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Summary

Shotgun metaproteomics has potential to reveal the functional landscape of microbial 

communities, but lacks appropriate methods for complex samples with unknown compositions. In 

the absence of prior taxonomic information, tandem mass spectra would be searched against large 

pan-microbial databases, which requires heavy computational workload and reduces sensitivity. 

We present ProteoStorm, an efficient database search framework for large-scale metaproteomics 

studies, which identifies high-confidence peptide-spectrum matches (PSMs) while achieving a two 

to three orders-of-magnitude speedup over popular tools. A reanalysis of a urinary tract infection 

(UTI) dataset of 110 individuals revealed a complex pattern of polymicrobial expression, including 

sub-types of urinary tract infections, cases of bacterial vaginosis, and evidence of no underlying 

disease. Importantly, compared to the initial UTI study that restricted the search database to a 

manually-curated list of 20 genera, ProteoStorm identified additional genera that were previously 

unreported, including a case of infection with the rare pathogen Propionimicrobium.
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In the absence of prior taxonomic information, tandem mass spectra would be searched against 

large pan-microbial databases, requiring heavy computational workload. We present ProteoStorm, 

an efficient database search framework for large-scale metaproteomics studies, achieving a two to 

three orders-of-magnitude speedup over popular tools, while maintaining high sensitivity. A 

reanalysis of a urinary tract infection (UTI) dataset revealed complex pattern of polymicrobial 

expression and previously unreported rare pathogens.

Graphical Abstract
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Metaproteomics is an emerging field that identifies expressed proteins using tandem mass 

spectrometry (MS/MS) to decipher the taxonomic and functional realm of complex 

microbial environments. Without prior knowledge of the active organisms in a sample, 

downstream analyses are highly dependent on the accurate assignment of MS/MS spectra to 

peptide sequences from massive (~10Gb+) pan-microbial protein databases. While iterative 

search methods utilizing conventional database search tools (Jagtap, et al., 2013; Tang, et al., 

2016; Zhang, et al., 2016) increase identifications by reducing the initial search space, and 

methods such as ComPIL (Chatterjee, et al., 2016) address heavy computational workload 

by distributing data across multiple servers, searching large databases in reasonable time 

frames, without the requirement of high computational capacity, remains a major 

impediment. We present ProteoStorm, an ultrafast metaproteomics database search 

framework that utilizes a multi-staged, efficient filtering of peptide-spectrum matches 

(PSMs). On large pan-microbial databases and spectral datasets, ProteoStorm achieved a 

speedup by two to three orders-of-magnitude over popular database search tools while 

maintaining high sensitivity in terms of peptides identified.
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There are many reasons why conventional database search tools do not scale well in 

metaproteomics studies. For a large database, D, a common practice is to split D into k 
arbitrary small files di, where each of m spectral files is searched against each di. While 

memory efficient, this practice results in the inefficient and redundant search of spectra 

against peptides that would never result in a viable match. ProteoStorm assumes that for 

each detectable protein in a microbial sample, there exists at least one fully-tryptic peptide 

with no variable modification, identifiable with a sufficiently low p-value PSM.

This motivates a multi-stage strategy (Fig. 1a), where a fast, fully-tryptic search in the first 

stage is followed by a semi-tryptic search in the second stage that is limited to proteins 

identified in the first stage. Each stage of ProteoStorm is composed of three core modules: i) 

database and spectra partitioning, ii) efficient and sensitive peptide filtering, and iii) PSM p-

value computation (STAR Methods).

In the first module, ProteoStorm bins the unique set of in silico digested tryptic peptides 

from a pan-microbial database, D, into n database partitions with pre-defined mass windows 

in Daltons (Fig. 1b; STAR Methods). Separately, spectra are organized into n matching 

partitions, based on their parent masses. Each spectral partition is searched only against its 

matching database partition (instead of k database files mentioned above), reducing the 

number of computations dramatically. Moreover, the partitioning of the entire pan-microbial 

database is a one-time operation, and the partitions can be used for any metaproteomics 

experiment.

To overcome the inefficiency of scoring spectra against peptides with poor match of b-/y-

ions, the second module of ProteoStorm filters spectrum-peptide pairs with insufficient 

number of shared peaks using an ion-mass indexing data structure, I (Fig. 1c; STAR 

Methods). Similar to previous studies (Rinner, et al., 2008; Stein, 1995; Burke, et al., 2017; 

Kong, et al., 2017), ProteoStorm utilizes the fact that theoretical ions from different peptides 

may share the same m/z value given a charge and fragment mass tolerance. For each 

database partition, ProteoStorm constructs I, where ion-mass index i references a mass-

sorted list of peptides containing a b-/y-ion within the mass tolerance of i. For each 

prominent peak in a spectrum s, its corresponding ion-mass index i ∈ I is accessed to 

retrieve the collection of peptides, P, containing a matching ion. For all peptides p ∈ P that 

are within the parent mass tolerance of the spectrum, the shared peak count (SPC) of the 

spectrum-peptide pair (s,p) is incremented by one. Spectrum-peptide pairs with a sufficient 

SPC are retained for further analysis in the third module. This ion-mass indexing-based 

peptide filtering enables ultra-fast querying of a spectrum against a peptide database as it 

bypasses all peptide ions with no matching spectrum peak, and matches prominent spectral 

peaks against all peptide ions simultaneously.

