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A B S T R A C T   

Extreme precipitation (EP) in the Northeastern United States increased abruptly after 1996, coinciding with 
warming Atlantic sea surface temperatures (SSTs). We examine the importance of internal variability and 
external forcings (including anthropogenic and natural forcings) to these EP and SST increases by using the 
Community Earth System Model large ensembles and an optimal fingerprint method to isolate the effects of 
different forcings on 1929–2018 Northeast EP and North Atlantic SSTs. We find that external forcings have 
significantly influenced both Northeast EP and North Atlantic SSTs, with a time of detection in 2008 and 1968, 
respectively. Beyond SST changes attributable to internal variability of the Atlantic, anthropogenic aerosols and 
greenhouse gases are important drivers of SST changes, first detected in 1968 and 1983, respectively. Green
house gases are the only anthropogenic forcing exerting substantial influence on EP, first detected in 2008. We 
therefore attribute the 1996 EP shift to both unforced Atlantic variability and anthropogenic forcings.   

1. Introduction 

Extreme precipitation (EP), defined as precipitation falling on the 1% 
of wet days recording the most precipitation, has increased rapidly in 
the Northeastern United States (hereafter Northeast; Fig. 1) over the past 
century (Frei et al., 2015; Hayhoe et al., 2018; Hoerling et al., 2016; 
Huang et al., 2017b; Kunkel et al., 2013). Among U.S. climate regions, 
the Northeast had the fastest increase (55%) in EP since 1958 and the 
second fastest increase (38%) since 1901 (Hayhoe et al., 2018). This EP 
increase occurred abruptly in 1996, with average 1996–2014 EP being 
53% higher than average 1901–1995 EP, leading to higher flood risks 
(Collins, 2019; Dupigny-Giroux et al., 2018; Frei et al., 2015; Huang 
et al., 2017b; Peterson et al., 2013). For instance, in the state of Ver
mont, EP from Tropical Storm Irene in 2011 caused the state’s worst 
disaster since 1927, costing $733 million (Minter, 2012). As such, un
derstanding the causes of the EP increase since 1996 is crucial to 
correctly interpreting future simulations of EP, and ultimately the range 
of EP impacts the Northeast needs to be prepared for. 

The observed change in Northeast EP is qualitatively consistent with 

the expected change in EP based on the Clausius–Clapeyron relation, i. 
e., about a 7% increase in saturation vapor pressure for every ◦C of 
warming (Easterling et al., 2017; Ivancic and Shaw, 2016; Kunkel et al., 
2013), as well as more frequent weather systems causing EP events 
(Huang et al., 2018; Kunkel et al, 2010, 2012, 2013; Marquardt Collow 
et al., 2016). In particular, 48% of the abrupt 1996 EP increase was 
caused by tropical cyclones likely due to warmer Atlantic sea surface 
temperatures (SSTs) and higher total column water vapor, with frontal 
systems (25%) and extratropical cyclones (15%) also contributing 
(Huang et al., 2018). 

Because of their importance in shaping tropical cyclones—and thus 
EP increases across the Northeast—Atlantic SSTs warrant further 
investigation. Variations in Atlantic SSTs are linked to low-frequency 
variability at multidecadal time scales, anthropogenic climate change, 
natural forcings, and inter-basin teleconnections with the El Niño- 
Southern Oscillation (Enfield and Mayer, 1997; Gillett et al., 2008; 
Goldenberg et al., 2001; Mann et al., 2021). There is considerable work 
that points to the low-frequency variability being influenced by 
anthropogenic forcings (Bellomo et al., 2018; Murphy et al., 2017; Si 

* Corresponding author. 
E-mail address: huanpinghuang@lbl.gov (H. Huang).  

Contents lists available at ScienceDirect 

Weather and Climate Extremes 

journal homepage: www.elsevier.com/locate/wace 

https://doi.org/10.1016/j.wace.2021.100351 
Received 20 January 2021; Received in revised form 24 June 2021; Accepted 2 July 2021   

mailto:huanpinghuang@lbl.gov
www.sciencedirect.com/science/journal/22120947
https://www.elsevier.com/locate/wace
https://doi.org/10.1016/j.wace.2021.100351
https://doi.org/10.1016/j.wace.2021.100351
https://doi.org/10.1016/j.wace.2021.100351
http://crossmark.crossref.org/dialog/?doi=10.1016/j.wace.2021.100351&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Weather and Climate Extremes 33 (2021) 100351

2

et al., 2017), external volcanic and solar forcings (Mann et al., 2021; 
Otterå et al., 2010), and internal ocean variability (Kim et al., 2018b; 
Zhang et al., 2019). We therefore refer to multidecadal variability in the 
Atlantic as simply Atlantic multidecadal variability (AMV). The AMV 
shift from a cold to warm phase around 1995 appears to play a signifi
cant role in boosting Northeast EP through enhanced tropical cyclone 
activity (Curtis, 2008; Huang et al., 2018; Kunkel et al., 2010). Thus, 
investigating the cause of the North Atlantic SST warming and the AMV 
shift is an essential step towards understanding the causes of the 
Northeast EP rise in 1996. 

Global change in EP has been attributed to anthropogenic forcing 
(Bindoff, 2013; Dittus et al., 2016; Fischer and Knutti, 2015; Min et al., 
2011; Zhang et al., 2013), but confidence in attributing EP changes at 
regional scales has been limited and less robust (Easterling et al., 2017; 
Sarojini et al., 2016). The barriers to robust detection and attribution 
include observational uncertainty, climate model uncertainty, and in
ternal variability (Dittus et al., 2016; Easterling et al., 2017; Martel 
et al., 2018; Sarojini et al., 2016). For example, a formal attribution of 
the role of anthropogenic forcing on Northeast EP change from 1979 to 
2013 was not conclusive due to internal decadal ocean variability and 
climate models’ inability to capture the multi-decadal trend in observed 
EP (Hoerling et al., 2016). Kirchmeier-Young and Zhang (2020) found 
that external forcings did contribute to the increase in 1961–2010 pre
cipitation extremes over North America (including the Northeast). 
However, the relative importance of internal variability and different 
anthropogenic forcings on the 1996 Northeast EP shift, as well as the 
associated SST changes, remains unresolved. 

