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ABSTRACT OF THE DISSERTATION 

 

Expanding an algae production platform:  

Industrially relevant advancement of Chlamydomonas reinhardtii 

 

 

 

by 

 

Joseph Thomas Ostrand 

 

Doctor of Philosophy in Biology 

 

University of California San Diego, 2018 

 

Professor Stephen P. Mayfield, Chair 

 

   

The initial surge of industrial interest in green algae for the production of renewable fuel 

has given way to a blossoming industry with the potential to contribute to the commercial 

production of food, materials, and modern medicine. Algae are biologically diverse, edible, 
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genetically tractable and have high lipid and protein content. Their unicellular nature facilitates the 

efficient conversion of energy into biological material without the need to produce structural 

materials like that of higher plants.  The diversity of the fields in which algae have become a viable 

production platform has necessitated development of a broad range of cultivation strategies and 

tools for improving their industrial relevance.   

Molecular research on green algae has yielded a growing encyclopedia of genetic tools for 

manipulation of the chloroplast and nuclear genomes. However, as the landscape of desired algal 

products has changed, some of these tools need to be refined for new cultivation systems and 

advanced product engineering. Although the future is bright for algae as a bio-manufacturing 

platform, many aspects of their production lag behind their established counterparts like yeast, E. 

coli and mammalian cell culture. The research outlined in this dissertation presents significant gains 

in the advancement of green algae as an industrial organism by refining cultivation strategies and 

genetic tools to foster success in commercially relevant systems. 

 

Production of algae in both open and closed systems is addressed. For open pond 

cultivation, environmental concerns render certain genetic markers unusable. A system for 

selection of transgenic algae without the need for antibiotic resistance cassettes has been developed. 

In general, closed systems offer more tight regulation of abiotic growth conditions and optimization 

of growth and product accumulation in these systems is imperative to the future of industrial algae. 

In closed systems, high density cultures are required for maximum biomass yield with limited 

infrastructure. Research presented here shows the first look at C. reinhardtii grown in fermentors 

for high-density cultivation and provides a metabolic comparison with more standard growth 

conditions.   

An analysis of transgene expression in high-density cultures expressed a need for new 

genetic tools that are functional under these conditions. The second half of the dissertation focuses 
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on the development of advanced genetic tools and synthetic systems for optimization of transgene 

expression. Synthetic tools have the power to revolutionize recombinant protein production in 

green algae.  Ultimately, this dissertation provides an extensive body of work which identifies gaps 

in the commercial viability of green algae, and provides transformational solutions to many of the 

problems hampering industrial relevance. 
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Throughout the course of human history, we have taken advantage of biological systems 

to satisfy our needs and make our world a more pleasant place to live. Technological advances in 

the biological space allowed humans to shift from a hunting and gathering lifestyle into settlements. 

Reliable crop cultivation and the domestication of animals gave early humans the surplus of 

resources that facilitated the specialization of labor and development of new materials and ideas.  

As our understanding of the world around us grew, agricultural techniques became more 

refined, producing greater crop yields to support more dense populations. The population density 

we experience today can be attributed to the industrial revolution in the late 1700s. Steam powered 

tractors and processing equipment were made accessible due to cheap energy in the form of fossil 

fuels. The discovery and implementation of fossil fuels coupled agricultural yield with the 

availability of cheap, transportable energy and dramatically increased the amount of land that a 

single farmer could manage. As more land was cultivated for agriculture, the focus shifted from 

geographic expansion to harvest yield per hectare. A renaissance of farming strategies including 

chemical synthesis of fertilizers and pesticides expanded food security and further optimized 

human control over the biological world.  

In the late 20th century, research into the building blocks of life opened the door to a brand 

new realm for generating deliberate, targeted changes in biological systems worldwide.  A complex 

understanding of the genetic material inherent to all life on the planet allowed humans to engineer 

organisms with new attributes. Transgenic organisms can be made more resistant to pests and 

disease, reducing the risk of catastrophic crop loss. Clever exploitation of this knowledge has led 

to a worldwide spread in genetically engineered crops. The power of deliberate genetic 

manipulation has expanded well beyond crop engineering, and has been monumental to progress 

in human longevity.  
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However, as humans have expanded globally, the impact of our actions to the health of the 

planet has expanded as well. A renewed interest on the sustainability of our farming and industrial 

practices has restricted the window of acceptable technologies to our future development. As we 

look to the future, progressive technological advances will be required to supply clean energy, 

sufficient food, sustainable materials, and affordable medicine to a rapidly increasing global 

population. The solution to these problems may lie in our ability to cultivate and manipulate a new 

commercial organism: microalgae.  

Fuel 

Algae-derived biodiesel has been an obvious target for renewable fuels because algae was 

one of the major contributors of the organic material that comprises the petroleum we use today. 

Algae and other microorganisms which populated the earth’s oceans found their way into the 

earth’s crust where they were subjected to high temperature and pressure to create the energy-dense 

reserves we refine to power the world. The same process can be imitated by factories in a process 

called hydrothermal liquefaction to turn algae grown today into the exact same hydrocarbons which 

power machines around the world. Algae farms can renewably provide a fungible fuel source at a 

global scale.   

Food 

The livestock industry currently uses one-third of the total cropland worldwide to grow 

feed. A global drop in meat consumption or an alternative source of animal feed will be required 

as the availability of arable land worldwide continues to dwindle.  Algae’s rapid generation times 

and ability to grow on non-arable land make it an intriguing source for animal feed. Unlike higher 

plants which dedicate much of their energy to developing carbohydrates for structure, microalgae 

are rich in lipids and protein which are critically important to feed composition. Many species of 
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algae naturally produce omega-3 fatty acids, namely EPA and DHA, are known to reduce heart 

disease and inflammation in humans, making them also an intriguing resource for human 

supplements. Growing particular algal strains which are high in these unsaturated fatty acids will 

also reduce the need to farm and extract these oils from fish.  

Materials 

Today, nearly all carbon-based materials require petroleum-derived products for their 

manufacture. The chemical process of synthesizing carbon networks for plastics and polyurethanes 

renders these materials largely inaccessible to the enzymatic degradation, meaning they cannot be 

naturally broken down in the environment. A social push for biodegradable materials has led 

researchers to photosynthetically derived oils as a source of renewable, buildable carbon. Algae are 

a promising host for petroleum-alternative materials because petroleum was derived from algae to 

begin with. Naturally occurring algal diversity provides a source for pathways and products which 

are difficult to produce in other systems. The lack of tissue differentiation minimizes the energy 

conversion to undesired products. Lastly, algae does not interfere with the food supply chain.  

Medicine 

Recombinant protein-based therapeutics have brought a new wave of ideas into modern 

medicine. However, current production systems are wrought with issues. Mammalian tissue 

cultures provide a quality platform for high-quality therapeutics, but they are expensive to cultivate, 

and can be infected by viruses which can crash the culture and affect regulatory control of the 

purified therapeutic. Prokaryotic hosts like E. coli lack the advanced folding machinery to properly 

assemble many complex protein therapeutics. Algal hosts are cheap to cultivate in photosynthetic 

or fermentation systems and can assemble complex proteins. Genetic fusions facilitate production 

of chimeric proteins such as antibody-toxin fusions which are traditionally synthesized chemically, 
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a process which needs to be optimized for each antibody and toxin combination. In addition, many 

algal species have been designated by the FDA as “generally regarded as safe”, meaning that they 

can be safely consumed. Oral consumption of whole-cell algae which contain the therapeutic 

alleviates the need for costly protein purification and storage. An algae-expressed gut-active 

malaria vaccine is being investigated as a suitable host for bringing immunogenicity to developing 

countries.  

 

Altogether, the future of green algae to provide a sustainable, affordable and renewable 

resource for fuel, food, materials, and therapeutics exists because of our capacity to understand 

these organisms at a molecular level. Genetic tools can be used to make algae more robust to biotic 

and abiotic challenges, and can create whole new markets for the platform. The relatively short 

history of relevance to the commercial market has limited the breadth of molecular knowledge in 

algae.  Not surprisingly, the diversity of industrially interesting species of algae is vast, and detailed 

characterization of every species is far from complete. In an effort to consolidate research efforts 

and improve the depth of algal knowledge, many researchers to date have focused on a singular 

green alga, Chlamydomonas reinhardtii.  

Chapter 1 provides an overview of why C. reinhardtii is a suitable model organism for 

green algae and reviews the critical aspects of development of C. reinhardtii pertaining to entering 

the industrial space. Although fuel production is not economically feasible for microalgae with the 

current infrastructure, the addition of high-value coproducts may help cover the costs for oil 

cultivation. A succinct description of the genetic toolset used to engineer the chloroplast is 

presented, focusing on the success of endogenous regulatory elements to engineer transgenic strains 

and the diversity of recombinant proteins which can be produced.  This analysis continues by 
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outlining the success of synthetic regulatory elements albeit with some caveats in the genetic toolset 

currently available for chloroplast engineering. Proteins expressed in the chloroplast cannot be 

transported throughout the cell, which significantly limits opportunities for metabolic engineering. 

Next, the advantages and roadblocks of nuclear genome engineering in C. reinhardtii are explored. 

Although genetic engineering in the nuclear genome has yet to show substantial accumulation of 

recombinant proteins, peptide transit sequences allow protein secretion as well as transport to many 

intracellular organelles, which will be required for advanced metabolic engineering. A major 

limitation of nuclear genome editing is the lack of sophisticated gene targeting technology, which 

is addressed more extensively in Chapter 7. Chapter 1 then describes aspects of C. reinhardtii as it 

fits into the industrial space. Basic descriptions are laid out for outdoor cultivation strategies, 

including both open pond systems and closed systems. An analysis of biomass and lipid 

accumulation of green algae in both open and closed cultivation identifies C. reinhardtii as an 

effective closed-system producer with relatively high lipid content.  

In accordance with current regulations, transgenic microalgae need to be grown in closed 

systems to prevent the spread of heterologous genes to native species. This is particularly important 

with respect to antibiotic resistance cassettes which can lead to the unintended development of 

antibiotic-resistant microbes. A pilot experiment conducted at UCSD showed that a relatively 

benign fluorescent reporter GFP gene did not show significant spread to native species.  This 

marker lends itself to unique selection strategies for development of transgenic strains. Chapter 2 

presents a FACS-based strategy for developing transgenic C. reinhardtii utilizing expression of a 

fluorescent protein in lieu of an antibiotic resistance cassette. Cells were transformed with a GFP 

expression cassette containing a transcriptionally fused gene for resistance to zeocin. C. reinhardtii 

was electroporated to produce nuclear genome lesions and subsequent integrations of our 

expression vector. Instead of selecting by antibiotic resistance, the transformed cells were run 
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through a sorting flow cytometer, and selected for recovery based on their GFP fluorescence. Of 

the 39 individuals which survived the sorting process, six were resistant to zeocin on selection 

plates, and of those six transformants, four showed statistically significant GFP accumulation by 

plate reader. This enrichment of successful transformants which are expressing the gene of interest 

is comparable to selection strategies utilizing antibiotic resistance.  