In the third module, ProteoStorm utilizes the MS-GF+ generating function (Kim & Pevzner, 

2014) to compute p-values for (s,p) pairs with the highest MS-GF+ raw score for a given 

spectrum s. Accurate estimation of p-values allows for the subsequent computation of a 

peptide-level FDR. Peptides identified in the first stage are used to construct a refined 

protein database for a semi-tryptic second-stage search (STAR Methods).

Beyter et al. Page 3

Cell Syst. Author manuscript; available in PMC 2019 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We evaluated the performance of ProteoStorm using 7.5 million LC-MS/MS spectra 

obtained from urinary pellets (UP) of 110 suspected urinary tract infection (UTI) cases and 

five healthy individuals from two related studies (Yu, et al., 2015; Yu, et al., 2017). When 

searching the full UTI data set against a database of 18.8 million microbial sequences from 

UniProtKB (Release 2017_07), ProteoStorm completed in 1.79 CPU-days – a 485x speedup 

compared to the estimated 123.8 CPU-weeks for MS-GF+. Given these encouraging 

speedups and noting the extensive time requirements of other tools, we used a subset of 17 

individuals (0.9 million spectra) to perform a systematic comparison of identified peptides 

and runtimes against MS-GF+, Comet (Eng, et al., 2013), and MSFragger (Kong, et al., 

2017).

At 1% peptide-level FDR, MS-GF+ identified 12,139 peptides in an estimated CPU-22 

weeks, Comet identified 9,341 peptides in an estimated CPU-10.7 weeks, and MSFragger 

identified 11,530 peptides in an estimated CPU-2.4 weeks. In contrast, ProteoStorm 

identified 13,550 peptides in 9.7 CPU-hours, a speedup by 382x, 186x, and 41x, respectively 

(Fig. 1d). ProteoStorm identified 96% (11,657) of the MS-GF+ peptides, as also 95.9% 

(10,331) of the peptides identified by at least two of the three tools (Fig. S3b). On the other 

hand, Comet identified 64.3% and 78.1% of peptides respectively, and MSFragger identified 

75.9% and 93.5% of peptides respectively.

All tools had comparable identification rates, with ProteoStorm slightly higher at 5.98% in 

contrast to the range of 5.02% to 5.42% for other tools. The low identification rates were 

likely due to missing sequences in the initial pan-microbial database. To test this, we also 

searched a small wastewater metaproteomics dataset (150,216 spectra), where a specialized 

database (2.47Gb) had been constructed using the Graph2Pep/Graph2Prot approach (Tang, 

et al., 2016) on metagenomics data. ProteoStorm identified 10,633 peptides, or 95.9% 

(4,790) of the MS-GF+ peptides, in 52.6 minutes, while the Graph2Pep/Graph2Prot 

approach identified 8,740 peptides, or 83.6% (4,175) of the MSGF+ peptides, and took over 

3.8 CPU hours (Fig. S1b). Graph2Pep/Graph2Prot reduced the initial search space by 124x, 

while ProteoStorm by 184x (Fig. S1a). Compared to searching against the UniProtKB 

database, searching against the metagenome derived database improved identification rate 

from 7.2% to 15.5%.

The speedup provided by ProteoStorm is further amplified by searching the full UTI data set 

against a comprehensive database (RefUP++; STAR Methods) containing 95 million 

sequences. When increasing both the number of spectra from 0.9M to 7.5M and the database 

size from UniProtKB (7.8 Gb) to RefUP++ (34.1Gb), ProteoStorm speedup over MS-GF+ 

increased from an estimated 382x to 953x (Fig. S3c). The reduction of the initial search 

space ranged from 34x to 76x depending on the dataset and database searched (Fig. S3a). 

Breaking-down ProteoStorm runtime by module shows that the increase is mostly due to a 

prolonged computation of p-values as the number of spectra increases (Fig. 1e). While there 

is also an increase in runtime when solely increasing the initial database size, this is mainly 

due to the stage-two database partitioning.

The initial UTI study (Yu, et al., 2015) restricted the search database to a manually-curated 

list of 20 genera, identifying 15 as being expressed in 110 individuals. Using an unbiased 
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search of the full UTI dataset against the RefUP++ database (2,259 genera) and a genera-

restriction approach (STAR Methods), we identified 64 genera, including the previous 15 

(Table S1). Out of 73,092 peptides, 28.5% (20,833) mapped uniquely to a single genus. 

Moreover, in 98 out of the 110 individuals, we found that every individual had either the 

same or a superset of the genera previously reported. Overall, we observed a complex 

pattern of polymicrobial expressions (Fig. 2). Using clusters supported by multiscale 

bootstrap resampling (Table S2), we could observe at least four bi-clusters. The most 

common uropathogen in UTI is Escherichia coli, followed by other gram-negative microbes, 

including Klebsiella, Citrobacter, Pseudomonas, and Enterobacter (Ronald, 2002). 

Individuals infected by these dominant uropathogens are present in clusters C-I (genera: 

89au; individuals: 99au), including eight of the twelve individuals who were also clinically 

diagnosed with UTI (Yu, et al., 2017). Six of the eight individuals were aged 61 to 84, and 

exhibited polymicrobial UTI (p-UTI) with either Escherichia or Klebsiella dominant over 

the other (Table S1). Indeed, p-UTI is common among the elderly, and Escherichia coli and 

Klebsiella frequently co-occur in p-UTI (Laudisio, et al., 2015).

