UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Noticing Opportunities in a Rich Environment

Permalink
https://escholarship.org/uc/item/0ks286sd

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 12(0)

Authors
Brand, Matthew
Birnbaum, Lawrence

Publication Date
1990

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/0ks286sg
https://escholarship.org
http://www.cdlib.org/

Noticing Opportunities in a Rich Environment

Matthew Brand and Lawrence Birnbaum

Northwestern University
The Institute for the Learning Sciences and
Department of Electrical Engineering and Computer Science
Evanston, Illinois

Abstract

Opportunistic planning requires a talent
for noticing plans’ conditions of applica-
bility in the world. In a reasonably com-
plex environment, there is a great prolifer-
ation of features, and their relations to use-
ful plans are very intricate. Thus, “notic-
ing” is a very complicated affair. To com-
pound difficulties, the need to efficiently
perceive conditions of applicability is si-
multaneously true for the thousands of pos-
sible plans an agent might use. We examine
the implications of this problem for mem-
ory and planning behavior, and present an
architecture developed to address it. Tools
from signal detection theory and numeri-
cal optimization provide the model with a
form of learning.

1 The Problem

An agent operating in a rich and rapidly changing
environment must constantly monitor the environ-
ment as it acts, and be prepared to deal with oppor-
tunities and obstacles as they come up. The need to
interact with rather than simply act upon the world
presents a large variety of constraints on the com-
putational behavior of a planner. We have tried to
use these as guidelines for the design of an architec-
ture for the pusuit of multiple goals and plans in a
realtime environment.

A convenient route to the issues involved in real-
time multiplanning lies in the colloquial language
of opportunism. Our daily life 1s filled with myr-
1ad chances to satisfy or advance our goals. How we
fare in the world has much to do with our ability to

245

“notice” opportunities, “seize” them, and make use
of them before the “window” of opportunity closes.
Each of these idioms points to some of the many
constraints that bear upon the design of a realtime
multiplanner.

In particular, “noticing” means recognizing useful
resources in the complexes of low-level, noisy sensory
features available to the planner. Not all resources
are worth attention; only those that enable plans
which serve active goals. Thus, although “noticing”
appears to be a perceptual process, its operation de-
pends on decisions that must be informed by the
high level goals of the agent. “Seizing” refers to the
overhead of selecting a plan and executing it: choos-
ing amongst competing plans and goals, verifying
the opportunity, and assigning additional resources
to the plan execution. “Window of opportunity”
refers to the transience of opportunities: they have
to be discovered and acted upon as suddenly as they
appear and the agent may have to deal with their
disappearing just as suddenly.

In short, realtime multiplanning presents three
general constraints:

e The agent must incorporate an opportunity
oriented planner, rather than a one-shot or
agenda-oriented planners. = However, being
opportunity-driven does not mean that its be-
havior is determined bottom-up from percep-
tion: actions and indeed perceptions need
to be goal-motivated. This is the integra-
tion constraint: The planner needs to adju-
dicate between bottom-up opportunities and
top-down desires and expectations (see, e.g.
[Birnbaum 86]).

e The agent must perform a quick and efficient
mapping from surface features to applicable
plans. This is the time constraint: The agent

must have a fast and fairly constant reaction
time in any situation.

e The agent must be constantly replanning as
external conditions and internal goals change.
This is the flezibility constraint: The agent must
be prepared at any time to execute, suspend,
resume, or abandon a plan in the face of novel
circumstances.

These constraints have guide the design decisions
that form the system described below.

2 Real-World Constraints

Most compelling in the design of a realtime planner
are issues of computational efficiency. The environ-
ment will tolerate only a narrow range of reaction
times on the part of the agent, and the shorter the
better. The agent must move from low-level per-
ceptual features to high-level decision processes in
as few steps as possible. Traditional planning tools,
especially those based on search, are undesirable be-
cause they require indeterminate and exponential
time to find or construct applicable plans. An an-
imal does not stop to think how it can relate the
sighting of prey to the get-nourishment goal. An ef-
ficient alternative to search is matching against rich
libraries of planning information. Making this work,
however, necessitates unusual commitments vis-a-vis
memory, processing, and architecture.