Even with clever selection strategies that eliminate the need for antibiotic resistance, closed 

systems will be required for the industrial relevance of C. reinhardtii and green algae as a whole. 

Many strains will require the precise control of their environment that can only be achieved in 

closed systems. In addition, the high value coproducts produced in transgenic strains will likely 

require closed growth chambers to facilitate reliable purification strategies and minimize product 

loss. Chapter 3 provides the first characterization of chloroplast-expressed transgene expression 

from C. reinhardtii in a closed fermentor system. The growth rate and accumulation of a 

chloroplast-expressed GFP marker in C. reinhardtii was compared in a closed fermentation system 

under batch growth and fed-batch growth conditions. The batch growth strategy resulted in a 

density of 2.33g/L AFDW. In the fed-batch approach, a predominantly acetic-acid based feed was 

administered under the control of a pH-stat, which maintained a constant pH of 7.0, and pushed the 

final maximum density to 23.7g/L AFDW. Although the biomass yield was 10-fold higher in the 

fed batch system, the relative GFP expression level per cell was significantly diminished. This 

could be due to expression being regulated by a light-driven promoter, and as culture density 

increases, light penetration is diminished and gene activation slows. Overall, the fed-batch system 

was able to generate higher levels of recombinant protein per liter of culture. Cultures from both 

growth strategies were analyzed for metabolite composition to determine potential stresses caused 

by the density of the culture and the feed. High-density C. reinhardtii culture maintenance and feed 
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development look to be fruitful targets to providing major improvements to recombinant protein 

production strategies.  

As mentioned previously, the most productive recombinant protein production strategies 

in C. reinhardtii hijack endogenous regulatory regions which ordinarily regulate photosystem 

proteins to drive expression of exogenous genes. With the future of recombinant protein production 

likely to occur in high-density cultures in which light availability is limited, or in stainless steel 

fermenters where light is completely excluded, strains and tools must be optimized to express 

transgenes in the dark. The endogenous regulatory elements in the chloroplast used in current 

expression vectors have shown minimal dark activity, and testing a catalog of new endogenous 

elements is not a guaranteed solution.  

Chapter 4 investigates a nonspecific approach in which a chloroplast GFP gene was 

optimized for dark expression through rounds of mutagenesis and breeding and selection by FACS. 

Genome shuffling through mutagenesis and breeding can lead to chromatin restructuring and 

changes in gene regulation which can have dramatic effects on the phenotype of progeny. This 

technique has been used previously in C. reinhardtii in which breeding induced variability led to 

increased cell viability in higher salt concentrations. This project intended to exploit the phenotypic 

variance induced by breeding to rapidly generate a novel strain which would have improved 

accumulation of recombinant protein in the dark.  

A strain which expressed chloroplast GFP was either subjected to UV mutagenesis or bred 

with one of 10 genetically distinct wild-type strains to encourage changes in gene regulation via 

genome shuffling. Resulting progeny were investigated by flow cytometry, and the individuals 

which showed increases in GFP fluorescence above the parent strain were isolated by FACS. The 

best expressors from a single round of mating or mutagenesis and selection had increased GFP 
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accumulation in the dark by approximately 10-fold. Additional rounds of mating and mutagenesis 

showed further increases in GFP accumulation, although relative gains were substantially lower in 

the second round. Although many species of algae are not known to undergo sexual reproduction, 

the success of the UV mutagenesis and sorting shows that this strategy can be amended to most 

species. Ultimately, the success of this program shows that novel phenotypes which are difficult to 

engineer deliberately can be created as long as there is an effective selection strategy. However, it 

can be difficult to use this strategy to investigate the basic biology underlying the developed 

phenotypes. A thorough understanding of the biological pieces which dictate a phenotype help lay 

the foundation for building next-generation tools.  

 

Chapter 5 presents a much more investigative approach to try to improve exogenous gene 

expression in the nuclear genome. Nuclear gene expression in C. reinhardtii lags well behind gene 

expression in the chloroplast, and is orders of magnitude away from the industry leading platforms 

for recombinant protein accumulation like E. coli, yeast and CHO cells. Due to low natural rates of 

homologous recombination in the nuclear genome, exogenous expression vectors are integrated 

randomly. Positional effects due to the presence of local regulatory elements or chromatin structure 

can dramatically alter gene expression from one transformant to the next. In addition, high GC 

content can substantially restrict codon usage in exogenous genes, and nuclear gene silencing has 

been shown to stifle recombinant protein accumulation.  

Although transgenic protein accumulation is low, genes expressed in the nuclear genome 

undergo post-translational modifications which can make them much more desirable for many 

applications. Metabolic engineering routinely requires expression of proteins within specific 

organelles, and proteins translated by nuclear-encoded genes can be tagged with localization signals 

that direct the products to precise locations. Other tags send translated proteins out of the cell 
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entirely, providing a circumstance by which cells do not need to be lysed in order to purify the 

desired product. Finally, proteins which are encoded in the nuclear genome can be glycosylated in 

the ER and Golgi complex. Glycosylation of proteins has an array of functions, including assistance 

in folding, protein maintenance, and cell recognition. From a recombinant protein standpoint, 

glycosylation is often required for bioactivity, and the pattern of glycosylation varies from one 

production system to the next. Yeast, for example, is known to hyperglycosylate its protein 

products. Proteins with substantially different glycosylation patterns can be recognized as foreign 

or misfolded and subjected to degradation. These criteria make improved gene expression in the 

nuclear genome a major objective.  

The report in Chapter 5 takes a synthetic biology approach to improve nuclear transgene 

expression. The study investigates the building blocks of promoter regions in C. reinhardtii by 

determining the ability of synthetic promoters to drive expression of a fluorescent protein. Synthetic 

promoters were designed by first determining the conservation of sequence motifs within the 

regulatory regions of the most highly expressed genes in the genome by use of a program called 

POWRS. Though the exact biological role of these individual motifs is unknown, their presence in 

multiple highly expressed genes suggests they may have an effect on transcriptional regulation. 

These motifs were assembled into a promoter backbone based on their positional dependence in 

relation to the transcriptional start site. By this process, 25 unique synthetic algal promoters were 

assembled and cloned in front of a fluorescent protein. The strength of each promoter was validated 

by determining the fluorescence of at least 5,000 independent transformation events to account for 

positional effects. In this first trial of synthetic promoter construction, we were able to create 

functional promoters, some of which were stronger than the best hybrid promoter described in the 

literature. Targeted deletions of synthetic promoter sequences were performed to determine which 
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motifs were critical to the phenotype shown. One motif was identified as being necessary but not 

sufficient for transcriptional activation.  

The process of narrowing down effective motifs is elaborate, and involves transformation 

of many uniquely built expression constructs. In an effort to more rapidly characterize the positional 

dependence and overall effect of individual motifs, we developed two promoter libraries, each with 

1000 unique partial-promoter sequences. This generation of synthetic promoters contained fewer 

motifs, and could therefore be used to more accurately assign activity to specific motifs. The 

promoter libraries were cloned in front of a fluorescent reporter and FACS was used to isolate the 

most fluorescent individuals. By comparing the sequences of highly fluorescent individuals with 

the sequences of low and non-expressors, the goal was to categorize sequence motifs by their 

activity and positional dependence. However, road blocks associated with reliable cell sorting and 

recovery of stable phenotypes complicated downstream analysis.  Chapter 6 provides an overview 

of this work as well as a look ahead at how we may utilize our understanding of cis- and trans-

activation in C. reinhardtii to develop a second generation of synthetic promoters and genetic tools 

for many algal species. For example, we show that constitutive expression of a native transcription 

factor can impact recombinant protein accumulation driven by a hybrid promoter. By using our 

understanding of trans-activating factors in other systems, motifs which correspond to transcription 

factor binding sites can be added to promoter sequences to increase transcription. Similar to the 

orthogonal systems developed in S. cerevisiae, synthetic regulatory circuits could be designed in 

C. reinhardtii to drive exceptional nuclear gene expression.  

As mentioned previously, a major limitation to recombinant protein platform development 

in the nuclear genome of C. reinhardtii is the lack of reliable gene editing tools and targeted vector 

introduction. Many labs are researching the potential of systems like CRISPR/Cas9 and TALENs, 

but a major target to solve this problem is the low rate of native homologous recombination 
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mediated repair in the nuclear genome. The final chapter of this dissertation presents a tool which 

reliably measures the rate of homologous recombination. There are many theories as to how the 

rate of HR could be increased, but reliable analysis of the rate of HR has been limited.  Previous 

systems for HR measurement do not capture instances in which imperfect HR occurs. This report 

utilizes a large intron as the homology region, meaning that sequence alterations due to imperfect 

HR mediated repair are not detrimental to the selection mechanism.  By using this tool, future 

studies which seek to increase HR rates for nuclear gene editing can verify the efficacy of their 

strategies.  

Ultimately, the studies presented here show concrete advances to the field of algal biology, 

and provide important steps to the commercial relevance of algae as a production platform for a 

variety of products. The production systems that are used today have reached their scale because 

of the dedication to research on their fundamental biology, and the clever generation of molecular 

tools by scientists to investigate and alter their being. As the tools for the algae world approach the 

sophistication of these model organisms, the full potential of green algae to be an industrial 

powerhouse will be realized.  
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Antibiotic-free selection in the nuclear genome of C. reinhardtii by multicolor cell sorting  

Ostrand, J., and Mayfield, S. 

 

Introduction 

Chlamydomonas reinhardtii presents a unique photosynthetic platform for a wide variety 

of potential products. Advances in genetic manipulation in the model green alga have opened the 

door for metabolic engineering and heterologous protein accumulation. Genetically engineered 

strains will undoubtedly be required for sophisticated strain optimization and biological 

manufacturing of high-value products(1).  Two major advantages of C. reinhardtii as an industrial 

organism are photosynthetic outdoor cultivation and Generally Regarded As Safe (GRAS) approval 

for human and animal consumption(2). The fear of horizontal gene transfer and unintended 

development of antibiotic-resistant microbes will likely prevent outdoor cultivation and 

consumption of organisms with antibiotic resistance cassettes for the foreseeable future(3,4). 

Therefore, strategies which either remove the resistance marker post-selection or avoid these 

markers altogether must be devised. 

  In the chloroplast genome, high rates of native homologous recombination facilitate 

removal of antibiotic resistance cassettes through direct-repeat-mediated excision(5).  In the 

nuclear genome, a few strategies have been developed for marker removal, but they predominantly 

rely on expression of a non-native excision protein as in the Cre/lox system or outcrossing to wild-

type strains(6). Outcrossing, though useful as a diagnostic tool, presents major limitations in the 

development of commercial C. reinhardtii strains. As industrial growth strategies become more 

refined, precise genetic backgrounds will be required for phenotype stability and reliable 

cultivation. Additionally, development of outdoor production strains may look to sterile 

backgrounds to prevent spontaneous breeding with naturally occurring C. reinhardtii strains(7). 
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Gene selection strategies which do not require breeding as a means of marker removal are therefore 

more desired for commercial strain development.  

