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Abstract

Magnetic Particle Imaging with
Advanced Tomographic Reconstruction Methods

by

Justin Joseph Konkle

Joint Doctor of Philosophy in Bioengineering

University of California, Berkeley

Professor Steven M. Conolly, Chair

Magnetic Particle Imaging (MPI) is an emerging imaging modality with potential clinical
applications in rapid angiography, cell therapy tracking, cancer imaging, and inflammation
imaging. While still in its infancy, MPI already has excellent contrast, safety, depth pene-
tration, and sensitivity without the serious health risks posed by current modalities such as
ionizing radiation and iodinated contrast agents.

With any tracer imaging modality, high sensitivity is necessary to improve safety and
enable new clinical applications. The first Magnetic Computed Tomography (MCT) system
and experimental images were created in this work with the goal of improving sensitivity
in MPI. MCT uses projection reconstruction algorithms similar to those in X-ray computed
tomography to reconstruct 3D images from a projection MPI sytem. Analytical derivation
and experimental evidence demonstrate that MCT has an order-of-magnitude higher SNR
than previous 3D MPI methods for the same scan time as well as a 40% resolution improve-
ment. The MCT experimental system acquisition speed was improved from initial work to
acquire images twenty-fold faster at less than two minutes per 3D image.

Critical to any medical imaging technology is the reliability and accuracy of image re-
construction. Unfortunately, prior approaches to x-space MPI reconstruction suffer from
image artifacts such as banding and haze. In this work, a priori knowledge of image conti-
nuity and non-negativity are introduced into a new optimization formulation to reduce these
non-physical artifacts in 2D and 3D reconstructions.
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Chapter 1

Introduction

Magnetic Particle Imaging is a novel, safe, sensitive, high-contrast, and fast imaging modal-
ity [17, 77, 24, 39, 65, 66]. MPI directly detects magnetic nanoparticle tracers deep in tissue
with ideal contrast for diagnostic and interventional medical imaging procedures including
angiography, cell therapy tracking, cancer imaging, inflammation imaging, temperature map-
ping, biomarker imaging, tracking of targeted chemotherapies, and functionalized USPIOs
[17, 65, 74, 62, 7, 69, 2, 11, 42, 57]. The mpi technique detects only magnetic particles and
derives no signal from tissue, unlike Computed Tomography (ct) and Magnetic Resonance
Imaging (mri), which gives mpi unique contrast that is best compared with nuclear imaging
but without ionizing radiation.

The physics and hardware required for mpi are completely distinct from existing medical
imaging modalities, and mpi images cannot be acquired using mri. There are several pro-
posed modes of MPI scanning, including 3D Field Free Point (FFP) scanning [17, 77, 23,
68, 22, 21, 25], single sided systems [67], 2D projection MPI (akin to X-ray) with a Field
Free Line (FFL) magnet [35, 40, 25], and 3D FFL MPI [76, 34, 12, 37, 39]. In this work,
3D FFL MPI is referred to as both projection reconstruction MPI (PR MPI) and magnetic
computed tomography (MCT). To date, MPI has been demonstrated with phantom imaging
experiments, as well as in mice injected intravascularly with USPIO tracers [21, 77].

MPI forms images of magnetic nanoparticle concentrations by detecting the non-linear
magnetic response of a nanoparticle to applied magnetic fields. The key concept that un-
derlies MPI is that a strong magnetic field gradient, known as a selection field, selectively
saturates magnetic nanoparticles at all locations except at the “field free” region (FFR),
which can be either a field free point (FFP) or a field free line (FFL) [17, 76]. A FFP
selects a single point while a FFL selects a line in space. To produce a signal, an excitation
electromagnet creates a rapidly time varying homogeneous magnetic field, known as a drive
field, that rapidly moves the FFP or FFL. When the FFP or FFL passes over a magnetic
nanoparticle, the nanoparticle magnetization flips in direction and induces a signal in a re-
ceiver coil. The spatial extent that the FFP or FFL can move using only the drive field
is limited by magnetostimulation [66]. To enable scanning large regions of interest, we add
slowly varying homogeneous magnetic fields [68, 22], sometimes called focus fields.



CHAPTER 1. INTRODUCTION 2

This dissertation covers efforts to improve many aspects of MPI systems including in-
creasing MPI sensitivity, increasing system resolution, speeding scan time, and reducing
image artifacts. This dissertation is a compilation of work from two peer reviewed jour-
nal papers, one conference paper, and one journal paper in preparation at the time of this
writing. Each paper is contained within its own chapter which is summarized below.

Chapter 2: Development of a FFL magnet for projection MPI

The field free line (FFL) magnet has the potential to greatly increase signal to noise ratio
(SNR) or to decrease scan time for magnetic particle imaging (MPI). The use of an FFL will
decrease scan time by reducing image dimensionality from a 3D image to a projection image.
Alternatively, in comparison to a 3D scan of equal scan time, an FFL scanner will increase
SNR through more signal averages. An FFL magnet would enable projection imaging as
is used in projection x-ray and is common in angiography. The Philips and Lubeck groups
have pioneered the design of field free line magnets for MPI and have shown that they can
achieve power efficiency similar to that of a field free point, the standard in MPI [17, 76, 34].

Current FFL magnet designs have not been optimized for characteristics such as gradi-
ent efficiency and gradient magnitude homogeneity. This work shows a 2.25 T/m Halbach
quadrupole permanent magnet design that produces a homogeneous magnetic field along
the field free line. Along the FFL, we experimentally measured a field maximum of 2 mT
within the imaging field of view (FOV), and we experimentally measured that the gradient
perpendicular to the FFL deviates by a maximum of 3.4%.

Citation:
J. Konkle, P. Goodwill, and S. Conolly, “Development of a Field Free Line Magnet for
Projection MPI,” in Proc. SPIE 7965, Medical Imaging 2011: Biomedical Applications in
Molecular, Structural, and Functional Imaging, 2011, vol. 7965, p. 79650X-79650X-7.

Chapter 3: Projection reconstruction MPI

We acquire the first experimental 3D tomographic images with Magnetic Particle Imaging
(MPI) using projection reconstruction methodology, which is similar to algorithms employed
in X-ray computed tomography. The primary advantage of projection reconstruction meth-
ods is an order of magnitude increase in SNR due to averaging. We first derive the point
spread function, resolution, number of projections required, and the SNR gain in projection
reconstruction MPI. We then design and construct the first scanner capable of gathering the
necessary data for non-aliased projection reconstruction and experimentally verify our math-
ematical predictions. We demonstrate that filtered backprojection in MPI is experimentally
feasible and illustrate the SNR and resolution improvements with projection reconstruction.
Finally, we show that MPI is capable of producing three dimensional imaging volumes in
both phantoms and post-mortem mice.
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Citation:
J. J. Konkle, P. W. Goodwill, O. M. Carrasco-Zevallos, and S. M. Conolly, “Projection
reconstruction magnetic particle imaging.,” IEEE Trans. Med. Imaging, vol. 32, no. 2, pp.
338-47, Feb. 2013.

Chapter 4: Twenty-fold acceleration of projection reconstruction
MPI

We experimentally demonstrate a 20-fold improvement in acquisition time in projection re-
construction (PR) Magnetic Particle Imaging (MPI) relative to the state of the art PR MPI
imaging results to date. We achieve this acceleration in our imaging system by introducing
an additional Helmholtz electromagnet pair, which creates a slow shift (focus) field. Due to
magnetostimulation limits in humans, we show that scan time with 3D PR MPI is theoret-
ically within the same order of magnitude as 3D MPI with a field free point; however, PR
MPI has an order of magnitude signal-to-noise ratio (SNR) gain.
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J. J. Konkle, P. W. Goodwill, E. U. Saritas, B. Zheng, K. Lu, and S. M. Conolly, “Twenty-
fold acceleration of 3D projection reconstruction MPI.,” Biomed. Tech. (Berl)., vol. 58, no.
6, pp. 565-76, Dec. 2013.

Chapter 5: Magnetic Particle Imaging X-space Reconstruction
using Convex Optimization

Critical to any medical imaging technology is the reliability and accuracy of image recon-
struction. Recent progress in x-space MPI reconstruction has demonstrated experimental
linearly quantitative imaging across mouse and rat sized fields of view. Unfortunately, prior
approaches to x-space mpi reconstruction suffer from image artifacts such as banding and
haze. In this work we apply robust a priori knowledge of image continuity and non-negativity
to remove non-physical banding and haze artifacts in d and d reconstructions. We conclude
with a discussion of how the presented reconstruction platform is flexible to enable recon-
struction of generalized excitation trajectories, projection reconstruction, and compressed
sensing.

Citation:
J. J. Konkle, P. W. Goodwill, D. W. Hensley, R. D. Orendorff, M. Lustig, S. M. Conolly,
“Magnetic Particle Imaging X-space Reconstruction using Convex Optimization.,” In Prepa-
ration, title may change.
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Chapter 2

Development of a FFL for Projection
MPI

2.1 Introduction

X-ray and CT angiography are critical tools that help cardiologists diagnose and treat stroke
and vascular diseases. There are nearly 80M iodinated angiograms each year in the USA [33].
Combined risks of X-ray and CT angiography include: catheterized injection trauma, ionizing
radiation for both patient and medical personnel, and also contrast induced nephropathy
(CIN) [53],which is especially worrisome for Chronic Kidney Disease (CKD) patients. Here
we develop MPI with angiography-capability in mind. MPI has the potential to remove all
three of these risks to patient and medical personnel.

Current fluoroscopy techniques are capable of imaging at 15 to 30 frames per second
(FPS). We must increase the scanning speed of MPI if it is to compete with existing modali-
ties and gain adoption by healthcare professionals. Current MPI scanners have been demon-
strated to scan at 47 FPS for imaging volumes of 2.04 cm x 1.2 cm x 1.68 cm [77]; however,
high resolution 3D scans over larger volumes will push the limits of scanning speed due
imaging constraints such as patient heating and magnetostimulation.

In this chapter, we present the development of a Field Free Line magnet, which will
enable MPI projection imaging. An FFL is an entire line in space with zero magnetic field
magnitude, and the entire line contributes to the MPI signal instead of just a single point.
Therefore, we can create a projection image from an FFL. This will increase scanning speed
by a factor of 128 in a standard imaging volume of 1283 voxels.

Using an FFL with CT reconstruction techniques in a simulation study, Weizenecker et
al. demonstrated an 11 fold increase in SNR over existing 3D scan techniques [76]. Knopp
et al. then calculated that a FFL can be generated using a minimum of three coil pairs in a
sin(2φ) current pattern, though four coil pairs were shown to have best efficiency while still
allowing rotation of the FFL [38]. Power efficiency was then improved to 1.4 times existing
field free point 3D scanners with the use of a new current loop configuration containing one



CHAPTER 2. DEVELOPMENT OF A FFL FOR PROJECTION MPI 5

static gradient pair [34]. Also, a static FFL, one that does not rotate, has been simulated
using only two coil pairs [35].

Figure 2.1: FFL Gradient Magnet. (a) Photo of our 2.25 T/m FFL permanent magnet
gradient with a 3.5 cm (1.38 in) free bore (b) Simulation framework for our permanent
magnet showing magnet dimensions, which correspond to coils used in the surface current
model explained in section 4. The photo and simulation framework are roughly aligned
to the same coordinate frame to illustrate the permanent magnet orientation. Future FFL
magnets have the potential to increase MPI scan rate or increase SNR.

To date, no physical FFL MPI scanner has been constructed and no experimental results
have been published from an MPI-capable FFL magnet. In section 2 of this chapter, we show
the permanent FFL magnet we have designed and built, and in section 3 we explain how
this magnet was assembled. In section 4 we illustrate the design and simulation techniques
used. In section 5 we show experimental measures of the magnetic field produced by our
FFL magnet, and we present a comparison between actual and simulated magnetic fields.
We then illustrate the quality of the FFL achieved.

2.2 Hardware

We have developed and built the FFL magnet shown in Figure 2.1. The design uses a
two segment Halbach quadrupole to obtain a 2.25 T/m FFL gradient. The outline of the
two gradient-producing magnet segments are shown in figure 2.1. The magnet segment
dimensions are 2.5 cm (1 in) thick along the X axis, 61.0 cm (24 in) tall along the Y axis,
12.7 cm (5 in) wide along the Z axis, and have 11.4 cm (4.5 in) spacing along the X axis.
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Figure 2.2: Hardware Assembly. Six magnet sections are assembled into each of the two
Halbach quadrupole segments. The assembly jig was needed to create the force necessary to
align the six permanent magnet sections side-by-side.

Figure 2.3: Magnetic Field Magnitude Plots. (a) Simulation of the magnetic field along the
Z=0 plane. (b) Simulation of the magnetic fields along the Y=0 plane. Both plots show the
magnetic field produced by our FFL permanent magnet segments using the current law. Coils
around the outer diameter accurately simulate the magnetic field of the permanent magnets
using the Biot-Savart Law. Our simulations show that we can create a homogeneous FFL
across the FOV using two permanent magnets.
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2.3 Assembly

The two FFL gradient segments were constructed from six permanent magnet sections. Each
NdFeB permanent magnet section is of size 2.5 cm (1 in) thick along the X axis, 10.2 cm (4
in) tall along the Y axis, and 12.7 cm (5 in) wide along the Z axis. When aligned adjacent to
each other along the Y axis, these magnets oppose each other with a large force. To assemble
each segment, a custom jig was manufactured as shown in figure 2.1. The magnet sections
were slowly cranked together and bolted in place using the jig. One of the two halves of the
magnet assembly is shown positioned on top of the assembly jig in figure 2.1.