To address the challenge of attributing Northeast EP change, we 
leveraged the Community Earth System Model version 1 (CESM1) large 
ensemble simulations and an optimal fingerprint method to disentangle 
the roles of internal variability and individual anthropogenic forcings on 
the observed changes in North Atlantic SSTs and Northeast EP. The 
optimal fingerprint method (Hasselmann, 1993) assumes that observed 
climate change can be estimated as a linear combination of 
model-derived spatial or temporal patterns of external forcing (i.e., “the 
fingerprint”) plus a residual term that is attributable to the real world 
trajectory of internal variability (see Section 2.3 for details). The noise of 
internal climate variability usually hinders the detection and attribution 
of anthropogenic effects in any single realization or small ensemble 
(Deser et al., 2020a; Santer et al., 2019). We avoided this limitation by 
using the recently available CESM1 large ensemble single forcing sim
ulations (Deser et al., 2020b) to isolate selected anthropogenic in
fluences on regional climate from the noise of internal variability. 

2. Data and methods 

2.1. Observational and climate model data 

Observational precipitation data are from the Global Historical 
Climatology Network-Daily (GHCN-D), the official archive for U.S. daily 
weather observations (Menne et al., 2012). To reduce the influence of 
missing observational records on estimating regional precipitation 
change, we selected a subset of high-quality weather stations by 
requiring them to have at least 80% of complete daily records from 1920 
to 2018 (Winter et al., 2020). Two hundred and twenty stations met this 
criterion in the Northeastern US spanning from Maine to West Virginia 
(Fig. 1). Any years in these stations with less than 80% of daily obser
vations are treated as missing and eliminated from the analysis (Winter 
et al., 2020). Observations-based sea surface temperatures over the 
North Atlantic basin are retrieved from the newest version (v5) of the 
Extended Reconstructed Sea Surface Temperature (ERSST) dataset 
(Huang et al., 2017a). This dataset provides global monthly sea surface 
temperature at a 2◦ × 2◦ spatial resolution from January 1854 to 
present. 

To attribute the changes in North Atlantic SSTs and Northeast EP to 
different external forcings, we used the outputs from two sets of fully- 
coupled CESM1 experiments performed at a 1◦ horizontal resolution. 
The first set is from the CESM1 Large Ensemble (LENS) Project, which is 
an initial condition large ensemble (40 members) simulating transient 
climate from 1920 to 2100 (Kay et al., 2015). Each ensemble member is 
run with the same time-evolving radiative forcing (including anthro
pogenic and natural forcings), with historical forcings from 1920 to 
2005 and RCP8.5 forcings thereafter. But each member is run with 
slightly different initial conditions (air temperature field randomly 
perturbed at the level of round-off error; Kay et al., 2015). Thus each 
member is consistent with the same forcing, and the distribution of 
climates across all realizations is a robust estimate of CESM1’s repre
sentation of internal climate variability (Deser et al., 2020b; Kay et al., 
2015; Mankin et al., 2020). We merged the historical simulations 
(1920–2005) with a portion of RCP8.5 simulations (2006–2018) to form 
40 transient simulations covering the period from 1920 to 2018 with the 
presence of all known historical forcings (ALL). The second set of climate 
simulations comes from the CESM1 Single Forcing Ensemble Project 
(Deser et al., 2020b). Its model configurations, initial conditions, and 
radiative forcings are the same as the LENS project, except that one of 
the four anthropogenic forcing agents is fixed at its 1920 level while the 
other forcings follow historical and projected changes (Deser et al., 
2020b). The experimental design creates four smaller initial condition 
ensembles within the Single Forcing Ensemble Project, each of which 
simulates a counterfactual climate without one of four anthropogenic 
forcing agents. This “leave-one-out” experimental design is applied to 
four forcing agents: greenhouse gases (XGHG, 20 members), industrial 
aerosols (XAER, 20 members), biomass burning aerosols (XBMB, 15 
members), and land use and land change (XLULC, 5 members). As with 
the ALL ensemble, we combined the historical (1920–2005) with a 
portion of the projection (2006–2018) to create a set of 1920–2018 
transient simulations with each single forcing ensemble. As it takes 
several years for the ocean response to diverge from the same initial 
conditions across all ensemble members, we discarded the first nine 
years of simulations and keep the remaining 90 years (1929–2018) for 
the analysis. 

Each realization from each ensemble can be considered a combina
tion of signal (i.e., the forced response, estimated as the time-evolving 
mean across each ensemble) and noise (internal variability, estimated 

Fig. 1. Relative change in annual extreme precipitation across GHCN-D sta
tions. The change denotes the percentage difference during 1996–2018 as 
compared to 1920–1995. The subset of 220 GHCN-D weather stations in the 
Northeastern US has at least 80% of complete daily records from 1920 to 2018 
at each station. 
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as the residual of each ensemble member with the ensemble mean 
removed). Thus, the contribution of a single forcing agent to a climate 
response (e.g., a change in SSTs or EP) is estimated by subtracting the 
time-evolving ensemble mean of a single forcing ensemble from the 
ensemble mean of historical simulations with all forcings (ALLem) (Deser 
et al., 2020b), as shown in equations (1)–(4) for each of the forcing 
agents. 

GHGem,t =ALLem,t − XGHGem,t (1)  

AERem,t =ALLem,t − XAERem,t (2)  

BMBem,t =ALLem,t − XBMBem,t (3)  

LULCem,t =ALLem,t − XLULCem,t (4) 

Here em refers to ensemble mean of each ensemble (i.e., the forced 
response; Mankin et al., 2020), and t is the year, ranging from 1929 to 
2018. Because each realization is signal plus noise, the combined effect 
of a single forcing and internal variability from ensemble member i is 
calculated by adding each ensemble member’s climate variability to the 
single forcing response (Deser et al., 2020b), as illustrated in equations 
(5)–(8). 

