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ABSTRACT

Constitutive equations for aging viscoelastic materials are formulated
as differential equations with variable coefficients. Particular atten-
tion is devoted to the second order equation; the creep function is derived
and asymptotic behavior is studied. Comparison is made with commonly ac-
cepted expressions for creep functions of concrete. Extension to nonlinear

behavior is discussed.



1. Introduction

The first description of linear viscoelastic stress-strain relations
was apparently given by Boltzmann (1874), and the procedure he utilized
was to represent the constitutive law in terms of a superposition integral.
In later theoretical developments, Volterra (1930) also used such a re-
presentation. The so-called "weighting" or "memory" functions which oc-
cur as kernels in these integral formulations of the stress-strain rela-
tions are the creep or relaxation functions (or their derivatives), and
represent the response of the material to unit step (or impulse) function
inputs.

Most of the research in linear viscoelasticity which came after the
work of Volterra dealt with nonaging, or time invariable, materials (called
materials of the "closed cycle" type by Volterra). For such materials it
has been found convenient to give alternative representations of the con-
stitutive law in terms of: (1) differential equations; and (2) the fre-
quency response of the material to sinusoidal input (i.e., the complex
compliance or modulus). In connection with the differential equation ap-
proach, rheological (spring-and-dashpot) models have been extensively used
as a heuristic device.

These three different representations are, of course, mathematically
related to each other (see Gross 1953 ), but, in practice, each has its
own peculiar advantages and disadvantages. It would seem that from the

point of view of the stress analyst, concerned with the practical solution
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of boundary value problems, the most convenient representation would be
the one requiring the least amount of computational effort. From this
standpoint, the most efficient formulation appears to be the differential
equation form of lowest order which represents the behavior of the real
material with sufficilent accuracy.

Since the researches of Volterra, relatively little theoretical work
has beeh done in the field of aging, or time-variable, viscoelastic media.
Most of the investigations in that area have dealt with concrete, the
first general representation of concrete as an aging, linear viscoelastic
material apparently being that given by Maslov (l9h0),who represented the
constitutive law by means of a superposition integral, in much the same
way as did Volterra for general linear hereditary phenomena. Most of the
later work with the creep of concrete also utilized the integral repre-
sentation of the stress-strain relation (McHenry 1943, Arutiunian 1952,
Ross 1958). The possible utility of differential equations Qith time~
variable coefficients to represent the constitutive laws of aging visco-
elastic media appears to be an area only slightly investigated, and one
worthy of more intensive research. For materials such as concrete, which
appear to have a limited number of creep mechanisms (i.e., a limited re-
laxation spectrum) in comparison to high polymers, relatively low order
differential equations ought to be sufficient to satisfactorily approxi-
mate the viscoelastic behavior.

Recent investigations concerned with temperature effects in nonaging

viscoelastic media have led naturally to time-variable stress-strain



relations, the time-variability being induced by the unsteady temperature
field (Morland and Lee 1960). In this case, it is also possible to utilize
either the integral, differential equation,or complex impedence representa-
tion of the induced time-variable stress-strain relationj but the large
majority of studies in this area do not utilize the complex impedence repre-
sentation. On the basis of their investigations in this field, Hilton and
Clements (1964) state that the differential equation representation appears
to be the more'convenient one.

Studies in other fields dealing with time-variable hereditary phenomens--
notably in general systems theory--also indicate the desirability of employing
differential equations to represent ﬁhe basic character of the system under
consideration. Stubberud (1964) gives a brief account of the merits and
drawbacks of the three different representations, and develops the differen-
tial equation formulation relatively extensively. The fact that a consid-
ersble body of theory in the field of differential equations already existes
is also an important feature in favor of such a representation.

Furthermore, the extension of linear constitutive relations of aging
viscoelastic materials into the nonlinear region of behavior is probably
easier to accomplish by use of the differential equation, rather than the
integral, representation. In studies of the rate-dependent flow of metals,
the "mechanical equation of state" (a first-order nonlinear differential
equation) has been used quite successfully (e.g. Lubahn and Felgar 1961).

Integral representations of constitutive relations for nonlinear



viscoelastic behavior are of course possible, and Leaderman (l9ﬁ3) and Rabotnov
(1948) have given special forms. Extensive tests have not yet been carried

out to verify the range of validity of these representations. However, it
appears that even if valid, such forms are guite complex to use in the solu-
tion of boundary value problems. Arutiunian, who used the integral repre-
sentation in the linear range, attempted to use a particular integral repre-
sentation-(based on the Leaderman form), in the nonlinear range. But he

found it convenient, in the solution of problems, to transform the integral
representation into differential-equation form.