2.4 Design and Simulation

We created a custom tool to design the FFL magnet. A Biot-Savart solver was written
in Matlab (Mathworks - Natick, Massachusetts) to calculate the magnetic fields from an
arbitrary current loop. Using the surface current model, magnetic fields from a permanent
magnet can be simulated using current loops [16]. A current loop with the proper current
wrapped around the outer diameter dimensions of the desired permanent magnet produces
the required magnetic field according to jm = M× n̂, where jm is the surface current density,
M is the magnetization, and n̂ is the surface normal. Figure 2.1 shows the current loops used
to simulate our design, and figure 2.3 shows the resulting magnetic fields. We assumed the
relative permeability, µr, of NdFeB was 1.00, while the actual relative permeability is 1.05.
Thus, the simulated magnetic fields are at least 95% accurate.

The FFL permanent magnet segments were designed with bore size, gradient magnitude,
access, and gradient uniformity in mind. To allow access to the imaging bore, a two segment
Halbach quadrupole was chosen though a greater number segments would produce a larger
gradient. For a constant magnet type and configuration, there is a trade-off between bore
size and gradient magnitude. The X and Z axis dimensions and spacing of the permanent
magnets were chosen to create a gradient that is equal in both dimensions. The Y dimensions
were chosen to keep the FFL uniformly zero across the field of view.

2.5 Methods and Results

Figure 2.4 shows the measured and simulated magnetic field magnitude of the FFL mag-
net. A set of X, Y, and Z axis stages were used to position LakeShore HMNA-1904-VR
and HMNT-4E04-VR Hall Probes to measure magnetic field components with a LakeShore
475 DSP Gaussmeter. The magnetic field magnitude was then calculated from each field
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Figure 2.4: Measured vs. Simulated Magnetic Field Plots. Excellent agreement is shown
between simulated and measured magnetic fields. Over the entire 4 x 4 x 4 cm3 field of view,
the maximum deviation of simulated to measured fields is 3.7 mT, and the RMS deviation
is 1.4 mT.

Figure 2.5: Experimentally Measured Gradient Components Along Each FFL Axis. Note
that the gradient is homogeneous at approximately 2.25 T/m along both the X and Z axes.
Note that the field is close to zero - within 2 mT - along the entire length of the FFL (Y
axis). This is the first experimental demonstration of an MPI imaging-capable FFL gradient.
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component. The maximum deviation of simulated to measured magnetic fields is 3.7 mT
within the 4 x 4 x 4 cm3 field of view (FOV). The maximum root mean square deviation of
measured versus simulated field magnitude is 1.4 mT. The overall maximum magnitude of
the magnetic field in the FOV is 67.3 mT.

Figure 2.5 shows the gradient components along each axis of the FFL Magnet. The
gradient is homogeneous at approximately 2.25 T/m along both the X and Z axes with a
maximum deviation of 3.4% along the gradient. The field is homogeneous at 0 mT along
length of the FFL (Y axis) with a maximum magnitude of 2.0 mT.

2.6 Discussion

This chapter shows the first experimental demonstration of a FFL magnet designed for
mice imaging. We have illustrated the design, construction, simulation, and testing of a
2-segment Halbach quadrupole magnet configuration [27], which was chosen based on its
excellent symmetry. It produces a highly homogeneous magnetic field gradient along the
FFL. The quadrupole magnet produces zero field along the entire field free line while the
field normal to the FFL does not degrade. In future work, we plan to produce an x-space
MPI projection image from the FFL magnet. We also plan to use optimization techniques
to improve FFL designs as well as the image quality, imaging speed, and power consumption
in MPI imaging.
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Chapter 3

Projection Reconstruction MPI

3.1 Introduction

The previous chapter described the design and construction of a Field Free Line (FFL),
which localizes USPIOs along a line. Rapidly scanning this line in space creates a projection
image of the particle concentration [25]. By reducing image dimensionality from 3D to
2D, projection MPI improves speed by two orders of magnitude over imaging using a FFP.
This speed improvement can be traded for signal-to-noise ratio (SNR) via averaging. In
previous work, we demonstrated experimental images from a projection MPI scanner [25].
We described the x-space theory of an FFL, found the analytical point spread function of
an x-space FFL scanner, and determined FFL homogeneity requirements [25].

A projection imaging format, coupled with sample or scanner rotation, can be used to
acquire data necessary to reconstruct a 3D image volume, as is done in computed tomography
(CT). Fig. 3.1 illustrates the acquisition of a single projection, g(`, θ), at a single rotation
angle, θ. Multiple projections can be acquired by varying θ. Filtered backprojection (FBP),
a projection reconstruction algorithm, is commonly used to reconstruct an image. As the
name suggests, filtered backprojection first filters the projections using a ramp filter and
subsequently projects (or smears) the filtered projections across the resulting image space at
the angle of acquisition [59]. The multiple back-projected images are summed to reconstruct
the output image. The step of adding multiple projections together increases SNR, a primary
benefit of projection reconstruction. For the same acquisition time as a 3D scan with a FFP,
projection reconstruction MPI (PR MPI) has the potential to increase SNR by an order of
magnitude due to signal averaging. This sensitivity gain would be useful to detect smaller
concentrations of USPIO tracer.

First introduced to the MPI field in 2008 [76], early FFL studies employed simulation
and theory to demonstrate the SNR gain of projection reconstruction MPI. A simulation
study introduced an electronically rotated and shifted FFL design, where a system matrix
inversion with regularization was used to reconstruct images. This simulation showed SNR
gains of the FFL over a traditional FFP acquisition [76]. Followup studies included designs
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θ

l

x
y

g(l,θ)
Figure 3.1: Diagram of projection reconstruction imaging. The Field Free Line magnetic field
is rotated at an angle θ followed by the acquisition of a single projection, g(l, θ). Multiple
projections are acquired by varying θ, and a projection reconstruction algorithm is used
to reconstruct a 3D image. A single rotation angle of a projection reconstruction imaging
sequence is shown. Here, a rotated projection is shown for clarity while sample rotation is
used in our imaging system (see Fig. 3.2).

to simplify and reduce power consumption of the initial FFL design and experimentally
demostrated a shifted and rotated FFL [38, 34, 12]. An alternative FFL design with two
Maxwell coil pairs has been introduced to reduce MPI system complexity [35]. Additionally,
a study related projection reconstruction in MPI to the Fourier slice theorem and illustrated
image reconstruction with two receive coils and an electronically rotated FFL [37].

In this chapter, we present the first experimental demonstration of PR MPI. We adapt
x-space theory to projection reconstruction MPI, including the derivation of the theoretical
PSF, resolution, SNR, and number of projections required. We augment our FFL projec-
tion MPI system with sample rotation to produce a projection reconstruction MPI system.
Scanning methods using sample rotation, similar to this system, are common in MicroCT
scanners [32, 29]. We then present projection reconstruction 3D volumes of the PSF, imaging
phantoms, and post-mortem mice. This is the first experimental validation for projection
reconstruction MPI techniques, which will enable higher SNR for detecting USPIO particles
in vivo.
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a) System Diagram b) System Photo
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Figure 3.2: The Berkeley Projection Reconstruction MPI System. a) Diagram of the system
magnets including a 2.4 T/m NdFeB gradient, and inductive shift, boost, transmit and
receive coils. b) System photo additionally showing the sample holder, which includes a
motor-driven rotary table that enables sample rotation.

3.2 Theory

In this section, we describe the theory of projection reconstruction in x-space MPI. As seen
in our PR MPI system in Fig. 3.2, we use the convention that the FFL is oriented along the
y axis, the drive field excitation vector is along the z axis, and the slow focus or shift vector
is along the x axis. We assume the particle response is instantaneous and has no relaxation
effects.

To acquire multiple projection images necessary for projection reconstruction, we rotate
the sample around the z axis, which is equivalent to FFL magnetic field rotation around
the z axis for a system with excitation coils and receive coils oriented along the z axis. The
instrument frame, [x y z]T , is the non-rotated frame, while the sample frame, [x′ y′ z′]T , is the
rotated frame. The magnetic field of the FFL oriented along the y axis can be described using
a gradient matrix H(x) = Gx. This field is translated along the x axis using a homogeneous
focus or shift field, Hs = Hxî. The particles are excited along the z axis by a homogeneous
field, He = Hzk̂, as illustrated in Fig. 3.3. The combined magnetic field becomes
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Figure 3.3: FFL excitation diagram and magnetic field plot. (a) Diagram of the permanent
magnets that generate the FFL and of the solenoidal transmit coil that excites USPIOs at
20 kHz. The arrow above the transmit coil indicates that the excitation direction is along
the z axis. The ˜2 Hz slow shift of the projection occurs along the x axis. (b) Magnetic field
plot of the FFL with darker colors corresponding to smaller field strengths.

H(x) = Gx +Hxî +Hzk̂

=

 Gxx 0 0
0 0 0
0 0 Gzz

 x
y
z

+

 Hx

0
Hz

 , (3.1)

where x [m] is the position vector in the instrument coordinate system and µ0Gab [T/m]
is the partial derivative of the magnetic field in the a direction with respect to b [25, 37].
µ0Gab is also known as the gradient strength of the system. µ0 = 4π × 10−7 T ·m/A is the
permeability of free space. Gxx = −Gzz as required by Maxwell’s equations.

In Appendix A.1, we derive the magnetic field of the shifted and rotated FFL. To deter-
mine where the FFL lies in space, we calculate the magnitude of the magnetic field (which
is squared to simplify the result here),

|H′(x′, θ)|2 = (Gzzz
′ +Hz)

2

+G2
zz(x

′ cos θ + y′ sin θ −Hx/Gzz)
2, (3.2)

where θ [rad] is the angle of rotation. By inspection, we see that the field is zero when

z′ = −Hz/Gzz (3.3)

and

x′ cos θ + y′ sin θ = Hx/Gzz. (3.4)
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We define
` = Hx/Gzz. (3.5)

Thus, the FFL lies on

x′ cos θ + y′ sin θ = ` (3.6)

at a z position defined by the Hz excitation field and the gradient. Note that physically `
[m] represents the shift position perpendicular to the FFL. This is the standard notation
used in CT [59]. The USPIO signal is integrated along this line, allowing a projection image
of the sample to be acquired at any rotation angle as illustrated in Fig. 3.1. The variables
Hx, Hz, and θ give us precisely the control we require to collect a complete set of projection
data.

After acquiring projections, a 3D volume can be created using PR methods such as the
direct Fourier method, convolution backprojection, FBP, or other statistical, iterative, and
optimization approaches [5, 63, 70, 59, 78]. In this work, we used filtered backprojection due
to its simplicity and robustness. The FBP algorithm first filters the acquired projections with
a ramp filter in the spatial frequency domain and then backprojects the filtered projections.
This operation essentially smears the filtered projections across the reconstructed image at
the angle of incidence. The backprojected images are added to create a 3D volumetric image.

To derive the PSF for projection reconstruction MPI, we can start from the PSF for a
single projection, h(x) [25]. The PSF after PR can then be calculated using the inverse Abel
transform [6], which is equivalent to the Fourier transform followed by the inverse Hankel
transform,

hpr(r) = A−1{h} = H−1 {F {h}} , (3.7)

where A−1 is the inverse Abel transform operator, H−1 is the inverse Hankel transform op-
erator, and F is the forward Fourier transform operator. There is no closed-form expression
for the Fourier transform of the MPI PSF along the x axis, but fortunately, it is well approx-
imated (<1 % RMS full-scale error as calculated by Equation A.7) by a Lorentzian. The
result is a closed form approximation of the PR PSF in the xy plane,

ĥpr(r) =
2∑

k=1

βk
(
α2
k + r2

)−3/2
, (3.8)

where r [m] is the distance along the radial axis. α1, α2, β1, and β2 are fitted constants
determined in Appendix A.2. Equation (3.8) is accurate within a 2.4% RMS full scale error
(calculated with Equation A.7) when compared across a 6 cm FOV to the theoretical PSF,
which can be computed via filtered backprojection on the 1D projection PSF. This approxi-
mation allows us to determine how system and particle parameters affect resolution and the
number of projections required in PR MPI. A detailed derivation of this approximation is
included in Appendix A.2.
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We use the approximate PSF in Equation (3.8) to determine the resolution of a PR
MPI system. The resolution according to the Houston criterion [30], or full width at half
maximum (FWHM), of Equation (3.8) is

FWHMPR ≈
34kbT

µ0GxxπMsatd3
, (3.9)

where µ0Msat ∼ 0.6 T is the saturation magnetization, d [m] is the particle diameter, kb =
1.38 × 10−23 m2 · T · A ·K−1 is Boltzmann’s constant, and T [K] is the temperature. Note
that the FWHM resolution before PR also has the same form; however, PR imaging improves
resolution by approximately 40% along the x axis. The resolution scales inversely with the
gradient and the cube of the particle diameter. In a system with a 2.4 T/m gradient and with
particles that can be modeled as theoretical particles of 22.7 nm in diameter (see Section
3.3), we would expect a FWHM of 3.3 mm in the xy plane.

