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Frontotemporal Dementia (FTD) is a progressive, terminal neurodegenerative disorder 

with a strong genetic component in individual risk. Prior FTD genetic-wide association studies 

(GWAS) have identified several disease-associated single nucleotide polymorphisms (SNPs) 

including lead SNPs adjacent to HLA loci, one of which has also been implicated in 

immunosenescence. As HLA is a major component of immune activation, understanding the role 

of HLA genetic variation in FTD pathology and senescence may lead to uncovering causal roles 
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of immune pathways in neurodegeneration. We hypothesize that genetic variation in HLA gene or 

gene-regulatory regions is driving HLA expression and immune response in disease. To support 

this hypothesis, we seek to define HLA haplotypes and alleles associated with clinical outcomes 

and disease pathologies. We use a new but proven methodology that can overcome the challenges 

of studying the most polymorphic gene region in the human genome that has yet to be applied to 

FTD cohorts.  

  



iv 
 

The thesis of Misty Knight is approved. 

Manish J. Butte 

Noah A. Zaitlen 

Bogdan Pasaniuc, Committee Co-Chair 

Jessica Rexach, Committee Co-Chair 

 

 

 

 

University of California, Los Angeles 

2024 

 

 

 

 

 

 

 



v 
 

TABLE OF CONTENTS 

 

1. Introduction  ............................................................................................................................. 1 

2. Data Sets................................................................................................................................... 4 

2.1 Study Cohorts.................................................................................................................. 4 

3. Methods.................................................................................................................................... 6 

3.1 Quality Control of Genomic Data  ................................................................................... 6 

3.2 Imputation of HLA Genotypes........................................................................................ 8 

3.3 Analysis of Imputed HLA Genotypes ............................................................................. 9 

4. Results .................................................................................................................................... 10 

4.1 Imputation Performance................................................................................................ 10 

4.2 HLA Allele Frequency Variation ................................................................................... 10 

4.3 Deviations from Population Frequencies  ...................................................................... 12 

4.4 Cognition diagnosis-based Analysis ............................................................................. 13 

5. Discussion ............................................................................................................................... 16 

5.1 Conclusion .................................................................................................................... 16 

5.2 Future Directions........................................................................................................... 18 

6. References .............................................................................................................................. 20 

 

  



vi 
 

LIST OF FIGURES 

 

1. Genomic discovery in neurological disease mapped to extended MHC region. ........................ 2 

2. A subset of HLA genes and natural killer cell receptors are differentially expressed in FTD 

(PiD)  brain, showing the insular cortex and angular gyrus, compared to Alzheimer’s disease. .... 3 

3. QC Pipeline and data filtering applied to cohort. ....................................................................... 7 

4. A reference-panel based approach to imputing HLA genotypes from SNP genotype data  ........ 8 

5. Performance results of the Michigan Imputation HLA Pipeline.  ............................................. 10 

6. Allele frequencies found in ALLFTD sporadic cases, Hillblom cohort and European 

population.......................................................................................................................................11 

7. Allele frequencies of cognitively impairmed and non-impaired individuals in Hillblom cohort 

with corresponding EUR population frequencies  ......................................................................... 12 

8. Allele frequencies for HLA alleles were found to be significantly different between Hillblom 

"normal" diagnostic control and ALLFTD cases with European Population frequencies. ........... 14 

9. Haplotype frequencies of HLA-B~HLA-C for Hillblom "normal" diagnostic control, ALLFTD 

cases and European Population. .................................................................................................... 15 

10. Genomic region chr6 (p21.33) near SNPs used to impute HLA-C*06:02 and HLA-B*57:01.

....................................................................................................................................................... 18 

 

  



vii 
 

LIST OF TABLES 

 

1. Demographics for study cohorts.  ................................................................................................ 5 

2. Allele frequencies as seen in Figure 6........................................................................................11 

3. Allele frequencies as seen in Figure 7....................................................................................... 13 

4. Allele frequencies as seen in Figure 9....................................................................................... 15 

