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ABSTRACT OF THE DISSERTATION

Ray-based Finite Element Method for High-frequency Helmholtz Equations

By

Jun Fang

Doctor of Philosophy in Mathematics

University of California, Irvine, 2017

Professor Hongkai Zhao, Chair

In this dissertation we propose a ray-based finite element method (ray-FEM) for the high-

frequency Helmholtz equation in smooth media, whose basis are learned adaptively from the

medium and source. The method requires a fixed number of grid points per wavelength to

represent the wave field; moreover, it achieves an asymptotic convergence rate of O(ω−
1
2 ),

where ω is the frequency parameter in the Helmholtz equation.

The local basis are motivated by the geometric optics ansatz and are composed of polynomials

modulated by plane waves propagating in a few dominant ray directions. The ray directions

are learned by processing a low-frequency wave field that probes the medium with the same

source. Once the local ray directions are extracted, they are incorporated into the local

basis to solve the high-frequency Helmholtz equation. This process can be continued to

further improve the approximations for both local ray directions and high-frequency wave

fields iteratively.

In addition, a fast sweeping-type preconditioner is used to solve the resulting linear system.

We present numerical examples in 2D to show both efficiency and convergence of our method

as the frequency becomes larger and larger. In particular, we show empirically that the overall

complexity is O(ω2) up to a poly-logarithmic factor.

x



Chapter 1

Introduction

1.1 The Helmholtz equation

The numerical solution of time-harmonic wave propagation in heterogeneous media is of

paramount importance in a variety of applications such as medical imaging, oil exploration,

nondestructive testing, noise reduction, radar and sonar technology.

In the constant density acoustic approximation the time harmonic wave propagation is mod-

eled by the Helmholtz equation, which is given by

Hu := −∆u(x)− ω2

c2(x)
u(x) = f(x), x ∈ Ω ⊆ Rd, (1.1)

plus absorbing or radiation boundary conditions, where, d is the dimension, ω is the fre-

quency, c(x) > 0 is the wave speed, m(x) = 1/c2(x) is the squared slowness, and f(x) is the

source term, which we suppose to be compactly supported. The main intentions of this thesis

are the study and development of efficient numerical methods to compute the unknown wave

field u.

1



1.2 Computational challenges

The numerical solution of the Helmholtz equation (1.1) in the high-frequency regime, i.e.,

ω � 1, is notoriously hard to compute. Following the Nyquist-Shannon sampling criterion

[108], it is sufficient to represent a wave field oscillating at frequency ω using O(ωd) degrees of

freedom (DOFs) with a mesh size h = O(ω−1). Recent work [34] showed that these degrees

of freedom are also intrinsic for the solution of the Helmholtz equation in general. Hence it

implies that the optimal complexity to solve (1.1) is O(ωd), up to possible poly-log factors.

In general, an overall complexity of optimal order is difficult to achieve due to two typical

challenges:

• how to design a discretization that can achieve both accuracy and stability without

oversampling; and

• how to solve the resulting linear system in linear complexity, up to poly-log factors, as

the frequency becomes large.

Methods used to discretize the Helmholtz equation can be broadly categorized depending on

the level of adaptivity that they exploit. We refer to adaptive discretizations as discretiza-

tions that depend on the medium and the source.

Examples of non-adaptive discretization are: standard finite differences [73, 92], standard

continuous or discontinuous finite elements [41, 60, 61, 98, 116], and spectral methods [94,

118, 119], among many others. They are very general in the sense that they can be used for

a variety of different problems. However, in the case of the Helmholtz equation they yield

either pollution-error1, inducing oversampled sparse discretizations [6, 8] whose associated

linear systems can be solved in optimal complexity [32, 33, 109, 123, 129], or quasi-optimal

1 The ratio between numerical error and best approximation error from a discrete finite element space is
ω dependent.
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sparse discretizations whose associated linear systems are prohibitively expensive to solve

[52, 119] in the high-frequency regime2.

Adaptive methods, on the other hand, aim to leverage à priori knowledge of the solution

of the Helmholtz equation, such as its known oscillatory behavior. In practice, adaptive

methods have mostly focused on adaptivity to the medium, such as polynomial Galerkin

methods with hp refinement [5, 85, 88, 114, 126, 132], specially optimized finite differences

[26, 53, 110, 111, 120] and finite elements [6, 117], enriched finite elements [37, 38, 39,

40], plane wave methods [7, 23, 50, 51, 54, 84, 89], generalized plane wave methods [62,

63], locally corrected finite elements [19, 46, 97], and discretizations with specially chosen

basis functions [9, 10, 91], among many others. They have been especially successful on

reducing the pollution effect by accurately capturing the dispersion relation. However, in the

high-frequency regime, they are either not asymptotically quasi-optimal for heterogeneous

media or they yield linear systems that cannot be solved in quasi-linear time with current

algorithms3.

New advances on adaptive discretizations [16, 49, 57, 93] seem to indicate that quasi-

optimality of the discretization, while still yielding linear systems amenable to fast solvers,

can be achieved if the discretization depends on the medium and the source simultaneously.

These fully adaptive discretizations aim to leverage analytical knowledge about the solution,

such as asymptotic expansions, which in the case of the solution of the Helmholtz equation

can take the form of the geometric optics ansatz:

u(x) ≈ superposition of {An(x)eiωφn(x)}Nn=1, (1.2)

2Recent advances such as [94, 118], have lowered the complexity of global spectral methods; however,
they still have a super-linear cost.

3Some of the discretizations mentioned above, in particular plane wave type Trefftz methods with wave
directions in equi-spaced distribution [55], usually yield extremely ill-conditioned systems due to loss of
numerical orthogonality in the basis. In general, the resulting linear system need to be solved using pivoted
QR factorization in super-linear time.

3



in which the phases φn(x) and amplitudes An(x) depend on the medium, domain boundary,

and source, but they are independent of the frequency.

Indeed, phased-based methods [49, 57, 93] are instances of fully adaptive discretizations.

These methods use (1.2) to build an approximation space by modulating a polynomial ba-

sis with an oscillatory component using the phase functions, which need to be computed

beforehand.

However, computing the appropriate global phase functions φn(x) in the whole domain is a

challenging task for a general medium with varying speed; different phase functions may be

defined in different regions, whose boundaries are difficult to determine à priori; the error

on the solution is proportional to the approximation error of the phase function times ω4,

implying that the phase functions need to be computed extremely accurately, thus, making

the computation of the phase functions the bottleneck in such approaches.

In the present thesis, we propose a ray-based finite element method (ray-FEM) based on

the geometric optics ansatz, in which the phase functions are not explicitly computed, thus

bypassing the bottleneck. The method relies on a linear approximation of the phase functions

in the form

φn(x) ≈ φn(x0) +∇φn(x0) · (x− x0) = φn(x0) + |∇φn(x0)|d̂n(x0) · (x− x0); (1.3)

where d̂n(x0) := ∇φn(x)
|∇φn(x)| are called the ray directions [14] or the dominant wave directions

[16]. The dominant wave directions are extracted from a low-frequency probing wave field,

namely, a solution to a low frequency problem, i.e., the Helmholtz equation with the same

medium and source, but at a much lower frequency ω̃ = O(ω1/2).

The underpinning property used in this approach is that the phase functions are indepen-

4 If we suppose that the approximation error of computing φn is δφn, then the approximation error of
the solution is given by |eiωφn − eiω(φn+δφn)| ∼ ωδφn, which is ω dependent.
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dent of the frequency, and the extraction of their gradient is a stable operation using signal

processing algorithms, such as Numerical Micro Local Analysis (NMLA) [12, 13, 14]. The

resulting linear system is sparse and it can be solved efficiently using state of the art pre-

conditioners such as [32, 33, 109, 123, 129].

The ray-FEM can efficiently compute wave fields when the source is far away, even in the

presence of caustics. However, it cannot handle the singularities at point sources for two

reasons:

• the traditional geometrical-optics amplitude at the source is singular, which indicates

that the geometric optics ansatz breaks down at the source points and it is difficult to

handle for a finite element based method;

• the phase is also singular, i.e., the curvature of the circular wave front goes to infinity at

the source point, which makes the ray direction extraction, such as NMLA, infeasible.

One often used approach is to mollify the Dirac delta using a Gaussian, and then use a graded

mesh; however, this would make the linear system source dependent requiring extensive re-

meshing, which can be prohibitively expensive.

On the other hand, the Babich’s expansion [3], which is a Hankel-based asymptotic expan-

sion, can capture source singularity and overcome the above difficulties near the source in

heterogeneous media. The ingredients of the expansion can be numerically computed by

high-order Eulerian asymptotic methods [103] to yield accurate solutions in the neighbor-

hood of the point source.

5



1.3 Results

The main result of this paper is a method to solve the Helmholtz equation in the high-

frequency regime with an optimal asymptotic cost O(ωd), up to poly-log factors, with respect

to the number of intrinsic degrees of freedom.

The performance of the algorithms owes to the following two ideas:

• we build a fully adaptive discretization based on the geometric optics ansatz and local

linear approximation of the phase functions whose gradients are learned from a low-

frequency problem solved using standard finite elements; the resulting discretization

is stable and asymptotically accurate, in particualr, the error converges to zero as

O(ω−
1
2 ), as the frequency increases;

• we solve the resulting linear system using state of the art preconditioners with linear

complexity, up to poly-logarithmic factors;

The adaptive discretization is built by learning the dominant wave directions specific to the

medium and source distribution. In particular, we probe the same medium using the same

source, i.e., solving a low-frequency Helmholtz equation

−∆ũ(x)− ω̃2

c2(x)
ũ(x) = f(x), x ∈ Ω ⊆ Rd, (1.4)

plus suitable boundary (or radiation) conditions with the same c(x), f(x) and a relative low

frequency ω̃. The computed wave field is post-processed by NMLA or other signal processing

tools to locally estimate the dominant wave directions; both the number of dominant wave

directions and the directions can vary from point to point, thus, providing the flexibility

to deal with general media. The estimated wave directions are then used to enrich a finite

element space, which is used to discretize the original high-frequency Helmholtz equation.

6



In particular, we develop a simple ray-based finite element (ray-FEM) method in 2D for

smooth media as a proof of concept study of our proposed approach. We start with a finite

element mesh with mesh-size h satisfying wh = O(1), i.e., a few points per wavelength.

First, the low frequency is chosen by ω̃ ∼
√
ω such that the equation (1.4) is solved quasi-

optimality on such mesh since ω̃2h = O(1) [86]. Then NMLA [12, 13, 14] (see chapter 3)

is applied to the computed low-frequency wave field to estimate the local dominant wave

directions.

The estimated dominant wave directions are then used to enrich the local finite element

basis following (1.2) in order to discretize the high-frequency Helmholtz equation on the

same mesh.

For the cases with source singularities, we develop a simple and natural hybrid approach to

combine the asymptotic method and the ray-FEM to take advantage of the strengths of both

methods for the high frequency Helmholtz equation. In particular, we utilize the Babich’s

expansion and high-order numerical methods to compute the wave field near the source, and

couple with the ray-FEM to compute the far field waves in smooth media.

In addition, we develop an efficient preconditioner to solve the resulting linear system iter-

atively using GMRES [106]. The preconditioner is based on the method of polarized traces

[129]. Numerical experiments show that it is possible to solve the linear system in O(N)

complexity with a possible poly-logarithmic factor for a smooth medium, where N is the

total number of unknowns.

Moreover, once a more accurate wave field is computed, it can be used to get a better

estimation of the dominant wave directions, which can be used to improve the high-frequency

wave field iteratively. If necessary, the solution for the high-frequency Helmholtz equation

can also be processed by NMLA to improve the estimation of local dominant wave directions

which can be used to further improve the high-frequency solution.

7



1.4 Related work

In this section we briefly review related approaches to solve the Helmholtz equation, and we

compare some of them with the approach proposed in this thesis.

As stated in the prequel, it is difficult to design a sparse discretization that can achieve both

accuracy and stability under the condition ωh = O(1) as ω becomes large. This is mainly

due to the pollution effect in error estimates for finite element methods [6, 8], i.e., the ratio

between numerical error and best approximation error from a discrete finite element space

is ω dependent.

From a physical point of view, the wave-field governed by the Helmholtz equation contains

waves propagating in all directions and satisfying a specific dispersion relation. As a con-

sequence, numerical errors due to dispersion or interpolation for these propagating modes

will propagate as physical waves to pollute the whole computed wave field. In particular,

a compact stencil on a mesh that is comparable to the wavelength cannot approximate the

dispersion relations for propagating waves in all direction uniformly well as ω →∞ [8].

In order to minimize (or eliminate, if possible) the pollution effect, various approaches have

been proposed lately in the literature. Approaches based on polynomial basis coupled with

non-standard variational formulations (such as [90]) have been proposed in order to approx-

imate the Helmholtz operator so that the resulting discrete problems have better stability

properties. For example, with an appropriate choice of coefficients, low-order compact finite-

difference discretizations can effectively reduce the dispersion error [42, 67, 95]. Another

instances of such approaches are the generalized finite-element method (GFEM) [6] and

continuous interior penalty finite element method (CIP-FEM) [126, 132], the interpolated

optimized finite difference method (IOFD) [111, 112], Galerkin methods with hp refinement

[85, 87, 88], among many others. These methods successfully reduce the pollution error;

however, they require either a more restrictive condition on the mesh size or the degree of

8



the polynomial approximation to be ω dependent, resulting on a large increase in the size

and interconnectivity of the associated linear systems as the frequency increases.

On the other hand, many approaches rely on specially designed basis in order to accurately

represent the solution. One of such approaches is the multiscale Petrov-Galerkin method

[19, 46, 97]; the method relies on local corrections, which are numerically computed in

a fine mesh, to the basis functions. This method is stable and quasi-optimal under the

minimal resolution condition ωH = O(1) and m = O(logω) for the coarse mesh H and an

oversampling parameter m. However, the condition on the fine mesh size, h, to solve the

local subscale correction is the same as the standard FEM. It requires ω3/2h = O(1) for

stability [126] and ω2h = O(1) for quasi-optimality [86].

Other instances of such approaches are methods that incorporate appropriate oscillatory

behavior into the basis of Galerkin methods. The key issue for this strategy is how to design

the oscillatory basis. Since the Helmholtz solutions locally behave like plane waves, one

approach is to incorporate plane waves with a predetermined equi-spaced distribution in

directions into the basis. For example, products of plane waves with local finite elements

basis are used in the generalized finite element methods (GFEM) [86], partition of unity finite

element methods (PUFEM) [7], virtual element methods (VEM) [96], discontinuous Galerkin

methods (DG) [44, 50, 54] and ultra weak variational formulation (UWVF) [20, 22, 23].

Trefftz-type methods [55] use local solutions of the Helmholtz equation as the basis functions,

which in the case of piece-wise constant media are plane waves.