We also use the PSF of Equation (3.8) to determine the minimum number of evenly-
spaced projections between 0 and 180 required to avoid aliasing in a PR image. As discussed
in Appendix A.3, we can use the following formula as guidance [5],

Nproj > π · FOVxy ·Kmax, (3.10)

where FOVxy [m] is the maximum field of view (FOV) of x and y and is set by the system
user. Kmax [m−1] is the largest spatial frequency in the system, which is determined from the
system point spread function (PSF). In a system with a 2.4 T/m gradient and with particles
modeled as 22.7 nm in diameter (see Section 3.3), Kmax ≈ 1

2FWHM
= 0.15 mm−1. With a

FOVxy = 6 cm, 28 projections are necessary to avoid aliasing.
The number of projections acquired also affects signal to noise ratio (SNR) of the resulting

image. In general, SNR increases by the square root of the number of averages acquired in
a system, assuming that the noise is independent and identically distributed. In projection
reconstruction, this means that SNR improves ∝

√
N , where N is the number of projections

acquired. In practice, if we increase the number of projections from 25 to 100, we will double
our SNR as well as decrease aliasing artifacts.

3.3 Methods

Imaging System Construction

A diagram and photo of our imaging system are shown in Fig. 3.2. This system is described
in more detail in [25]. We used two NdFeB permanent magnet sections to produce the FFL.
Each section was created with six NdFeB permanent magnets assembled with matching mag-
netization orientation. The two sections were then assembled with opposing magnetization
orientation to produce a FFL. This configuration produced a µ0Gzz = −µ0Gxx = 2.4 T/m
magnetic field gradient along both the x and z axes with the FFL oriented along the y axis.
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Figure 3.4: Projection PSF and Projection Reconstruction PSFs using filtered backprojec-
tion. Cross-section along the red lines are shown in Fig. 3.5. (row a) Diagram indicating the
orientation of the plots in the same column below. (row b) Theoretical PSF using Equation
(A.4). (row c) Measured projection PSF. (row d) Theoretical projection reconstruction PSF
obtained using filtered backprojection on row b. (row e) Measured projection reconstruction
PSF. Acquisition time for each projection image was 16 s per image, the XZ FOV was 6 cm
× 5.6 cm and 180 projections were acquired.
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Figure 3.5: Projection PSF and Projection Reconstruction PSF cross-sections from Fig. 3.4.
a) Measured and theoretical projection PSFs. Theoretical PSF calculated using Equation
(A.4). b) Measured, theoretical, and approximate Projection Reconstruction PSFs. The
approximate PSF was obtained using Equation (3.8), while the theoretical PSF was obtained
via filtered backprojection on Equation (A.4).

We attached two electromagnets (GMW 11901111, San Carlos, CA) to shift the FFL in
the x direction and two custom electromagnets to shift the FFL in the z direction. Switch-
ing amplifiers (Copley Controls 234) drove these coils with a maximum 350 A peak current,
which produced a x direction FOV of 6 cm. A linear amplifier (AE Techron LVC5050) drove
a resonant transmit coil, which created the 20 kHz drive field oriented in the z direction.
The receive chain consisted of an inductive receive coil, a notch filter at the fundamental
drive frequency, and low noise preamplifiers (SR560 and SIM911). Custom software (Math-
works Matlab, Natick, MA) controlled a data acquisition card (NI PCIe-6363, Austin, TX),
which drove the amplifiers and digitized the signal. A one axis translation stage (Velmex,
Bloomfield, NY) was used to increase the FOV to a maximum of 22 cm in the z direction
using a moving table scan.

Image Acquisition & Projection Reconstruction

To obtain an MPI tomographic 3D volume, we employed FBP after acquiring projection
images at multiple angles. A motor driven rotary table (Velmex, Bloomfield, NY) rotated
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the sample to allow the acquisition of images at linearly spaced angles from 0 degrees to 180
degrees. Procedurally, the scanner obtained a projection image at one rotation angle, rotated
the sample, and then acquired another projection image (see Fig. 3.6c). After acquiring all
images, the FBP algorithm was employed. The algorithm selected a 1D slice parallel to the
x axis in each image at corresponding z locations and then filtered each slice using a ramp
filter in the spatial frequency domain to compensate for denser sampling at the center of
k-space [59, 63]. After filtering, the slices were backprojected at the acquisition angle, and
a 3D volume was reconstructed. Projection scans were taken twice, once in the forward
translation z direction and once in the reverse direction, and were averaged to form the final
image.

d) Projection Reconstruction 3D Volume
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Figure 3.6: Undeconvolved Filtered Backprojection MPI Experimental Images. a) Acrylic
phantoms stacked in preparation for imaging. b) Photos of phantoms with 50 mM Resovist
(10x diluted). c) Four of 180 acquired projection images with rotation angle, θ, denoted on
each image. d) Maximum intensity projection of the 3D volume reconstructed using filtered
backprojection on the 180 projection images. e) Two slices of the 3D imaging volume at
the plane of each imaging phantom with slice thickness of 0.5 mm. Each projection image
acquisition took 39s for a total imaging time of 117 min with N=2 averages (N=1, 59 min)
with a 6 cm by 12 cm FOV.

After reconstructing a 3D image volume, the software exported the entire volume in
DICOM file format. The DICOM files were imported to Osirix (Pixmeo, Switzerland),
where maximum intensity projection and volume rendered images were created.
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PSF Measurement and Comparison

To measure the PSF of our imaging system, we imaged a 3.5 μL vial of undiluted 0.5 M
Resovist (Schering AG, Germany), a USPIO tracer for MRI. The Resovist vial contained
the sample within 3 mm3, which was smaller than the resolution of our imaging system
and could be considered a point source. The scanner acquired 180 projection images, each
with an acquisition time of 16 s and a FOV of 6 cm by 5.6 cm. A 3D volume was then
reconstructed as described in Section 3.3.

Projection PSF calculations were performed using Equation (A.4) and approximate PR
PSFs were calculated using Equation (3.8). For theoretical PR PSFs, we used Equation
(A.4) and applied filtered backprojection. Parameters were chosen to match our imaging
system: µ0Gzz = −µ0Gxx = 2.4 T/m and T = 300 K. The particle diameter of Resovist has
been been reported as many different diameters [25, 60]. To determine the effective Resovist
diameter in our sample, we fitted the theoretical projection PSF of Equation (A.4) to the
measured projection PSF with the particle diameter as the free parameter. This fit resulted
in a diameter d = 22.7 nm. This diameter was used for all calculations. Since the DC
information is not available in MPI data [25, 47, 45], we restored the DC value by assuming
the MPI signal at the boundaries of the image was zero.

8.0 cm

3.4 cm
c) MIP at Different Angleb) MIP of PR 3D Volumea) Phantom

Z  [cm]
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X 
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Figure 3.7: Phantom Imaging. a) Photo of a helical imaging phantom. Tubing with ID 0.8
mm (OD 1.4 mm) was filled with 50 mM Resovist (10x diluted). b) Maximum intensity
projection (MIP) image with no deconvolution taken in our Projection Reconstruction MPI
scanner. c) MIP at a different angle to illustrate the 3D volume. A total of 60 projection
images were acquired with a time of 39s each and a 6 cm by 12 cm FOV. The total imaging
time was 39 min.

Phantom Experiments

To test the performance of our Projection Reconstruction MPI system, we created custom
acrylic phantoms with Resovist tracer. The phantoms were composed of three laser cut
sheets of acrylic with the middle layer containing the desired Resovist distribution pattern.
Fig. 3.6a shows images of two acrylic phantoms stacked to create a 3D Resovist distribution.
Phantom imaging was performed with 180 projection images, a 6 cm by 12 cm FOV, and
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an acquisition time of 39 s per projection. The total acquisition time was 2 h. Filtered
backprojection was used to create a 3D volume as described in Section 3.3.

A helical imaging phantom (pictured in Fig. 3.7a) was created using cylindrical piece of
acrylic with a 3.4 cm outer diameter. Tubing with ID 0.8 mm (OD 1.4) was wrapped around
the acrylic and was filled with 50 mM Resovist (10x diluted). Sixty projections, each with a
6 cm by 12 cm FOV and 39 s scan time were taken. The entire volume was acquired in 39
min.

Mouse Imaging

We prepared a mouse for imaging by injecting 100 μL of undiluted Resovist into the tail
vein and sacrificing after 30 s. The mouse was then imaged in the PR MPI system with 180
projections, each with a FOV of 6 cm by 12 cm along the x and z axes respectively. Each
projection image took 3 min to acquire for a total imaging time of 540 min. After acquisition
and reconstruction using FBP, we applied deconvolution with Wiener filtering [19] using the
theoretical PSF. The small amount of deconvolution sharpens the image by reducing the
effect of the long tails of the PSF.

3.4 Results

In Fig. 3.4, we compare the theoretical PSF with a PSF measured from our imaging system.
Images in the left column show the xz plane while images in the right column show the xy
plane. The top set of four boxed images compares projection format PSFs while the bottom
set compares projection reconstruction format PSFs. Note the close agreement between
theoretical and measured PSFs.

Fig. 3.5 compares image cross-sections of measured, theoretical, and approximate PSFs in
both projection and projection reconstruction formats. Fig. 3.5a plots a cross-section of the
measured and theoretical projection PSFs in Fig. 3.4b and 3.4c, demonstrating agreement
between the two. Fig. 3.5b plots cross-sections from the measured and theoretical projection
reconstruction PSF from Fig. 3.4d and 3.4e. Fig. 3.5b also plots an approximate projection
reconstruction PSF, calculated from Equation (3.8). For comparison, the FWHM is listed
for each plot. Note the slight decrease in FWHM in the PR results over the projection
results as predicted in Section 3.2. Also note the close match in theoretical, approximate,
and measured plots and FWHM values.

Fig. 3.6c shows four of the 180 projections acquired at multiple angles of rotation around
the theta axis for our stacked acrylic imaging phantom. A maximum intensity projection
through the imaging volume is displayed in Fig. 3.6d. Fig. 3.6e shows two slices through
the image volume. No deconvolution has been performed in any of the images in Fig. 3.6.
Note, we can see two large air bubbles in both the photo of the phantom and the output PR
image. This can also be seen but with more difficulty in the projection images. Also, in the
projection images of Fig. 3.6c, note the signal summation that occurs along the field free
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line, which causes bright points at differing locations along the phantom image depending
on rotation angle. These bright points occur at locations where the FFL integrates signal
in both acrylic phantoms. While we see these bright spots in the projection images, the PR
images fully resolve all features in 3D. The ability to resolve the bubble and the lack of signal
summation illustrate the diagnostic quality improvement of 3D PR imaging over projection
format imaging.

Fig. 3.7 contains maximum intensity projection images from a helical phantom. Two
perspectives are shown of the reconstructed volume. Once again, these images illustrate the
capability for very high SNR with PR MPI.

Fig. 3.8 shows a projection reconstruction image of a post-mortem mouse injected with
Resovist. The tracer accumulation can be seen in the heart, liver, and brain.
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Figure 3.8: PR MPI image of a mouse injected with 100 uL of 0.5 M Resovist into the tail
vein and sacrificed after 30 s. The tracer accumulation appears in the heart, liver, and brain.
180 projection images were taken, each with a 6 cm by 12 cm FOV and 3 min acquisition
time.

3.5 Discussion

Here, we have demonstrated the first experimental implementation of filtered back projection
3D MPI scanning. The same projection reconstruction MPI scanner could be used in a 2D
projection format to produce real-time images or with averaging to produce high SNR 2D
images. The flexibility enabled by FFL imaging for high speed or high SNR 2D imaging, as
well as high SNR 3D images, could be extremely useful in the clinic. This relationship could
be similar to the relationship that currently exists between X-ray and CT. Applications such
as angiography demand a high speed format to faithfully capture the range of cardiac motion
so X-ray fluoroscopy is often used. Patients would benefit from projection MPI that utilizes
no ionizing radiation and tracers that are completely safe, especially for CKD patients [48].
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For applications not requiring high speed but benefitting from a high SNR 3D image, CT is
used. In MPI, possible applications of this format include cancer and stem cell imaging.

This chapter presents the first experimental proof that the homogeneity of a real-world,
inexpensive permanent magnet FFL can be made adequately uniform (with minimal fading
[25]) to produce artifact-free FBP reconstructions. This bodes well for future higher strength
FFL magnets. In the future, we intend to develop a scaled-up PR MPI system. Such
a system could include a 20 T/m superconducting gradient with a 2563 image grid. A
gradient of this strength would have a 400 μm xy plane resolution with Resovist according to
Equation (3.9). With a 6 cm FOV, we would need to acquire 235 projections to avoid aliasing
according to Equation (3.10). With MPI we have the benefit that additional projections do
not cause additional patient radiation dose since no ionizing radiation is involved. Challenges
to development of such a system would include higher receiver bandwidth, better FFL magnet
homogeneity (to prevent fading artifacts [25]), and reconstruction time scale-up.