GHGi,t =(XGHGi,t − XGHGem,t) + GHGem,t (5)  

AERi,t =(XAERi,t − XAERem,t) + AERem,t (6)  

BMBi,t =(XBMBi,t − XBMBem,t) + BMBem,t (7)  

LULCi,t =(XLULCi,t − XLULCem,t) + LULCem,t (8)  

2.2. Analysis methods 

We analyzed the temporal and spatial changes in SSTs over the North 
Atlantic basin (0–60◦ N, 0–80◦ W), as well as EP in the Northeast. Here 
EP is defined as the amount of precipitation falling on the 1% of wet days 
recording the most precipitation (Huang et al., 2017b, 2018). We 
determine the EP threshold based on all daily records spanning from 
1929 to 2018 by weather station (for GHCN-D) or grid cell (for CESM1). 
Then we calculate annual accumulated EP exceeding the threshold. 
Lastly, we perform 1◦×1◦ gridded area averaging (spatial resolution of 
CESM1 simulations) to calculate regional average EP for GHCN-D ob
servations and CESM1 outputs. SSTs and EP are computed separately for 
the CESM1 historical (ALL) and single forcing (XGHG, XAER, XBMB, and 
XLULC) simulations. To evaluate the long-term trend in SSTs, we used 
simple linear regression (parametric method) with a Student’s t-test. For 
Northeast EP, we used the Theil–Sen robust linear regression 
(nonparametric method) with the modified Mann–Kendall test for 
autocorrelated data (Hamed and Rao, 1998). 

To quantify the relative roles of internal variability and external 
forcings on Atlantic multidecadal variability (AMV), we estimated the 
AMV as the well-defined Atlantic Multidecadal Oscillation index using 
the ERSST observations and CESM1 simulations. The index is defined as 
the multidecadal variability of SST anomalies over the North Atlantic 
(0–60◦ N, 0–80◦ W), which has a period of approximately 70 years (Kerr, 
2000). We calculated AMV by averaging North Atlantic SSTs over the 
domain and then detrending the time series of SST anomalies (Enfield 
et al., 2001). Numerous studies evaluate different methods to quantify 
AMV, and how well CESM1 and other climate models simulate Atlantic 
variability, including the observed magnitude and the timing of its phase 
shifts (Bellomo et al., 2018; Frankignoul et al., 2017; Mann et al., 2017; 
Si et al., 2017). By linearly detrending the North Atlantic SST anomalies, 
Bellomo et al. (2018) and Si et al. (2017) found that the CESM1-LENS 
generally reproduces the observed AMO (defined here as identical to 
AMV) in both the preindustrial and the ensemble mean of the ALL 
simulations as well as the timing of phase shifts in the ALL ensemble, but 
not the observed AMO magnitude. Other studies have found 

model-derived AMO is the artifact of computation methods (especially 
linear detrending) which leave behind residual forced effects, and 
further suggested that AMO is absent in most climate model simulations 
(Frankignoul et al., 2017; Mann et al., 2020). Given that the 
CESM1-LENS ensemble has been extensively evaluated against the AMV 
(Bellomo et al., 2018; Frankignoul et al., 2017; Si et al., 2017), the 
current study focuses on using the CESM1 ALL and single forcing sim
ulations to assess the effects of external forcings and internal variability 
on observed SST anomalies, and how the anomalies are compared with 
AMV in observations. We applied different detrending methods to 
quantify AMV, facilitating a comparison with past studies. 

To account for the nonlinearity of individual forced responses, we 
detrended SST anomalies by subtracting a quadratic trend (Enfield and 
Cid-Serrano, 2010) or the ALL ensemble mean trend (Mann et al., 2020) 
from observations. We also used linear detrending (Enfield et al., 2001) 
to compute AMV that is comparable with other CESM1 LENS-based 
studies (Bellomo et al., 2018; Si et al., 2017), despite the fact that it 
may leave behind residual forced effects (Frankignoul et al., 2017; Mann 
et al., 2014). To evaluate how each individual forcing affects observed 
SST anomalies and estimated AMV, we subtracted the ensemble mean 
trends in the four single forcing simulations from the observations as in 
Qin et al. (2020). So the residual SSTs from detrending a single forcing’s 
effect contain internal variability and changes by forcing agents (Qin 
et al., 2020). Further, we combined the four single forcings as Bellomo 
et al. (2018) to represent the overall effect of anthropogenic forcings on 
SSTs. 

2.3. Fingerprint method 

The optimal fingerprint method (Hasselmann, 1993) is widely used 
to detect and attribute climate change (Bindoff, 2013; Hegerl and Zwi
ers, 2011; Stone et al., 2009), including sea surface temperatures (Gillett 
et al., 2008) and extreme precipitation (Easterling et al., 2016; Min 
et al., 2011; Zhang et al., 2013). This method treats observed changes in 
a climate variable, Y, as a linear combination of model-derived spatial or 
temporal patterns of external forcing F (i.e., “fingerprint”) with residual 
internal variability, ε, as described in equation (9): 

Yobs =
∑m

i=1
(Fi − εi)βi + ε (9) 

Here Yobs represents an observational climate variable, such as SST 
and EP. Fi refers to the ith forcing of m external forcings (signals) 
considered, such as all anthropogenic and natural forcings combined 
(ALL), greenhouse gases (GHG), industrial aerosols (AER), biomass 
burning (BMB), land use and land cover (LULC), and all-but-one forcing 
(XGHG, XAER, XBMB, and XLULC). εi is sampling noise arising from 
using a small ensemble to estimate the forced response pattern (Allen 
and Stott, 2003). βi is the regression coefficient (i.e., scaling factor) 
regarding amplitude errors in the model-derived forced signal Fi. ε is the 
noise term linked to internal climate variability in the observations. The 
noise terms, εi and ε, are assumed to share the same covariance structure 
(Allen and Stott, 2003). 