Individuals infected by obligate or facultative anaerobic pathogens that are frequently 

undetected using typical urine culture diagnostic methods are present in cluster B-III 

(genera: 97au; individuals: 94au) (Imirzalioglu, et al., 2008). Of note, individual #116 was 

clinically diagnosed with UTI, and while a previous study reported Proteus mirabilis as the 

major UTI causing pathogen, ProteoStorm identified the rare UTI pathogen 

Propionimicrobium (1,129 out of 3,531 PSMs) (Ikeda, et al., 2017) as the most abundant 

genera followed by Facklamia (544 PSMs), Actinotignum (538 PSMs), Proteus (424 PSMs), 

and other gram-positive bacteria (Table S1).

As the female urine specimens were clean catch samples, we cannot distinguish between 

true urethral/bladder colonization and possible contamination by microbes that are part of 

the vaginal and vulvar microbiota. In cluster A-II (individuals: 91au), which is dominated by 

Lactobacillus, we observed seven of twelve individuals who previously expressed high 

abundances of human epithelia cell proteins (Yu, et al., 2017). The dominance of 

Lactobacilli together with evidence of shed squamous epithelial cells could suggest a lack of 

an underlying pathology. In contrast, individuals in cluster A-IV (genera: 96a; individuals: 

89au) revealed higher abundances of microbes known to contribute to bacterial vaginosis 

(BV), notably Gardnerella, Prevotella, Atopobium, Sneathia (Ma, et al., 2012; Onderdonka, 

et al., 2016). This data is consistent with BV as an underlying pathology related to these 

specimens.

As a UTI dataset is considered less complex, we searched a human infant gut 

metaproteomics dataset (2.4M spectra) against the RefUP++ database using the genera-

restriction approach (STAR Methods). ProteoStorm identified 19 genera (Table S3) from 

31,606 peptides mapping uniquely to a single genus (54.9% of all identifications), and 

detected similar shifts in microbial abundance across day of life 21, 34, and 50 when 

compared to the previous study (Xiong, et al., 2017) (Fig. S2a). Searching against the 

matched metagenome database, ProteoStorm identified 61,364 peptides, or 94.5% (53,847) 

of the MS-GF+ peptides (Fig. S2b) at an identification rate of 24.2%.
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Metaproteomic studies based on database search approaches depend on the effective and 

efficient analysis of data. In clinical cases, the accurate identification of pathogens affects 

treatment options, and failure to detect certain microbes due to non-inclusiveness in the 

search database may lead to suboptimal treatment or misuse of antibiotics. The use of 

reference protein repositories is advantageous, but as they grow with increasing sequencing 

data, so does the need for efficient computational tools that analyze complex, multi-species 

communities. ProteoStorm is an ultrafast and highly sensitive tool for the metaproteomics 

community, and is available through GitHub (https://github.com/miinslin/ProteoStorm).

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Vineet Bafna (vbafna@cs.ucsd.edu).

METHOD DETAILS

Data sources

Pan-microbial databases: The UniProtKB database (7.8Gb) in this study consists of 

18,755,274 protein sequences from reference proteomes of 6,521 bacterial species (UniProt 

Release 2017.07). A comprehensive database (RefUP++; 34.1Gb; 2,259 genera) was 

constructed using 94,916,719 bacterial and fungal protein sequences from RefSeq (Release 

85; ftp://ftp.ncbi.nlm.nih.gov/refseq/release/), and UniProt Pan Proteomes (Release 2017.12) 

and Reference Proteomes (Release 2017.07) (ftp://ftp.uniprot.org/pub/databases/uniprot/). 

We provide the RefUP++ database as a set of 58 files, accessible via Github. The fasta 

header information has been processed to include the name of the protein entry followed by 

the genus name of the organism and the taxonomy ID (see Genera-restriction approach).

Urinary Tract Infection (UTI) MS/MS dataset: To evaluate the performance of 

ProteoStorm, we used a dataset previously published in two related studies (Yu, et al., 2015; 

Yu, et al., 2017). LC-MS/MS Raw files of urine pellet (UP) samples from 110 suspected 

urinary tract infection (UTI) cases and five healthy individuals were provided by researchers 

at The J. Craig Venter Institute (JCVI) or downloaded from the PRIDE Database 

(PXD004713). As described previously (Yu, et al., 2017), the samples were collected for 

diagnostic purposes, considered medical waste, and de-identified prior to transfer to JCVI. 

Samples were run in replicate on an Ultimate 3000-nano LC and Q Exactive mass 

spectrometer system coupled via a FLEX nano-electrospray ion source (Thermo Scientific). 

RAW files were subjected to peak-picking (Vendor) and converted to Mascot generic format 

(MGF) format using MSConvert (ProteoWizard v3.0) (Chambers, et al., 2012).

Given the focus of ProteoStorm on metaproteomic data analysis, we performed an initial 

search of the full UTI dataset against the Human reference proteome (UP000005640; 

Release 2017.07) using MS-GF+ (variable modifications: protein N-terminal acetylation, 

and methionine oxidation; static modifications: cysteine carboxyamidomethylation), and 

excluded the 3,913,142 spectra that were identified as high-confidence human-matching 
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spectra (1% PSM-level FDR per MS/MS experiment) from the spectra partitioning step, 

resulting in 7,552,992 spectra for the full UTI dataset.

Human Infant Gut MS/MS dataset: To evaluate the performance of ProteoStorm on a 

more complex dataset, we searched a subset of a human infant gut metaproteomics dataset 

(MassIVE ID: MSV000080565). Spectra representing stool samples collected on day of life 

21, 34, and 50 from infant 23 (healthy preterm infant with mild lung disease) were chosen 

based on the higher complexity of the samples as determined in the previous study (Xiong, 

et al., 2017). High-confidence human-matching spectra (135,380) were excluded from the 

spectra partitioning step, resulting in 2,360,544 spectra.