We also plan to implement a helical moving-bed scan similar to current CT technology.
We estimate that we could acquire a full 3D volume in approximately 5 minutes with our
current imaging system via this scanning pattern (partial FOV of 8 mm, helical pitch of 4 mm
to allow 50% overlap, 10 s per rotation). Alternatively, we could implement z axis focus field
coils (unused in this chapter), which would allow 3D volume acquisition in approximately 30
s (partial FOV of 8 mm, z axis shift of 4 cm and helical pitch of 4 cm, 10 s per rotation).
Future scanner hardware development could also include other rotation methods such as
gantry rotation or electronic FFL rotation.

As an alternative to Nyquist sampling, we could use compressed sensing techniques to
reduce the number of projections taken and speed imaging time. In a human sized scanner
with a bore of 30 cm and a gradient of 8 T/m (1 mm resolution with Resovist), 470 projections
would be required for non-aliased sampling using the Nyquist criteria. Compressed sensing
could allow a much smaller number of projections, thus allowing a faster image acquisition
for time resolved datasets [49, 9, 71].

It is interesting to compare MPI projection imaging to MRI projection imaging. With
MPI, there is absolutely no concern with phase decoherence along the projection line because
all the SPIOs are locked in synchrony with the excitation field. This is in sharp contrast
to projection MRI, where B0 inhomogeneity is typically inadequate to prevent excessive
decoherence, which is called T2* dephasing in MRI.

The approximate and measured PSFs of Fig. 3.5 match well, illustrating the accuracy of
the approximation. The improvement in FWHM after FBP occurs due to image sharpening
from the ramp filter. The resolution (and SNR) benefit of PR MPI could be used to view
smaller arteries in a high resolution 3D PR MPI as opposed to 3D scan with a FFP.

Equation (3.10) suggests that we only need 28 instead of 180 projections to obtain a non-
aliased PR MPI image with our system. Here, we have used more projections to demonstrate
artifact free and high SNR images. SNR is extremely high even in our university prototype.
This bodes well for the future sensitivity of a professionally engineered system.
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3.6 Conclusion

In this chapter, we presented the world’s first experimental projection reconstruction MPI
system. A permanent magnet FFL was shown to be buildable to the tolerance required
for artifact-free FBP. We designed, built, and debugged the associated PR MPI subsystems
such as the drive field generation, focus field generation, receive channels, sample rotation,
and image acquisition. The approximate PR PSF was derived and shown to correspond
accurately to data. The theoretical FWHM, number of projections required, and the SNR
gain in projection reconstruction MPI were derived as well. We demonstrated that FBP in
MPI is experimentally feasible and illustrated the SNR and resolution improvement with
PR. We then demonstrated that MPI is capable of producing three dimensional imaging
volumes in both phantoms and post-mortem mice. This is promising for the future of PR
MPI.
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Chapter 4

Twenty-Fold Acceleration of 3D PR
MPI

4.1 Introduction

In the previous chapter, we presented experimental 3D images with a FFL using our first
generation projection reconstruction (PR) MPI imager [41, 39]. The relationship between 2D
projection imaging and 3D PR imaging with a FFL is analogous to the relationship between
X-ray imaging and computed tomography (CT). As described schematically in Figure 4.1, our
3D PR MPI imager acquires “parallel-beam” projection images at various angles while the
nanoparticle sample (or equivalently the magnet) is rotated around the z axis. Subsequently,
a filtered backprojection algorithm reconstructs 3D images of the nanoparticle distribution.
Our first generation 3D PR imager used slow mechanical movement in two dimensions: a
z axis translation stage (down the bore) and a motor driven rotary table to allow rotated
projections. The mechanical inertia of these stages severely limited the imaging speed of the
system. Consequently, the fastest previously reported acquisition of a mouse-sized (6 cm by
12 cm) tomographic image required approximately 39 minutes.

In this chapter, we begin with both theory and experimental evidence that demonstrate
advantages of 3D PR for human applications. In short, PR MPI has an order of magnitude
signal-to-noise ratio (SNR) boost and is not significantly slower than 3D point scanning when
human safety limits are imposed. We then demonstrate rapid PR MPI by implementing
hardware changes to our current system and developing a fast PR MPI pulse sequence. The
hardware was modified to enable slow movement of the FFL along the z axis by introducing a
pair of slow shift (or focus field) electromagnets in addition to the existing translation stage.
We also designed and implemented the necessary amplifiers, filters, controllers, and software
to drive the z shift coils and reconstruct images using them. To allow faster imaging,
we improved the x slow shift electromagnet power matching. The receive coil has been
redesigned and fabricated to extend the sensitive region from 7 cm to 10 cm. We then
developed a PR MPI pulse sequence to drive the updated hardware. In this modified setup,
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the imaging speed is limited by the amplifier output voltage limits and the inductance of
the slow field shift electromagnets. With these changes, the system acquires a full 3D
image in under 2 minutes, demonstrating a twenty-fold speed improvement over our previous
mechanically limited imaging system [39].

4.2 Theory

Signal to Noise Ratio of PR MPI

Table 4.1: MPI Scan Time Comparison

Isotropic Native Image T2D T3D,ffp T3D,pr
Gradient Resolution 2D Projection (FFL) 3D Image 3D Proj. Recon.
Strength (Resovist or Single Slice (FFP) (FFP) Image (FFL)

- Tracer) (10 cm)2 (10 cm)3 (10 cm)3

10 T/m 1 mm 3.6 s 260 s 560 s
5 T/m 2 mm 0.89 s 32 s 70 s

2.5 T/m 4 mm 0.22 s 4.0 s 8.8 s
1.25 T/m 8 mm 0.06 s 0.50 s 1.1 s

Best case imaging times (no pFOV overlap) for slow field shift limited imaging using the
ICNIRP limits of Smax = 20 T/s when imaging the human torso with a drive field amplitude
of Bth = 7 mT (see Appendix A.5), and Resovist tracer. We assume a (10 cm)3 FOV,
which would be a reasonable FOV for imaging the human heart. Note that the SNR of a
3D projection reconstruction image is nearly an order of magnitude better than a 3D image
taken using a FFP imager.

It is well known [51, 55] that computed tomography (CT) and magnetic resonance imaging
(MRI) typically have a

√
N SNR advantage over point scanning methods (like ultrasound

imaging), where N is the number of projections or the number of frequency space (k-space)
samples acquired. 3D MPI with a FFP is fundamentally a point scanning technique, so the
SNR of one pixel does not increase with the number of pixels scanned. The concept of a FFL
was introduced in MPI to take advantage of an SNR gain created due to averaging when
each imaging location is acquired multiple times via a shifted and rotated FFL [76]. While
imaging times are similar, the resulting SNR of a 3D PR image is an order of magnitude
higher than a 3D FFP image.

The major tradeoff with PR and frequency space (k-space) scanning methods as opposed
to point scanning methods is the need to avoid spatial aliasing. In 3D FFP scanning, we can
simply scan a subject with no fear of aliasing from outside the selected region. This is not
the case with 3D PR since aliasing can appear in the resulting image due to undersampling.
Fortunately, it is well known that we can prevent aliasing simply by ensuring that the number
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of projections adheres to the Nyquist sampling rate:

N > πFOVx,yKmax, (4.1)

where N is the number of projections, FOVx,y is the maximum FOV in the xy plane, and
Kmax is the maximum radial spatial frequency of the system [39].

Contrasting a PR MPI system and a 3D FFP system with identical noise characteris-
tics, scan time, resolution, pulse sequence, and selection field gradient strength, the SNR
relationship can be described as

SNRPR

SNRFFP

= C
√
N (4.2)

where C depends on the interpolation and filtering used during FBP (see Appendix A.4).
We have measured a C of ˜0.4 experimentally, and we have seen a C value of 1.1 in theory
and simulation. In addition, as we describe next, this SNR improvement comes with a scan
time that is in the same order of magnitude as that of a 3D FFP system.

MPI Imaging Time

Intuitively, we note that imaging time for 3D PR imaging and 3D FFP imaging will be equal
when the number of projections acquired is equal to the number of slices in the 3D image
volume. This is because each slice in 3D FFP MPI and each 2D projection in 3D PR MPI
require the same acquisition time assuming planar FFP acquisition trajectories.

More rigorously, we can calculate imaging time for MPI systems based on magnetostim-
ulation limits as discussed in Appendix A.5:

T2D≈
β ·GzzFOVz

2Bth

GxxFOVx
Smax

, (4.3)

T3D,ffp = T2DNs≈T2D
βGyyFOVy

2Bth

, (4.4)

T3D,pr = T2DN = πT2D
FOVx,y

2Δx
. (4.5)

where T2D [s] is the 2D projection or single-slice MPI imaging time, T3D,ffp [s] is the 3D
imaging time with a FFP, and T3D,pr [s] is the 3D PR imaging time with a FFL. FOVi [m] is
the size of the FOV along axis i, µ0Gab [T/m] is the partial derivative of the magnetic field
in direction a with respect to direction b, Bth is the drive field peak amplitude determined by
magnetostimulation thresholds [66], Smax = 20 T/s is the maximum slew rate as defined by
the International Commission on Non-Ionizing Radiation Protection (ICNIRP) [31], ∆x [m]
is the native (i.e., no deconvolution) full-width-at-half-maximum (FWHM) resolution, and
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βis a factor (>1) determining the overlap extent of the partial FOVs (pFOVs) required for
baseline recovery [46]. Ns is the number of slices in 3D FFP imaging, and N is the number
of projections acquired in 3D PR imaging.

Using the above equations, we calculate imaging times for a number of gradient strengths.
Since one of the first human applications for MPI may be angiography in the heart or the
brain, we assume a (10 cm)3 FOV. This FOV would be a reasonable (minimal) FOV for both
anatomical regions. A 1 mm native (i.e., no deconvolution) resolution using Resovist tracer
(with a 17 nm effective mean core diameter) requires a 10 T/m magnetic field gradient in
x, y, and z [61, 23, 22]. Our calculations utilize a theoretical isotropic gradient for FFP
systems to allow a direct imaging time comparison to FFL systems. We assume the fastest
case of no pFOV overlap during scanning (i.e., β=1), and a maximum amplitude drive field
strength of 7 mT in the human heart [66]. With the above parameters, the total imaging
time can be estimated as T2D ≈ 3.6 s for a single slice and T3D,ffp ≈ 260 s for the entire
volume. In Table 4.1, we compare these imaging times with those of decreased gradient
strengths. As seen in this table, the scan time increases as the square (2D imaging) or the
cube (3D imaging) of improving image resolution. This tradeoff is similar to the scan time
versus system resolution tradeoff in MRI.

In Table 4.1, we also compare imaging times of 3D PR systems with a FFL. At a native
resolution of ∆x = 1 mm, we calculate Kmax ≈ 1

2Δx
= 500 m−1. Thus, for 1 mm resolution

and a (10 cm)3 FOV, we must acquire at least 158 projections to avoid aliasing. With
T2D ≈ 3.6 s for a single projection, the total imaging time is T3D,pr ≈ 560 s. The imaging
times for decreased gradient strength cases are calculated similarly, and are listed in Table
4.1. We see that the imaging times for 3D PR are within the same order of magnitude of
the 3D FFP imager.

4.3 Methods

In this section, we describe a technique to rapidly acquire large 3D FOVs using projection
reconstruction with sample rotation. The imaging speed of this experimental setup is limited
only by magnetic field slew rates of the system (i.e., maximum amplifier voltages). This
technique is general and can be extended to acquire images in human subjects, such that
the imaging speed is limited only by human magnetostimulation limits.

3D Projection Reconstruction Pulse Sequence

We designed and implemented an imaging sequence for PR MPI that can be easily scaled
to a magnetostimulation-limited sequence for human MPI imaging. This sequence has been
modified from the sequence of the previous chapter, which used no z slow shift movement and
instead relied solely on z mechanical translation [41, 39]. Mechanical translation hindered
imaging speed due to inertia and maximum velocity limits of the translation stages. Here, we
augmented our system to utilize z slow shift (focus) fields. The difference in imaging speed
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between the two techniques is dramatic; electronic translation reduces imaging times by over
an order of magnitude. This improved technique is analogous to cone-beam CT, where the
FOV is rapidly imaged in a projection format while the sample (or equivalently the magnet)
is rotated slowly to acquire the necessary projections for a full three-dimensional image.

θ1

θ2

θ3

y’
x’

z’θ

Figure 4.1: Rapid 3D imaging sequence in the sample coordinate system (x’, y’, z’). Multiple
2D projection images are acquired with electronic translation of the FFL. These images are
taken sequentially at various angles (θ1, θ2, . . . θN) using mechanical rotation of the sample
around the z axis with a rotary stage. Accelerated imaging via Field Free Line (FFL)
motion with time-varying slow shift magnetic fields enables acquisition of rapid tomographic
3D images in less than two minutes across a relatively large FOV.

