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Abstract

One of the most controversial issues in cognitive science per-
tains to whether rules are necessary to explain complex be-
havior. Nowhere has the debate over rules been more heated
than within the field of language acquisition. Most researchers
agree on the need for statistical learning mechanisms in lan-
guage acquisition, but disagree on whether rule-learning com-
ponents are also needed. Marcus, Vijayan, Rao, & Vishton
(1999) have provided evidence of rule-like behavior which
they claim can only be explained by a dual-mechanism ac-
count. In this paper, we show that a connectionist single-
mechanism approach provides a more parsimonious account
of rule-like behavior in infancy than the dual-mechanism ap-
proach. Specifically, we present simulation results from an ex-
isting connectionist model of infant speech segmentation, fit-
ting the behavioral data under naturalistic circumstances with-
out invoking rules. We further investigate diverging predic-
tions from the single- and dual-mechanism accounts through
additional simulations and artificial language learning experi-
ments. The results support a connectionist single-mechanism
account, while undermining the dual-mechanism account.

Introduction
The nature of the learning mechanisms that infants bring to
the task of language acquisition is a major focus of research
in cognitive science. With the rise of connectionism, much of
the scientific debate surrounding this research has focused on
whether rules are necessary to explain language acquisition.
All parties in the debate acknowledge that statistical learning
mechanisms form a necessary part of the language acquisition
process (e.g., Christiansen & Curtin, 1999; Marcus, Vijayan,
Rao, & Vishton, 1999; Pinker, 1991). However, there is
much disagreement over whether a statistical learning mech-
anism is sufficient to account for complex rule-like behavior,
or whether additional rule-learning mechanisms are needed.
In the past this debate has primarily taken place within spe-
cific areas of language acquisition, such as inflectional mor-
phology (e.g., Pinker, 1991; Plunkett & Marchman, 1993)
and visual word recognition (e.g., Coltheart, Curtis, Atkins
& Haller, 1993; Seidenberg & McClelland, 1989). More re-
cently, Marcus et al. (1999) have presented results from ex-
periments with 7-month-olds, apparently showing that infants
acquire abstract algebraic rules after two minutes of expo-
sure to habituation stimuli. The algebraic rules are construed
as representing an open-ended relationship between variables
for which one can substitute arbitrary values, “such as ‘the
first item X is the same as the third item Y,’ or more gener-
ally, that ‘item I is the same as item J”’ (Marcus et al., 1999,
p. 79). Marcus et al. further claim that a connectionist single-
mechanism approach based on statistical learning is unable to

fit their experimental data. In this paper, we build on earlier
work (Christiansen & Curtin, 1999) and present a detailed
connectionist model of these infant data, and provide new
experimental data that support a statistically-based single-
mechanism approach while undermining the dual-mechanism
account.

In the remainder of this paper, we first show that knowl-
edge acquired in the service of learning to segment the speech
stream can be recruited to carry out the kind of classification
task used in the experiments by Marcus et al. For this pur-
pose we took an existing model of early infant speech seg-
mentation (Christiansen, Allen & Seidenberg, 1998) and used
it to simulate the results obtained by Marcus et al. The simu-
lations demonstrate that no rules are needed to account for
the data; rather, statistical knowledge related to word seg-
mentation can explain the rule-like behavior of the infants
in the Marcus et al. study. We then explore the issue of
timing in stimuli presentation and present additional simu-
lations from which empirical predictions are derived that di-
verge from those of the rule-based account. These predictions
are tested in experiments with adults. Experiment 1 replicated
the results from Marcus et al. using adult subjects. Experi-
ment 2 confirmed the predictions from our single-mechanism
approach, whereas the dual-mechanism approach cannot ac-
count for these results without adding extra machinery to
complement the statistical and rule-based components. To-
gether, the simulations and the experiments thus suggest that
a single-mechanism model provides the most parsimonious
account of the empirical data presented here and in Marcus et
al., thus obviating the need for a separate rule-based compo-
nent.

