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Abstract 

This paper describes the behavior of traffic in a homogeneous 
highway according to the hydrodynamic theory, in the special case 
where the flow-density relationship is triangular; i.e. when only 
two wave velocities exist. It presents an exact formula that 
predicts the vehicle that would be found at position x at time t, 
given the locations of all the vehicles at time zero. The formula, 
which does not require identification of the vehicle positions at 
intermediate times, automatically accounts for the creation and 
dissipation of any shocks. It can be used to calculate system 
performance measures such as the flow, speed and density at any 
future point in time-space and the vehicle travel times. The paper 
also introduces two graphical procedures. The first one identifies 
all the vehicle positions along the highway for any fixed t, and 
the second one identifies the traffic state on all the points in 
time-space. The second procedure can also be applied to highways 
that are inhomogeneous in space (e.g. including lane drops) and/or 
time (e.g. including traffic lights), if. suitable boundary 
conditions between adjoining homogeneous sections can be 
identified. An example involving a moving lane drop, as would 
occur behind a snow plow, is given. 

* Research supported by PATH MOU 90, Institute of Transportation 
Studies, Berkeley, CA. 



1 

1. INTRODUCTION 

Luke (1972) and Newell (1991) have proposed related methods to 

solve the partial differential equations of the hydrodynamic model 

of traffic flow studied by Lighthill and Witham (1955) and Richards 

(1956) (LWR). Luke's paper was devoted to a geological erosion 

problem which is also governed by these equations; the variables 

denoting the ground slope and its elevation in Luke's model 

correspond to the traffic density and its integral in Newell's. 

The new methods can be applied to general equations of state 

between flow and density. They differ from the original LWR 

technique in that they predict the cumulative vehicle count (ground 

elevation) at a point rather than the traffic density (ground 

slope) at the point. The Luke-Newel1 modification, based on the 

method of characteristics, eliminates the difficulties inherent in 

the treatment of shocks. In Luke's method the initial conditions 

are specified by giving the distribution of the vehicles along the 

highway at time zero; the method predicts future distributions, 

expressed as the cumulative count of vehicles as a function of 

distance for a given instant. Newell's method predicts the 

cumulative count of vehicles as a function time at a fixed point in 

space. The cumulative temporal counts at two locations on both 

sides of the point of interest are taken as initial conditions 

since these are the conditions most likely to be encountered in the 

field. 

Newell (1991) also proposes a streamlined procedure for the 

important case where the equation of state is triangular as in Fig. 
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1. Here we will see how Newell's streamlined approach can be 

applied when the initial condition is the cumulative vehicle count 

along the highway. For this initial condition, care must be 

exercised to treat properly the discontinuity in the equation of 

state at the optimum density (i.e. the density for maximum flow 

ko), and this will be explained. An extension to inhomogeneous 

highways, possibly including time-varying conditions, will also be 

presented. 

The procedure can be applied to some of the problems that are 

addressed by difference equations in Daganzo (1993). Although the 

new method is faster (since it can predict the future in time steps 

of any size) and exact, it is more difficult to incorporate into a 

network model. The exact method can be used to solve practical 

problems by hand and to verify the correctness of computer 

procedures. 

The paper is organized as follows. Section 2 describes how the 

flows, densities and the vehicle number at any point on the highway 

can be identified after a short while (at time e->O ) from the 

information at time zero. Section 3 then extends the results to 

finite time jumps; it develops a simple formula that predicts the 

vehicle number at location x at time t. The formula readily yields 

flows, densities, speeds and travel times anywhere, anytime. Based 

on this formula, the section also presents two simple graphical 

methods that can be used to: (i) predict the vehicle count along 

the highway at any fixed time, and (ii) construct a time-space 

diagram displaying the shock trajectories and the traffic state 

everywhere. The second procedure is applied to the moving 
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bottleneck problem studied in Gazis and Herman (1992). The paper 

concludes with a brief discussion. 

2. INFINITESSIMAL TIME JUMPS 

We assume that vehicles are numbered along a highway in order 

of increasing x (the direction of flow) and define a continuous, 

non-decreasing, piece-wise differentiable function N(x,t), which 

gives the vehicle number (label) observed at position x at time t. 