Current antibiotic-free selection strategies in C. reinhardtii rely on restoration of native 

metabolism in mutant strains. There are quite a few mutant strains that have been used for this 

strategy, including those with impaired ARG7, NIT1, NIC7, and THI10(8,9). Though this is a 

reliable means of gene introduction, it requires that the background strain contains a mutation for 

one of these genes, which limits the scope of potential production strains and prevents multiple 

rounds of gene introduction in a single strain.  

The EPA recently approved a pilot study for outdoor cultivation of genetically engineered 

C. reinhardtii expressing GFP(10). Researchers determined that cultivation of the GFP-containing 

strain did not affect the growth of native algae strains. Presented here is a FACS-based selection 

strategy utilizing a benign GFP isoform which allows for isolation of genetic transformants without 

the need for antibiotics or specific background strains.  

 

Results 

The mEmerald gene was codon optimized for nuclear expression in C. reinhardtii, and 

cloned into the pBR9 Ble-2a expression vector developed by Rasala et al. in 2011(11). A schematic 

of the expression vector used is shown in Figure 1. The cassette is driven by the AR1 promoter, a 

well described regulatory element comprised of the RBCS2 intron and the HSP70a promoter(12). 

The Ble gene provides resistance to zeocin, which was used for downstream verification of gene 

expression and to estimate transformation efficiency(13). The mEmerald gene is an improved form 

of GFP which has been reported to have increased fluorescence. By using the 2a peptide, the 

Figure 2.1. Nuclear expression vector diagram. The nuclear expression of mEmerald 

is driven by the hybrid ar1 promoter. The vector contains a Ble gene, which provides 

resistance to zeocin, that is transcriptionally fused to mEmerald by the 2A FMDV 

peptide.  
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resistance gene and the fluorescent protein are transcriptionally fused, and upon translation they 

separate into two unique protein products(14).  

This vector was transformed into the cc1690 C. reinhardtii background strain via 

electroporation. Cc1690 which was grown to 1x108 cells per mL were incubated with 1µg of 

linearized pBR9, and electroporated using Thermo Fisher MAX Efficiency buffer. Cells were  

 

allowed to recover in 10mL of TAP media for 16 hours, after which 1x107 of the shocked cells 

were plated onto a TAP-Agar plate containing 15µg/mL zeocin. The remaining 9x107 cells were 

diluted 1:10 into TAP media and maintained on a shaker flask for 24 hours. The pool of unselected 

transformants was analyzed by flow cytometry and, using the gating hierarchy shown in Figure 2, 

GFP-positive individuals were identified. Cells which pass through the provided gating strategy 

are considered to be GFP positive. To prove the selectivity of our gating strategy, cc1690 was 

electroporated without addition of the pBR9 vector. When compared, the pool transformed with 

pBR9-Emerald showed an enrichment of individuals in the final GFP-positive gate of 

approximately 40-fold (Table 1), and only 4 false-positives were identified in the negative control 

out of 20,000,000 events investigated. The transformation efficiency as determined by zeocin 

resistance is approximately 3x10-6. According to GFP data, the transformation efficiency was 

 Transformation rate 

based on zeocin plates 

# of cells investigated 

by flow cytometry 

# individuals in 

mEmerald gate 

No DNA control 0 2.0x107 4 

mEmerald  3x10-6 2.3x107 164 

Table 2.1. Transformation and gating efficiency. Cells transformed with the mEmerald 

expression vector and those which were electroporated with no vector were measured for their 

transformation efficiency by counting zeocin resistant colonies from an aliquot of the 

electroporated cells. The rate of survival corresponds to the transformation rate. The majority 

of the electroporated cells were analyzed by flow cytometer. The total number of cells 

investigated by flow cytometry for the mEmerald transformation and the negative control wild-

type strain is shown, as well as the selectivity of the gating strategy for mEmerald recognition. 

The gating strategy yields only 4 false positives in the negative control from 20,000,000 

investigated events. 
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approximately 7x10-6.  This discrepancy can be attributed to both the fact that low expression levels 

 

Figure 2.2. Gating strategy for GFP identification. Each pane depicts an inclusion gate to 

narrow down the electroporated culture to select for C. reinhardtii cells which contain 

mEmerald within which the larger dots (black in A, red in B, C, and D) correspond to the 

individual 164 cells which were sorted for the experiment. As the gating strategy progresses 

from A to D, cells excluded at each step are removed from the subsequent analysis. Cells 

outside of the gate in A are not plotted in B. Cells outside of the gate in B are not plotted in C. 

etc. The gate in D selects for the mEmerald positive population which was sorted.  
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of the Ble gene do not result in resistance to zeocin, which artificially lowers the perceived 

transformation rate by antibiotic resistance, as well as the imperfect gating strategy which results 

in the false characterization of some negative individuals as mEmerald positive.  

Cells which fell within the Emerald-positive gate from the unselected pBR9-Emerald 

transformed pool were sorted individually into 96-well plates containing TAP media. Using a 

technique known as Index Sorting, fluorescence properties of the sorted individuals have been 

plotted as larger red or black dots on the flow cytometry density plots shown in Figure 2. Due to 

the rarity of the phenotype, only 164 individuals were sorted. The sorted individuals were left to 

recover in the dark for 48 hours, and were then shifted to 100µE light to grow for one week. Of the 

164 individuals sorted, 39 strains survived the sorting process. These 39 strains were grown to 

saturation in 2mL cultures and analyzed by fluorescent plate reader to determine if they were 

legitimate hits (Figure 3).The 39 strains were also plated onto 15 µg/mL zeocin plates. The strains 

which were found to be resistant to zeocin are shown in red on Figure 3. From these data, it is clear 

that we successfully sorted individuals which have integrated the transformation vector.  

Figure 2.3. Sorted individuals investigated by fluorescent plate reader and antibiotic. Each 

strain which survived sorting was grown in a 500µL TAP culture and measured for mEmerald 

fluorescence by plate reader. The fluorescence of each strain is reported as a relative expression 

level when compared to the fluorescence of the unsorted parent strain. The average of four 

biological replicates of the unsorted parent is set as 1. In addition, each strain was plated onto 

TAP plates containing 15µg/mL zeocin. Strains which were resistant to zeocin are shown in 

red, while those that were sensitive to zeocin are shown in blue.  
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The most exceptional GFP expressor as determined by plate reader was confirmed to have 

GFP expression by fluorescence microscopy, as shown in Figure 4. The phenotype seen is 

indicative of nuclear-expressed cytoplasmic fluorescent protein, as it is predominantly excluded 

from the chloroplast.  

 

Discussion 

Here we demonstrate that expression of a fluorescent protein can be effectively used as a 

selection marker to identify successful nuclear transformation. By sorting for GFP accumulation, 

we have effectively enriched the population of transformed individuals from approximately       

1x10-6 to 1x10-1, a much more manageable concentration for downstream analysis. The presence 

of the GFP marker makes it simple to screen sorted individuals for expression of the gene of 

interest, in this case the Ble gene, and relative fluorescence levels can be used for rapid phenotype 

verification. Of the four individuals which showed statistically significant increases in GFP 

fluorescence, all four showed resistance to zeocin. In this instance, the Ble gene provides a simple 

phenotype to detect expression of our gene of interest, but enrichment of the transformant pool by 

Figure 2.4. Fluorescence microscopy image of sorted strain. The most highly mEmerald 

fluorescent strain as determined by plate reader assay was visualized by fluorescent 

microscope. (A) shows the cell when analyzed by a GFP filter set, and exhibits cytoplasmic 

accumulation of mEmerald. (B) visualizes chlorophyll in the cell and provides a clear outline 

of the chloroplast.  
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105-fold by GFP sorting makes it realistic to identify expressing strains by more complicated 

strategies, such as immunoblotting, which would otherwise be too labor-intensive.  

Based on the evidence presented in Rasala et al. 2012(11), flow cytometery is capable of 

differentiating many different fluorescing strains (mCherry, mCerulean, GFP and tdTomato) from 

each other and their wild-type background. Presumably a variety of fluorophores could be used to 

identify successful transformations which would facilitate gene stacking in a single organism. 

Based on the rarity of successful transformants identified in this study, gene stacking would likely 

need to occur in successive rounds of transformation and sorting, as opposed to cotransformation 

and simultaneous gating for dual-fluorescing individuals.  

Ultimately, this tool will be incredibly useful for specific applications in the commercial 

development of algal strains, and provides a strategy for creating nuclear transformants in an 

unbiased background strain with no requirement for antibiotic selection genes or exogenous gene-

excision proteins.  

 

Methods and Materials 

Plasmid Construction 

The vector used in this study is based on the pBR9 ble-2a vector described in Rasala et al. 

2013. The mEmerald gene was codon optimized using the C. reinhardtii codon usage table 

provided by the Kazusa DNA Research Institute. The mEmerald gene was cloned into the pBR9 

backbone by simple XhoI/BamHI restriction-based ligation.  

Transformation protocol 

The nuclear transformation protocol was adapted from the protocol provided with the 

GeneArt MAX Efficiency Transformation Reagent (Thermo #A24229).  C. reinhardtii strain cc-

1690 was grown on a shaker in 250mL of TAP media under 100µE to 5x106 cells mL-1. This cell 

count is indicative of log-phase growth. The cells were pelleted by centrifugation and the growth 
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media was decanted. The cells were resuspended in GeneArt MAX Efficiency Transformation 

Reagent to a concentration of 3x108 cells mL-1 to wash any remaining growth media. The cells were 

pelleted and the transformation reagent was decanted. Again, the culture was resuspended in 

GeneArt MAX Efficiency Transformation Reagent to a cell concentration of 3x108 cells mL-1. 

300µL of the resulting solution was transferred to a 1.5mL microcentrifuge tube along with 1µg of 

linearized plasmid and placed on ice for 5 minutes. The mixture was transferred to a chilled 

electroporation cuvette (Thermo #P46050). The cuvette was placed in the cuvette holder of a 

BioRad Gene Pulser Xcell and pulsed with the following settings: Voltage 500V, Capacity 50µF 

and Resistance 800Ω. The cuvette was left at room temperature for 10 minutes, at which point the 

300µL solution was transferred to 10mL of TAP media in a 50mL centrifuge tube. After 16 hours, 

107 cells were plated onto TAP agar plates with 15µg mL-1 zeocin to determine transformation 

efficiency. The remainder of the 10mL culture was added to 50mL of TAP solution in a small flask 

and placed on a shaker in 100µE of light to grow for an additional day prior to flow cytometer 

analysis.  