Simulation 1: Rule-Like Behavior without
Rules

Marcus et al. (1999) used an artificial language learning
paradigm to test their claim that the infant has two mecha-
nisms for learning language, one that uses statistical informa-
tion and another which uses algebraic rules. They conducted
three experiments which tested infants’ ability to generalize
to items not presented in the familiarization phase of the ex-
periment. We focus here on their third experiment because it
was controlled for possible confounds found in the first two
experiments: differences in phonetic features (Experiment 1)
and reduplication1 (Experiment 2). Marcus et al. claim that

1Though the control for reduplication was not entirely complete
(see Elman, 1999).



because none of the test items appeared in the habituation part
of the experiment the infants would not be able to use statis-
tical information in this task.

The subjects in Experiment 3 of Marcus et al. (1999) were
16 7-month-old infants randomly placed in an AAB or an
ABB condition. During a two-minute long familiarization
phase the infants were exposed to three repetitions of each
of 16 three-word sentences. Each word in the sentence frame
AAB or ABB consisted of a consonant-vowel sequence (e.g.,
“le le we” or “le we we”). The test phase consisted of 12
sentences made up of words to which the infants had not
previously been exposed (e.g., “ko ko ga” vs. “ko ga ga”).
The test items were broken into two groups for both habitua-
tion conditions: consistent (items constructed with the same
sentence frame as the familiarization phase) and inconsistent
(constructed from the sentence frame the infants were not ha-
bituated on). The results showed that the infants preferred
the inconsistent test items to the consistent ones (that is, they
listened longer to the inconsistent items).

The conclusion drawn by Marcus et al. (1999) was that
a single mechanism which relied on statistical information
alone could not account for the results. Instead they suggested
that a dual mechanism was needed, comprising a statistical
learning component and an algebraic rule learning compo-
nent. In addition, they claimed that a Simple Recurrent Net-
work (SRN; Elman, 1990) would not be able to accommo-
date their data because of the lack of phonological overlap
between habituation and test items. Specifically, they state,

Such networks can simulate knowledge of grammatical
rules only by being trained on all items to which they
apply; consequently, such mechanisms cannot account
for how humans generalize rules to new items that do
not overlap with the items that appeared in training (p.
79).

In the first simulation, we demonstrate that SRNs can in-
deed fit the data from Marcus et al. Other researchers have
constructed neural network models specifically to simulate
the Marcus et al. results (Altmann & Dienes, 1999; Elman,
1999; Shastri & Chang, 1999; Shultz, 1999). In contrast, we
do not build a new model to accommodate the results, but take
an existing SRN model of speech segmentation (Christiansen
et al., 1998) and show how this model—without additional
modification—provides an explanation for the results.

The Christiansen et al. Model
The model by Christiansen et al. (1998) was developed as an
account of early word segmentation. An SRN was trained on
a single pass through a corpus of child directed speech. As
input the network was provided with three probabilistic cues
to word boundaries: (a) phonology represented in terms of 11
features on the input and 36 phonemes on the output, (b) ut-
terance boundary information represented as an extra feature
marking utterance endings, and (c) lexical stress coded over
two units as either no stress, secondary or primary stress. Fig-
ure 1 provides an illustration of the network.

The network was trained on the task of predicting the next
phoneme in a sequence as well as the appropriate values for
the utterance boundary and stress units. In learning to per-
form this task the network learned to integrate the cues such
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StressU-BPhonemes

Figure 1: Illustration of the SRN used in Simulations 1 and
2. Solid lines indicate trainable weights, whereas the dashed
line denotes the copy-back weights (which are always 1). U-
B refers to the unit coding for the presence of an utterance
boundary. The presence of lexical stress is represented in
terms of two units, S and P, coding for secondary and pri-
mary stress, respectively.

that it could carry out the task of segmenting the input into
words. This involved activating the boundary unit not only at
utterance boundaries, but also at word boundaries occurring
inside utterances. The logic behind the segmentation task is
that the end of an utterance is also the end of a word. If the
network is able to integrate the provided cues in order to ac-
tivate the boundary unit at the ends of words occurring at
the end of an utterance, it should also be able to generalize
this knowledge so as to activate the boundary unit at the ends
of words which occur inside an utterance (Aslin, Woodward,
LaMendola & Bever, 1996).

