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A short proof of an interesting Helly-type
theorem

Nina Amenta *
The Geometry Center
1300 South Second Street
Minneapolis, MN 55454

Abstract

We give a short proof of the theorem that any family of subsets

of R?, with the property that the intersection of any non-empty finite
subfamily can be represented as the disjoint union of at most £ closed
convex sets, has Helly number at most k(d + 1).

1 Introduction

We say that a family of sets F has Helly number h when h is the smallest
integer (if one exists) such that any finite subfamily H C F has nonempty
intersection if and only if every subfamily B C ‘H with |[B| < h also has
nonempty intersection. Theorems of the form “F has Helly number h” are
called Helly-type theorems — they follow the model of Helly’s theorem, which
states that the family of convex sets in R? has Helly number d+ 1. There are
many Helly-type theorems; for excellent surveys see [DGK63] and the recent
[E93].

This paper is concerned with a generalization of Helly’s theorem:
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Theorem 1.1 Let F be a family of sets in R?, such that the common in-
tersection of any non-empty finite subfamily of F can be expressed as the
disjoint union of at most k closed convex sets. Then F has Helly number at

most k(d +1).

Note that when the common intersection of any at most & members of F can
be expressed as the disjoint union of at most & closed convex sets, so can the
intersection of any finite subfamily ([GM61], Theorem 2).

Theorem 1.1 was first conjectured by by Grunbaum and Motzkin in 1961
[GM61]. They proved the case k = 2, using a more general axiomatic struc-
ture in place of convexity. Rather than convex sets, their theorem applies to
any set family C with Helly number d + 1 for which the intersection of any
pair of sets in C is again a member of C, and for which the disjoint union of
any pair of sets in C is not a member of C. Larman proved the case k = 3
[L68], for convex sets. Morris treated the question in his thesis [Mo73], again
using a combinatorial generalization of convexity. The proof he offered, how-
ever, is very long and involved, and its correctness is questionable (see [E93],
page 399). Some related results appear in [HTS8S].

We give a short and intuitive proof, using a different axiomatic system,
borrowed from computational geometry. Our approach is to introduce an
ordering =< on the points of R, and study the problem of minimizing =<
over any subfamily of F. We show that this problem is an example of an LP-
type (or Generalized Linear Programming, or GLP) problem. The theorem
follows from the observation that there is a Helly-type theorem about the
constraint set of every LP-type problem.

Informally, the LP-type problems are the class of problems which can be
solved by combinatorial linear programming algorithms such as [S90], [C90],
[MSW92]. So the minimization problem we construct is computationally
similar to linear programming, although geometrically the intersection of
the constraints fails not only to be convex, but even to be connected. This
suggests the possibility of applying linear programming algorithms to other
problems in which the the topological complexity of the intersection of the
constraints, although non-trivial, remains bounded by a constant.



2 Framework

LP-type problems are defined by an abstract combinatorial framework due
to Sharir and Welzl [SW92]. We will use a slightly less abstract definition for
a subclass of LP-type problems, which we call conerete LP-type problems.

Consider a triple (W, H, <), where the universe W is a set (whose ele-
ments we call points), H is a finite family of subsets of W (called the con-
straints), and =< is an order on W, with the symbol +oc defined to be >~
any point of W. For any subfamily of constraints G C H, we denote the
intersection NG ={x € W |2 € GG, VG € G}.

(W, H, =) is a concrete LP-type problem if, for every G C 'H with NG
nonempty, (G has a unique minimum point; we call this point w(G) and we
say that G is feasible. When (G is empty we say that G is infeasible and we
define w(G) = +o0.

The relevant example, for our purposes, of a concrete LP-type problem is
Lezicographic Convexr Programming, in which W is R?, H is any finite family
of compact convex sets, and = is the lexicographic order on R?. Another
example is Normal Convexr Programming, in which W again is R?, H again
is any finite family of compact convex sets, and =< orders points by their
distance from the origin. Notice that in Normal Convex Programming, =
is not a total order on R?, although every subfamily of constraints does have
a unique minimum point.

The interested reader can easily verify that for every concrete LP-type
problem (W, H, =), the pair (H,w) is an LP-type problem as defined in
[SW92] or [MSW92].

A basis is a subfamily G C 'H such that w(G — G) < w(G), for all G € G.
The combinatorial dimension of a concrete LP-type problem is the maximum
cardinality of any feasible basis. The combinatorial dimension, for example,
of Lexicographic Convex Programming in R? is d. It is not difficult to see
that every subfamily G must contain a basis B C G with w(B) = w(G), and
that for three subfamilies B C F C G with w(B) = w(G), it must also be the
case that w(F) = w(B). (See [SW92] or [MSW92] for other simple properties
of LP-type problems.)

Lemma 2.1 Let (W, H, =) be a concrete LP-type problem of combinatorial
dimension c. 'H has Helly number at most ¢+ 1.



Proof: H has Helly number at most & if and only if every subfamily G
with G empty contains a subfamily B C G with B empty and |B| < h.
The Helly number, then, is the maximum cardinality of any infeasible basis,
while the combinatorial dimension is the maximum cardinality of any feasible
basis.

So let B be any infeasible basis, and let ¢ € B be any constraint with
w(B—G) ~mazr < {w(B-G") | G' € B}, under <. The subfamily B —G'is
feasible and contains a basis B’ with |B’| < ¢ and the point w(B’) = w(B—-G).
We show that every constraint G € B — G must in fact belong to B'.

