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Universal linear intensity transformations using
spatially incoherent diffractive processors
Md Sadman Sakib Rahman1,2,3, Xilin Yang1,2,3, Jingxi Li 1,2,3, Bijie Bai1,2,3 and Aydogan Ozcan 1,2,3✉

Abstract
Under spatially coherent light, a diffractive optical network composed of structured surfaces can be designed to
perform any arbitrary complex-valued linear transformation between its input and output fields-of-view (FOVs) if the
total number (N) of optimizable phase-only diffractive features is ≥~2NiNo, where Ni and No refer to the number of
useful pixels at the input and the output FOVs, respectively. Here we report the design of a spatially incoherent
diffractive optical processor that can approximate any arbitrary linear transformation in time-averaged intensity
between its input and output FOVs. Under spatially incoherent monochromatic light, the spatially varying intensity
point spread function (H) of a diffractive network, corresponding to a given, arbitrarily-selected linear intensity
transformation, can be written as H(m, n; m′, n′)= |h(m, n; m′, n′)|2, where h is the spatially coherent point spread
function of the same diffractive network, and (m, n) and (m′, n′) define the coordinates of the output and input FOVs,
respectively. Using numerical simulations and deep learning, supervised through examples of input-output profiles, we
demonstrate that a spatially incoherent diffractive network can be trained to all-optically perform any arbitrary linear
intensity transformation between its input and output if N ≥ ~2NiNo. We also report the design of spatially incoherent
diffractive networks for linear processing of intensity information at multiple illumination wavelengths, operating
simultaneously. Finally, we numerically demonstrate a diffractive network design that performs all-optical classification
of handwritten digits under spatially incoherent illumination, achieving a test accuracy of >95%. Spatially incoherent
diffractive networks will be broadly useful for designing all-optical visual processors that can work under natural light.

Introduction
Spatial information processing with free-space optics

has been widely explored and predates the proliferation of
electronic computing1–4. Spatial filtering5, matrix multi-
plication6–9, Fourier transform10,11, implementation of
neural networks12,13 and other information processing
operations14 have been realized with free-space optics.
The emergence of metasurfaces in the last decades,
together with the search for neural network accelerators
for artificial intelligence, has reignited the interest in free-
space-based analog optical information processing4,15–17.
The inherent transformation of optical fields as they

propagate through free space, known as diffraction,
together with the ability for wavefront modulation with
compact hardware, makes low-cost and passive spatial
information processing at the speed of light propagation
possible18,19. Diffractive optics also enables the design of
intricate optical elements and structures capable of
shaping or controlling the light propagation for applica-
tions such as microscopy and imaging20–24. In recent
years, diffractive optical networks comprising a set of
spatially engineered surfaces to perform computation
through passive light-matter-interaction have emerged as
powerful all-optical processors25,26. Designed utilizing
deep learning27, such coherent diffractive optical pro-
cessors have demonstrated versatile applications, includ-
ing statistical inference as well as deterministic
tasks26,28–34 across the spectrum from terahertz to near-
infrared35 and visible36,37.
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Information processing with a diffractive network involves
local modulation of the amplitude and/or the phase of the
incident optical wave by structured surfaces containing dif-
fractive neurons/features, each with a lateral size of ~λ/2,
where λ is the wavelength of the spatially coherent illumi-
nation light. The entire propagation of a spatially coherent
wave from the input plane to the output FOV comprises
such optical modulations by K spatially optimized diffractive
surfaces, which in total contain N independent diffractive
features (for example, evenly distributed over the K dif-
fractive surfaces). These N diffractive features represent the
complex-valued transmission coefficients, forming the inde-
pendent degrees of freedom of the diffractive processor,
which can be optimized to all-optically execute different
tasks25,29–33,38,39. It was shown that a spatially coherent dif-
fractive optical network could be trained to perform any
arbitrary complex-valued linear transformation between its
input and output FOVs if N ≥NiNo, where Ni and No refer to
the number of useful (diffraction-limited) pixels at the input
and the output FOVs19. For a phase-only diffractive network
where the transmission coefficients of the diffractive features
of each structured surface only modulate the phase infor-
mation of light, the requirement for universal linear trans-
formations increases to N ≥ 2NiNo due to the reduced
degrees of freedom that can be optimized independently.
For a given complex-valued linear transformation that a

coherent diffractive network is designed to approximate, any
arbitrary point on the input plane defined by (m′, n′) will
result in a unique complex-valued coherent point spread
function (h) at the output FOV defined by (m, n). This
4-dimensional complex-valued function, h(m, n; m′, n′), that
maps the input and output FOVs represents a spatially
varying coherent point spread function (PSF). Stated differ-
ently, unlike traditional spatially invariant imaging systems, a
coherent diffractive optical network provides a framework to
approximate any arbitrary h(m, n; m′, n′) that corresponds to
an arbitrarily selected complex-valued linear transformation
between its input and output FOVs. It was also shown that
different/independent complex-valued linear transformations
could be multiplexed in a single spatially coherent diffractive
processor by utilizing polarization and wavelength
diversity40,41.
All of these earlier studies on universal linear transfor-

mations implemented in free space through diffractive
processors were based on spatially coherent illumination. In
this paper, we report the demonstration of universal linear
transformations in optical intensity performed under spa-
tially incoherent monochromatic illumination of an input
FOV. Using numerical simulations, we show that, under
spatially incoherent light, a diffractive optical processor can
perform any arbitrary linear transformation of time-
averaged intensities between its input and the output
FOVs. Our numerical analyses revealed that phase-only
diffractive optical processors with a shallow architecture

(for example, having a single trainable diffractive surface)
are unable to accurately approximate an arbitrary intensity
transformation irrespective of the total number (N) of dif-
fractive features available for optimization; on the contrary,
phase-only diffractive optical processors with deeper
architectures (one diffractive layer following others) can
perform an arbitrary intensity linear transformation using
spatially incoherent illumination with a negligible error
when N ≥ 2NiNo. We also demonstrate that spatially inco-
herent diffractive optical processors can perform linear
intensity transformations at different illumination wave-
lengths, i.e., simultaneously perform the same linear trans-
formation or different linear transformations at different
wavelengths under spatially incoherent illumination. Finally,
we report the design of a spatially incoherent diffractive
network for all-optical classification of handwritten digits,
achieving 95.04% blind testing accuracy.
These analyses and conclusions are important for all-

optical information processing and visual computing
systems that use spatially and temporally incoherent light,
such as in natural scenes. The presented framework can
also find unique applications in computational micro-
scopy and incoherent imaging through point spread
function engineering.

Results
In this paper, we use the terms “diffractive optical net-

work”, “diffractive optical processor”, “diffractive net-
work” and “diffractive processor” interchangeably.
Similarly, the terms “diffractive surface” and “diffractive
layer” are used interchangeably. In the next sub-section,
we start with a theoretical analysis of spatially incoherent
diffractive optical processing of visual information.