Here we conducted one-signal (ALL forcings) and two-signal (GHG 
vs. XGHG, AER vs. XAER, BMB vs. XBMB, and LULC vs. XLULC forcings) 
detection and attribution analyses by using the regularized optimal 
fingerprinting (ROF) method (Ribes et al., 2013). This ROF method is 
based on a regularized estimate of the covariance structure of climate 
variability, avoiding a truncation of the empirical orthogonal functions 
implemented in the standard optimal fingerprinting method (Allen and 
Stott, 2003). Thus it provides a more objective and accurate imple
mentation of optimal fingerprinting (Ribes et al., 2013). We solved the 
regression model (equation (9)) with the total least square approach, 
which is included in the ROF function provided through the Environ
ment Canada’s Optimal Fingerprint package (Feng, 2014), deriving the 
best estimate of scaling factors and their confidence intervals (CIs). 
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We first calculated regionally averaged SST and EP anomalies 
1929–2018 (baseline period 1929–1958) in both observations and 
ensemble averaged forced responses (such as GHGem,t in equation (1)) 
and then converted them into non-overlapping 5-year means. We used 5- 
year means to reduce the temporal dimension of climate data, making 
the covariance matrix a more reasonable size, while maintaining the 
short term features of climate variables (Kirchmeier-Young and Zhang, 
2020; Wan et al., 2015). Next, we used the CESM1-LENS preindustrial 
control simulations (Kay et al., 2015) to estimate internal climate vari
ability and then computed two independent covariance matrices C1 and 
C2. Specifically, the control simulations were divided into 90-year time 
series by creating a 90-year sliding window and moving it 10 years at a 
time (1–90, 11–100, 21–110, and so on). This yielded 170 time series of 
climate noise data representing internal climate variability, with each 
time series represented by 18 non-overlapping 5-year anomalies (rela
tive to their respective first 30-year period). The 170 chunks were 
divided into two parts (i.e., 85 time series each) to construct C1 and C2, 
respectively. C1 was used for prewhitening observations and forced re
sponses (i.e. optimization) and then estimating scaling factors, and C2 
was applied to conduct an uncertainty analysis on the resulting scaling 
factors (Allen and Stott, 2003; Ribes et al., 2013). If the 90% CI of the 
resulting scaling factors β is above 0, then the fingerprint from an in
dividual forcing is detected in the observations and significant at the 
0.05 level. When the signal is detected, the CI containing 1 indicates the 
model-derived forced response is consistent with the observations. The 
CI above (below) 1 suggests the forced response has to be scaled up 
(down) to be comparable with the observations, which is to account for 
climate model’s limitation in simulating the magnitude of forced 
response (Hegerl and Zwiers, 2011; Mitchell and Karoly, 2001). CI of β 
below 0 indicates that the forced response contributes to an opposite 
trend of observed climate change, possibly due to climate model error in 
simulating the forced response. Lastly, we conducted a residual consis
tency check (Ribes et al., 2013) to evaluate the agreement between the 
regression residual in equation (9) and the assumed internal variability 
from the CESM1-LENS preindustrial control simulations. If the evalua
tion is passed, the regression model is considered suitable and raises 
confidence in the detection results. If the test is rejected, the regression 
model should be revised to account for incorrect simulated forced re
sponses or low internal variability (Ribes et al., 2013). 

Besides attributing climate change during the full time period 
1929–2018, we also implemented a sensitivity test for scaling factors 
based upon moving time periods. Specifically, we held the start date in 
each period fixed in 1929 while its end date was moved from 1963 to 

2018 with an interval of five years. This is to ensure that we have long 
enough records (>30 years) to conduct detection and attribution and 
maximize the signal to noise ratio (Mitchell and Karoly, 2001). The date 
when a forced signal emerged from internal variability and became 
detectable is called the time of detection (Carter et al., 2019). 

3. Results and discussion 

3.1. Observed and simulated changes in North Atlantic sea surface 
temperatures 

We find that CESM1 reasonably simulates the spatial and temporal 
patterns of North Atlantic (0–60◦ N, 0–80◦ W) SST changes from 1929 to 
2018 (Fig. 2a and b and 3a), consistent with earlier studies (Chemke 
et al., 2020; Kim et al., 2018a; Si et al., 2017). The variability of 
observed SSTs lies within the CESM1 historical all-forcings (ALL, which 
include anthropogenic and natural forcings) ensemble range (p = 0.11, 
Kolmogorov-Smirnov, hereafter K–S test). From 1929 to 2018, the 
observed and ALL ensemble-mean SSTs increased by 0.55 and 0.45 ◦C 
century− 1 (p < 0.001), respectively, despite temporarily cooling around 
1970 (Fig. 3a). All 40 ensemble members reproduce the significant 
warming trends through the 1929–2018 period (95% CI: 0.29–0.61 ◦C 
century− 1). This demonstrates that the CESM1 model is capable of 
simulating regional SSTs, facilitating the detection and attribution of 
SST changes and their relationship with the Northeast EP increases. 