The Christiansen et al. (1998) model acquired distribu-
tional knowledge about sequences of phonemes and the as-
sociated stress patterns. This knowledge allowed it to per-
form well on the task of segmenting the speech stream into
words. We suggest that this knowledge can be put to use in
secondary tasks not directly related to speech segmentation—
including the artificial language task used by Marcus et al.
(1999). In fact, the experimental procedure used by Marcus
et al. was the same as the procedure used by Saffran, Aslin &
Newport (1996) to study how word segmentation in infancy
can be facilitated by statistical learning. That is, Marcus et
al. sought to demonstrate that the statistically-based learning
mechanism, which Saffran, Aslin, et al. found to be involved
in word segmentation, could not account for their results. It
therefore makes sense to investigate whether the comprehen-
sive speech segmentation model by Christiansen et al. can
account for the Marcus et al. infant results.

Method

Networks Corresponding to the 16 infants in the Marcus et
al. study, we used 16 SRNs similar to the SRN used in Chris-
tiansen et al. (1998) with the exception that the original pho-
netic feature geometry was replaced by a new representation
using 18 features. Each of the 16 SRNs had a different set of
initial weights, randomized within the interval [0.25;-0.25].
The learning rate was set to 0.1 and the momentum to 0.95.
These training parameters were identical to those used in the
original Christiansen et al. model. The networks were trained
to predict the correct constellation of cues given the current



input segment.

Materials Prior to being habituated and tested on the stim-
uli from Marcus et al., the networks were first exposed to the
training corpus used by Christiansen et al. This corpus con-
sists of 8181 utterances extracted from the Korman (1984)
corpus of British English speech directed at pre-verbal in-
fants aged 6-16 weeks (a part of the CHILDES database,
MacWhinney, 1991). Christiansen et al. transformed each
word in the utterances from its orthographic format into
a phonological form with accompanying lexical stress us-
ing a dictionary compiled from the MRC Psycholinguistic
Database available from the Oxford Text Archive.

The materials from Experiment 3 in Marcus et al. (1999)
were transformed into the phoneme representation used by
Christiansen et al. Two habituation sets were created in this
manner: one for AAB items and one for ABB items. The
habituation sets used here, and in Marcus et al., consisted of
3 blocks of 16 sentences in random order, yielding a total
of 48 sentences in each habituation set. As in Marcus et al.
there were four different test sentences: “ba ba po”, “ko ko
ga” (consistent with AAB), “ba po po” and “ko ga ga” (con-
sistent with ABB). The test set consisted of three blocks of
randomly ordered test sentences, totaling 12 test items. Both
the habituation and test sentences were treated as a single ut-
terance with no explicit word boundaries marked between the
individual words. The end of each utterance was marked by
activating the utterance boundary unit.

Procedure The networks were first trained on a single pass
through the Korman (1984) corpus as the original Chris-
tiansen et al. model. This corresponds to the fact that the
7-month-olds in the Marcus et al. study already have had a
considerable exposure to language, and have begun to de-
velop their speech segmentation abilities. Next, the networks
were habituated on a single pass through the appropriate ha-
bituation corpus—one phoneme at a time—with learning pa-
rameters identical to the ones used during the pretraining on
the Korman corpus. The networks were then tested on the
test set (with the weights “frozen”) and the activation of the
utterance boundary unit was recorded for every phoneme in-
put in the test set. Finally, the boundary unit activations for
test sentences that were consistent or inconsistent with the
habituation pattern were separated into two groups. Further-
more, for the purpose of scoring word segmentation perfor-
mance on the test items, the activation of the boundary unit
was also recorded for each habituation condition across all
the habituation items and the mean activation was calculated.
The networks were said to have postulated a word boundary
whenever the boundary unit activation in a test sentence was
above the appropriate habituation mean.