5. Haplotype frequency values as seen in Figure 9....................................................................... 15 

6. SNP names and positions used for HLA imputation. ................................................................ 18 

 

 

 

 

 

 

 

 

 

 



1 
 
 

CHAPTER 1 

Introduction 

 

In this project, we set out to understand the role of human leukocyte antigen (HLA) gene 

variation in Frontotemporal Dementia (FTD) and cognitive outcomes in senescence by 

determining disease-associated genetic variation. To do this, we leverage genetic data of FTD 

patients from the ARTFL LEFFTDS Longitudinal Frontotemporal Lobar Degeneration 

(ALLFTD) research study [1] as well as genetic data from the Hillblom longitudinal aging study 

[2] to impute HLA alleles and haplotypes, then identify associations with clinical outcomes. We 

sought out to define disease-associated variants as well as those that may be associated with neuro-

protective outcomes. 

FTD refers to a group of Alzheimer’s Disease (AD) related dementias that primarily affect 

the frontal and temporal lobes. The disease is progressive, terminal and the most common dementia 

in people under 60 and familial in up to 50% of patients, with men and women almost equally 

affected [3-5]. The main clinical variants of FTD are behavioral (bvFTD) and language (PPA) 

variants that cause changes in personality and behavior and language impairment, respectively. 

Additional variants include Progressive Supranuclear Palsy (PSP), Corticobasal Syndrome (CBS) 

and concomitant Amyotrophic Lateral Sclerosis (ALS, also known as Lou Gehrig’s disease).  

These clinical variants are further confounded by different molecular pathologies and clinical 
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symptoms [6]. The heterogeneity of this disease contributes to the many challenges in studying 

FTD. Currently, FTD disease etiology is not well understood and there is no curative treatment. 

Prior genetic-wide association studies of FTD have identified several potential risk loci, 

including HLA-DRA/DRB5 [5]. HLA-DR has also been found to have decreased expression in 

CD14+CD16+ monocyctes with age, indicating a potential role of immunosenescence in disease 

progression [7,8]. Conversely, HLA-DRB1*13:02 has been found to be protective against some 

deleterious effects of APOE4 in dementia, further supporting a potential role of HLA function in 

disease [9]. 

Additionally, HLA associations have been identified in Alzheimer’s disease and other 

neurodegenerative disorders [7,8].  In Figure 1 (Misra 2018) we see that many risk loci for 

neurological diseases have been mapped to or near HLA loci.

 

Figure 1. Genomic discovery in neurological disease mapped to extended MHC region on chromosome 6.  (Misra 

2018) 
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Further support of this potential HLA – neurodegeneration link has been found in our lab’s 

previous work to identify differential gene expression across multiple neurodegenerative diseases. 

In this cross-disorder RNA expression data, we see a differential pattern of expression between 

Alzheimer’s Disease and FTD for a subset of Class I HLA genes in key brain regions in Figure 2 

(Rexach). Genes within the MHC gene region that encode for antigen presenting molecules such 

as Class I HLA genes represent the highest genetic risk for many neurological disorders [10]. Thus, 

determining HLA genotypes and haplotypes associated with increased risk of disease-specific 

clinical outcomes may uncover potential pathways of the disease.  

 

 

  

Figure 2. A subset of HLA genes and natural killer cell receptors are differentially expressed in FTD (PiD)  brain, 

showing the insular cortex and angular gyrus, compared to Alzheimer’s disease. (Rexach) 

a. b. c. 