It is well known that these plane wave based methods need fewer DOFs to achieve better

accuracy than the conventional finite-element methods [55, 74]. A comparison of these

methods can be found in [45, 47, 59, 74]. However, these methods have two caveats: they

normally perform poorly when the source is not zero, and it is not clear how to choose

the number of plane wave directions à priori. In order to achieve a good accuracy, a fine,

ω dependent [55], resolution in the angle space is required. This refinement in the angle
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space will not only increase the DOFs significantly but also make the resulting linear system

extremely ill-conditioned due to the numerical coherence of the elements of the basis.

Other basis functions can be utilized, such as Bessel functions [57, 81, 82] to improve the

adaptivity to the curvature of the solution’s wavefront and also reduce the linear dependence

of the basis. Moreover, generalized plane waves [62, 63, 64] in the form eP (x) with an

appropriate complex polynomial P (x) are developed to achieve high-order convergence for

smooth heterogeneous media. Another instance of methods using other basis functions is

the discontinuous enrichment method (DEM) [38, 39, 40, 115], which combines Lagrange

multipliers on the mesh interfaces to enforce continuity of the solution with approximation

spaces composed by sums of continuous polynomials and discontinuous plane waves, leading

to a reduction of the number of DOFs.

A more adaptive approach to solve the high-frequency Helmholtz equation is based on the

geometric optics ansatz of the wave field (1.2). In the ansatz, phases and amplitudes are

independent of frequency and hence are non-oscillatory and smooth except at a measure zero

set, e.g., focus points, caustics, corners in a smooth medium. Once the phase functions of

the wave fronts are available, the oscillatory pattern of the wave field is known, phase-based

numerical methods [16, 49, 57, 93] explicitly incorporate these known phases into the basis

functions to significantly improve both stability and accuracy.

As discussed in the prequel, computing the global phase functions for general media is

a challenging task. Meanwhile, a phase function can be locally approximated by a linear

function with a leading term d̂n(x0)·x, where d̂n(x0) is the local dominant wave direction and

can be extracted stably by signal processing algorithms. With pre-computed dominant wave

directions by ray tracing [17, 18, 24, 57], the dominant plane wave method [16] incorporates

them into the local basis to combine the advantages of phase-based methods and plane

wave methods. Since only the dominant directions of wave fronts relevant to the problem

are involved in this approach, the number of degrees of freedom can be kept minimal, and
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ill-conditioning of the resulting linear system due to redundancy can be reduced.

Finally, under the stronger assumption that the medium can be written as a homogeneous

background plus a compactly supported perturbation, the Helmholtz equation can be con-

verted to a second-kind integral equation by introducing the Green’s function corresponding

to the background, resulting in the so-called Lippmann-Schwinger equation. Recent ad-

vances have shown that it is possible to solve the Lippmann-Schwinger equation, and hence

the Helmholtz equation, in optimal time [130]. In this thesis, however, we treat a more

general case.
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Chapter 2

The Ray-FEM Method

We describe the ray-FEM method for the Helmholtz equation and its rationale in this chap-

ter. We explain briefly the geometric optic ansatz and how it is approximated locally via a

superposition of plane waves propagating in a set of dominant directions. We then proceed to

explain how these plane waves are incorporated into the finite element basis to improve both

stability and accuracy of the numerical solution to the high-frequency Helmholtz equation.

In this chapter we suppose that the dominant directions are known exactly. In chapter 3

we will describe how to learn the dominant wave directions by probing the medium using

low-frequency waves.

We use the following boundary value problem in 2D to illustrate our method,

 −∆u− k2(x)u = f, in Ω,

∂u
∂n

+ iβk(x)u = g, on ∂Ω,
(2.1)

where Ω is an open bounded Lipschitz domain in R2, k(x) = ω/c(x) is the inhomogeneous

wave number, f ∈ L2(Ω) is the source and g ∈ L2(∂Ω) is the boundary data. Moreover, we

suppose that both source and boundary data are frequency independent. Equation (2.1) is
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usually refered to as the Helmholtz equation with impedance boundary conditions (IBC).

This equation was chosen in order to easily impose other types of boundary conditions by

modifying the coefficient β. Specifically, the Dirichlet boundary condition corresponds to

β =∞ and the first order absorbing boundary condition to β = ±1. Moreover, it is easy to

extend (2.1) to incorporate absorbing boundary conditions implemented via PML [15], as it

will be introduced in section 4.1 and performed in the numerical experiments in chapter 7.

2.1 Geometric optics ansatz

The standard derivation of the geometric optics ansatz uses WKJB approximation [65, 70,

105] (or the Lüneberg-Kline expansion [71]) for the solution to the Helmholtz equation (1.1):

u(x) ∼ eiωφ(x)

∞∑
`=0

A`(x)

ω`
. (2.2)

By taking ω →∞ and considering only the first term one has

u(x) = A(x)eiωφ(x) +O
(

1

ω

)
, (2.3)

where A is usually called the amplitude and φ the phase. The key features of the geometric

optics ansatz are:

• A and φ are independent of the frequency ω;

• A and φ depend on the medium, c(x), and the source distribution, f(x).

Moreover, except for a small set of points, e.g., source/focus points, caustics, and disconti-

nuities of the medium, A and φ are smooth functions satisfying the following PDE system
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for f = O(ω0),

(eikonal) |∇φ| = 1

c
, (transport) 2∇φ · ∇A+ A∆φ = 0. (2.4)

As long as the medium is smooth and no caustic occurs, the asymptotic expansion (2.2)

holds in the sense that the difference between the exact solution of the Helmholtz equation

and an N -term truncation of the expansion (2.2) can be made arbitrarily smooth for all x

provided N is taken sufficiently large. This has been justified in [72] for oscillatory initial

value problems of hyperbolic equations and further made rigorous in the theory of Fourier

integral operators [56]. In practice, the one-term asymptotic expansion (2.3), namely, the

so-called geometrical-optics term, usually yields sufficiently accurate asymptotic solutions

[2, 4, 69, 75, 77, 100, 104].

The coefficients {Al} in the asymptotic expansion (2.2) satisfy a recursive system of transport

equations [2, 4, 104] which are coupled with the eikonal equation. Under the assumption

that the medium is smooth and no caustic occurs, one may solve the transport equations to

estimate the coefficients {Al} in different formulations [2, 4, 75]. Since the geometrical-optics

term is oscillatory when ω 6= 0, it should be understood in the L2 sense rather than the L∞

sense.

Assuming that the medium is smooth and no caustic occurs, the asymptotic expansion (2.3)

will not fail as long as the frequency parameter ω is not zero, but the resulting difference

between the asymptotic expansion (2.3) and the exact solution may be large in the L2

norm as the frequency approaches zero [104]. Given an inhomogeneous medium, however,

it is hard to pin down how large ω should be so that the asymptotic expansion (2.3) is

accurate up to a certain specified accuracy, as this is closely related to both fluctuations

and correlation lengths of the normalized propagation speed of the medium [125] and the

frequency parameter ω. We refer the reader to [31] for further details on the geometric optics
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ansatz.

2.2 Local plane wave approximation

In general, the phase function, φ, and the amplitude function, A, are multi-valued functions

corresponding to multiple arrivals of wave fronts [11]. Hence one can further decompose the

geometric optics ansatz into a superposition of several wave fronts in the form:

u(x) = superposition of {An(x)eiωφn(x)}N(x)
n=1 +O

(
1

ω

)
, (2.5)

where N(x) is the number of fronts/rays passing through x, and the phases φn and ampli-

tudes An are single valued functions satisfying the eikonal/transport equations (2.4), each

defined in a suitable domain with suitable boundary conditions [11].

Based on the above geometric optics ansatz, one can derive a local plane wave approximation

at any point where φn and An are smooth with variations on a O(1) scale. Indeed, using

Taylor expansions on a small neighborhood around an observation point x0 for the n-th wave

front, we have,

u(x) = (An(x0)+∇An(x0)(x−x0)) eiω(φn(x0)+∇φ(x0)·(x−x0))+O
(
h2+ωh2+

1

ω

)
, (2.6)

for |x− x0| < h� 1.

Define

d̂n :=
∇φn(x0)

|∇φn(x0)|
= c(x0)∇φn(x0) (2.7)
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as the ray directions of the wave fronts at x0, k(x0) = ω/c(x0), and

Bn(x) = (An(x0) +∇An(x0)(x− x0))eiω(φn(x0)−∇φ(x0)·x0) (2.8)

the affine complex amplitude. By replacing (2.7) and (2.8) in (2.6) we have

u(x) = Bn(x)eik(x0)d̂n·x +O
(
h2 + ωh2 +

1

ω

)
, (2.9)

for |x− x0| < h� 1.

From (2.5) and (2.9) we have that u can be approximated locally by a superposition of

plane waves propagating in certain directions with affine complex amplitudes. Moreover, as

ω →∞, such that ωh = O(1), the asymptotic error for the local plane wave approximation

(2.9) is O(ω−1), which is of the same order as the asymptotic error for the original geometric-

optics ansatz (2.5). We use (2.9) as the motivation to construct local finite element basis with

mesh size h = O(ω−1), in which an affine function is multiplied by plane waves oscillating

in those ray directions, resulting in local approximations similar to (2.9).

2.3 Ray-based FEM formulation

We use a finite element method to compute the solution to (2.1), whose standard weak

formulation is given by

Find u ∈ H1(Ω), such that B(u, v) = F(v), ∀v ∈ H1(Ω), (2.10)

where

B(u, v) :=

∫
Ω

∇u · ∇vdV −
∫

Ω

k2uvdV + iβ

∮
∂Ω

kuvdS, (2.11)
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F(v) :=

∫
Ω

fvdV +

∮
∂Ω

gvdS. (2.12)

The domain, Ω, is discretized with a standard regular triangulated mesh, with mesh-size h.

The resulting mesh is denoted by Th = {K}, whereK represents a triangle of the mesh. Using

the aforementioned mesh we define two approximation spaces for the variational formulation

(2.10):

• the standard FEM (S-FEM), where we use low-order P1 finite elements, i.e., piece-wise

bilinear functions;

• the ray-FEM, where we use P1 finite elements multiplied by plane waves as in (2.9).

For a given element K ∈ Th, we denote by Vj and xj, j = 1, 2, 3, the vertices of K and their

coordinates, respectively. Moreover, we denote by {ϕj(x)}3
j=1 a partition of unity consisting

of piecewise bilinear functions satisfying ϕj(xi) = δij, i, j = 1, 2, 3, where δij is the Kronecker

delta. The basis given by {ϕj(x)}3
j=1 is usually called the nodal basis for Lagrange P1 finite

elements. The standard local approximation space is given by

VS(K) = span{ϕj(x), j = 1, 2, 3}, (2.13)

and the global P1 finite element space

VS(Th) = {v ∈ C0(Ω) : v|K ∈ VS(K),∀K ∈ Th}. (2.14)

To define the ray-FEM we enrich the P1 finite elements by incorporating the ray informa-

tion. Letting {d̂j,l}
nj
l=1 be nj ray directions at the vertex Vj, we define the ray-based local
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approximation space by

VRay(K) = span{ϕj(x)eikj d̂j,l·x, kj = k(xj), j = 1, 2, 3, l = 1, ..., nj},

and the global ray-FEM space by

VRay(Th) = {v ∈ C0(Ω) : v|K ∈ VRay(K),∀K ∈ Th}.

We can define the standard FEM method by

Find u ∈ VS(Th), such that B(u, v) = F(v), ∀v ∈ VS(Th). (2.15)

Analogously, we define the ray-FEM method by

Find u ∈ VRay(Th), such that B(u, v) = F(v), ∀v ∈ VRay(Th). (2.16)

2.4 Approximation property of ray-FEM with exact

ray information

We provide a simple computation to estimate the approximation error of the ray-FEM space.

In particular, we compute an asymptotic bound on infuh∈VRay(Th) ||u − uh||L2(Ω), where u is

the solution to the Helmholtz equation (1.1). We achieve the bound by estimating the

interpolating error using VRay(K) as a basis.

In the computation we assume that the ray direction, which is the gradient of the phase

function φ, and the phase function itself, are exactly known. For simplicity, we assume

N = 1 for the asymptotic formula in (2.5), i.e., only one ray crosses each point of the
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domain thus no caustic occur. Similar results can be derived for the multiple-ray crossing

case: N > 1. In addition we suppose that f , the source, is zero inside the domain; otherwise,

singularities in the amplitude may appear. Under those circumstances A and φ are smooth.

From the geometric optics ansatz, we have

u(x) = A(x)eiωφ(x) +O
(
ω−1

)
. (2.17)

We denote by Nh the total number of vertices on the mesh Th, by {xj}Nhj=1 the coordinates of

all mesh nodes, and by {ϕj(x)}Nhj=1 their corresponding nodal basis functions for the standard

P1 element.

We note that eiω[φ(xj)−∇φ(xj)·xj ] is a constant for the nodal basis associated to xj in an element

K. From this observation we can easily deduce that the local ray-FEM space can be rewritten

as

VRay(K) = span{ϕj(x)eikjdj ·x} = span{ϕj(x)eiω∇φ(xj)·x},

= span{ϕj(x)eiω∇φ(xj)·xeiω[φ(xj)−∇φ(xj)·xj ]},

= span{ϕj(x)eiω[φ(xj)+∇φ(xj)·(x−xj)]}.

Hence the nodal interpolation of the solution can be written as

uI :=

Nh∑
j=1

A(xj)ϕj(x)eiω[φ(xj)+∇φ(xj)·(x−xj)], (2.18)

which, by construction lies within the global ray-FEM space VRay(Th).

Let Sj be the support of ϕj(x), and |Sj| ∼ O(h2) be the area of Sj. Then using the triangular
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inequality and the smoothness assumptions we have

‖u− uI‖L2(Ω) ≤ ‖A(x)eiωφ(x) −
∑Nh

j=1 A(xj)ϕj(x)eiωφ(x)‖L2(Ω)

+‖
∑Nh

j=1 A(xj)ϕj(x)
(
eiωφ(x) − eiω[φ(xj)+∇φ(xj)·(x−xj)]

)
‖L2(Ω) +O(ω−1)

≤ ‖A(x)−
∑Nh

j=1A(xj)ϕj(x)‖L2(Ω)

+
∑Nh

j=1 ‖A‖L∞(Ω)‖eiωφ(x) − eiω[φ(xj)+∇φ(xj)·(x−xj)]‖L2(Sj) +O(ω−1)

. h2|A|H2(Ω) +
∑Nh

j=1 ‖A‖L∞(Ω)ωh
2‖∇2φ‖L∞(Ω)|Sj|+O(ω−1)

. h2|A|H2(Ω) + ωh2‖A‖L∞(Ω)‖∇2φ‖L∞(Ω) +O(ω−1).

