters could be readily combined into a single super cluster.

Moreover, we noticed that Wisconsin (Fig 2.2 white arrow) could be combined into another

cluster, and that two clusters initially of two states (Connecticut and Hawaii, Kansas and

Nebraska) may be aggregated into a single cluster of four states. This curation reduced the

number of clusters to 4 early phase clusters and 6 late phase clusters.

Fig 2.3 suggests that all states in their initial case surge exhibit very similar behavior

on the log scale, with minor variations towards the end of the surge as more complicated
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Figure 2.2: U.S. states are clustered in their early and late case surges via our distance metric.

The dissimilarity heatmap (center top/bottom) represents the raw dissimilarity data, with

white pixels indicating incompatible State curves due to incommensurate surge lengths. Red

squares outline the clusters that were decided with a combination of hierarchical WPGMA

clustering [Sok58] and manual curation, and correspond to the listed clusters in the chart

(right top/bottom). The super cluster created from manual curation in the early phase is

the largest cluster, and is the bottom-right-most square in the heatmap. Massachusetts is

excluded from analysis in both early and late phases due to poor data quality, and Arizona

and Florida were identified as out groups for late phase clustering.

dynamics emerge. Each curve begins as a straight line and appears to be approaching level

on the log scale, suggesting decelerating infection rates from an initial exponential surge in

cases.
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Figure 2.3: Clustered early phase cumulative case curves shown on log scale. A suitable

reference curve is chosen based on average distance to other curves in its cluster, and other

data is scaled and shifted to match the reference curve as closely as possible. The reference

curve is named at the top of each panel and is shown as the solid black line in the plot. The

SIR model fit to the reference curve is shown as a green dashed line. The horizontal axis of

each plot represents time before or after the start of the reference curve’s tenth case once

the data have been shifted.

2.2.2 Detecting Effective COVID-contracting Population Size

When comparing case curves metrics between states, one usually scales the number of cases

by total population size in order to measure per capita statistics rather than simple raw
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Figure 2.4: Clustered late phase cumulative case curves are shown on the log scale. A

suitable reference curve is chosen based on average distance to other curves in its cluster,

and other data is scaled and shifted to match the reference curve as closely as possible. The

reference curve is named at the top of each panel and is shown as the solid black line in

the plot. The horizontal axis of each plot represents time before or after the start of the

reference curve’s tenth case once the data have been shifted.

data. However, on the relatively large U.S. State scale, normalizing by population may

not be entirely appropriate, because doing so implicitly assumes that the entire population

contributes to the growth in cases, and ignores the complex reality wherein cases may be

localized in hot spots whose size may not correlate closely to the population as a whole. When

analyzing such statistics, then, it may therefore be helpful to focus on the cities, counties,

or even neighborhoods in which mixing of individuals is causing COVID transmission. By

allowing population sizes to be freely rescaled when comparing states, our alignments can

be used to estimate the relative sizes of COVID-impacted populations between any two

given states, as mentioned in section SII. We tested whether the ratios of population size
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Figure 2.5: Representative curves from each respective cluster are compared with alignment

biased toward the beginning of the curve in order to emphasize disparate evolution of dynam-

ics, shown on log scale. Number labels correspond to cluster IDs, and match those shown in

Figures 2.3 and 2.4. Left: Early phase case curves. Right: Late phase case curves, including

Florida and Arizona, which are excluded from previous analyses.

of states also predict the ratios of their COVID-contracting populations (Table 2.2), finding

that there is a weak R2 of 0.31. A similar score was seen when total State population was

replaced by urban population (given by the total population of the largest 3 cities in each

State (Table 2.2, R2 = 0.2005)), reflecting, perhaps the dominant role played in many states

by transmission of COVID within urban populations. However, our analysis also exposed

some notable exceptions. For example, our clustering ratio between Florida and the other

states in its cluster were routinely lower than the actual population ratios of the states in

that cluster, indicating that states matching Florida’s case dynamics had to be scaled up

less than the expected population ratio in order for the curves to align, suggesting that

the COVID-contracting population was a smaller fraction of Florida’s total population than

for states with similar case dynamics. Conversely, Idaho had the opposite result (higher

clustering ratio versus population ratio), indicating that it had a larger COVID-contracting

population fraction than states in the same cluster.
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Correlation Tested R2 value

Clustering population ratio (log scale) vs. actual popu-

lation ratio (log scale)
0.3169

Clustering population ratio (log scale) vs. population

ratio of sum of 3 largest cities (log scale)
0.2005

Table 2.2: A summary of the basic linear regressions done on the data.

2.2.3 Searching for Variables to Explain Clustering

The clustering of states allows us to test hypotheses about which underlying variables, in-

cluding both geographical proximity and similarities or divergences between public health

measures adopted in different states. A lack of testing capacity—especially at the beginning

of the COVID-19 pandemic—along with the high frequency of asymptomatic infections cloud

estimates of the true prevalence of the disease. PCR test results of individuals on a cruise

ship amid a COVID outbreak revealed high variability in test positivity rates between differ-

ent testing methods [OYS21]. Antibody tests also likely depend on disease severity [HJP21],

and as a result can prove to be ineffective at retrospective analysis of COVID cases. Even so,

studies that have been done using antibody tests have revealed false negatives in all methods

of PCR testing [KNS21]. Additionally, limited availability of COVID tests, particularly early

in the pandemic, may mean that many individuals infected with COVID were not tested

[LKK21]. The number of positive cases is therefore likely under-counted (although estimates

vary for the extent to which cases have been under-counted [IR21, ND21, LKK21]), creating

concern that the clusters identified in this study may be distorted or even dominated by

different levels of testing coverage and different kinds of testing methods. We tested whether

differences in testing coverage explained the different time dependencies of cases. We used

percentage of positive tests as a proxy for coverage since this indicates when testing coverage

is low: for example the test positivity rate reached over 40% in New York State during its

first surge. We found that the average positivity rates within clusters were no more similar
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than would be expected under random grouping (p = 0.5365, by permutation test). We may

therefore conclude that our clustering is not simply capturing differences in testing coverage.

We also performed our modified Mantel test on the data to see whether dissimilarity

scores between states are correlated with physical distances between the population centroids

of states being compared. Although there are few known examples of COVID hotspots

spanning State boundaries, such similarity would be expected if two states are linked by

high rates of migration. Some pairs of neighboring states showed expected close similarity:

for example much of the Southeast, including Georgia, Alabama, and Tennessee (Fig 2.2),

as well as Idaho, North, and South Dakota. Other clusters were made up of geographically

distant states: for example, Connecticut, Hawaii, Nebraska, and Kansas all emerged within

a single cluster (Fig 2.2). Accordingly, we checked whether close states tended to cluster

together. The correlation between closeness of our clustering was low only ρ = 0.0991, but it

is statistically significant (p = 2.5486×10−8, by Mantel test, Table 2.3). To further probe the

issue, we also measured the average percentage of states in each cluster that share a bordering

neighbor also in the cluster. We found that approximately 63% of states on average had a

neighbor in their cluster. This number was tested it against 50,000 permutations of our

clustering for a significance of p = 1.0868 × 10−5. Both tests indicate that our clustering

did indeed tend to cluster close states more than a random clustering would, but also that

closeness is not necessarily a very important factor deciding whether dynamics are similar.

Public health responses within states are strongly influenced by political climate and

divisions between the responses of the two main political parties to a joint public health

and economic crisis. We considered two measures of political climate: the party affiliation

of the State governor at the beginning of the pandemic (excluding Washington D.C., which

does not have a governor), and the percentage of voters who voted for the Republican can-

didate, Donald Trump, in the 2020 presidential elections. Neither measure was significantly

correlated with State clustering (governor party, p = 0.3068, and Trump voting percentage,

p = 0.1453).
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Metric Tested Test Statistic p value

Population centroid distance Pearson correlation 2.5486× 10−8

Absolute Trump voting percent-

age difference
Pearson correlation 0.1453

Majority party governorship sta-

tus

Average percentage of most rep-

resented party in cluster
0.3068

States clustered together both in

early and late phase

Average percentage of states in

each cluster that are clustered

together in both early and late

phase

0.3893

States clustered with their bor-

dering neighbors

Average percentage of states in

each cluster that shared a neigh-

bor in the cluster

1.0868× 10−5

Testing positivity rates
Average variance of testing posi-

tivity in each cluster
0.5365

School reopening dates
Average variance of school re-

opening dates
0.2516

Table 2.3: A summary of results from permutation tests (including our modified Mantel

tests) done on our clustering. The left column describes a metric used to probe our clustering

behavior. The p value in the right column refers to the percentage of time that the metric

tested on a permuted version of our clustering exceeded that of our actual clustering. For

each test, the number of permutations tested is 50,000.
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Finally, we use school closures as a direct index of the level of social distancing enforced in

each State. Some states (e.g. Florida and Rhode Island) adopted a single policy on keeping

schools opened or closed; in other states, individual school districts or counties determined

whether or not to offer in-person instruction. Hence, we used the largest school district in

each State as a proxy for the entire State’s response to the pandemic. We compiled data on

when the largest school district in each State first opened some form of in-person learning,

and found that whether or not schools were open during the last recorded surge did not

correlate with our State clustering (p = 0.2516).
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CHAPTER 3

Modeling Insights from COVID-19 Incidence Data:

Part II - Why are compartment models so accurate?

3.1 Introduction

Differences in rates of contact and of susceptibility between individuals strongly affect both

their likelihood of catching COVID-19 and their health outcomes once infected. Incorpo-

rating these heterogeneities into models of disease spread is essential to understand the

differential impacts of the disease upon different subpopulations, such as Black or Brown

Americans [Rey20, MMZ20], nursing home residents [YLI20], incarcerated [SPW20] and un-

vaccinated individuals [MVZ21]. As well as ensuring a more equitable understanding of the

disease, baseline questions about whether, e.g. it was safe to reopen schools in the middle

of the pandemic, can not be definitively answered without considering the different levels

of vulnerability of the communities affected: students, their caretakers, teachers and school

staff.

However, heterogeneity-capturing models contain many unknown parameters that are

difficult to fit to real data, and are hard to interpret once fit. Accordingly, public health

departments continue to make predictions about the progress of the epidemic and about the

effectiveness of social distancing based on so-called well-mixed models (reviewed in [BFM20]),

and these models can be made to fit existing case data very well. They suffer, however, from

having assumptions that are too simplistic to honestly reflect complex social behaviors in-

herent in disease spread, and as such, parameter fits should be interpreted with caution. In
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the well-known SIR model [DH00], which is the focus of this paper, a group of susceptible

individuals (S ) transition via contact with infectious individuals to the infectious (I ) group,

and after some time recover or are removed (R). The compartments evolve according to:

dS

dt
= −β

SI

Ntot

,
dI

dt
= β

SI

Ntot

− γI , (3.1)

while dR
dt

= γI ensures that, neglecting disease and other mortality, the total number of indi-

viduals S+I+R = Ntot remains constant. The susceptibility coefficient β represents the num-

ber of infections caused by a single infected individual in an otherwise susceptible population

in unit time. γ is a basic recovery rate. For the above equations to be valid the population

should be well-mixed: everyone in the population interacts with everyone else at all times.

Given geographic considerations and changes in mixing behavior during a pandemic, this as-

sumption cannot be true. Accordingly, much modern epidemiological modeling, including of

COVID-19 [BFM20, ACG20, TL20], has focused on the role of heterogeneous contacts, either

by ramifying compartments or by using networks to model connections between individuals

[MPV02, BBT20, Li20, KE05, EK02, Kee05, MPV02, BRP10, VM07, Yan08]. Although

inclusion of heterogeneities can drastically affect e.g. thresholds for herd immunity [BBT20],

the multiplication of parameters that occurs when heterogeneities are added to models makes

it hard to validate these predictions against real data. Previous work has shown that un-

der certain conditions heterogeneous models can be approximated by well-mixed models

[KRM97, SSV13, BGM07], but there is limited data showing these conditions are met by

real epidemics.

In chapter 2, we showed that the COVID-case curves from different US states and during

different surges can be clustered into between 4 and 6 groups. The collapse of case curves from

different states to a small number of master curves suggests, that in spite of heterogeneous

COVID transmission rates and impacts, relatively low model complexity is needed to repro-

duce the overall growth and the decay in number of infectious cases in a surge. Alignment

of case data from different states involved translating data in time, and rescaling number of

cases by a population size that was detected during data clustering (chapter 2), and that
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we interpreted to be the size of the subpopulation through which COVID-transmission was

occurring. It follows that any mathematical model to describe this data collapse, must have

the same symmetries; and these symmetries are present within the SIR model [BFM20].