Wastewater MS/MS dataset: To evaluate the performance of ProteoStorm when searching 

against a matched metagenome database, we searched a dataset (150,216 spectra) 

representing oleaginous mixed microbial communities sampled from the surface of a 

biological wastewater treatment plant on Oct 12, 2011 (SD6; PeptideAtlas ID: PASS00577) 

(Muller, et al., 2014).

ProteoStorm core module 1: Data partitioning—ProteoStorm performs a fast, fully-

tryptic search in the first stage followed by a semi-tryptic search in the second stage that is 

limited to proteins identified in the first stage. Each stage consists of three core modules: i) 

database and spectra partitioning, ii) ion-mass index-based peptide filtering, and iii) PSM p-

value computation.

In the first module, in silico digested peptides and spectra are sorted and binned into n 
matching partitions based on parent mass. The theoretical mass of a peptide, p, with cysteine 

carboxyamidomethylation as a static modification, mp is defined as the sum of the 

monoisotopic masses of residues in p, a hydrogen atom, a hydroxyl group, and a 

carbamidomethyl group for each cysteine in p. Given a distribution of theoretical masses for 

N peptides, we define partition i by a pair of indic (bi,ei) where the number of peptides 

satisfying bi ≤ mp < ei is ,N/n We provide mass distribution files for both the UniProtKB and 

RefUP++ databases, accessible via Github.

For spectra, to allow for at most one isotopic error of δ (i.e., 1.003355), and a precursor ion 

mass tolerance of ε (e.g., 10ppm), partition i is defined slightly differently as

bi
s = bi 1 − ε

106

ei
s = ei 1 + ε

106 + δ

Spectra partitioning: Given the interval pairs bi
s, ei

s  for all i, we assign spectra to n bins 

based on parent mass. The mass of a spectrum, s is defined as ms = M z - p+ z where M is 
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the precursor ion mass (in units of m/z), z is the charge state of the precursor ion, and p+ is 

the mass of a proton. We assign spectrum s to each bin i if

bi
s ≤ ms ≤ ei

s

To bin spectra efficiently, we sort them by their mass and use a merge operation to assign 

them to the appropriate bins. Spectra with less than 10 peaks are not included in the spectral 

partitioning process. As the distribution of spectra based on parent mass does not necessarily 

follow that of theoretical peptides, a maximum spectral partition size is enforced, creating 

multiple files for spectra belonging to bin i.

Database partitioning: ProteoStorm takes as input a set of database files, D, and assigns an 

index j to each file, where 0 ≤ j < |D| Given D, files are read in batches of 1Gb, and protein 

sequences are stored in memory as a single string, T, where the character “$” indicates the 

start of a protein (an additional “$” character is appended at the end of the string to denote 

the end of the string). Each string T is subjected to in silico tryptic digestion, where peptides 

are limited to the standard 20 amino acids, isoleucine-transformed (i.e., leucine replaced 

with isoleucine), and allowed at most one missed cleavage site. If a peptide at the protein N-

terminus, cleavage of its n-terminal methionine is allowed.

Each peptide, p, is stored in a string representation of its corresponding database partition i, 
and written to file when a buffer size of 600MB is reached. To map peptides back to proteins 

after stage one, we store additional information along with the sequence for each peptide p, 

including the index, j, of the originating database file, the protein index h within database 

file &’, and the pre- and post-amino acids. For a target-decoy approach (Elias & Gygi, 

2007), protein sequences are reversed and concatenated in a similar manner to form string F. 

Origin from a decoy protein is indicated by prefix ‘d_’ for protein index h. For a semi-tryptic 

in silico digest, either the n-terminus or c-terminus of a fully-tryptic peptide is anchored and 

amino acids are removed from the opposite terminus to form semi-tryptic peptides.

As the same peptide, p, may result from the in silico digestion of one or more strings T (or 

F), ProteoStorm combines multiple mapping information from duplicate peptide entries in 

each partition i, and writes the mass of an unique peptide p, the peptide sequence, and the 

combined mapping information of p to create the final database partition. Additionally, 

ProteoStorm assigns a category to peptide p in the following order of preference: fully-

tryptic/target, fully-tryptic/decoy, semi-tryptic/target, or semi-tryptic/decoy. The reason for 

this is twofold. First, a given spectrum s is always assigned the peptide sequence from its 

best scoring (s,p) pair, and given that fully-tryptic peptides score higher than semi-tryptic 

peptides during p-value computation, fully-tryptic peptides are preferred over semi-tryptic 

peptides. Second, in the case that a (s,p) pair with a peptide from a decoy sequence scores 

equally as well as one with a peptide from a target sequence, the latter is always preferred.

As an example, the following peptides have a mass withindatabase partition 0 in a tab 

separated format. The peptide sequence “AGGGGGGG” can be mapped to two proteins, 

specifically, the first occurrence is in the 2,936th entry of database file d4076, or 
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UP000061569_69.fasta, and the 1,632nd entry in database file d2526 or 

UP000030518_1300345.fasta. The pre- and post-amino acid “R-” indicates that the peptide 

is a fully-tryptic protein c-term peptide.

In the second stage of ProteoStorm, the refined protein database (see Refined database 

creation) is provided as two files, a target sequence database and a decoy sequence database. 

A semi-tryptic in silico digest is performed, and database partitions are created as described 

previously, with the exception that sequences from the target database are not reversed to 

form string F. Instead, sequences from the decoy database are concatenated to form string F.