To be more precise, h2|A|H2(Ω) comes from the interpolation error estimate [113], and

ωh2‖A‖L∞(Ω)‖∇2φ‖L∞(Ω) comes from the Taylor expansion of φ(x) near xj, where the con-

stant for . is a generic positive constant only depending on the domain Ω. This implies that

inf
uh∈VRay(Th)

||u− uh||L2(Ω) . h2|A|H2(Ω) + ωh2‖A‖L∞(Ω)‖∇2φ‖L∞(Ω) +O(ω−1). (2.19)

Or, asymptotically,

inf
uh∈VRay(Th)

||u− uh||L2(Ω) = O(h2 + ωh2 + ω−1). (2.20)

Moreover, if the exact rays are known and the mesh size follows h ∼ ω−1, then we have

inf
uh∈VRay(Th)

||u− uh||L2(Ω) = O(ω−1), (2.21)

i.e. that the approximation error decays linearly with 1
ω

, without oversampling.

Remark 1. The ray information can be incorporated into other Galerkin basis in the same

fashion. For example, in the hybrid numerical asymptotic method of [49], the basis functions
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are constructed by multiplying nodal piece-wise bilinear functions to oscillating functions with

phase factors; the plane wave DG method of [16] employs the products of small degree polyno-

mials and dominant plane waves as basis functions; the phase-based hybridizable DG method

of [93] considers basis functions as products of polynomials and phase-based oscillating func-

tions. Moreover, the phase or ray information in these methods is obtained from solving the

eikonal equation with ray tracing and related techniques.
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Chapter 3

Learning Local Dominant Ray

Directions

In chapter 2 we use geometric optics to provide the motivation for the ray-FEM by building

an adaptive approximation space that incorporates ray information specific to the under-

lying Helmholtz equation. However, the ray directions, which depend on the medium and

source distribution, are unknown quantities themselves, hence they need to be computed or

estimated. One way is to compute the global phase function, by either ray tracing or solving

the eikonal equation, and take its gradient. As discussed in the introduction, computing the

global phase function in a general varying medium can be extremely difficult.

Here we propose a totally different approach. This novel approach is based on learning the

dominant ray directions by probing the same medium with the same source but using a

relative low-frequency wave. To be more specific, we first solve the Helmholtz equation (1.4)

with the same speed function c(x), right hand side f(x) and boundary conditions but with a

relative low-frequency ω̃ ∼
√
ω on a mesh with size h = O(ω̃−2) = O(ω−1) with a standard

finite element method, which is quasi-optimal in that regime. Then the local dominant ray
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directions are estimated based on the computed low-frequency wave field. The key point is

that the low-frequency wave has probed the medium specific to the problem globally while

only local dominant ray directions need to be learned, which allows us to handle multiple

arrivals of wave fronts locally. In particular, we use numerical micro-local analysis (NMLA),

which is simple, stable and robust, to extract the dominant ray directions locally. However,

this is a signal processing task that can be accomplished using other methods such as Prony’s

method [21], Pisarenko’s method [99], MUSIC [107], matrix pencil [58], wavefront tracking

methods [122], among many others. The main advantage of NMLA is that it was explicitly

designed for capturing the dominant directions, in particular, NMLA was designed to be

more robust to perturbations of the underlying model.

3.1 NMLA

Now we provide a brief introduction to NMLA developed in [13, 14]. If we suppose that a

wave-field is locally a weighted superposition of plane waves having the same wave number

and propagating in different directions. Then the aim of NMLA is to extract the directions

and the weights by sampling and processing the wave field locally. In the sequel we use a

2D example to illustrate the method, which can be easily extended to 3D cases [14].

Suppose that a wave field, denoted by u(x), is composed of N plane waves around an

observation point x0,

u(x) =
N∑
n=1

Bne
ik(x−x0)·d̂n , |d̂n| = 1. (3.1)

We suppose that we can sample the wave field, u(x), and its derivative on a circle Sr(x0)

centered at x0 with radius r. The wave field can be written under the model assumption in
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(3.1) as

u(x0 + rŝ) =
N∑
n=1

Bne
iαŝ·d̂n , α = kr, ŝ ∈ S1. (3.2)

Furthermore, we define the angle variables θ = θ(ŝ) and θn = θ(d̂n) such that ŝ = (cos θ, sin θ),

d̂n = (cos θn, sin θn), and x(θ) = x0 + rŝ(θ). Using the angle based notation we sample the

impedance quantity on the circle Sr(x0),

U(θ) :=
1

ik
∂ru(x(θ)) + u(x(θ)), (3.3)

which removes any possible ambiguity due to resonance [13] and improves the robustness to

noise for solutions to the Helmholtz equation. Then we apply the filtering operator B to the

impedance quantity

BU(θ) :=
1

2Lα + 1

Lα∑
l=−Lα

(FU)le
ilθ

(−i)l(Jl(α)− iJ ′l (α))
, (3.4)

where Lα = max(1, [α], [α+(α)
1
3−2.5]), Jl is the Bessel function of order l, J ′l is its derivative

and

(FU)l :=
1

2π

∫ 2π

0

U(θ)e−ilθdθ (3.5)

is the l-th Fourier coefficient of U . It is shown in [13] that

BU(θ) =
N∑
n=1

BnSLα(θ − θn), (3.6)
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where SL(θ) = sin([2L+1]θ/2)
[2L+1] sin(θ/2)

. As a consequence, we have that if α = kr →∞ then

lim
α→∞

BU(θ) =

 Bn, if θ = θn (or ŝ = d̂n );

0, otherwise.
(3.7)

Then it is possible to obtain the directions and the amplitudes by picking the peaks in the

filtered data in (3.6); see details in Algorithm 1 and 2.

Algorithm 1 NMLA

1: function dω = NMLA(x0, Th, ω, h, c,u)

2: choose r ∼ ω−
1
2 . Radius for the sampling circle

3: choose M ∼ ωr . Number of sampling points

4: ∆θ = 2π/M , . Angular discretization

5: for θ = 0 : ∆θ : 2π do

6: x(θ) = x0 + rŝ(θ)

7: U(θ) = ω
ic(x0)

∂ru(x(θ)) + u(x(θ)) . Sample impedance data

8: F (θ) = BU(θ) . Apply the filter (3.4)

9: end for

10: θ = [0 : ∆θ : 2π], F = F (θ)

11: θest = FindPeaks(θ,F )

12: dω = d(θest)

13: end function
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Algorithm 2 FindPeaks

1: function θest = FindPeaks(θ,F )

2: dF = F[2 : end]− F[1 : end− 1] . Approximate the differentiation

3: s = sign(dF) . Take the sign

4: ds = s[2 : end]− s[1 : end− 1]

5: idx = 1 + find(ds < 0) . Find the index of local maxima

6: θest = θ[idx]

7: end function

3.2 Stability and error analysis for NMLA

However, for applications, the measured data are never a perfect superposition of plane

waves; therefore, we provide, for completeness, stability and error estimates for NMLA from

[13] in this section. For simplicity we use the single wave case, i.e., N = 1. Moreover, we

assume that the measured datum is a perturbation to the perfect plane wave datum of the

form U(θ) = Uplane(θ) + δU(θ), where Uplane denotes a single plane wave datum in the form

of (3.2). Let θ∗ denote the angle for which θ 7→ BU(θ) is maximum. Assuming that the

noise level satisfies

||δU ||L∞ <
1

4B∗
|B1|, (3.8)

where B∗ ≤ 1 is a pure constant independent of ω and B1 is the complex amplitude of the

plane wave. Then the error in the angle estimation is given by

|θ1 − θ∗| ≤
2π

2Lα + 1
∼ O(

1

α
), α = kr ∼ ∞. (3.9)

Similar results can be derived for multiple waves N > 1. We remark that 1
4B∗
≥ 0.25, which
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implies that for a single wave, as long as the perturbation is relatively small with respect to

the true plane wave signal, say the relative noise level do not surpass 25%, the estimation

error is O( 1
kr

). In other words, the larger the radius of the circle compared to wavelength

the more accurate the estimation is.

In Benamou’s work [13], an analysis of a point source shows that |θ1 − θ∗| decreases like

O(ω−1/2) when the point x0 is far away from the source and the radius of the observation

circle is chosen like r ∼ ω−1/2 for large ω. We obtain similar accuracy order for general noisy

plane waves under some smoothness conditions; see details in section 3.3.

3.3 Error analysis of wave field as a perturbed plane

wave datum

As displayed above, provided that the perturbation of the signal is relatively small compared

to the signal, the estimation of the plane wave directions converges and the error is O( 1
ωr

).

In this thesis, we use NMLA to process a wave-field datum, which is the numerical solution

to the Helmholtz equation, to extract the directions of dominant wave fronts based on the

geometric optics ansatz (2.5) in the high-frequency regime. Hence it is important to study

the wave field data as a perturbation of plane wave data locally and estimate the error in

the ray directions obtained from NMLA. In particular, this analysis allows us to find the

optimal choice of the radius of the sampling circle/sphere, in order to achieve the minimal

asymptotic error for the ray direction estimation in terms of the frequency ω of the Helmholtz

equation which generates the wave-field datum. The result is crucial for both error analysis

and implementation of the ray-FEM. Since the wave field datum in our application is the

numerical solution to the Helmholtz equation, its perturbation is composed of the sum of

three components:
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1. numerical errors in solving the Helmholtz equation and interpolation errors in obtaining

data on the sampling circle/sphere for NMLA from the numerical solution on a fixed

mesh;

2. asymptotic errors in the geometric optics ansatz;

3. local approximation errors of a smooth curved wave front by a planar wave front.

On a mesh with mesh size h = O(ω−1), the last component, which we call the phase error,

is the dominant factor among the three. We present below an analysis of the phase error, in

which, for simplicity, we only consider one wave front.

Consider a single wave front, u(x) = A(x)eiωφ(x). Following the notation used throughout

the paper, we assume the reference point to be x0, and the small sampling circle around x0

to be {x|x − x0 = rŝ}, ∇φ(x0) = η0d̂0, where r � 1, |̂s| = 1, η0 = 1/c(x0), |d̂0| = 1. We

have by the Taylor expansion,

A(x) = A(x0) +∇A(x0) · (x− x0) +O ((x− x0)2) = A(x0) + r (∇A(x0) · ŝ) +O (r2) ,

φ(x) = φ(x0) +∇φ(x0) · (x− x0) + 1
2

(x− x0)T ∇2φ(x0) (x− x0) +O ((x− x0)3)

= φ(x0) + rη0

(
d̂0 · ŝ

)
+ 1

2
r2
(
ŝT∇2φ(x0)ŝ

)
+O (r3) .

Denoting φ0(x) = φ(x0) +∇φ(x0) · (x− x0), u0(x) = A(x0)eiωφ0(x), we have

δu(x) = u(x)− u0(x)

= A(x)eiωφ(x) − A(x0)eiωφ0(x)

=
[
A(x0)eiωφ(x) + r (∇A(x0) · ŝ) eiωφ(x) +O (r2)

]
− A(x0)eiωφ0(x)

= A(x0)eiωφ0(x)
(
eiω[ 1

2
r2(ŝT∇2φ(x0)ŝ)+O(r3)] − 1

)
+ r (∇A(x0) · ŝ) eiωφ(x) +O (r2) ,
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∂
∂r

(δu(x)) = ∂
∂r

(
A(x)eiωφ(x) − A(x0)eiωφ0(x)

)
= (∇A(x0) · ŝ +O(r)) eiωφ(x) + A(x)eiωφ(x)iω

[
η0(d̂0 · ŝ) + r

(
ŝT∇2φ(x0)ŝ

)
+O(r2)

]
−A(x0)eiωφ0(x0)iωη0(d̂0 · ŝ)

= (∇A(x0) · ŝ +O(r)) eiωφ(x) + A(x)eiωφ(x)iω
[
r
(
ŝT∇2φ(x0)ŝ

)
+O(r2)

]
+
(
A(x)eiωφ(x) − A(x0)eiωφ0(x0)

)
iωη0(d̂0 · ŝ)

= (∇A(x0) · ŝ +O(r)) eiωφ(x) + A(x)eiωφ(x)iω
[
r
(
ŝT∇2φ(x0)ŝ

)
+O(r2)

]
+iωη0(d̂0 · ŝ)δu(x).

Then

δU(x) =
(

1
iωη0

∂
∂r

+ 1
)
δu(x)

= 1
iωη0

(∇A(x0) · ŝ +O(r)) eiωφ(x) + 1
η0
A(x)eiωφ(x)

[
r
(
ŝT∇2φ(x0)ŝ

)
+O(r2)

]
+(d̂0 · s)δu(x) + δu(x)

= 1
iωη0

(∇A(x0) · ŝ +O(r)) eiωφ(x) + 1
η0
A(x)eiωφ(x)

[
r
(
ŝT∇2φ(x0)ŝ

)
+O(r2)

]
+(d̂0 · ŝ + 1)

{
A(x0)eiωφ0(x)

(
eiω[ 1

2
r2(ŝT∇2φ(x0)ŝ)+O(r3)] − 1

)
+r (∇A(x0) · ŝ) eiωφ(x) +O (r2)

}
.

Hence

|δU(x)| =
∣∣∣( 1

iωη0

∂
∂r

+ 1
)
δu(x)

∣∣∣
≤ |∇A(x0)|+O(r)

ωη0
+ |A(x)|

η0

(
r
∣∣∣̂sT∇2φ(x0)ŝ

∣∣∣+O(r2)
)

+2|A(x0)|ω
(

1
2
r2
∣∣∣̂sT∇2φ(x0)ŝ

∣∣∣+O(r3)
)

+ 2r|∇A(x0)|+O(r2)

=
(

1
ωη0

+ 2r
)
|∇A(x0)|+

(
|A(x)|r
η0

+ |A(x0)|ωr2
) ∣∣∣̂sT∇2φ(x0)ŝ

∣∣∣
+ |A(x)|

η0
O(r2) + 2ω|A(x0)|O(r3) +O(r2).

(3.10)
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As shown in section 3.2, on one hand δU has to be small compared to U . On the other

hand, the error in direction estimate from NMLA is O( 1
wr

). Assuming the smoothness of

A(x) and φ(x), i.e., boundedness of ∇A(x), A(x) and ∇2φ(x), the leading term in δU is

ωr2|A(x0)|
∣∣∣̂sT∇2φ(x0)ŝ

∣∣∣ as ω → ∞, where ŝT∇2φ(x0)ŝ is the curvature of the wave front.

Hence the radius of the sampling circle can at most be chosen r ∼ O( 1√
ω

) as ω →∞. Let

r = Cε√
ω
, |∇A(x)| ≤ C1, |A(x)| ≤ C2,

∣∣sT∇2φ(x)s
∣∣ ≤ C3, (3.11)

Then

|δU(x)| ≤ 2C2
εC3 |A(x0)|+O

(
1√
ω

)
(3.12)

By choosing Cε such that 2C2
εC3 ≤ 1

4
, the perturbation δU(x) satisfies the condition 3.8

for ω large enough, which implies that the error in the ray direction estimate by NMLA is

O(ω−
1
2 ).