We therefore postulated that the SIR model, described above, might be able to describe

some of the families of case dynamics. We fit the SIR model to data from the first COVID

surge, specifically the cumulative number of infections detected in each US states from the

beginning of their respective outbreaks in February or March of 2020, up to May 20, 2020

(by which time stay at home orders had been relaxed, changing the transmission rate of the

disease [MHS20]). In total, the SIR model fits the US state data for 2 of the 4 initial COVID

phase clusters, accounting for 26 of the 52 states and territories in the data set (see Fig 3.1

and Fig 3.2) of this paper for examples of early COVID SIR fits). The SIR model performed

much better for the most recent surge in the Omicron variant with few exceptions, closely

conforming to the true case trajectory. Representative fits from SIR models to the Omicron

variant are shown in Fig 3.3. In this paper, we examine two questions: First, given its

neglect of heterogeneities in population contacts, why does the well-mixed SIR differential

equation fit real pandemic data so well? Second, when we fit the SIR model to real observa-

tional data, can we interpret its fitted parameters, when the interaction processes that are

parameterized are themselves not realistic? We find that the fitted β parameter implicitly

accounts for heterogeneous interaction dynamics, and the Ntot parameter reveals an effective

epidemic population size. We then apply our findings to the surprisingly well-fit omicron

variant surge.
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Figure 3.1: California’s cumulative COVID case data (blue) is reasonably approximated by

the SIR model (orange) both in its initial stage and during the Omicron surge (left and right

panels, respectively). Initial COVID data is highly dependent on testing capacity which was

highly variable during the initial wave of COVID, so goodness of fit of the initial wave is

best gauged by the fit to the latter part of the data.

3.2 Results

3.2.1 A Heterogeneous Extension

To examine why the SIR model fits real pandemic data at all, we consider a multi-population

SIR model that allows for populations to be heterogeneous in their contacts and susceptibil-

ities. We then interrogate simulations resulting from this model to examine how important

such heterogeneity is in the dynamics, and what fitting such a model with a homogeneous

model means mathematically.

The model assumes that the population is split into K subpopulations, with population

sizes Ni, i = 1, 2, . . . , K, that interact with each other with contact rate βij, i.e. βij is the

number of infections a single infected individual in subpopulation i could cause in subpopu-
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Figure 3.2: Shown are the computed clusters grouped together by the methods described in

chapter 2. The least-fitting cluster (in the authors’ opinion) lining up with Arkansas still

fits reasonably well when the fit at later stages is considered, especially when one keeps in

mind that case data is highly unreliable and sensitive to stochastic effects at the beginning

of the pandemic.

lation j, if j contains only susceptible individuals. Our subpopulations represent geographic

or demographic partitions of a population of size Ntot. In this first treatment we neglect

differences in recovery rate based on individual characteristics. The susceptible, infectious,

and removed quantities of subpopulation i is given by Si, Ii, and Ri respectively and also
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Figure 3.3: The SIR model (orange) fits Omicron surge data (blue) robustly for the vast

majority of U.S. states. Shown are four examples of good fits for states with wildly different

social/demographic structures and differing smoothness of data reporting.

write
∑

i Si = S,
∑

i Ii = I,
∑

i Ri = R, and
∑

i Ni = Ntot. Consider the model:

dS

dt
= − β̃

Ntot

SI −
K∑
i=1

K∑
j=1

(βij

Nj

− β̃

Ntot

)
SiIj

dI

dt
=

β̃

Ntot

SI − γI +
K∑
i=1

K∑
j=1

(βij

Nj

− β̃

Ntot

)
SiIj

(3.2)

To emphasize the similarity between the multi-population and the single-population SIR

model we write the equation in a form with an SIR part, with arbitrary coefficient β̃ plus

a residual. We obtain a type of best SIR fit by minimizing the L2 norm of the ratio of the

heterogeneous residual to the homogeneous term on an arbitrary interval (t1, t2), i.e. we
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minimize the size of the function

F (β̃, t) ≡
∑K

i=1

∑K
j=1

(βij

Nj
− β̃

Ntot

)
SiIj

β̃
Ntot

SI
(3.3)

This yields the unique minimum

β̃ = Ntot

∫ t2
t1

(∑K
i=1

∑K
j=1

βij
Nj

SiIj

)2

(
SI
)2 dt

∫ t2
t1

∑K
i=1

∑K
j=1

βij
Nj

SiIj

SI
dt

(3.4)

We explore this quantity for a certain class of subpopulation interaction structure in Section

(3.2.2) and (3.2.3).

3.2.2 Intermediate Mixed/Unmixed Models

We first consider the case where subpopulations either do not interact or else interact at

identical rates:

βij = β
((

b
Nj

Ntot

+ (1− b)
)
δij + b

Nj

Ntot

(1− δij)Aij

)
(3.5)

Here δij is the Kronecker delta, b a mixing parameter ranging from 0 to 1, and Aij is

an adjacency matrix describing which subpopulations interact. Assume initially Aij ≡ 1.

When b is 0 the populations do not mix, and infections spread within but not between

subpopulations, and when b = 1 the subpopulations mix completely, effectively merging into

a single homogeneous population by construction of Eq. (3.5). Scaling βij by Nj ensures

that interactions between subpopulations are proportionate to their sizes.

A homogeneous SIR model fits this model for b ≳ 0.2 (Fig (3.4)). Moreover, the β̃

gathered by Eq. (3.4) is very close to the β achieved by least squares model fitting to the

full simulation, although unsurprisingly least squares fitting performs better at fitting the

actual simulated curve for lower values of b. The agreement between β̃ and the fitted β is

encouraging: for the consideration of real data, one can only deduce model parameters via

some sort of fitting algorithm without knowledge of subcompartmental dynamics, but the
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result suggests that least squares fitting optimally estimates the susceptibility parameter to

maximize the SIR part of the model relative to the interpopulation dynamics.

3.2.3 A Model with Network Structure

To investigate possible effects of subcommunity interaction structure on the homogeneous-

like dynamics, we now model subpopulations whose interactions are prescribed by a network

with adjacency matrix Aij. Aij = 1 indicates two subpopulations that maintain frequent

contact with one another, such as a pair of communities which go to the same grocery store

or school. For the purpose of analysis, we modeled random connections between subpop-

ulations as random Erdős-Réyni networks parameterized by mean degree. The SIR model

approximates the graph dynamics model above b = 0.2, with the fit improving as the mean

degree of each node is increased (Fig (3.5)). Just as for a complete graph, β̃ agrees with

β from least squares fits. Narrowing of error bars as mean degree of the random network

increases express the decreasing importance of network structure as the network becomes

more densely connected.

However, β̃ does not asymptote to β = 0.2 whether we use Eq. (3.4) or least squares

fitting. Instead, increasing mixing allows the model to gain awareness of how sparse the con-

nections between subpopulations are, ultimately causing β̃ to decrease. Fig (3.5) suggests

that as the mean degree increases, we expect that rate of decrease to slow, and that β̃ will

eventually asymptote to 0.2 as the network becomes complete (Fig (3.4)). Indeed, when all

subpopulations have the same size, β̃ may be written as

β̃ = β

∫ t2
t1

(
K−(K−1)b

K

(
1 +K

∑K
i=1

Si

S
( Ii
I
− 1

K
)
)
+ b

∑K
i=1

∑K
j=1 AijSiIj

SI

)2

dt∫ t2
t1

K−(K−1)b
K

(
1 +K

∑K
i=1

Si

S
( Ii
I
− 1

K
)
)
+ b

∑K
i=1

∑K
j=1 AijSiIj

SI
dt

(3.6)

Both numerator and denominator include a term which relies on graph structure and gains

weight with the mixing parameter b and the covariance between the fraction of suscepti-

bles and infecteds across subpopulations. The
∑K

i=1
Si

S
( Ii
I
− 1

K
) term represents a covariance
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Figure 3.4: A single well-mixed population model can represent aggregate spread of disease

through a linked set of subpopulations, even with relatively weak inter-subpopulation mixing.

Top: Cumulative cases from the model in Eq. (3.2) with βij given by Eq. (3.5). Blue curves:

subpopulation model with b increasing from b = 10−5 (lightest) to b = 1 (darkest) with

log-spaced values. Red curves: optimal SIR fits, with b = 10−5 (lightest), b ≈ 10−2, and

b ≈ 10−1 (darkest) cases. Bottom panels β̃ given by Eq. (3.4) (left, orange) and by linear

regression (right, orange) as a function of b (orange), and the relative mean squared error

of the true model relative to an SIR model using β̃ and Ntot as a function of b (blue).

The plots included in this figure are from numerical simulations done with the parameters

β = 0.2, γ = 0.1, Ni = 1000, and K = 5, and initial data I1(0) = 1, Ii(0) = 0∀ i > 1 and

Ri(0) = 0∀i. Both the β̃ and the regression calculations are done over an entire pandemic

period (250 days).

measurement of the susceptible and infected percentage among the subpopulations, and is

expected to be negative since, heuristically speaking, an increase in the number of infecteds
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Figure 3.5: Networked subpopulations still allows for fitting by an SIR model. Erdős-Réyni

networks were simulated for with three different mean degree parameterizations. 100 replica

simulations were run with β = 0.2, γ = 0.1, Ni = 1000, and K = 101. Shown: Close to

identical estimates are obtained for β̃ using Eq. (3.4) (orange, solid) or least squares fitting

(orange, dashed). Mean Relative Squared error is shown for Eq. (3.4) (blue, right axes).

corresponds to a decrease in the number of susceptibles, at least during a surge in cases. The∑K
i=1

∑K
j=1 AijSiIj

SI
term encodes β̃’s dependence on subpopulation interaction structure. For a

complete network, this term is 1, and it decreases to 0 as the network becomes more sparse.

In the complete graph case and the case with network structure, we observe that β̃ is

dampened by heterogeneous community contacts. Given β̃’s correspondence with the β

gleaned from data fitting, we now assume that the SIR parameter fit for β actually under-

estimate the true person-to-person contact rate.
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3.2.4 Comparison with other estimators of disease spread

We have shown that one can generate a single population-level transmission rate, β, for a

heterogeneous population. From β we may derive the basic reproduction number R0 = β/γ,

the expected number of secondary cases produced in a completely susceptible population,

by a typical infectious individual[DHM90]. Our estimation method relies on minimizing the

error between heterogeneous and an SIR model over the entire time course of a surge through

Eq. (3.4). Prior estimation methods rely on the fact that in an SIR model, the parameter

β describes the linearized, or initial, exponential rate of growth of the number of infectious

individuals. For our model, we estimate this linearized rate of growth by two methods: 1.

fitting an exponential on the first 20 days of the simulation, and 2. the next-generation

matrix method from [DW02] (Fig (3.6)).

In [DW02], R0 is computed for a general compartment model from the Jacobian matrix

of the system. This matrix is evaluated at a disease-free equilibrium to determine the

average number of individuals that a typical infectious person infects when the population

is asymptotically disease free, i.e. Si = Ni for each i. Applying the method in [DW02] to

Eq. (3.5) and making the assumption that Ni = Nj for all i and j as in the simulations, we

obtain:

R0 =
β

γ

(
1− b+

b

K

(
1 + ρ(Aij)

))
(3.7)

where ρ denotes the spectral radius of the matrix Aij. In the complete network case (as in

Fig (3.4)), ρ(Aij) = K − 1, which yields R0 = β/γ, matching the asymptote in Fig (3.6).

As the mean degree of our random network increases, R0 values computed from the next

generation matrix method in [DW02] and the R0 computed from β̃ converge (Fig 3.6). On all

levels of network connectedness, and mixing parameter, exponential fitting consistently un-

derestimates the contact rate. Under-estimation results from initial slowing in early growth,

due to transmission being slower between subpopulations than within them. Conversely, for
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Figure 3.6: R0 estimates from fitting entire case data curve optimally to well-mixed model

(blue) agree with linearized analysis by next-generation matrix method (yellow) [DW02], but

not to empirical fits to the data assuming exponential growth (red).

small values of the mixing parameter b, the next generation matrix method R0 exceeds the

optimal estimate from β̃, but the two estimators converge consistently at b values between

0.1 and 0.45, depending on the mean degree of connectedness between subcompartments.

The value of R0 computed in [DW02] comes from the linearized dynamics; for example

it provides a threshold for the stability of disease-free equilibria (see [Het00b]). By contrast

the estimate for R0 computed in this paper is computed by approximating the spread of the

disease by a homogeneous model. Surprisingly, the two methods produce confluent results

even under modest levels of mixing between subpopulations.
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In contrast to constant-parameter growth fitting, time series fitting calculates the time-

varying rate of exponential growth of the number of COVID cases, and thence infers the

number of new infections caused by each COVID case. Unlike the SIR model, R0, now

called simply R, is not a constant, but typically varies over the course of a surge, and

reflects not just the linearized dynamics of disease spread if an infected individual were

transplanted to a population containing only susceptibles, but an actual estimate of new

infections. Both SIR model and data fitting produce case curves that agree well with the

surge of Omicron-variant cases, for which we use California as a representative example

(section 3.2.6). However, the SIR model achieves this fit by assuming piecewise constant β,

with a single (β, Ntot) pair covering most of the surge. We show in the next section that

it is possible to forecast the end of the surge after an inflection point in a surge, and the

total number of cases it will cause. Under the model, the surge ends only when the disease

has been transmitted through an entire well-mixed subpopulation of size Ntot. By contrast,

the time-varying R value inferred by Epiforecasts [Epi] gives a compelling visualization of

how transmission rates decrease during the surge. However, data fitting can not distinguish

between decreases in transmission rate due to inevitable decrease of number of susceptibles

around each infectious individual, or due to public health orders changing the course of the

epidemic. The success of the SIR model in fitting the data weights the first factor over the

second, though does not discount the effectiveness of public health measures implemented

at or before the start of the surge in controlling its trajectory.