Assume the contrary, that is, B’ C B — G — (i’ for some such G’. Then
w(B') R w(B-G-G"). Fw(B-G") < w(B-G), then w(B-G—G") < w(B—
(') < w(B—G) = w(B'), a contradiction. Otherwise, w(B—G") ~ w(B—G),
that is, the points are equivalent under =< although they are not necessarily
identical. The point w(B—G') € (7, whereas the infeasibility of B implies that
w(B—G") ¢ G'. Since the minimum of w(B — GG — ) must be achieved at a
unique point, we have w(B—G—G") < w(B—G') ~ w(B—G) = w(B'), again
a contradiction. We conclude that B —G' = B" and so |B| = [B'|+1 < ¢+ 1.

a

3 Main Theorem

Theorem 3.1 Let (W,C, <) be a concrete LP-type problem of combinato-
rial dimension d with the additional property that < is a total order on the
points of W. Let H be a family of subsets of W such that for every G CH
with NG # 0, NG can be written as the disjoint union of at most k elements
of C. Then (W, H, =) is an LP-type problem of combinatorial dimension at
most k(d+1)—1.

We will need some notation for working with disjoint unions. Our assumption
is that G can be written as the union of disjoint sets ¢y, ¢a,... € C, which
we shall call the components of (G. Consider some point p € W. For each
individual G € G, p is contained in at most one component ¢(G, p) of G. Let
C(G,p) = {c(G,p) | G € G}, that is, the collection of the components from
the individual constraints containing the point p. If p € NG, the component



(NG, p) of NG containing p is exactly NC(G, p).

Proof of Theorem 3.1: Because =< 1is a total order, the minimum of
=< over any intersection (G, ¢ C H, is achieved at a unique point, and
(W, H, =) is a concrete LP-type problem. It remains to show that the
maximum size of any feasible basis B is at most k(d + 1) — 1.

We will count the constraints in a feasible basis B by carefully removing
selected constraints, one at each step, while building up a subfamily § of
“sacred” constraints which may not be removed in later steps. After step ¢
we call the current sets S; and By, and we call the minimum point w; = w(B;).

We will maintain two invariants. The first is that w(B; — () < w; for all
G € B; — &;. The second is that all the points wq, w,,...w; lie in different
components of N B;.

We set t = 1 and By = B. Notice that since B is a basis, the first invariant
will hold for any initial choice of §;. We will choose &7 so as to guarantee
that w; lies in a different component from all other w; during all future steps.
We start with So = 0}, and use the following general procedure, applicable at
any step ¢, for adding constraints to S;_; to get S;.

Since (N B; is non-empty, there is a unique minimum point w; = w(B;)
in N B;. Let Cy = C(By,wy), that is, the collection of components from the
individual constraints containing w,. Notice that (W,Cy;, <) is a feasible
instance of the given concrete LP-type problem of combinatorial dimension d,
with w(C}) = wy. So Cy must contain a basis B} with |B}| < d and w(B}) = w;.
For each ¢ € B}, select a constraint ¢ € B; having ¢ as a component, and let
A; be the family of these constraints. We set S; = S;_1 U As.

This procedure guarantees that the second invariant is preserved. Con-
sider the situation at some step t. The current collection of components
containing the point w;, for any ¢t > ¢ > 1, is C(B;, w;). Since A; C S; C By,
C (B, w;) still contains the basis B!, which means that w; still must be the
minimum point in N C(B:,w;). Since w; < w; for t > j > i, each point
w; must lie in some component other than (N C' (B, w;). This forces all the
components ¢([) By, w;) to be distinct.

Now we turn our attention to selecting a constraint to remove from B;
to create Byyq1. First notice that the points w(B; — () are distinct, for all
G € By — S;. Indeed, let G,G" € B; — S; be distinct constraints. Then
w(B: — G') € G, while w(B; — () € G since w(B; — G) < w(B;). The points
of W are totally ordered under =, so there is some G; € B; — S; such that



w(B: — G) < w(B; — Gy) for all other G € B, — S..

It is (¢ that we remove from B; to form Byyq. Since w(B; — G) < w(B; —
(), for all other G € B, — &, certainly w(B; — Gy — G) < w(B; — Gy). So
the first invariant is maintained for B;;;. To ensure the preservation of the
second invariant, we again follow the procedure above to find a set A1 to
add to &; to get Siy1.

We iterate this process of removing a constraint from B; and updating S;
until we can no longer continue because B; = ;.

The common intersection of any subfamily of constraints can be described
as the disjoint union of at most & components, so at the end of the process
there are at most £ points w; and the number of steps is t < k. We re-
moved one constraint (; at every step except for the first, and at every
step, we added at most d constraints to S;. So the size of |B| is at most
(k—1)+kd=k(d+1)—1.

O

Theorem 1.1 is an easy application of Theorem 3.1.

Proof of Theorem 1.1: We take Lexicographic Convex Programming as
the concrete LP-type problem (W,C, <) in Theorem 3.1.

Since the constraints of a lexicographic convex program have to be com-
pact, we construct for any non-empty finite subfamily H C F a compact
version ‘H' by taking the intersection of every member of H with an axis-
aligned box B. B is chosen large enough so that any feasible subfamily
G C 'H corresponds to a feasible subfamily G’ C H’. Since the feasibility or
infeasibility of subfamilies is preserved, the Helly number of H’ is the same
as the Helly number of H.

Theorem 3.1 implies that (R?,H’, <) is a concrete LP-type problem for
any H', so by Lemma 2.1, the Helly number of any H’, and hence any H, is
at most k(d+1). Since all of its finite subfamilies H C F have Helly number
k(d+ 1), so does F.

O

Note that the condition that the intersection of any subfamily can be
expressed as the disjoint union of a fixed number of convex sets is a strong
one. It is not true in general for families of disjoint unions of at most & convex
sets, for instance. An example of a family that does meet the condition is



one in which every set (G is a set of at most k closed balls with a common

radius 6, such that the distance between any two balls is no less than 6.
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