Figure 1: Cross disorder differential gene expression study identifies differences in Pick’s disease brain in the expression of HLA genes. RNAseq of 7 brain 
regions across 10 subjects per group from AD, PSP and PiD cases, was performed in collaboration with Daniel Geschwind and William Seeley (manuscript in 
preparation).  A) sample types and workflow . B) differential gene expression overlap – taking genes significantly up-regulated in any brain region for a given 
disorder at logfc>0.5, p-value (FDR corrected) <0.05.  C) A subset of HLA genes and natural killer cell receptors that are differentially expressed in Pick’s disease 
brain, showing the insular cortex and angular gyrus, compared to Alzheimer’s disease.  Results are based on a linear mixed effects model with age, sex, RIN and 
PMI as biological covariates and subject as a random effect.  
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CHAPTER 2 

Data Sets 

 

2.1 Study Cohorts 

In this study, to identify HLA alleles and haplotypes associated with clinical outcomes, we 

used the ARTFL LEFFTDS Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) [1] 

cohort for our disease case study, and the Hillblom longitudinal aging study [2] was utilized as a 

control cohort. 

THE ARTFL LEFFTDS Longitudinal Frontotemporal Lobar Degeneration cohort includes 

individual and familial participants with known familial or sporadic FTD that have completed two 

or more annual visits. Study data includes genetic data and a wide range of clinical data and 

biospecimens for hundreds of participants [1].  

The Hillblom longitudinal data includes genotyping data and clinical demographics from 

community-enrolled study participants that completed at least two annual study visits at the 

University of California, San Francisco Memory and Aging Center. There they underwent 

evaluation at every visit to determine they met study criteria of no neurological condition or 

functional decline [2]. 

The genetic data we used from these cohosts consist of SNP-based genotyping data 

generated from the Illumina Omni2.5Exome and Illumina Global Screening Array (GSA) 

platforms.  
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 ALLFTD (case) Hillblom (control) 

n 694 total 

370 Omni2.5Exome 

324 Global Screening Array 

325 total Omni2.5Exome 

Median Age (range) 65 (25 – 88)* 71 (32 – 98) ** 

Sex 383 Male, 311 Female 158 Male, 167 Female 

Phenotypes FTD (six subtypes) Normal / Impaired 

Table 1. Demographics for study cohorts. * Age at time of first record, ** Age at time of collection. 
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CHAPTER 3 

Methods 

 

3.1 Quality Control of Genomic Data 

To begin, the SNP data from each cohort was run through a thorough, standard quality-control 

pipeline (Figure 3.). The SNP and sample quality control checks included standard filtering in 

PLINK for sex discrepancies, relatedness, SNP and sample missingness, minor allele frequency 

(MAF), and Hardy-Weinberg equilibrium (HWE) deviation.  

The datasets were then processed through standard ancestry clumping and filtering through 

PLINK using a multidimensional scaling approach (MDS) anchored by 1kG data. This process 

was also performed with the R package bigsnpr [12] to confirm proper labeling of ancestry groups 

and to conform to ALLFTD data processing. The parameters for these methods were defined by 

prior ALLFTD processing performed by the data managing group. As we were delivered pre-

processed chromosome 6 SNP data for this cohort, we were unable to perform these steps on our 

own, which necessitated strict adherence to the established pipeline with the Hillblom cohort to 

avoid introduction of batch effects. 

Additional filtering steps were completed before HLA imputation and analysis to include only 

phenotypes in “bvFTD, corticobasalsyndrome, FTD/ALS, PPA-nonfluent, PPA-semantic, PSP”. 

Additional filtering by family gene = “none” was performed for additional analyses for sporadic 

cases. 
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Later analysis prompted more stringent filtering for the Hillblom cohort as well to remove any 

individuals without a normal clinical status. We also took the opportunity to remove individuals 

that self-reported as non-European ancestry in additional metadata that was obtained.  

The total number of samples post filter for the ALLFTD was 577 (295 Omni, 282 GSA). This 

was the final number used for all analyses. The initial cohort for Hillblom post QC was 325. After 

additional filtering in step 4, this number was reduced to 140 “normal” controls and 129 with 

abnormal clinical diagnosis.   