Flow cytometer setup 

Cells were analyzed and sorted by a 5-laser Becton Dickinson Influx flow cytometer 

running BD FACS Sortware. The instrument was equipped with a 70µm nozzle and operated on 

BD FACSFlow sheath fluid at a constant sheath pressure of 33.0psi. Cells were sorted into a 96-

well clear polystyrene microplate. Each well contained 100uL of autoclaved TAP media, and the 

reservoir to prevent evaporation was filled with autoclaved TAP media. The post-sort plates were 

incubated at room temperature in the dark for 24 hours and were then moved under 75uE of light 

for ten days.   
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Genome shuffling and selection for improved recombinant protein accumulation in the chloroplast 

of C. reinhardtii 

Joseph T. Ostrand, Francis J. Fields, Miller Tran, and Stephen P. Mayfield  

 

 

 

Abstract 

 

 

Figure 4.1. Visual abstract illustrating the breeding and mutagenesis program for 

increased GFP accumulation. Wild-type C. reinhardtii was transformed with a chloroplast 

GFP expression vector. This strain was either subjected to UV mutagenesis or was 

independently bred with one of 10 genetically distant wild-type strains. The resulting mutants 

and progeny were analyzed by flow cytometry and the most fluorescent individuals were sorted 

by FACS. 96 individual progeny were recovered from the sort and were analyzed by fluorescent 

plate reader. Two of the best expressors which were sorted from the mutagenized pool were 

bred with the wild-type strain cc2290. In addition, four individuals with varying GFP expression 

levels isolated from the breeding program were mutagenized. Both the first and second rounds 

of mutagenesis, breeding and sorting yielded individual strains with substantially higher GFP 

accumulation than the original strain.  
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In C. reinhardtii, endogenous light-driven regulatory elements have been used to drive 

recombinant protein accumulation to up to 10% of total soluble protein. However, as cultivation 

improvements facilitate higher density growth conditions, light penetration becomes limiting and 

light-activated promoters become less desirable.  This report describes a high-throughput genome 

shuffling and selection based approach to optimize the C. reinhardtii background strain for dark 

expression of recombinant protein. This was accomplished by both outcrossing and mutagenesis 

with high-throughput selection by FACS for top-expression mutants. The result is a strain with 

>10-fold increase in reporter protein accumulation. 

 

Introduction 

As the price of oil has dropped and the demand for algal-based biofuels has backed off 

over the past decade, there has been an increased interest in high-value product development in 

algal hosts(1,2). Commercial development of recombinant protein production strains shifts the 

primary growth conditions away from open ponds into more tightly controlled bioreactors.  Closed 

bioreactors are necessary for the precise optimization of temperature, pH and cell cycle that will 

produce the highest yields of product, and the consistency necessary to comply with regulatory 

standards(3,4). Smaller growth chambers facilitate high concentrations of biomass accumulation 

for optimal product yield per volume. As cell concentrations increase, light penetration into 

photobioreactors diminishes rapidly. This limits the capacity for phototrophic growth, as well as 

the efficacy of light-driven regulatory elements in production vectors. To date, the strategies which 

result in the highest yields of recombinant protein accumulation in C. reinhardtii utilize native 

light-regulated machinery to drive exogenous gene expression(5,6). Development of dark-

optimized tools for increased recombinant protein accumulation in the chloroplast of C. reinhardtii 

will facilitate commercial relevance in the high-value recombinant protein market.  
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Whole-genome modification strategies for phenotype optimization can be incredibly 

powerful(7–9). Selective breeding in higher plants has been used for centuries to encourage 

complex phenotypes, and can be used effectively without an intricate understanding of the species. 

Breeding within a species causes recombination of the genome, which can result in certain genes 

being eliminated from the population, in addition to major alterations in chromatin structuring and 

gene regulation(10,11). This shuffling of the genome is well documented as a potential strategy for 

phenotype development across industrial organisms(7–9). When combined with robust selection, a 

phenotype which has been difficult to create de novo can be generated through the process of 

genome shuffling. Selective breeding in C. reinhardtii has already been shown to generate salt-

tolerant progeny(12). 

C. reinhardtii has two distinct mating types, designated mt(+), and mt(-). Upon nitrogen 

starvation, mt+ and mt- cells express complementary proteins on their flagella which help to bind 

the two individuals together(13). Upon flagellar binding, the membranes fuse to form a zygote and 

undergo meiosis, resulting in 4 daughter cells each with unique nuclear genomes. Each of the 

progeny will exclusively receive the chloroplast genome of the mt+ parent and the mt- chloroplast 

genome is selectively degraded during the mating process(14). This uniparental inheritance 

facilitates a breeding program in which all of the generated progeny will contain the heterologous 

chloroplast gene of interest as long as it was initially present in the mt+ parent.  

In C. reinhardtii, proteins expressed by the nuclear genome can affect gene regulation in 

the chloroplast(15,16). Therefore, shuffling of the nuclear genome can result in modified 

expression levels of a heterologous gene in the chloroplast. GFP will be used as a means of 

quantifying chloroplast gene expression within progeny(17). By using a fluorescent marker, high-

throughput analysis by flow cytometry can rapidly identify progeny which express increased levels 

of GFP and isolate them for individual analysis(18).   By breeding and mutagenizing a C. 

reinhardtii strain expressing GFP, we were able to create and sort for exemplary strains for 
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chloroplast gene expression. The precise breeding and mutagenesis program is detailed in the first 

figure.  

 

Results 

Based on the phylogenetic tree generated by Flowers et al. 2015 (19), we gathered a 

collection of C. reinhardtii wildtype strains of varying backgrounds.  Due to the uniparental 

inheritance of the chloroplast genome, the starting strain is required to be mt(+) in order to maintain 

the marker gene throughout the breeding program. A growth curve was generated for each of the 

wild-type strains and it was determined that cc4414 worked most optimally with our laboratory 

growth conditions (data not shown). cc4414 was transformed with a chloroplast GFP expression 

vector. One of the hybrid promoters developed as part of the Rasala et al. 2011 papers which 

showed some activity under dark conditions was selected to drive GFP expression in our 

chloroplast expression vector.  

The strain was shown to successfully accumulate GFP in its chloroplast when grown in the dark 

(Figure 2). This initial GFP-expressing strain will hereafter be referred to as strain “178”.  

Strain 178 was individually bred with a library of mt(-) strains to induce genome shuffling-

mediated expression changes in GFP. The specific mt(-) strains were selected because their genetic 

ancestry had been previously characterized. Progeny from the mating were sonicated to help break 

apart the robust pellicle and to help remove parent populations which did not mate effectively. In 

addition, strain 178 was exposed to UV for varying times to induce mutagenesis. Each of the 

Figure 4.2. Western blot confirms GFP accumulates in the starting strain. 
Two biological replicates of the GFP-expressing strain 178 were grown in liquid 

TAP cultures in the dark. Harvested cells were lysed and 50ng of total soluble 

protein as measured by Bradford assay was loaded into each lane. Anti-GFP 

conjugated to AP was used to perform and develop the immunoblot.  
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Figure 4.3. GFP fluorescence of progeny generated from mating and mutagenesis. 

(A)Mating and mutagenesis with the starting GFP-expressing strain 178 generated variability 

of GFP expression levels among dark-adapted progeny. Flow cytometry analysis of >3,500 

cells is presented, and statistical outliers, shown in red, describe the likelihood that high-GFP 

progeny were created for each condition. (B) Highly fluorescent cells were isolated from each 

condition by FACS. 96 individuals from each condition were individually cultured and assayed 

for GFP by fluorescent plate reader. On this graph, the relative GFP fluorescence of each of 

the 96 isolated progeny is represented in red. The mean fluorescence of the group is shown in 

blue, and the background strain which was used for each circumstance is shown in black.  
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resulting pools was analyzed by flow cytometry to determine the variability in GFP expression due 

to breeding and mutagenesis (Figure 3A and S1). An increase in the number of outliers in progeny 

pools shows that breeding and mutagenesis have increased the variability of GFP expression within 

the population.  The individuals with the greatest GFP fluorescence were sorted by FACS to 

determine the stability of the phenotype in an isogenic population and to more accurately quantify 

the change in GFP accumulation. 96 individuals which were sorted from mating with each breeding 

partner, as well as 96 individuals from the 30 second UV mutagenesis and 96 individuals from an 

unmodified parent strain 178 were grown in separate 500µL cultures and analyzed by fluorescent  

plate reader (Figure 3B). These results show that breeding with any strain and sorting for high 

expression of GFP resulted in individuals with substantial increases in GFP fluorescence. Breeding 

with cc2938 resulted in the largest increase in the mean fluorescence of the offspring and some of 

the most fluorescent individual strains. Mutagenesis by UV generated the three most fluorescent 

progeny strains. Although mating with cc2290 did not result in large population variability as 

measured by flow cytometry, two of the top ten most fluorescent individuals in the entire study 

were generated from this circumstance.  

UV mutagenizing the best isolates from the breeding program 

Four individuals from the breeding program were selected to undergo a round of UV 

mutagenesis and sorting to determine if the phenotype could be further optimized by utilizing both 

genome alteration techniques. Two of the four individuals, M22 and M26 were sorted from the 

cc2938 progeny, and showed a dramatic increase in GFP accumulation. M30 and M34 were 

selected from the cc2290 progeny, and were selected due to their more nominal increase in GFP 

accumulation. As shown in Figure 4A, the two strains from the breeding program which had already 

dramatically increased their GFP accumulation (M22, M26) did not yield additional increases in 

response to UV mutagenesis. By contrast, the two strains which had marginally increased their GFP 

accumulation from the breeding program (M30, M34) successfully generated additional high-GFP 
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Figure 4.4. GFP fluorescence from a second round of mating or mutagenesis. (A) Four 

individuals were selected from the sorted offspring (M22, M26, M30 and M34), and two were 

selected from the sorted pool of UV mutants (UV11 and UV14). The four offspring strains 

were UV mutagenized and the UV mutants were bred with cc2290 to determine the possibility 

of further pushing the phenotype. The effect of a second round of breeding or mutagenesis on 

the GFP fluorescence of >15,000 individuals is compared with the starting strain by flow 

cytometry. (B) Optimal expressors from each circumstance were sorted and recovered. 96 

individuals from each condition were grown independently in liquid culture and assayed by 

fluorescent plate reader for GFP accumulation. Red symbols correspond to sorted progeny 

from the second round of breeding and mutagenesis. The black symbols are the fluorescence 

readings for the parent strains prior to the second round of genome shuffling. Triangles 

represent an individual which reached the detection limit of the plate reader. No sample had 

more than one such event. 
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outliers in response to UV mutagenesis. A population of the best accumulators from each of these 

mutagenized pools were sorted, and 96 individuals were assayed by fluorescent plate reader (Figure 

4B). With the exception of M26, each of the sorted populations contained individuals with greater 

GFP accumulation. The single best expressor from this program, isolated from the mutagenesis of 

M22, was renamed “I67” and kept for phenotyping by immunoblot and fluorescence microscopy 

(Figure 5 and Figure 6).  