Remark 2. The above analysis also shows that NMLA can not be used to estimate ray

directions within a few wavelengths away from the point source since the curvature of the

wave front there is of order O(w).

3.4 Second order curvature correction for a point source

Section 3.3 shows that the angle estimation property (3.9) does not yield the same accuracy

order O(ω−1) as the geometric optics ansatz for a general wave front such as waves near

a point source. We also know that the curvature term after linearization is responsible for

this loss of accuracy. Roughly speaking, the estimation is in O(ω−1) for a plane wave and

O(ω−1/2) for a point-source wave. The second-order curvature correction in [13] shows that
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it is possible to identify the curvature to improve the angle estimation. A summary of the

correction process is provided in this section.

We consider a normalized point-source solution in a homogeneous medium

u(x) =
√
k
i

4
H

(1)
0 (k|x− x1|).

When the radius r of the sampling circle is smaller than the distance from the observation

point x0 to the source point x1, that is, r < |x1 − x0|, we use the Graff Addition Theorem

[27, page 66] on the sampling circle, then we have

u(x0 + rŝ) =
√
k
i

4

+∞∑
l=−∞

H
(1)
l (kR1)eil(θ−θ1)

where R1 := |x1 − x0| is the reciprocal of the curvature of the wave front at point x0, and θ

and θ1 are the angles such that ŝ = (cos θ, sin θ), x1−x0

|x1−x0| = (cos θ1, sin θ1).

The impedance quantity is

Upoint(θ) = ( 1
ik
∂r + 1)u(x0 + rŝ)

= eikR1√
−i8πR1

∑+∞
l=−∞Cl(kR1)(−i)l(Jl(kr)− iJ ′l (kr))eil(θ−θ1),

where

Cl(kR1) = il
√
ikπR1

2
e−ikR1H

(1)
l (kR1).

By applying the filter operator B defined in (3.4) we get

BUpoint(θ) =
b1

2Lkr + 1

Lkr∑
−Lkr

Cl(kR1)eil(θ−θ1), with b1 =
eikR1

√
−i8πR1

. (3.13)
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Then we can get the first estimate of the true angle θ1 by using Algorithm 2 on BUpoint(θ),

which is denoted by θest. Meanwhile, we have an analytical formula for the Fourier coefficient

β̂l of BUpoint(θ), which is

β̂l =
b1

2Lkr + 1
Cl(kR1)e−ilθ1 . (3.14)

We shift the phase,

β̂le
ilθest =

b1

2Lkr + 1
Cl(kR1)e−il(θest−θ1) =

b1

2Lkr + 1
Cl(kR1)e−ilδθ,

where δθ := θest − θ1 is the error that we make on the angle estimation.

It is important to notice that when kR1 is large enough Cl(kR1) is a perturbation of 1 due

to the asymptotic expansion [124, page 198],

Cl(kR1) ∼ 1+
∞∑
m=1

(l,m)

(−2ikR1)m
, with(l,m) =

(4l2 − 12)(4l2 − 32)...(4l2 − (2m− 1)2)

22mm!
(3.15)

Now we use the first two terms of the expression

Cl(kR1) =
e
i
l2− 1

4
2kR1

(1− l2− 1
4

(kR1)2 )
1
4

+O(
1

(kR1)3
),

and obtain

β̂le
ilθest =

b1

2Lkr + 1
e
i
l2− 1

4
2kR1

1

(1− l2− 1
4

(kR1)2 )
1
4

+O(
1

(kR1)3
).

We then consider

ψl := I
(

log(β̂le
ilθest)− log(β̂0)

)
= lδθ +

l2

2kR1

+O(
1

(kR1)3
). (3.16)
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where I stands for the imaginary part.

We see that ψl is close to a parabolic function of the mode number l so that it can be fitted

by a least-squares approximation. The estimated parabola coefficient δθest then provides a

correction on the angle, which we call it the second order curvature correction. It improves

the accuracy of angle estimation to a great extent. We remind that this process is only valid

for a single point source in a smooth medium. Below is a summary of the NMLA curvature

correction algorithm.

Algorithm 3 NMLA Curvature Correction

1: function dω = NMLA-Correction(x0, Th, ω, h, c,u)

2: choose r ∼ ω−
1
2 , M ∼ ωr, ∆θ = 2π/M

3: α = ωr/c(x0), L = max(1, [α], [α + (α)
1
3 − 2.5])

4: for θ = 0 : ∆θ : 2π do

5: x(θ) = x0 + rŝ(θ)

6: U(θ) = ω
ic(x0)

∂ru(x(θ)) + u(x(θ)), F (θ) = BU(θ)

7: end for

8: θ = [0 : ∆θ : 2π], F = F (θ)

9: θest = FindPeaks(θ,F ) . Get the first angle estimation

10: for l = −L : L do

11: β̂l = (F(F))l . Compute the Fourier coefficients (3.14)

12: ψl = Imag(log( β̂l
β̂0
eilθest)) . Compute the imaginary part (3.16)

13: end for

14: δθ = LeastSquare([ψl]l=−L:L) . Estimate the coefficient of linear term (3.16)

15: θcor = θest − δθ, dω = d(θcor) . Correct the angle

16: end function
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3.5 Approximation property of numerical ray-FEM

In this section we incorporate the errors from the estimation of the ray directions into the

approximation error for the ray-FEM method, in which ray directions are first estimated

by applying Algorithm 1 to the solution of the Helmholtz equation with a relatively low

frequency. The estimated ray directions are then used to generate the approximation space.

With the same assumptions as in section 2.4, we estimate an upper bound on

inf
uh∈V hRay(Th)

‖u− uh‖L2(Ω), (3.17)

when the ray-FEM space, V h
Ray(Th), is constructed using the estimated ray directions from

high-frequency waves by NMLA.

From section 3.3, the error estimation of dominant ray directions is O(ω−1/2). The numerical

ray-FEM space V h
Ray(Th) is defined similar to VRay(Th) with the exact ray directions {d̂j}

replaced by the ones {d̂
h

j } estimated by NMLA and |d̂j − d̂
h

j | ∼ O(ω−1/2).

We denote by

uhI =

Nh∑
j=1

A(xj)ϕj(x)eiω[φ(xj)+1/c(xj)d̂
h
j ·(x−xj)] (3.18)

the nodal interpolation of the solution in V h
Ray(Th) analogous to the definition of uI in (2.18).

Then we have

‖uI − uhI‖L2(Ω) = ‖
∑Nh

j=1 A(xj)ϕj(x)eiωφ(xj)(eiω∇φ(xj)·(x−xj) − eiω/c(xj)d̂
h
j ·(x−xj))‖L2(Ω)

≤
∑Nh

j=1 ‖A‖L∞(Ω)‖eiω/c(xj)d̂j ·(x−xj) − eiω/c(xj)d̂
h
j ·(x−xj)‖L2(Sj)

.
∑Nh

j=1 ‖A‖L∞(Ω)ωh‖c−1‖L∞(Ω)|d̂j − d̂
h

j ||Sj|

. ω1/2h‖A‖L∞(Ω)‖c−1‖L∞(Ω).

34



Hence,

infuh∈V hRay(Th) ‖u− uh‖L2(Ω) ≤ ‖u− uhI‖L2(Ω) ≤ ‖u− uI‖L2(Ω) + ‖uI − uhI‖L2(Ω)

. h2|A|H2(Ω) + ωh2‖A‖L∞(Ω)‖∇2φ‖L∞(Ω)

+ω1/2h‖A‖L∞(Ω)‖c−1‖L∞(Ω) +O(ω−1).

(3.19)

Under the same smoothness assumption as in section 2.4, the constant for . only depends

on the domain, and more compactly, we have that

inf
uh∈V hRay(Th)

‖u− uh‖L2(Ω) = O(h2 + ωh2 + ω1/2h+ ω−1). (3.20)

Comparing with (2.20) and (3.20), the error in the estimation of dominant ray directions

due to NMLA leads to the extra term ω1/2h, which is the leading order in the high-frequency

regime. Specifically, if ωh = O(1), then we have

inf
uh∈V hRay(Th)

‖u− uh‖L2(Ω) = O(ω−1/2). (3.21)

We point out that the desirable convergence rate in this case is O(ω−1), which has the same

order as the geometric optics ansatz. However, as analyzed in section 3.3, for a general

wave field, the optimal achievable asymptotic error of the estimation of the dominant wave

directions using NMLA isO(ω−1/2). This is indeed the bottleneck to improve the convergence

order. In particular, the leading term of the approximation error for the numerical ray-FEM

comes from ‖uI − uhI‖L2(Ω), which is ωh|d̂j − d̂
h

j | ∼ |d̂j − d̂
h

j | ∼ ω−1/2 if ωh = O(1). Still,

we can obtain a higher order approximation for some special cases. For example, we can use

second order curvature correction version of NMLA for single point source in homogeneous

media to improve the ray estimation to O(ω−1), meaning that we can obtain the optimal

convergence order in this special case.
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Chapter 4

Singularity

By building local basis composed of polynomials modulated by plane waves propagating in

a few dominant ray directions, the ray-FEM only requires a fixed number of grid points per

wavelength to achieve both accuracy and stability without oversampling; moreover, a fast

solver is developed in chapter 5 for solving the resulting linear system with linear complexity

up to poly-log factors. As explained in the introduction, the ray-FEM can efficiently compute

wave fields when the source is far away, but it cannot handle the singularities at point sources.

Here, we introduce the Babich’s expansion [3], which is a Hankel-based asymptotic expan-

sion, to capture source singularity and overcome the above difficulties near the source in

heterogeneous media. The ingredients of the expansion can be numerically computed by

high-order Eulerian asymptotic methods [103] to yield accurate solutions in the neighbor-

hood of the point source. The reasons that we prefer to use the Babich’s ansatz rather than

the usual geometrical-optics ansatz are well illustrated in [103] and are briefly summarized

here. If we apply the usual asymptotic expansion of the solution for the Helmholtz equation

of a point source in an inhomogeneous medium, then we end up with the following systems:
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u(r, r0) = eiωτ
∞∑
s=0

As(r, r0)
1

(iω)s−
(d−1)

2

, (4.1)

where τ = τ(r, r0) is the phase satisfying the eikonal equation

∇τ · ∇τ = m2(r), τ(r0, r0) = 0, (4.2)

and As = As(r, r0) satisfy a recursive system of transport equations along rays,

2∇τ · ∇As + As∆τ = −∆As−1, s = 0, 1, · · · , A−1 ≡ 0. (4.3)

However, a difficulty arises immediately: how to initialize As at the source point for this

system of equations. Moreover, when d is even, the ray series (4.1) does not yield a uniform

asymptotic form close to the source. When d = 3 Avila and Keller [2] were able to find

the initial data for As by using the boundary layer method, but the case of d = 2 was left

incomplete. In practice, such difficulties in initializing amplitudes were handled in ad hoc

ways in the sense that the amplitudes were initialized a little bit away from the point source

by using amplitudes for the medium with a constant refractive index corresponding to that

of the source point [76, 79, 80, 102, 121]; consequently, the resulting numerical asymptotic

solution is not uniform near the source. To overcome these initialization difficulties Babich

[3] proposed to use an asymptotic series defined by the first Hankel function as an ansatz

to expand the underlying highly-oscillatory wave field; the resulting eikonal equation is the

same as the usual one, but the resulting transport equations are easily initialized. Moreover,

Babich’s expansion ensures that the Hankel-based ansatz yields a uniform asymptotic solu-

tion as ω → ∞ in the neighborhood of the point source and away from it. Although the

Babich’s ansatz as implemented in the current work in terms of solving eikonal and trans-

port equations in physical space cannot deal with caustics directly, such an ansatz can be

37



incorporated into the Huygens secondary-source principle to deal with caustics indirectly as

shown in [75].

In this chapter we develop a simple and natural hybrid approach [35] to combine the asymp-

totic method and the ray-FEM to take advantage of the strengths of both methods for the

high frequency Helmholtz equation with source singularity. In particular, we utilize the

Babich’s expansion and high-order numerical methods to compute the wave field near the

source, and couple with the ray-FEM to compute the far field waves in smooth media.

4.1 The hybrid approach

We decompose u, the solution to (1.1) with point source term f(x) = δ(x − x0), into two

components

u(x) = unear(x) + ufar(x), (4.4)

where unear is the near field solution which captures the source singularity, and ufar is the

far field solution. We insert (4.4) into (1.1) and we have that

−
(
∆ + ω2m

)
ufar = δ(x− x0) +

(
∆ + ω2m

)
unear. (4.5)

Moreover, we suppose that unear has the form

unear(x) = ub(x)χε(x), (4.6)
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where ub is the approximation given by the Babich’s expansion and χε is a smooth cut-off

function satisfying,

χε(x) =

 1, if |x− x0| < ε,

0, if |x− x0| > 2ε,
(4.7)

where ε is a fixed small number such that there are no caustics or ray crossing in |x−x0| < 2ε.

Following a standard computation we have that

(
∆ + ω2m

)
unear =

(
∆ub + ω2mub

)
χε + 2∇ub · ∇χε + ub∆χε, (4.8)

furthermore, given that ∆ub + ω2mub = −δ(x− x0) and plugging into (4.5), we have that

−
(
∆ + ω2m

)
ufar = 2∇ub · ∇χε + ub∆χε, (4.9)

whose right-hand side is smooth. Moreover, it can be easily computed accurately: χε and its

derivatives are known analytically, and it is possible to compute ub accurately and efficiently

in the support of χε using the method developed in [103], as will be reviewed briefly in the

sequel.

Given that ufar = u− unear ' (1− χε)u, i.e., ufar is the far field solution of the Helmholtz

equation, it satisfies absorbing or radiation conditions. Then we can solve the equation (4.9)

in smooth media using the techniques developed in chapter 2 and [36] for high frequency

Helmholtz equation (2.1) but with PML boundary conditions [15]. For simplicity, we consider

the rectangular domain Ω = (−Lx, Lx)× (−Ly, Ly) in 2D. We introduce

δx(x) =


C
δpml

(
x+Lx−δpml

δpml

)2

, if x ∈ (−Lx,−Lx + δpml),

0, if x ∈ (−Lx + δpml, Lx − δpml),
C
δpml

(
x−Lx+δpml

δpml

)2

, if x ∈ (Lx − δpml, Lx),

(4.10)
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and similarly for δy(y). Here δpml is typically around a couple of wavelengths, and C is an

appropriate positive absorption constant independent of ω.