 

Figure 3. QC Pipeline and data filtering applied to both cohorts. Steps 1-3 were applied pre-analysis. Step 4 was 

applied for additional analyses. 
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3.2 Imputation of HLA Genotypes 

After quality control and filtering performed strand flips for proper data phasing using a 

platform specific tool [16]. The data was chromosome sorted and chromosome 6 VCF files were 

then gzipped and uploaded for imputation. Imputation was performed on the Michigan server 

“Genotype Imputation HLA (Minimac4) 1.5.8 with [13,14]. This tool utilizes the HLA-TAPAS 

pipeline that implements its own quality controls steps before phasing the genotype data and 

performing the imputations with SNP2HLA with the latest reference panel, “Four-digit Multi-

ethnic HLA v2 (2022)” [13,14]. Output binary markers for classical HLA alleles were utilized to 

determine HLA alleles and corresponding haplotypes. 

 

Figure 4. A reference-panel based approach to imputing HLA genotypes from SNP genotype data. (Douillard 2021) 
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3.3 Analysis of Imputed HLA Genotypes 

 With the imputed HLA allele data from each cohort, we utilized the R package BIGDAWG 

[17] to confirm HLA haplotypes and determine associations with disease phenotypes and clinical 

outcomes.  

 A custom script was used to format the PLINK binary HLA marker data output from the 

Michigan Imputation Server to the HLA allele table input required for BIGDAWG. Data needed 

to be converted from PLINK formatting to tabular data form with subject IDs, phenotypes, and 

genotype pairs for each HLA allele. HLA alleles needed to be in recognizable format for proper 

analysis. 

We then ran the analysis in BIGDAWG using default method parameters on our combined 

and coded case/control dataset. This analysis operates in several steps to test for significance at the 

locus level, allele-level, haplotype level, and finally protein sequence level using data from 

IMGT/HLA database [17].  

 To interpret these results, we ran a series of associations based on disease phenotype for a 

comprehensive discovery phase utilizing each of our genetic datasets. These results were then 

compared to established population allele frequencies as described by the National Marrow Donor 

Program [18].  
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CHAPTER 4 

Results 

 

4.1 Imputation Performance 

 Our first step post-imputation was to determine the imputation completed without any 

noticeable error and provided consistent results for both of our cohorts.  

 

Figure 5. Performance results of the Michigan Imputation HLA Pipeline on our datasets with values represented as 

allele counts. 

 

4.2 HLA Allele Frequency Variation 

After confirming the success of our HLA imputations, we proceeded to our case/control 

analysis. The ALLFTD cohort was filtered to remove cases with known causal family genes to 

provide an analysis of sporadic cases. After multiple testing corrections two alleles were found to 

be significantly different between cohorts. The European ancestry population frequencies [18] 
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were included as a sanity check for our frequency results. This analysis included the sporadic FTD 

cases (n=577) and full Hillblom cohort after filtering for quality as previously described (n=325). 

 

 

Figure 6. Allele frequencies found in ALLFTD sporadic cases and Hillblom cohort alongside European population 

frequencies. 

Allele HILL Freq FTD Freq OR p value EUR Freq 

A*33:01 0.016923 0.001733 0.1 0.009039 0.00991 

B*51:01 0.015385 0.045061 3.03 0.049368 0.04544 

Table 2. Allele frequencies as seen in figure 6. 
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4.3 Deviations from Population Frequencies 

When we examined the frequencies from our FTD case/control analysis in relation to 

known population frequencies, it became clear that the Hillblom cohort that we were using as a 

control may be driving our results. By selecting a group without any form of dementia in a 

longitudinal aging study, we realized we inadvertently selected a group that deviated from the 

general population. Since this may provide a greater allele frequency for alleles with neuro-

protective effects, we decided to look further into the make-up of this cohort. Accordingly, we 

found diagnostic codes that indicated current cognitive status. To determine if a particular 

subgroup may have influenced our results, we split the Hillblom cohort according to cognitive 

diagnosis (162 not impaired, 163 impaired) and ran the analysis again.  