Figure 4.1 shows a schematic overview of the imaging sequence. Two-dimensional pro-
jection images can be produced using solely magnetic translation of the FFL with x and z
slow shift fields and a z drive field. The 2D FOV can be optionally extended along z using
the translation stage. Following each 2D projection, the sample (or equivalently the magnet)
is rotated using a mechanical rotation stage. The rotation time is small compared to the
projection imaging time; implementing continuous rotation would improve imaging time by
less than 10% with our current experimental system.

Figure 4.2 illustrates the FFL trajectory of each 2D projection. Figure 4.3 shows FFL
trajectory waveforms that comprise the imaging sequence to produce this trajectory. We
apply three simultaneous time-varying magnetic waveforms. The first, a sinusoidal drive
field, rapidly scans the FFL in the z axis. The drive field elicits the MPI signal. The
triangular waveforms are slowly varying magnetic fields that move the mean position of the
FFL along x and z. These slow shift fields allow coverage of the full imaging FOV. The
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Figure 4.2: Imaging sequence of a single 2D projection scan. Each projection image is pro-
duced through the application of slowly varying fields in x and z (in scanner coordinates),
and a rapidly varying drive field in z. The signal is received only along the z axis. 2D projec-
tion imaging does not require mechanical movement of the sample; however, the FOV can be
optionally extended in the z direction with a translation stage. Here, a sparse trajectory is
shown for illustration purposes, while the actual scanning trajectory is considerably denser.

optional z mechanical translation is used to extend the FOV along z. The final waveform in
Figure 4.3 shows the angular control of the motor driven rotary table.

In our experimental imaging system, the imaging speed is limited by the current and
voltage slew rates of the driving amplifiers. In a human-sized system, on the other hand,
the imaging speed would be subject to the human safety thresholds for the three magnetic
fields (one drive and two slow shift). Because magnetostimulation thresholds are expected
to increase with decreasing diameter of the sample, we currently operate well below the
magnetostimulation thresholds for small, mouse-sized samples.

Exciting the sample with a more complex drive field (e.g., Lissajous sequence) would
improve the overall resolution of the system [22]; however, it would not dramatically change
the imaging time of each projection. The imaging time is limited by the ability of the slow
shift electromagnets to move the FFL across the full FOV for a human subject.
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Figure 4.3: Imaging pulse sequence for electronic FFL movement (drive field in z, slow shift
in x and z), mechanical rotation (θ), and mechanical z FOV extension. We simultaneously
apply slowly time-varying currents in z and x to raster the FFL to produce a 2D projection
image at each angle θ. The MPI signal is received continuously for each projection image.
For images acquired in this chapter: total acquisition time was 1.3 min or 2.1 min with 40
projections.
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Projection reconstruction MPI imaging system

Our projection reconstruction imaging system, shown in Figure 4.4, contains a FFL con-
structed from permanent magnets, electromagnets for slowly shifting the FFL, a drive coil,
and a receiver coil. The FFL permanent magnets were assembled from 12 NdFeB permanent
magnet sections, where we created two large opposing permanent magnet assemblies, each
containing 6 laterally stacked magnet sections with the same magnetization orientation. This
created a FFL with a 2.3 T/m selection field gradient along the x and z axes, with the FFL
oriented along the y axis.

a) System Diagram b) System Photo

y
x z

X Shift
Coils

NdFeB
Magnets

TX/RX
Coils

FFL

Z Shift
Coils

Figure 4.4: System diagram and photo of the Field Free Line (FFL) scanner for 3D Pro-
jection Reconstruction (PR) MPI. Two large opposing permanent magnet assemblies, each
containing 6 laterally stacked magnet sections, create a FFL with a 2.3 T/m selection field
gradient along the x and z axes, with the FFL oriented along the y axis. Slow shift coils
along the z direction electronically shift the FFL to increase imaging speed 20 fold.

To slowly shift the FFL, we designed our system with two x direction electromagnets
(GMW 11901111, San Carlos, CA) and two custom-manufactured z direction electromagnets.
We operated these electromagnets with two switching amplifiers (Copley Controls 234).
For fast translation of the FFL, a linear amplifier (AE Techron 7224 or LVC5050) drove a
resonant custom-built solenoidal drive coil at 23 kHz, through a high-power passive band-pass
filter. For signal reception, we wound a receiver coil in a gradiometer configuration to cancel
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magnetic feedthrough from the drive coil while preserving particle signals. After the receiver
coil, the receive chain consisted of a passive 23 kHz notch filter, low noise preamplifiers
(SR560 and SIM911), a 500 kHz low-pass filter (SIM965), and a 40 kHz high-pass filter
(SIM965). Custom software (Mathworks Matlab, Natick, MA) operates the entire system
through two data acquisition cards (NI PCIe-6363, Austin, TX). A one axis translation
stage with a rotation stage (Velmex, Bloomfield, NY) was used to position the sample in the
imaging bore and to rotate the sample during projection reconstruction imaging.

Image acquisition and projection reconstruction
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Figure 4.5: Helical tubing phantom with maximum intensity projection (MIP) and volume
rendered (VR) PR MPI images comparing a slow moving table scan with 20x faster scanning
using shift fields. We created a helical phantom by wrapping two pieces of 0.8 mm ID, 1.4
mm OD tubing around an acrylic cylinder. We injected 50 mM Resovist (9:1 de-ionized
water and Resovist). We imaged the phantom using the pulse sequence described in Figure
4.3. The resulting dataset was maximum intensity projected and volume rendered in Osirix
to produce the displayed 3D images. Top: total acquisition time: 39 min. FOV: 6 cm x 6
cm x 12 cm. 60 projections. Bottom: total imaging time: 1.3 min. FOV: 6 cm x 6 cm x 10.4
cm. 40 projections. Top row adapted from [39]. Note that the image quality and resolution
are similar between the two scanning methods; however, a slight warping artifact is present
in the faster dataset.

Figure 4.3 illustrates, in a simplified manner, the actual pulse sequence used for projection
reconstruction images acquired in the present chapter. Images acquired in Figure 4.5 used a
pulse sequence with the following parameters. For each projection, we created an oscillating
drive field at 23 kHz with a 15 mT amplitude, which translates to a 1.3 cm z partial FOV
in this system. A slow shift field along the x direction, operated using a 15.6 Hz, 69 mT
triangle wave, covered a FOV of 6 cm along the x direction. Along the z direction, the slow
shift field was a linear ramp with an 85 mT peak amplitude, which covered a 7.5 cm FOV
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in 1.8 s. The z translation stage extended the FOV by 1.6 cm (in 1.8 s). The drive field, z
slow shift fields, and stage movement summed to produce a total FOV of 10.4 cm along the
z direction. Each image required 40 x-axis traversals to cover the entire 2D projection FOV.
Using this sequence, we acquired 40 projection images at equally spaced angles to span 180
degrees. The entire imaging sequence duration was 1.3 min. The final imaging FOV was a
6 cm by 6 cm by 10.4 cm cylindrical 3D volume.

Figures 4.6 and 4.7 used the same pulse sequence with the following parameters. The
drive field was the same as above, i.e., 23 kHz, 15 mT amplitude, and 1.3 cm z partial
FOV. The x direction slow shift field was operated using a 3.3 Hz, 58 mT triangle wave and
covered a FOV of 5 cm along the x direction. Along the z direction, the slow shift field
was a linear ramp with a 69 mT peak amplitude, which covered a 6 cm FOV in 3 s. No
translation stage FOV extension was used. The total FOV was 7.3 cm along the z direction.
20 x-axis traversals were used to cover the entire 2D projection FOV. 40 projection images
were acquired. The entire imaging sequence duration was 2.1 min. The final imaging FOV
was a 5 cm by 5 cm by 7 cm cylindrical 3D volume.

Using Equation 4.1 with Kmax ≈ 0.15 mm−1 and a FOVxy = 5 cm, 24 projections are
necessary to avoid aliasing, and 29 projections are necessary for a 6 cm FOV. Note that we
acquire 40 projections to oversample and maintain image quality.

With data acquired using the above pulse sequence, we reconstructed 3D MPI tomo-
graphic images using a filtered backprojection (FBP) algorithm. At each projection angle,
a 2D projection image was reconstructed using x-space reconstruction, and the baseline loss
from each pFOV scan due to filtering was restored with a DC recovery algorithm [47]. We
applied a receive coil sensitivity correction to each image based on a single calibration scan.
Then, for all z-locations, the FBP algorithm was employed on 1D slices parallel to the x axis
in each projection image to reconstruct 2D images in the xy plane, orthogonal to the axial
(z) direction. A full 3D volume was obtained by stacking the xy plane images in their cor-
responding z position. After reconstructing an image volume, the 3D volume was exported
in DICOM file format and imported into Osirix (Pixmeo, Switzerland) to create maximum
intensity projection (MIP) and volume-rendered images.

Phantom experiments

To test the performance of our imaging system, we designed two phantoms to create 3D
distributions of magnetic nanoparticle tracers. The first phantom (Figure 4.5) was created
by wrapping tubing (ID 0.8 mm, OD 1.4 mm) filled with 50 mM Resovist (9:1 de-ionized
water and Resovist) (Bayer Schering Pharma AG, Berlin, Germany), around a cylindrical
piece of acrylic with a 3.4 cm outer diameter. The second phantom (Figure 4.6) was composed
of three joined layers of laser-cut acrylic sheets, with the middle layer containing a pattern
filled with 100 mM Fe (5-fold diluted) Resovist nanoparticles.
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Mouse imaging experiments

All animal experiments were performed according to the National Research Council’s Guide
for the Care and Use of Laboratory animals and approved by UC Berkeley’s Animal Care
and Use Committee. We prepared an adult CD-1 mouse (Charles River, Wilmington, MA)
for imaging by injecting 150 µL of 167 mM Fe (3-fold diluted) Resovist into the tail vein.
The mouse was sacrificed 20 s post-injection, and imaged on the PR MPI system.

4.4 Results

Figure 4.5 compares the accelerated acquisition imaging below the slower original PR MPI
imaging results. Each row shows photos of a helical imaging phantom adjacent to maximum
intensity projection (MIP) and volume-rendered (VR) views of the acquired data set. Images
of each helical tubing phantom are intended to allow comparison of image quality in both
these formats and show the ability of the imager to accurately resolve continuous nanoparticle
distributions in non-planar dimensions. Note how the volume-rendered images correctly show
the overlap, which a projection would not show. The MIP and VR images can be rotated
to any orientation. Note that the image quality and resolution remain very similar between
the fast and slow scanning methods despite 20-fold speed improvement.

In Figure 4.6b, we show two acrylic imaging phantoms. In Figure 4.6a, these two phan-
toms are shown in their stacked imaging configuration. Figure 4.6c displays two 2D slices
of the reconstructed 3D image volume at the plane of each imaging phantom. An arrow in
Figure 4.6b and 4.6c points to a diagnosed blockage (due to an air bubble) in the phantom
that is visible in the corresponding image slice.

The results of the mouse imaging experiments are displayed in Figure 4.7. PR MPI max-
imum intensity projection images from the top and side as well as a size matched photograph
of the mouse are shown. The mouse was injected in a tail vein with Resovist, sacrificed after
20 seconds, and immediately imaged. The Resovist tracer can be seen in the heart, liver,
and the brain of the mouse.

4.5 Discussion

While maintaining imaging quality, we have shown a 20-fold improvement in acquisition
time of our PR MPI system with a new imaging sequence and new hardware. The images
of Figures 4.5 and 4.6 correspond well to the tubing and acrylic phantoms. The excellent
image contrast inherent in the MPI technique is evident in the post-sacrifice mouse images
(Figure 4.7), where no background tissue signal is present. The imaging sequence produces
images that achieve the theoretical resolution of the system [39].

Due to non-linearity in the gradient and inhomogeneity in the shift coil, a slight warping
artifact is visible in the 1.3 min MIP image of Figure 4.5. This appears as a slight curvature
at the edges of the image, were the edges appear compressed when compared to the center
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Figure 4.6: Experimental images of acrylic phantom. Following projection reconstruction,
we form a full tomographic 3D image that can be sliced in any location and orientation. (a)
Two planar acrylic phantoms were stacked to create a 3D Resovist distribution. (b) Two
planar imaging phantoms injected with 100 mM (5x diluted) Resovist. (c) 2D image slices
from the 3D PR dataset after FBP at the plane of each imaging phantom. The arrow points
out a diagnosed blockage. Total imaging time of 2.1 min. FOV: 5 cm x 5 cm x 7.3 cm. 40
projections.
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Figure 4.7: Results of mouse imaging experiments. The mouse was injected 150 µL 167
mM (3x diluted) Resovist into a tail vein. The Resovist circulated for 20 s before sacrifice.
Visible are the brain, heart, and liver. Total imaging time of 2.1 min, FOV: 5 cm x 5 cm x
7.3 cm shown by unshaded area in photo. 40 projections.

of the image. This artifact is similar in concept to the gradient warping commonly seen in
MRI and could easily be fixed in post-processing, but we have chosen to show the artifact
here.