Breeding the best isolates from the pool of UV mutants 

The two best expressors from the initial experiment were isolated from the pool of UV 

mutants. These two strains, UV11 and UV14, were bred with cc2290. The offspring were measured 

by flow cytometry and sorted for high expressors as described previously (Figure 4A). Although 

the accumulation of UV11 and UV14 was exceptionally high to begin with, the offspring generated 

from breeding them with cc2290 and sorting yielded additional increases to GFP accumulation. 

The best individual from the UV11xcc2290 cross was renamed “D52”, and the highest expressor 

from the UV14xcc2938 cross renamed “C89”.  

The selected strains from each round of the study were run simultaneously on a single 

western blot as shown in Figure 5. The immunostaining verifies increases in GFP accumulation 

with each round of mutagenesis or mating and selection.  

Figure 4.5. Anti-GFP western blot. Immunoblot confirms the difference in accumulation of 

GFP through successive rounds of genome shuffling and selection. 50ng of soluble protein as 

measured by Bradford assay was purified from dark-adapted liquid cultures and loaded in each 

lane. 1ng of purified GFP was loaded into the first lane as a marker to estimate total GFP 

accumulation.  
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Discussion 

The data presented in this study show that mating and mutagenesis in combination with 

fluorescence-activated cell sorting are successful strategies for generating strains with increased 

heterologous protein accumulation. The breeding and mutagenesis process outlined here can be 

applied to any phenotype with a robust means of selection. In this report, a chloroplast expressed 

GFP marker was used to show changes in nuclear-encoded chloroplast gene regulation. In contrast 

to the nuclear genome which has a single copy, there are roughly 80 copies of the chloroplast 

genome in a single C. reinhardtii cell. The chloroplast has a high rate of homologous recombination 

which rapidly repairs changes to genetic sequence in the chloroplast genome. Because of this, 

changes to the chloroplast genome are often fixed and do not persist within the strain. Stable genetic 

transformation of the chloroplast requires multiple generations of constant selection, something not 

recapitulated by the FACS strategy described here. Therefore, changes to chloroplast gene 

expression which last multiple generations are likely due to nuclear-expressed factors. Due to the 

Figure 4.6. GFP accumulation in starting strain compared with the final optimized strain. 

Fluorescence microscopy image depicting the change in GFP fluorescence intensity from the 

starting strain (left) to the final optimized strain (right).  Dark-adapted liquid cultures of 178 

and I67 were confirmed to be homogenous for their phenotype throughout the culture. The 

cultures were subsequently mixed and analyzed simultaneously. Both images displayed were 

cropped from the same photograph after image processing.  
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generational persistence of the phenotype, we do not believe we have simply altered the GFP amino 

acid sequence in these strains to be a more fluorescent or stable version.  

As strains proceed through successive rounds of mating and mutagenesis, it is clear that 

the rarity of the desired phenotype increases. Subsequent genome shuffling leads to predominantly 

reversions of GFP expression, and precise selection markers are required to identify the unique 

event in which genome shuffling led to the desired phenotype. This highlights the strength of high-

throughput technologies such as FACS for this type of analysis. In higher plants, identification of 

exceptional offspring either requires full maturation of the plant to physically measure the 

phenotype, or approximations of phenotype must be made based on genotype. These limitations 

vastly restrict the number of offspring which can be screened. As shown above, the development 

of extreme phenotypes can be a very rare event, and effectively selecting for the preferred 

phenotype often requires many undesired offspring to be discarded.  

Microalgae are a suitable model for large breeding programs due to their fast generation 

times and their unicellular nature facilitates ability to rapidly screen thousands of unique genotypes 

in high-throughput systems. We do not report any inherent correlation between phylogenetic 

distance and diversity created. However, cc2938, which created the most diversity in GFP 

accumulation in the progeny pool, had the most difficulty mating with cc4414. It did not form a 

robust pellicle, and repeated attempts to generate a mating response from cc2938 with UV mutants 

UV11 and UV14 were unsuccessful.  In future experiments, it will be interesting to investigate 

additional Chlamydomonas species which are interfertile with C. reinhardtii, such as C. moewusii. 

However, not every strain of algae being investigated for commercial applications are capable of 

breeding. There will not be a one-size-fits-all species of algae for all production efforts. 

Translational techniques which are effective for diverse algal species will be more beneficial for 

the field than optimization strategies which are species-dependent. As shown above, any strains 
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which can be mutagenized by UV exposure will generate a diversity of phenotypes in their mutant 

pool.  

The improved strains that were generated in this study have been shown to be great 

accumulators of GFP. However, GFP does not have standalone value, and production of GFP alone 

in algae is not useful from a commercial perspective. However, it will be intriguing to investigate 

if the strains that were generated in this study have made systemic changes which affect the 

accumulation of any exogenous gene driven by the regulatory elements present in our expression 

vector. Because there have likely been no changes to the chloroplast genome, the changes to GFP 

expression are not exclusive to the GFP protein. Homologous recombination in the chloroplast 

genome allows us to modify the high-expression strains C89, D52 and I67 to replace the GFP gene 

with other proteins of industrial relevance. If these strains have not generated a global increase in 

recombinant protein accumulation, in the future a GFP marker can be translationally fused to the 

protein of interest to track its expression through a breeding program. Altogether, the results from 

this study open the door to a variety of new industrial strategies for strain optimization in C. 

reinhardtii.  

 

Materials and Methods 

Chlamydomonas reinhardtii strains 

C. reinhardtii strains were ordered from the Chlamydomonas Resource Center at the 

University of Minnesota and are listed here with their full names to facilitate simple ordering. The 

mt+ parent strain in which GFP was transformed is cc-4414 (DN2). The mt- strains that were used 

as breeding partners are cc408 (C9), cc124 (137c), cc2931 (North Carolina), cc2935 (Quebec), 

cc2938 (Quebec), cc2290 (S1 D2), cc1952 (S-1 C-5), cc1691 (Sager 6145), cc1009 (UTEX 89), 

and cc2342 (Jarvik #6, Pittsburgh, PA). C. reinhardtii wild-type strains were maintained on TAP 

plates for the length of this experiment. 
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Mating protocol 

Wild-type strains were grown on TAP media in 75µE until approximately 0.5g of wet 

biomass was accumulated. The biomass is transferred to nitrogen-free TAP plates to induce gamete 

formation. After 48 hours of nitrogen starvation, the cells are scraped off the plate, resuspended in 

a small flask with 5mL of sterile water and placed on a shaker in 100µE light for 1 hour. At this 

point, the two desired mating partners (one mt+ and one mt-) are combined into one 10mL solution 

in a new flask. This mixture is shaken for 10 minutes under the same conditions. The mating flask 

is then left overnight in 75µE light without shaking to ensure proper flagellar adhesion. After 12 

hours, strains which have successfully begun the mating process will have formed a pellicle on the 

bottom of the flask. The water is decanted from the mating flask, and the pellicle is transferred to 

a new TAP agar plate. After the plate is left to dry in a sterile hood, it is placed in the dark for 7 

days to allow for zygote maturation. The pellicle is then returned to a flask, this time containing 

50mL of TAP media. The flask is sonicated for 30 seconds at 25% amplitude to help break apart 

the pellicle and to kill cells which have not properly formed the zygospore. The flask is then left in 

the light for three days to facilitate release of the progeny from the zygospore.  

 

UV Mutagenesis 

UV mutagenesis was performed in a Bio-Rad Genelinker UV chamber. The culture to be 

mutagenized was grown to late-log phase and 25 mL of culture was transferred to a 10cm diameter 

petri dish. The petri dish was placed in the UV chamber for 0 to 90 seconds at approximately .09mJ 

of energy directed at the plate per second of exposure. The culture was transferred back into a flask 

and allowed to recover for two days shaking at 75µE.   
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Influx flow cytometer setup 

The flow cytometry data collection and cell-sorting were performed by a Becton Dickinson 

Influx running BD FACS Sortware. The instrument was outfitted with a 70µm nozzle and was run 

with BD FACSFlow sheath fluid (BD #342003) at 33psi. Sample pressure varied from 33.1 to 

34.0psi depending on sample concentration.  

A series of inclusion gates were made to narrow the population in order to achieve a clean sample 

window for successful gating of desired GFP-positive progeny. This multicolor analysis required 

a 488nm laser with SSC and FSC detection as well as the following filter sets: 692/40 (FL4), 750LP 

(FL5) and 532/20RB (FL1), as well as a 355nm laser with filter sets for 458/20RB (FL10) and 

670/30 (FL11).  

 

Sorting protocol 

Desired cells were sorted into 2mL of TAP media in Costar flat-bottom clear polystyrene 

6 or 12 well plates (Corning #3513). The 2mL of media containing sorted individuals was left in 

the dark overnight and plated onto TAP-agar plates 16 hours later. The plates were left under 75µE 

light at room temperature for 1-2 weeks to allow colonies to form. Colonies were replated onto 

catalog TAP-agar plates and each individual colony was also used to start a 500uL TAP liquid 

culture in an Axygen 96 round deep-well storage microplate (Fisher #14-222-357). Each plate was 

sealed with a Research Products International regular strength Breathe-Easy sealing membrane 

(RPI #248738), and allowed to grow in 100µE light for one week until cultures reached saturation. 

Each well was diluted 1:10 into a new deep-well microplate and allowed to grow for a subsequent 

week under the same conditions to normalize for differences in starting material size. These cultures 

were used as experimental material for a plate reader assay.  
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Tecan plate reader protocol 

Plate reader data was collected using a Tecan Infinite m200 Pro running Tecan i-control 

software. 100uL of culture was transferred from each well of the deep-well culture plates and 

transferred to a Costar flat bottom non-treated clear polystyrene assay plates (Corning #3370). 

Assay plates were shaken for 5 seconds with a 1mm amplitude prior to top fluorescence detection. 