2.1 Memory Issues

In order to be able to recognize which circumstances
constitute an opportunity for the inception or re-
sumption of a plan, that plan must already be
available-and quite some detail-in the agent’s mem-
ory. At the very least, it must be present in enough
detail for its conditions of applicability to be quickly
consulted and compared to the world. This is es-
pecially important because of the large number of
potentially useful plans. The typical range of ac-
tivities in an agent’s “everyday” behavior will likely
require hundreds or thousands of precompiled plans.
We call the need to have plans easily consulted the
accesstbility constraint.

Given that we want plans to be tightly coordi-
nated with the perceptual apparatus that cues them,
it will prove useful to think of a plan coupled with
the computing elements that recognize its conditions
of applicability as a unit: a behavior. When we
talk of a planner endowed with sensors and effectors,
we talk of a collection of behaviors which we want

246

to combine in ways salutary to the planner’s goals.
As with [Agre 88, Agre & Chapman 87, Firby 89,
Maes 89] we are interested in the consequences of
reinterpreting the planning task as a matter of co-
ordination of behaviors rather then the synthesis of
plans.

How specific should behaviors be? In any complex
environment, behaviors do not have unique condi-
tions of applicability; there is always some generality
which cannot be captured in simple lists of features.
An animal in a forest need not have one behavior
for picking up edibles and another for picking up
nesting materials. Having both in memory simply
adds computational cost to the task of plan selec-
tion, probably more than is saved by simple feature
matching. The plans in the agent’s repertoire should
be flexible, even though this makes recognizing each
plan’s conditions of applicability in the environment
more expensive. There is a tradeoff between ease of
opportunity recognition and generality of behaviors.

Schemes for flexible plans come with a number of
extra burdens: plan synthesis requires search, plan
modification requires extensive knowledge about
planning, and abstract plan roles require compli-
cated type checking. All three, however, violate the
accessibility constraint. Consequently the planner’s
memory is strongly biased for ease of matching and
against “abstract” or “universal” planning methods.

2.2 Attention Issues

Plans exist for many different time scales. Few are
executed en tous and without interruption. Many
cover spans of time so large that an agent cannot
afford to execute them without interruption. For
example, one cannot follow the house-building plan
without breaks to entertain the eat-and-be-refreshed
plan. Some plans are so long-term, such as write-
thesis, or of such low priority, such as pick-up-
money-from-sidewalk, that more time passes during
interruptions than during execution.

Proverbially, we want an agent to be able to “walk
and chew gum at the same time.” This means di-
viding attention between many plans that are con-
currently being executed, some in parallel, some in
dovetailed sequence.

The idea of precompiled plans is helpful here too.
If a plan may not be executed en fous, then con-
ditions of applicability need be computed not only
for its beginning, but at any point where it may be
interrupted and later resumed. The more concrete

the description of the plan, the less costly this cal-
culation is.

The possibility of interruption also argues for
plans that are as short as possible. Rather than
try to execute a full plan for building a shelter,
a agent will find it easier to have a building plan
broken down into its component behaviors, which
it can splice together as their conditions of appli-
cability become true in the environment. This has
a number of advantages for the planner. Breaking
a plan into fragments provides convenient interrup-
tion points with precomputed requirements for re-
sumption. Plan fragments can be recombined and
reordered according to the vagaries of environmen-
tal change.!

3 Architecture

In perceiving the world, the agent should calculate
an optimal set of features for its purposes-meaning
it should compute as few features as possible to iden-
tify applicable plans and choose between them. Fea-
tures should only be computed when necessary vis-d-
vis likely plans, and when necessary to many plans,
a feature should only be computed once.

An efficient architecture which addresses the two
priorities of shared computation of features and ar-
bitrary mappings is a feed-forward network. Low-
level features pass their information up to increas-
ingly complex features which in turn cue and re-
cue candidate plans. This opens the door to paral-
lelism. However, we cannot assume that the “magic”
of massive parallelization will somehow make this
network tractable. Limited resources mean that a
limited number of features can be computed at any
given time.