Theoretical analysis
Spatially coherent monochromatic diffractive optical

networks can be characterized by a 4-dimensional com-
plex-valued coherent impulse response function (i.e., the
point spread function) that is spatially varying, connecting
the input and output FOVs: h(x, y; x′, y′). Stated differ-
ently, each arbitrarily selected complex-valued linear
transformation that is desired between the pixels of an
input FOV and output FOV results in a spatially varying
impulse response function h(x, y; x′, y′), where (x′, y′) and
(x, y) define the input and output FOVs, respectively.
Based on this definition, the complex-valued output field
oc(x, y) of a spatially coherent diffractive processor is
related to the complex-valued input field ic(x′, y′) by:

oc x; yð Þ ¼
Z Z

hc x; y; x0; y0ð Þic x0; y0ð Þdx0dy0 ð1Þ

The subscript c indicates that the quantities are func-
tions of continuous spatial variables x, y, x′, y′,
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representing the transverse coordinates on the output and
input planes. If these optical fields are sampled at an
interval (δ) sufficiently small to preserve the spatial var-
iations, satisfying the Nyquist criterion42, one can write:

o m; nð Þ ¼
X
m0;n0

h m; n;m0; n0ð Þ i m0; n0ð Þ ð2Þ

Here, m, n, m′, n′ refer to discrete indices such that o(m,
n)= oc(mδ, nδ) and i(m′, n′)= ic(m′δ, n′δ). The instanta-
neous output intensity can be written as:

o m; nð Þj j2 ¼ P
m0;n0;m00 ;n00

h m; n; m0; n0ð Þ h� m; n; m
00
; n
00� �

i m0; n0ð Þj j i m00
; n
00� ��� �� ej φ m0;n0ð Þ�φ m

00
;n
00ð Þð Þ
ð3Þ

where φ(.) is the phase function of the input field i, i.e.,
i= |i|ejφ, and h* denotes the complex conjugate of h. The
time-averaged output intensity can be written as:

O m; nð Þ ¼ o m; nð Þj j2� � ¼ P
m0;n0;m00 ;n00

h m; n; m0; n0ð Þ

h� m; n; m
00
; n
00� �

i m0; n0ð Þj j i m00
; n
00� ��� �� ejΔφ� �

ð4Þ
where 〈·〉 denotes time-average operation and Δφ= φ(m′,
n′) − φ(m″, n″). Since the illumination light is spatially
incoherent, the phases at different spatial points of the
input vary randomly over time and are independent of
each other43. Stated differently, for stationary objects/
scenes that are uniformly illuminated with a spatially
incoherent light, Δφ varies randomly between 0 and 2π
over time, yielding 〈ejΔφ〉= 0 for (m′, n′) ≠ (m″, n″). As a
result of this, under spatially incoherent illumination, Eq.
(4) can be written as:

O m; nð Þ ¼
X
m0;n0

h m; n;m0; n0ð Þj j2 i m0; n0ð Þj j2
D E

¼
X
m0;n0

H m; n;m0; n0ð Þ I m0; n0ð Þ
ð5Þ

where I= 〈|i|2〉 is the time-averaged input intensity and
H(m, n; m′, n′)= |h(m, n; m′, n′)|2 is the intensity impulse
response of the diffractive optical processor under
spatially incoherent illumination. From now on, unless
otherwise stated, we use the term optical “intensity” to
imply time-averaged intensity functions. Similarly, when-
ever all-optical linear transformation of intensity is
mentioned, spatially incoherent monochromatic illumina-
tion is implied unless stated otherwise.

We should emphasize that while H(m, n;m′, n′)= |h(m, n;
m′, n′)|2, we have in general O(m, n) ≠ |o(m, n)|2. Therefore,
the output intensity of a spatially incoherent diffractive
network cannot be calculated as |o(m, n)|2= |∑m′,n′ h(m, n;

m′, n′) i(m′, n′)|2. For the numerical forward model corre-
sponding to each input object, as will be detailed in the next
section, we used a large number of random phase distribu-
tions at the input plane to approximate O(m, n)= 〈|o(m,
n)|2〉 under spatially incoherent illumination.

Numerical analysis
In this subsection, we numerically explore the design

of diffractive optical processors to perform an arbitrary
linear intensity transformation between the input and
the output FOVs under spatially incoherent illumina-
tion. We assume, as shown in Fig. 1a, N independent
diffractive features (phase-only elements) that are dis-
tributed over K diffractive surfaces, each with N/K
diffractive features, between the input and output
planes. Following from Eq. (5), if we rearrange the pixel
intensities of I(m′, n′) and O(m, n) as column vectors i
and o, then we can write o= A′ i, where A′ represents
the linear intensity transformation performed by the
diffractive optical network under spatially incoherent
illumination. The elements of A′ correspond to the
elements of the intensity impulse response H(m, n; m′,
n′); see Eq. (5). Note that all the elements of A′ are real
and nonnegative since it represents a linear intensity
transformation with H(m, n; m′, n′)= |h(m, n; m', n')|2.
Hence, in the context of arbitrary linear transforma-
tions in intensity, only real transformation matrices
with nonnegative elements are considered.
For our target linear transformation that is to be

approximated by the spatially incoherent diffractive pro-
cessor, initially, we selected an arbitrary matrix A, as
shown in Fig. 1b. In the following numerical analysis, we
optimize N diffractive features of a phase-only diffractive
processor so that A′ ≈A under spatially incoherent illu-
mination. The size of A is chosen as No ×Ni= 64 × 64, i.e.,
the number of pixels at both the input (Ni) and the output
(No) FOVs are 8 × 8, arranged in a square grid. Each ele-
ment of the matrix A is randomly sampled from a uniform
probability distribution between 0 and 1, i.e., A[p, q] ~
Uniform(0, 1) where A[p, q] is the element at p-th row and
q-th column of A, p= 1,…,No and q= 1,…,Ni.
For the deep learning-based optimization of the design

of a phase-only diffractive processor to achieve A′ ≈A, we
followed two different data-driven supervised learning
approaches: (1) the indirect approach and (2) the direct
approach. In the indirect approach, instead of directly
training the diffractive network to perform the linear
intensity transformation A, we trained the network, under
spatially coherent illumination, to perform the complex-

valued linear transformation A between the input and

output FOVs such that jA½p; q�j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
A½p; q�p

, which would

result in an intensity linear transformation jA½p; q�j2 ¼
A½p; q� under spatially incoherent illumination. For the
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purpose of the training, we defined the phase of A½p; q� to
be zero, i.e., A½p; q� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

A½p; q�p
exp j0ð Þ; however, any

other phase distribution could also be used since the
design space is not unique. Stated differently, in this
indirect approach, we design a diffractive network that
can achieve a spatially coherent impulse response h(m, n;
m′, n′), which will ensure that the same design has a
spatially incoherent impulse response of H(m, n; m′,
n′)= |h(m, n; m′, n′)|2 such that A′ ≈ A can be satisfied
under spatially incoherent illumination. To achieve this

goal, we used the relationship ~o ¼ A~i to generate a large
set of input-target complex-valued optical field pairsei;eo� 	

, and used deep learning to optimize the phase

values of the diffractive features by minimizing the mean
squared error (MSE) loss between the target complex field

eo and the complex field eo0 obtained by coherently pro-

pagating ei through the diffractive network (see the
“Materials and methods” section). In other words, spa-
tially coherent design of a diffractive network is used here
as a proxy for the design of a spatially incoherent dif-
fractive network that can achieve any arbitrary intensity
linear transformation between its input and output FOVs.