Then the equation (1.1) can be re-written [33] as

−∇ · (D∇u)− ω2msxsyu = sxsyf in Ω, u = 0 on ∂Ω (4.11)

where D =

 sy/sx 0

0 sx/sy

, sx = 1 + iσx(x)/ω and sy = 1 + iσy(y)/ω with quadratic

coefficient functions σx(x) and σy(y). The standard weak formulation is given by

Find u ∈ H1
0 (Ω), such that B(u, v) = F(v), ∀v ∈ H1

0 (Ω), (4.12)

where

B(u, v) :=

∫
Ω

(D∇u) · ∇vdV − ω2

∫
Ω

msxsyuvdV (4.13)

F(v) :=

∫
Ω

sxsyfvdV, f = 2∇ub · ∇χε + ub∆χε. (4.14)

Finally, the proposed algorithm to compute the solution to (1.1) with a point source can be

distilled to the following steps:

• compute the asymptotic solution ub given by the Babich’s expansion in a neighborhood

of the source point,

• build the right-hand side in (4.9),

• solve (4.9), using the ray-FEM method with the adaptive learning basis approach
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proposed in chapter 2,

• add the near field part unear and the far field part ufar.

We explain each of the steps in detail below.

4.2 Babich’s expansion

The reduction of (4.4) to (4.9) relies on computing a local approximation of the solution

close to the source. This is achieved by using a specific asymptotic expansion of the solution,

usually referred to as the Babich’s expansion [3], which we briefly review here.

To solve (1.1) asymptotically when ω → ∞, Babich proposed the following Hankel-based

ansatz [3] to expand the solution in a neighborhood of the source,

u(x) = ub(x,x0, ω) :=
∞∑
p=0

vp(x,x0)fp−(d−2)/2(ω, φ(x,x0)), (4.15)

where d is the dimension,

fq(ω, ξ) := i

√
π

2
eiqπ

(
2ξ

ω

)q
H(1)
q (ωξ), (4.16)

and φ is the phase or travel time function satisfying the eikonal equation,

|∇φ(x,x0)| = 1

c(x)
, (4.17)

and {vp}p=0,1,2,... are assumed to be smooth functions satisfying a recursive system of trans-

port equations,

∇φ2(x) · ∇vp(x) +

[
(2p− d)m(x) +

1

2
∆φ2(x)

]
vp(x) =

1

2
∆vp−1(x) (4.18)
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with initial conditions

v−1 ≡ 0, v0(x0) =
m

(d−2)/2
0

2π(d−1)/2
, m0 = m(x0). (4.19)

The problem is then reduced to solving the PDE system (4.17) and (4.18), which can be

computed numerically. By using the high-order Eulerian asymptotic method developed in

[103], it is possible to compute them accurately even close to the source. In this work,

we only compute the first two terms of the Babich’s expansion, namely ub0 and ub1 , where

ubp = vpfp−(d−2)/2, p = 0, 1. Firstly, the phase φ is computed using a fifth-order Lax-

Friedrichs weighted non-oscillatory (LxF-WENO) scheme [68, 127, 131] with the sixth-order

factorization 1 [43, 76, 78] around the source. Then, the first amplitude coefficient v0 is com-

puted using the third-order LxF-WENO scheme with the third-order factorization around

the source. The second amplitude coefficient v1 is computed by the third-order LxF-WENO

scheme with the first-order factorization around the source. Finally, the solution is ap-

proximated by replacing the numerically computed phase and amplitude coefficients into

ub0 + ub1 . Below is a summary of the algorithm to approximate the symptotic Babich’s

expansion ub and its gradient ∇ub in the disk D2ε := {x ∈ Ω : |x − x0| ≤ 2ε} with mesh

size h, and we denote by uhb ,∇uhb , uhb0 , u
h
b1
, φh, v

h
0 , v

h
1 the numerically computed quantities of

ub,∇ub, ub0 , ub1 , φ, v0, v1 respectively. For further details, we refer the reader to [103].

1The solution is represented as a product or sum of the known solution to a homogeneous medium and
an unkown factor or perturbation, which is smooth.
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Algorithm 4 Babich’s Expansion

1: function [uhb ,∇uhb , {d
h
b}D2ε ] = Babich(x0, c, ω, h)

2: [φh,∇φh, vh0 ,∇vh0 , vh1 ,∇vh1 ] = Eikonal-Transport(x0, c, h)

3: dhb = ∇φn(x)
|∇φn(x)| . Computing ray directions

4: coef0 = i
√
π

2
, coef1 = i

√
π
ω

exp(iπ) . Coefficients of fq in (4.16)

5: f̃h0 = H
(1)
0 (ωφh), f̃

h
1 = φhH

(1)
1 (ωφh) . Hankel based terms of fq in (4.16)

6: uhb0 = coef0v
h
0 f̃

h
0 , uhb1 = coef1v

h
1 f̃

h
1 . The first two terms in (4.15)

7: uhb = uhb0 + uhb1 . Approximating the Babich’s expansion

8: ∇f̃h0 = −ωH(1)
1 (ωφh)∇φh . Computing gradients

9: ∇f̃h1 = 2H
(1)
1 (ωφh)∇φh − ωφhH(1)

2 (ωφh)∇φh

10: ∇uhb0 = coef0(∇vh0 f̃h0 + vh0∇f̃h0 ), ∇uhb1 = coef1(∇vh1 f̃h1 + vh1∇f̃h1 )

11: ∇uhb = ∇uhb0 +∇uhb1 . Approximating the gradient of Babich’s expansion

12: end function

Algorithm 5 Eikonal/Transport Solver

1: function [φh,∇φh, vh0 ,∇vh0 , vh1 ,∇vh1 ] = Eikonal-Transport(x0, c, h)

2: φh = LxF-WENO-Fac(5, 5,x0, c, h) . Computing the phase in (4.17)

3: ∇φ2
h = WENO(3, φ2

h, h), ∆φ2
h = FD(4, φ2

h, h), ∇φh = ∇φ2
h/2φh

4: vh0 = LxF-WENO-Fac(3, 3,∇φ2
h,∆φ

2
h,x0, c, h) . Computing the first amplitude

coefficient in (4.18)

5: ∇vh0 = FD(4, vh0 , h), ∆vh0 = FD(4, vh0 , h)

6: vh1 = LxF-WENO-Fac(3, 1,∇φ2
h,∆φ

2
h,∆v

h
0 ,x0, c, h) . Computing the second

amplitude coefficient in (4.18)

7: ∇vh1 = FD(4, vh1 , h)

8: end function

Remark 3. In Algorithm 4, we compute uhb and ∇uhb only in the annulus ε ≤ |x− x0| ≤ 2ε

to build the right-hand side of equation (4.9) and {dhb}D2ε to be used in the ray-FEM. In
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Algorithm 5, we denote by LxF-WENO-Fac(p, q, ·) the p-th order LxF-WENO scheme with

q-th order factorization around the source, WENO(p, ·) the p-th order WENO scheme and

FD(p, ·) the p-th order finite difference scheme. ∇φ2
h, ∇φh and ∆φ2

h are computed except

for the points around the source.

4.3 Error analysis

In this section, we provide an asymptotic error estimate of the high-frequency solution u to

(1.1) by decomposing it into two parts: near field unear computed using Babich’s expansion

[103] and far field ufar computed using the ray-FEM [36]. We remind the reader that we

only focus on the 2D case with mesh size that scales as ωh = O(1) in the high-frequency

regime. We define notations Dr := {x ∈ Ω : |x − x0| ≤ r}, Dr2−r1 := Dr2\Dr1 = {x ∈ Ω :

r1 < |x− x0| ≤ r2}.

4.3.1 Near field solution: Babich’s expansion

We recall the basic properties of the first kind Hankel functions [66, 124]

d

dz
H1
q (z) = q

H
(1)
q (z)

z
−H(1)

q+1(z), (4.20)

H(1)
q (z) =


O(z−1/2), if |z| → ∞,

O(ln z), if |z| → 0 and q = 0,

O(z−q), if |z| → 0 and q ≥ 1.

(4.21)
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In the disk D2ε, φ(x) ≤ O(ε) ≤ C1 = constant, the Hankel based terms fq(ω, ξ) have the

following asymptotic form [3] for large ω,

fq(ω, ξ) =


O
((

ξ
ω

)q
(ωξ)−1/2

)
= O(ω−q−1/2ξq−1/2), if ωξ ≥ C2 = constant,

O (ln(ωξ)) , if ωξ ≤ C2 and q = 0,

O
((

ξ
ω

)q
(ωξ)−q

)
= O(ω−2q), if ωξ ≤ C2 and q ≥ 1.

(4.22)

Since the Babich’s expansion (4.15) is approximated by the first two terms in Algorithm 4,

i.e. ub ≈ ub0 + ub1 , where ubq = vqfq, q = 0, 1. We have the truncation error, asymptotically

in ω,

‖ub − (ub0 + ub1)‖L∞(D2ε) = O(ω−5/2). (4.23)

On the other hand, the phase φ and amplitude coefficients v0, v1 are numerically computed

by Algorithm 5. According to Theorem 5.1 in [103] and Remark 3 in [75], the p-th order

LxF-WENO scheme combines with q-th order factorization for equations (4.17) and (4.18)

yield min(p, q)-th order accuracy for smooth φ and v’s. Thus, we have

‖φ−φh‖L∞(D2ε) = O(h5), ‖v0− vh0‖L∞(D2ε) = O(h3), ‖v1− vh1‖L∞(D2ε) = O(h). (4.24)

Excluding a small neighborhood of the singular source point, i.e. x ∈ D2ε−η, ωφ(x) ≥

O(ωη) ≥ C2 for a small positve number η < ε, by mean value theorem there exists ϕ ≥

min{φ(x), φh(x)} ≥ O(η) such that

|H(1)
0 (ωφ(x))−H(1)

0 (ωφh(x))| = | −H(1)
1 (ωϕ)(ωφ(x)− ωφh(x))|

. O((ωϕ)−1/2ωh5) . O(ω1/2η−1/2h5),
(4.25)
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the constants for . and O(·) only depend on constants C1 and C2. Thus, we have

‖f0 − fh0 ‖L∞(D2ε−η) . ‖H(1)
0 (ωφ)−H(1)

0 (ωφh)‖L∞(D2ε−η) = O(ω1/2η−1/2h5) , (4.26)

similarly, ‖f1 − fh1 ‖L∞(D2ε−η) = O(ω−1/2h5 + ω−3/2η−1/2h5).

Hence,

‖ub0 − uhb0‖L∞(D2ε−η) = ‖v0f0 − vh0fh0 ‖L∞(D2ε−η)

= ‖(v0f0 − vh0f0) + (vh0f0 − vh0fh0 )‖L∞(D2ε−η)

≤ ‖v0 − vh0‖L∞(D2ε−η)‖f0‖L∞(D2ε−η)

+‖vh0‖L∞(D2ε−η)‖f0 − fh0 ‖L∞(D2ε−η)

= O(ω−1/2η−1/2h3 + ω1/2η−1/2h5)

(4.27)

and analogously,

‖ub1 − uhb1‖L∞(D2ε−η) = O(ω−3/2h+ ω−1/2h5 + ω−3/2η−1/2h5) (4.28)

Therefore, under the assumption of h = O(ω−1) and C2

ω
≤ O(η) ≤ φ ≤ O(ε) ≤ C1, the

asymptotic error with respect to ω of Babich’s expansion is

‖ub − uhb‖L∞(D2ε−η) = ‖ub − uhb0 − u
h
b1
‖L∞(D2ε−η)

= ‖(ub − ub0 − ub1) + (ub0 − uhb0) + (ub1 − uhb1)‖L∞(D2ε−η)

≤ ‖ub − ub0 − ub1‖L∞(D2ε−η)

+‖ub0 − uhb0‖L∞(D2ε−η) + ‖ub1 − uhb1‖L∞(D2ε−η)

= O(ω−5/2) +O(ω−3) +O(ω−5/2)

= O(ω−5/2).

(4.29)
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4.3.2 Right-hand side for the far field equation

Given that the Babich’s expansion ub is computed accurately and the cut-off function χε

is know analytically, we can construct the near field solution unear = ubχε. On the other

hand, in order to obtain the far field solution ufar, we need to solve the equation (4.9). Most

stability and error analysis for finite element methods [85, 88, 126] rely on the norms of the

right-hand side (RHS). Moreover, numerical experiments show that the error of numerical

solution is tightly bounded by the norm of RHS in this case, i.e. if the norm of the RHS is

ω dependent, the error will grow as ω grows. Thus, it is crucial to have asymptotic orders

of the norms of the RHS in (4.9) with respect to ω and ε. We use the analytical expression

of the cut-off function and Babich’s expansion to obtain such scalings in L∞ and L2 norm.

We define the smooth cut-off function

χε(x,x0) =


1, if |x− x0| ≤ ε,

exp
(

2e−1/t

t−1

)
, if ε < |x− x0| < 2ε, t = |x−x0|

ε
− 1,

0, if |x− x0| ≥ 2ε,

(4.30)

and we choose ε small enough such that χε(x,x0) is compactly supported within the com-

putational domain Ω, i.e. D2ε ⊆ Ω and no caustics or multi-pathing has occured. We can

easily verify that χε ∈ C∞(R), ∇χε and ∆χε vanishes in Dc
2ε−ε := {x ∈ Ω : |x − x0| >

2ε or |x − x0| < ε}. Moreover, based on the derivatives of the first kind Hankel functions

(4.20) and its asymptotic expansions (4.21), we have the asymptotic orders of the right

hand side as displayed in Table 4.1. The scalings imply that when ωε � 1, the first term

2∇ub · ∇χε dominates the right-hand side. In the high frequency regime, we pick small but

fixed ε. Hence the right-hand side scales as O(ω
1
2 ) as ω →∞.
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Ω ⊆ R2 ∇χε ∆χε 2∇ub · ∇χε ub∆χε 2∇ub · ∇χε + ub∆χε

‖ · ‖L∞(Ω) O(ε−1) O(ε−2) O(ω
1
2 ε−

3
2 ) O(ω−

1
2 ε−

5
2 ) O(ω

1
2 ε−

3
2 ) +O(ω−

1
2 ε−

5
2 )

‖ · ‖L2(Ω) O(ε0) O(ε−1) O(ω
1
2 ε−

1
2 ) O(ω−

1
2 ε−

3
2 ) O(ω

1
2 ε−

1
2 ) +O(ω−

1
2 ε−

3
2 )

Table 4.1: Asymptotic orders of the right-hand side with respect to ω and ε.

4.3.3 Far field solution: ray-FEM

After constructing the ω-dependent right hand side of (4.9), we use ray-FEM to solve the

equation with ray directions extracted numerically by NMLA from computed low frequency

wave field. Now we provide an upper bound of the approximation error

inf
uh∈V hRay(Th)

‖ufar − uhfar‖L2(Ω)

‖ufar‖L2(Ω)

, (4.31)

where the ray-FEM space, V h
Ray(Th), incorporates the estimated ray directions {d̂

h

j }. From

section 3.3 the error for estimation by NMLA is |d̂j − d̂
h

j | ∼ O(ω−1/2).