Optimization in this context means making
choices about which nodes in the network will re-
celve computational resources, and which will have
to remain dormant. Dormancy means that the fea-
ture retains its old value, and is increasingly likely to
become incorrect as the environment changes. We
wish to construct a description of how efficiently the
network is using its features (and thus retrieving ap-
propriate plans). Any network control strategy that

!This also relieves the agent of much of the memory
burden involved in remembering its place in a long pro-
cess. The environment is exploited as a mnemonic de-
vice, like a mechanic layings out pieces from a machine
to mark his plac in the disassembly and reassembly of a
machine.

247

Schematic of Network
Architecture

_i‘;g:,g,V VVVVYV

=0Q00QC
VAN ANV ANVANVANVA

e - AN A LNA A

VAN ARVAV A A
VAN A QAN

« » » Surtace Features = ¢ *

Information flow:

Values
Accuracy
Activation
Cost
®

Figure 1: Connectivity and information flow in the
planning network.

optimizes that function will thus provide a means
for intelligent attention focusing.

We have arranged the knowledge sources of our
planner in a network for this purpose (see figure 1).
Each node represents a kind of computation the
planner can do: either computing a feature of ex-
ecuting a plan step. The links between nodes are
pathways through which nodes interact, passing in-
formation and competing and cooperating to con-
trol the effectors and computational resources of the
agent.

4 Representation

There are four basic types of knowledge in the agent:
goals, action sequences, feature detectors, and mem-
ory pools. Between them pass three kinds of infor-
mation: values, accuracy estimates, and activation.

4.1 Information Flow in the Planner

Values are scalars that are passed up from lower-level
nodes to higher-level nodes. They indicate whether
the feature computed by some node was present in
the world last time the node was computed.
Accuracy estimates are scalars indicating how
likely it is that a feature has been computed using

obsolete information. Features can be inaccurate be-
cause subfeatures they depend upon may have been
dormant while something in the world has changed.
Accuracy estimates flow up the network along with
values, and are reduced as they pass through each
obsolete node.

Activation, also a scalar, flows down through the
network over weighted connections. It is used to de-
termine what parts of the network should be com-
puted. Essentially, the activation at a node is an
indicator of how interested the planner is in com-
mitting computational resources to it.

4.2 Knowledge Structures in the Planner

At the top of the network, goals provide the impe-
tus behind the agent’s choices. They are not pred-
1cates describing world states, as is the tradition in
planning. Rather they are generators that supply
activity to the action sequences which satisfy them
and the features which recognize conditions in which
they are satisfied.

Feature detectors are arbitrary functions which
read in sensory data and/or other feature values and
output a value indicating some state of affairs in the
environment and the planner.

Action nodes encapsulate planning knowledge.
Moving upwards, they signal their execution status
to the goals that they serve, inhibiting or satisfy-
ing them. Moving downwards, they pass activation
on to the feature detectors that correspond to their
preconditions, priming them. From goal nodes they
receive activation, and from feature detectors they
receive information about their applicability. As the
agent monitors the world, each action node jockeys
for the right to determine the next action.

There is no basic unit of plan representation inside
an action node node. Instead, these nodes hold plan
fragments, single operators, and occasionally even
entire canned plans.

Plans and plan fragments are expressed wholly in
terms of effector instructions. There is no explicit
representation of subgoals, else the planner would
have to resort to search. Although this would seem
to severely limit the potential sophistication of the
plans the agent can express, we are take hope from
two hypotheses. The first is that a large range of in-
teresting and useful behaviors can be achieved under
this limitation-perhaps even enough for a reasonable
simulation of animal behavior.

The second is that where subgoaling really is nec-

248

essary, we may expect subgoaling-like behavior in
the way the agent sequences its behaviors. The rea-
son why is that, should action node A need a pre-
condition achieved, it will prime the feature detec-
tors that are looking for satisfying conditions in the
world. If action node B has those feature detectors
as a description of what it achieves, and they are
partially true, node B is likely to be executed op-
portunistically. Once this has happened, node A’s
preconditions have been satisfied, and it will be exe-
cuted. Though not dependable, this scenario points
a way to rudimentary subgoaling.