Flow is assumed to happen in the direction of increasing x. This 

three dimensional representation of traffic flow was first proposed 

by Makigami et a1 (1971). Note that where the derivatives exist, 

Nx represents the vehicular density, k, and Nt the negative of the 

flow, -9.1 

The curve on the left side of the diagram in Fig. 2 represents 

a set of initial conditions, N(x,O). The two tangent lines to the 

curve have slope ko, so that our diagram represents a highway with 

two sections of light traffic (with k<k,) separated by an 

intermediate section of dense traffic (with klk,) - possibly the 

aftereffect of an incident in the process of dissipation. 

We now show how N (x, E )  can be obtained from N (x, 0 )  with the 

method of characteristics if the relation of Fig. 1 holds. For 

the most part, the logic is as in Luke (1972) and Newel1 (1991). 

3 We use in this paper the subscript notation for partial 
derivatives. Note that Makigami et a1 (1971) numbered the vehicles 
in order of increasing t (decreasing x). Our convention is as in 
Luke (1971) . 
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The right side of the diagram on Fig. 2 contains three 

families of parallel straight lines, termed characteristics. 

According to the theory, the line passing through point (x,o) must 

have a slope (velocity) equal to the slope of the tangent line to 

the q (k) curve of Fig. 1 for k=k (x, 0) . In our case, the slope is . 

vf whenever k<ko and -w whenever, k>ko. The characteristics are not 

defined in wedges such as the shaded region behind segment IH; in 

these regions k=ko and q = qmax. This creates a difficulty that 

needs to be addressed.2 

We note that at time E four distinct sections of space can be 

distinguished, containing points that are intersected by either: 

(i) one characteristic with slope vf, 
(ii) one characteristic with slope -w, 
(iii) two characteristics, or 
(iv) no characteristic. 

We first determine the vehicle number at time t in cases (i-iii) by 

following the vehicle count along the characteristics as in Luke 

(1972) and Newel1 (1991). Regions with no characteristics (case 

iv) are examined subsequently. 

Because the flow and density are constant along the 

characteristics, it is trivial to identify the vehicle number 

prevailing at any position, x, for cases (i) or (ii). The result 

for case (i) is: 

2 The method of characteristics would yield no prediction where 
there are no characteristics. Of course, predictions could be 
created by smoothing out the vertex of the q-k curve at ko. This 
suggests that a solution for the triangular case might be 
constructed by examining the limit of the smoothed predictions as 
the degree of smoothing is reduced. The result of this process 
should be the same as that of our more direct arguments, below. 
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Case (i): N(x,E) = N(x-vfe,O) (la) 

because the wave speed is equal to the car speed and no vehicle 

trajectories cross the characteristic. Similarly, we find for case 

(ii) I 

Case (ii): N(x,E) = N(x+we,O)-ko6. 

where 

6 = €(Vf+W). ( 2 )  

Equation (lb) holds because the difference in the vehicle labels at 

both ends of the characteristic ( N(x,e) and N(x+we,O) ) must be 

equal to the number of vehicle trajectories that cross the 

characteristic. This number is E(wk+q), which can be seen to equal 

e(kovf+kow) = ko6 from the geometry of Fig.1. According to this 

relationship, the change in the count is independent of x and k, 

and is the same for all the characteristics. 

For case (iii), the count is the maximum of the two possible 

counts. Thus, 

Case (iii): N(x,E) = max{N(x-vfe,O) , N(x-vfe+6,0)-ko6}. (IC) 

This maximum relationship was first noted in Luke (1972). It is 

given in that reference without formal proof, based on physical 

considerations. Newel1 (1991) makes a similar statement based on 

the observation that the function N(x,t) is a continuous ruled 
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surface, and choosing the minimum would ensure continuity3. 

(Whether the minimum or maximum should be chosen depends on the 

definition of N(x,t) and the direction of flow.) 

A more direct explanation of (IC) can be obtained from 

examination of segment KJ (corresponding to case iii) of Fig. 2. 

Note that in this segment the downstream count increases at rate 

k<ko and the upstream count at rate k>ko.4 At G the upstream and 

downstream counts must match, by continuity of N(x,t). It is then 

clear that (IC) holds because from K to G the actual count (from 

downstream) is higher, and from G to J the actual count (from 

upstream) is higher too. Clearly then, the location, x, of the 

shock at time E satisfies: 

For case (iv) the result is less obvious. The appendix shows 

that: 

Case (iv): N(x,E) = maxz{N(x-vfE+z,O)-koz: OlzlS) (Id) 

We show below that (la) holds for all four cases and that we 

can therefore write generally: 

Although k(x,t) is discontinuous along a shock, N(x,t) is not. 