Wells were excited by 25 flashes of 488nm wavelength light with a 9nm bandwidth. GFP 

fluorescence was monitored by emission at 522nm with a 20nm bandwidth and a gain setting of 

129. Integration time was set at 20µs, lag time and settle time were both set at 0µs, and Z-position 

was manually set at 17877µm after determining it was the optimal read depth. Each plate was 

subsequently monitored for chlorophyll content by top fluorescence detection. Wells were excited 

by 25 flashes of 440nm wavelength with a 9nm bandwidth. Chlorophyll content was monitored by 

emission at 680nm with a 20nm bandwidth and a gain setting of 116. Integration time was set at 

20µs, lag time and settle time were both set at 0µs, and Z-position was manually set at 21200µm.  
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Figure 4.S1. Graphical representation of the flow cytometry data used to generate Figure 

3A. In each pane, the black population is dark-adapted 178. The red population is either (B) UV 

mutagenized 178, or 178 after breeding with (C) cc124, (D) cc1009, (E) cc1691, (F) cc1952, (G) 

cc2931, (H) cc2935, (I) cc2938, (J) cc2342, (K) cc408 or (L) cc2290. Although the additional 

population which is present in the offspring samples does contain cells which have lost their 

ability to express GFP, it is predominantly contaminating parent cells which did not breed and 

were not killed by sonication.  
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Strategies for design and interrogation of second-generation synthetic promoters in green algae 

 

Joseph T. Ostrand 

 

 

 

The need for diversity  

The landscape of the commercial market for microalgae has changed dramatically over the 

last decade. In 2008, conventional oil prices reached an all-time high, and the demand for fuel 

alternatives flooded the algal biofuels market with opportunity. As oil prices normalized, it became 

difficult for the pilot algal-based fuel industry to compete. Gaps in technology and scale left nearly 

every algae biofuel company without investors or products. In response, many algal biofuel 

companies have folded or changed their goals. Companies opted for alternative algae-based 

products that have commercial demand in a space other than fuel. Algae is being grown for feed, 

nutraceuticals and materials, and genetically engineered for high-value therapeutic production (1). 

There is also an increasing demand for natural products, utilizing very specific species for their 

natural abundance of desired compounds.  

 

As these more diverse markets are developed, the requirement for industrialization of a 

more diverse set of algal species increases. There is now a desire for commercial optimization of 

an immense diversity of algal species to be grown under a wide variety of conditions. Strains which 

will be grown for low-value products like fuel and animal feed will be grown photosynthetically in 

large-scale outdoor ponds (1). These strains will need to be resistant to both biotic and abiotic 

challenges. The organisms will need to handle dramatic changes in temperature and light 

availability throughout the day, as well as the presence of predators and competition for resources. 
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Due to their proven success in the local environment, wild-type strains isolated from the local area 

may be promising candidates for industrialization(2). Other species of algae which will be 

cultivated for their ability to produce high-value products will be grown in closed systems under 

substantially more controlled conditions(3).  These strains will be selected for their capacity to 

grow in high densities as well as their reliability because of increased costs of biomass 

accumulation. Each of these systems can benefit from the facile introduction of genetic elements. 

Wild strains in outdoor ponds can be engineered for compromised light antennae to increase light 

penetration and overall photosynthetic efficiency(4). Elimination of cell membrane receptors which 

are recognized by predators may decrease the likelihood of culture collapse due to 

contamination(5). Algae grown in closed systems need to maintain unnaturally dense cultures and 

may be stably engineered to produce novel therapeutics. We understand the ability of these 

techniques to improve growth under a variety of situations because of research that has been done 

on finite set of algal species. By developing a thorough understanding of a short list of specific 

organisms through basic research, clever tools have been engineered to probe the basic biology as 

well as to facilitate commercialization of these species. However, it has taken decades of research 

and thousands of publications to develop the biological understanding that we now utilize in 

laboratory strains, with the majority of research being done in the model species Chlamydomonas 

reinhardtii(6)Obviously, achieving this level of functional understanding for every organism we 

seek to grow commercially is unrealistic. Therefore, it becomes necessary to build universal tools 

and techniques which can be applied to a wide variety of organisms with minimal characterization.  

 

With an increased focus on diverse algal species, it is important to develop a scheme for 

rapidly understanding an individual organism at a level that allows for genetic manipulation. With 

technological advances over the past decade, it has become increasingly simple to generate a 

reference genome and transcriptome for a desired organism, and these can provide a suitable dataset 
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for the development of a wide variety of genetic tools. Using this dataset, we can rapidly 

characterize endogenous elements in distantly related algal strains(7,8). Our goal is to use this 

information to reliably generate a library of synthetic tools for commercial strain development and 

systems engineering which can eventually be applied to diverse algal strains.  

 

Strategies for synthetic genetic tool development 

Gene regulation at the transcriptional level is the result of an intricate combination of DNA-

binding proteins, structural changes and protein-protein interactions(9). Even in developed 

biological systems, these interactions have proven difficult to completely understand. Gene 

regulatory networks are currently challenging to interpret in silico due to precise spatial 

requirements of cis-motifs and the relatively small size of binding sites for trans-activating factors. 

Development of synthetic regulatory elements and testing their efficacy in vivo can illuminate cis-

motifs in which the functional understanding is minimal(10). This elucidation will be imperative 

for engineering strong regulatory elements, as well as advancements of next-generation 

bioinformatic analysis and model improvement.  

 

A number of studies have shown that synthetic genetic elements have the capacity to drive 

exogenous gene expression in a diverse set of hosts(11). Synthetic tools have been shown to drive 

greater expression levels than endogenous elements, and due to the non-native sequence, they are 

less likely to be affected by homology-based gene silencing(12). Tuning of synthetic elements can 

be more deliberate, and previous work has shown construction of synthetic regulatory elements that 

are conditionally regulated(13). Development of a suite of designer promoters will be required for 

systems and metabolic engineering, in which multiple genes need to be expressed at precise levels 

for maximum effect.  
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Building the blueprints for synthetic tools in C. reinhardtii  

C. reinhardtii is an appropriate host for development of a synthetic tool building process. 

Thanks to the work of many hardworking scientists, C. reinhardtii has without a doubt the most 

developed genetic tools, and the most thorough transcriptional analyses of any algal species. Most 

of the progression of C. reinhardtii as a model system has come via engineering the chloroplast 

genome. The chloroplast environment readily performs homologous recombination which 

facilitates targeted knockouts and vector introduction; this invariably has contributed to the 

preferential advancement of chloroplast engineering(14). Native promoters which drive 

photosynthetic machinery have proven incredibly effective at driving transgene expression, with 

heterologous protein accumulation shown to be as high as 10% of total soluble protein(14). Hybrid 

promoters comprised of endogenous regulatory elements and native UTRs have improved protein 

Figure 6.1. Graphical abstract. C. reinhardtii provides a suitable model system for 

constructing and testing novel synthetic tools. The concepts learned from our analyses in 

C. reinhardtii can be applied to other commercial algae strains for rapid strain development 

and advanced regulatory control. 
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accumulation in the plastid(15). A library of synthetic UTRs that was tested in the plastid was 

shown to be effective and has begun to decipher the complexity of gene regulation in the chloroplast 

(16).All of these tools have contributed to the development of C. reinhardtii as an industrial 

organism, and led to algal-expressed cancer therapeutics, an orally-available malaria vaccine, gut-

active mammalian milk proteins and industrial enzymes(15,17,18). However, the chloroplast 

genome is fundamentally lacking in many desired attributes of a recombinant protein production 

system. Translated proteins are not delivered throughout the cell, compromising efforts for 

metabolic engineering and protein secretion systems. The chloroplast lacks advanced post-

translational modifications such as glycosylation which are often required for bioactivity(19). 

Today, there is increased interest in development of tools for the nuclear genome. 

 

There are major advantages to working with the nuclear genome over the chloroplast 

genome in C. reinhardtii. Multiple transit peptides have been described which direct translated 

proteins to specific compartments within the cell(20,21). Secretion peptides can direct heterologous 

proteins completely out of the cell to reduce downstream purification costs and potentially limit 

erroneous biomass accumulation(22). Heterologous proteins can be glycosylated, and their 

glycosylation patterns are much more similar to humans’ than glycosylation patterns of proteins 

generated by other non-human production systems such as yeast(23). There are already well-

described gene expression vectors using clever strategies to couple transcription of selection and 

expression of the gene of interest, as well as hybrid promoters comprised of elements from highly 

expressed endogenous genes which have been shown to be more effective than any endogenous 

elements alone(24). These techniques have been used to successfully express a wide variety of 

heterologous genes in the nuclear genome.  

 

Development of a synthetic toolset in C. reinhardtii can help alleviate the low expression 
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levels currently plaguing the advancement of C. reinhardtii in the commercial recombinant protein 

space. The extensive history of genetic research on C. reinhardtii provides a suitable foundation 

for synthetic tool development. The lessons learned from the development of synthetic tools in C. 

reinhardtii can be applied to other commercially relevant strains for rapid domestication of wild 

algae. The characterization of a synthetic toolset which can be applied to other species with minimal 

wet-lab work will drastically lower the cost of algal strain development and facilitate the use of a 

diverse group of algal species to specific applications.    

 

Building a strong synthetic promoter 

Initial development of functional synthetic promoters for the C. reinhardtii nuclear genome 

was by all standards a success. By investigating the genomic sequence upstream of the most highly 

expressed genes using an algorithm known as POWRS (POsition-sensitive WoRd Set), short 

sequence motifs were identified that were conserved among those promoter regions(25,26). The 

POWRS algorithm determines also the positional dependence of those motifs within the given 

sequence region. Combining these motifs into a single synthetic promoter was shown to drive gene 

expression of a fluorescent protein in vivo(25). These promoters were comprised of an average of 

15 sequence motifs which were placed based on their conserved location in relation to the 

transcriptional start site.  

 

A major roadblock in determining promoter strength in the nuclear genome of C. 

reinhardtii is that expression vectors are inserted randomly during transformation. The location in 

the genome where the expression vector lands can dramatically affect the transcriptional activation 

of the gene of interest(27). This is caused by regulatory elements that affect the given position in 

the genome, as well as chromatin structuring which can affect access of trans-activating factors.  

Therefore, in order to compare promoter strength accurately, many individual transformation events 
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must be assayed for each promoter. To accommodate large sample sizes, pools comprising >5,000 

transformation events for each promoter construct were analyzed by flow cytometry.  

 

Although a functional understanding is available for many of the most highly expressed 

genes in C. reinhardtii, only the genomic sequence with some characterization as well as 

transcriptomic data that reveals which of these genes is highly expressed under the desired 

conditions is required to generate this data set.  

 

Second-generation synthetic promoters 

Although some of these first-generation synthetic promoters were shown to be the most 

effective nuclear promoters tested in C. reinhardtii(25), the accumulation of recombinant protein 

still lags significantly behind other systems, including even expression in the chloroplast of C. 

reinhardtii. The results from the first generation of algal synthetic promoters can be used as a 

reference to help guide the assembly of stronger second-generation synthetic promoters. However, 

the identification of 130 putative motifs from the top 500 most highly expressed genes combined 

with the positional dependence that dramatically affects the efficacy of many motifs yields a 

massive set of potential promoters with few known constrictions to guide their assembly. Because 

of the relatively low number of synthetic promoters tested in the first analysis, it is difficult to 

assign activity to specific motifs. One way that is addressed by Scranton et al. is by a comprehensive 

deletion assay, which identified the specific CCCAT motif as being particularly active(25). This 

analysis is cumbersome, and performing exhaustive promoter deletions for each of the 130 motifs 

is a massive undertaking. Additionally, it is possible that the motifs were simply positioned 

incorrectly, and that their lack of function can be attributed to a distance from the TSS. Some motifs 

may require a specific combination of additional motifs for their function.  
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In an effort to develop a dataset on which synthetic promoter assembly can be constricted, 

a library of 1,000 unique promoters was synthesized for simultaneous analysis. In order to narrow 

the total variables, the POWRS algorithm was run on the upstream sequence of 4,000 native genes 

which were categorized into low, medium, and high expressing genes. The pool of 130 motifs from 

which we pulled initially was restricted to only 12 motifs which were highly represented in only 

highly-expressing promoters. These 12 motifs were arranged into every combination of 5 different 

motifs per promoter, making it much more reasonable to assign promoter activity to a specific motif 

than the initial 15 motifs per promoter. In addition, promoters containing 1-5 copies of a single 

motif arranged throughout the promoter were added to the library. The  promoter region was split 

in half, with one half containing the 1000 unique promoter sequences, and the other half 

corresponding to a truncated version of sap11, the most successful promoter from round 1(25). 