3.2. Anthropogenic influences on North Atlantic sea surface temperatures 

We subtract the single forcing simulations from ALL to determine the 
influence of each forcing, and find contrasting effects of different radi
ative forcings on SSTs (Fig. 2c–f and 3b). Starting from 1929, anthro
pogenic greenhouse gases (GHG) warmed the North Atlantic basin by 
0.8 ◦C century− 1 (p < 0.01; 95% CI from ensemble members: 
0.65–0.96 ◦C century− 1; Figs. 2c and 3b). Conversely, industrial aerosols 
(AER) cooled SSTs significantly at a rate of − 0.17 ◦C century− 1 (p <
0.01; 95% CI: − 0.30 to − 0.03 ◦C century− 1; Figs. 2d and 3b). Our GHG 
and AER findings are consistent with earlier studies (Dunstone et al., 
2013; Ting et al., 2015). Biomass burning (BMB) and land use and land 
cover (LULC) have minor to negligible influences on SSTs (Fig. 2e–f and 
3b), approximately equivalent to one tenth of the effects from GHG and 
AER. While the warming effect from GHG increased monotonically over 
1929–2018, the cooling effect of industrial AER intensified until the 
1970s and then slowly dampened afterwards (Fig. 3b), a result of 

Fig. 2. Spatial patterns of 1929–2018 trends 
in North Atlantic sea surface temperatures 
(SSTs, ◦C per 90 yr) in the ERSST v5 obser
vations (OBS, a), CESM1 historical all- 
forcings simulations (ALL, b), and single- 
forcing simulations for greenhouse gases 
(GHG, c), aerosols (AER, d), biomass 
burning (BMB, e), and land use and land 
cover (LULC, f). b-f are from the ensemble 
mean. Stippling indicates a significant 
change in the SST time series at the 0.05 
level using the Student’s t-test. Note that the 
scales in a-b are different from c-d and e-f. 
The land region covering the Northeastern 
US, the study area for extreme precipitation 
change, is highlighted by thick black lines.   
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environmental legislation passed in North America and Europe around 
1970 that substantially decreased aerosol emissions (Deser et al., 2020b; 
Myhre et al., 2013). 

Spatially, the opposing effects of GHG (warming) and AER (cooling) 
are evident over the entire North Atlantic basin (Fig. 2). However, the 
basin average effects imposed by GHG and AER are reversed in the 
subpolar North Atlantic (i.e., warming by AER and cooling by GHG) 
(Fig. 2c and d). This area overlaps with the well-documented North 
Atlantic warming hole in observations and climate models (Drijfhout 

et al., 2012). The physical mechanisms of the North Atlantic warming 
hole are not explored in this study, but previous research has linked the 
warming hole to a weakening of the Atlantic Meridional Overturning 
Circulation (AMOC) (Caesar et al., 2018; Chemke et al., 2020; Cheng 
et al., 2013; Drijfhout et al., 2012; Gervais et al., 2018). While a 
weakening AMOC may be associated with natural variability (Chen and 
Tung, 2018; Zhang, 2008), it has also been associated with rising CO2 
concentrations in both observations and climate models (Caesar et al., 
2018; Chemke et al., 2020; Saba et al., 2016). The warming over the 

Fig. 3. Temporal changes in sea surface temperatures (SSTs) over the North Atlantic (0–60◦ N, 0–80◦ W). a, Time series of 1929–2018 SSTs in the ERSST v5 ob
servations (OBS), CESM1 historical all-forcings simulations (ALL), and detrended ALL simulations by removing the time-evolving ALL ensemble mean (XALL). b, 
Contributions of greenhouse gases (GHG, red lines), aerosols (AER, blue lines), biomass burning (BMB, green lines), and land use and land cover (LULC, magenta 
lines) to historical ALL SSTs. Thick lines in a and b represent the ensemble mean, while thin lines are individual ensemble members and indicate ensemble spreads. c, 
Anomalies in observed SSTs after detrending by removing linear trend (Linear), quadratic trend (Quadratic), and trends estimated from ALL, GHG, AER, and the four 
anthropogenic single forcings combined (ANT) ensemble means, respectively. A 10-year smoothing window is applied and the anomalies are calculated relative to a 
baseline period 1929–1998. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Arctic has increased sea ice melt and river runoff, leading to higher 
freshwater fluxes through the Arctic gates (between Greenland and the 
Canadian Arctic Archipelago), freshened surface water, reduced Labra
dor Sea deep convection, and ultimately a cooling of the Labrador Sea 
(Gervais et al., 2018). This is supported by the spatial pattern of cooling 
in Fig. 2c. In contrast, the faster warming near the Northeast has been 
connected to the northward shift of the Gulf Stream as a result of the 
AMOC slowdown (Caesar et al., 2018). The opposite seesaw patterns in 
Fig. 2c and d reflect competing thermodynamic effects by GHG and AER 
on SSTs. Even though the overall effect by BMB is close to neutral, it 
actually exerted a cooling influence over a large part of the North 
Atlantic (Fig. 2e), a result of increased BMB aerosols in the South 
America and Canada and decreased BMB aerosols in the US since 1929 
(Deser et al., 2020b; Granier et al., 2011). As expected, the influence by 
LULC is marginal across space (Fig. 2f). 

The anthropogenic and natural forcings of ALL, especially anthro
pogenic GHG and AER, play significant roles in driving the observed SST 

changes, especially over the past four decades (Fig. 4). Regression of the 
ALL fingerprint (one-signal) onto the observed 1929–2018 SST anoma
lies show that the signal is detectable at the 0.05 significance level 
(Fig. 4b). The 90% CI of scaling factors for the ALL fingerprint 
(1.07–1.52) is above 0, with the best estimate at 1.29. Simultaneous 
regression of the GHG and XGHG fingerprints (two-signal) onto the 
observed SSTs shows that both fingerprints are detectable. The 90% CIs 
of scaling factors for GHG (1.1–1.57) and XGHG (1.04–1.91) are above 
0, with the best estimates at 1.33 and 1.46, respectively. Similarly, the 
fingerprints of AER and XAER are detected, with their 90% CIs of scaling 
factors at 1.19–2.17 and 1.03–1.52. These demonstrate that GHG and 
AER are largely responsible for historical SST changes over the North 
Atlantic. Two-signal analysis with the BMB and XBMB fingerprints 
yields similar results as using the LULC and XLULC fingerprints. Despite 
detectable BMB and LULC fingerprints, plugging their best-estimate 
scaling factors (3.58 for BMB and 4.36 for LULC) into the regression 
equation (9) reveals that each fingerprint minimally contributed to the 