ProteoStorm core module 2: Peptide filtering—The second module of ProteoStorm 

computes the shared peak counts (SPC) between each spectrum and candidate peptides 

within its parent mass tolerance using an efficient ion-mass indexed data structure. For each 

database partition, peptide ions (b-/y-ions) with a maximum fragment ion charge of 2+ are 

used to construct an ion-mass indexing data structure, I, where each ion-mass index,i ∈ I , 
references a mass-sorted list of peptides containing a b-/y-ion within the mass tolerance of i 
(Fig. 1c). For each spectrum, s, peaks with an intensity less than 1.0 Q , where Q is the mean 

of the intensities of peaks at the bottom 25%, are considered noise and removed. Prominent 

peaks are defined as the top seven intense peaks in a window of 75 Daltons. For each 

prominent peak in a spectrum s, its corresponding ion-mass index i is accessed to retrieve a 

mass-sorted list of peptides, P, containing a matching ion. For all candidate peptides p ∈ P 
that are within the parent mass tolerance of the spectrum and at most one isotopic error away 

from the spectrum parent mass, the shared peak count (SPC) of the spectrum-peptide pair 

(s,p) is incremented by one

To increase the efficiency of database search (filtering as many peptides as possible) without 

sacrificing sensitivity (retaining true positives), for each spectrum s, any candidate peptide 

with a SPC less than max(Mmin, Mmax −1) is filtered where

Mmax = maxp ∈ P SPC s, p .

We chose Mmin = 7 for fully-tryptic peptodes and Mmin = 7 for semi-tryptic peptides which 

works well for both the HCD fragmentation-based UTI dataset, the CID fragmentation-

based human infant gut dataset, and the HCD fragmentation-based wastewater dataset. 

Determining Mmin based on the length and mass of a peptide, the instrument type, and 

fragmentation method is optimal but requires further investigation.Retained spectrum-

peptide pairs are subjected to further analysis in core module 3.

ProteoStorm core module 3: p-value computation—To accurately estimate the p-

value of spectrum-peptide pairs and allow for computation of a false discovery rate, we 

created a modified version of MS-GF+ (v2018.04.09) (Kim & Pevzner, 2014) that directly 

calls its raw score computation and generating function approach. To identify high-

confidence PSMs using the target-decoy approach, the peptide that achieves the highest MS-

GF+ raw score for each spectrum s among the retained (s,p) pairs from core module 2 is 

selected for p-value computation using the generating function approach. Briefly, given an 
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SPC score of k for a spectrum-peptide pair (s,p), the generating function computes the 

probability of a randomly generated peptide (all residues independently and identically 

distributed) obtaining an SPC score of k or higher against spectrum s.

Refined database creation—Define a peptide group as an unmodified peptide sequence 

and the sum of its modifications (e.g., ‘PEPTIDES+57.021464’). The p-value of a peptide 

group is equal to that of its best scoring (s, p) pair. For any p-value threshold, , letnumber of 

decoy groups whose p-value is ≤ θ. Similarly, let t(θ) denote the number of denote the 

number of target groups where p-value ≤ θ. A peptide-level false discovery rate (FDR) is 

thus defined as

FDR θ = f θ
t θ .

To determine high-confidence peptides, L, in the first stage of ProteoStorm, a script 

identifies peptide groups across all MS/MS experiments, and determines the p-value 

threshold for a peptide-level FDR of 5%. Peptide groups that pass the threshold are retained 

as high-confidence peptides p ∈ L. Subsequently, all proteins containing a peptide p ∈ L are 

included in a refined protein database, D’. Using the protein mapping information retained 

during database partitioning, a script iterates through target peptides in L, writing both the 

protein sequence and its reverse sequence to D’. Redundant protein sequences, including 

those that only differ by protein name, are not allowed. A similar procedure is applied to 

high-confidence decoy peptides, with the exception that only decoy protein sequences are 

written to D’. Proposed by Bern and Kil (Bern & Kil, 2011), this method of generating a 

decoy database for a second stage search includes a conservative bias by including more 

decoy sequences than target. The more sophisticated version of this method, where the 

reversed sequences of target proteins are added to the decoy protein sequences until the total 

number of decoy sequences is equal to the number of target sequences was validated by 

Jeong et al. (Jeong, et al., 2012). The refined protein database is provided in the 

S1_OutputFiles directory as a combined target decoy database “RefinedProteinDB.fasta.”

ProteoStorm Output—After completion of stage two, the identified PSMs (no FDR 

applied) are reported in the S2_OutputFiles directory as file “ProteoStorm_output.txt.” For 

all analyses in this manuscript, we applied a 1% peptide-level FDR (pooled across all 

MS/MS experiments) for peptide identifications, and a 1% PSM-level FDR (per MS/MS 

experiment) for PSM identifications, where PSMs representing high-confidence peptides are 

reported.

ProteoStorm is designed to be flexible with regards to user needs. As an example, we used 

peptides from stage two of ProteoStorm to analyze metaproteomic samples at the genera 

level. Details on using ProteoStorm for other taxonomies and post-translational 

modifications are accessible via Github (Alternative configurations for ProteoStorm).

Genera-restriction approach—To identify microbial communities and infection 

patterns in the UTI dataset, we implemented a genera-restriction approach for ProteoStorm, 

where the pan-microbial database, D, includes only proteomes with available taxonomic 
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information at the genus level, and the refined protein database,D’, is based on high-

confidence peptides identified in stage-one that uniquely map to a single genus among the 

restricted genera (see Refined database creation below). The three core modules of 

ProteoStorm are as described previously.