Therefore, two libraries of 1000 unique sequences were synthesized: the 5’ upstream half of the 

Figure 6.2. (Left) Flow cytometry analysis of a pool of 5,000+ transformants of an mCherry 

nuclear expression vector. Cells which fall within the gate exhibit mCherry fluorescence 

above background, indicating measurable accumulation due to the introduced vector. Cells 

which showed expression of mCherry were sorted by FACS. Two groups were sorted, one 

group selected only cells which displayed exceptionally high levels of mCherry 

fluorescence. A second group selected for cells with more moderate levels of fluorescence. 

(Right) 60 individual transformants were recovered from each group and assayed by 

fluorescent plate reader. The cells sorted from the high fluorescence pool show a conserved 

significant increase in mCherry fluorescence.   
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promoter region, hereafter referred to as “Pool 1”, and the 3’ downstream half of the promoter, 

referred to as “Pool 2”.  Together, they make up 2,000 unique promoters that can be tested 

simultaneously.  

 

If the individual promoters can be properly categorized into those that are exceptional, 

those which are functional, and those which do not contribute to recombinant protein accumulation, 

analysis of the motifs present in each category will provide valuable insight into future promoter 

assembly. Based on preliminary data shown in Figure 2, individuals expressing a fluorescent 

protein can be sorted by FACS based on their fluorescence levels, strains expressing high levels of 

fluorescent protein seem to maintain their high expression levels. In order to assign a function to 

Figure 6.3. Vector design for second generation promoter library. To test the individual 

contribution of specific motifs to the final accumulation of a recombinant protein, synthetic 

promoters were designed with an average of only 5 motifs per promoter. The promoter region 

was split into a 5’ end and a 3’ end. Each half of the promoter will be investigated 

independently by combining the new synthetic promoter sequences with the corresponding 

region of sap11, the strongest promoter from the first round of synthetic promoter design. 

Two pools, each comprised of 1000 unique synthetic promoters, were synthesized and 

cloned into the above vector to drive expression of the mCerianthus orange fluorescent 

protein.  
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each promoter sequence, each pool was transformed simultaneously and sorted by FACS based on 

their ability to express a fluorescent protein.  

 

Pool 1 and Pool 2 were cloned into an expression vector driving production of Orange 

Fluorescent Protein (OFP) (28)(Figure 3). To approximate complete representation of each 

sequence of the variable region in the final vector, >10,000 E. coli colonies were pooled for each 

vector into the final DNA prep. The collection of expression vectors containing Pool 1 and Pool 2 

were electroporated into the nuclear genome of C. reinhardtii. For each pool, >200,000 individual 

transformation events were collected after selection on hygromycin plates. The individuals were 

combined into a liquid culture and grown mixotrophically, heterotrophically or phototrophically 

and analyzed by flow cytometry, as shown in Figure 4.  

 

Individual cells which showed detectable levels of OFP were sorted for further phenotyping 

to verify that cell sorting effectively enriched the population for expressors of OFP. Only 1,087 

individual cells were recovered from the Pool 1 library, and 1,407 were recovered from the Pool 2 

library. These numbers do not provide proper coverage of the promoter libraries to comprehensively 

evaluate each promoter sequence. To ensure that sorting was an effective means of isolating 

phenotypically positive individuals, each of the sorted strains from Pool 1 and Pool 2 was 

independently grown in liquid culture under the same three conditions and measured for 

fluorescence intensity by plate reader. The fluorescence of each individual strain is shown in Figure 

5, with dark boxes representing no expression, green boxes showing measurable expression above 

background, and white boxes showing strong expression. 

 

Discussion 

Random insertion dramatically changes population size 
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This library of synthetic promoter elements was designed to provide insight into the 

contributory effect of individual sequence motifs and probe an array of positions across genomic 

region upstream of the transcriptional start site. In order to establish a convincing evaluation of a 

promoters strength, each copy of the promoter must be analyzed across multiple insertion sites 

within the genome to account for positional effects. Therefore, the number of total events required 

to verify that (1) each promoter sequence is present in the pool of transformants, and that (2) 

multiple independent insertions of a given promoter sequence have made it into the transformant 

pool, is approximately 100x the number of sequences we are trying to investigate to obtain at least 

10 insertions per promoter sequence represented. However, when transforming the expression 

cassette containing a functional promoter such as ar1 or sap11, only about 10% of the transformants 

yield a detectable phenotype(25). That means that to achieve 10 detectable transformations of each 

promoter sequence, closer to 1,000x the number of sequences is the necessary number of 

transformation events. For a pool of 1,000 unique promoters, that means 1,000,000 events at a 

Figure 6.4. Pool 1 library grown under varying conditions. The expression vector containing 

Pool 1 driving OFP was transformed into the nuclear genome of C. reinhardtii. The pool of 

selected transformants was grown in three different conditions: mixotrophically, 

heterotrophically, and phototrophically. The events which fall in the gate represent individuals 

expressing OFP. Only 0.20% of cells grown mixotrophically and 0.24% of cells grown 

heterotrophically were shown to accumulate OFP. 0.93% of cells grown phototrophically 

displayed OFP accumulation.  
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minimum need to be evaluated to achieve a cursory representation of the strength of every promoter 

in the pool.  

 

FACS is not the optimal selection strategy  

Analysis of 1,000,000 transformation events is not impossible. Flow cytometry is an 

effective means of measuring fluorescence levels of many individual cells, and 1,000,000 

individuals is well within the scope of any flow cytometers capabilities. However, even if we could 

procure a sample with 1,000,000 cells that were all unique, flow cytometer analysis of 1,000,000 

transformation events does not provide the information we need to achieve an individual analysis 

of each promoter. Instead, those 1,000,000 transformation events need to be effectively sorted for 

their transgene expression phenotype, recovered, and analyzed so that the sequences present in each 

expression profile can be determined.  

 

While FACS can effectively sort out cells of a desired phenotype, the scale of this project 

requires robust selection that is not feasible when using a fluorescent protein reporter. Cells which 

are analyzed by flow cytometry provide a millisecond glimpse into the fluorescent properties of an 

individual cell. Expression of recombinant proteins varies significantly through the growth cycle, 

and is typically measured as a pool of individuals to average out these effects(29). Sorting of 

individual cells at an arbitrary point in their growth phase leads to the sorting of transiently 

expressing cells which may not actually show as strong of a phenotype in a monoculture. Indeed, 

the vast majority of sorted cells for this experiment did not have a measurable phenotype upon 

small scale monoculture cultivation.  

 

To investigate the cells’ phenotype by FACS and mechanically separate desired cells, the 

transformant pool must first be culled by antibiotic selection and grown in liquid cultures. Due to 
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the rarity of transformation, antibiotic selection kills about 99.99% of the starting culture(30). 

Removing the dead cells to simplify flow cytometry analysis is imperfect and requires outgrowth 

of the transformation pool, potentially removing slow-growing transformants from downstream 

analysis. However, this selection by antibiotic may be the optimal target for future analysis of the 

synthetic promoter library.  

 

An alternative strategy for synthetic promoter library analysis 

The major requirement to determine the contribution of given motifs to the ultimate 

phenotype of transgene expression relies on our ability to effectively categorize expression levels 

of a huge number of transformants. FACS was not able to robustly catalog hundreds of thousands 

of unique transformants into reliable phenotypic categories. However, a step in the preparation of 

our transformant pool for FACS analysis rapidly selected phenotypes with robust categorization for 

high and no expression: antibiotic resistance. Expression of an antibiotic resistance gene like Ble 

confers resistance to antibiotic concentrations correlated to its gene expression. Higher Ble gene 

expression leads to resistance to higher concentrations of zeocin. This is because Ble provides 

resistance by individually binding and sequestering the antibiotic as opposed to actively degrading 

the compound(24). A proper follow-up to this report should clone the synthetic promoter library to 

drive the Ble gene and use varying levels of zeocin to categorize cells based on their expression 

levels.  

Future avenues for algal synthetic biology 

Conditional and Inducible Regulatory Elements in C. reinhardtii nuclear genome 

 Precise control of gene expression through conditional regulatory elements is required for 

optimization of recombinant protein production. Triggering gene expression at the correct growth 

phase can decouple the biological requirement of nutrient utilization and cellular reproduction with 



 

90 
 

maximum output of a recombinant protein of interest. In many cases, expression of the desired 

protein may be toxic to cells at a particular life stage, and an inducible expression system is required 

to achieve appreciable levels of recombinant protein without crashing the culture. Multiple 

inducible promoters have been indentified in C. reinhardtii which promote protein accumulation 

under specific conditions. Heat shock, nickel or nitrate introduction, and iron-deficiency have all 

been used as abiotic signals to induce gene expression from inducible promoters. (31–35). 

Development of these systems required a much more detailed understanding of C. reinhardtii than 

will be afforded with other potential production species. However, there is a major abiotic factor 

which is easy to regulate in closed systems and may provide valuable insight into the development 

of conditionally active promoters across algal species: light. 

 For photosynthetic organisms, light and dark cycles act as major drivers of metabolism and 

gene expression pattern variation.  During day time, green algae can utilize photosynthesis to drive 

the production of sugars that are then used for energy in a myriad of metabolic processes including 

the production of starches and sugars.  During the night the cells must utilize stored energy in the 

form of sugars, starches, or lipids to continue metabolic activity.  The switching from phototrophic 

to heterotropic metabolism requires large sets of genes to be switched on or off.  In Chlamydomonas 

~80% of the genome displays detectable periodic gene expression changes throughout a 24 hour 

day/night cycle (36).  Unique regulatory motifs may be used to regulate these light-induced or dark-

induced genes in response to light intensity.  If identified, these motifs can then be utilized to drive 

transgene expression specifically in response to light or dark conditions.  This report shows the 

expression of OFP driven by synthetic promoters under three separate conditions which have 

dramatically different metabolisms (Figure 5). However, across dozens of highly expressing 

strains, we rarely see a dramatic on/off phenotype. This is likely due to the fact that our library was 

constructed by looking at the most highly expressed genes under a single condition. Instead of 

categorizing motifs which were differentially conserved in light and dark regulated genes, the  
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Figure 6.5. Heatmaps of sorted individuals driving OFP with synthetic promoters. These 

figures show the OFP flurorescence of 1,087 (Pool 1) and 1,407 (Pool 2) individuals sorted 

from the pool of C. reinhardtii transformants. Each sorted individual was grown in liquid 

culture under three conditions and analyzed by plate reader. The fluorescence of each culture 

is represented by color on the heatmap. Black cells did not show fluorescence above the wild-

type background strain.  
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promoters contain motifs which were conserved in all highly expressed genes.  