3.2.5 The Ntot Parameter as Effective Case Surge Size

In the derivation of the SIR model, Ntot is the size of the population through which the

disease is being transmitted. When using the model for data fitting, Ntot is often treated as

the size of the population; e.g. state or country from which the data was sourced [BFM20].

However, real COVID cases occur in hot spots, and may not involve every individual in
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the studied population. In terms of our representation of this studied population by linked

compartments, linkages between some compartments may be so weak that cases in one do

not lead to a number of cases in the second that does not scale with the second compartment

size. For this reason, we take advantage of the flexibility within our model of allowing Ntot

be fit alongside β.

Much like how we must reconsider the fitted β in the context of heterogeneities, we must

now reconsider what the fitted Ntot represents. The SIR model believes that Ntot gives the

scale of the population modeled. In turn, our fitted Ntot parameter tells us something new

and useful: the epidemic population scale that the data is conveying. Such a fitted Ntot can

then be a new, data-driven scale by which we can estimate per-capita case numbers in the

context of a given surge.

Fitting Ntot, however, is surprisingly tricky. In the SIR model, Ntot always appears

coupled in a fraction with β, and as such, when the scale is not necessarily apparent from

the data, only the ratio β
Ntot

can be tuned to fit. The scale of the initial conditions used

to fit the data are also unreliable, in part due to a large degree of uncertainty of what the

initial conditions are given cumulative case data, i.e. we have little information about how

many people can be considered susceptible or removed at any given time in order to seed

the fit with an accurate initial condition. Indeed, when not enough data to determine scale

is present, the fits for β and Ntot are highly sensitive to the initial parameter estimates in

our fitting algorithm (Fig 3.7).

We analyzed omicron surges (which are fit quite well by the SIR model, as explored in

the next section) to determine exactly how much data is needed for scale to be fit robustly

(Fig 3.7). We observe that predictive power and parameter fit robustness rapidly increase

immediately after the inflection point in surge data, suggesting that the model needs to

be sure of a future plateau of cumulative cases to truly determine scale independently of

the ratio β
Ntot

. This observation is supported mathematically by an analytical result on the
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Figure 3.7: Fitting analysis of the Ntot parameter for California’s cumulative COVID case

data during the Omicron variant surge. Left: the SIR model’s best prediction (orange

part of curve) when given a four different portions of the entire surge data (blue part of

curve). Vertical green lines indicate the point where the SIR model starts predicting. As

more data is given, the model better matches the actual cumulative case data (translucent

black line). Right: the distribution of fitted Ntot parameter values as a function of number

of days of data given (horizontal axis in plot). Fit distributions are generated by taking

the negative exponential of mean squared residual of the fit after randomizing the initial

parameter guesses (see section SID). The distribution narrows around a more unique guess

as more data is given.

eventual number of susceptibles as a function of model parameters:

S∞e
− β

γNtot
S∞ = S(0)e

− β
γNtot

(
Ntot−R(0)

)
(3.8)

We see here a second indicator of scale for the SIR model present in the terminal dynamics

of the model’s trajectories. We reason that the inflection point in a case surge is the point

after which these terminal dynamics become determined. In turn, the Ntot parameter reveals

itself uniquely.
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3.2.6 SIR Curve Fits and Parameter Conclusions from U.S. State Omicron Case

Surge Data

Armed with the more nuanced interpretations of what fitted β a Ntot mean, we sought to

draw conclusions from U.S. state data from the particularly infectious Omicron variant as

it first rose to dominance among infectious individuals. Despite the relatively wide coverage

of vaccines, the Omicron variant infected individuals as if they were purely susceptible,

although vaccinated individuals were far less likely to end up hospitalized [MVZ21]. This

high infection rate paired with the timing of two major U.S. holidays (Thanksgiving and

Christmas) almost invariably led to homogeneous SIR-like dynamics for entire states (Fig

3.3), despite vast differences in population density and demographic structure. In fact, the

only states not to exhibit clear homogeneous SIR dynamics appear to have extremely low-

quality data. Given our early interpretations utilizing β̃ (Eq. 3.4), we conclude that some

level of subpopulation interaction is happening state by state, with well-mixed dynamics

occurring in the different subpopulations. Since the data considered is a surge of cases,

we also expect the fitted β to represent the bulk susceptibility parameter dampened by

subpopulation interaction effects due to negative covariance between susceptibility numbers

and infectious numbers (Eq. 3.6). Our parameter fits for β in the following, therefore, are

lower bounds for the true person-to-person susceptibility rate rather than actual estimates.

We chose to use California as a case study for our parameter fits due to the absolute

certainty of there being at least two loosely connected population centers for COVID spread

(the San Francisco area and the Los Angeles area, separated by approximately 400 miles).

Much like the vast majority of states, California’s Omicron surge is extremely well approx-

imated by a simple SIR curve. The most frequently-occurring set of parameters that fit

the data put the basic reproduction number at approximately R0 ≈ 3 (a lower bound just

as β is), and Ntot ≈ 12 million. The SIR model therefore thinks that California’s data is

actually represented by homogeneous spread among 12 million individuals. Our earlier inter-

pretations temper this conclusion with the reality that the spread cannot be homogeneous,
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and leads us to the more nuanced conclusion: the spread of Omicron in California is domi-

nated by the well-mixed disease spread amongst 1 or more distinct subpopulations totaling

to approximately 12 million individuals, around 30% of California’s population. Among

these communities, spread has a very rapid rate of at least R0 = 3. This highlights the

dominant role that a closely interacting set of individuals can play in driving pandemic case

trajectories.
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CHAPTER 4

Flow modes provide a quantification of Physarum

network peristalsis

4.1 Introduction

Despite the lack of a central nervous system, and the many divergences from multicellular

animals, the plasmodial slime mold P. polycephalum is capable of complex decision making,

as it explores space, locates nutrients, and links them together via a network of tubes. P.

polycephalum plasmodia grow indeterminately, encounter and assimilate food sources, and

integrate them into a network that uses materials economically while minimizing the energy

costs of transport [AKF16]. The adaptive network making of P. polycephalum has been

studied extensively, leading to insights into its ability to find paths through mazes [NG08,

NYT00], solve the two-armed bandit problem [RMM16], find shortest paths in environments

with variable costs of growth [BMV12], and to arrange itself optimally for delivering nutrients

[DLB10, TTS10]. Additionally the tube diameters within the network, both reflect the

organism’s current optimization of flows relative to nutrient sources, and encode information

about its previous encounters with food stimuli [KA21]. Although network morphology

has attracted ample research attention, the flows within the network are relatively less well

mapped. An active actomyosin cortex, enables tubes to dynamically vary their radii [Kam81].

Rhythmic contractions can create flows that span the entire network, transporting nutrients

and organelles across the organism. Understanding the morphology of the network and the

protoplasmic flows it creates are linked challenges, since the topology and radii of tubes with
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the network both sculpts the protoplasmic flows and continuously adapts to them.

As such, the study of the development of behavior and memory in this simple organism is

interesting for illuminating the range of behavioral phenotypes that it may be capable of, and

for understanding the mechanisms that underlie how, despite lacking a neural system or any

central information processing organi, Physarum has a distributed capacity to assimilate and

respond to information from its environment. In particular, studies have highlighted how

tubes respond to external chemical cues from the organism’s environment [KA21, FKW22],

and to internal stimuli, including chemical signals transported by internal flows, and to the

hydrodynamic stresses of the flows themselves [KAY88, AAP17].

In many filamentous fungi, protoplasmic flows are created by water uptake throughout

the mycelium, which is then pushed through a network of hyphae to expanding hyphal tips,

located at the periphery of the mycelium. This mechanism can produce extremely fast flows

in the fastest growing fungi, including speeds of 50 µm/s, up to 100s of µm/s in the fast

growing asomycete, Neurospora crassa [Lew05]. Multidirectional flows are possible, including

flows that alternate in time within a single tube [SSR19], or that can occur simultaneously

within a single hypha, when organelles are trafficked by different motor proteins, or by a

combination of motor proteins and bulk protoplasmic flow [RS19]. By contrast, in Physarum

plasmodial networks, active pumping, due to rhythmic tube contraction and dilation, propels

protoplasm, and can drive it toward or away from the network periphery. Efficient transport

on the network-scale may be effected by coordinating contraction phases, to create a traveling

or peristaltic wave, in which contractions smoothly pass from each tube through its neighbors.

Yet, under many conditions, contractions do not coordinate globally, creating small or local

protoplasmic flows [AAP13, NYU00, MTN08].

Two classes of Physarum behaviors are subjects of study and modeling, and represent

different time scales on which the network adapts to new information about its environment:

1. The coordinated pumping-driven flow of protoplasm [UMA86, YK84, KAY88] allowing

stimulus responses on the scale of minutes [MAN17, LB11], including locomotion [RDT15,
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LZG15, RTU15, ZGL17], and nutrient/chemical signal proliferation [AAP17], and 2. The

adaptation of network morphology, including tube diameters, densities and connectivities on

time scales of 10-30 min [KA21]. Toward quantitative study of both classes of Physarum’s

behaviors, we develop a method for measuring the ever-changing network morphology, along

with a network-informed approach to mapping the distribution of contractions and dilations

across this network.

Although automated analyses of sequences of microscope images allows for direct mea-

surement of tube diameters and network morphology, and these data can be analyzed to

extract summary information such as, for the network morphology, the levels of modularity

or redundancy within the network [TTS10], and the phase distributions within tubes when

they are contracting with the same frequencies [AAP13], the problem of mapping behaviors

rapidly becomes enmired in issues of data complexity. For example, descriptors of pumping

behaviors must describe time-varying radii in tens or even thousands of individual tubes,

not even accounting for the additional geometric complexity created when parts of the same

tube have different phases of oscillation. By contrast, when tube oscillations are coordinated

across the entire network, as occurs when peristaltic waves emerge, a simple mapping of

the distributions of phases may suffice [AAP13], but a range of behaviors is possible, from

apparent uncoordination to global synchronization, and a focus upon phase renders opaque

the pumping behaviors that occur before the emergence of the peristaltic wave, or after

its dissipation. Reduced-order descriptors, in which tube oscillations are projected upon a

small number of modes, can allow the structure of peristalsis, and the transition between

behaviors, to be quantified. But a basis of modes needs to be detected. In [FKW22], a spec-

trum of peristaltic flow modes was identified using Principal Component Analysis (PCA) on

sequences of pixel intensities. The PCA identified modes could be used to project pumping

patterns, and synchronization of modes sensitively reports on peristalsis’s first emergence and

its subsequent disappearance. PCA is a broadly useful tool for identifying bases from data,

but it is agnostic to the physics of the network—the geometry and connectivities of tubes—

35



and how these physics constrain what types of peristaltic flows the network can create. As

such it is difficult to interpret how the modes identified by PCA relate to the organism’s

changing transportation network, or to unpack the bi-directional coupling between modes of

protoplasmic flow and the morphology of the network.

Here, we identify a mapping based on network-wide flow modeling that transforms net-

work measurements to resultant flows, effectively identifying the types of coordinated flows

the network can support, and the patterns of tube oscillations that are needed to create

them (called Γ, the behavior of which is sketched in Fig. 4.1). Encoded in this mapping are

modes that directly identify important peristaltic contraction patterns that contribute most

to a rapid response to stimuli. As a proof of concept, we study three brightfield time series

(Movies S1, S3, and S5 from [KA21]) of morphologically diverse organisms over a time scale

of many peristaltic patterns. We demonstrate that flow modes and contraction patterns can

be followed during network evolution, and can be well represented using our identified bases.

In particular, the emergence of globally coordinated modes of contraction can be read out

from the time traces of the data presented via our bases, and the times and events that lead

to emergence can also be visualized using these modes as they were using previous PCA

analysis. At the same time, the spectrum of modes identified by our method is directly con-

trolled by the network geometry. Remarkably, we find that the number of significant modes

is affected by the size of the network, but only little by the hierarchy of tube radii within

the network. The degree of isotropy of our measured networks may issue from the relative

uniformity of the environments in which the networks, studied here, were imaged. Isotropic

and relatively uniform networks may themselves be adaptive under conditions where growth

is not biased toward or away from sparsely distributed food sources or stressors, allowing

the network to respond to foods or stresses encountered from any direction.
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Data Processing

Figure 4.1: A schematic of the processing pipeline in our method. Shown is taking the first

frame of Movie S1, extracting graph morphology, and finding the mode of top importance

for our mapping Γ. Γ takes in a vector of tube contractions or expansions (visualized on

a graph in the 2nd panel), and outputs a vector of flows (visualized in the 3rd panel). In

these visualizations, red corresponds to tube expansion in panel 2 and high flow in panel 3;

blue corresponds to tube contraction in panel 2, and low flow in panel 3. The mapping itself

generates the modes in both panel 2 and panel 3 once data has been processed.
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4.2 Methods

4.2.1 Mathematical Background

In the following, we develop the mathematics behind idealizing flows in a P. polycephalum

organism as flows on a mathematical network.