Results and Discussion
To provide a quantitative measure of performance we used
completeness scores (Christiansen et al., 1998) to assess seg-
mentation performance.

Completeness =
Hits

Hits + Misses
(1)

Completeness provides a measure of how many of the words
in a test set the net is able to discover. With respect to our in-
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Figure 2: Mean completeness scores for the consistent (con)
and inconsistent (incon) test items from Simulations 1 (left)
and 2 (right).

terpretation of the Marcus et al. data, the completeness score
indicates how well networks/infants are at segmenting out the
individual words in the test sentences. As an example, con-
sider the following hypothetical segmentation of two test sen-
tences:

# b a b # a # p o # k o # g a g # a #

where ‘#’ corresponds to a predicted word boundary. Here
the hypothetical learner correctly segmented out two words,
po and ko, but missed the first and the second ba and the first
and the second ga. This results in a completeness score of
2/(2+4) = 33.3%.

For each of the sixteen networks, completeness scores were
computed across all test items, and submitted to the same
statistical analyses as used by Marcus et al. for their infant
data. The completeness scores were analyzed in a repeated
measures ANOVA with condition (AAB vs. ABB) as be-
tween network factor and test pattern (consistent vs. incon-
sistent) as within network factor. The left-hand side of Figure
2 shows the completeness scores for the consistent and in-
consistent items pooled across conditions. There was a main
effect of test pattern (F (1; 14) = 5:76; p < :04), indicat-
ing that the networks were significantly better at segmenting
out the words in the inconsistent items (35.76%) compared
with the consistent items (28.82%). Similarly to the infant
data, neither the main effect of condition, nor the condition�
test pattern interaction were significant (F 0s < 1). The bet-
ter segmentation of the inconsistent items suggests that they
would stand out more clearly in comparison with the con-
sistent items, and thus explain why the infants looked longer
towards the speaker playing the inconsistent items in the Mar-
cus et al. study.

Simulation 1 shows that a separate rule-learning compo-
nent is not necessary to account for the Marcus et al. (1999)
data. An existing SRN model of word segmentation can fit
these data without invoking explicit, algebraic-like rules. The
pretraining allowed the SRNs to learn to integrate the regular-
ities governing the phonological, lexical stress, and utterance
boundary information in child-directed speech. During the
habituation phase, the networks then developed weak attrac-



tors specific to the habituation pattern and the syllables used.
The attractor will at the same time both attract a consistent
item (because of pattern similarity) and repel it (because of
syllable dissimilarity), causing interference with the segmen-
tation task. The inconsistent items, on the other hand, will
tend to be repelled by the habituation attractors and therefore
do not suffer from the same kind of interference, making them
easier for the network to process.

Importantly, the SRN model—as a statistical learning
mechanism—can explain both the distinction between con-
sistent and inconsistent items as well as the preference for
the inconsistent items. Note that a rule-learning mechanism
by itself only can explain how infants may distinguish be-
tween items, but not why they prefer inconsistent over con-
sistent items. Extra machinery is needed in addition to the
rule-learning mechanism to explain the preference for incon-
sistent items. Thus, the most parsimonious explanation is that
only a statistical learning device is necessary to account for
the infant data. The addition of a rule-learning device does
not appear to be necessary.

Simulation 2: It’s about Time
Simulation 1 demonstrated that a statistically-based single-
mechanism approach can account for the kind of rule-like
behavior displayed by the infants in the Marcus et al. study.
However, there may be other cases in which a separate rule-
learning component would be required. Here we explore one
such case in which our model makes a prediction which is dif-
ferent from what would be predicted from a dual-mechanism
approach incorporating a rule-learning component.