 Using high resolution RNA-seq data taken from Chlamydmonas reinhardtii on a 12 hour 

light – 12 hour dark cycle (36)we identified genes that were differentially expressed by at least two 

fold between the middle of the light-period (day) and the middle of the dark-period (night) while 

displaying moderate to high expression levels overall during their upregulated time period.  

Specifically, we averaged the Reads Per Kilobase of transcript per Million mapped reads (RPKM) 

for each transcript during the middle 4 hours of the 12-hour light period and the middle 4 hours of 

the 12-hour dark period.  Genes with at least a 2-fold increase in averaged read count during the 

light phase compared to the dark phase and an average RPKM of more than 100 were determined 

to be light-upregulated strong expressers.  Similarly, genes with at least a 2-fold increase in average 

read count during the dark phase compared to the light and an average RPKM of more than 100 

were determined to be dark-upregulated strong expressers.  Collectively this represented 255 light-

upregulated genes and 248 dark-upregulated genes.  The 1000 bp region 5’ from the transcriptional 

start site of these genes was retrieved (Phytozome 12, Chlamydomonas reinhardtii genome v5.5) 

and analyzed using the POWRS motif identification program (26). All default settings on POWRS 

were used and -1000 bp regions from all 17737 annotated genes in the whole genome used as the 

background control data set.  POWRS identified 31 and 32 enriched motif clusters in the light-

upregulated and dark-upregulated promoter datasets, respectively compared to promoters in the 

rest of the genome.  Motifs enriched in the light-upregulated or dark-upregulated data sets were 

compared each other using the Tomtom motif comparison tool (37).  Figure 6 identifies motifs 

unique to either the light up-regulated (A) or dark-upregulated (B) data sets.  Many of the 

light/dark-regulated motifs are different from the motifs identified from simply looking at the 

highest expressed genes during logarithmic growth in the previous example.  This analysis is 

particularly powerful because a genomic construction and light/dark transcriptomes are useful for 

a wide variety of species characterization analyses. Because procurement of the required dataset 
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for this analysis has benefits outside of promoter development, the time and money required is 

justifiable. The motif clusters identified here may be valuable building blocks for the future 

assembly of light-dependent conditional synthetic promoters in C. reinhardtii.  

 

Toward synthetic circuits in C. reinhardtii 

 A major difficulty in development of advanced regulatory machinery in Chlamydomonas 

reinhardtii and algal species in general are the large gaps in native regulatory element 

characterization. However, a wealth of knowledge is available across the kingdom Plantae which 

serve as a guide to understanding the complex transcriptional regulation found in C. reinhardtii.  

One of the best-understood aspects of any regulatory system is that by encouraging an activating 

transcription factor to bind in a regulatory region associated with a transgene, one can increase 

transcript abundance and subsequent protein accumulation.  Systems have been derived in S. 

cerevisiae and E. coli which take advantage of known DNA-binding proteins to engineer complex 

circuits of protein expression for a wide variety of purposes(38–40). 

 Transcription factor families are easily identifiable in silico and homology analysis to 

better-understood systems can provide a groundwork for understanding in C. reinhardtii.  The Plant 

Transcription Factor Database (PTFDB) (http://planttfdb.cbi.pku.edu.cn/) has identified each 

family of transcription factor found in C. reinhardtii based on sequence homology to other plants.  

The PTFDB has also compiled data from across the literature to provide putative binding sites for 

those families of transcription factors.  Transcription factor (TF) binding sites have been studied 

across plants through one of the following processes: ampDAP, ChIP/ChIP-seq, DAP, PBM, or 

SELEX.  TF binding sites found in the literature that are associated with a given TF family are 

projected to other species to help characterize binding in a virgin system.  The sequence motifs 
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Unique Light-upregulated motif as position 
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Figure 6.6. Motif clusters enriched in light (left) and dark (right) regulated genes. 255 light-

upregulated genes and 248 dark-upregulated genes as determined by transcriptomic data were 

analyzed with the POWRS algorithm to find motif sequences which were differentially conserved 

among light-sensitive genes. Motifs detected from the light and dark regulated genes were 

compared by TOMTOM and only the motifs which were unique to the light (left) or dark (right) 

regulated genes are shown. 
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attributed to TF families found in C. reinhardtii are provided as position-weight matrices in Figure 

7.  These serve as a promising set of sequences for synthetic promoter engineering.  By integrating 

these sequences into a novel synthetic promoter, we can project the regulation of the transgene onto 

one or many specific transcription factors. We know that certain transcription factors have variable 

function based on external stimuli (41), and as such these sequences are clear candidates for 

inducible promoter engineering.   

 In an effort to better characterize the in vivo TF/sequence cognate pairs for C. reinhardtii, 

90 predicted transcription factors were cloned from C. reinhardtii cDNA into a constitutive nuclear 

expression construct (42).  Upon characterization of their binding in a Y1H assay, a bHLH-family 

transcription factor (Cre02.g109700.t1.2, will be referred to as TF64) was selected for further 

analysis.  Three strains were designed to determine if constitutive expression of a transgenic 

transcription factor can increase recombinant protein abundance in C. reinhardtii.  We generated a 

strain which expressed high levels of TF64, one which expressed low levels of TF64, and a control 

strain which used the same construct to express GFP, a non-DNA binding protein.  These three 

strains in addition to an untransformed wild-type strain were transformed with an expression 

cassette which drives OFP expression, which is easily detected by a fluorescent plate reader.  To 

determine the effect of TF64 binding, the promoter associated with the OFP gene must contain 

binding site(s) associated with the bHLH transcription factor family (CANNTG).  Conveniently, 

the AR1 promoter that is well-established in the field has three putative bHLH binding sites.  The 

AR1 promoter was used to drive the expression of OFP in the TF64 expression strains, shown in 

Figure 8.  These data indicate that presence of putative TF-binding site motifs in an expression 

construct when combined with their associated transcription factors can help drive recombinant 

protein accumulation. 
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Figure 6.7 Predicted binding sites for Chlamydomonas reinhardtii transcription factor 

families as deduced by the Plant Transcription Factor Database. Letter height indicates 

relative frequency of nucleotides in the proposed binding sequence. 
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  The generation of more in vivo cognate TF/site pairs based on the putative TF binding sites 

shown in Figure 7 will facilitate the development of more advanced promoters with the added 

functionality of orthogonal regulation. 

  These data present a bright future for synthetic elements in algal hosts. Initial success for 

strong promoter development has encouraged a more thorough analysis of the individual activity 

of the identified sequence motifs. Successful characterization of these elements will undoubtedly 

yield stronger second-generation promoters. In addition, we have shown by the same analysis used 

to generate the first round of synthetic promoters that there are conserved motifs which are unique 

Figure 6.8. Change in exogenous gene expression when native transcription factors are over- 

expressed. Four strains shown above were created to have unique expression levels of an 

endogenous transcription factor TF64 driven by a constitutive promoter. Cc1010 is the background 

strain and only has natie levels of TF64. cc1010 was transformed with an expression vector for 

TF64 and one which expressed high levels of TF64 and one with low levels of TF64 were selected. 

In addition, cc1010 was transformed with the same expression vector except expressing the GFP 

protein which should not affect gene regulation (Non-TF expressed). Each of these strains was 

transformed with a separate expression vector driving OFP expression by the ar1 promoter. The ar1 

promoter is predicted to have multiple binding sites for TF64.   Shown above is the result of 96 

individual transformants analyzed for OFP expression by a fluorescent plate reader. 



 

98 
 

to light and dark-regulated genes. These motifs may lead to the development of light or dark-

inducible synthetic promoters. Finally, characterization of native transcription factors in C. 

reinhardtii has opened the door for gene circuit development and deliberate recruitment of trans-

activating factors to promote exogenous gene expression. These strategies for the assembly of 

synthetic promoters may be the key to increasing the accumulation of recombinant protein from the 

nuclear genome to industrially relevant level. 
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CONCLUSION 
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The chapters in this dissertation provide a valuable foundation to the advancement of algae 

as an industrially relevant manufacturing platform. Application of progressive technology and 

techniques that we have learned from other model organisms to green algae has fostered a potential 

for algal products in the fields of energy, food, materials and therapeutics. For one organism to find 

commercial success in such a myriad of fields, we must be able tightly control its growth and 

production of desired products.  

The recent development of novel algal-derived products for medicine and enzymes has put 

new focus on optimizing algal growth in closed systems. Cultivation of algae for therapeutics and 

high-value products requires precise control of growth conditions to maximize product yield and 

to comply with regulatory restrictions. The research presented in Chapter 3 provides an intricate 

characterization of Chlamydomonas reinhardtii when grown under mixotrophic conditions in 

fermenters and provides valuable insight on how to grow C. reinhardtii to the high cell densities 

required for economical cultivation. This research also showed that in closed systems, high cell 

density and energy costs limit the effect of light-driven genetic tools. This is a major hurdle for all 

of the best production strains of C. reinhardtii because of the lapse in strong genetic tools that 

confer transgene expression in the dark. The research reported in Chapter 4 showed that by 

encouraging genome shuffling via breeding and mutagenesis, strains of C. reinhardtii with 

dramatically increased levels of recombinant protein accumulation when cultured in the dark could 

be created. The untargeted nature of this research makes it a simple strategy to confer phenotypic 

variance and facilitate the production of more robust algal strains. Translational techniques like this 

will be necessary for the rapid development of the diverse algal species being investigated as 

production platforms. 

Chapters 5 and 6 present a more deliberate approach to generation of robust commercial 

strains by analyzing endogenous regulatory elements and using them to assemble synthetic 
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promoters. The synthetic promoters generated were shown to drive nuclear gene expression more 

effectively than any previously devised promoter system in C. reinhardtii. Although proteins 

expressed by the nuclear genome are more desirable because they can be post-translationally 

modified and secreted, they accumulate at insufficient levels for true scalable production. Synthetic 

systems like those described in Chapter 6 outline how we can make strides to producing 

recombinant proteins to levels seen in other model organisms.  

Ultimately, it is important to remember that the bio-manufacturing platforms ubiquitous 

today- namely yeast, E. coli, and mammalian cells, have become successful because of years of 

research and dedication. The groundwork laid by these systems has outlined the critical aspects 

necessary for the success of a biological production platform. The research presented in this 

dissertation shows significant improvement of the algal production platform on its path to becoming 

a ubiquitous industrial organism.  

 

 

 