In the second approach (termed the direct approach),
we trained the diffractive network to perform the desired
intensity linear transformation A between the input and
the output FOVs, by directly using the relationship o=Ai
to generate a large set of input-target intensity pairs (i, o).
Using this large training set of input/output intensity
patterns, we optimized the transmission phase values of
the diffractive layers using deep learning, by minimizing
the MSE loss between the output pixel intensities of the

An arbitrary intensity transformation
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Fig. 1 All-optical linear transformation of intensity performed by diffractive networks under spatially incoherent illumination. a Schematic
of a diffractive network formed by K= 5 diffractive surfaces that all-optically perform a linear transformation of intensity between the input and
output FOVs. The N diffractive features are distributed evenly among the K= 5 surfaces. b An arbitrary No × Ni matrix A, representing the target
intensity transformation to be performed all-optically by the diffractive network. Here Ni= 82 and No= 82 are the number of pixels at the input and
the output FOVs of the diffractive network, respectively. c The expectation value of the MSE between the all-optical output intensity o′ and the
ground-truth output intensity o, as a function of N for different diffractive networks trained using the indirect approach. To simulate the incoherent
propagation of intensity for each test input, we used Nφ,te= 20,000. d Dependence of the calculated output MSE on Nφ,te, demonstrated for network

# 1E of Fig. 1c. The right y-axis shows the expectation value of the residual magnitude of 1
Nφ;te

PNφ;te

i¼1 e
jθi , where θi ~ Uniform(0, 2π)
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diffractive processor o′ and the ground-truth intensities o
(see the “Materials and methods” section). During the
training phase, the output intensity of the diffractive
processor was simulated through the incoherent propa-
gation of the input intensity patterns, i or I(m′, n′). To
numerically simulate the spatially incoherent propagation
of I(m′, n′), we assumed the input optical field to be

ffiffi
I
p

ejφ

where φ is a random 2D phase distribution, i.e., φ(m′,
n′) ~Uniform(0, 2π) for each (m′, n′). This input field with
the random phase distribution φ was coherently propa-
gated through the diffractive surfaces to the output plane,
using the angular spectrum approach25. We repeated this
coherent wave propagation Nφ times for every i, each time
with a different random phase φ(m′, n′) distribution, and
averaged the resulting Nφ output intensities. As Nφ → ∞,
the average intensity would approach the theoretical time-
averaged output intensity for spatially incoherent illumi-
nation, i.e., O(m, n)= 〈|o(m, n)|2〉. Due to the limited
availability of computational resources, for the direct
training (the second design approach) of the spatially
incoherent diffractive optical processors, we used
Nφ=Nφ,tr= 1000.
The diffractive models reported in Figs. 1–5 and 10 were

trained using the indirect approach while the ones in Figs.
6–9 were trained using the direct approach. All the dif-
fractive networks reported in this work, after their training
using either the direct or indirect design approaches, were
evaluated and blindly tested through the incoherent pro-
pagation of input intensities with Nφ,te= 20,000. Since the
testing is computationally less cumbersome compared to
the training, we used Nφ,te= 20,000≫Nφ,tr.
Unless otherwise stated, we assumed the size of the

input and the output pixels to be ~2.13λ × 2.13λ, where λ
is the illumination wavelength. After the training phase, we
tested the resulting diffractive processor designs using
20,000 test intensity patterns i that were never used during
training; the size of this testing intensity set (20,000)
should not be confused with Nφ,te= 20,000 since for each
input intensity test pattern of this set, we used Nφ,te=
20,000 random 2D phase patterns to compute the corre-
sponding spatially incoherent output intensity. In Fig. 1c,
the approximation errors of eight different phase-only
diffractive processors trained using the indirect approach,
each with K= 5 diffractive layers, are reported as a func-
tion of N. The mean error (Fig. 1c) for each diffractive
design was calculated at the output intensity patterns o′
with respect to the ground truth o=Ai, by averaging over
the 20,000 test intensity patterns. Fig. 1c reveals that the
approximation error of the spatially incoherent diffractive
processors reaches a minimum level as N

2NiNo
approaches 1,

and stays at the same level for N ≥ 2NiNo.
To understand the impact of Nφ,te on these approx-

imation error calculations, we took the diffractive pro-
cessor design # 1E shown in Fig. 1c (i.e., K= 5,

N ≈ 2.1 × 2NiNo), and used different Nφ,te values at the
blind testing phase for evaluating the average test error on
the same intensity test set composed of 20,000 patterns i.
As shown in Fig. 1d, the computed error values decrease
as Nφ,te increases, as expected. On the right y-axis of the
same Fig. 1d, we also show, as a function of Nφ,te, the

expectation value of 1
Nφ;te

PNφ;te

i¼1 ejθi
��� ���, where θi ~Uniform(0,

2π). This expectation value of the residual magnitude of
1

Nφ;te

PNφ;te

i¼1 ejθi decreases as Nφ,te increases and would

approach zero as Nφ,te → ∞. The numerically simulated
output intensity of a diffractive processor design approa-
ches the true time-averaged intensity of the spatially
incoherent wave as Nφ,te gets larger, following a similar

trend as 1
Nφ;te

PNφ;te

i¼1 ejθi
��� ���, reported in Fig. 1d. This com-

parison also highlights the fact that our choice of using
Nφ,te= 20,000 random 2D phase patterns to compute the
spatially incoherent output intensity patterns in the blind
testing phase is an accurate approximation.

Next, we show in Fig. 2 the scaled intensity linear
transformations, Â, that were approximated by five of the
trained diffractive networks of Fig. 1c. Â is related to the
physical transformation A′ by a scalar factor σA (see the
“Evaluation” subsection in “Materials and methods” sec-
tion) which compensates for diffraction efficiency-related
optical losses. We also show the error matrix with respect
to the target A, i.e., ε¼jA� Âj, and report the average of
the error matrix elements in the table on the right. Here |
∙| denotes the elementwise operation. As N increases, the
diffractive networks’ resulting matrices resemble the
ground truth target better and the approximation error
decreases steadily; however, the improvement is more
prominent as N approaches 2Ni No and stagnates beyond
N ≈ 2NiNo.
To provide visually more noticeable illustrations of the

diffractive networks’ all-optical intensity transformations
under spatially incoherent illumination, we used struc-
tured intensity patterns such as the letters U, C, L, and A
as input intensity to the diffractive networks (see Fig. 3).
Because of the randomness of the elements of the inten-
sity transformation matrix, the output pixel intensities
also appear random (harder to compare visually against
the ground truth). However, the reappearance of the let-
ters after a numerical inversion through the multiplication
of the scaled output intensity ô by the inverse of the target
transformation, A−1, would indicate Â � A and validate
the correctness of the diffractive networks’ approxima-
tions in a visually noticeable manner (see the “Evaluation”
subsection of the “Materials and methods” section for the
definition of ô). In the case of the diffractive network # 1A
(K= 5, N= 5 × 382 ≈ 0.88 × 2NiNo), the result of such an
inversion does not quite reveal any recognizable patterns,
indicating the near-failure of the all-optical
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approximation of this design # 1 A. However, such
inversion reveals the recognizable patterns (U, C, L, and
A) as N approaches 2NiNo (design # 1B) and becomes
identical to the inputs as N exceeds 2NiNo (e.g., design #
1C). These results show that for the K= 5 phase-only
diffractive networks with a sufficiently large N ≥ ~2NiNo,
we have Â � A, indicating that these networks could

faithfully approximate the target intensity linear trans-
formation under spatially incoherent illumination.
For computational imaging and sensing applications,

such as in microscopy, exploring patterns of closely
spaced lines and points would be interesting. Motivated
by this, we repeated the same procedures outlined in Fig.
3 for various intensity patterns consisting of closely