The more general integral representation in terms of a Volterra-Fréchet
functional expansion can be used to represent nonlinear viscoelastic be-
havior to a sufficient degree of accuracy, but such a relationship is even
more difficult to work with than the special forms of Leaderman and Rabotnov.
Therefore it seems worthwhile to investigate the use of nonlinear differen-
tial equations to represent aging, nonlinear vigeoelastic behavior., If low
order differential equations suffice, the prospect of obtaining a greater
amount of quantitative results by their use appears more likely than by the

use of nonlinear integral representations.

2. Aging Materials Described by Second-Order Differential Equatilons

(i) DNotation.
"In the development to follow, stress will be denoted by ¢, strain by
€, time by t, and time differentiation by a superscript dot. While the

notation will be that for one-dimensional stress and strain, it will be
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equally valid for m-dimensional states (m=2,3) if 6~ and € are interpreted as
vectors and the coefficients as square matrices in n-space, where n = m(m+1)/2,
provided the algebralc operations are carried out in the matrix sense.
(i1) Development.
In the case of non-aging materials, it has often been stated (Reiner
1943, Lee 1950) that the simplest differential constitutive equation capa-
ble of describing complex material behavior is the equation of the Burgers

body,

o~°5~: + a, 0~ + osz‘“-.—_bo.‘c': 4—\3.2 (1)

the coefficients a4, b;being constant. The coefficient CLérepresents steady
(unbounded) creep; in the case of bounded creep, Q, vanishes, and we have
Ao + o, 0~ = bt +b e (2)

which may be integrated once to yield the equation of the “standard solid",

a,® + a o = b€ +b ¢ (3)

Equations (2) and (3) are equivalent if they are supplemented with equivalent
initial conditions. There exists, however, an important difference between
them, analogous to the difference between two possible descriptions of an

elastic body,
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the second of which is a hypoelastic description with no reference to a natural
state. It is well known that for finite deformations, elasticity and hypo-
elasticity are not equivalent (Truesdell 1955). It is readily shown that in
the case of an aging material, the difference is non-trivial even for infinite-

simal deformations, since the descriptions

r=E®e , o= E (k) € (5)

stand for fundamentally different kinds of behavior: the first represents,
essentially, an aging viscoelastic material with infinitely short memory,
while the second represents a conservative material (exhibiting no creep or

relaxation). More generally, an aging viscoelastic material described by

PeWo™e L 4 W= go@ ek QU E (6)

where ch@Ddoes not vanish, has the property that in a creep test under a

constant stress ¢, the ultimate strain is

g o0y = I {[oomw]"l P u)} (7)

independent of the time at which loading occurs. Since known aging materials

(such as concrete) do not have this property, they cannot be described by
differential constitutive equations of the form (6), but rather, of a form

in which qo,“&)vanishes identically:

P h sk o = g e kg O
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It will be assumed, by analogy with the case of non-aging materials, that

the simplest realistic case of (8) is' the second-order equation,

p,,LJc)bL + p B + Pl o = avoé{-) g + qD.C-E) £ (9)
which will be rewritten as

—%c— ]'_03/\-._:&)} +d@c)civ+@c+)®'= g+ \A%Jc)é (10)

The creep function, defined as the strain at time t due to a unit

stress applied at time T , corresponding to (10) is

t _ o) |
Pt T) = L/eto) + S@- [%L’/\)-%('C)M\PC'C)_]A?\ (11)
T

where

e lt)= ‘ Y () 8 (4, arbikravy)

At = e®PpW
W = 0% [ - »H/E u)]

The following relations between the coefficients appearing in (10) and

the creep function (11) can be easily verified:

1 /e = PLED (12)
¥ = =2l gy 5 (13)

a) = Pt + vld) SE W (14)



(3(_4:)——- P &, ) + (4 CP{:H-)‘C) (15)

where the subscripts t,T denote partial differentiation. Note that the
right-hand sides of equations (13) and (15) are in general functions of

t and T, but the description of material behavior by equation (10) requires
that they be independent of T.

Equation (13) bresks down if

Pei (£, T)=0

This can be shown to be the case if and only if

P — X)) = constant

Tn this case equation (10) can be shown to be equivalent to the first-order

equation.
where

M= Q¢ Lt T) (17)

(iii) Asymptotic Behavior.