Recall that algebraic rules were characterized as abstract
relationships between variables, such as item X is the same as
item Y. Marcus et al. Experiment 3 was designed to demon-
strate that rule learning is independent of the physical realiza-
tion of variables in terms of phonological features. The same
rule, AAB, applies to—and can be learned from—“le le we”
and “ko ko ga” (with “le” and “ko” filling the same A slot
and “we” and “ga” the same B slot). As the abstract relation-
ships that this rule represents only pertains to the value of the
three variables, the amount of time between them should not
affect the application of the rule. Thus, just as the physical
realization of a variable does not matter for the learning or
application of a rule, neither should the time between vari-
ables. The same rule AAB, applies to—and can be learned
from—“le [250ms] le [250ms] we” and “le [1000ms] le [1000ms]
we” (the “le”s should still fill the A slots and the “we”s the B
slot despite the increased duration of time between the occur-
rence of these variables). From this property, one can predict
that lengthening the time between variables should not affect
the preference for inconsistent items. Indeed, the connection-
ist implementation of the rule-based approach found in the
Shastri & Chang (1999) model would appear to make this
prediction.

A lengthening of the pauses between words should, how-
ever, have a different effect on our model. In the model, the
preference for inconsistent items observed by Marcus et al. is
explained in terms of differential segmentation performance.
Lengthening the pauses between words would in effect solve
the segmentation task for the model, and should result in a
disappearance of the preference for inconsistent items. Thus,

we predict that the model should show no difference between
the segmentation performance on the consistent and inconsis-
tent items if pauses are lengthened as indicated above. To test
this prediction, we carried out a new set of simulations.

Method
Networks. Sixteen SRNs as in Simulation 1.

Materials. Same as in Simulation 1 except that utterance
boundaries were inserted between the words in the habitua-
tion and test sentences, simulating a lengthening of pauses
between words (from 250 msec to 1000 msec) such that they
have the same length as the pauses between utterances.

Procedure. Same as in Simulation 1.

Results and Discussion
Completeness scores were computed as in Simulation 1 and
submitted to the same statistical analysis. As illustrated
by the right-hand side of Figure 2, the segmentation per-
formance on the test items was improved considerably by
the inclusion of utterance boundary-length pauses between
words. As predicted, there was no difference between the ac-
curacy scores for consistent (70.14%) and inconsistent items
(70.49%) (F (1; 14) = :02). As before, there was no main
effect of condition, neither was there any interaction between
condition and test pattern (F 0s < 1).

Simulation 2 thus confirms the predicted effect of length-
ening the pauses between words in stimuli presented to the
statistical learning model. This results in diverging predic-
tions derived from the rule-based and the statistical learning
models concerning the effect of pause lengthening on human
performance on the stimuli. Next, we test these diverging
predictions in an artificial language learning experiment us-
ing adult subjects.

Experiment 1: Replicating the Marcus et al.
Results

Before testing the diverging predictions from the single-
and dual-mechanism approaches we need to first establish
whether adults in fact exhibit the same pattern of behavior
as the infants in the Marcus et al. study. The first experiment
therefore seeks to replicate Experiment 3 from Marcus et al.
using adult subjects instead of infants.

Method
Subjects. Sixteen undergraduates were recruited from in-
troductory Psychology classes at Southern Illinois University.
Subjects earned course credit for their participation.

Materials. For this experiment, we used the original stimuli
that Marcus et al. (1999) created for their Experiment 3. Each
word in a sentence was separated by 250 msec. The 16 habit-
uation sentences for each condition were created by Marcus
et al. using the Bell Labs speech synthesizer. The original
habituation stimuli were limited to two predetermined sen-
tence orders. To avoid potential order effects, we used the
SoundEdit 16 version 2 software for the MacIntosh to isolate
each sentence as a separate sound file. This allowed us to
present the habituation sentences in a random order for each
subject.