All-optical intensity transformation
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separated line pairs and sets of points, the results of which
are summarized in Fig. 4. The same conclusions drawn
previously in Fig. 3 hold: for N ≥ ~2NiNo we have Â � A.
We also investigated the dependence of the all-

optical approximation of intensity linear transforma-
tions on the number of diffractive layers K; see Fig. 5.
The results of this analysis reveal that even with

N ≈ 2 × 2NiNo, K= 1 and K= 2 diffractive designs failed
to approximate the target linear transformation despite
having a large N, whereas the designs with
K > 2 successfully approximated the target transfor-
mation under spatially incoherent illumination. This
confirms that the depth of the diffractive network
design is a key architectural factor in the
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computational capacity of diffractive processors to
perform arbitrary linear transformations19,25,40,41. The
diffractive layer phase distributions for different
designs with approximately the same N ≈ 2 × 2NiNo

diffractive features are shown in Supplementary Fig. S2
for different K values. For example, the phase profile of

the diffractive layer for K= 1 looks significantly dif-
ferent from the layers of the other deeper diffractive
networks.
Next, we present the blind testing results of the dif-

fractive processors that were trained using the second
design approach (i.e., direct approach), to perform the
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Fig. 5 Effect of the diffractive network’s depth, i.e., the number of diffractive surfaces (K), on the approximation performance for an
arbitrary intensity linear transformation under spatially incoherent illumination. All-optical linear transformations of intensity, Â, performed by
four diffractive network designs with approximately equal N and increasing K, are shown, together with the corresponding error matrices with

respect to the target transformation, i.e., ε ¼ A� Â
�� ��. Here |∙| denotes elementwise operation. The mean values of the error matrix elements are listed

in the table on the right
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same arbitrary intensity linear transformation as has been
considered so far. In Fig. 6a, the approximation errors of
eight different phase-only diffractive processors trained
using the direct approach, each with K= 5 diffractive
layers, are reported as a function of N. The mean error
was calculated over the same 20,000 test intensity patterns
used in Fig. 1c; for each test intensity pattern, the inco-
herent output intensity o′ was calculated using Nφ,te=
20,000 (same as before). In these alternative diffractive
designs, the approximation error of the diffractive pro-
cessors reaches a minimum level as N

2NiNo
approaches 1,

and stays at the same level for N ≥ 2NiNo – the same
conclusion that we reached for the indirect designs
reported earlier. However, compared with the previous
designs that used the indirect approach, here, the mini-
mum error level obtained using the direct approach is
approximately three times higher. This can be attributed
to the use of a relatively small Nφ,tr= 1000 during the
training, and these designs can be further improved by
increasing Nφ,tr using a longer training effort with more
computational resources.
In Fig. 7, we show the scaled linear intensity transfor-

mations, Â, that were approximated by five of the trained
diffractive networks of Fig. 6a. For each case, we also show
the error matrix with respect to the target A, i.e., ε¼ A� Â

�� ��
, and report the average of the error matrix elements in the
table on the right. As N increases, the mean intensity
transformation error decreases, except for design # 2B
which we believe is an outlier resulting from poor con-
vergence. The relatively large error of the design # 2B is due
to the diffraction efficiency imbalance among the individual
input pixels, as evident from the uneven magnitudes across
the columns of Â. Similarly, the other designs of the direct

approach reveal uneven magnitudes across the columns of
ε, indicating some diffraction efficiency imbalance among
the individual input pixels, albeit not as severe as the design
# 2B. Despite such imperfections, these diffractive networks
designed using the direct approach effectively learned the
target intensity transformation, as evident from Figs. 8 and
9. Figure 8 reveals that, for all the designs, the multiplication
of the output intensity patterns ô by the inverse of the target
transformation, A−1 brings back the patterns U, C, L, A.
Although, the reconstruction quality is better for N ≈ 2NiNo

and remains similar beyond N > 2NiNo, the improvement is
not as sharp as it was with the indirect approach (see Fig. 8
vs. Fig. 3 and Fig. 9 vs. Fig. 4). In contrast with the diffractive
networks designed using the indirect approach, here in this
case, the diffractive networks with N < 2NiNo (e.g., design #
2A) succeeded in approximating the linear transformation
to the extent of revealing recognizable patterns after a
numerical inverse mapping. These same observations also
hold for the intensity patterns that consist of closely spaced
lines and points, as shown in Fig. 9.
As another example, we report in Fig. 10 the perfor-

mance of a diffractive network (K= 5, N ≈ 2 × 2NiNo)
trained using the indirect approach to approximate
another arbitrary intensity linear transformation, defined
by a non-invertible matrix. The target transformation A,
the approximate all-optical transformation Â, and the
error matrix ε¼ A� Â

�� �� are shown in Fig. 10a, revealing
that the diffractive network design performed the target
intensity transformation with negligible error. We also
show the performance of this diffractive network design
on test patterns (U, C, L, and A as well as line pairs and
points) in Fig. 10b. The all-optical outputs are identical to
the ground truth outputs, further confirming that we have
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�� ��. Here |∙|
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Â � A. Another example of the all-optical approximation
of an arbitrary intensity transformation (defined by a
random permutation matrix) is also reported in Supple-
mentary Fig. S1.
We also demonstrate the capability of spatially inco-

herent diffractive networks to all-optically perform

arbitrary intensity linear transformations at different
illumination wavelengths, operating simultaneously. For
this purpose, we consider two different cases: (1) the same
intensity linear transformation A is simultaneously per-
formed at Nw= 3 discrete wavelengths λ1, λ2, λ3 (see Figs.
11, 12), and (2) three unique intensity linear
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transformations A1, A2, A3 are simultaneously performed
at Nw= 3 discrete wavelengths λ1, λ2, λ3 (see Figs. 13, 14).
For the former, we trained a spatially incoherent dif-
fractive optical network to perform the same arbitrarily
chosen permutation matrix A, as shown in Fig. 11b, at
λ1= 700 μm, λ2= 750 μm, λ3= 800 μm. The all-optical
transformations performed under spatially incoherent

light at these three wavelengths, i.e., Âλ1 ; Âλ2 and Âλ3 are
also shown in Fig. 11b, together with the corresponding
numerical error matrices. We also plot the average of the
elements of the error matrices, corresponding to the all-
optical transformations Âλ at different wavelengths in
Fig. 11c. These results and analyses show that the
spatially incoherent diffractive optical network could
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transformation Â performed by the trained diffractive network and the error matrix ε ¼ A� Â
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simultaneously perform the target permutation with
negligible error at these three wavelengths. In Fig. 12, we
also depict visual examples of the all-optical permutations
performed by the diffractive network. Here we used the
inverse-mapped intensities of recognizable test patterns as
the input intensities; the diffractive network was suc-
cessful in all-optically reproducing the test patterns at the
output FOV at all three wavelengths with no perceptible
error, indicating Âλ1 � Âλ2 � Âλ3 �A.
For the second case, where we want the spatially inco-