The special case of (10) which is the aging-material analogue of (2)
corresponds to GC{): 0. However, this is neither a necessary nor a suf-
ficient condition for bounded creep. Necessary and sufficient conditions
for the boundedness of solutions of differential equations have been listed
by Cesari (1963). 1In the case of equation (10), the condition can be de-

rived from the solution (11), namely, for any stress history beginning at
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t = t_ and bounded in (to, 00), the strain history is bounded in (tO,OO) if

and only if
o0
o O 54: &P 41, oo -
and (18)
Pt o)+ 0
SDUOC«: \G&)\o\tj & ¢ o0

A sufficient condition for (a) is QC‘&)=OG:Q>, ie. Ylb)= Ou:a' -l) as

b —>o0 , with a>0. If lim|ptd|e oo, then the integral
-l:—roO

S’C oLT) )

e"™ prodT ~ € B/ ) as +— o0
t
so that the Bracketed integrand in (b) behaves as

as -{;-aroo. A sufficient condition for bounded creep is therefore

- b-2
r)=o06*") , @(Jc)= O(+ ) as Lo
with a»0, a>b.
If %l+)=0f")as t —» 00 , then (a) is satisfied if and only if lim ek > 1,

since then the integrand of (a) tends to t—k. In this case a sufficient con-

dition for (b), and hence for bounded creep,.is

BL) = o(L%27%) as t—= o0

with ¢>0.
If, finally,}r‘&)=0@:_'—a), d >0, then (a) cannot be satisfied; hence

creep will be unbounded, except in the special case in which

Y =%
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corresponding to eguation (16). In this case,the necessary and sufficient

condition for bounded creep is

S:Om W] dt 0 (19)

(iv) Special cases.

The special case corresponding to equation (16) was used by Dischinger
(1937) to represent creep of concrete.
A more interesting special case of (10) corresponds to }Llf) = C (congtant}
then we may put
Ot)= Ct
and the creep Tunction becomes

(P(j:)'c) = 1/; () +4(7) ‘_\ - e-CH:-t)]

where

+ c&&)- %L'c) (20)
1 -lT + YN A’)\-
flo)y= 2 [yln-% (v)]e gt)= ) € X (N 3
C 7 t,

Equation (20) corresponds essentially to the creep function proposed for
concrete by Yashin (1959), on the basis of experimental evidence. Earlier,
a special case of (20), namely that corresponding to g(t) = const (i.e.
jK»Cf) = 0), had been used by Arutiunian (1952). More recently a creep
function of the form (20), with g(t) = K log t (K constant), was formulated
on the basis of the microstructure of concrete by Hansen (1960}.

If the creep function (20) is applied to the problem of creep recovery,

i.e. the case of a stress applied at time to and removed at time t., the

l)
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resulting strain at time t>vtl has the form

A + Be Y, (21)

where A and B are functions of t, and t,. Creep recovery governed by (18)

has been observed experimentally in concrete by L'Hermite (1962).

3. Reharks

It is interesting to note that almost all of the currently used expres-
sions used to repfesent creep functions of concrete are contained, as special
cases, within the solution to the general second-order differential equation
constitutive relation proposed herein. This indicates the surprising gener-
ality of this rather low-order representation. Probably, by =a suitable cholce
of the time-variable coefficients in the second-order differential equation,
such a representation would be sufficient to describe the constitutive rela-
tion for a variety of aging materials.

Arutiunian (1952) suggested the possibility of a creep function for
aging concrete more general than that given by equation (20), containing a
sum of negative exponential terms. Such creep functions can be obtained
from a differential-equation representation of the form considered here, but
of order higher than two.

In certain special cases, it is possible to derive differential constitu-
tive laws for aging materials from rheological models with time-variable ele-
ments. For example, equation (16) may be regarded as representing a time-

varying Maxwell model. It must be borne in mind, however, that there is no
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unambiguous definition of elastic response (see equation (5)). Furthermore,
even if a particular definition of elastic response is adopted, the govern-
ing equation of the time-varying rheological model is, in general, not a
differential, but an integro-differential, equation. For these reasons
rheological models appear to be of little value for aging materials.

An obviously useful area of application of the differéntial-equation
representation of the type proposed here is that of creep buckling of struc-
tures made of aging viécoelastic materials. A fairly extensive body of
theory on the stability and asymptotic behavior‘of differential equations
with variable coefficients is in existence (Bellman 1953, Cesari 1962), so
that this knowledge can be applied to such stability problems. Since the
thgory extends to certain classes of nonlinear differential equations as
well, deeper insight into the problem of the stability of aging nonlineaf
viscoelastic structures may be gained by the use of differential equations

to describe the constitutive law of the material.
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