Memory pools are frozen contexts. Each name
a plan in execution, the goal it serves, and the re-
sources that are tied to the various roles in the plan.
They point to the feature detectors that recognize
their role fillers. In a carpenter’s attach plan, for
example, roles might be Object1, Object2, Support-
ingSurface, MeansOfAttachment, ClampingDevice,
and Tool. Their fillers could be, respectively, a bro-
ken chair, its leg, a clear space of floor, wood glue,
rope, and the right hand.

Memory pools are used to ensure that a plan can
be continued. They are quite expensive, and tend
to evaporate after time. This is because an agent
must have a means of forgetting thwarted plans after
some passage of time, in order to be reasonably free
to exploit new opportunities.

5 Process Model

The steps of a typical planning cycle are:

e Choose the features to be recomputed.

e Recompute features.

e Propogate information throught the network.
e Choose an action node to control effectors.

e Execute one instruction from the node’s plan
fragment.

Construction, update, or activate a memory
pool to hold the current context.

The important steps in this cycle are the selection
steps. These choices govern the agent’s external and
internal attention, and are governed by the parame-
ters which flow through the network.

In addition to the three parameters described
above-value, activation and accuracy—each node has
a stationary parameter: cost. It represents the com-
putation expense associated with that node, and is
used to determine when the feature is worth recom-
puting. Low-level features, which are worth comput-

ing often because they are close to sensory informa-
tion and are the basis for all other computation, are
assigned low costs. High-level features, which are in
a sense more speculative, are assigned high costs. In
this way the network is biased to pay close attention
to the environment.

How is the distribution of computation question
decided? In the case of feature detector nodes, the
feature is recomputed if

f(n) = 1 — accuracyn

where Tr is a global threshhold.? This equation
expresses the main economy of feature computation.
It simply ensures that the features are recomputed
when they receive large amounts of activation or are
very likely to be obsolete. A similar function F(n),
governs action nodes and memory nodes.

The purpose behind these parameters, besides
providing the basis for interaction between knowl-
edge sources, is to allow the planner to judge what
is worth computing. The basic premise is that some
kinds of computation are more expensive than oth-
ers. Passing the parameters around the network and
calculating f(n) and F(n) are cheap; we pretend
that they are properties of some imaginary compu-
tational substrate. More importantly, they happen
in constant time, regardless of the agent’s circum-
stances. Actually computing the features also takes
constant time, because a fixed fraction of the net-
work is considered.

Computing the features is held to be more expen-
sive than propagating information, and thus we limit
the number that are computed each cycle. This is
not just to conserve computation: if too many fea-
ture nodes are active, too many action nodes that
will merit consideration. Thus as features receive
inadequate activation they report increasingly obso-
lete information, and decay to an off-state, in which

activation, — cost,

>Tr

they are incapable of supporting any action node’s
bid for execution.

An action node is queued for evaluation if F/(n) =
f(n)+ K -s(n) > T4, where K is a global coefficient 3

>Tr controls what fraction of the network’s features
are recomputed in any given cycle. A higher thresh-
hold makes the agent like a panicked animal; it needs
to respond very quickly and thus can only attend to its
most immediate goals and sensations. A lower thresh-
hold makes the agent slower, but more alert to uncom-
mon opportunities.

%K allows us to balance the relative importance
of need, expressed by activation, and opportunity, ex-

249

s(n) is a weighted vote of precondition features for
that node, and T4 is another global threshhold like
Tp. The node with greatest F'(n) is picked out of
the queue, its role bindings verified, and the first
unexecuted operator in it is used to control the ef-
fectors. If the role fillers fail to verify, that node can
be “suspended” by construction of a memory pool,
or a different node can be taken off the queue. Only
a fixed number of nodes are checked, and the queue
1s discarded after each cycle.

Action selection is also constant in time relative
to the input, and is logarithmic in the size of the
network. Cycle time is thus constant, and adjustable
via the two global threshholds T and T}j4.