4.2.1.1 Flow in an Expanding and Contracting Tube

The rate of flow of of homogeneous, incompressible fluid driven by pressure drops through a

cylindrical tube is with the Hagen Poiseuille Law, so long as the Reynolds number ρuL
µ

and the

Womersley number L
(
ωρ
µ

)1/2
are sufficiently low as previously justified for P. polycephalum

(see [WTT11]). In these definitions, ρ and µ are the density and dynamic viscosity of the

fluid respectively, L is the system length scale, u is the scale of the fluid velocity, and ω is

the frequency of fluid oscillations. The Hagen Poiseuille Law states that the amount of flow

Q passing through a tube is proportional to the pressure gradient ∆p across the tube:

Q =
πa4

8µL
∆p = κ∆p (4.1)

where a and L are the radius and length of the tube respectively, and µ is the dynamic

viscosity of the fluid being pushed through the tube. κ = πa4

8µL
is known as the Hagen-

Poiseuille conductance of the tube. This simple flow equation, however, must be modified

for Physarum which is driven primarily by peristalsis and not by differences in pressure.

Given a cylindrical tube with a prescribed, dynamic volume V (t), Stokes’ equations can be

solved to develop a flow formula for flow that now takes into account changes in tube volume:

Q(z) = −dV

dt
(t)

( z
L

)
+ κ∆p (4.2)

where z ∈ [−L/2, L/2] describes the longitudinal axis, with z = 0 measuring the center of

the tube.
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4.2.1.2 Conservation of Mass on a Network

We model Physarum as a dynamic network G with nodes V and edges E . We define ⟨i, j⟩ ∈ E

to be the edge connecting node i and node j, K =
(
κij

)
to be a matrix containing the

Hagen-Poiseuille conductances in edges ⟨i, j⟩, pi to be the pressure at node i, and Vij to be

the volume of edge ⟨i, j⟩. By convention Kij and Vij are zero if ⟨i, j⟩ ̸∈ E . We ensure that

fluid is neither created nor destroyed by imposing conservation of mass at each node. In

this case, this amounts to asserting that total flow into a node is balanced by total flow out.

Using Eq. (4.2) measured at z = −L/2, conservation of mass results in:∑
j∈V

Kij(pi − pj) = −
∑
j∈V

1

2

dVij

dt (4.3)

This equation is written compactly in vector form as LKp = b where LK is the weighted

graph Laplacian with weights prescribed by K, p =
(
pi
)
, and bi = −

∑
j∈V

1
2

dVij

dt
. This

equation can be solved uniquely so long as the graph is connected and a pressure gauge node

is prescribed [FWD18]. Intuitively, such a gauge node is needed because flows are determined

by pressure differences only, and so the problem must be supplied with a node to call “gauge

pressure,” i.e. the node that defines what all other pressures are compared to.

4.2.1.3 Relating Observed Volume Changes to Flows

Section 4.2.1.2 gives us the tools to relate observed volume changes to actual flows on the

network. We define Qij to be the flow in edge ⟨i, j⟩ measured at the center of the tube,

and define the flow to be positive if it goes from node i to node j with j > i, and negative

otherwise. The flow in each tube measured at the center (i.e. z = 0) is linearly related to the

pressure gradient across each tube, which in turn is linearly related to the volume change,

so a linear relationship between flows and tube volume changes can be calculated. With this

definition, Q and V are vectors containing the flows and volumes of all edges. We may thus

derive the linear relationship

Q = Γ
dV

dt
(4.4)
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Figure 4.2: A diagram of how the mapping Γ operates on the network. The quantity Γji
dVi

dt

represents the contribution of edge i’s expansion or contraction to the flow in edge j. Edge

j’s flow is the sum of contributions from all other edges in the network, i.e. Qj =
∑

i Γji
dVi

dt
.

Γ, the linear map above, is a function both of tube geometry and network topology. Math-

ematically, Γ may be written in terms of previously-defined quantities as

Γij = −1

2
Kij(ei − ej)

TL−1
K B (4.5)

where ei is the ith euclidean basis vector and B is a matrix such that Bik is 1 if node i is an

endpoint of edge k, and 0 otherwise. At a given instant in time Γ encodes how the network’s

observed characteristics—tube expansion/contraction, network topology—transform into the

flows that transport fluid through the organism. Γ is a dense matrix, which in this case means

that a volume change in any edge of the network affects the resulting flow in the rest of the

network. The intuition behind how Γ produces flows from volume changes is shown in Fig.

4.2.
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4.2.1.4 Analyzing Important Volume Change Modes with the Mapping Γ

Given that images of P. polycephalum induce highly complex networks that contain some-

times over 1,000 edges, Γ is typically a mapping that operates on extremely high-dimensional

space. To make reasonable sense of what Γ is doing, it is therefore useful to capture the

lower-dimensional essence of Γ. To do this, we employ the Singular Value Decomposition

(SVD), which decomposes Γ into many orthogonal mappings and ranks these orthogonal

mappings in order of importance by assigning each one a singular value. These mappings

are referred to in this paper as component mappings. The SVD decomposes Γ as follows:

Γ = UΣV T (4.6)

where Σ is a diagonal matrix comprised of nonnegative singular values σi, which are typically

sorted in descending order from the top left to bottom right of the matrix, and U and V

are orthonormal matrices whose columns contain the left and right singular vectors of Γ

respectively. The decomposition is such that, given the ith columns ui and vi of U and V ,

Γvi = σiui. The SVD is similar to diagonalization in that important modes can be analyzed,

but it has the added benefit that all numbers including singular values are real, so important

component mappings can be visualized simply.

The SVD can be used to lower the dimension of a representation of a given matrix by

truncating the amount of mappings one wishes to consider. For example, the mapping Γ

could be (rather poorly) approximated using only 10 degrees of freedom by cutting off all

but the first 10 columns of U and V and taking the upper-left 10x10 submatrix of Σ, then

re-multiplying the decomposition. This idea is used extensively in Principal Component

Analysis (PCA), but PCA is used for symmetric matrices whose inputs and outputs are

assumed to be from the same space. In contrast, our inputs are networks contractions and

outputs flows, so PCA can’t be directly used.

Importantly, the SVD also identifies important modes that the mapping acts on. In our

case, we use the SVD of the mapping Γ to consider the effects of geometry and topology on
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flow generation given primary volume change modes.

4.2.2 Extracting Network Information from Data

Here we outline the steps taken by our custom Matlab code to extract dynamic morpho-

logical information from data.

4.2.2.1 Creating the Master Network for the Video

Over the course of a time sequence of microscope images, some tubes disappear due to

pruning, and some disappear and reappear as they lose contrast with the background via

contraction. For these reason, the network’s topology changes with time. To account for

this, we first need to create a master network that contains all possible tubes that exist over

the course of the time sequence. We then define the time-varying networks as subgraphs of

this master network. Here it is important to note that our process assumes that the organism

doesn’t move or change shape with time, which restricts the data we can process to networks

that are not migrating.

To create this master network, a we take the median of approximately 50 frames ex-

hibiting dense versions of the network to capture an artificial image where contrast between

tube and background is ideal for thresholding and noise is dampened. We then create an

image mask via adaptive local thresholding (Matlab adaptthres). This mask is then

skeletonized to create an image mask whose tubes are only a single pixel thick. Through

a custom algorithm similar to the often-used anaskel [Fet22] called skel2graph [Wil22], the

network topology (i.e. the nodes and the edges of the network) is then extracted from the

skeleton. Alongside this network topology, our algorithm also returns a labeled binary image

that records the actual geometric shape of each edge for use later in measuring data features.
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4.2.2.2 Measuring Geometric and Topological Features for Each Microscope

Frame

Armed with the master network, we now proceed to measuring frame-by-frame information.

For each frame, we again create an image mask with adaptive thresholding. Adaptive thresh-

olding considers a window of pixels around the pixel of interest and forms a threshold to

separate foreground and background from grayscale data. We then directly associate each

pixel in the mask with an edge from the master network. If an edge has no mask pixels

associated with it, it is removed from the network for the given frame.

For each associated edge, we then compute tube volume. In previous works [BKA17,

AAP13, FKW22], tube volume was argued to be inversely correlated to pixel intensity by

the Beer Lambert Law, and as such intensity values of each pixels were used as an indirect

measurement of tube contraction state. In our application, we utilized a compressed .mp4

video format taken directly from the supplementary materials of [KA21], yielding frames that

were lower in dynamic range and resolution than previous work. Intensity measurements on

the graph skeleton, therefore, suffered from a low signal-to-noise ratio, and didn’t prove very

useful as a proxy for volume. To smooth out this noise, we integrated intensities over entire

tubes using the following model:

Volume =
∑
i∈tube

DA
I0,i
Ii

(4.7)

This model reflects the fact that thicker edges are darker, and that the apparent darkness

of a pixel reflects how much light is absorbed or scattered in the imaging. The sum is taken

over all pixels i that make up the section of the mask associated to a given edge. Here, D

is a length scale relating intensity to length, A is the area of each pixel, I0,i is the intensity

of the background around pixel i (assumed brighter than a pixel on the tube), and Ii is the

intensity of pixel i. Mathematically, this is an approximate integral of a height function over

an area, which produces a volume. Since we were primarily concerned with measuring volume

dynamics and not accurate measures of volume, the scaling constant D was assumed to be

43



1 for this analysis. With this model in hand, we were able to recapitulate the measurement

smoothness shown in previous works even with our compressed data.

We then calculated an average radius for each tube by assuming that tubes are perfectly

cylindrical. In this case,

radius =

√
Volume

πL
(4.8)

where L is the arc length of each skeletonized edge.

Finally, given that our model in Eq (4.5) relies on volume change dynamics, we computed

dV
dt
. Given that we are interested primarily in expansion/contraction dynamics and not

growth, we first detrended our volume data by subtracting off a moving mean of width

corresponding to two typical contraction periods. We then smoothed the data via Matlab

smoothdata and took a simple finite difference to calculate dV
dt

in each edge.

4.2.2.3 Identifying Flow modes on Γ

Armed with frame-by-frame network features, we could then define our matrix Γ from Eq.

(4.5) for each frame. To identify the important component mappings of Γ, we employed the

SVD as described in section 4.2.1.4. However, given that the total volume of the network is

assumed to be conserved, we first restricted our input vectors dV
dt

to sum to zero via a pro-

jection P onto the space of volume-conserving vectors. Identifying these volume-conserving

modes was then achieved by taking the SVD of ΓP . These modes were then visualized as in

Fig. 4.3.

4.2.3 Relating Flow Modes Frame by Frame for Dynamic Information

Given that the topology of the network is not assumed to be constant from frame to frame,

and that the ordering of important modes is also likely to change over time, we devised a

way to register similar modes to each other between frames. First, to account for differing

network topologies, we only compared modes using edges common between frames via a
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euclidean distance. Using these calculated mode similarities between two frames, we then

solved the linear assignment problem [DK01] to register modes to one another frame-by-

frame. Due to the complexity of the problem, we restricted this dynamic analysis to the

top 20 modes of the mapping. This assignment allowed us to form the continuous mode

coefficient plots visualized in Fig. 4.6.

4.3 Results

First, we derived a physical model that incorporated changing tube contraction states into

flow calculations. This model resulted in a linear map, Γ (Eq. (4.5)), that takes instantaneous

contraction rates as input and outputs network-wide cytoplasmic flow. The modes and

singular values analyzed in the following are those of this mapping Γ, and represent a whole-

body analysis of the connection between network morphology—encoded in Γ—and dynamics.

Further details on Γ are included in section 4.2.

We analyzed three sequences of Physarum images (Movies S1, S3, and S5 from [KA21]),

which were chosen as data because they each demonstrate qualitatively different morpholo-

gies and behaviors over the course of the data. Movie S1 is a topologically consistent, densely

connected network for the whole video. Movie S3 is topologically consistent as well, but with

much less density than Movie S1. Movie S5 demonstrates a marked change in topology after

a food stimulus is introduced, and is also fairly densely connected until pruning thins the

organism. In the following, we identify morphological and dynamic measurements of these

three videos and compare them.

4.3.1 Topological and Geometric Measurments

To identify the dynamical function of network morphology, we utilized the singular value

decomposition (SVD) of the modeled mapping (Γ from Eq. (4.5)) that takes as input network

contraction dynamics and outputs cytoplasmic flows through the network. The Γ matrix
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encodes both network geometry and topology via inclusion of the weighted graph Laplacian,

and so an analysis of Γ is an analysis of the function of the particular network morphology,

in determining how many flow modes a single network can support by tube contractions and

dilations. The SVD of Γ ranks important contraction distributions by the relative sizes of

the flows they are able to produce in the network.