 

Figure 7. Significantly different allele frequencies between cognitive impairment and non-impaired individuals in 

Hillblom cohort with corresponding EUR population frequencies 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

A*29:02

A*68:02

C*2:02

C*6:02

B*35:02

B*38:01

B*57:01

DRB1*16:01

DQB1*3:02

DQB1*5:02

DPB1*3:01

Hillblom Allele Frequency

EUR Not_Impaired Impaired
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Allele 

Impaired 

Freq 

Not Impaired 

Freq 

OR 

p value EUR Freq 

A*29:02 0.012269939 0.040123457 3.39 0.02523 0.03279 

A*68:02 0.003067485 0.021604938 7.22 0.031386 0.00845 

C*2:02 0.006134969 0.037037037 6.23 0.006657 0.03729 

C*6:02 0.076687117 0.132716049 1.84 0.019614 0.09301 

B*35:02 0.021472393 0.00308642 0.14 0.03426 0.01099 

B*38:01 0.064417178 0.027777778 0.42 0.02718 0.0218 

B*57:01 0.027607362 0.067901235 2.58 0.015167 0.03832 

DRB1*16:01 0.006134969 0.030864198 5.18 0.018907 0.01061 

DQB1*3:02 0.156441718 0.101851852 0.61 0.038038 0.09504 

DQB1*5:02 0.006134969 0.037037037 6.23 0.006657 0.01315 

DPB1*3:01 0.067484663 0.117283951 1.84 0.0283 0.1005 

Table 3. Allele frequencies as seen in figure 7. 

 

4.4 Cognition diagnosis-based Analysis  

Next, we reached out to the clinical study team to acquire additional and revised clinical 

metadata for the Hillblom cohort to confirm our findings. We found additional individuals with 
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reported cognitive issues and the inclusion of self-reported ancestry, so we performed additional 

filtering to remove individuals with any diagnosis suggestive of cognitive issues and any self-

reported non-European ancestry. The total number of this cognitively resilient subset of the 

Hillblom cohort included in the analysis was 140 individuals (FTD case n = 577, Hillblom control 

n =140).  

 

Figure 8. Allele frequencies for HLA alleles were found to be significantly different between Hillblom "normal" 

diagnostic control and ALLFTD cases with European Population frequencies. 

Allele HILL Freq FTD Freq OR p val EUR Freq 

C*06:02 0.135714 0.075389948 0.52 0.0318408 0.09301 

C*15:02 0 0.022530329 Inf NS 0.01861 

B*51:01 0.003571 0.045060659 13.19 0.047557 0.04544 
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B*57:01 0.078571 0.024263432 0.29 0.000453675 0.03832 

Table 4. Allele frequencies as seen in figure 9. 

Additionally, significant A~B haplotype frequencies were identified with this analysis (case n = 

577, control n = 140).  

 

Figure 9. Haplotype frequencies for HLA-B~HLA-C were found to be significantly different between Hillblom 

"normal" diagnostic control and ALLFTD cases with European Population frequencies.  

HLA-C~HLA-B HILL Freq FTD Freq OR p val EUR Freq 

06:02~57:01 0.075 0.024263 0.31 2.76E-05 0.03701 

15:02~51:01 0 0.019931 Inf 0.017242 0.01677 

Table 5. Haplotype frequency values as seen in figure 9. 
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CHAPTER 5 

Discussion 

 

5.1 Conclusion 

In our findings, we initially found two HLA allele frequencies to be significantly different 

between our FTD case cohort and control: HLA-A*33:01 (OR=0.1, p.val=0.009) and HLA-

B*51:01 (OR=3.03, p.val=0.049). However, when comparing these frequencies with 

corresponding population frequencies of the US population with European ancestry, we found our 

Hillblom study control cohort frequency to significantly deviate from the population values and 

ultimately influence our results.  Therefore, we re-queried the clinical phenotypes and self-reported 

ancestry of this “control” cohort to assess what differences within the cognitive aging cohort 

contributed to differences in observed HLA allele frequencies compared to the FTD cohort. We 

observed that individuals with cognitive resilience (clinical status = “normal”) had HLA genotype 

frequencies that deviated from our case and population frequencies while individuals in the 

Hillblom aging cohort with reported cognitive decline had HLA frequencies more similar to the 

FTD cohort.      