Fig. 4. Optimal fingerprint detection of North Atlantic sea surface temperatures (SSTs) change. a, SST anomalies over the North Atlantic in the ERSST v5 obser
vations (OBS), ensemble-averaged CESM1 historical all-forcings simulations (ALL, including anthropogenic and natural), and the four ensemble-averaged CESM1 
single forcing simulations (GHG: greenhouse gases, AER: aerosols, BMB: biomass burning, and LULC: land use and land cover), all represented by non-overlapping 5- 
year means and relative to 1929–1958. b, Scaling factors for North Atlantic SSTs from one-signal (ALL forcings) and two-signal (GHG vs. XGHG, AER vs. XAER, BMB 
vs. XBMB, and LULC vs. XLULC forcings) regressions over the time period 1929–2018. c, Scaling factors for ALL, GHG, and AER over varying time periods with an 
interval of 5 years (i.e., with a fixed start date in 1929 but a moving end date as designated on the x-axis). Circles and crosses in b indicate the best estimates of scaling 
factors, and error bars in b and shaded areas in c represent the 90% confidence intervals for scaling factors. Confidence intervals extending beyond the figure 
represent large uncertainties of scaling factors. A signal is detectable when the confidence interval is above zero, and the forced response is consistent with ob
servations when the confidence interval contains one. 
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observed SST changes. In contrast, XBMB and XLULC fingerprints (both 
including GHG and AER forcings) are primarily responsible for historical 
SST changes. Furthermore, residual consistency checks are passed for 
these one- and two-signal analyses, adding confidence to the detection 
results while underlying the importance of both GHG and AER effects in 
leading to historical SST changes. We further tested when the important 
fingerprints become detectable by alternating the time period consid
ered in the one- and two-signal analyses. Specifically, the start date is 

held constant in 1929 and the end date spans 1963 to 2018 at an interval 
of five years. Fig. 4c shows that the ALL and AER fingerprints were first 
detected in 1968, while the GHG fingerprint emerged in 1983. The XAER 
(including GHG and other forcings) and XGHG (including AER and other 
forcings) fingerprints were also first detected in 1983 (not shown), 
confirming the timing when GHG and AER forcings started to accelerate 
the observed SST warming. 

Is the AMV (defined here identical to AMO, detrended SST anomalies 

Fig. 5. Temporal changes in extreme precipitation over the Northeastern US. a, Time series of 1929–2018 annual extreme precipitation in the GHCN-D observations 
(OBS) and CESM1 historical all-forcings simulations (ALL, including anthropogenic and natural). b, Extreme precipitation anomalies attributed to greenhouse gases 
(GHG, red lines), aerosols (AER, blue lines), biomass burning (BMB, green lines), and land use and land cover (LULC, magenta lines), as compared to ALL extreme 
precipitation. Thick lines in a and b represent ensemble mean, while thin lines are individual ensemble members and indicate model spreads. c, Anomalies in 
Northeast extreme precipitation and North Atlantic sea surface temperatures (SSTs). The anomalies in observed SST after removing the ALL ensemble-averaged trend 
(OBS - ALL) are an indicator of the Atlantic Multidecadal Variability. Anomalies in extreme precipitation and SSTs are relative to the baseline period 1929–1998. 
Lines in b and c are smoothed with a 10-year moving mean. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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averaged over 0–60◦ N, 0–80◦ W) a natural mode or driven by natural 
and anthropogenic forcings? Previous studies have found anthropogenic 
forcings are major drivers of AMV changes, especially in the late 
twentieth century (Bellomo et al., 2018; Si et al., 2017), while others 
argue that the AMV is primarily a natural mode in the climate system 
(Kim et al., 2018b; Zhang et al., 2019), or a combination of both (Enfield 
and Cid-Serrano, 2010; Ting et al., 2014). By using simulations from the 
Coupled Model Intercomparison Project Phase 5, Mann et al. (2021, 
2020) argued the AMV during the preindustrial era (1000–1835 CE) is 
exclusively caused by volcanic radiative forcing, and the AMV during 
the historical era (1850–2005) is driven by natural and anthropogenic 
forcings, rather than internal multidecadal oscillations. Here we exam
ined this question by calculating the AMV in observations with different 
trends removed, and used the CESM1 ALL and single forcing simulations 
to assess the effects of external forcings and internal variability on SST 
anomalies (see Section 2.2 for details). Fig. 3c shows that the AMV 
estimated by removing the time-evolving ALL ensemble mean produces 
the same three phases (warm–cold–warm) as the linearly detrended 
AMV, with relatively small differences (less than a decade) in the timing 
of phase shifts. The former method leads to significantly smaller mag
nitudes of AMV (p < 0.01, K–S test) during all phases when compared to 
that from linear detrending, consistent with earlier findings (Bellomo 
et al., 2018; Mann et al., 2014; Si et al., 2017). In contrast, the AMV from 
removing the quadratic trend highly resembles the ALL-detrended AMV 
(p = 0.74), highlighting the ability of the quadratic trend to remove most 
external forcings. The evidence suggests that the observation-based 
AMV may have an internal variability component. Nevertheless, 
almost none of the individual ALL ensemble members (detrended with 
the ALL ensemble mean) can reproduce the AMV (Fig. 3a), implying 
some limitation with the CESM1 model in simulating the observed AMV 
correctly. Interestingly, only the SST anomalies created by removing the 
SST trend induced by AER significantly differ from the ALL-detrended 
SST anomalies. The SST anomalies created by removing the SST trends 
induced by GHG or anthropogenic forcings combined (including GHG, 
AER, BMB, and LULC) are not significantly different from the 
ALL-detrended SST anomalies (Fig. 3c). The evidence further suggests 
that the observed AMV is significantly modulated by AER. In summary, 
Figs. 2–4 confirm that GHG (AER) exerted a warming (cooling) effect on 
the observed SST changes. SST warming since the 1980s was mostly 
caused by strengthened warming from GHG and reduced cooling from 
AER, with some contribution from internal variability as well. 