Because the difference in the counts at the ends of a backward 
moving characteristic is constant across characteristics, the 
upstream count will increase with x at the same rate as it does at 
the point from which the pertinent backward moving characteristic 
emanates; for backward moving characteristics, this rate is greater 
than ko. 
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N(x,E) = maxz{N(x-vfe+z,O)-koz: O S Z S ~ } ,  

or equivalently, 

N(x+vfe,e) = maxz{N(x+z,O)-koz: 0~~16). 

with 6 given by (2) . 
To show that ( 4 )  is true we note that the argument of (4a) 

increases with z at a rate k(x-vfe+z,O)-ko, which is greater than 

zero whenever k>ko and negative if k<ko. In case (i) k<ko and the 

argument decreases; therefore the argument is maximized for z = 0, 

which yields (la). In case (ii) the argument increases and it is 

maximized for z=6, which corresponds to (lb). In case (iv) the 

argument decreases and then increases; therefore it must be 

maximized at one of the extreme points as stated in (ld). 

3 .  FINITE TIME JUMPS AND GRAPHICAL INTERPRETATION 

In what follows we view N(x,E) as the result of applying a 

differential operator T, to the functi0.n N(x,O). We first show in 

this section that the differential operator T, satisfies the 

composition property: TE*TE' = TE+,*. Since N(x,t) is the result 

of repeated application of the differential operator, this 

establishes that: N(x,t) = Tt*N(x,O) for finite t. The result is a 

simple formula. Two graphical constructions related to the formula 

will then be presented. 

To establish the composition property note that TE'*TE*N(x,O) 

equals: 
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where 6' is given by (2) with E = E ' .  On substituting (4b) into 

the above, we find: 

TEt*TE*N(x,O) = max~1{max~[N(x+z+z~,O)-k~z3-koz'). 

for 0 ~ ~ 1 6  and Osz'S6'. Because the term koz' is not dependent on 

z ,  the RHS can be expressed as rnax~~{max~[N(x+z+z~,O)-koz-ko~~]}, 

which is the maximum of a function of z + z ' .  As a result, if 

( z * , z ' * )  is a feasible optimum solution to the maximization 

problem, the ( z *+  z ' * , O )  is also an optimum solution. Because the 

latter satisfies the constraint OIz+z'<6+6', we can write: 

T,I*T€.*N(X,O) = max~~+~{N(x+z+z',0)-ko(z+z'16+6'} 

and because 6+6' is the result of substituting E for E+€' in (2), 

the right side is the definition of T€I+~*N(x,O), which concludes 

our proof. 

An exact formula 

The above allows us to write: 

where 
- 

N(x,t) = maxz{N(x-vft+z,O)-koz: o < z s ~ } ,  

6 = t(Vf+W). 
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From an algorithmic point of view, the complexity of this formula 

increases with t because the length of the search interval 

increases with t. A simplification is given below. 

We note that the argument of (5a) increases when the initial 

density at y= x-vf+z is greater than ko; the argument remains 

constant when said density equals ko and decreases when it is 

smaller than k,. It follows that if the maximum is an interior 

point, it must satisfy k(y,O) = ko. Furthermore, because the 

argument of (5a) is constant in the intervals where k(y,O)=ko , the 
interior points of such intervals can be eliminated from further 

consideration. Eliminating local minima too, we find that the only 

y's needed to identify an interior maximum are those where the 

initial density switches from k>ko to klko and from k2ko to k<ko. 

We let X denote the set of such points, defined for the whole 

highway. 

NOW, Eq.(5a) can be rewritten concisely if we denote by X(x,t) 

the set of candidate points corresponding to (x,t). This set 

includes the intersection of X and the interval (x-vft,x+wt), and 

the two end points of this interval. Th,e expression is: 

N(x,t) = maxy{N(y,0)-ko(y-x+vft): y E X(x,t)). 

In practical applications the set X will be finite and can be 

defined a priori; the set X(x,t) should only include a small number 

of easily identified points. Therefore, numerical calculation of 

( 6 )  requires an effort comparable with the difference equation in 
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Daganzo (1993).5 Equation (6), however, does not require t->O. 

AS explained in Makigami et a1 (1972) knowledge of N(x,t) 

suffices to describe the movement of all the vehicles and the 

evolution of traffic. For example, if viewed as a function of x 

for a given t, Eq.(6) gives cumulative spatial counts; the 

derivative of this function yields the density profile at t. 