Among the greatest differences among cognitively resilient cases was the frequency of 

HLA-B*51:01, which showed a four-fold reduction compared to Hillblom study participants with 

cognitive decline (0.015385, 0.00357). The frequency of this allele in the FTD cohort was 

strikingly similar to the population (0.045, 0.047). HLA-B*51:01 is a known risk factor for 

determining clinical phenotypes of Behcet’s syndrome [19], which is an autoimmune disorder. 
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These findings suggest that HLA-B*51:01 carriers may have increased risk for cognitive decline 

compared to non-carriers, which has not previously been reported. 

Additionally, we saw a total depletion of HLA-C*15:02 and significant increases in HLA-

B*57:01 (OR=0.29, p.val=0.000454) and HLA-C*06:02 (OR=0.52, p.val=0.031841) in the 

cognitively resilient Hillblom cohort compared to ALLFTD study subjects (figure 8). HLA-

B*57:01 is known to have protective effects in HIV, possibly alluding to an allele specific viral 

response pathway of interest. These findings suggest that HLA- B*57:01 carriers may have 

decreased risk for cognitive decline compared to non-carriers, which has also not previously been 

reported. 

Of additional significance is that these alleles are frequently a part of the same haplotypes, 

and we can see that the A~B haplotype frequencies of the Hillblom cohort deviate from the 

ALLFTD cohort as well as the population frequencies (Figure 9). This is not unexpected 

considering the high linkage disequilibrium in this genomic region and the previously reported 

allele frequencies. Near the SNP used for imputing HLA-B*57:01 and also in high linkage 

disequilibrium are the genes MICA, which was found to be differentially expressed in FTD in the 

cross-disorder study (figure 2) and HCP5, which has also been implicated in HIV outcomes [21]. 

The genomic region including the SNPs used to impute the haplotype HLA-C*06:02~HLA-

B*57:01 is shown in Figure 10. 
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Figure 10. Genomic region chr6 (p21.33) shows genes near SNPs used to impute HLA-C*06:02 and HLA-B*57:01. 

Allele SNP for Imputation SNP Position GRCH38/hg38 

HLA-B*57:01 rs2395029 6:31464003 

HLA-C*06:02 rs10484554 6:31306778 

Table 6. SNP names and positions used for HLA imputation. 

 

5.2 Future Directions  

By performing HLA analysis in the ALLFTD and Hillblom longitudinal aging cohorts, we 

identified candidate HLA genotypes associated with greater cognitive resilience in aging.  The 

next major important step is to assess the reproducibility of these findings in additional cases.  

Toward that, the Rexach lab is currently sequencing an additional 160 cases from the Hillblom 

study to utilize as a replication cohort.  In addition, we devised a plan to further test the HLAs 

identified in our study against existing aging cohorts with cognitive data, including the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI). These datasets might provide additional 

control data we need to power analysis of less frequent HLA alleles and haplotypes. 

Additionally, as further validation, we established a plan to sequence the full HLA and 

Killer cell Immunoglobulin-like Receptors (KIR) gene and promoter regions at high density for 
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validation. Utilizing this data along with the ALLFTD and Hillblom cohorts will allow us to 

expand upon our imputation data while validating the imputation accuracy.  

Finally, based on the preliminary observation of differential expression of HLA genes in 

brain tissue of cases with different neurodegenerative diseases, we are interested in the question 

of how HLA variants related to differences in disease risk and cognitive aging might affect the 

expression of HLA genes that are differentially regulated in diseased tissues where they might 

contribute to disease progression.  To explore this, we are genotyping the cross-disorder dataset 

and will perform the same HLA analysis there to identify cases representing alleles either enriched 

or depleted in disease cohorts. Identification of such associations would provide a foundation for 

experimental studies into the role of HLA variation in disease phenotypes of the aging brain.  
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