Use of the mechanical extension slows the acquisition time if a large translation distance
is chosen. Our current translation stage operates at a constant 9 mm/s. Thus, we can only
extend the FOV by 1.6 cm in the 1.8 s acquisition time in Figure 4.5.

Future improvements to our imaging system include FOV, resolution, and software en-
hancements. Another potential improvement is continuous rotation of the sample, as it
can decrease tissue inertial motion in animal experiments [18]. The z axis slow shift coils
described in this work are also capable of boosting the FFL gradient, which would enable
higher resolution imaging (not shown). Alternatively, the FFL system could be redesigned
with a higher gradient strength.

Similar to CT, where both cone beam CT and helical CT exist, we see two paths moving
forward in PR MPI. We compare electronic FFL rotation system designs to helical CT, which
uses fast gantry rotation times (e.g., 0.28 s) along with a moving table scan [43, 1, 15, 8].
Unfortunately, a system with electronic rotation requires approximately double the number
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of magnets and power supplies as a system with mechanical rotation and cannot be built as
a simple permanent magnet system. This is in contrast to the system presented here, which
more resembles cone-beam CT imagers that are more frequently seen in radiation therapy and
interventional procedures, and less so in diagnostic CT. Cone beam CT utilizes slow rotation
times and obtains a large FOV with each projection image. Our PR MPI system utilizes a
simple permanent magnet FFL consisting of two opposed permanent magnets. To produce
a 3D image, we rotate the sample similar to micro-CT scanners [32, 29]. Alternatively, a
gantry could be utilized to rotate the FFL.

In MPI, imaging speed of human-sized scanners will be limited by human safety thresh-
olds, so there is no net improvement in imaging speed for large objects in going to a complex,
rapidly rotating system with no mechanical rotation. From Table 4.1, we note that each (10
cm)3 projection image will take approximately 3 seconds in a high resolution system. This
relatively long projection time will lead to slow gantry rotation times for large volumes. We
also note from Table 4.1, this approach will not significantly impact imaging time compared
to standard 3D configurations. Furthermore, the unique flexibility of this configuration can
produce real-time small-FOV 2D projection images at any angle.

From Table 4.1 and Equation A.13 and A.14, we can make two other key conclusions.
First, improving the native resolution of the tracer (e.g., resolution of 1 mm in a 5 T/m
gradient) results in dramatic improvements in imaging times since a smaller gradient may
be used to achieve a specific resolution. Here, we refer to the native resolution without
deconvolution. Deconvolution can be applied to improve the resolution of the image with a
tradeoff of exponential loss of SNR [36]. Second, even improving the resolution of the tracer
by four fold, a significant challenge when using iron oxide tracers [14, 13], real-time 3D full-
FOV imaging of greater than 5 frames per second may not be possible at high resolution
in the human heart or brain (2.5 T/m, 4 s per frame). This is not to say that real-time
imaging cannot be achieved, but that it just may require the development of new acquisition
techniques such as ROIs within the FOV, adaptive resolution imaging, and cine techniques.

Currently, projection reconstruction imaging is significantly slower than real time; how-
ever, there are many potential techniques for reducing the scan time for PR MPI. The most
straight-forward of these techniques is to reduce the number of projections, which would
undersample the object near the periphery. For reasonable reductions in sampling density,
the artifacts are typically benign. If any artifacts appear due to undersampling, they usually
manifest as streaking artifacts to which radiologists have become accustomed.

Fortunately, it may be theoretically possible to perform true real-time imaging (10+
FPS) across large FOVs in MPI in a 2D projection format [25]. We believe that projection
imaging, or “MPI fluoroscopy,” will be the standard mode of operation for angiographic
applications using MPI. In the cases where 3D is required, the same imager can be used
to acquire full 3D images by rotating the scanner around the bore. Further, such a hybrid
instrument would have the added benefit of an order of magnitude SNR improvement.
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4.6 Conclusion

We have presented a pulse sequence that theoretically produces magnetostimulation-limited
images for projection reconstruction MPI. We explored imaging speed theoretical limits due
to magnetostimulation and found that PR MPI does not significantly increase imaging time
over a 3D FFP imager. Furthermore, PR MPI produces images with an order of magnitude
higher SNR for the same imaging time. We have experimentally demonstrated hardware
changes in our PR MPI system and pulse sequence changes to produce images 20-fold faster.
We acquired high quality images of mice and phantoms with resolution that matches the-
oretical predictions. Moving forward, we anticipate that hybrid projection MPI and PR
MPI systems will become the preferred MPI imaging mode because they will benefit from a
combination of fast 2D imaging coupled with the option of high-sensitivity 3D imaging.
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Chapter 5

MPI Reconstruction using Convex
Optimization

5.1 Introduction

To reconstruct the received signal into an image in MPI, two distinct approaches to image
reconstruction have been demonstrated: system function reconstruction and x-space recon-
struction. The system matrix method measures or simulates how particles act inside a specific
mpi system and uses this information to form a system matrix. The system matrix is then
used to reconstruct an image. In contrast, x-space methods do not require any simulation
or pre-characterization measurements of the mpi system and use an image space (x-space)
continuity algorithm. Current d x-space continuity algorithms are not easily generalizable
to multi-dimensional reconstructions.

Optimization approaches have been used for image reconstruction in mri and ct to
increase imaging speed, reduce image artifacts, and reduce dose [49, 9, 4, 26, 73, 44, 50, 72,
28]. For example, some techniques formulate the mri and ct reconstruction process using
a priori knowledge regarding the governing physics and imaging process such, continuity,
non-negativity, and data consistency when imaging with multiple channels.

These same optimization approaches can be applied to mpi, where a priori information
is utilized to improve reconstruction accuracy. In this chapter we formulate the mpi d, d,
or d image reconstruction process as a convex optimization using knowledge that the image
must be both continuous and non-negative. This new approach improves on our previous
d x-space reconstruction which suffered from artifacts in d and d such as image banding
and haze [46].

5.2 Theory

The x-space systems theory for mpi is described in [23, 22]. The mpi signal equation and
point spread function (psf) were derived using the assumption that mnps instantaneously
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Figure 5.1: Experimental data illustrating proposed image reconstruction. (left) The mea-
sured signal is filtered and velocity compensated before gridding to partial field of view (fov)
images. The partial fov images become the input to the optimization problem. (right)
The optimization problem formulation of dc recovery is illustrated. The forward model A
consists of the S and D operators, where S is the segmentation operator and D is the dc
removal operator. The optimization problem is solved with Equation 5.3.
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align with an applied magnetic field. The systems theory was then extended to include the
first-harmonic direct-feedthrough filtering necessary in real mpi systems [46]. The filtered
information was found to correspond to a loss of spatial dc information in the scanning
direction in one dimension. Details of the previous d x-space data processing and image
continuity algorithm are discussed in Section 5.3.

In this work, we demonstrate for the first time that the mpi reconstruction process can be
improved in d and d by adding a priori information: the mnp distribution is non-negative,
and the mnp distribution is continuous. The validity of these assumptions in mpi systems is
described below.

New a priori information: d and d continuity and
non-negativity

mpi images the density of magnetic nanoparticle convolved with a strictly positive point
spread function; it is not possible for the mpi image to contain negative values except for
those produced by noise. Thus, a physically justifiable assumption is that negative values in
the final reconstructed image are non-physical.

We also know that the reconstructed mpi image must be continuous because psf is
continuous, and the system is linear and shift invariant (lsi). Because the reconstructed
image is the convolution of the mnp distribution and the psf, so long as we sample above
the Nyquist limit the reconstructed image must also be continuous.

There are many ways to include this a priori information into the reconstruction pro-
cess, including optimization, filtering, and custom algorithms. We have concentrated on fast
convex optimization methods which enable rapidly solving large-scale reconstructions using
modest computational hardware. Convex optimization methods can easily solve for objec-
tives with multiple convex terms (e.g., data consistency and d continuity) and non-linear
constraints such as non-negativity. The use of these non-linear constraints improves image
quality and reconstruction robustness, thereby improving image conspicuity. Importantly,
the solutions of convex optimization problems come with strong guarantees such as global
optimality.

5.3 Methods

The reconstruction pipeline can be broken down into two serial processing steps: Data
processing and image reconstruction (see Fig. 5.1). The data processing filters and converts
the raw signal into partial fovs. The optimized dc recovery then minimizes the residual
error between the measured data and an estimated image subject to a forward model specific
to a particular mpi pulse sequence as well as terms incorporating the continuity and non-
negative a priori information. The linear operators that constitute the forward model are
represented by sparse matrices and/or functions. The optimization problem is solved with
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standard gradient descent based algorithms which are fast and robust. We describe these
steps in detail below.

Data pre-processing and partial FOV gridding

Data pre-processing is used to remove noise from the digitized signal and to compress the
data. These steps remain identical to the previously reported x-space reconstruction and are
illustrated in the left column of Fig. 5.1 [23, 46].

The first steps of the data processing are filtering followed by velocity compensation.
Phase correction filters reverse the phase distorted by the hardware filter chain, low pass
filters remove any remaining direct-feedthrough at the fundamental frequency, and digital
harmonic filtering removes signal outside a specified bandwidth of the received harmonics.
Then velocity compensation is performed by normalizing the signal intensity to instantaneous
field-free region (ffr) speed as required for x-space reconstruction [23, 22].

After filtering, the signal is gridded to partial fov images as detailed in Fig. 5.2. The
signal is projected onto a discrete grid using the known trajectory of the ffr and nearest-
neighbor interpolation. The trajectory is redundant and creates overlapping partial fov
sub-images where one partial fov is defined by a single traversal of the ffr.

In general, the resulting partial fov data is missing some unknown portion of the dc
component along the partial fov horizontal axis due to direct feed-through filtering in hard-
ware [46]. In this optimized reconstruction, each partial fov was further filtered to remove
all of the dc content along the horizontal axis for the convenience in forming the forward
operation. This does not fundamentally change the dc recovery problem. The end result of
the lost fundamental harmonic information and subsequent processing is the complete loss
of the partial fov dc component along one axis [61, 46].

The processed partial fov data is significantly compressed when compared to the raw
data acquired by the analog to digital converter (adc). The original vector of raw data in
the system shown later in this work contains 740 million values of data (6 GB) while the
partial fov data, y, contains 14 million values (112 MB). This procedure reduces the size
of the optimization problem by a factor of 50 while simplifying the linear forward model
employed in the optimization. A vectorized partial fov image becomes the input to the
reconstruction procedure.

Linear Forward Model

A linear forward model is used to create a data consistency term necessary to solve for the d
particle density distribution. The linear forward model describes the conversion of an image
into partial fovs with the appropriate dc signal loss due to filtering (see Fig. 5.1, right side).
Thus the forward model is a simplified description of the lsi mpi system. The other aspects
of the complete linear description of mpi were accounted for in the pre-processing steps.

The forward model includes two operators, segmentation S and dc removal D. S breaks
the image into overlapping partial fov images and D removes the average along the hori-
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Figure 5.2: Partial field of view gridding detail. The signal is interpolated to partial field of
view images using the ffr trajectory. Each x-axis traversal is broken into a separate partial
fov image. The sinusoidal pattern is formed due to the x-axis shift field and the z-axis drive
field.

zontal axis of the partial fov. This removal operation is equivalent to subtracting the dc
component of the partial fovs image. More detail is provided in Appendix A.6.

The fundamental operators S and D are composed to form the approximate forward
model of the mpi system, A:

A = DS (5.1)

where A ∈ Rm×n is a matrix, m is the product of the dimensions of the resulting image, and
n is the product of the dimensions of the input partial fov images. Both operations S and
D are simple, and their composition results in an A matrix that is sparse and has a block
diagonal-like structure. The forward model is then described by:

y = Aρ (5.2)

where y ∈ Rm is the input data of vectorized partial fovs from the scanning system and
ρ ∈ Rn is the column-vectorized image of mnp density.
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Reconstruction via Convex Optimization Formulation

Because we have represented the imaging process as a set of linear operations, we are able
to estimate the native mpi image using a convex optimization formulation, expressed below.

minimize
ρ

‖Aρ− y‖22 + α ‖ρ‖22 + βi ‖∇eiρ‖
2
2 (5.3)

subject to ρ � 0

where � is element-wise inequality, ρ and y are as described in (5.2), α and βi are regu-
larization parameters, and ei, i ∈ {1, 2, 3} is one of the three coordinate axis basis vectors.
The image non-negativity constraint improves the general robustness of the dc recovery.
The Tikhonov regularization and the smoothness term, which penalizes the spatial image
gradients, further stabilize the image reconstruction. Traditionally used to better condition
the problem, in this case, the Tikhonov regularization also plays a role in the dc recovery by
forcing the optimization problem to choose an image estimate that is not only consistent, but
with the lowest total dc value (out of a nullspace containing this solution plus any arbitrary
dc value). This corresponds to the most likely image, and dc recovery has been discussed
theoretically in prior x-space mpi literature [46]. As noted above, the addition of smoothness
and non-negativity terms are justified by a priori knowledge of the physics. In Appendix
A.7, Equation 5.3 is reformulated as a non-negative least squares optimization problem.