What do these contraction distributions look like? In [AAP13], whole-network peristaltic

waves were shown to be optimal when there is a linear gradient of phase across the length

of the organism. Our model affirms that linear variations in contraction velocities produce

largest flows. In Fig. 4.3, we observe that, despite different shapes and topologies, the

highest ranked mode of Γ takes a linear gradient of contractions (top row) and creates flow

along the thickest tubes that are approximately parallel to gradient direction (bottom row).

Although the patterns of contraction (modes) seem to be little influenced by the hierarchies

of tube radii present within the network, the flows associated with modes of contraction

(bottom row of Fig. 4.3) are channeled substantially through the thickest vessels of the

organism, affirming the importance of these high radius vessels to network-wide transport

P. polycephalum.

The primary contribution of the largest vessels to the flows within the network has

supported modeling and analytical approaches that simplify the network topology to the

spanning tree that utilizes only these thick vessels [WFF16, FWD17, TTS10], neglecting

the contributions of smaller vessels. Conversely, our calculated modes of tube contractions

and dilations do not appear to differentiate between the largest and smallest tubes in the

network, and consist of simple gradients of tube volume changes across the organism. The

lack of appearance of the largest diameter tubes in the principal modes, suggests rather that

approximating the network as having uniform tube radius, or even as a material continuum,

may be pursued as a way to obtain relatively accurate approximations of the most efficient

contraction modes, and indeed that these modes may be calculable only from the shape of

the organism’s boundary. Although this conclusion may seem at odds with both theoreti-
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cal and experimental work [WFF16, FWD17, TTS10] emphasizing the importance of tube

hierarchies, we note that hierarchies of tube radii are certainly important to calculating the

flows created by the principal modes of contraction, with the largest tubes funneling flows

created by the modes of contraction and dilation [KA21].

The spectrum of singular values of Γ measures the number of different modes of con-

traction and dilation the network can support, and is a functionally important readout of

the network’s shape. Specifically, we focus on how many modes are needed to describe the

entire Γ mapping. Following conventions adopted in other mode-analyses, such as PCA, we

determine the number of modes needed to make up 90% of the total map magnitude. Math-

ematically, finding this number is equivalent to taking the cumulative sum of the singular

values in descending order and stopping when you reach 90% of the total singular value sum.

For all three of the mapped networks, and over all time points, the percentage of singular

values needed to take up 90% of the total singular value sum was between 43% and 47% of

the total number, which is simply the number of edges within the network. This spectrum

is surprisingly broad, again reflecting the fairly minor role played by the hierarchy of tube

radii in selecting particularly favorable modes of tube contraction and dilation. This result,

though largely consistent with the broad spectra that were previously identified through

PCA analysis [FKW22], sounds two notes of caution: first, even if we accept that flows

within the network are confined to a fairly narrow band of possible modes [FWD17], it does

not automatically follow that the patterns of contraction used by the network to create these

flows are similarly constrained in diversity. Second, the potential utility of modal analysis to

reduce high dimensional data on the velocities of contraction of every individual tube, to low

dimensional subspaces capable of completely describing every pattern of contraction that we

might observe within the real network, is unlikely to be realized. In its place, our analysis

emphasizes the breadth of the space needed to describe Physarum’s behavioral repertoire,

and its potential responses to new cues from its environment, and echo [FKW22], in sug-

gesting that this space allows for an extremely large array of behavioral responses, with no
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Figure 4.3: Visualized are the top component mappings of Γ for frame 1 of all 3 of our

datasets. Red indicates tube expansion or high flow, blue represents tube contraction or

low flow. Top row: the right singular vectors of Γ, corresponding to contraction/expansion

patterns that lend themselves to produce the highest flow. Bottom row: the absolute values

of the left singular vectors of Γ, corresponding to the distribution of flows created by the

particular contraction/expansion patterns above them. Tubes that get the most flow (colors

that are not deep blue) correspond to thicker tubes in the dataset.

48



clear distinction between the important and the unimportant.

To further understand Physarum’s spectrum of singular modes, and how it varies over

time and between different Physarum individuals, we plot the singular values themselves,

in descending order for a variety of conditions. We first plot the spectrum as a function

of the absolute mode index, a number that ranges from 1 to the number of edges in the

network (Fig. 4.4). The blue areas enclose the upper and lower quantile of the singular

values for the entire time series, sampled every ten frames. Consistent with our analysis of

the number of significant singular values, we found the spectrum to be extremely broad, with

the singular value of mode n best fit by a power law: n−2/3. Since the matrix Γ is new to

this study, ongoing work is necessary to find how the real Physarum networks compare with

other model networks. However, Γ is partly based upon the inverse Laplacian, the spectrum

of which has been characterized for many model networks. Our spectrum is much broader

than for empirical scale free networks for which [MM08] measures that the eigenvalues of the

inverse Laplacian scale approximately like n−3. They are even broader than the spectrum

of Laplacian eigenvalues for a totally homogeneous network. In the limit of large networks,

we would expect this spectrum to approach to the spectrum of the inverse Laplace operator

on 2D domain. Absent strong asymmetries of shape, the Laplace operator has eigenvalues

λm,n = 4π2

L2 (l
2 +m2), where l, m are the wave numbers in two orthogonal directions. Hence,

the inverse Laplacian for a uniform network has O(N2) eigenvalues that are larger than

1/N , and, correspondingly, we would expect that the nth eigenvalue of the operator would

be ∼ n−1/2, which decays only a little slower than our measured spectrum. Further analysis

is needed to disentangle how much of the difference is due to the structure of our operator,

and how much of the difference is due to structural features of Physarum networks.

To probe the influence of the network structure, we first compare the spectra of real

Physarum with synthetic networks in which we permute tube radii across the entire net-

work, leaving the total variance in tube radii unaffected, but randomly disconnecting high

conductance pathways and thus any spanning trees that the network may contain (Fig. 4.4,
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red regions: upper and lower quantiles of the ordered singular values). The blue and red

regions show considerable overlap, indicating that the singular values are mostly unaffected

by a shuffling of radii throughout the network. This overlap suggests that the specific ar-

rangement of high conductance tubes within the network does not influence the structure of

its most effective patterns of contraction, and nor does it strongly affect the scale of flows

that these most effective modes can create within the network. Instead, the data suggest

that the network is mostly isotropic. Given that most protoplasmic flow is predicted to be

contained in the thickest tubes, as indicated in Fig. 4.3, isotropy of the thickest tubes may

allow the network to push fluid in any or all directions when it encounters a new food source.

Although the precise arrangement of high conductance tubes is little distinguishable

from isotropic arrangements, the presence of tube radius hierarchies strongly affects the

magnitudes of flows created within the network. To probe the contribution of tube radii,

we compare real networks with a second class of synthetic network, in which all tubes are

uniformly given the same radius (black shaded curves in Fig. 4.4). Uniform networks are

markedly lower than the correspondent hierarchical networks for the first few hundred modes,

about 400 for Movie S5 and 250 for Movie S3. Singular values of Γ correspond directly to the

amount of flow that a given unit network contraction can create, and so lower singular values

in the black region indicate that networks with uniform thickness can produce less flow for

a given contraction pattern than those with radius hierarchy. The continuous spectrum of

modes, too, create flows in a variety of different direction. Combined with the importance

of radius hierarchy, we observe that Physarum’s morphology is optimized to produce high

flows in any direction.

We also study how the spectrum of singular values varies with time. Movie S5 shows

a large organism that prunes itself drastically over the course of the dataset after food is

introduced. During this drastic change in topology, we observe self-similar changes in the

spectrum of singular values. Shown in the top left of Fig. 4.5 in blue is the cumulative sum of

the singular values in descending order for every 10 frames of the video. As edges are pruned

50



10
0

10
1

10
2

Singular Value #

10
0

10
1

S
in

g
u
la

r 
V

a
lu

e

10
0

10
1

10
2

Singular Value #

10
0

10
1

S
in

g
u
la

r 
V

a
lu

e

Movie S5

Slope: -0.64

Movie S3

Slope: -0.67

Figure 4.4: Singular values are plotted in descending order for a variety of conditions. The

blue shape is the interquartile range of singular values for every 10 frames in both datasets.

The black shape is the interquartile range of singular values (measured every 10 frames) when

all radii in the network are set equal to their mean. The red shapes are the interquartile

ranges of the singular values of synthetic networks whose radii have been randomly permuted

100 times both before and after food is added, hence the reason two seemingly distinct red

shapes appear. Left: red regions are taken from synthetic networks coming from permuta-

tions of radii in frames 761-821 and 2471-2531 of Movie S5, sampled every ten frames. Right:

red regions are taken from synthetic networks coming from permutations of radii in frames

461-491, 511-531, and 2871-2931 of Movie S3, sampled every ten frames.
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Figure 4.5: Singular value distributions, both scaled and unscaled, plotted for Movies S3

and S5. Red lines: synthetic graphs with radii of edges randomly permuted 100 times, both

before and after food. Black lines: synthetic graphs whose radii are all set to the average

radii for the given frame. Blue lines: actual singular value distributions for measured radii.

For blue and black lines, data is measured every ten frames for the entirety of the dataset.

Top row: red lines are taken from permutations of radii in frames 761-821 and 2471-2531 of

Movie S5, sampled every ten frames. Bottom row: red lines are taken from permutations

of radii in frames 461-491, 511-531, and 2871-2931 of Movie S3, sampled every ten frames.

Left column: cumulative singular value sum of singular values in descending order is plotted

versus singular value number. Right column: same as the left column, except the x and

y axis have been scaled down by number of singular values and total singular value sum,

respectively.
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the total number of modes goes down (total number of modes is equal to total number of

edges), as does the total sum of singular values. However, if the cumulative sum of singular

values is normalized by the total sum, and the modes as a fraction of the total modes (Fig.

4.5, top right), the curves collapse into a single blue band. An alternative framing of this

result is that in the starting and in the pruned networks, the relative contributions of any

percentage of modes to the total cumulative value sum remain constant. This is not an

obvious result and further analysis of Γ may elucidate why its spectrum is invariant in this

way, to pruning. Pruning has hitherto been assumed to be a coarsening process, that grows

the largest tubes at the cost of the smallest. Described in this way, we would expect it to

emphasize stronger modes and suppress weaker modes, changing the shape of the spectrum.

We see the same self-similarity in the changing singular value spectrum over time for

the entirety of Movie S3 (Fig. 4.5, bottom row). The plasmodial network in Movie S3 does

not experience significant tube pruning, but it does demonstrate a significant increase in

visible cross-organism peristalsis. That the mode spectrum in both organisms changes self-

similarly, may reflect constraints in how strongly the singular values of Γ can be localized in

a small number of modes, further supporting the inferences made before, that the specific

arrangements of tubes and their radii have little effect on the singular modes. We can not

rule out, however, that tube hierarchy has undetected importance, and that the invariance

of the spectrum of singular values under pruning and other network changes, reflects some

symmetry of how pruning and other network changes operate on different scales of tubes.

The synthetic networks created for Fig. 4.5 (A,C,red), by permuting the tube conduc-

tances in real networks, collapse to the same master curve as real networks after normalization

rescaling in both the network shown in Movie S5 (Fig. 4.5B), and the network shown in

Movie S3 (Fig. 4.5D). The spectra at different time points overlap for real and synthetic net-

works over most of the significant singular values, and though the real network has a slightly

broader spectrum than the synthetic network in S5, the places are reversed in S3, suggesting

that there is no significant difference between the normalized spectra. Conversely, in syn-

53



thetic networks with uniform radii (black lines in all four panels of Fig. 4.5), the spectrum

lies slightly underneath both real and permuted spectra, both with and without normaliza-

tion. This small difference, consistent between the two networks suggests that the singular

values of the top modes of the uniform network are not as top-heavy, suggesting that mild

selection occurs for the first few modes in networks with some radius hierarchy.

4.3.2 Measuring emergence of coherent pumping

Spectral analysis of Γ gives us a readout of what internal flows a network can generate

through tube radius changes. When real measured volume changes are projected onto these

modes, they provide a reduced basis for describing the pumping that occurs in the network.

A complication here is that, as shown in section 4.2.2, the topology of the measured net-

work changes frame-by-frame, albeit by the gain or loss of only a handful of edges among

hundreds for the networks analyzed here. Because of network changes, Γ’s matrix represen-

tation changes size over time. However, although the total number of contraction modes

changes over time, we find that the most important calculated contraction modes maintain

their order, and approximately, their singular values. We proceeded, therefore, to analyze

the coefficients of the projections of the data onto the top 20 modes of the system (see sec-

tion 4.2.3) during intervals in which we visually identified the emergence of coherent tube

oscillations. Movies S1 and S3 were chosen because they contain sections of video centered

around both the introduction of food and also visual peristaltic waves moving through the

organism. The coefficients of the first modes are shown for excerpts of both video sequences

in Fig. 4.6.