herent inputs at λ1, λ2 and λ3 to undergo three unique all-
optical intensity linear transformations (A1, A2, A3,
respectively) by the same/common diffractive optical
network, we chose three arbitrary permutation matrices
such that ∑p,qAi[p, q]Aj[p, q]= 0 for i ≠ j. We trained a
spatially incoherent diffractive optical network to perform
these distinct linear transformations A1, A2 and A3 on the
input intensities at λ1= 700 μm, λ2= 750 μm and
λ3= 800 μm, respectively. Figure 13b shows the target

permutation matrices A1, A2, A3, the resulting all-optical
intensity transformations Âλ1 ; Âλ2 , Âλ3 performed by the
spatially incoherent diffractive network at wavelengths λ1,
λ2, and λ3 and the corresponding numerical error matri-
ces. We also plot the average of the elements of the error
matrices corresponding to the all-optical transformations
Âλ performed by the diffractive network at different
wavelengths λ, with respect to the target permutations in
Fig. 13c. The results of Figs. 13b, c show that the spatially
incoherent diffractive network simultaneously performed
the target permutation operations with negligible error at
the three designated wavelengths. Apart from the negli-
gible error at the wavelengths designated to the target
transforms, the error also has local minima (~0.03125) at
the other two wavelengths, as shown in Fig. 13c. This is
due to the fact that the all-optical transformations at the
other two wavelengths are also permutation operations
and the maximum value of the mean absolute error
between two unique/non-overlapping permutation
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matrices of size N ×N is bounded by 2/N which is 0.03125
in our case, very well agreeing with the local minima
observed in Fig. 13c. In Fig. 14, we also depict some visual
examples of the all-optical permutations simultaneously
performed by the spatially incoherent diffractive optical
network. Similar to Fig. 12, we used the inverse-mapped
intensities of recognizable test patterns under A1, A2 and

A3 as the input intensities at λ1= 700 μm, λ2= 750 μm,
λ3= 800 μm, respectively; the diffractive network all-
optically reproduced the test patterns at the output FOV
at all three wavelengths with no perceptible error, indi-
cating Âλ1A1, Âλ2A2, and Âλ3A3.
Apart from these indirect and direct design approaches

that are both based on data-driven supervised learning,
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we also used an alternative, third design approach: a
data-free method based on spatially varying PSFs. This
spatially incoherent diffractive network design approach

involves separately propagating each of the Ni input pixels
(see Eq. (14) of the “Materials and methods” section) and
minimizing the MSE between the all-optical intensity
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transformation A′ and the target transformation A. Since
this approach is based on optimizing the spatially varying
PSFs of an incoherent diffractive network, we call it the
PSF-based design approach that is data-free. To showcase
the utility of this approach, we trained another spatially
incoherent diffractive optical network to perform the
same intensity linear transformation A as in Figs. 1–9,
with Ni=No= 8 × 8 and a diffraction-limited input/out-
put pixel size of � λ

2. As for the diffractive network
architecture, we chose K= 5, N= 5 × 582 ≈ 2.05 × 2NiNo.
Figure 15a shows the target intensity transformation A,
the all-optical transformation matrix Â of the trained
spatially incoherent diffractive network, and the error
matrix ε¼ A� Â

�� ��, revealing negligible error in achieving
the target linear transformation. We also show the all-
optical output intensities for different input test patterns
in Fig. 15b, confirming the success of this spatially inco-
herent diffractive design using the data-free PSF-based
approach.

Discussion
We demonstrated that phase-only diffractive networks

under spatially incoherent illumination could perform
arbitrary linear transformations of optical intensity with a
negligible error if N ≥ 2NiNo. The same conclusions would
be applicable to complex-valued diffractive networks
where the phase and amplitude of each diffractive feature
could be independently optimized; in that case, the critical
number of complex-valued diffractive features for
approximating an arbitrary linear transformation of optical
intensity would reduce by half to NiNo due to the increased

degrees of freedom per diffractive layer. Because of the
practical advantages of phase-only diffractive networks,
without loss of generality, we limited our analyses in this
work to phase-only modulation at each diffractive surface.
Our results suggest that the two different data-driven

training approaches (indirect vs. direct design) converge
differently. If N is comparable to or larger than 2NiNo, the
indirect approach results in significantly better and faster
convergence and accurate approximation Â � A; on the
other hand, the direct design approach works better when
N is considerably less than 2NiNo, even if its approximation
error is larger. For example, although the designs # 2A and
# 2B have higher errors than the design # 1A, the perfor-
mances of the former on various test patterns are manifestly
better as compared in Figs. 3, 4, 8 and 9. These direct
designs can be further improved in their approximation
power by increasing Nφ,tr≫ 1000 through a longer training
phase, utilizing more computational resources.
A probable reason for the relatively inferior perfor-

mance of the indirect design approach for N < 2NiNo is

the zero-phase restriction imposed on A
¼
p; q½ �, i.e.,

A
¼
p; q½ � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A p; q½ �p
exp j0ð Þ. This zero-phase condition

might restrict the convergence of the diffractive network
design, given limited degrees of freedom, training data
and time. Without any such phase restrictions assumed,
the direct approach can converge to a relatively better

solution for N < 2NiNo, satisfying A p; q½ � ¼ A
¼
p; q½ �

��� ���2. On

the other hand, with N ≥ 2NiNo, i.e., with sufficient
degrees of freedom available within the network
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architecture, it becomes easier to meet the additional
phase constraint of the indirect design approach, while
the direct approach still suffers from training noise arising
from limited Nφ,tr; this trade-off is at the heart of the
relatively inferior performance of the direct approach for
N ≥ 2NiNo.
An important advantage of the direct approach over the

indirect one is that the former can be applied even if the
only information available to the designer is the sample
data representing the target incoherent linear process,
without a priori knowledge of the transformation matrix
itself. By the same token, the direct approach also lends
itself to data-driven optimization of incoherent diffractive
processors for all-optical linear approximation of some
nonlinear processes. As a consequence of this, data-driven
design of incoherent processors for performing other
inference tasks such as e.g., all-optical image classification
under spatially incoherent illumination, can be accom-
plished using the direct approach. We demonstrated this
important advantage of the direct approach through a
practical application involving image classification, i.e.,
all-optical classification of MNIST handwritten digits44

under spatially incoherent illumination. In this scheme,
the images are encoded in the intensity of the incoherent
illumination, as depicted in Fig. 16a, while at the output
plane of the diffractive network, we placed 20 detectors in
a differential scheme, i.e., a positive detector and a nega-
tive detector for each of the 10 data classes45. For training
the spatially incoherent diffractive network, we used
Nφ,tr= 10 and a batch size of 64. Despite the less accurate
forward model with a small Nφ,tr, a larger batch size
bolstered the training process and facilitated better con-
vergence. Once the model was trained, we used Nφ,te=
20,000 for the blind testing, which resulted in a classifi-
cation accuracy of 95.04%. The confusion matrix arising
from this blind testing of the trained spatially incoherent
diffractive network on 10,000 MNIST test images is
shown in Fig. 16b. For more details on the training, see
the “Materials and methods” section.
Both the indirect and the direct design approaches