Database preprocessing: To determine the genus to which a proteome or protein entry 

belongs, a script parses NCBI taxonomy .xml files downloaded using the NCBI E-utilities 

API, and rewrites the fasta header information to include the name of the protein entry 

followed by the genus name of the organism and the taxonomy ID. For UniProt proteomes, 

file names already include a proteome identifier (UPID) that can be queried using the 

UniProt API to obtain its corresponding taxonomy ID. For RefSeq entries, taxonomy IDs are 

found in the RefSeq-release#.catalog file. Given that the UTI dataset represents human 

microbiome samples, we limited proteins to sequences belonging to genera from bacteria 

and fungi.

Refined database creation: To construct a genera-restricted protein database, high511 

confidence peptides (1% peptide-level FDR), C, identified in stage-one of ProteoStorm are 

used to infer a set of genera, Gc, with at least one peptide p ∈ H uniquely mapping to each 

genus g. Specifically, each genus, g, has a relative abundance score

Ag =
Sg

∑i
GSg

,

where Sg is the number of peptides in C that map uniquely to proteins belonging to genus g, 

and G is the set of all available genera. Target peptides in C contribute to the score of target 

genera, while decoy peptides in C contribute to the score of decoy genera. Genera with a 

higher Ag score than the most abundant decoy genera are included in the set of high-

confidence genera, Gc. As abundance thresholds are largely dependent on the complexity of 

a microbial sample, we assumed that genera with a higher abundance than the most-

abundant decoy genera are more likely to be present in the samples.

Given the set of high-confidence genera,Gc, and the list of high-confidence peptides (1% 

peptide-level FDR), C, a refined protein database is constructed in a similar manner to the 

procedure described previously. The additional criterion is that all proteins mapping to a 

peptide p ∈ C must also belong to a genus g ∈ Gc.

To construct a refined protein database based on a different level of taxonomy, users can use 

the taxonomy ID provided for each protein entry in the RefUP++ database to query the 

NCBI taxonomy database (NCBI E-utilities API or taxonomy .xml files accessible via 

Github). A list of high-confidence taxa would be based on peptides mapping uniquely to that 

taxa (see Github: Alternative configurations for ProteoStorm).

Comparisons against conventional tools—For timing and identification comparisons 

of ProteoStorm against conventional database search tools, we required all processes to use a 

single core and less than 8Gb of RAM on an Intel® Core™ i7–6700K CPU (4 cores, 8 

Beyter et al. Page 11

Cell Syst. Author manuscript; available in PMC 2019 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



threads) with an installation of Windows 10 Pro. The UniProtKB database (7.8Gb) and 12+5 

UTI dataset were used in the comparison. Given the engineering differences of MS-GF+ (v.

20161026) (Kim & Pevzner, 2014), Comet (2016.01 rev. 0) (Eng, et al., 2013), and 

MSFragger (20170103_v2) (Kong, et al., 2017), different approaches were implemented to 

satisfy the criteria mentioned above. Additionally, given the extensive time requirements of 

these tools, we estimated runtimes and obtained results through parallel runs on a Linux 

server or the local machine. In all searches, cysteine carboxyamidomethylation was included 

as a static modification. A 1% peptide-level FDR, as described previously, was applied using 

SpecEvalue for MS-GF+, e-value for Comet, and probabilities from running PeptideProphet 

(parameters: --clevel 0 --combine --decoyprobs --expectscore --ppm --accmass --nonparam) 

for MSFragger.

MS-GF+: Spectra were arbitrarily split into six files of size 800Mb and D was arbitrarily 

split into k database files of size 60Mb (132 database files for the UniProtKB database; 573 

database files for the RefUP++ database). Spectra file #3 contained the closest number of 

spectra to the average number of spectra across all six files (157,945 spectra), and was 

searched against six database files with the highest number of fully-tryptic peptides. 

Runtime was estimated as the average runtime of the six database searches multiplied by the 

total number of spectra files and database files. Search parameters: -t 10ppm -tda 1 -m 3 -

inst 3 -e 1 -ntt 1 -minLength 8 -maxLength 40 -thread 1. PSMs with peptides having greater 

than one miscleavage were removed after computing a 1% peptide-level and 1% PSM-level 

FDR.

Comet: A spectrum_batch_size of 25,000 was specified in the parameter file, and a 

combined spectra file was searched against the same six database files used to estimate 

runtime for MS-GF+. Runtime was estimated as the average of the six database searches, 

multiplied by the total number of database files. Default search parameters 

(comet.params.high-high) were used with the following exceptions:

decoy_search = 1

num_threads = 1

peptide_mass_tolerance = 10.00

num_enzyme_termini = 1

allowed_missed_cleavage = 1

no variable mods,

activation_method = HCD

digest_mass_range = 488.0 5700.0

clip_nterm_methionine = 1

spectrum_batch_size = 25000 decoy_prefix = XXX_

MSFragger: Spectra were arbitrarily split into five files of size 1000Mb and D was 

arbitrarily split into 1,583 target-decoy concatenated database files of size 10Mb. Spectra file 
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#1 contained the closest number of spectra to the average number of spectra across all five 

files (191,219 spectra). Runtime was estimated as the average of the database searches, 

multiplied by the total number of spectra files and database files. Default search parameters 

were used with the following exceptions:

num_threads = 1

precursor_mass_tolerance = 10.00

precursor_mass_units = 1

precursor_true_tolerance = 10.00

isotope_error = 0/1

num_enzyme_termini = 1

no variable modifications

digest_min_length = 8

digest_max_length = 40

digest_mass_range = 488.0 5700.0

max_fragment_charge = 3

minimum_peaks = 10

min_matched_fragments = 4 #recommended for narrow window search

minimum_ratio = 0.00

Comparison against Graph2Pep/Graph2Prot approach—To provide a fair 

comparison of ProteoStorm against MS-GF+ and the Graph2Pep/Graph2Prot approach 

(Tang, et al., 2016), we reconstructed the initial database (MG_SD6.500.faa and 

MG_SD6.contig-pep.fixedKR.fasta) used for the SD6 metaproteomics dataset by following 

the README file provided in the Graph2Pro GitHub repository (https://github.com/COL-