3.3. Observed and simulated changes in Northeast extreme precipitation 

The ALL simulations perform well in simulating annual EP and its 
change over the Northeast (Fig. 5a). The observed EP in GHCN-D 
experienced an abrupt increase in 1996, characterized by a 48% in
crease in annual EP during 1996–2018 as compared to 1929–1995 
(Fig. 5a), consistent with an earlier study (Huang et al., 2017b). In the 
ALL simulations, a similar EP changepoint is detected in the late 1990s 
(1998), even though the magnitude of ensemble-averaged EP increase 
(17% when comparing 1996–2018 to 1929–1995) is smaller than the 
observed change. The observed (GHCN-D) and simulated (ALL) EP 
increased by 3.2 and 1.4 mm decade− 1 (p < 0.01), respectively, from 
1929 to 2018, but had no significant trends from 1929 to 1995 prior to 
the changepoint. The variability of observed EP lies within the ALL 
ensemble range (p = 0.9997, K–S test), and most of the ALL ensemble 
members (37 out of 40) have the same sign of upward trends from 1929 
to 2018 (95% CI: –0.2 to 3.2 mm decade− 1). This evidence suggests the 
CESM1 model is able to reproduce the change (including the 1996 shift) 
in observed EP, making the attribution of the EP abrupt shift feasible. 

3.4. Anthropogenic impacts on Northeast extreme precipitation 

Anthropogenic GHG are a crucial driver of the recent increase in EP, 
while other forcings are not (Fig. 5b). The increase in observed EP can 

only be reproduced with the presence of anthropogenic GHG, and none 
of the other anthropogenic forcings are important in capturing the 
change in EP, especially the post-1996 shift. A decomposition of indi
vidual forcings shows that the overall effect of GHG led to an increase of 
2.3 mm decade− 1 (p < 0.01) of EP from 1929 to 2018, and all 20 
ensemble members have the same sign of upward trends (95% CI: 
1.0–3.7 mm decade_1). The ensemble average of BMB effect increased EP 
slightly by 0.5 mm decade− 1 (p < 0.05) from 1929 to 2018, and the 
increase is only evident during the most recent decade. Its 95% CI of EP 
trends for ensemble members (− 1.4 to 2.6 mm decade − 1) includes 0, 
indicating some uncertainty in the impact of BMB on Northeast EP due 
to internal climate variability. Aerosols produced from BMB in the US 
have steadily decreased over the past century (Deser et al., 2020b; 
Granier et al., 2011), and therefore BMB’s impact on EP over the last 
decade is potentially anomalous. In fact, when we include the last 
decade (2019–2029) in the XBMB ensemble, we discover that the impact 
of BMB on Northeast EP drops to essentially zero (not shown). This 
implies the BMB-related EP increase during the most recent decade 
could be a result of model variability, similar to the decadal variations of 
LULC-related EP. The contributions from AER and LULC to EP are not 
statistically significant, and their 95% CIs of EP change center around 0, 
as demonstrated by their ensemble means and individual members 
(Fig. 5b). We note that EP variations associated with LULC may be due to 
its small ensemble size (5) and the LULC effect on post-1996 EP change 
remains insignificant. 

Fig. 6 further demonstrates that ALL forcings are responsible for the 
observed change in EP, with anthropogenic GHG as a critical driving 
force. The fingerprint of ALL forcings is detected at the 0.05 significance 
level, with the CI of scaling factors ranging from 1.41 to 3.43 (Fig. 6b). 
Based on our two-signal analyses over 1929–2018, all fingerprints are 
detectable except XBMB. Specifically, the 90% CI of scaling factors for 
GHG (XGHG) is 1.76–42.19 (1.00–118.87) with a best estimate of 3.56 
(5.55). We note that the large scaling factors indicate the model-derived 
GHG and XGHG effects on EP have to be substantially scaled up to be 
comparable with the observed EP. Despite detectable fingerprints by 
other forcings, incorporating their best-estimate scaling factors into the 
regression equation (9) reveals that no fingerprint other than GHG has a 
major impact on the observed EP changes. BMB appears to influence EP, 
but its effect is much less important than XBMB. Residual consistency 
checks are generally passed for these one- and two-signal analyses, 
adding confidence to the detection results. We also tested the sensitivity 
of our detection results over various time lengths by moving the end date 
from 1963 to 2018 with an interval of five years (start date fixed in 
1929). This analysis further confirms that GHG are the primary forcing 
detectable in the observations (Fig. 6c). The forced signal by GHG 
reached a detectable level in 2008, with the same timing as the ALL 
forced signal. Unlike SSTs, the effect of AER on Northeast EP is muted, 
confirming the mixed impacts of increased aerosols on Northeast EP 
(Ntelekos et al., 2009). According to Ntelekos et al. (2009), this can be 
explained by the highly nonlinear interactions between the AER-related 
thermodynamic and microphysical processes involved in intense 
convective storms, and the sensitivity of each storm to regional meteo
rological conditions. 

Our results are consistent with Kirchmeier-Young and Zhang (2020) 
who found the fingerprint of external forcing on 1961–2010 EP change 
in a broader Northeast region by using the same ROF method and three 
large ensembles of climate model data (including CESM1). Martel et al. 
(2018) found the time of detection in 2030 over the eastern North 
America region, which is two decades later than our findings. This may 
be due to the averaging with other subregions (e.g., southeastern US) 
which has experienced a much smaller increase in EP than over the 
Northeast (Easterling et al., 2017) and therefore delayed the time of 
detection. 

Fig. 5c shows a strong correlation between EP and SSTs from 1929 to 
2018, with a higher correlation in the ALL simulations (0.85) than in 
observations (0.48). Furthermore, the correlation between the ALL- 
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simulated EP and SSTs is stronger from 1996 to 2018 (0.75, p < 0.01) 
than from 1929 to 1995 (0.39, p < 0.01), consistent with the relationship 
between observed EP and SSTs. Taken together, the evidence indicates 
that the CESM1 model closely reproduces the relationship between EP 
and SSTs, and a linear relationship between EP and SST was enhanced 
after 1996. Similarly, the GHG-forced EP and SST responses from 1929 
to 2018 are strongly correlated (0.66, p < 0.01), especially after 1996. 
Combined with our finding of a strong GHG influence on SSTs (espe
cially since 1983), these results support our hypothesis that GHG 
influenced Northeast EP via increased SSTs. 