based on data-driven supervised learning suffer from
diffraction efficiency fluctuations across the input pixels
to some extent, manifested by the appearance of vertical
stripes in some of the all-optical intensity transformations
reported in e.g., Figs. 5 and 7. This artifact arises from
using a different scaling factor for each example during
the training (see Eqs. 11, 13). The artifact is not percep-
tible for the indirect approach in general, except for the
K= 2 design shown in Fig. 5 where the artifact is severe.
The PSF-based data-free design approach, on the other
hand, is free from such artifacts, as shown in Fig. 15, while
also being computationally more efficient. For example,
the optimization of the spatially incoherent diffractive
network reported in Fig. 15 using the data-free PSF-based

design approach took less than 4min. Benefiting from its
speed, we also used this PSF-based design approach to
tackle a larger problem with Ni=No= 16 × 16 as illu-
strated in Supplementary Fig. S5, for which the optimi-
zation took less than 35min. Despite these advantages,
the PSF-based approach, like the indirect design method,
cannot be used in the case of an unknown transformation,
such as data-driven classification problems, as depicted in
Fig. 16.
The failure of shallow diffractive networks to perform

an arbitrary intensity transformation (see e.g., K= 1
design shown in Fig. 5) indicates that shallow archi-
tectures with phase-only diffractive layers are unable to
effectively balance the ballistic photons that are trans-
mitted from the sample/input FOV over a low numerical
aperture; as a result of this, the lower spatial frequencies
of the input intensity patterns dominate the output
intensity patterns of a shallow diffractive network, sacri-
ficing the approximation accuracy. Therefore, shallow
diffractive network architectures, even with large numbers
of trainable diffractive features (N), fail to approximate an
arbitrary intensity transformation, as shown in Fig. 5.
Deeper architectures, on the other hand, utilize their
trainable diffractive features more effectively by dis-
tributing them across several layers/surfaces, one follow-
ing another, and mixing the propagating modes of the
input FOV over a series of layers that are optimized using
deep learning.
As demonstrated in our Results section and Figs. 11–14,

spatially incoherent diffractive processor designs can also
be extended to operate under broadband illumination
light. In fact, multiplexing of M > 150 arbitrary complex-
valued linear transformations for complex optical fields
was shown to be possible under spatially coherent but
broadband illumination light41. Following a similar multi-
wavelength optimization process and the indirect design
principles outlined earlier, one can design a diffractive
network to simultaneously approximate M > 150
arbitrarily-selected linear intensity transformations (
Aλ1 ;Aλ2 ,… AλM ) under spatially incoherent illumination,
where each intensity transformation is assigned to a
unique wavelength λi {i= 1:M}. The success of such a
spatially and temporally incoherent diffractive optical
network to accurately perform all the target intensity
transformations requires an increase in the number of
trainable features within the diffractive volume, i.e., N ≥
M × 2NiNo would be needed for a phase-only diffractive
network. Such diffractive processor designs that work
under spatially and temporally incoherent light can be
useful for a number of applications, including fluores-
cence and brightfield microscopy and the processing of
natural scenes.
We have limited our analysis to a relatively small pro-

blem size, e.g., Ni=No= 64 or Ni=No= 256 as in
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Supplementary Fig. S5. Larger problems in terms of Ni

and No would necessitate diffractive designs with larger K
and N, which in turn would necessitate a longer training
phase with a larger training set for converging to a good
solution. Even though the PSF-based design approach, as
discussed above, could alleviate some of the computa-
tional burden, ultimately for megapixel-size input/output
problems, distributed training over multiple computers
might be necessary for implementing the large optical
forward model46. As for the physical implementation of a
converged diffractive network model, fabrication methods
such as lithography and additive manufacturing could be
used for creating diffractive layers for high-density inco-
herent visual computing at the visible and infrared
wavelengths47,48. While the physical alignment of these
diffractive layers might pose some practical challenges,
the requirement for precise alignment can be relaxed by
training the diffractive processor designs with such fab-
rication and alignment imperfections added as random
physical variables during the training phase; this strategy
has been shown to bring resilience against relative mis-
alignments between the fabricated and assembled dif-
fractive layers49.
We should also emphasize that the intensity linear

transformations performed by diffractive networks under
spatially incoherent illumination are not limited to square
matrices with Ni=No. To show this, we trained a dif-
fractive optical network to perform an intensity linear
transformation A with Ni= 64 and No= 49, using the
indirect design approach. To keep the solution space
general, we distributed the pixels on the input and the
output FOVs in an irregular manner (arbitrarily selected),
completely deviating from the regular 8 × 8 and 7 × 7 grids
(see Supplementary Fig. S3a). Supplementary Fig. S3b
shows the all-optical intensity transformation Â per-
formed by this trained spatially incoherent diffractive
network, together with the target transformation A and
the error matrix ε¼ A� Â

�� ��, revealing a negligible trans-
formation error in this case of Ni ≠No.
We also note that our framework cannot process

negative/complex-valued numbers in its current infor-
mation encoding implementation since it uses optical
intensity to represent information. However, it can be
extended to implement complex-valued transformations
by mapping and encoding the complex numbers, e.g., real
and imaginary parts, as well as negative numbers to be
represented by optical intensity.

Materials and methods
Model for the propagation of spatially coherent light
through a diffractive optical network
Propagation of spatially coherent complex optical fields

through a diffractive processor D �f g constitutes succes-
sive amplitude and/or phase modulation by diffractive

surfaces, each followed by coherent propagation through
the free space separating consecutive diffractive surfaces.
The diffractive features of a surface locally modulate the
incident optical field u(x, y). For this paper, the trainable
diffractive features are phase-only, i.e., only the phase, but
not the amplitude, of the incident field is modulated by
the diffractive surface. In other words, the field immedi-
ately after the surface would be u(x, y) exp(jϕM(x, y))
where the local phase change ϕM(x, y) induced by the
surface is related to its height h(x, y) as ϕM ¼ 2π

λ n� 1ð Þh.
Here n is the refractive index of the diffractive surface
material.
Free-space propagation of an optical field between

consecutive diffractive surfaces was modeled using the
angular spectrum method1, according to which the pro-
pagation of an optical field u(x, y) by distance d can be
computed as follows:

u x; y; z ¼ z0 þ dð Þ ¼ F�1 F u x; y; z ¼ z0ð Þf g ´H f x; f y; d
� 	n o

ð6Þ
where F ðF�1Þ is the two-dimensional Fourier (Inverse
Fourier) transform and H(fx, fy; d) is the free-space
transfer function for an axial propagation distance d:

H f x; f y;d
� 	

¼ exp j 2πλ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� λf x

� �2 � λf y
� 	2r !

; f 2x þ f 2y <1=λ
2

0; otherwise

8><>:
ð7Þ

where λ is the wavelength of light.

Model for the propagation of spatially incoherent light
through a diffractive optical network
With spatially incoherent light, the (average) output

optical intensity O(x, y) of a diffractive network, for a
given input intensity I(x, y), can be written as

O x; yð Þ ¼ D
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I x; yð Þ

p
exp jφ x; yð Þð Þ

n o��� ���2
 �
¼ lim

Nφ!1
1
Nφ

XNφ

r¼1
D

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I x; yð Þ

p
exp jφr x; yð Þð Þ

n o��� ���2
ð8Þ

where D �f g denotes the coherent propagation of the
optical field through the diffractive processor as described
in the preceding subsection, and h � i denotes the
statistical average, over all the realizations of the spatially
independent random process φ(x, y) representing the 2D
phase of the input optical field, i.e., φ(mδ, nδ) ~Uni-
form(0, 2π) for all m, n43.