How does the presence or absence of visual peristalsis affect the readout of our mode

coefficients? Movie S3 probes a rather stable, circular network with barely perceptible con-

traction dynamics before food is added. At frame 500 (minute 0), food is added outside

of the frame, and coordinated peristaltic contraction patterns become visible. Movie S3’s

mode coefficients (Fig. 4.6, left) at the moment of food introduction show clean oscillatory
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Figure 4.6: The top 20 mode coefficients are visualized for Movies S1 and S3. Colorbar

shows ordering of modes from first (red) to 20th (blue). Left: Movie S3’s coefficients form

coherent oscillations throughout, increasing in amplitude over the excerpted frames. Lower

modes attain higher amplitudes. Right: mode coefficients in Movie S1 are only intermittently

coherent. The data corresponding to periods in the video without clear and visible peristaltic

contraction patterns do not seem to show oscillation. The long period of coherent oscillation

corresponds to a visible peristaltic wave in the video.
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behavior in line with the previously measured peristaltic frequency of about 90 seconds (30

frames) [AAP13]. We see the mode coefficients reflecting the visual emergence of coordinated

peristalsis: around 240s (80 frames) following the introduction of the cue the amplitude of

all coefficients increases X-fold. Amplitude increases are greatest for the top modes, showing

that pumping occurs preferentially in the modes with greatest flow creation potential (i.e.

greatest singular values).

Movie S1’s mode coefficients (Fig. 4.6, right) show the emergence of coherent pumping

from initially highly disordered contractions. Visually in the large, dense network imaged

in Movie S1, contraction patterns appear random across the organism. There are brief

instances, however, when a cross-organism peristaltic wave presents itself—here we see one

such instant at around minute -4 (around frame 1900) of the video. Before this instant, we

see large-amplitude, unaligned oscillations on the order of 10 to 15 frames which could likely

come from a mixture of uncoordinated pumping and aliased (noisy) data. When organism-

wide pumping is observed, we observe clear, coherent oscillations whose period (90 seconds)

matches published data on Physarum time-oscillations. It is as of yet unclear what stimulus,

if any, triggered the appearance of coherent contractions, as food had not yet been added,

nor what triggered their disappearance.

Results from our modal analysis are qualitatively consistent with previous descriptions

of Physarum behavior. Specifically, we find that in networks presented with no food source,

tube wall oscillations may be coherent, with small amplitudes (S3), or incoherent, likely

presenting as high frequency modes due to a combination of noise and aliasing effects (S1).

When presented a food source, we see existing coherent multimodal oscillations gain am-

plitude. Coherent multimodal oscillations emerge from noise and disappear spontaneously.

We obtain additional quantitative data on the time delays between the food source being

presented, and the amplification of coherent oscillations, as well as on the suddenness of

amplitude increase.
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CHAPTER 5

Conclusion and Discussion

In this dissertation, I endeavored to explain the complex phenomena of COVID-19 dynam-

ics and Physarum behavior using interpretable, physical models. We began by comparing

COVID-19 cases between populations, which is an important part of building narratives for

understanding the impacts of the disease, and the roles of policy, inequality and racism in

shaping its severity. But case numbers can not be compared without correcting for differences

in population sizes. Normalizing by the size of the population can lead to misleading compar-

isons, if COVID-19 incidence varies in systematic ways among individuals in the population.

Here we sought to make comparisons between populations (states), under the simplifying

assumption that each contains an effectively well-mixed subpopulation of COVID-19 con-

tacting individuals. Importantly, detecting the size of this population is an element in our

algorithm.

Clustering of data from different states illuminates a second, general, question, that was

explored more deeply in Chapter 3 of this work. Specifically, although modern tools in

epidemic modeling can incorporate population-heterogeneity, because of their many param-

eters, these models are challenging to fit to real data from the COVID-19 pandemic. The

assumption that cases are dominated by transmission within a subpopulation of COVID-19

contacting individuals, who are effectively well-mixed, motivates us to further consider that

there may be a limited number of archetypal case growth curves among this subpopulation.

We find through clustering, that when properly normalized, and in spite of very different

geographies and demographic profiles, cases in different states follow one of remarkably few
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(4-6) growth archetypes.

Some of the conclusions that follow from the clustering are expected—for example we

found that the late stage of the pandemic behaves distinctly from the early stage, as indicated

by the fact that the clustering algorithm separated the two phases without direction. Due

to the wildly different social and epidemiological conditions between the two time periods,

this is unsurprising.

The first phase conforms extremely closely to SIR dynamics, as indicated by Fig 2.3, sug-

gesting an effective mean-field description of the early dynamics. The fits shown in the figure

come from least-squares model smoothing: we found appropriate constant transmission rate

β and population size N values for the SIR model that best fit the data in a least-squares

sense (see section B.1). Importantly, fitting N to the data enables the entire first wave to

be fit with constant disease transmission parameters, and thus with a constant basic repro-

ductive rate R0 [DHM90]. In addition to their greater simplicity, the constant β, N models

draw a very different conclusion about how the wave ends than a time-varying R0 model—

for example the fits for Washington (shown in Fig 2.3) give an R0 value of 1.14 within an

affected population of about 27000 . At this value of R0, the disease spreads through its

affected population, and case numbers only start to decrease once 1 − 1/R0 ≈ 12% of the

affected population has acquired resistance to the disease. The actual downturn occurred

well before this 12%. The fits therefore are consistent with almost immediate success of

shelter-in-place measures in preventing the disease from spreading beyond a fixed number

of closely-contacting individuals, but continued, unchecked spread of the disease within this

group. This is in contrast to other, more complex methods of data fitting that relied on a

time-variable reproduction number R [AHT20, TSv19, CFF13, AHB21]. Hence, although

actual transmission behavior is certainly heterogeneous and occurs in multiple subpopula-

tions, a simple, constant, bulk parameter suffices to describe early epidemic dynamics within

populations with a large percentage of susceptible individuals, as explored further in chapter

4.

59



What reveals itself unexpectedly is just how similar the late stage dynamics are from

cluster to cluster. There are three factors separating late stage surge dynamics of cumulative

cases on the log scale indicated by Fig 2.4: One; the overall rate of increase, i.e. the overall

“slope” of the curve; Two; the degree to which the “S” curve deviates from the straight line;

Three; the time scale over which the curve displays its “S.” A possible fourth factor is the

precise position of the inflection point of the “S” curve. This is significant since, despite

wildly varying conditions between and within states, there seems to exist only three or four

bulk parameters which suffice to describe the spread of COVID during a surge. This leads

to a reassuring discovery: during surges, the simplest models suffice. At the beginning, the

SIR model does well to describe dynamics, and later, some new but equally low-dimensional

model can likely be found.

We also observe that a pair of states sharing behavior at an early phase is not predictive

of the same pair sharing behavior later. This can be seen by examining the totally different

cluster structure between the two phases, and is confirmed empirically using a permutation

test. We measured the number of states sharing the same cluster, concluding that 37 unique

pairs of states shared a cluster in both the early phase and the late phase (Texas and South

Carolina, for example). This number is not significantly high as indicated by permutation

test (approximately 40% of statistics from the permuted data were higher, see Table 2.3),

indicating what we see at a glance: behavior shared early does not imply behavior shared

late. Comparisons which were important towards the beginning of the pandemic may not

necessarily be appropriate at later times, further supporting our comparison of entire time

courses.

Our clustering method provides a data-driven, nonparametric way of classifying and

comparing State-by-State COVID dynamics. This new approach revealed that comparisons

between states using metrics that are devised a priori are perhaps misleading. For instance,

California and Florida have often been compared [Woo, LM, Cur] since these are two states

boasting large populations with multiple urban centers and warm climates, yet having very
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different responses to COVID—for example, during the second surge, both of the largest

school districts in California (Los Angeles and San Diego Unified) were closed to in-person

instruction, while in Florida a State order required that all schools offer in-person instruction

after July 2020. Upon Florida’s reopening in August, per capita new cases were 20 new

cases per 100,000 in California and 45 new cases per 100,000 in Florida. However, our

analysis emphasizes that heterogeneities in COVID case intensities across each State make

the total State population a weak normalizing factor when comparing different states. When

normalized by the detected size of the COVID-affected population we find that California’s

cases grew in line with Colorado and New Mexico, but most surprisingly also in line with

Indiana, Michigan, and Vermont. Conversely, in the late stage Florida’s dynamics (and

Arizona’s) distinguished themselves from the rest of the states, including California, mostly

due to a wildly different “slope” of the general late-stage increase on the log scale, and

partly due to a much earlier and drawn-out surge (Fig 2.5) (Florida’s surge began in late

October, and other states’ tended to begin in late November, coinciding with Thanksgiving).

This singles out Florida as unique from every State, not just California, and tempers any

conclusions that can be drawn from the simple two-way comparison. Our results indicate

that California, whose late behavior is represented in Fig 2.5 cluster 5, experiences a gentler

exponential growth rate with a more pronounced downturn that happens earlier (relative to

the late surge) than any downturn in Florida’s dynamics. In particular, differences in curve

starts and ends will cause instantaneous metrics to give misleading comparisons between the

two states.

Among the variables tested, only proximity of states showed any statistically significant

correlation with the clustering devised. This in itself is an important result when evaluating

the probable effect of measures that may carry other public health costs, such as school

closures [ADS20]. While the cluster a state belongs to controls the trajectory of the case

numbers, the normalization of these numbers, which we have interpreted to be the number

of COVID-contracting individuals, may be yet influenced by these or other variables, and
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independent evaluation of the population sizes, and whether they can be predicted from

population, geographic, political, or public heath data is certainly warranted.

If the eventual goal in COVID data comparisons is to decide which health measures,

public behaviors, and demographies lend themselves best to weathering a pandemic, then

we must take care to compare the right data at the right times. Our analysis highlights two

features. First, we show that pairwise comparisons of states can only be made in the context

of a per-population case number that indicates the number of COVID-affected individuals,

and not the total population of the State. Second, once the normalization is found, states

conform to one of a small number of archetypal case curves. For early phase of COVID we

can explicitly fit these case curves by an SIR model; in the latter phase, the well-mixed model

no longer fits the data, yet the robust similarity of case curves suggests that models with

comparably few degrees of freedom may yet be used to fit the data. Given the abundance of

pandemic data now available, we have the tools to examine entire time courses at different

scales (e.g. city or country) within the U.S. and internationally and compare in context.

In Chapter 3, our analysis of data from states and territories provide empirical evidence

that there is enough mixing between the disease hotspots within each state or territory that

approximation by a well-mixed model is appropriate. The concordance between β obtained

by curve fitting and Eq. (3.4) affirms that least squares fitting extracts information on the

subpopulation interaction structure and dynamical asymmetry between subpopulations, and

highlights the SIR model as a coarse-grained model for disease transmission in heterogeneous

populations. Remarkably, under moderate levels of transmission between subpopulations,

our model-fitting approach, which is based on fitting the entire disease case curve, produces

parameter estimates that agree well with the next generation matrix model based only on

the linearized dynamics that include information only on initial epidemic features. We ad-

ditionally gain the ability to reinterpret the total epidemic size Ntot as a new, data-driven

normalization factor. We may therefore construct case rates with respect to surge size, ef-

fectively considering normalized cases only among the population actively transmitting.
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In general, simplicity of fitting to real data makes SIR (and similar well-mixed models,

such as SEIR) powerful tools for predicting the ongoing course of an epidemic. However,

the assumptions behind the model drastically simplify real patterns of human interaction

and disease transmission, and the question of estimating community interaction structure

remains. Indeed, an important corollary of our analysis is that, with even modest levels

of connectedness between the subpopulations, they can function as well-mixed, making the

details of the substructure undetectable by a well-mixed model. Although heterogeneity-

capturing models aim to render these interactions, they introduce additional parameters

that often must also be fit to the data. It can be hard to distinguish improvements in fitting

due to greater model realism from improvements due to increased parametric flexibility.

Data fitted analyses make no assumptions about the underlying patterns of interaction,

but create short term predictions based on fitting evolving exponential growth curves to the

data. SIR models do not fit every phase of the case data; for example we could not fit the

second surge identified in chapter 2, likely because of the complicating effects of time evolving

contact rates caused by changing work patterns and public health orders, and the presence of

previously recovered individuals within the population. By contrast, although models of the

the Omicron surge encounter similar complications, reluctance to reimpose social distancing

measures, and the ability of Omicron to readily infect vaccinated and previously-infected

individuals lead to a time course that is closer to the first surge, and that can be well-fit by

an SIR model.

After analyzing how, when, and whylow-dimensional models apply to COVID data, we

moved to modeling contraction dynamics of P. polycephalum in Chapter 4. The coordi-

nated contractions of tubes in P. polycephalum enable the organism to achieve a remarkable

repertoire of behaviors, including generating network-wide transport of nutrients and pro-

toplasm, whole organism migration and network remodeling. Here, we develop a new tool

for quantifying how many network-wide contraction patterns a single organism is capable
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of, anatomizing those patterns, and identifying, instant-by-instant, which modes are active

within the network. Our method originates in a linear mapping, Γ that ties together all of P.

polycephalum’s directly measurable quantities—topology, geometry, contraction dynamics—

into an easily-interpretable and mechanistic model of fluid flow. The mapping generates

theoretical contraction modes for the given network morphology that are ranked by how

much flow they create and thus may be linked to notions of efficiency of transport that have

already been extensively studied for the organism [GC78, AAP13, BH13, WTT11, BMV12].