For the simplicity of error analysis, we assume that there is no ray crossing in the domain Ω,

no reflections from the boundary ∂Ω, and the Babich’s expansion (4.15) is the exact solution

of equation (1.1). Then the far field solution to equation (4.9) is

ufar = u− unear = ub − ubχε = (1− χε)ub. (4.32)

Note that (1−χε)ub vanishes in the disk Dε, using the first term ub0 to approximate Babich’s

expansion outside disk Dε we have truncation error O(ω−3/2) similar to (4.23),

ufar = (1− χε)ub = (1− χε)ub0 +O(ω−3/2) = ω−1/2A(x)eiωφ(x) +O(ω−3/2), (4.33)

where A(x) = i
√
πω
2

(1−χε)H(1)
0 (ωφ(x)) eiωφ(x) is a smooth amplitude function with a support
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outside disk Dε. Thus, asymptotically we have

‖ufar‖L2(Ω) = O(ω−1/2). (4.34)

Moreover, we denote by

uI =
∑Nh

j=1 ω
−1/2A(xj)ϕj(x)eiω[φ(xj)+1/c(xj)d̂j ·(x−xj)],

uhI =
∑Nh

j=1 ω
−1/2A(xj)ϕj(x)eiω[φ(xj)+1/c(xj)d̂

h
j ·(x−xj)]

(4.35)

the nodal interpolations of the solution in VRay(Th) and V h
Ray(Th) with exact and numerical

ray direction, respectively. For smooth A and φ, from [36] we have

||ufar − uI ||L2(Ω) . ω−1/2h2|A|H2(Ω) + ω1/2h2‖A‖L∞(Ω)‖∇2φ‖L∞(Ω) +O(ω−3/2), (4.36)

and

||uI−uhI ||L2(Ω) . ω1/2h‖A‖L∞(Ω)‖c−1‖L∞(Ω)‖d̂j−d̂
h

j ‖L∞(Ω) . h‖A‖L∞(Ω)‖c−1‖L∞(Ω), (4.37)

the constants in . only depend on the domain Ω. Hence, we have the error estimate, more

compactly with respect to ω on the mesh with h = O(ω−1),

infuhfar∈V hRay(Th) ‖ufar − uhfar‖L2(Ω) ≤ ‖ufar − uhI‖L2(Ω)

≤ ‖ufar − uI‖L2(Ω) + ‖uI − uhI‖L2(Ω)

= O(ω−1/2h2 + ω1/2h2 + h+ ω−3/2)

= O(ω−1).

(4.38)

Therefore,

inf
uh∈V hRay(Th)

‖ufar − uhfar‖L2(Ω)

‖ufar‖L2(Ω)

= O(ω−1/2). (4.39)
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We point out that the desirable relative convergence rate in this case is O(ω−1). However,

the error in the estimation of dominant wave directions using NMLA, which is O(ω−1/2),

dominates the total error and becomes the bottleneck to improve the overall convergence

order. This error is due to the deviation of a general wave front from a plane wave form

which is one of the underpinnings of assumptions for micro local analysis.

4.3.4 Adding near field solution and far field solution

Adding the near field solution unear with the far field solution ufar and considering the error

excluding a small disk Dη, we can obtain the error estimate for the numerical solution to

(1.1). Indeed,

‖u− uh‖L2(Ω\Dη) = ‖(unear + ufar)− (uhnear + uhfar)‖L2(Ω\Dη)

≤ ‖(u− uhb )χε‖L2(Ω\Dη) + ‖ufar − uhfar‖L2(Ω\Dη)

≤ ‖u− uhb‖L2(D2ε−η) + ‖ufar − uhfar‖L2(Ω),

(4.40)

from (4.29) and (3.21), we have

inf
uhfar∈V

h
Ray(Th)

‖u− (uhbχε + uhsmooth)‖L2(Ω\Dη) = O(ω−1). (4.41)

Moreover, based on asymptotic forms in (4.21) and (4.22), we have

‖u‖L2(Ω\Dη) = O(η−1/2ω−1/2), (4.42)

and finally we obtain

inf
uhfar∈V

h
Ray(Th)

‖u− (uhbχε + uhfar)‖L2(Ω\Dη)

‖u‖L2(Ω\Dη)

= O(η1/2ω−1/2), (4.43)

where the constant in O(·) only depends on constants C1 and C2.
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Chapter 5

Algorithms

In this chapter we provide the full algorithm for solving the high frequency Helmholtz equa-

tion (1.1), including, a hybrid solver combines Babich’s asymptotic expansion close to the

point source and the ray-FEM to compute the smooth far field; and a fast iterative solver

based on a modification of the method of polarized traces [129] for the resulting linear sys-

tems. In order to streamline the presentation and to make the algorithm easier to understand,

we introduce several subroutines.

More specifically, we separate the full algorithm into three conceptual stages:

1. probing the medium by solving a relatively low-frequency Helmholtz equation with the

standard FEM;

2. learning the dominant ray directions from the low-frequency probed wave field by

NMLA;

3. solving the high-frequency Helmholtz equation in the ray-FEM space.

If necessary the second stage can be iteratively applied to the high-frequency wave field
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computed in stage 3 to improve the estimation of dominant ray directions and then repeat

stage 3 to obtain more accurate high-frequency wave field.

We remind the reader that the ultimate objective of the algorithm presented in this thesis

(i.e., Algorithm 9 and 10) is to solve the Helmholtz equation (1.1) at frequency ω with a

total O(ωd) (up to poly-logarithmic factors) computational complexity. In order to achieve

this objective, we discretize the PDE with a mesh size h = O(ω−1), which leads to a total

of O(ωd) number of degrees of freedom and a sparse linear system with O(ωd) number of

non-zeros. Then we develop a fast iterative solver with quasi-linear complexity to solve the

resulting linear system after discretization. Below is a more detailed description of the three

stages. Finally, following the notation defined in the prequel, we denote the triangular mesh

by Th.

5.1 Probing

We first solve the low-frequency Helmholtz equation (1.4) with ω̃ ∼
√
ω in the same medium

and with the same source on Th. The low-frequency problem is solved using the standard

finite element method (S-FEM) with linear elements as prescribed by Algorithm 6.

Algorithm 6 Standard FEM Helmholtz Solver

function uω,h = S-FEM(ω, h, c, f, g)

for i, j = 1 : Nh do

Hi,j = B(ϕi, ϕj) . Assemble Helmholtz matrix

bj = F(ϕj) . Assemble right-hand side

end for

uω,h = H−1b . Solve linear system

end function
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Let uω̃,h = S-FEM (ω̃, h, c, f, g) denote the S-FEM solution of the low-frequency Helmholtz

equation on Th. Since ω̃2h = O(1), S-FEM is quasi-optimal in the norm ‖ · ‖H := ‖∇ · ‖L2 +

k‖ · ‖L2 [86], and it has an optimal L2 error estimate [126].

5.2 Learning

Once the low-frequency problem has been solved, we extract the dominant ray directions

from uω̃,h using NMLA as described in section 3.1 around each mesh node. We utilize the

smoothness of the phase functions, and hence the smoothness of the ray directions field to

reduce the computational cost. The reduction is achieved by restricting the learning of the

dominant ray directions to vertices of a coarse mesh down-sampled from Th. Such re-meshed

coarse mesh is denoted by Thc = {Kc}, where hc = O(
√
h). The resulting dominant ray

directions are then linearly interpolated onto the fine mesh Th.

Note that at each vertex of Thc , the wave field uω̃,h on the fine mesh Th is used by NMLA

to estimate the dominant ray directions. There are three sources of errors in the learning

stage:

• numerical errors of uω̃,h;

• model errors in the geometric-optics ansatz;

• interpolation errors.

The numerical error for uω̃,h by Algorithm 6 in the L2 norm [126] is O(ω̃h2+ω̃2h2) = O(ω−1),

which is negligible with respect to the model error in the geometric optics ansatz. The error

introduced by the geometric optics approximation and NMLA is O(ω̃−
1
2 ) as shown in section

3.1 and 3.3. The error due to the linear interpolation on Thc to obtain the ray direction
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estimations at every vertex on Th is O(h2
c) = O(h) = O(ω−1), which is much smaller than

the model error in the geometric-optics ansatz. Hence the overall error in the ray direction

estimation based on NMLA on uω̃,h and interpolation is O(ω̃−
1
2 ). The dominant ray direction

estimation algorithm is summarized in Algorithm 7. For each node xj on mesh Th the number

of dominant ray directions is denoted by nj, d
j
ω,h = {dj,lω,h}

nj
l=1.

Algorithm 7 Ray Learning

1: function {djω,h}
Nh
j=1 = RayLearning(ω, h, hc, c,uω,h)

2: for j = 1 : Nhc do

3: djω,hc = NMLA(xcj, Th, ω, h, c,uω,h)

4: end for

5: {djω,h}
Nh
j=1 = LinearInterpolation(Thc , Th, {d

j
ω,hc
}Nhcj=1)

6: end function

5.3 High-frequency solver

Once the dominant ray directions on Th have been computed, we can construct the ray-FEM

space VRay(Th) and solve the high-frequency Helmholtz equations following (2.16), which is

implemented in Algorithm 8.
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Algorithm 8 Ray-FEM Helmholtz Solver

1: function udω ,h = Ray-FEM(ω, h, c, f, g, {djω,h}
Nh
j=1)

2: Ndof = 0

3: for j = 1 : Nh, l = 1 : nj do

4: Ndof = Ndof + 1, m = Ndof

5: ψm(x) = ϕj(x)eiw/c(xj)dj,l·x . Construct ray-FEM basis functions

6: ψ̂ = ψm(xj) . Nodal values of ray-FEM basis functions

7: end for

8: for m,n = 1 : Ndof do

9: Hm,n = B(ψm, ψn) . Assemble Helmholtz matrix

10: bn = F(ψn) . Assemble right-hand side

11: end for

12: v = H−1b . Coefficients of ray-FEM basis functions

13: udω ,h = v · ψ̂ . Ray-FEM solution on mesh nodes

14: end function

In general, the accuracy of the solution computed by Algorithm 8, using the ray-FEM method

depends on the accuracy of the computed dominant wave directions. From section 5.2, the

accuracy order of the learning stage from the low-frequency wave field is O(ω̃−
1
2 ), and fol-

lowing the error analysis of section 3.5, the consequent ray-FEM solution has the same order

of accuracy. However, the iterative ray-FEM Helmholtz solver, as presented in Algorithm

9, provides a way to improve approximations for both dominant ray directions and the

high-frequency wave field.
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Algorithm 9 Iterative Ray-FEM High-Frequency Helmholtz Solver

1: function udω ,h = IterRay-FEM(ω, c, f, g)

2: ω̃ ∼
√
ω, h ∼ ω−1, hc ∼ ω−

1
2

3: uω̃,h = S-FEM(ω̃, h, c, f, g) . Low-frequency waves

4: {dω̃,h} = RayLearning(ω̃, h, hc, c,uω̃,h) . Low-frequency ray learning

5: udω̃ ,h = Ray-FEM(ω, h, c, f, g, {dω̃,h}) . High-frequency waves

6: tol = 1, niter = 0, u1
ω,h = udω̃ ,h

7: while tol > ε or niter > max iter do

8: {dω,h} = RayLearning(ω, h, hc, c,u
1
ω,h) . High-frequency ray learning

9: udω ,h = Ray-FEM(ω, h, c, f, g, {dω,h}), u2
ω,h = udω ,h

10: tol = ‖u1
ω,h − u2

ω,h‖L2(Ω)/‖u2
ω,h‖L2(Ω)

11: niter = niter + 1, u1
ω,h = u2

ω,h

12: end while

13: end function

Remark 4. Extensive numerical experiments and section 3.2 indicate that the NMLA process

in learning dominant ray directions stage is remarkably stable even for noisy plane wave

data. Hence, the iterative process in Algorithm 9 usually needs very few iterations to reach

the desired accuracy. Typically, we only need one or two iterations in our numerical tests.

Remark 5. Since NMLA can not be used to estimate ray directions near the point source,

the hybrid solver is introduced in next section to handle source singularity. Moreover, a

slight modification of Algorithm 9 also could be used for solving a point source inside domain

problem. First, we approximate the right hand side with the associated column of the mass

matrix (normalized by mesh size h). Moreover, we use a standard finite element basis func-

tion at the source point. For vertices near the source, we apply the radial directions (exact

ray directions in homogeneous medium) in the construction of the approximation space for

the ray-FEM method. Meanwhile, for vertices away from the source, we find the dominant

ray directions by NMLA. Under this modification, ray-FEM can capture the phase accurately
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and it will be demonstrated numerically in section 7.2.

5.4 Hybrid solver

In this section we provide Algorithm 10 to implement the hybrid method for solving the high-

frequency problem (1.1) with point source terms. The full algorithm starts by computing

low frequency wave field and ray directions in the near field using Babich’s expansion in

line 3. Then it solves a relative low-frequency Helmholtz equation (1.4) with the standard

FEM to probe the medium and to learn the dominant ray directions in the far field within

line 5-8. Afterwards, the high-frequency wave field near the source is computed using the

Babich’s expansion in line 9. Moreover, the far field solution of the high-frequency equation

(4.9) is computed using the ray-FEM which incorporates those learned local dominant ray

directions in line 11. Lastly, the ray estimation is improved by iteratively applying NMLA

to high-frequency waves in the far field and then the resulting rays are incorporated into the

ray-FEM space to obtain more accurate high-frequency waves in the while loop from line 14

to line 21.

57



Algorithm 10 Hybrid High-Frequency Helmholtz Solver

1: function uω,h = Hybrid-Solver(x0, c, ω)

2: ω̃ ∼
√
ω, h ∼ ω−1, hc ∼ ω−

1
2 . Low frequency and mesh sizes

3: [uhω̃,b,∇uhω̃,b, {d
h
b}D2ε ] = Babich(x0, c, ω̃, h) . Babich’s expansion in disk D2ε

4: fω̃ = 2∇uhω̃,b · ∇χε + uhω̃,b∆χε . Right hand side in (4.9)

5: ufarω̃,h = S-FEM(ω̃, h, c, fω̃, gufar
ω̃

) . Low frequency solution to (1.4)

6: uω̃,h = ufarω̃,h + uhω̃,bχε . Low-frequency waves

7: {dhω̃}Ω\D2ε = RayLearning(ω̃, h, hc, c,uω̃,h) . Ray learning in far field

8: {dhω̃}Ω = {dhω̃}Ω\D2ε ∪ {dhb}D2ε . Low-frequency rays

9: [uhω,b,∇uhω,b] = Babich(x0, c, ω, h)

10: fω = 2∇uhω,b · ∇χε + uhω,b∆χε

11: ufardω̃ ,h
= Ray-FEM(ω, h, c, fω, gufarω

, {dhω̃}Ω) . High-frequency solution to (4.9)

12: u1
ω,h = ufardω̃ ,h

+ uhω,bχε . High-frequency waves

13: tol = 1, niter = 0,

14: while tol > ε and niter < max iter do

15: {dhω}Ω\D2ε = RayLearning(ω, h, hc, c,u
1
ω,h)

16: {dhω}Ω = {dhω}Ω\D2ε ∪ {dhb}D2ε . High-frequency rays

17: ufardω ,h
= Ray-FEM(ω, h, c, fω, gufarω

, {dhω}Ω)

18: u2
ω,h = ufardω ,h

+ uhω,bχε

19: tol = ‖u1
ω,h − u2

ω,h‖L2(Ω)/‖u2
ω,h‖L2(Ω)

20: niter = niter + 1, u1
ω,h = u2

ω,h

21: end while

22: uω,h = u1
ω,h

23: end function
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5.5 Fast linear solver

To achieve the quasi-linear overall complexity mentioned in the introduction, it is necessary

to solve the linear system resulting from both standard and ray-based FEMs, which we write

in a generic form as

Hu = f , (5.1)

in a linear complexity (up to poly-logarithmic factors). This solver is, in fact, the computa-

tional bottleneck of Algorithms 6 and 8.