IU/Graph2Pro). The reanalysis was limited to the SD6 dataset as the assembled contig file 

(SRR1544596-SD6MG-s2-63mer-k31-d1.contig) and edge file from graph (SRR1544596-

SD6MG-s2-63mer-k31-d1.updated.edge) were only available for SD6 (http://

darwin.informatics.indiana.edu/Dbgraph/example/). The following parameters were used for 

all searches utilizing MS-GF+: -t 15ppm -tda 0 -m 3 -inst 1 -e 1 -ntt 1 -minLength 8 -

maxLength 40, with the exception of step 9 (second stage search) for the Graph2Pep/

Graph2Prot approach, where -tda 1 was used. ProteoStorm parameters: --

PrecursorMassTolerance 15 --FragmentMassTolerance 0.015 --InstrumentID 1 --

FragmentMethodID 3.

For the Graph2Pep/Graph2Prot approach, we followed all steps until the eighth step, where 

an error was encountered in the Graph2Pro software. As such, to obtain final results for the 

Graph2Pep/Graph2Prot approach, we ran MS-GF+ on the provided second stage database 

(SD6_hybrid_DBGraphPep2Pro_5.fasta) using the parameters above. For the default MS-

GF+ run, the SD6.mgf file was searched against a combined target-decoy database 
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(MG_SD6.contig-pep.fixedKR.fasta, MG_SD6.500.faa, and reversed protein sequences 

from MG_SD6.500.faa; 2.47 GB in size; 43,308,680 entries). Following the previous study 

(Tang, et al., 2016), we applied a 1% PSM-level FDR to obtain the final identifications.

Comparison against human infant gut dataset: To evaluate ProteoStorm on a more 

complex dataset, we searched the infant gut dataset (infant 23, day of life 21, 34, 50) against 

a matched metagenome database and compared to MS-GF+ results. As we already searched 

the dataset against a Human reference proteome (see Data sources) with contaminant 

sequences to remove high-confidence human-matching spectra, we removed Human and 

contaminant sequences from the metagenome database provided by the previous study 

(Xiong, et al., 2017) (Infant23_Human_Ref2011_IgA_contams.fasta), resulting in a 

microbial sequence database of 84,562 entries (27.5Mb). Parameters for MS-GF+ : -t 10ppm 

-m 1 -inst 1 -e 1 -ntt 1. Parameters for ProteoStorm: --PrecursorMassTolerance 10 --

FragmentMassTolerance 0.6 --InstrumentID 1 --FragmentMethodID 1. A 1% peptide-level 

FDR was applied as described previously.

To identify the taxonomic composition of infant 23’s gut microbiome, we searched the 

dataset against the RefUP++ database using the genera-restriction approach in ProteoStorm. 

A normalized genera matrix was constructed as previously described, with the following 

exception: Normalizing was based on a set of human proteins, , that were expressed in all 

samples collected from infant 23 (i.e., day 21 run 1, day 21 run 2, day 34 run 1, day 34 run 

2, day 50 run 1, day 50 run2).

QUANTIFICATION AND STATISTICAL ANALYSIS

Genera matrix—After the second stage of ProteoStorm, a genera matrix is constructed, 

where each row is a genus, g, each column is an individual, and values are normalized 

relative abundances in spectral counts, averaged across technical replicates. While there isn’t 

an optimal way to normalize across experiments, we normalized based on spectral counts for 

a set of human proteins, H, that were expressed in all healthy cohort samples (representative 

of a baseline expression level for each MS/MS experiment). To identify genera, we 

performed exact matching of high-confidence peptides (1% peptide-level FDR),C’, to 

protein sequences in the pan-microbial database, D, using the PeptideMatchCMD_1.0.jar 

tool (Chen, et al., 2013). The normalized relative abundance for a genus g in a MS/MS 

experiment, E, is defined as

Ga N
=

Ga
αE

,

where Ga is the number of PSMs passing a 1% PSM-level FDR that belong to a peptide p∈ 
H′ that maps uniquely to genus g. The normalization factor, αE, is the sum of PSMs passing 

a 1% PSM-level and 1% peptide-level FDR that map to a protein in , divided by the number 

of proteins in H expressed in experiment E. If a peptide matches to more than one protein, 

the number of PSMs is divided by the number of matched proteins.
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Hierarchical clustering—As suggested by literature (Clarke & Green, 1988), the pseudo 

count-adjusted (+1×10−30) genera matrix was square root transformed prior to computing 

Bray-Curtis dissimilarity matrices (vegdist function in R package vegan v2.4.6) for both the 

genera (rows) and individuals (columns). Unsupervised hierarchical clustering of the 

dissimilarity matrices was performed separately (R function hclust, method: ward.D2). For 

better visualization, the square root transformed genera matrix was further log10 transformed 

prior to heatmap construction (heatmap.2 function in R package gplots v3.0.1).