When the current action node is usurped by a
node with greater F(n), it is suspended. A mem-
ory pool is set up for it which saves the context at
time of suspension. This memory pool is treated
like an action node in subsequent cycles: it receives
activation from the action node’s sponsor goal, it is
queued and evaluated like action nodes, and when it
is selected the action node it is attached to resumes
execution. Memory pools have a decay term in their
F(n) which grows increasingly negative with time,
making their resumption less and less likely. When
their F'(n) itself becomes negative, they “evaporate”
and the planner loses any trace of having been in the
midst of their plans.

6 Learning

Optimization is plausible in our architecture because
the flow of information is restricted to specific path-
ways between knowledge structures, greatly simpli-
fying credit assignment, and because information
is restricted to scalars, allowing us to construct a
mathematical characterization of the network’s per-
formance.

In the network, goals are served both by feature
detectors, which report goal satisfaction and action
nodes, which attempt goal satisfaction. Using the
feature detectors as reference signals, it is easy to
collect statistics on an action node’s success vis-a-
vis its sponsoring goal. The first optimization open
to us is to strengthen the weights on activation links
between goals nodes and the action nodes that most
reliably serve them. This allows local improvements
in the ability to select plans.

A more subtle and important optimization ap-
plies to the relationship between action nodes and

pressed by sensory information.

the feature nodes that detect their conditions of ap-
plicability. Here it is important to learn which fea-
tures best cue an action node, and thus are most
deserving of the activation that the action node can
distribute. Here we use some simple tools from
signal detection theory [Tanner, Swets, & Green 56,
Green & Swets 66] to provide a platform from which
we can do numerical optimization.

By comparing records of feature node firings with
the statistics described above, we can tabulate the
feature's utility (via the plan fragment) to the goal
in terms of hits p(F - A), false alarms p(—F - A),
misses p(F - —A), and correct rejections p(—=F - -A).
F refers the the presence of the feature and A refers
to the decision to take an action on the basis of that
feature.

From the costs and activation assigned to each
node we can construct a payoff matrix. Using these
and the statistics described above, we can adapt
from signal detection theory the equation describ-
ing the expected value of relying upon that feature:

EV Wa_rp(F A) + Cap(F--A) +
Crp(~F - A) + Cgp(—~F =A)

(1)

In this notation, Wy_ p is the weight on the activa-
tion link from the action node to the feature node,
C4 is the fixed cost of evaluating the action node,
Cr is the fixed cost of the feature node, and Cg is
a global cost assessed for missing opportunities.

By toggling W, _ r between two close values and
collecting statistics on the relative values of EV, we
discover local information about the first derivative
of the actual probability curve relating feature firing
to plan appropriateness.? For local hillclimbing, we
can simply choose to remain with the valueof W _ p
that produces the greater EV

More interesting is the case when we ap-
ply a global optimization technique. We are
investigating the wuse of simulated annealing
[Kirkpatrick, Gelatt & Vecchi 83] in the selection of
weights. Under simulated annealing, one chooses
one value of W} _p over another W4_p with the
nrobability

_EV'-EV
EY ZEY

for some temperature T which determines the
“volatility” of the decision. This is a particularly

*There is a strong assumption of Gaussian noise in the
functioning of the network in order for this to work. We
can rely on the obsolescence of some features for noise,
but it is not clear that it will approximate a Gaussian.

Symmetry on a 4-unit Retina

e S [i e A o TS SR RS T A | (e

aal

PR IR R . | | I

250

20
cycles

40

Figure 2: Error curve of a primitive variant of the
optimization algorithm applied to learning symme-
try in a 4-bit vector.

interesting prospect because we may be able to reg-
ulate the temperature of the annealing decisions as
a function of the accuracy reported at the nodes in-
volved.

Simulated annealing is appropriate here because
it allows us to globally optimize the interactions be-
tween “opaque” functions. By “opaque” we mean
that the functions in the nodes are arbitrary, and we
cannot expect to have information about their first
derivatives (especially if they are symbolic!) as in
backpropagation, or have the time to reason about
their internal structure (since we have no search).