Recent studies have tied the reduced aerosol loadings in the Atlantic 
basin since 1970 to an increased number of Atlantic tropical storms 
(Dunstone et al., 2013; Murakami et al., 2020) and higher potential 
intensity (Sobel et al., 2016; Ting et al., 2015), thus contributing to more 
frequent major hurricanes (Murakami et al., 2018). Starting from the 
late 1990s, the warming of SSTs from increased GHG and reduced AER is 
approximately twice the warming from the cold-to-warm AMV shift 

(Fig. 3c), both of which facilitate the development of more major hur
ricanes (Villarini and Vecchi, 2013). However, relative to anthropogenic 
forcings, there is evidence (Camargo et al., 2013; Ting et al., 2015) that 
AMV was the more likely cause of the sharp increase in hurricane po
tential intensity, especially since 1995. We also find that both observed 
and ALL-simulated EP are significantly correlated with the AMV during 
the current AMV warm phase since 1996 (p ≤ 0.05), as shown in Fig. 5c. 
It is worth noting that EP did decrease during the last AMV cold phase 
(1963–1995) after the shift from the previous AMV warm phase 
(1928–1962), though they are not significantly different (Huang et al., 
2018). In this study, we explicitly connect the anomalously high EP since 
1996 to both the AMV shift and anthropogenic-driven SST warming, 
likely through inducing more tropical storms that have made a large 
contribution (48%) to the Northeast EP shift (Huang et al., 2018; Mur
akami et al., 2020). 

Our application of the CESM1 large ensembles to conduct detection 
and attribution provides a robust estimation of forced responses and 

Fig. 6. Optimal fingerprint detection of Northeast extreme precipitation change. a, Extreme precipitation anomalies over the Northeastern US in the GHCN-D 
observations (OBS), ensemble-averaged CESM1 historical all-forcings simulations (ALL), and the four ensemble-averaged CESM1 single forcing simulations (GHG: 
greenhouse gases, AER: aerosols, BMB: biomass burning, and LULC: land use and land cover), all represented by non-overlapping 5-year means and relative to 
1929–1958. b, Scaling factors for Northeast extreme precipitation from one-signal (ALL forcings) and two-signal (GHG vs. XGHG, AER vs. XAER, BMB vs. XBMB, and 
LULC vs. XLULC forcings) regressions over the time period 1929–2018. c, Scaling factors for ALL and GHG over varying time periods with an interval of 5 years (i.e., 
with a fixed start date in 1929 but a moving end date as designated on the x-axis). Circles and crosses in b indicate the best estimates of scaling factors, and error bars 
in b and shaded areas in c represent the 90% confidence intervals for scaling factors. Confidence intervals extending beyond the figure represent large uncertainties of 
scaling factors. A signal is detectable when the confidence interval is above zero, and the forced response is consistent with observations when the confidence interval 
contains one. 
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detection results (Deser et al., 2020b; Santer et al., 2019), especially 
when compared to those using a smaller number of climate realizations. 
However, there are some caveats to our approach. We caution that 
detecting and attributing EP change at local scales and other regions 
remains highly uncertain due to the challenges outlined in the intro
duction, importantly the large noise of internal variability (Martel et al., 
2018). Further, the CESM1 climate simulations are too coarse in hori
zontal resolution (1-degree latitude/longitude) to explicitly resolve 
many physical processes (e.g., moist-adiabatic temperature lapse rate 
and vertical velocity) and thus the accurate representations of tropical 
cyclones and extreme precipitation (Ntelekos et al., 2009; Roberts et al., 
2020; van der Wiel et al., 2016). As seen in Fig. 5a, both the EP upward 
trend over 1929 to 2018 and shift after 1996 are much higher in 
observed EP than in simulated EP. These barriers hamper a more robust 
detection and attribution. To improve future attribution studies, it will 
be important to leverage state-of-the-art GCMs, especially those run over 
higher resolutions and cloud-resolving scales, such as the CMIP6 High 
Resolution Model Intercomparison Project (Haarsma et al., 2016). 

4. Conclusions 

We find that historical ALL forcings (including anthropogenic and 
natural) have exerted significant influences on North Atlantic SSTs and 
Northeast EP over the period from 1929 to 2018, with their time of 
detection in 1968 and 2008, respectively. Increased anthropogenic GHG 
and reduced AER warmed the North Atlantic, and BMB and LUCL have 
minor to negligible influences on SSTs. The times of detection for the 
AER and GHG fingerprints on SSTs are 1968 and 1983, respectively. We 
also find that observed AMV is significantly driven by AER and may have 
an internal ocean variability component that is not well captured by the 
CESM1 model. 

For Northeast EP, GHG are the only anthropogenic forcing of sig
nificance, with the GHG fingerprint detectable since 2008. Our detection 
and attribution results are based upon the CESM1 model’s reasonable 
performance in simulating the spatial and temporal patterns of North 
Atlantic SSTs and Northeast EP. The model can also closely reproduce 
the correlation between observed EP and SSTs, which strengthened after 
1996. Recent SST warming, a result of increased GHG and reduced AER, 
is a key factor responsible for the post-1996 increase in Northeast EP, 
though the effect from AMV is also important. Therefore, according to 
our analysis of the CESM1 runs, the 1996 shift in Northeast EP can be 
attributed to both climate variability (especially AMV) and anthropo
genic forcings (especially GHG), rather than either factor alone. Given 
the projected increase in GHG emissions, we expect that extreme pre
cipitation across the Northeastern US will continue to rise, though 
potentially muted over the next few decades by a shift to AMV negative 
conditions. 
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