Clusters were evaluated using an edited version of the R package pvclust (v2.0.0) (Table 

S2). The source code was downloaded from https://github.com/cran/pvclust, and line 382 in 

pvclust-internal.R was changed from “dist(t(x),method)” to “vegdist(t(x), method = “bray”, 

binary=FALSE)”, where vegdist is the function from R package vegan (v2.4.6) that 

computes a dissimilarity index (Bray-Curtis) and returns a distance object. The bootstrap 

sample size, nboot, was set at 100,000. Clusters with a probability value (approximately 

unbiased (AU) p-value) greater than 0.9 were considered strongly supported by multiscale 

bootstrap resampling.

DATA AND SOFTWARE AVAILABILITY

ProteoStorm is a collection of scripts written in python (v2.7), that calls an executable 

compiled from C++ scripts for peptide filtering (core module 2) as well as a java .jar 

executable from a modified version of MS-GF+ for raw score and p-value computations 

(core module 3). ProteoStorm is available at https://github.com/miinslin/ProteoStorm.

The LC-MS/MS urinary pellet dataset is available on MassIVE (MSV000082031) in RAW 

file format and peak-picked MGF file format.

TABLE FOR AUTHOR TO COMPLETE

Please upload the completed table as a separate document. Please do not add subheadings 
to the Key Resources Table. If you wish to make an entry that does not fall into one of the 

subheadings below, please contact your handling editor. (NOTE: For authors publishing in 

Current Biology, please note that references within the KRT should be in numbered style, 

rather than Harvard.)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Open-source software for ultrafast large-scale metaproteomics database 

search

• Two to three orders-of-magnitude speedup over popular tools, at high 

sensitivity

• Reveals rare pathogens in reanalysis of UTI dataset.
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Figure 1. ProteoStorm search framework: performance and scalability
(a) Each stage of ProteoStorm is composed of three modules: i) data partitioning, ii) peptide 

filtering, and iii) p-value computation. Identifications from a fully-tryptic search are used to 

construct a refined protein database for a semi-tryptic search. PSMs with p-values are 

reported. (b) In the first module, database and spectra partitioning dramatically reduces 

search space from all peptides (black dotted lines) to peptides within spectra parent mass 

ranges (red vertical lines). (c) In the second module, spectrum-peptide pairs are filtered 

based on shared counts of prominent spectral peaks (red) to b-/y-ions of peptides (numbers 

within blocks) using an ion-mass indexing data structure. Each colored block represents a 

unique peptide within the parent mass tolerance of a given spectrum. (d) 946,845 spectra 

were searched against the UniProtKB database using ProteoStorm, MSGF+, Comet, and 

MSFragger. ProteoStorm required 9.7 CPU-hours, while other tools required CPU-weeks to 
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complete. (e) Breakdown of ProteoStorm runtime by module. S1 and S2 represent the two 

different stages of ProteoStorm. See also Figure S3.
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Figure 2. ProteoStorm identifies bi-clusters of individuals with similar microbial compositions
Searching the full UTI dataset against the RefUP++ database (2,259 genera) using a genera-

restriction approach, ProteoStorm identified 64 genera. Out of 73,092 peptides, 28.5% 

(20,833) mapped uniquely to a single genus. Four bi-clusters (white boxes) were inferred 

from clusters with an approximately unbiased (au) p-value greater than 0.90 (magenta 

boxes), indicating a complex pattern of polymicrobial expression, including sub-types of 

urinary tract infections, cases of bacterial vaginosis, and evidence of no underlying disease. 

Pathology groups: Healthy, ERY (erythrocyte/vascular injury), EXF (exfoliation of 

squamous epithelial and urothelial cells), and UTI (urinary tract infection). See also Table 

S1 and Table S2.
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Mass (Da) Peptide Sequence Peptide Index Mapping Information

488.1979 R.AGGGGGGG.- 0 4076|2936|R-;2526|1632|R-

502.2136 R.GAGGAGGG.- XXX_1 4640|d_2272|R-

502.2136 R.GGGGGGAA.- 2 6530|897|R-
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Urinary Tract Infection (UTI) MS/MS dataset Yu, et al.,2015; Yu, et al.,2017 MasslVE ID: MSV000082031

Human Infant Gut MS/MS dataset Xiong, et al., 2017 MasslVE ID: MSV000080565

SD6 Wastewater MS/MS dataset Muller, et al.,2014 PeptideAtlas ID: PASS00577

UniProt Pan proteomes ftp://ftp.uniprot.org/pub/databases/uniprot Release 2017.12

UniProt Reference proteomes ftp://ftp.uniprot.org/pub/databases/uniprot Release 2017.07

RefSeq protein sequences ftp://ftp.ncbi.nlm.nih.gov/refseq/release Release 85

Software and Algorithms

ProteoStorm This paper https://github.com/miinslin/ProteoStorm

MSConvert Chambers, et al.,2012 v3.0

MS-GF+ Kim & Pevzner, 2014 v20161026

Comet Eng, et al., 2013 2016.01 rev. 0

MSFragger Kong, et al., 2017 20170103_v2

Graph2Pep/Graph2Pro Tang, et al., 2016 https://github.com/COL-IU/Graph2Pro

pvclust https://github.com/cran/pvclust v2.0.0

vegan https://CRAN.R-project.org/package=vegan v2.4.6

dendextend https://CRAN.R-project.org/package=dendextend v1.7.0

gplots https://cran.r-project.org/package=gplots v3.0.1
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