For the test phase, we also used the stimuli from Marcus et
al.’s Experiment 3, which consisted of four new sentences that
were either consistent or inconsistent with the training gram-
mar. Like the habituation stimuli, each word in a sentence
was separated by a 250 msec interval. As before, we stored
the test stimuli as separate SoundEdit 16 version 2 sound files
to allow a random presentation order for each subject.

Procedure. Subjects were seated in front of a G3 Power
Macintosh computer with a New Micros button box. Subjects
were randomly assigned to one of two conditions, AAB or
ABB. The experiment was run using the PsyScope presenta-
tion software (Cohen, MacWhinney, Flatt, and Provost, 1993)
with all stimuli played over stereo loudspeakers at 75dB. The
subjects were instructed that they were participating in a pat-
tern recognition experiment. They were told that in the first
part of the experiment their task was to listen carefully to se-
quences of sounds and that their knowledge of these sound
sequences would be tested afterwards. Subjects listened to
three blocks of the sixteen randomly presented habituation
sentences corresponding either to the AAB or the ABB sen-
tence frame. A 1-second interval separated each sentence as
was the case in the Marcus et al. experiment.

After habituation, subjects were instructed that they would
be presented with new sound patterns that they had not pre-
viously heard. They were asked to judge whether a pattern
was ”similar” or ”dissimilar” to what they had been exposed
to in the previous phase by pressing an appropriately marked
button. The instructions emphasized that because the sounds
were novel, the subjects should not base their decision on the
sounds themselves but instead on the patterns derived from
the sounds. Subjects listened to three blocks of the four ran-
domly presented test sentences. After the presentation of each
test sentence, subjects were prompted for their response. Sub-
jects were allowed to take as long as they needed to respond.
Each test trial was separated by a 1000-msec interval.

Results and Discussion
For the purpose of our analyses, the correct response for con-
sistent items is “similar” while the correct response for in-
consistent items is “dissimilar”. The mean overall score for
correct classification of test items was 8.81 out of a perfect
score of 12. A single-sample t-test showed that this classifi-
cation performance was significantly better than the chance
level performance of 6 (t(15) = 4:44; p < :0005). Subjects’
responses were then subject to the same statistical analysis
as the infant data in Marcus et al. (and Simulation 1 and 2
above). The left-hand side of Figure 3 shows the ratings as
dissimilar for the six consistent and six inconsistent test items
pooled across condition. As expected, there was a main ef-
fect of test pattern (F (1; 14) = 18:98; p < :001), such that
significantly more inconsistent items were judged as dissimi-
lar (4.5) than consistent items (1.69). Neither the main effect
of condition, nor the condition� test pattern interaction were
significant (F 0s < 1).

Experiment 1 shows that adults perform similarly to the
infants in Marcus et al.’s Experiment 3, thus demonstrat-
ing that it is possible to replicate their findings using adult
subjects instead of infants. This result is perhaps not sur-
prising given that Saffran and colleagues were able to repli-
cate statistical learning results obtained using adults subjects
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Figure 3: The mean proportion of consistent (con) and incon-
sistent (incon) test items rated as dissimilar to the habituation
pattern in Experiments 1 (left) and 2 (right).

(Saffran, Newport & Aslin, 1996) in experiments using 8-
month-olds (Saffran, Aslin, et al., 1996). More generally,
these results and ours suggest that despite small differences
in the experimental methodology used in infant and adult
artificial language learning studies, both methodologies ap-
pear to tap into the same learning mechanisms. Also from
a dual-mechanism approach, one would expect that the same
learning mechanisms—statistical and rule-based—would be
involved in both infancy and adulthood, and that similar re-
sults should be expected in both infant and adult studies of
the kind of material used here.

Experiment 2: Testing the Diverging
Predictions

Having replicated the Marcus et al. (Experiment 3) infant data
with adult subjects, we now turn our attention to the diverg-
ing predictions concerning the effect of pause length on the
preference for the inconsistent items.