As for the spatially incoherent propagation of average
intensity, it is only possible to approximate the true
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average (Eq. 8) by averaging over a finite number Nφ of
samples of φ(x, y), i.e.,

O x; yð Þ � 1
Nφ

XNφ

r¼1
D

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I x; yð Þ

p
exp jφr x; yð Þð Þ

n o��� ���2 ð9Þ

In the training phase of the direct training approach,
incoherent propagation of intensities through the dif-
fractive processors was simulated with Nφ,tr= 1000.
However, in the blind testing phase we used Nφ,te=
20,000 while evaluating the diffractive processors once
they were trained, irrespective of whether the indirect or
the direct approach of training was used.
In our numerical simulations, the fields/intensities were

discretized using δ ≈ 0.53λ along both x and y, e.g.,
u m; nð Þ≜u mδ; nδð Þ and sufficiently zero-padded before
evaluating the Fourier transform, as in Eq. (6), using Fast
Fourier Transform (FFT) algorithm. In particular, the fields
were zero-padded such that the simulation window size
after padding was four-times the size of the largest aperture,
which in our case is the diffractive layer width. Such sam-
pling ensured that the propagation distance d was smaller
than the largest propagation distance for which the angular
spectrum method is valid, satisfying the sampling require-
ment for accurate diffraction calculations50.
The angular spectrum method, which we used to model

the light propagation between diffractive layers, is a
Fourier transform-based fast implementation of the
Rayleigh-Sommerfeld diffraction integral1. By using the
Rayleigh-Sommerfeld model of diffraction, we implicitly
assumed that the light traveling through these layers can
be represented as a scalar field. While the accurate
modeling and computation of diffracted light fields from
structures with deeply subwavelength features require the
use of vector diffraction theory, we made certain
assumptions that allowed us to utilize the scalar field
approximation. Firstly, we assumed that the diffractive
layers are axially separated from each other by more than
a wavelength (d≫ λ), prohibiting the coupling of eva-
nescent fields from one layer to the next. Secondly, we
considered the smallest feature size on a diffractive layer
to be approximately half a wavelength. These assumptions
permitted us to approximate the spatial information flow
within a diffractive optical network using scalar optical
fields. In fact, the same scalar field approximation is
ubiquitously employed in simulating and modeling
diffraction-limited microscopy, holographic imaging and
display systems. Various experimental demonstrations of
3D-fabricated diffractive optical networks were reported
in the literature, which employed the same scalar field
theory25,30,33,38,41 providing an excellent match between
the numerical and experimental results. These demon-
strations further confirm the validity of the scalar field
approximation to represent the behavior of light

propagation within diffractive optical networks that only
process propagating, i.e., traveling waves in space.

Diffractive network architecture
The heights h m; nð Þ≜h mδ; nδð Þ of the N diffractive fea-

tures distributed over K surfaces were optimized for
designing the diffractive processors to perform the desired
transformation. To keep the connectivity between succes-
sive diffractive layers25 the same across the trained dif-
fractive networks with different N, the layer-to-layer

separation was set as d ¼ Wδ
λ , where W ¼

ffiffiffi
N
K

q
δ is the

width of each diffractive layer. The distances between the
input FOV and layer-1 and between layer-K and the output
FOV were also set as d. The pixel size on both the input and
the output FOVs was ~2.13λ × 2.13λ, i.e., 4δ × 4δ.

Linear transformation matrix
In this paper, the input and the output of the diffractive

networks have dimensions of Ni=No= 8 × 8, i.e., I;O 2
R8 ´ 8
þ and i; o 2 R64

þ . To clarify, i and o are one-
dimensional (column) vectors obtained by rearranging
the intensity values I(m, n) and O(m, n) of the input and
the output pixels arranged in a two-dimensional
8 × 8 square grid. Accordingly, the target transformation
matrix A has a size of No ×Ni= 64 × 64, i.e., A 2 R64 ´ 64

þ .

The indirect approach of training
Dataset preparation: In the indirect approach, instead of

training the diffractive networks to perform the linear
transformation A between the input and the output
intensities, we trained them to perform the complex-
valued linear transformation A between the input and the
output fields such that A

¼
p; q½ � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A p; q½ �p
exp j0ð Þ. To

prepare the dataset for such training, we first generated
input field vectorsei with complex-valued elements, where
the amplitudes were sampled independently from each
other from the uniform distribution Uniform(0,1) and the
phases from the distribution Uniform(0, 2π). Then we
used the relationship eo¼A

¼ei to generate the target ground
truths for the corresponding output field vectors. We
generated 160,000 such pairs and split them into training
and validation sets with a ratio of 15:1.
Loss function: We used MSE between the target output

field and the all-optical output field of the diffractive
processor as the loss function to minimize for optimizing
the diffractive surface thicknesses, i.e., the loss function
was defined as:

Lindirect ¼ 1
No

XNo

l¼1
j σ¼eo l½ � � σ

¼0eo0½l�j2 ð10Þ

where eo0 is the diffractive network output field evaluated
by coherent propagation of the input field through the
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diffractive network, σ
¼

and σ
¼0

are normalization factors
defined as19:

σ
¼ ¼

XNo

l¼1
jeo l½ �j2

 !�1
2

; σ
¼0 ¼

PNo
l¼1 σ
¼eo l½ �eo0� l½ �PNo

l¼1 jeo0 l½ �j2 ð11Þ

The direct approach of training
Dataset preparation: To prepare the dataset for training

diffractive processors for a given transformation A with
the direct approach, we first generated input intensity
vectors i with elements (pixel values) sampled indepen-
dently from each other from the uniform distribution
Uniform(0,1). Corresponding ground truths for the output
intensity vectors were calculated as o=Ai. In total, we
generated 160,000 pairs of intensity vectors and split them
into training and validation sets with a ratio of 15:1.
Loss function: The loss function was defined as follows:

Ldirect ¼ 1
No

XNo

l¼1
σo l½ � � σ 0o0 l½ �ð Þ2 ð12Þ

where o′ is the diffractive network output intensity
evaluated by simulating incoherent propagation of the
input intensity through the diffractive network, σ and σ′
are normalization factors defined as:

σ ¼
XNo

l¼1
o l½ �ð Þ2

 !�1
2

; σ 0 ¼
PNo

l¼1 σo l½ �o0 l½ �PNo
l¼1 o0 l½ �ð Þ2

ð13Þ

Note that during the training of the diffractive networks,
the diffraction efficiency was not forced to be uniform
across training examples and as a result the scaling factor
for the output intensity σ0

σ varies for different inputs.
Therefore, the diffractive networks trained using the
direct approach exhibit unbalanced diffraction efficiency
across the input pixels, as indicated by the uneven
brightness across the columns (see e.g., Fig. 7); however,
with increasing N, such unbalance becomes less severe.
Although the same is true for the indirect approach, this
unbalance in diffraction efficiency is less severe, except for
the K= 2 design shown in Fig. 5.