For a smooth medium, this can be achieved by modifying the method of polarized traces

[129], of which we provide a brief review here. For further details we refer the interested

readers to [129]. The method of polarized traces is a domain decomposition method that

encompasses the following aspects:

• layered domain decompositions;

• absorbing boundary conditions between subdomains implemented via PML [15];

• transmission conditions issued from a discrete Green’s representation formula;

• efficient pre-conditioners arising from localization of the waves via an incomplete

Green’s formula.

The first two aspects can be effortlessly implemented. Consider a layered partition of Ω into

L slabs, or layers {Ω`}L`=1. Define f ` as the restriction of f to Ω`, i.e., f ` = fχΩ` ; and define

the local Helmholtz operators as

H`u :=
(
−∆− ω2/c2

)
u in Ω`, (5.2)
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with absorbing boundary conditions implemented via PML around the slabs.

The method of polarized traces aims at solving the global linear system in (5.1) by solving the

local systems H`, which are the discrete version of (5.2). In order to solve the global system,

or in this case, to find a good approximate solution, we need to “glue” the subdomains

together. This is achieved via a discrete Green’s integral formula deduced by imposing

discontinuous solutions.

In the original formulation of the method of polarized traces [129], the Green’s represen-

tation formula was used to build a global surface integral equation (SIE) at the interfaces

between slabs. The SIE was solved using an efficient preconditioner coupled with a multi-

level compression of the discrete kernels to accelerate the on-line stage of the algorithm. The

original algorithm had an embarrassingly parallel superlinear off-line complexity which was

amortized among a large number of right-hand sides, which represents a typical situation in

exploration geophysics.

In the context of this thesis, the linear systems issued from the ray-based FEM depend on

the source distribution, making it impossible to amortize a super-linear off-line cost. In order

to reduce the off-line cost we use a matrix-free formulation (see chapter 2 in [128]) with a

domain decomposition in thin layers.

In general, the number of iterations for convergence will depend on the quality of the ab-

sorbing boundary conditions, and the wave speed. In the best case, the number of iterations

will depend on the number of physical reflections across subdomains. For a smooth and

fixed wave speed, several numerical experiments indicate that the number of iterations to

convergence is weakly dependent on the frequency; i.e., the number of iterations scales as

O(logω), meaning that the cost is dominated by the factorization and solve of each local

linear system.

If we suppose that Ω is discretized into N = O(n2) elements, and that each slab is only O(1)
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elements thick, then we have that factorizing all the local problems using a multifrontal

method [29, 48] (in this case UMFPACK [28]) will have an asymptotic cost of O(n), which

has to be performed O(n) times, leading to an off-line cost of O(N).

For the preconditioning, we need to solve O(n) quasi 1-D linear systems, which can be

performed in O(n) time, leading to a linear complexity for each iteration. This, however,

depends on the eventual growth of the auxiliary degrees of freedom corresponding to the

PMLs. As it will be shown below, for the low-frequency problem, we need to increase the

number of PML points as O(logω), to maintain the same convergence rate, which is normally

achieved in O(logω) iterations. Thus, the overall complexity is linear up to poly-log factors.
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Chapter 6

Complexity

In this section we provide an overall complexity analysis of our algorithm for the high-

frequency Helmholtz equation (1.1) in terms of ω, and it is summarized in Table 6.1. The

overall complexity includes:

• the complexity to compute the Babich’s expansion,

• the complexity of learning ray directions by NMLA (shown in Table 6.2), and

• the complexity of the linear solver for the discretized systems from both the standard

FEMs (in the low-frequency case), and the ray-FEMs (for high-frequency problem)

Helmholtz equations.

Methods Babich S-FEM Learning Ray-FEM Iter Ray-FEM Hybrid
Frequency

√
ω or ω

√
ω

√
ω or ω ω ω ω

Complexity O(ωd logω) O(ωd log3 ω) O(ωd) O(ωd logω) O(ωd log3 ω) O(ωd log3 ω)

Table 6.1: Overall computational complexities with respect to ω given that the mesh size
scaled as h = O(ω−1).

According to [75, 101], by using the high-order LxF-WENO schemes to compute the Babich

ingredients in Algorithm 5, the computational complexity is O(N logN), when those asymp-

62



totic ingredients are applied in Algorithm 4 to construct the Babich’s expansion with linear

complexity O(N), where N = O(ωd) is the total number of grid points in the uniformly

discretized mesh with h = O(ω−1). Consequently, the overall complexity for computing

Babich’s expansion is O(ωd logω). Moreover, the complexity of ray learning stage and fast

solvers for the linear systems are analyzed thoroughly below.

6.1 Ray learning

As described in section 5.2, Algorithm 7 applies NMLA to computed wave fields with low-

frequency ω̃ ∼
√
ω or high-frequency ω. It first estimates ray directions at vertices on a down-

sampled coarse mesh Thc , and then interpolates the ray directions to the vertices on a fine

mesh Th. We remind the reader the following scalings: h = O(ω−1), hc = O(
√
h) = O(ω−

1
2 )

. These scalings allow us to strike a balance among the number of observation points at

which NMLA is used to estimate ray directions, the radius of the sampling circle, and the

corresponding number of sampling points on the circle so as to resolve the wave field to reach

the optimal accuracy of NMLA with desired total computational complexity.

The dominant computational cost of the ray learning is coming from the application of

NMLA to the high-frequency wave field. Here we analyze its complexity in 2-D case. As

shown in section 3.3, the least error that can be achieved by NMLA is O(ω−
1
2 ) when the

radius r of the sampling circle centered at an observation point is O(ω−
1
2 ). Hence the

number of points sampled on the circle to resolve the wave field with frequency ω is Mω =

O(ωr) = O(ω
1
2 ). Since NMLA is a linear filter based on the Fourier transform in the angle

space, the corresponding computational complexity is O(Mω logMω) [14]. The number of

observation points that we need to perform NMLA is the number of vertices on the coarse

mesh which is O(h−2
c ) = O(ω). Hence the computational cost to obtain the ray directions

at the vertices on the coarse mesh by NMLA is O(ω
3
2 logω). Finally, the ray directions
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estimated at the vertices on the coarse mesh by NMLA are linearly interpolated onto the

fine mesh Th. Interpolation is a linear operation and hence its computational complexity is

O(ω2).

Table 6.2 provides the complexity of ray learning stage for both high-frequency and low-

frequency wave fields, where d is the dimension and CNMLA, Cray,hc , CInt, and Cray,h are the

computation complexity of NMLA at a single vertex, NMLA on the under-sampled coarse

mesh, interpolation of local ray directions to the fine mesh, and the full algorithm for learning

local ray directions at frequency ω on the fine mesh Th, respectively.

Frequency r Mω CNMLA Cray,hc CInt Cray,h
ω ω−

1
2 ω

d−1
2 ω

d−1
2 logω ωd−

1
2 logω ωd ωd

ω̃ ∼
√
ω ω̃−

1
2 ω̃

d−1
2 ω̃

d−1
2 log ω̃ ω̃d−

1
2 log ω̃ ωd ωd

Table 6.2: Computational complexities of estimating ray directions on a coarse mesh Thc
with hc = O(ω−

1
2 ) and a fine mesh Th with h = O(ω−1).

6.2 Helmholtz Solver

The most computationally intensive component in the whole ray-FEM algorithm is solving

the linear systems after discretization of the Helmholtz equation. Algorithm 9 and 10 solve

both uω̃,h = S-FEM(ω̃, h, c, f, g) and udω ,h = Ray-FEM(ω, h, c, f, g, {djω,h}
Nh
j=1) on the same

mesh Th. Each solver is composed of three steps: the assembling step, the setup step, and

the iterative solve step.

Since the basis functions are locally supported, the resulting matrix is sparse. The complexity

of the assembling step is of the same order as the degrees of freedom Nh = O(ωd).

In the setup stage, the computational domain is decomposed into subdomains of thin layers

whose width is comparable to the characteristic wavelength. The local problems in each

64



subdomain are factorized1 using a multifrontal method [29] coupled with a nested dissection

ordering [48] inO(
√
Nh) time for the high-frequency problem (orO(

√
Nh log3Nh) time for the

low-frequency problem, depending on the width of the auxiliary PML for each subdomain in

terms of the wavelength). Given that the layers are O(1) elements thick, we have to factorize

O(
√
Nh) subsystems, which results in a total O(Nh) (or O(Nh log3Nh) for the low frequency

problem) asymptotic complexity for the setup step.

Finally, for the iterative solve step, each application of the preconditioner involves 6 lo-

cal solves per layer, each one performed with O(
√
Nh) ( or O(

√
Nh log2Nh)) complexity.

Given that we have O(
√
Nh) layers, we have an overall O(Nh) (or O(Nh logNh) for the

low frequency problem) complexity per iteration. Extensive numerical experiments suggest

that the number of iterations to converge is O(logNh) for both high- and low-frequency

solves for smooth media. Hence, the empirical overall complexity is O(Nh logNh) for the

high-frequency solve and O(Nh log3Nh) for the low-frequency one, which as stated before in

Table 6.1.

1The solver was implemented in MATLAB, thus the underlying sparse solver is UMFPACK [28].
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Chapter 7

Numerical Experiments

In this chapter we provide several numerical experiments to test the proposed ray-FEM

(Algorithm 9 and 10) and corroborate our claims. For all cases, the domain of interest Ω

is discretized using a standard triangular mesh with absorbing boundary conditions imple-

mented via IBC (2.1) or PML (4.11) while varying the wave speed profile and the source

term. Except for Marmousi model with a rectangular domain Ω = (−1.5, 1.5)× (−0.5, 0.5),

all other cases have a unit square domain Ω = (−0.5, 0.5)2. The mesh size h is chosen such

that the number of grid points per wavelength (NPW) is fixed, i.e., ωh = O(1). Moreover,

we fix ε = 1
2π

for frequencies ω ≥ 100π so that the L2 norm of the right-hand side of (4.9) is

scaled asymptotically as O(ω
1
2 ) in this frequency regime (see the explanation at the end of

section 4.3.2).

We use a high-order Gaussian quadrature rule [30] 1 to compute the integrals required to

assemble the mass and stiffness matrices in (2.11) and (4.13), the right hand side in (2.12) and

(4.14), and the relative L2 errors of the ray-FEM solutions. The algorithms are implemented

in MATLAB 2015b based on iFEM package [25] and the numerical experiments are executed

1Given the expression of the mass and stiffness matrices, which are polynomials times a plane wave, it is
possible to compute the integral analytically [96]. However, the right hand side of the linear system and the
L2 error of the ray-FEM solution can only be computed numerically for a general source term f(x).
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in a dual socket server with 2 Intel Xeon E5-2670 and 384 GB of RAM.

7.1 Convergence tests

In the first test, the exact solution to the Helmholtz equation with the Robin boundary

condition (2.1) is the wave field (normalized by the frequency ω) corresponding to a point

source outside the domain. It is given by

uex(x, y) =
√
ωH

(1)
0 (ω

√
(x− 2)2 + (y − 2)2). (7.1)

Numerically we choose a mesh size to solve the Helmholtz equation (1.1) with wave speed

c(x) ≡ 1, source f(x) ≡ 0 and exact impedance boundary data such that the number of

points per wave length (NPW) is 6 for different ω’s. We test convergence for both the ray

direction estimation by NMLA and the final numerical solution by the ray-FEM.

First, a probing wave with low-frequency ω̃ =
√
ω is solved by the standard FEM. Then

NMLA is applied to the low-frequency probing wave to get an estimation of the local domi-

nant ray directions dw̃. Instead of using the regular NMLA for the plane wave decomposition,

we use NMLA with curvature correction (see details in Algorithm 3 and section 3.4) to es-

timate the ray information of a circular wave front. The estimated local ray directions are

then used in the ray-FEM to produce the first numerical solution udw̃ to the high-frequency

Helmholtz equation.

We employ one more iteration in the framework of the iterative ray-FEMs by applying NMLA

to udw̃ to get an improved local ray direction estimation dw and then use it again in the

ray-FEM to get a more accurate numerical solution udw to the high-frequency Helmholtz

equation.
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Table 7.1 and the left column of Figure 7.1 show that the NMLA and ray-FEM algorithm

are stable, and the error for both the ray estimation and the numerical solution by the ray-

FEM with fixed NPW, i.e., ωh = O(1), asymptotically decreases as the frequency increases.

Moreover, they show that one more iteration using the iterative ray-FEM can improve the

accuracy of final numerical solution to the order of O(ω−1), which is of the same order

when the exact ray direction dex is used in the ray-FEM, due to the asymptotic error of the

geometric-optics ansatz.

NMLA with curvature correction plays an important role to achieve the above optimal

convergence orders. As discussed in section 3.4, it can improve the angle estimation for

a perfect point source solution from O(ω−1/2) to a much higher convergence order O(ω−3).

However, the noise level coming from low-frequency problem solved by S-FEM, together with

the interpolation error, which are all O(ω−1), dominate the overall error. As a consequence,

the low-frequency ray estimation error ‖dw̃−dex‖ isO(ω−1). Using similar estimate in section

3.5, one can show that the approximation error for the high-frequency numerical ray-FEM

space is at least O(ω−1) if dw̃ is incorporated into the high-frequency basis functions. Again

we apply NMLA with curvature correction to the numerically computed high frequency ray-

FEM solution to get ray estimation dw with ‖dw − dex‖ = O(ω−1) and further get the final

ray-FEM solution udw with ‖u− uh‖L2(Ω) = O(ω−1).

Next we show that our method can handle multiple wave fronts by probing the whole domain

and extracting dominant ray directions locally. The setup is exactly as above except that

there are four point sources. The exact solution is given by

uex(x, y) =
√
ωH

(1)
0 (ω

√
(x+ 20)2 + (y + 20)2) + 2

√
ωH

(1)
0 (ω

√
(x− 20)2 + (y − 20)2)

+0.5
√
ωH

(1)
0 (ω

√
(x+ 20)2 + (y − 20)2)−

√
ωH

(1)
0 (ω

√
(x− 20)2 + (y + 20)2).