Method
Subjects. Sixteen additional undergraduates were recruited
from introductory Psychology classes at Southern Illinois
University. Subjects earned course credit for their participa-
tion.

Materials. The training and test stimuli were the same as
in Experiment 1 except that the 250 msec interval between
words in a sentence was replaced by a 1000 msec interval
using the SoundEdit 16 version 2 software. The 1000 msec
interval between sentences remained the same as before.

Procedure. The procedure and instructions were identical
to that used for Experiment 1.

Results and Discussion
The mean overall classification score was 5.75 out of 12. This
was not significantly different from the chance level perfor-
mance of 6, as indicated by a single-sample t-test (t < 1). The
responses of the subjects were submitted to the same further



analysis as in Experiment 1. The right-hand side of Figure
3 shows the ratings as dissimilar for the consistent and in-
consistent test items averaged across condition. As predicted
by Simulation 2, there was no main effect of test pattern in
this experiment (F (1; 14) = :56), suggesting that subjects
were unable to distinguish between consistent and inconsis-
tent items. As in Experiment 1, both the main effect of con-
dition and the interaction between condition and test pattern
interaction were not significant (F 0s = 0).

These results show that preference for inconsistent items
disappears when the pauses between words are lengthened.
This corroborates the prediction from the statistically-based
single-mechanism model, but not the prediction from the
rule-learning component of the dual-mechanism account. It
may be objected that the rules need to work over specific do-
mains, and that by lengthening the pauses between words the
input is no longer chunked into sentences at a pre-specified
length (three words). Hence, the rule can no longer be ex-
pected to apply. Note, however, that this requires additional
machinery to pre-process the input prior to the learning or
application of a rule. This would require a separate account
of how this pre-processing ability was acquired and how it
was applied in the specific case of Marcus et al.’s original ex-
periment. Of course, this makes the rule-based account even
less parsimonious in comparison with the statistical learning
model. The latter model can account for both the preference
for inconsistent items in the Marcus et al. Experiment 3 (and
our Experiment 1) as well as the lack of preference in our
Experiment 2 without requiring any extra machinery. Thus,
a language learning device that exploits the statistical prop-
erties of language and integrates these multiple cues can ac-
count for the Marcus et al. data, thereby removing the need to
posit a dual-learning mechanism.

Conclusion
Infants possess powerful learning mechanisms that allow
them to acquire language rapidly. Saffran, Aslin, et al. (1996)
showed that infants can use statistical regularities to discover
word boundaries in fluent speech. Marcus et al. (1999) found
that infants exhibit rule-like behavior. Because both studies
used the same experimental paradigm, a plausible null hy-
pothesis is that both types of behavior should rely on the
same learning mechanism. Based on unreported SRN sim-
ulations, Marcus et al. rejected this null hypothesis. In con-
trast, Simulation 1 demonstrated that that an existing SRN
model of early infant word segmentation (Christiansen et
al., 1998) could utilize statistical knowledge acquired in the
service of speech segmentation to fit the infant data from
Marcus et al. under very naturalistic circumstances. Exper-
iment 2, which investigated the effect of “variable” timing on
rule-like behavior, provided additional support for the single-
mechanism approach. The results confirmed the predictions
from our model (Simulation 2), but do not appear to fit the
dual-mechanism approach because the amount of time be-
tween variables should not affect their abstract rule-based re-
lationship. We note that the dual-mechanism account could
possibly be augmented to account for these data, but that this
would require the addition of extra machinery. Our single-
mechanism model, on the other hand, can account for the
data from Saffran, Aslin, et al. and Marcus et al. as well as

the results from Experiment 2 without any modifications, ob-
viating the need for a separate rule-learning component. We
therefore conclude that a connectionist single-mechanism ap-
proach provides the most parsimonious account of both sta-
tistical learning and rule-like behavior in infancy.
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