The PSF-based data-free design approach
The PSF-based optimization was performed by mini-

mizing the MSE loss between the all-optical intensity
transformation A′ performed by the spatially incoherent
diffractive network and the target transformation A. To
evaluate A′, we used Ni intensity vectors itf gNi

t¼1 where
it[l]= 1 if l= t and 0 otherwise. In other words, itf gNi

t¼1
represent the unit impulse functions located at different
input pixels. We simulated the all-optical output intensity
vectors o0t

� Ni

t¼1 corresponding to these input intensity

vectors, and stacked them column by column, i.e.,

A0¼ o01jo02j � � � jo0Ni

h i
ð14Þ

The loss function was defined as:

LPSF ¼ 1
NiNo

XNi

q¼1

XNo

p¼1
A p; q½ � � σ 0AA

0 p; q½ �� �2 ð15Þ

where

σ 0A ¼
PNi

q¼1
PNo

p¼1 A p; q½ �A0 p; q½ �PNi
q¼1
PNo

p¼1 A0 p; q½ �ð Þ2 ð16Þ

Other training details
The height h of the diffractive features at each layer was

confined between zero and a maximum value hmax by
using a latent variable hlatent:

h ¼ hmax

2
´ sin hlatentð Þ þ 1½ � ð17Þ

We chose hmax � λ
n�1 so that the corresponding phase

modulation depth is 2π. The latent variables were initi-
alized randomly from the standard normal distribution N
(0, 1).
In the indirect and the direct design approaches that

are data-driven, the diffractive layers were optimized
using the AdamW optimizer51 for 50 epochs with a
minibatch size of 8 and an initial learning rate of 10−3.
The learning rate was decayed by a factor of 0.7 every five
epochs. We evaluated the mean loss of the trained model
on the validation set after the completion of each epoch
and selected the trained model state at the end of the
epoch corresponding to the lowest validation loss. These
details were the same for both the indirect and the direct
training approaches. For the PSF-based data-free design
approach, the diffractive layers were optimized using the
AdamW optimizer for 12,000 iteration steps with an
initial learning rate of 10−1. The learning rate was
decayed by a factor of 0.5 if the loss did not decrease for
20 iteration steps, using the PyTorch built-in class:
torch.optim.lr_scheduler.ReduceLROnPlateau.
The diffractive processor models were implemented and

trained using PyTorch (v1.10)52 with Compute Unified
Device Architecture (CUDA) version 11.3.1. Training and
testing were done on GeForce RTX 3090 graphics processing
units (GPU) in workstations with 256GB of random-access
memory (RAM) and Intel Core i9 central processing unit
(CPU). The training time of the models varied with the
training approach as well as the size of the models in terms of
K and N. For example, the indirect training of K= 5,
N= 5 × 522 diffractive network model took less than 2 h,
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whereas with the direct approach, the training time for the
K= 5, N= 5 × 522 model with Nφ,tr= 1000 was around
10 days. With the PSF-based data-free design approach, all
the 12,000 update steps took in total <4min (Fig. 15).

Evaluation
The evaluation procedure was the same across all the

trained diffractive networks irrespective of whether the
direct approach or the indirect approach was used to train
them. To evaluate the trained diffractive networks, we
generated a test set comprising 20,000 pairs of input and
target intensity vectors o = Ai. Note that these 20,000 test
examples were generated using a different random seed
from the ones used to generate the training and the vali-
dation sets to ensure they were not represented during the
training. For a given i, the corresponding input intensity
pattern was incoherently propagated through the trained
diffractive network (as in Eq. 9) using Nφ,te= 20,000 to
compute the output intensity o′. The mean of the error
between o′ and o (Eq. 12) over the 20,000 test examples was
used to quantify the output error of the diffractive network
for comparing different designs, as in Figs. (1) and (6). For
comparison between the ground truth and the all-optical
output intensities, e.g., in Figs. 3, 4, 8, 9, 10, we defined the
scaled all-optical output intensity vector ô ¼ σ0

σ o0, where the
definitions of σ and σ′ are as described in Eq. (13).
The intensity transformation A′ performed by the spa-

tially incoherent diffractive network at the end of its
training was evaluated following Eq. (14). However, con-
sidering the diffraction-efficiency-associated scaling mis-
match between A′ and the target transformation A, we
defined a scaled diffractive network intensity transfor-
mation Â ¼ σAA, where:

σA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNi

q¼1
PNo

p¼1 ðA½p; q�Þ2PNi
q¼1
PNo

p¼1 ðA0½p; q�Þ2

vuut ð18Þ

This definition of σA makes the 2-norms of A and Â
equal.

Diffractive optical network training for multi-wavelength
spatially incoherent illumination
We used the indirect design approach for training dif-

fractive networks to perform wavelength-multiplexed
intensity linear transformations under spatially inco-
herent illumination. The loss function L was defined as:

L ¼ 1
Nw

XNw

w¼1
αwLindirect;w ð19Þ

Here Nw= 3 is the number of wavelength channels used
and Lindirect;w is the MSE loss as defined in Eq. (10),

computed using the target output field ~ow ¼ Aw~iw and the

all-optical output field ~o
0
w at wavelength λw; the associated

normalization factors σw and σ
0
w were defined similarly as

in Eq. (11). To clarify, Aw½p; q� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aw½p; q�

p
expðj0Þ where

Aw is the target intensity linear transformation at the
wavelength λw.
Adaptive spectral weight coefficients αw were used to

balance the performance across the wavelength chan-
nels41. The initial values of αw were set as 1 for all w, and
updated after each training step according to the follow-
ing rule:

αw  maxð0:1´ ðLindirect;w � Lindirect;0Þ þ αw; 0Þ
ð20Þ

The refractive indices nw of the diffractive layer material
at the terahertz wavelengths λ1= 700 μm, λ2= 750 μm
and λ3= 800 μm were assumed to be 1.7258, 1.7224, and
1.7194, respectively. The maximum layer height hyper-
parameter hmax was set as 1.2 mm and the diffractive layer
feature size was assumed to be 0.4 mm.

Spatially incoherent diffractive network training for image
classification
For the all-optical image classification task reported in Fig.

16, the numerical simulations were performed in the visible
range, where we used λ= 490 nm and a diffractive feature
size of 200 nm to emulate incoherent visible light in natural
scenes. The MNIST handwritten digit images were normal-
ized to [0–1] and upsampled to 80 × 80 pixels. The diffractive
network comprised five phase-only diffractive layers, each
containing 160 × 160 diffractive features. At the output plane
of the diffractive network, 20 detectors were arranged in a
differential scheme, i.e., a “positive” detector and a “negative”
detector were used for each of the 10 data classes45. The
computational window size was set to 512 × 512.
For image classification, the differential class scores

were computed as:

sc ¼ Ic;þ � Ic;�
Ic;þ þ Ic;�

ð21Þ

Here, Ic,+ and Ic,− are the integrated intensity over the
positive and negative detectors, corresponding to data
class c. The class corresponding to the maximum sc was
selected as the inferred object class.

The spatially incoherent diffractive network classifier of
Fig. (16) was trained using the cross-entropy loss, i.e.,

L ¼ �
X9
c¼0

δck log
expðβscÞP9
i¼0 expðβsiÞ

ð22Þ
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Here k is the ground truth label and δck is the Kronecker
delta function. β= 10 is a training hyperparameter. In the
training, we used Nφ,tr= 10 with a batch size of 64. The
diffractive network was trained for 500 epochs with AdamW
optimizer initiated with a learning rate of 10−4. The final
model was selected based on the validation accuracy with
Nφ,tr= 10. After the training, the selected model was blindly
tested using Nφ,te= 20,000, which resulted in a classification
test accuracy of 95.04% (see Fig. 16).
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