We have been experimenting with this optimiza-
tion scheme in miniature systems, as a prelude to
committing to it with a full realtime multiplan-
ner. Our first miniature merely tested the abil-
ity of the algorithm to select connections between
nodes computing miscellaneous functions in order
to detect symmetry in a vector of bit-values. The
network was seven layers deep, and included both
numeric and logical (symbolic) functions indiscrim-
inately connected as start. The learning curve is
shown in figure 2.

We are currently working on a miniature which,
given the operators toggle-bit and swap-bits, will
learn how to make the vector symmetrical with a
minimal number of operators.

7 Determining the Content of the
Nodes

Al systems that move away from “universal” meth-
ods such as search depend heavily on well-chosen and
well-organized knowledge to compensate for their

limited power. Especially crucial in our variety of
planner are the repertoire of plans, how they are
broken up into planning fragments for storage in ac-
tion nodes, and features which serve these nodes.
The planner designer must steer a course between
plan fragments that are too general to be served by
any reasonable set of features, and plan fragments
that are so specific that each one requires its own
special set of features. Ideally, we would like to have
moderately general plan fragments that can be cued
by relatively low-level features.

How to organize and mediate between behav-
lors is an open question in agent-based archi-
tectures. Architectures such as the Society of
Mind (Minsky 86] and Subsumption Architectures
[Brooks, Connell, & Peter Ning, 88] rely upon the
idea of increasingly sophisticated layers of behavior,
each higher layer handling circumstances that are
too subtle or complicated for the layer below. We
have avoided this layering approach for two reasons.
First, the low-level process model of our architec-
ture already mediates between competing behaviors.
Second, layering clouds the prospects of an implicit
ideal of these systems: that behaviors can be added
or altered without having to modify all other behav-
lors already in the systemn.

In looking for an organizing principle for the con-
struction of our behavior corpus, we are more con-
cerned with the retrieval issues discussed above. An
insight that we find useful in the selection of plan
fragments is the following line of reasoning:

e Plan fragments can be classified by strategy, for
example, hoard, assume availability of item, or
wait until item 1s more accessible.

o Strategies in turn can be organized by resource
types, for example, perishable, permanent, core,
or self-replicating.

e Resource types often correlate with relatively
low-level features, for example is-food with per-
ishable resources, is-moving with time-specific
resources, or is-anchored with location-specific
resources.

Consequently, there is a useful link between rel-
atively low-level features and highly abstract char-
acterizations of plans. To exploit this in the design
of our planner, we are collecting a set of low-level
features which effectively organize a list of strategy-
types we would expect a forest animal to use. These
features are then used to group a corpus of plan frag-

251

ments. Within each group we then determine which
middle-level features would be necessary to distin-
guish between plan fragments, and which additional
features are necessary to identify possible fillers for
plan preconditions. Thus we are able to produce a
full specification of the features an agent would need
to compute, given an environment.

8 Problems and Acts of Faith

A realtime multiplanner is capable of acting in con-
stant time because of the severe limitations we have
placed on its means of computation. Many of these
are inspired by the challenges of a real, volatile
world. Others stem from the need to work around
the lack of a “universal” computational mechanism.
Although this planner may prove to be a good set of
commitments in view of the environmental demands,
it is not ideal. There are several useful properties
of search-based projective planners which realtime
multiplanning lacks.

8.1 Labelling is Hard

Naming is hard for an agent that doesn’t have la-
bels supplied to it by the environment or tutor (e.g.
“the red block”). Naming not only presumes that
the agent has a category for an object it encounters,
but that it has some basis for distinguishing the ob-
ject from other category exemplars it may encounter,
even if this is the first such object it has ever seen.
This means it has to know what is unique about the
object with respect to other possible exemplars of
the category. Without this ability to discriminate
within categories, the agent is incapable of powers
such as object permanence. The agent may often
begin a task with one object, be interrupted, and
continue the task with another object in the same
role, oblivious to the change. This is disastrous if,
for example, the agent is building its shelter, stops,
and resumes in another place, completing the shelter
of a rival.