Our identified flow modes correspond remarkably well to purely data-driven measurements

of contraction modes. Since Γ also directly computes the flows that arise from these con-

traction distributions, when paired with data, Γ can be used as a measure of how much the

network is working to transport fluid at any time.

The modes of Γ can be interpreted as the directions in which contractions can most

readily generate flows within the network. The modes are readily computed via singular

value decomposition, and the spectrum of modes reflects the range of flows that a network

is able to easily support. We find that the greatest flow (largest singular value) modes align

with the the optimal peristaltic phase distribution of [AAP13], being a linear gradient of

contraction strengths.

Although our findings are confluent with previous qualitative and quantitative descrip-

tions of Physarum behaviors, they go beyond existing analyses and methods, such as PCA.

Importantly we may interpret the modes of Γ as directions in which the large internal flows

may be created, allowing the contraction pattern of the network to be physically linked to

its architecture. Analysis of pumping modes through the mapping Γ, highlights the role that

network hierarchy plays in creating directions of greatest flow.

Surprisingly, we found the spectrum of possible modes within all of the analyzed networks

to be remarkably broad; and that the number of significant singular values was not strongly

affected by the hierarchy of tube radii seen within the network. This result should not be

interpreted to mean that tube radii hierarchies are unimportant, since the singular values of
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the (real) hierarchical networks are greater than in (synthetic) networks in which all tube

radii are made uniform. So hierarchies of tube radii allow larger flows to be created within

the network, meaning that they increase the flow response to changes in tube radii. Yet, we

found relatively small differences between the spectra of real hierarchical networks, and those

of variable-tube networks in which all tube radii had been randomly permuted. This result

is somewhat at odds with previous work that has stressed importance of the largest vessels

in setting the flows that occur within a network, and even suggested that a spanning tree of

largest tubes represents all of the peristaltic modes that the network may carry [FWD17].

By contrast our results emphasize that the spectrum of possible network pumping modes

is quite isotropic, with a large number of ways of distributing strong flows through the

network. These spectral features may reflect the life history stages in which experimental

data was collected, in the main video sequences analyzed here, a cut Physarum network is

imaged before and shortly after it encounters a new food source. Accordingly, the networks

that are mapped here may be adapted toward isotropic vessel arrangements, since both the

direction in which new food will arrive, and the directions with which nutrients will need to

be transported, are not known to the network.

It would be interesting to contrast the results presented here, largely confined to initially

static networks that then assimilate small numbers of food sources, with analysis of how the

number of modes in the spectrum evolves when a network undergoes substantial pruning –

i.e. that encounters and assimilates disparate and wide spread food sources, and where the

dominant form of morphological adaptation is one of vessel loss to build an optimal linking

network [TTS10]. In these networks, adaptation may be for a small number of peristaltic

modes, as the network organizes itself around a known, small, set of known food sources,

rather than in preparation to encounter new food sources.

We add some notes of caution about the kinds of behavioral data for which our method

can provide quantification. The results in this paper are derived from compressed video files,

at typical resolutions of 70-200 pixels per millimeter, and since tube diameters are on the
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order of .05 mm (as few as 4 pixels) to .2 mm, pixel noise in the radii of individual tubes

are visible in some of the data. When spectral expansions are performed on the contrac-

tion dynamics, aliasing effects occur, in which we fail to see the expected decay of mode

amplitudes across modes and in fact, there is apparently high frequency ringing in modes.

Thus, although the emergence of concerted patterns of peristalsis leads to clear signals, we

can not dismiss that the high frequency oscillations in Fig. 4.6 result from processing noisy

measurements, rather than reflecting real patterns of organization of contractions. Careful

assessment of the quality of data is important before using this, or any spectral method, since

in every mode, the coupling of contractions across all tubes means that small measurement

errors in the finest scales can produce contaminating signals in any mode. In further anal-

ysis we will seek to apply our model to high resolution microscope images, and to develop

anti-aliasing that filter out the smallest scale contractions when projecting contraction data

onto our modes.

We leave for future work the use of Γ-modal analysis on a wider variety of data, espe-

cially sequences in which the network is allowed to travel in search of new food sources. Even

when networks are not migrating, quantification of memory and long term behaviors requires

tracking contraction modes over longer time sequences, during which the topology of the net-

work can change. In this study, we were able to project tube radius changes onto a small

set of modes that remained relatively constant over the entire sequence of the video. Mode

ordering is not in general guaranteed, when the Γ matrix varies, due to the altering plas-

modial network. Alternative data assimilation method, including Multi-Hypothesis Tracking

[Cor15], may allow the challenges associated with time-varying modes, to be overcome.
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Appendix A

Detailed Methods for COVID Clustering

A.1 Isolating Early and Late Case Curve Phases

To identify which sections of cumulative case curves corresponded to surges, we first pre-

processed data from The COVID Tracking Project [The] to estimate the instantaneous num-

ber of infected individuals in each State. Instantaneous case numbers were estimated by

assuming that each new measured case was reported 5 days after actual infection occurred,

and then modeling the length of time each individual was infected with a seven day delayed

exponential decay curve that assumed half of infected individuals would no longer be in-

fectious after fourteen days (Fig A.2). Then, the beginning and end of the first and final

concave peak in the resulting infectious curves were recorded, and the cumulative case curve

associated with these two peaks was isolated (tables A.1, A.2, and A.3). The first (early)

phase occurs at the beginning of each State’s outbreak without exception, and the final (late)

phase in the data used occurs usually around the period of the Thanksgiving and Christmas

Holiday season, sometimes extending into January of 2021.

A.2 Clustering Early and Late Case Curve Phases

To cluster our isolated phase case curves, we first devised a metric for computing dissim-

ilarity or distance between phases. To account for differences in scale that are expected

between states of different population sizes as well as to account for differences in onset of

the waves due to different times of first COVID introduction to the State, or differences in
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the timing of public health measures such as Stay at Home orders or school closures, we

measured the residual dissimilarity between each pair of curves after they had been aligned.

Mathematically, this calculation amounts to defining a dissimilarity function f(X,Y, T, S)

for two time series X and Y given a shift in time T and shift in scale S

f(X,Y, T, S) =


1

ℓ(X)

∑ℓ(X)
i=1

(
log (X(i))− (log(Y (i− T )) + S)

)2
, ℓ(X)/ℓ(Y) ̸∈ (0.5, 2)

∞ , otherwise

(A.1)

where ℓ(X) is the number of time points recorded in the time series X. The ∞ is here

included so as to invalidate the comparison of two states where one State’s surge length is

over double the other’s. The final dissimilarity metric was then constructed via minimizing

this function applied to both the cumulative data and the daily data over T and S for every

pair of states, i.e. if Xi is the ith State surge, then the dissimilarity between surge i and j is

dij = min
(T,S)∈T

{
f(Xi,Xj) + f

(
diff(Xi), diff(Xj)

)}
(A.2)

Here T is the set of pairs (S, T ) such that T is an integer where shifting a time series to the

right by T satisfies the property that 80% of the smallest curve’s length overlaps with the

other curve after shifting, and diff(X) is a discrete derivative;

diff(X)i =


0 , i = 1

Xi −Xi−1 , i > 1

(A.3)

Such a minimization attempts to match two surges’ values and derivatives as closely as

possible.

dij was computed for every pair of U.S. states including the District of Columbia to gener-

ate a set of pairwise distances which was used to cluster. The WPGMA algorithm [Sok58] was

then performed on these pairwise distances to cluster phases together, where the number of

clusters was chosen heuristically by finding an “elbow” on the curve generated from plotting

the number of clusters versus the cutoff distance (Fig. A.1). We then curated the clusters
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and manually combined suitable clusters together when such combinations maintained curve

homology, and excluded two curves that did not cluster well with any other curve (Florida

and Arizona late phase). Additionally sij, the minimizing S value of the function f (i.e. the

upwards or downwards shift in the curves on the log scale), was stored, and is used later

in section IIB as a measure of the scale difference between COVID-contracting populations

of each State. Specifically, our estimated ratio of COVID-contracting populations between

State i and State j is given by esij .

A.3 Correlating Clustering with other Variables

We look for explanatory variables than can elucidate similarities between State case curves

within clusters. These variables may be either categorical (whether neighboring states or po-

litical party of the governor correlate to clustering, or whether states tended to stay clustered

throughout the pandemic) or numerical (whether population centroid differences, Trump

voting percentage differences, testing positivity rates, or school reopening times correlate to

clustering). We use permutation tests to calculate p values against these variables explaining

the observed clustering. For variables dealing with pairwise relations, we performed a mod-

ified Mantel test, which correlates our dissimilarity metric dij with the pairwise relation at

hand. We restrict permutations to occur only within clusters as opposed to over the entire

data set since the scales of dissimilarity scores are meaningful only in the cases where the

curves being compared have similar shape, i.e. curves that are in the same cluster. For data

that we did not interpret as pairwise or whose relation to our clustering was not readily

measured via correlation, we devised a statistic to measure the performance of our cluster-

ing with regard to the variable in question and tested it against 50,000 permutations of the

clustering IDs. The statistic tested depended on the variable at hand. To test our clustering

against the political party of the governors of each state in the cluster, we first computed

the percentage of governors in each cluster belonging to the most represented party in the
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cluster (for example, a hypothetical cluster with five Democratic governors and three Re-

publican governors would be measured as 5/8). We then measured our statistic of the overall

clustering to be the average of these percentages across all clusters. To measure whether our

clustering tended to group certain states together both in the early phase and later phase

of the pandemic, we computed the average percentage of pairs of states in each cluster that

were clustered together in both early phase and late phase. For testing whether neighboring

states tended to be clustered together, we computed the average percentage of states in each

cluster who shared a neighbor in the cluster. To test whether our clustering was influenced

by school reopening times or testing positivity rates, we computed the average variance of

these variables over all clusters. A summary of the statistics used can be found in table

II. For all of these tests, the p value reported in table II refers to the fraction of random

permutations that yielded a higher statistic than that of the actual clustering.

Figure A.1: Left: the number of clusters identified is plotted against the distance used by

the WPGMA algorithm [Sok58] to differentiate different subtrees on the dendrogram. The

vertical dotted line represents a point at which raising the cutoff value no longer decreases

the number of clusters by an appreciable amount. Right: the dendrogram. The black dotted

line represents the chosen cutoff value corresponding to the left pane. Different subgroups

representing the 14 uncurated clusters are shown in different colors. The cluster labels both

early and late are indicated with the boxes and arrows on the dendrogram.
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Figure A.2: The assumed remaining fraction of people who are still infected if their infection

started x days ago, where x is the horizontal axis.

A.4 Estimating Current Infectious from Cumulative Case Data

In order to determine when Covid surges took place, we first needed some way of estimating

how many individuals were currently infected day by day from cumulative data. To this end,

we first determined the number of new cases recorded per day via differencing (described in

Eq. 3 of the main paper). We then assumed that, on average, individuals remained infected

for at least seven days, and thereafter this number decreased to one eighth exponentially for

an additional three weeks, and then immediately to 0 (Fig. A.2). We then assumed that

there was a five day reporting delay between becoming infected and testing positive, although

the exact timing of this reporting delay didn’t seem to affect the qualitative behavior of the

resulting estimated curve, nor did adjusting the assumption of how long individuals were

infected. This is a simplistic and relatively ad hoc way of determining the current infectious

numbers, and is less precise than more complex methods, but has the benefit of making very

few modeling assumptions beyond anecdotal observations on Covid recovery times. The

nature of the clustering technique employed in this paper required very little precision, so

this method detracts little from our process.
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A.5 Splitting Data into Early and Late Surges

Armed with estimated current infectious curves for each state’s data, we then defined a

Covid “surge” in our context to be a period of exponential growth followed by a plateau

and sudden drop off (Fig. A.3). This definition was made after a considerable amount of

trial and error in the clustering that followed different, specific surge definitions. Using this

plateau definition, the beginning and end of each surge for each state was identified. Since all

states had a surge at the beginning of the pandemic (March 2020 for our data) and around

Christmas or Thanksgiving of 2020, we considered only these surges for consistency. See

tables A.1, A.2, and A.3.
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Figure A.3: Four examples of typical surges identified during the manual surge analysis. Top

row: California and Georgia, early phase. Bottom row: Florida and Washington, late phase.