Imaging Phantoms

To demonstrate the reconstruction method using our mpi system, two imaging phantoms
were created. A double-helix phantom shown in Fig. 5.4 was fabricated from two 0.6 mm
inner diameter tubing segments injected with magnetic nanoparticles (Micromod nanomag-
mip 78-00-102, Rostock, Germany). These tubing segments were wound around a 2.7 cm
acrylic cylinder with a total length of 6.5 cm.

A coronary artery phantom d model with approximately human sized features was
designed in SolidWorks (Dassault Systems, Maltham, MA). The arteries formed cavities in a
cylindrical part. The part was printed on a d printer (Afinia H480, Chanhassen, MN). The
d model is shown in Fig. 5.6. The phantom was designed with 1.8 mm by 2.3 mm maximum
diameter arteries that are approximately ellipsoidal. Injection holes (shown in black) have a
diameter of 1.0 mm.

The phantoms were imaged with the ffp imaging system shown in Fig. 5.3. The images
were reconstructed using the formulation in Fig. 5.1. The optimization problem formu-
lated in Equation 5.3 was solved via a proximal gradient method, Fast Iterative Shrinkage-
Thresholding Algorithm (fista), developed in Matlab [3]. To reconstruct the image, 15
harmonics were used, for a total bandwidth of 300 kHz.

We generated deconvolved images using Wiener deconvolution. The estimated psf re-
turned by blind deconvolution, seeded with a calculated theoretical mpi psf, was used in
the Wiener deconvolution.
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Figure 5.3: Field free point mpi system photo. This 7 T m−1 ffp mpi system was used to
experimentally demonstrate the effectiveness of the d optimized reconstruction.
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Figure 5.4: Experimental mpi data from a double helix phantom. The d dataset was recon-
structed using the previous dc recovery method and the proposed method. Both datasets
are shown in maximum intensity projection images with no deconvolution. Images recon-
structed with the proposed method contain less background haze and fewer artifacts. The
imaging phantom was constructed by wrapping two 0.6 mm id tubes injected with Micromod
Nanomag mip mnps around an acrylic cylinder of od 2.7 cm. The total imaging time was
10 min with a field of view of 4.5 cm by 3.5 cm by 7.5 cm (x,y,z ).

5.4 Results

In Fig. 5.4 the proposed reconstruction is compared to the previous algorithm. Fewer banding
artifacts are present with the proposed algorithm. No deconvolution is used.

In Fig. 5.5 the double helix phantom is shown volume rendered at three different angles
to illustrate the d nature of the dataset. No deconvolution is used.
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Experimental Data - Volume Rendered Images

Figure 5.5: Experimental data of a double helix phantom from Fig. 5.4 at different angles.
The d volume-rendered datasets were reconstructed using the proposed method with no
deconvolution. The total imaging time was 10 min with a field of view of 4.5 cm by 3.5 cm
by 7.5 cm (x,y,z ).

In Fig. 5.6, the proposed reconstruction is contrasted with no dc recovery and the pre-
vious algorithm. In the image with no dc recovery, the partial fov images were averaged
together to form the image with no attempt to recover the lost dc information. There
are obvious dropouts. When deconvolution is used, the background haze in the image is
reduced; however, note there is one dropout (marked with an arrow) in the image due to
deconvolution that is not present in the reconstructed image without deconvolution.

Fig. 5.7 displays the data from Fig. 5.6 at multiple angles of rotation to demonstrate the
d nature of the dataset. The images are volume rendered views with deconvolution.

Fig. 5.8 shows the singular values and right-singular vectors of the svd calculated for the
operator A to illustrate the conditioning of the proposed reconstruction. The operator was
created for a d image reconstruction to allow the singular vectors to be shown easily. A 15
pixel overlap was used with a partial fov width of 20. As expected, note the singular value
of zero for a dc image value indicating that an image with only a dc value is in the null
space of the operator. If the dc singular value is removed, the condition number of operator
A is 5.

Table 5.1 details reduced memory requirements using matrix-free operators. All recon-
struction was done on a single core of a computer with a Xenon processor and 144 GB ram.
The conversion of D to a matrix-free operator reduced the reconstruction time 7-fold and
reduced the storage requirement of the operator to negligible amounts. For a completely
matrix free operator solution, the system memory requirements then shift to the algorithm
and programming language used to calculate the optimization problem, where the number
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Figure 5.6: Experimental mpi data from a coronary artery phantom. Images were recon-
structed with the proposed reconstruction formulation and contrasted to the previous d
DC recovery and no DC recovery. The imaging phantom was created by d printing an abs
plastic coronary artery model. The reconstructed d dataset is shown in maximum intensity
projection images. With no dc recovery, many image intensity dropouts are evident. The
optimized d recovery contains fewer artifacts and less background haze. Light deconvolu-
tion can be used to remove remaining background haze present in the reconstructed signal.
The total imaging time was 10 min with a field of view of 4.5 cm by 3.5 cm by 9.5 cm (x,y,z ).

Sparse Matrix Matrix-Free Operator D

ram 32 GB 0.000 000 2 GB

Computation Time 53 min 8 min

Table 5.1: Sparse matrix versus matrix-free operator computation time and ram require-
ments.

of copies of the problem input largely determine the amount of memory required.

5.5 Discussion

Image robustness to noise/artifacts are two core requirements of any imaging modality [54,
56]. To enable the acceptance of mpi, developers must produce a robust imaging system.

We see that the generalized formulation for d and d reconstruction improves the image
reconstruction robustness. This is seen in Fig. 5.4, where the proposed reconstruction has
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Experimental Data - Volume Rendered Images

Figure 5.7: Experimental data of a coronary artery phantom from Fig. 5.6 at different
angles. The d volume-rendered datasets were reconstructed using the proposed method
with deconvolution. The total imaging time was 10 min with a field of view of 4.5 cm by
3.5 cm by 9.5 cm (x,y,z ).

improved conspicuity and reduced artifacts, including no banding and minimal haze. Band-
ing artifacts manifest as ripples along the horizontal and vertical axes due to discontinuities
between partial fovs. Because of the a priori information that the image is continuous, the
banding artifacts do not occur in the images reconstructed via the optimization approach,
which takes advantage of image smoothness along all image axes.

As shown in Fig. 5.6, care must be taken when applying deconvolution, as deconvolution
can reduce image robustness. As noted above there is one dropout in the image due to
deconvolution that is not present in the actual reconstructed image as marked with an
arrow. For this reason deconvolution must be applied carefully in practice to ensure the
introduction of additional artifacts is minimized. Deconvolution is able to reduce the haze
present with the prior algorithm, but it is not able to compensate for the banding artifacts.
The banding artifact appears in the deconvolved image with the previous dc recovery, but
not with the proposed dc recovery.

The robustness of a matrix inverse can be seen in the structure of the matrix’s singular
values. Fig. 5.8 is a reflection of this for a one dimensional reconstruction that has the
same overlap properties as the full A matrix. The minimum singular values correspond
to long straight lines in the scanning direction, which is not a structure commonly seen in
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Figure 5.8: The svd singular values and right singular vectors, V, are calculated on A for a
d problem with a 15 pixel overlap and a partial fov width of 20. The singular vectors are
shown in absolute value. The singular values demonstrate well-posed nature of the proposed
reconstruction problem.

practice as most anatomical structures are tortuous. Even so, this problem can be completely
resolved by exciting along two or more orthogonal axes. We note above that the condition
number of the operator matrix is 5 if the dc right-singular vector is removed from the image
reconstruction. Because the reconstruction process is well-formed and has just a few small
singular values, the choice of regularization parameters does not have a strong effect on the
resulting image.

In Fig. 5.8, the singular value magnitude varies directly with the amount of overlap in a
region; the singular value plateaus are equal to the square root of the number of partial fov
overlaps. In example, for singular value indicies 1 to 64, each pixel in the central region is
acquired four times in different partial fovs so these pixels have singular values of

√
4 = 2.

Note the region of variation in the singular vectors image corresponds to the section of four
overlapping partial fovs where the singular value magnitude is 2.
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The svd confirms that our reconstruction is robust. Low singular values correspond to
images with a constant value, which are due to hardware high-pass filtering of the fundamen-
tal. This is expected, as the dc recovery algorithm cannot find the correct baseline without
at least one zero value. Images taken with mpi are sparse by nature, meaning most images
contain at least one zero. This baseline problem is assisted by multi-dimensional excitation
– an entire d or d image will have to be of some constant value to be in the null space of
A.

Additionally, changing the overlap does not significantly alter the condition number until
the overlap becomes small (a few pixels). This indicates that the choice of overlap does not
change the conditioning of the problem (data not shown).

Note that the analysis done with the svd can also drive pulse sequence design where we
note that greater signal to noise ratio (snr) efficiency may be achieved by adding additional
acquisitions near the edge of the fov to better condition the reconstruction.

The above SVD analysis shows that image reconstruction via the proposed optimization
method is robust. Furthermore, the gains in image robustness from the proposed method
over the previous x-space approach in terms of reduced banding and haze are significant. We
anticipate that improved mpi reconstruction techniques such as optimized d reconstruction
will be crucial for the long term acceptance of mpi in the clinic. In addition, we believe
that these methods, along with advances in hardware and mnp design, will be important
for reducing haze and increasing resolution. This is juxtaposed with deconvolution, which
degrades snr and can introduce artifacts.

The proposed optimization approach is extensible in many ways. In general, any new
a priori information can easily be incorporated. It can be modified to incorporate any
particular mpi pulse sequences or trajectories that may become advantageous. An example
is the simultaneous reconstruction of multichannel information. The proposed approach can
also be modified to include filtered backprojection for field-free line (ffl) mpi systems. In this
context, compressed sensing approaches can be explored with the inclusion objective terms
such as sparsity transforms: wavelet transforms, discrete cosine transforms, or Chebyshev
transforms. The expansion of the formulation to include filtering and gridding steps of
x-space mpi can also be explored.

5.6 Conclusion

mpi image reconstruction has been reformulated as a d optimization problem used in con-
junction with the x-space reconstruction method. The proposed reconstruction algorithm
was applied to measured data and is shown to recover the image while demonstrating ro-
bustness to noise. The reconstruction is shown to produce fewer image artifacts than the
previous d algorithm due to use of a priori information, including non-negativity and image
smoothness. The framework developed here has greater flexibility than the previous algo-
rithm for future advanced applications in mpi, including generalized trajectories in x-space,
projection reconstruction, filtering incorporation, and compressed sensing.
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Appendix A

Appendix

A.1 FFL Rotation

An FFL magnetic field can be described using a gradient matrix in the instrument frame as

H(x) = Gx

=

 −αGzz Gxy Gxz

Gxy (α− 1)Gzz Gyz

Gxz Gyz Gzz

 x
y
z

 ,
where x is the position vector and Gab is the partial derivative of the magnetic field in the

a direction with respect to b. We design the FFL magnet such that α = 1 (so the FFL lies
along the y axis) and the cross terms Gxy, Gxz, and Gyz are zero so that the field becomes

H(x) = Gx =

 −Gzz 0 0
0 0 0
0 0 Gzz

 x
y
z

 . (A.1)

We then rotate the coordinate system about the z axis using the rotation matrix,

Rz(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , (A.2)

where θ is the angle of rotation. The coordinate system after rotation is x′ = Rzx, and
the field after rotation is H′ = RzH. Rz is an orthogonal matrix so R−1z = RT

z . The field
is translated along the x axis in the instrument coordinate system by a homogeneous field,
Hs = Hxî. The particles are excited along the z axis by a homogeneous field, He = Hzk̂.
The field in the sample’s rotated coordinate system becomes

H′(x′, θ) = Rz(GRT
z x
′+Hx̂i +Hzk̂).
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The x′, y′, and z′ axes are in the rotated (sample) coordinate system and correspond
to the x, y, and z axes respectively in the instrument coordinate system. Note that in the
sample’s coordinate system, sample rotation and FFL rotation are equivalent operations.
The trace of H′ remains zero as required by Maxwell’s equations. After simplification, each
component of the magnetic field is then

H′(x′, θ) =

 −Gzz cos θ(x′ cos θ + y′ sin θ −Hx/Gzz)
−Gzz sin θ(x′ cos θ + y′ sin θ −Hx/Gzz)

Gzzz
′ +Hz

 .
To determine where the field free line lies in space, we take the magnitude squared of the

magnetic field,

|H′(x′, θ)|2 = (Gzzz
′ +Hz)

2

+G2
zz(x

′ cos θ + y′ sin θ −Hx/Gzz)
2. (A.3)

By inspection, we see that the field is zero at

z′ = −Hz/Gzz

and
x′ cos θ + y′ sin θ = Hx/Gzz.

We define
` = Hx/Gzz.

Thus, the FFL lies on
x′ cos θ + y′ sin θ = `,

where ` [m] is the shift position perpendicular to the FFL. This is the standard notation
used in CT [59].