One possible solution lies in more detailed descrip-
tions of contexts in a memory pools. Presumably
there are some features which are not important to
an object’s role in the plan, but distinguish it both
from other objects in the same category and from
the larger scene in which it was noticed. A fairly re-
liable example of this kind of distinguishing feature
1s location.

8.2 Planning without Protections

Most conspicuous of our planner’s shortcomings is
a lack of protections. The extreme parsimony in
use of variables, the difficulty of labelling, and the
sheer number of plans that may be simultaneously
active all make checking for protection violations
prohibitive. Every time the planner selects a plan
it is making resource commitments: effectors in the
short term and objects in the environment in the
long term. When the planner suspends a plan it
does not forfeit those commitments. But it doesn’t
check to see if any of those commitments are vio-
lated by subsequent plan inceptions. This would be
too expensive, checking every resource against every
plan. It is easy to imagine an agent picking up a
tool and then promptly putting it down because it
saw another, and then picking up the first again.

There are two reasons why a lack of protections
may not be a stumbling block. The first is a vari-
ation on the Friendly World Assumption: in most
environments the range of useful plans makes little
use of protections, and where protection violations
lead to trouble, the environment will soon change so
that only one of the plans competing for the resource
is still applicable.

The second we may call the Underspecification As-
sumption: many goals which seem to require protec-
tions need them only because they contain too little
information in their specification. The classic exam-
ple, stack block A on block B and block B on block
C, would be beyond our agent. The stack two blocks
plan fragment would put A back on B every time the
agent figured to clear B to put it on C . However, a
plausible real-world alternative, stack-the-blocks-in-
size-order, is easily handled by repeated executions
of the put-the-biggest-free-block-on-the-pile plan frag-
ment.

9 Acknowledgements

This work was supported in part by the Defense Ad-
vanced Research Projects Agency and monitored by
the Air Force Office for Scientific Research under
contract number F49620-88-C-0058, and in part by
a National Science Foundation Graduate Fellowship.
The Institute for the Learning Sciences was estab-
lished in 1989 with the support of Andersen Consult-
ing, part of The Arthur Andersen Worldwide Orga-
nization.

252

References

(Agre 88) P. Agre. The Dynamic Structure of Ev-
eryday Life. PhD Thesis, MIT Department
of Electrical Engineering and Computer
Science, 1988. Available as Report AI-TR
1085.

[Agre & Chapman 87] Philip E. Agre and David
Chapman. Pengi: An Implementation of
a Theory of Activity. In Proceedings of
AAAIL-87, 19817.

[Birnbaum 86] L. Birnbaum Integrated Processing
in Planning and Understanding. PhD The-
sis, Yale University Computer Science De-
partment, 1986. Available as Report RR-
489.

[Brooks, Connell, & Peter Ning, 88]
Rodney Brooks, Jonathon Connell, and
Peter Ning, Herbert. A second generation
mobile robot, AI Memo 1016, MIT Artifi-
cial Intelligence Laboratory, 1988.

[Firby 89] R. James Firby. Adaptive Ezecution in
Compplez Dynamic Worlds. PhD Thesis,
Yale University Computer Science Depart-
ment, 1989. Available as Report RR-672.

[Green & Swets 66] David M. Green and John A.
Swets. Signal detection theory and psy-
chophysics. New York: J. Wiley & Sons.
1966.

[Kirkpatrick, Gelatt & Vecchi 83]
Scott Kirkpatrick, C. D. Gelatt, Jr., and
M. P. Vecchi. Optimization by simulated
annealing. Science 220:671-680. 1983.

[Maes 89] Pattie Maes. The Dynamics of Action Se-
lection. In Proceedings, IJCAI-89. 1989.

[Minsky 86] Marvin Minsky. The Society of Mind,
New York: Simon and Schuster, 1986.

[Tanner, Swets, & Green 56] W. P. Tanner, Jr., J.
A. Swets, and D. M. Green. Some gen-
eral properties of the hearing mechanism.
University of Michigan: Electronic Defense
Group, 1956. Technical Report No. 30.

	cogsci_1990_245-252