Viewed as a function of t for a given x, Eq.(6) gives the vehicle 

number as a function of position; the negative of the derivative of 

this function is the flow profile at a given point; the inverse of 

the function gives the times at which individual vehicles pass x, 

which identifies travel times. Vehicle trajectories are lines 

where N(x,t) is Constant. 

Graphical construction of the density profile 

First note that (5a) can be rewritten as: 

N(x+vft,t) = maxz{N(x+z,O)-koz: 05~56). 

For a fixed t, the term N(x+z,O)-koz app,earing in (7) defines a 

translation of the curve N(x,O) by a horizontal amount -2 and 

a vertical amount -koz. Note that the slope of the shift vector is 

the optimum density. Thus, according to (5a), N(x+vtt,t) is the 

upper envelope of all the shifted curves with Osz<G=t(vf+w). 

Because all the shifts have the same slope, the upper envelope is 

5 The cell transmission approach is based on the recursion: 
- 
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easy to identify, as shown in Fig.3. 

From the original curve, draw the maximal shift vectors (i.e. 

with z=t(vf+w) ) from several points on the original curve, making 

sure to include any vectors that are tangent to the curve. 

Following the ends of the vectors, draw the maximally shifted 

curve. Notice that points in the region swept by the original 

curve as it is shifted along the vectors cannot be on the upper 

envelope, and that the upper envelope is the upper boundary of this 

region. As can be seen from Fig. 3 ,  this upper boundary (curve 

ABCD) is a composite curve defined by portions of the original and 

maximally shifted curves and by the tangent vectors at points of 

concavity. 

Because Fig. 3 uses a moving coordinate system with speed vf, 

the horizontal shift between the original and final curves at any 

N represents the extra distance that vehicle N could have traveled 

in time t if it had been allowed to travel at the free-flow 

speed. 

Like Eq.(6), this construction can identify future states in 

one single step without any intermediate, calculations. The 

location of shocks is identified by breaks in the slope of the 

upper envelope, as happens at point C in the figure. 

Graphical construction in time-space 

If one is interested in obtaining the shock path in time- 

space, an alternative construction can be used. Consider points F 

and D of Fig.2, whose characteristics meet at the shock (point G ) .  

According to Eq. (3), the difference in the vehicle number at these 
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two points is ko6, where 6 is the distance separating the points. 

Therefore, the slope of the straight line passing through points C 

and A must be ko (viewing x as the abscissa). The following 

construction can be used as a result: Identify a tangent line of 

slope ko to the curve N ( x , O )  at a point where the density is 

increasing (such as point B in the Figure). Slide the tangent in 

the direction of increasing N to identify intersection points (such 

as A and C )  and corresponding highway positions (such as points D 

and F). The characteristics emanating from D and F intersect on the 

shock. A gradual shift in the tangent line identifies the shock 

path. 

Application to a movinq bottleneck 

The method that has been described can be applied to highways 

that are piecewise homogeneous, and where conditions change with 

time (as when traffic lights are in operation). The trick is to 

identify the proper boundary conditions that will hold at the edges 

of the regions of time-space where the highway can be considered to 

be homogeneous. As an example we consid.er the moving bottleneck 

problem formulated in Gazis and Herman (1992). 

The problem arises if a Snowplow moving at speed vscvf is 

widening a highway while traffic flows past into the narrow section 

ahead. Figure 4a displays the diagrams for the equation of state 

in the wide and narrow sections. It is assumed that the wave 

speeds are the same in both sections.6 
- 

6 A graphical construction could be developed without this 
condition, but the presentation would be considerably longer. 
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A boundary condition follows from the vehicle conservation 

relation along the snowplow trajectory; the trajectory is displayed 

in Fig. 4b. If we let superscripts "utt and Itd1' denote the traffic 

conditions immediately upstream and downstream of the snowplow, the 

relation is: (qu-qd) /(ku-kd) = vs . This means that the only 

feasible traffic states immediately upstream of the snowplow are on 

the darkened lines of Fig. 4a. 

The initial conditions to our problem are given by a feasible 

N(x,O),  an instance of which is depicted in Fig. 4b. Feasibility 

means that the slope of N(x,O) never exceeds the jam density 

corresponding to the specific x,  and that the density immediately 

upstream of the snowplow is the abscissa of a point in the darkened 

lines of Fig. 4a. 