A.2 PSF Derivation

We calculate the 2D PSF based on the normal component of the collinear FFL PSF [22]. The
collinear PSF is used because the transmit excitation vector and maximum receive sensitivity
are aligned (along the z axis). The normal component refers to the fact that the image axis,
the x axis, is perpendicular to the transmit axis, the z axis. We begin with the expression
for the multidimensional PSF,

h(x) = L̇ [‖Gx‖ /Hsat]
Gx

‖Gx‖

(
Gx

‖Gx‖

)T
G

+
L [‖Gx‖ /Hsat]

‖Gx‖ /Hsat

(
I− Gx

‖Gx‖

(
Gx

‖Gx‖

)T)
G. (A.4)
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We then set the excitation vector along the z axis, set θ = 0 so the gradient matrix is
G = diag(Gxx, 0, Gzz), and calculate the PSF along the x axis,

h||(x, 0, 0) =
L [|Gxxx| /Hsat]

|Gxxx| /Hsat

Gzz,

where we use the || symbol to denote that we are using the collinear portion of the PSF.
Substituting the Langevin function, we get the following expression for the collinear 1D

PSF along the x axis [22],

h||(x, 0, 0) =

(
coth(Gxxx/Hsat)

Gxxx/Hsat

− H2
sat

(Gxxx)2

)
Gzz, (A.5)

where the unnecessary absolute values have been removed.
To determine the two dimensional PSF after projection reconstruction, we take the inverse

Abel transform of the 1D PSF which is the mathematical operation for filtered backprojection
[6]. This is equivalent to taking the Fourier transform and subsequently applying the inverse
Hankel transform,

hpr(r) = A−1{h||(x, 0, 0)} = H−1
{
F
{
h||(x, 0, 0)

}}
.

The function for h|| does not have a simple Fourier transform so we approximate the function
with two Lorentzian functions,

ĥ||(x, 0, 0) =
2∑

k=1

2βk
1

x2 + α2
k

, (A.6)

where α1 = 3.6Hsat/Gxx, α2 = 27.8Hsat/Gxx, β1 = 0.8α2
1Gzz/6, and β2 = 0.2α2

2Gzz/6.
Hsat = kbT

µ0m
[A/m] is the field required for saturation, and m = Msatπd

3/6 [T/m3] is the
magnetic moment. Parameters αk are related to the width of the function while βk determine
the weighting of the two components. We chose the function’s form from the closest match
from Fourier transform tables and chose parameters αk and βk by fitting Equation (A.6) to
Equation (A.5). Equation (A.6) is accurate to one percent RMS error as a percentage of full
scale when measured within a FOV greater than or equal to 6 cm. The RMS full scale error
is defined as

errorn =
(an − bn)

max(a)
, (A.7)

where an and bn are the values compared at each index, n. We then calculate the root
mean squared value from the error vector. The projection PSF, its approximation, and the
RMS full scale error are illustrated in Fig. A.1.
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Figure A.1: Projection point spread function from Equation (A.5) and a two lorentzian
approximation from Equation (A.6) as well as the error as a percentage of full scale calculated
with Equation (A.7).

Using the 1D Fourier transform pair,

2b

b2 + x2

F
→ 2πe−b|2πq|,

the above approximation for ĥ|| has a Fourier transform,

Ĥ||(q) =
2∑

k=1

βk
αk

2πe−αk2πq.

Next, we calculate the inverse Hankel transform, which is defined from 0 to ∞; thus we
drop the absolute value and use the transform pair,

b−12πe−b2πq
H−1
→

(
b2 + r2

)−3/2
.

We arrive at the analytical approximation for the projection reconstruction PSF,

ĥpr(r) =
2∑

k=1

βk
(
α2
k + r2

)−3/2
. (A.8)
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A.3 Number of Projections

A minimum number of projections are required to avoid spatial aliasing in a projection
reconstruction image. Aliasing in a PR system typically manifests as streaking artifacts. The
artifacts can reduce the effective resolution of the image as well as impact the perspicuity
of the images. To avoid streaking artifacts and a loss of effective resolution we can choose a
sample rate that meets the Nyquist criterion. We choose system parameters such that

∆k ≤ 1/FOVxy,

where Δk is the spatial frequency and FOVxy is the maximum FOV in the x axis and y axis.
Δk is controlled by the number of projections and how finely the projections are sampled in
k-space, as illustrated in Fig. A.2.

Kx

Ky

ΔK

Δθ
Δθ2

ΔK2

Kmax

Samples

Figure A.2: The worst case distance between samples in projection reconstruction occurs at
the outer radius of successive rotated projections. From these samples, we determine the
minimum angular difference between projections and the maximum number of projections
required to avoid aliasing according to the Nyquist criterion for projection reconstruction.

The worst-case sampling separation in k-space is

∆k = 2Kmax sin

(
∆θ

2

)
,

where Kmax is the radius covered in k-space and ∆θ is the angular sampling increment.
Using a small angle approximation, we derive the following formula as guidance:

∆θ <
1

FOVxy ·Kmax

.
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Substituting

Nproj =
π

4θ
,

where Nproj is the number of projections, we arrive at the formula for the number of projec-
tions needed to avoid aliasing,

Nproj > π · FOVxy ·Kmax.

This is consistent with the result reported in Bracewell and Riddle [5].

A.4 Projection Reconstruction SNR Gain Calculation

We calculate the SNR gain of 3D projection reconstruction with a FFL as compared to
3D imaging with a FFP with equal imaging time. Here, we assume that the two systems
have identical noise characteristics, pulse sequence, resolution, and gradient strength. In a
simulation study, Weizenecker et al. noted that the SNR of a 3D PR image is approximately
proportional to

√
N , where N is the number of projections acquired [76]. Here, we show how

the SNR is affected by the filtered backprojection (FBP) operation. We begin by calculating
the noise variance of FBP:

σ
2
PR = σ2

0

π

N

2π∫
0

dφ

Kmax∫
0

kdk
|G(k)|2

k
,

where σ0 is the standard deviation of noise per pixel assuming gaussian random noise, k
is spatial frequency, G(k) is the filter frequency response, φ is the angle in radians, Kmax

is the maximum radial spatial frequency of the acquired image (i.e., the total extent is
2Kmax). Similar calculations have been done in CT [64]. Note that filtering takes place after
discretization of the acquired projection images. Hence, the spatial-frequency domain is
“normalized” such that the maximum frequency is one-half cycle per pixel, i.e., 2Kmax = 1.
For a ramp filter G(k) = k, the noise variance becomes

σ2
PR =

2σ2
0π

2K3
max

3N
=
σ2
0π

2

12N
We then calculate the SNR for a PR image after filtered backprojection with a ramp

filter:

SNRPR =
µ

σPR
=

2
√

3µ

πσ0

√
N

where µ is the signal mean or expected value. Similarly, the noise variance in an image
acquired with a FFP can be calculated:

σ2
FFP = σ2

0(2Kmax)(2Kmax) = σ2
0
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Thus,

SNRFFP =
µ

σ0

Finally, we find

SNRPR

SNRFFP

=
2
√

3

π

√
N.

In general, the exact value of the constant multiplier before
√
N depends on the shape of

the filter G(k).

A.5 MPI Acquisition Time Calculation

We can calculate the optimum imaging time based on specific absorption rate (SAR) and
magnetostimulation (dB/dt) limits, the two primary safety concerns when imaging human
subjects using time-varying magnetic fields. Due to the frequency range in which MPI
operates, magnetostimulation (and not SAR) is the dominant limitation for scanning speed in
MPI [23, 66]. For human-size MPI scanners, magnetostimulation will restrict the amplitude
of both the excitation (drive) field and the slow shift (focus) fields.

The drive field in MPI is typically a ˜25 kHz frequency sinusoidal field. Between 5-50
kHz, the magnetostimulation threshold in the human torso is extrapolated as approximately
Bth = 7 mT [66]. With a G = 10 T/m gradient strength, which will produce 1 mm native
(i.e. no deconvolution) resolution with Resovist [23, 22, 21, 20], the FOV can be calculated
as: FOV = 2Bth/G = 1.4 mm.

To address the limited FOV coverage of the drive subsystem, slow shift magnets [22] or
focus field magnets [68] are used. These slow shift magnets slowly raster the mean position
of the FFP or FFL (see Figure A.3), expanding the FOV beyond what is covered by the
drive field alone. In a system with slow shift magnets, the space covered solely by the drive
field (with the slow shift field disabled) is termed a “partial FOV” (pFOV) [22] or “imaging
station” with multi-station reconstruction [68]. Slow shift fields also limit the acquisition
time for an MPI system due to magnetostimulation limits. The ICNIRP define a maximal
magnetic field slew rate of 20 T/s for pulse durations longer than a couple of milliseconds
[31]. As we determine below, the slew rate causes the slow shift fields to become binding
constraints on imaging time in addition to the drive field.

Generally, the total imaging time, T [s], in MPI can be calculated as

T =
D

vs
, (A.9)

where D [m] is the total distance traveled by the Field Free Region, and vs [m/s] is the slow
shift field scanning rate. The total distance traveled depends on the type of drive field and
slow shift field pulse sequences. Commonly a linear or Lissajous trajectory is used for the
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drive field. These trajectories provide near ideal spatial coverage and are easy to calculate
[75, 61].

Figure A.3: Trajectory distance calculation for Lissajous pattern. The Lissajous pattern is
created with two sinusoidal drive fields and is slowly rastered through the field of view with
two slow shift (focus) fields.

The total distance traveled by the mean position of the field free region dominates the
total imaging time assuming that (1) the time to cover the pFOV is nearly instantaneous,
(2) magnetostimulation thresholds from the drive field and the slow shift fields do not affect
each other, and (3) the pFOV is small relative to the total FOV (see Figure A.3). The total
distance is then calculated as

D2D≈pzFOVx (A.10)

D3D,ffp≈pzpyFOVx (A.11)
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where

pi =
β · FOVi
pFOVi

, (A.12)

Here, 2D refers to a single slice in FFP imaging or a single projection using a FFL, and 3D
refers to imaging using a FFP. FOVi is the size of the Field of View along axis i, pFOVi
is the size of the partial FOV along i, pi is the number of pFOVs along i, and βis a factor
(¿1) determining the overlap extent of the pFOVs required for baseline recovery [47]. We
can calculate the maximal size of the pFOV using the simple relation pFOV = 2Bth/G [m].
Accordingly, the imaging time can be estimated as

T2D≈
β ·GzzFOVz

2Bth

GxxFOVx
Smax

, (A.13)

T3D,ffp≈
β ·GzzFOVz

2Bth

βGyyFOVy
2Bth

GxxFOVx
Smax

, (A.14)

where Smax = 20 T/s is the maximum slew rate as described above and µ0Gab [T/m] is the
partial derivative of the magnetic field in the a direction with respect to b.

A.6 Operator Detail

The dc removal and segmentation operators are described in detail here. S is the segmen-
tation operator, which breaks the image into overlapping partial fov images:

S =

Is

Ir

Is

Is

Ir

Is

. . .




where Is is an identity matrix the size of the overlap, s, between adjacent partial fov images.
Ir is an identity matrix the size of the r = p− 2s where p is the width of partial fov. This
definition is specific to the problem with the image vectorized along the rows first with integer
shift quantities. The shift value may be non-integer which interpolates between pixels (not
shown).
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D is the dc removal operator, which removes the average along the z-axis of the partial
field of view:

D =


R

R
. . .

R

 ,
where

R = Ip −
1

p
.

This operation is equivalent to subtracting the dc component in Fourier space.

Linear Operator Representation

The image reconstruction problem can be complicated by the need to construct and store
very large matrices. Simply storing these matrices can be a challenge, even with considerable
sparsity (˜1:105) present in the matrices in this work. For example, even when stored in a
standard sparse form, the matrix A in (5.3) can require approximately 32 GB of memory for
the d data sets acquired in this work.

Instead of storing sparse matrices, matrix-free operators can be utilized. Only the results
of matrix vector products must be stored, while the products themselves are encoded as
functions, e.g., A : X → Y , where X is the blurred mnp density domain and Y is the
received partial fov co-domain. These matrix-free operator methods are used in mri, ct,
and geology to reduce the storage requirements of imaging problems [50, 52, 10].

In practice, there are two challenges in converting a given matrix formulation into the
equivalent matrix-free operator formulation. First, one must derive two functions: one
for the linear map (Ax) and one for the corresponding adjoint (ATy). Here, matrix-free
operator formulations for both the dc removal operator D and the splitting operator S and
by composition A were developed. The functional forms can be checked for correctness by
operating on the identity (returning the linear map in its finite, matrix form) and through
the dot-product test [10]. As noted in the results section, going to matrix-free operator
methods has significantly sped up reconstruction time and reduced ram requirements.

A.7 Solvers

Equation 5.3 can be reformulated more generally:

minimize
ρ

‖Tρ− b‖22 (A.15)

subject to ρ � 0
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where

T =

 A√
α√

βi∇ei

 b =

y0
0


In this form, the image reconstruction problem is a basic least squares problem sub-

ject to a non-negativity constraint. Many tools for solving this basic form of non-negative
least squares are available in common scientific computing platforms; however, these tools
do not support using matrix-free operators to solve optimization problems. Therefore we
implemented the fista proximal algorithms using matrix-free operators, where the proximal
operator is a projection onto the non-negative orthant [3, 58]. With the solvers, we can com-
pare the practical computational advantages or disadvantages of using matrix-free operator
formulations over matrix formulations.
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