Data shown are current infectious estimates (section A.4) shown on the log scale.
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State Name First Wave Last Wave

AK 19-Mar-2020 to 19-Mar-2020 18-Sep-2020 to 21-Dec-2020

AL 15-Mar-2020 to 15-Mar-2020 21-Oct-2020 to 15-Feb-2021

AR 14-Mar-2020 to 14-Mar-2020 27-Oct-2020 to 30-Jan-2021

AZ 14-Mar-2020 to 14-Mar-2020 30-Sep-2020 to 05-Feb-2021

CA 04-Mar-2020 to 04-Mar-2020 31-Oct-2020 to 05-Feb-2021

CO 09-Mar-2020 to 09-Mar-2020 03-Oct-2020 to 23-Dec-2020

CT 14-Mar-2020 to 14-Mar-2020 05-Oct-2020 to 27-Dec-2020

DC 12-Mar-2020 to 12-Mar-2020 31-Oct-2020 to 05-Feb-2021

DE 17-Mar-2020 to 17-Mar-2020 31-Oct-2020 to 30-Jan-2021

FL 08-Mar-2020 to 08-Mar-2020 17-Oct-2020 to 25-Dec-2020

GA 09-Mar-2020 to 09-Mar-2020 25-Nov-2020 to 12-Feb-2021

HI 17-Mar-2020 to 17-Mar-2020 26-Dec-2020 to 09-Feb-2021

IA 11-Mar-2020 to 11-Mar-2020 24-Oct-2020 to 14-Dec-2020

ID 19-Mar-2020 to 19-Mar-2020 17-Sep-2020 to 28-Dec-2020

IL 10-Mar-2020 to 10-Mar-2020 05-Oct-2020 to 27-Dec-2020

IN 11-Mar-2020 to 11-Mar-2020 30-Sep-2020 to 29-Dec-2020

Table A.1: Estimates made for each surge time period for the first third of the data from

the analysis described in section A.5
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State Name First Wave Last Wave

KS 16-Mar-2020 to 16-Mar-2020 21-Oct-2020 to 18-Dec-2020

KY 13-Mar-2020 to 13-Mar-2020 14-Oct-2020 to 22-Dec-2020

LA 12-Mar-2020 to 12-Mar-2020 05-Nov-2020 to 24-Dec-2020

MD 12-Mar-2020 to 12-Mar-2020 30-Oct-2020 to 01-Feb-2021

ME 16-Mar-2020 to 16-Mar-2020 20-Oct-2020 to 04-Feb-2021

MI 01-Mar-2020 to 01-Mar-2020 04-Oct-2020 to 27-Dec-2020

MN 10-Mar-2020 to 10-Mar-2020 21-Oct-2020 to 22-Dec-2020

MO 18-Mar-2020 to 18-Mar-2020 29-Oct-2020 to 23-Dec-2020

MS 15-Mar-2020 to 15-Mar-2020 30-Oct-2020 to 08-Feb-2021

MT 18-Mar-2020 to 18-Mar-2020 15-Sep-2020 to 25-Dec-2020

NC 12-Mar-2020 to 12-Mar-2020 27-Sep-2020 to 17-Feb-2021

ND 19-Mar-2020 to 19-Mar-2020 14-Aug-2020 to 18-Dec-2020

NE 12-Mar-2020 to 12-Mar-2020 09-Sep-2020 to 22-Dec-2020

NH 15-Mar-2020 to 15-Mar-2020 28-Oct-2020 to 08-Feb-2021

NJ 09-Mar-2020 to 09-Mar-2020 18-Sep-2020 to 12-Feb-2021

NM 12-Mar-2020 to 12-Mar-2020 20-Sep-2020 to 22-Dec-2020

Table A.2: Estimates made for each surge time period for the second third of the data from

the analysis described in section A.5
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State Name First Wave Last Wave

NV 12-Mar-2020 to 12-Mar-2020 24-Sep-2020 to 04-Feb-2021

NY 06-Mar-2020 to 06-Mar-2020 28-Oct-2020 to 15-Feb-2021

OH 13-Mar-2020 to 13-Mar-2020 09-Oct-2020 to 29-Jan-2021

OK 16-Mar-2020 to 16-Mar-2020 01-Nov-2020 to 09-Feb-2021

OR 09-Mar-2020 to 09-Mar-2020 26-Oct-2020 to 24-Jan-2021

PA 09-Mar-2020 to 09-Mar-2020 27-Sep-2020 to 24-Jan-2021

RI 12-Mar-2020 to 12-Mar-2020 26-Sep-2020 to 26-Jan-2021

SC 12-Mar-2020 to 12-Mar-2020 25-Nov-2020 to 17-Feb-2021

SD 16-Mar-2020 to 16-Mar-2020 11-Sep-2020 to 24-Dec-2020

TN 12-Mar-2020 to 12-Mar-2020 30-Oct-2020 to 31-Jan-2021

TX 09-Mar-2020 to 09-Mar-2020 08-Nov-2020 to 14-Feb-2021

UT 15-Mar-2020 to 15-Mar-2020 20-Sep-2020 to 25-Dec-2020

VA 12-Mar-2020 to 12-Mar-2020 11-Oct-2020 to 16-Feb-2021

VT 16-Mar-2020 to 16-Mar-2020 15-Oct-2020 to 22-Dec-2020

WA 25-Feb-2020 to 25-Feb-2020 29-Oct-2020 to 08-Feb-2021

WI 13-Mar-2020 to 13-Mar-2020 05-Sep-2020 to 17-Sep-2020

WV 21-Mar-2020 to 21-Mar-2020 21-Oct-2020 to 08-Feb-2021

WY 17-Mar-2020 to 17-Mar-2020 08-Sep-2020 to 25-Dec-2020

Table A.3: Estimates made for each surge time period for the final third of the data from

the analysis described in section A.5
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Appendix B

Detailed Methods for COVID Modeling

B.1 Fitting an SIR Curve to Case Data

There are many statistical methods to estimate parameters from data (see e.g. [Kal60,

Myu03, DJ09]). These methods often rely on assuming underlying distributions for errors

in both the assumed model and the data. Reflecting our complete ignorance of the error

distributions for the model and a lack of confidence in the data given, we opted for a simple

approach. We derived the model parameters which produced the curve that fit the data

well in a least-squares sense only. This objective is coincidentally equivalent to assuming

Gaussian, time-independent error for the data, but was chosen mainly because minimizing

least-squares error is a classical way of producing fits which “look” the best.

B.1.1 The Parameter Estimation Method

Suppose we have a model Y (t, θ), where t is a continuous variable and θ is a vector of

parameters, and a set of time points {ti}, i = 1, 2, . . . , n, upon which data X(ti) are defined.

Assume Y and X are vectors that are the same size. Fitting our model to the data means

minimizing the following objective function

E(θ) =
n∑

i=1

wi||Y (ti, θ)−X(ti)||2 (B.1)

for some set of weights wi, whence the best-fitting parameter vector θ̂ may be written as

θ̂ = argmin
θ

E(θ) (B.2)
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In this case, the model we desired to fit was the simple SIR model:

dS

dt
= −βSI/Ntot

dI

dt
= βSI/Ntot − γI

dR

dt
= γI

(B.3)

Since data was given in terms of cumulative cases, we have Y (t, θ) = I(t) + R(t), i.e. the

number of people who are currently infected plus those that have been infected. In this case

θ = (β, γ,Ntot, S(0), I(0)). The model is differentiable with respect to θ, so the minimum

parameter vector may be found using gradient descent. Since the problem is non-convex,

we optimized using many different initial guesses for θ in an effort to coax out the global

minimum from many different local minima. In an effort to keep β realistic, we also included

constrained γ to be between 0 and 1, since γ (the disease removal rate) for Covid-19 can

reasonably be assumed to be in that range, and almost certainly much smaller than 1. For

best visual results such as those in the clustering analysis, we let wi = tpi and adjusted p

until the fit was to visual satisfaction.

B.1.2 Finding the Fitted β for Simulated Data

For simulated data, γ, Ntot, S(0), and I(0) were assumed to be known hyperparameters of

the model, and so only θ = β was considered. In order to better reflect fitting that happens

on real data, the continuous simulated data was sampled at intervals one day apart, and

the parameters used to generate the simulated data were chosen so that the timescale of the

model was approximately one day for the Covid-19 pandemic. The weights wi were set to 1

to fit the case data equally over the entire progression of the epidemic.
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B.1.3 Two-Phase SIR Model Fitting

Due to a large degree of ignorance as to what SIR initial conditions could be when fitting the

model to a surge in the later stages of the pandemic, it proved necessary to allow the SIR

model’s susceptibility parameter to have two constant phases. The first phase, when fitting,

relaxed the ignorant initial conditions to reasonable conditions for the SIR model, and the

second, much longer phase captured the growth dynamics once initial conditions had been

decided in the earlier phase. Specifically, we fit the model

dS

dt
= −

(
β1 + (β2 − β1)H(t− t∗)

)
SI/Ntot

dI

dt
=

(
β1 + (β2 − β1)H(t− t∗)

)
SI/Ntot − γI

dR

dt
= γI

(B.4)

where H(t) is the Heaviside step function, namely H(t) = 1 for t > 0 and 0 otherwise.

Given nondifferentiability in the t∗ parameter, a grid search was formed over many values of

t∗ and the minimal error solution was saved. This approach was used to generate all of the

Omicron surge fits mentioned in the preceding, and invariable produced a first phase which

lasted only three to five days, yielding a true single-phase SIR surge. It also better captured

the behavior of the (admittedly unreliably-reported) initial pandemic data and allowed for

better overall curve fit. The model fits the worst-conforming state cluster in the cluster

analysis (Fig (B.1)).

B.1.4 Generating Parameter Likelihood Distributions

To generate error bars for Fig 7, we needed to define some notion of likelihood that a given

set of fitted parameters is the true best-fitting set. Due to the highly nonlinear nature of

the problem, many local minima exist which could reasonably approximate the data, so

a likelihood was generated by randomizing the initial parameter guess and seeing which

parameter minimum the algorithm arrived at. We drew our initial guess for β uniformly

at random from the interval [0.1, 0.6], and we drew log10Ntot uniformly from the interval
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Figure B.1: Demonstration of two-phase SIR model fitting for early pandemic data. The

fit to CT is vastly improved by adding a susceptibility change degree of freedom to the

minimization.

[7, 8]. We then defined the likelihood of a converged-upon parameter set as e−BR, where

B = 1 and R is the mean squared residual of the model fit to the data. We found that the

qualitative behavior of the error bars in Fig 7 was not sensitive to particular choices of our

initial randomization or choice of B.
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amoeboid organism.” Nature, 407(6803):470–470, 2000.

[NYU00] Toshiyuki Nakagaki, Hiroyasu Yamada, and Tetsuo Ueda. “Interaction between
cell shape and contraction pattern in the Physarum plasmodium.” Biophysical
chemistry, 84(3):195–204, 2000.

[OYS21] Kenji Ota, Katsunori Yanagihara, Daisuke Sasaki, Norihito Kaku, Naoki Uno, Kei
Sakamoto, Kosuke Kosai, Taiga Miyazaki, Hiroo Hasegawa, Ayumi Fujita, Masato
Tashiro, Takeshi Tanaka, Koichi Izumikawa, Koya Ariyoshi, Hiroshi Mukae, Jiro
Yasuda, Kouichi Morita, and Shigeru Kohno. “Detection of SARS-CoV-2 using
qRT-PCR in saliva obtained from asymptomatic or mild Covid-19 patients, com-
parative analysis with matched nasopharyngeal samples.” PLOS ONE, 16(6):1–9,
06 2021.

86



[RDT15] Jean-Paul Rieu, Hélene Delanoë-Ayari, Seiji Takagi, Yoshimi Tanaka, and
Toshiyuki Nakagaki. “Periodic traction in migrating large amoeba of Physarum
polycephalum.” Journal of The Royal Society Interface, 12(106):20150099, 2015.

[Rey20] Maritza Vasquez Reyes. “The disproportional impact of COVID-19 on African
Americans.” Health and human rights, 22(2):299, 2020.

[RMM16] Chris R Reid, Hannelore MacDonald, Richard P Mann, James AR Marshall,
Tanya Latty, and Simon Garnier. “Decision-making without a brain: How an
amoeboid organism solves the two-armed bandit.” Journal of The Royal Society
Interface, 13(119):20160030, 2016.

[RS19] Marcus Roper and Agnese Seminara. “Mycofluidics: the fluid mechanics of fungal
adaptation.” Annual Review of Fluid Mechanics, 51:511–538, 2019.

[RTU15] Beatrice Rodiek, Seiji Takagi, Tetsuo Ueda, Marcus Hauser, et al. “Patterns of cell
thickness oscillations during directional migration of Physarum polycephalum.”
European Biophysics Journal, 44(5):349–358, 2015.

[Sok58] Robert R Sokal. “A statistical method for evaluating systematic relationships.”
Univ. Kansas, Sci. Bull., 38:1409–1438, 1958.

[SPW20] Brendan Saloner, Kalind Parish, Julie A Ward, Grace DiLaura, and Sharon
Dolovich. “COVID-19 cases and deaths in federal and state prisons.” Jama,
324(6):602–603, 2020.

[SSR19] Stefanie S Schmieder, Claire E Stanley, Andrzej Rzepiela, Dirk van Swaay, Jer-
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