The time space construction described in the previous 

subsection can be used in each of the homogeneous highway sections 

away from the snowplow, provided that the characteristics don't 

cross the snowplow trajectory. One must make sure that the lines 

in the N vs. x diagram have the appropriate slope: either koU or 

kod. 

If the snowplow crosses a characteristic, modifications may be 

needed. In developing these, we recognize that the characteristics 

remain straight as they cross the snowplow trajectory because the 

wave speeds are the same on both sides. 

We first consider the intersection of a forward moving 

characteristic. Because the vehicle count remains constant along 

both types of forward moving characteristics, no changes are 

induced by the crossing; the construction is identical as if we 
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were treating the downstream section. 

On the other hand, if a backward moving characteristic is 

crossed, as depicted by line BDG in Fig. 4b, changes are needed. 

In this case the count decreases at different rates along the 

characteristic on both sides of the snowplow. Because the rates 

are proportional to koU and kod the following construction can be 

used: Starting with a downstream point such as A,  identify point 

B, draw its characteristic and identify the point of intersection 

with the snowplow trajectory, D. In addition, draw a line of slope 

koU through A (viewing x as the abscissa) and identify point c 

(with the same x as point D). From C ,  draw a line of slope koU to 

identify points E and F. The (forward) characteristic through F, 

intersects the line BD at the shock (point G). 

Figure 4b depicts the trajectory of the shock. Points between 

H and I are unaffected by conditions downstream from the snowplow; 

hence, the unmodified construction for the upstream section can be 

used to locate them. Points beyond I are affected by the snowplow 

and this causes the shock trajectory to bend sharply; the procedure 

just described would be used to locate these points. Once the shock 

trajectory intersects the snowplow's, and bends sharply once more, 

the unmodified procedure for the downstream section can be used; 

conditions upstream of the snowplow are irrelevant from then on. 
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4 .  DISCUSSION 

It may be possible to extend the technique described here to 

more general equations of state, but the result is not likely to 

lead to an easy to implement graphical procedure. It may also be 

of purely academic interest, since some of the properties of 

traffic flow exhibited by the LWR model with general equations of 

state are less realistic than with Fig. 1. For example, Newel1 

(1993) shows that the general hydrodynamic solution to the moving 

bottleneck problem posed by Gazis and Herman (1992) exhibits 

properties not observed in practice. The odd behavior, however, 

is a peculiarity of the general q(k) relation; it does not arise 

with only two wave speeds. 

Considerations arising from the moving bottleneck phenomena 

are relevant to our future work. Building on the results just 

presented, we are planning to develop a hydrodynamic theory of 

traffic flow upstream of freeway diverges (such as off-ramps and 

splits) recognizing that the traffic str,eam is composed of two 

different vehicle types that will bunch on different sides of the 

freeway. When an off-ramp is congested, the back-up may 

essentially force through vehicles to behave as if they were 

traveling on a narrower freeway. Because the length of the 

narrowed section grows and dissipates, through vehicles should 

behave as if they were passing a moving bottleneck. only sensible 

forms of the equations of state should be considered. 
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APPENDIX 
Proof of Eq. (Id1 

Consider first point "Q" of Fig. 5a. We assume momentarily 
that any line passing through "Q" with slope s ,  -wsssvf , is 
contained entirely in the shaded region with k=ko. Said lines can 
be identified by the non-negative distance 226 shown in the figure. 
Because the number of vehicle trajectories crossing SQ equals the 
number crossing SP, the count obtained at llQff by following the line 
is N(x-vfe+z,O)-koz. This is the argument of (Id), which in this 
case equals the count at P, N(x-vfE,O). It is therefore constant 
in the range [0,6], and (Id) holds. 

also holds if the line with slope -w crosses the upper boundary of 
the region with k=ko and/or the line with slope vf crosses the 
lower boundary. The former can only happen if the upper boundary 
is a backward moving characteristic, and the latter if the lower 
boundary is a backward moving characteristic. Figure 5b displays 
the case where both exceptions arise for points such as Q. To 
establish (Id) it suffices to observe that if the lower boundary is 
intersected then the argument of (Id) increases from P to I (where 
k>ko) and that similarly, if the lower boundary is intersected 
then the argument of (Id) decreases from H to R (where k<ko). 

Note that the search for the maximum in Eq.(4) can be 
restricted to points P, R and to the extremes of an interval with 
k=ko if part of one such interval is included between P and R. 

Equation (Id) will be true in general if we can show that it 
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Figure 5. Wedges of constant optimum density. 