(7.2)

The main difficulty of this example compared to the single point source case is that the
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ω/2π 20 40 80 160

1/h 120 240 480 960

‖θ(dω̃)− θex‖L2 7.50e-04 4.26e-04 1.96e-04 1.07e-04

‖θ(dω)− θex‖L2 1.82e-04 7.99e-05 4.43e-05 2.10e-05

‖udω̃ − uex‖L2 4.36e-05 1.92e-05 9.03e-06 4.69e-06

‖udω − uex‖L2 3.15e-05 1.47e-05 7.57e-06 3.73e-06

‖udex − uex‖L2 2.97e-05 1.49e-05 7.47e-06 3.74e-06

Table 7.1: Errors of one point source problem for fixed NPW = 6. θex is the exact ray
angle, θ(dω̃) and θ(dω) are ray angle estimations using low and high-frequency waves, re-
spectively; udω̃ , udω and udex are ray-FEM solutions using low-frequency ray estimation dω̃,
high-frequency ray estimation dω, and exact ray dex, respectively.

low-frequency wave solution by the standard FEM contains multiple wave fronts at each

point due to the interference of multiple sources. The numerical results are shown in the

right column of Figure 7.1. In this case, the NMLA with curvature correction does not

apply so that we have to use the the standard NMLA for the plane wave decomposition as

described in section 3.1 to estimate local dominant ray directions. As analyzed in section

3.5 and section 3.3, the expected error for ray direction estimation and numerical solution

is of order O(ω−1/2) due to the curved wave fronts. The numerical results show that the

ray-FEM meets the expected asymptotic error as the frequency increases.

7.2 Phase errors

Here we show that the ray-FEM method can capture the phase and satisfy the dispersion

relation more accurately. We test our algorithm with a point source inside the domain,

given its importance in many practical applications, in particular, in exploration geophysics,

in which the sources are often modeled as point sources. Moreover, in applications oriented

towards inverse and imaging problems, having a numerical method that produces the correct

phase in the far field is of great importance in order to properly locate features in the image.
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Figure 7.1: Tests with point source/sources outside the domain, NPW = 6. Left: one point
source; Right: four point sources. Top: ray direction errors; Middle: errors of ray-FEM
solutions with ray directions estimated by NMLA; Bottom: errors of ray-FEM solutions
with exact ray directions.

In this experiment we focus our attention on the far-field since the default ray-FEM (Al-

gorithm 9) can not deal with singularities in amplitude and phase at source points. We

test a point source located at x0 = (−0.4,−0.4) with frequency ω = 80π in a homogeneous

medium. Following Remark 5, we use radial directions (exact directions in homogeneous

medium) for vertices x near the source with |x − x0| ≤ 0.1 and estimate ray directions for

other vertices; see the left part of Figure 7.2 for the ray-direction field.

To demonstrate the accurate phase of the numerical solutions, we plot the real part of

computed wave field on a 90 degree part of an annulus [111], with the radial coordinate
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varying on an interval of about two wavelengths. The location where the real part is maximal

or minimal, according to the exact solution, is indicated by a straight line; see the right part

of Figure 7.2.

-0.6 -0.4 -0.2 0 0.2 0.4
-0.6

-0.4

-0.2

0

0.2

0.4

Figure 7.2: One point source inside a homogeneous medium, ω = 80π, NPW = 6. Left: ray
directions captured by NMLA; Right: polar plot of the ray-FEM solution, r/λ: the number
of wavelengths away from the source.

Next we fix the frequency ω = 250π and use radial directions as ray directions in the source

neighborhood {x : |x − x0| ≤ 0.064}. When the number of grid points per wavelength is

increased, Figure 7.3 depicts the behavior of both the ray-FEM solution and the standard

FEM solution. From the figure we can easily observe the superiority of the ray-FEM on

minimizing the phase error, even using relatively coarse meshes.

In a heterogeneous medium, a ray-FEM solution is given by Figure 7.4 with the source

located inside. We also provide an experiment where we show the ability of Algorithm 9

introduced in section 5.3 to handle wave fields with caustics; see Figure 7.5. Again radial

directions are used for local ray directions near the source point within {x : |x− x0| ≤ 0.1}.
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Figure 7.3: Polar plots of the ray-FEM solution and the s-FEM solution with ω = 250π.
r/λ: the number of wavelengths away from the source.
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Figure 7.4: One point source inside a heterogeneous medium with the Gaussian wave speed
c(x, y) = 3− 2.5e−((x+0.125)2+(y−0.1)2)/0.82

, ω = 80π, NPW = 10. Left: ray directions captured
by NMLA; Right: wave field computed by ray-FEM.
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Figure 7.5: One point source inside a heterogeneous medium with the sinusoidal wave speed
c(x, y) = 1 + 0.5 sin(2πx), ω = 80π, NPW = 10. Left: wave speed; Right: wave field
computed by ray-FEM.

7.3 Complexity tests

In this section we test the computational complexity for the ray-FEM. A key step of the

algorithms presented is solving the sparse linear systems generated by the ray-FEM using

iterative methods with a performant preconditioner, e.g., domain decomposition techniques

coupled with high-quality absorbing/transmission boundary conditions. In our tests, we use

a modification of the method of polarized traces to solve the linear systems resulting from

both the standard FEM and ray-FEM as described in section 5.5.

We solve the Helmholtz equation with a point source in both a homogeneous and heteroge-

neous medium. We compute for many different frequencies, using Algorithm 9 with only one

iteration of the ray-FEM, the solution to the Helmholtz equation posed on Ω with absorb-

ing boundary conditions implemented via PML. For each frequency we report the execution

time of the low and high-frequency problems and the time spent in processing the data using

NMLA to extract the dominant ray information.

As explained in section 5, in order to process the data using NMLA we need to solve the

low-frequency problem in a slightly larger domain. The size of the larger domain is given
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by the sampling radius of the NMLA. For the sake of simplicity, we use a low-frequency

subdomain, Ωlow = (−1, 1) × (−1, 1), i.e., four times bigger than the original domain. The

size can be reduced in order to lower the computational cost for the low-frequency problem.

The main issue with the low-frequency solver in our case is related to the PML, since the

PML may not be very effective given that each thin slab contains less than one wavelength

across. In order to decrease the number of iterations to converge, we increase the number

of PML points logarithmically with the frequency. This implies a slightly more expensive

setup cost and solve cost as shown in Figures 7.6 left and 7.7 left.

Figure 7.6 shows the runtime for solving the Helmholtz equation with a point source inside a

homogeneous medium. We can observe that the overall cost is O(N) up to poly-logarithmic

factors as shown in our complexity study. The low-frequency solver has a slightly higher

asymptotic cost in this case, given the ratio between the width of the PML and the charac-

teristic wavelength inside the domain.

Figure 7.7 shows the runtime for solving the Helmholtz equation with a point source inside a

heterogenous medium. We can observe the same scaling as before, albeit with slightly larger

constants.

106

N=n2

102

103

T
im

e
 [

s]

Solve

Setup

O(Nlog3 N)

O(NlogN)

104

N=n2

101

102

T
im

e
 [

s]

Solve

Setup

O(NlogN)

O(N)

Figure 7.6: Runtime for solving the Helmholtz equation with a homogeneous wave-speed
using GMRES preconditioned with the method of polarized traces. The tolerance was set
up to 10−7. Left: runtime for solving the low-frequency problem. Right: Runtime for solving
the high-frequency problem with the adaptive basis.
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Figure 7.7: Runtime for solving the Helmholtz equation with a heterogeneous wave-speed
using GMRES preconditioned with the method of polarized traces. The tolerance was set
up to 10−7. Left: runtime for solving the low-frequency problem. Right: runtime for solving
the high-frequency problem with the adaptive basis.

7.4 Hybrid Solver

All of the above tests are implemented by applying Algorithm 9 without singularity re-

moval. In this section we test the proposed hybrid approach to validate our convergence and

complexity claims.

7.4.1 Homogeneous medium with exact and numerical rays

We compute the numerical solution to the Helmholtz equation (1.1) in a homogeneous

medium, c(x) ≡ 1, with the exact solution given by

uex(x, y) =
i

4
H

(1)
0 (ω

√
x2 + y2). (7.3)

Convergence

Since the Babich’s expansion in a homogeneous medium is exactly the first Hankel function,

we use the analytical ub and ∇ub to construct the right-hand side of (4.9), and we check the

convergence rate for the far field solution ufar with both exact and numerically computed
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(by NMLA) ray directions.

From section 4.3.3, if the ray information is known exactly and h = O(ω−1), then the

relative L2 error in the ray-FEM approximation space is O(ω−1). Figure 7.8 left shows that

the ray-FEM is stable and it achieves the desired convergence order with fixed NPW.

On the other hand, if the ray information is numerically estimated by NMLA with accuracy

order O(ω−1/2), the optimal approximation error by the ray-FEM is also O(ω−1/2) [36].

In fact, we use exact radial ray directions in the disk D2ε and numerically learn the ray

directions outside this disk. Figure 7.8 right indicates the ray-FEM solution with the learned

ray information is of the same order O(ω−1/2).
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Figure 7.8: Relative L2 error of smooth part solution to equation (4.9) for one point-source
problem in homogeneous medium, NPW is fixed. Left: exact rays. Right: numerical rays
estimated by NMLA.

Complexity

We use the fast solver introduced in section 5.5 to solve (4.9) thus obtaining the far field

component of the wave field. From Figure 7.9 we can observe that the results are qualitatively

equal to the ones obtained in section 7.3, the complexity is linear up to poly-log factors. We

point out that the complexity is higher for the low-frequency case given that we need to

increase the number of PML points as O(log2 ω) in order to obtain a very mild growth in

the number of iterations. We remark that for this case the largest number of waves we have
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computed is around 500 in each direction.
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Figure 7.9: Runtime for solving the Helmholtz equation with a homogeneous wave speed
using GMRES preconditioned with the method of polarized traces. The tolerance was set
up to 10−9. Left: runtime for solving the low-frequency problem. Right: Runtime for solving
the high-frequency problem with the adaptive basis.

7.4.2 Lippmann-Schwinger equation

We test our algorithm when the wave speed is constant up to a compactly supported hetero-

geneity. In this case we compute the reference solution by solving the Lippmann-Schwinger

equation discretized using the super-algebraically convergent discretization proposed in [1],

which is then solved using the fast solver introduced in [130].

In order to use the Lippmann-Schwinger equation, we suppose that the point-source is located

far from the heterogeneity. In particular, we set the point-source to be located at x0 =

(−0.2,−0.2) and the squared slowness to be

m(x) = 1 + 0.2h(x, α, β) exp

(
−r

2(x)

2σ2

)
, (7.4)

where α = 0.16, β = 0.22, σ = 0.15, x1 = (0.2, 0.2), r(x) = |x − x1|, t(x, α, β) = r(x)−α
β−α ,
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P (t) = 2e−1/t

t−1
and

h(x) =


1, if r(x) ≤ α,

exp (P (t(x, α, β))) , if α < r(x) < β,

0, if r(x) ≥ β.

In this case, in the disk D2ε, the medium is homogeneous so that we can build the right-

hand side and the rays analytically; outside of this disk, the medium is heterogeneous and

we apply NMLA to estimate the ray directions. Besides, we use Algorithm 10 to compute

the ray-FEM solution to the far field equation (4.9) and compare it to the reference solution

described in [130]. Figure 7.10 shows that the relative error in L2(Ω) norm follows the desired

convergence rate O(ω−1/2) with fixed NPW. We mention that for this example the largest

number of waves we have computed is around 500 in each direction.
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Figure 7.10: Relative L2 error of smooth part solution to Lippmann-Schwinger equation with
squared slowness (7.4), NPW is fixed.

7.4.3 Wave speed of constant gradient

We provide an example in a heterogeneous medium with wave speed of constant gradient:

c(x) = c0 + G0 · (x − x0) with parameters c0 = 1, G0 = (0.1,−0.2) and x0 = (0, 0).

The phase function is known analytically [43] and there is no ray crossing in the domain

Ω = (−0.5, 0.5)2. Then Algorithm 4 can produce an accurate solution to (1.1) in the whole
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domain and we treat this solution as the reference solution.

We construct the right-hand side with numerically computed ub and ∇ub in the disk D2ε

and then apply Algorithm 10 to compute the numerical solution to (1.1). We compute the

relative L2 error with respect to the reference solution. Figure 7.11 left shows that the error

scales as O(ω−1) when we use analytical rays outside the disk D2ε; on the other hand, Figure

7.11 right shows that the error scales as O(ω−1/2) when we use numerically computed rays

by NMLA instead.
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Figure 7.11: Relative L2 error of numerical solution to Helmholtz equation (1.1) with con-
stant gradient of velocity, NPW is fixed. Left: analytical rays. Right: numerical rays
estimated by NMLA.

7.4.4 Marmousi model

Finally, we apply our method to the Marmousi2 model [83]. Figure 7.12 shows the wavespeed,

which is smoothed by a convolution with a Gaussian kernel with standard deviation of 100

meters. In this model, we re-scale the computational domain to Ω = (−1.5, 1.5)× (−0.5, 0.5)

and we locate the point source such that the wave speed is constant in the neighborhood D2ε.

Within this neighborhood, caustics do not occur so that the Babich’s expansion is reduced

to the Hankel function, which can compute the wave field and ray directions very accurately.

However, in the far field Ω\D2ε, where ray crossing happens and caustics occur, we utilize

NMLA to capture only the local dominant ray directions. We select at most four significant

ray directions by sorting amplitudes. In addition, we select rays that are well separated with
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an angle difference at least 15 degrees.

Then we use Algorithm 10 to compute the wave field at 18.75 [Hz] on the mesh with 4 grid

points for the smallest wavelength (NPW = 4). The real part of the wave field is shown

in Figure 7.13. Furthermore, we regard the solution on the mesh with NPW = 16 as the

reference solution uref and compute numerical solutions uh on different coarser meshes to

show the h convergence rate in Table 7.2. A higher frequency case at 75 [Hz] is shown

in Figure 7.14. At the highest frequency the solution has roughly 250 wavelengths in the

vertical direction and 750 in the horizontal direction.

Figure 7.12: Smoothed Marmousi wave speed model.

Figure 7.13: Real part of wave field generated by a point-source at 18.75 [Hz] with NPW =
4 for the smoothed Marmousi model.
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Figure 7.14: Real part of wave field generated by a point-source at 75 [Hz] with NPW = 4
for the smoothed Marmousi model.

NPW 1 2 4 8

‖uh−uref‖L2(Ω)

‖uref‖L2(Ω)
0.9645 0.2846 0.0806 0.0218

Order 1.76 1.82 1.89

Table 7.2: Marmousi model h convergence rate.
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