
UC Davis
UC Davis Previously Published Works

Title
SolarWinds and the Challenges of Patching: Can We Ever Stop Dancing With the
Devil?

Permalink
https://escholarship.org/uc/item/0m27w0hf

Journal
IEEE Security & Privacy, 19(2)

ISSN
1540-7993

Authors
Massacci, Fabio
Jaeger, Trent
Peisert, Sean

Publication Date
2021

DOI
10.1109/msec.2021.3050433

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0m27w0hf
https://escholarship.org
http://www.cdlib.org/

POINT–COUNTERPOINT

14	 March/April 2021	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/21©2021IEEE

Editor: Sean Peisert, sppeisert@lbl.gov

Point

The Right to Stay Unpatched
and the Need to Design for
Failures

Fabio Massacci

T he SolarWinds hack is an eye-
opener to the current practices

of the software industry. In the “Per-
spectives” department in this issue,
some of IEEE Security & Privacy’s
editorial board members discusse
the issue of software supply chain
security. Here, I would like to discuss
a point that seems to be missing,
including the following observations
and question:

■■ Observation 1: “Update your
software” is the strongest com-
mandment of the current security
religion.

■■ Observation 2: A legitimate update
can introduce a new vulnerability
into a system.

■■ Question: Are updates real ly
necessary?

We cannot even decide not to
update. For example, Windows 10
allows us only to delay an update

but not to forgo it. Updates are often
cumulative (this is a feature, and
SolarWinds is no exception3), so we
cannot just sky jump to the hotfix
we need; we must take an update
lock, stock, and barrel, including
its vulnerabilities. As a follow-up to
SolarWinds, regulators should grant
users the right to stay unpatched

Digital Object Identifier 10.1109/MSEC.2021.3050433
Date of current version: 15 March 2021

SolarWinds and the Challenges of
Patching: Can We Ever Stop Dancing
With the Devil?

Fabio Massacci | University of Trento and Vrije Universiteit Amsterdam
Trent Jaeger | Pennsylvania State University

Editor’s Note

The SolarWinds hack shows the limits of our security practices: damned if you patch, damned if you don’t. Fabio
Massacci and Trent Jaeger discuss whether we should change our current attitude to patching by debating at the
two ends of the spectrum.

©
SH

U
T

T
ER

ST
O

C
K

/A
SC

AN
N

IO

www.computer.org/security� 15

and move responsibility for confin-
ing security spillovers to vendors.
This would push our community
toward better solutions—which we
do have but that are less convenient
for software companies.

Updates are bundled in the inter-
est of vendors, and by adding func-
tionalities, new vulnerabilities are
introduced. One could illustrate this
with forced updates from Microsoft,
Google, Apple, and Facebook, but
we will stick to SolarWinds to keep
the discussion focused. See “The
SolarWinds Patching Schedule and
Its Demise” for a summary; Table S1
provides us with a schedule of
updates. Focus on versions 2019.4
and 2019.2. They are not vulnerable
to the SUNBURST malicious code.
If a user did not need any of the (nine
out of 38) products subject to hotfix 5,
he or she might not have required an
update and thus would have avoided
trouble (some users even complained
that they lost useful features when
they upgraded). From the perspec-
tive of resistance to SUNBURST, not
updating was more secure. From the
perspective of SUPERNOVA, any
update was irrelevant.

Updates: Cui Bono? According to
Merriam–Webster, the Roman principle
of cui bono suggests that perpetrators
of an act have something to gain.

■■ Question (revised): Are updates
really necessary for compliance
with all possible security regula-
tions and best practices?

I argue that the answer is mostly
never. Few people benefit from
updates for the simple reason that
most customers don’t actually use
the (sub)components that are being
upgraded. Indeed, one of the major
security features in the 2019.2 ver-
sion of SolarWinds concerned dis-
abling administrator access without
passwords. Before sending Solar-
Winds to the gallows, we should
look at its users’ blog. Out of the

535 posts about “vulnerability,” a
2014 comment described default
passwords as a failure of compli-
ance. Yet, there were no follow-ups;
no user said, “I also have this prob-
lem.” In 2015, when SolarWinds
posted a product release plan for
the 2020 network configuration
manager, the user interface was the
top concern (nicely drawing one’s
network with icons for up and down
nodes). It was only in 2015–2016
that SolarWinds customers started
penetration-testing applications in
the framework of compliance evalu-
ations (as opposed to monitored
services) and requesting fixes for
specific products. They did not ask
for latent improvements.

The Real Reason for Updates. The
answer to a problem (security or
otherwise) always is, “Update to the
next version.” Pick your corporation
of choice and find a different “solu-
tion.” I am accepting entries from
readers. My own experience—both
as an individual customer and as a
deputy director of a metropolitan
area network, 70-plus people, and a
budget worth a few million euros—
has always been that after “For Eng-
lish, press one,” there was a “For
support, update to the next version,
and only then press two.” Curiously,
updating typically requires “To pay
the new license, press one” for fea-
tures I did not know even existed
and will never use. The most fasci-
nating invoice my group received
from a multinational corporation
was for a “license maintenance fee.”
(To the English purists: the order
of the words was correct; the main-
tenance license fee appeared on
another invoice.)

As customers, we may expect
updates to fix bugs and possibly
introduce new functionalities. In
contrast to hardware, software makes
that possible. If an old car were soft-
ware, the vehicle could be auto-
matically retrofitted with proximity
sensors, and an ugly seat cover could

be replaced. Yet, we would have to
accept that the brake and accelera-
tor pedals could be swapped at a
moment’s notice and that a luggage
rack could be added to the roof. In
other words, all software users face
“generic updates” in which they are
given only one choice: “accept all
changes.” This is not necessary. Soft-
ware vendors can check whether
a component in a bundle has ever
been used and whether there is a
need to change it.

Not Updating Can Make (Scientific)
Sense. While the idea of not updating
seems unscientific, in several empiri-
cal studies4,5 I have performed with
my colleagues to examine open
source software vulnerabilities
(from the major browsers4 to the
free and open source software eco-
system5), we found that it is sen-
sible. Indeed, the key observation
from Dashevskyi et al.5 can be sum-
marized as

■■ Observation 3: Vulnerabilities
are discovered in the latest ver-
sions of software, and if your ver-
sion is old enough, the vulnerable
code is simply not there. No code,
no exploit.

Code changes dramatically, which
can be detrimental to security. For
example, in Apache Tomcat, a cal-
endar year might include hundreds,
if not thousands, of application
programming interface and code
changes (see Dashevskyi et al.,5
Figures 2, 10, and 11). In 2014, a
vulnerability, CVE-2014-0033, was
discovered in the then-latest version
of Tomcat and fixed through revi-
sion 1558822. However, revisions
prior to that, including 1149130
from 2011, were not vulnerable to
CVE-2014-0033, as they did not
include the exposed feature. Old age
can itself be a cure. Obviously, if vul-
nerable code is there, you might be
exposed, but it is not necessarily true
that a vulnerability is exploitable.

POINT–COUNTERPOINT

16	 IEEE Security & Privacy� March/April 2021

The SolarWinds Patching Schedule and Its Demise

T o summarize the facts of the case,1,2 SolarWinds offers a set of network and infrastructure monitoring ser-
vices that has slowly grown through several acquisitions. OpenPlatform is actually an aggregation of 50-plus

subcomponents (out of those products, 18 are vulnerable, and the rest are not). Because the SolarWinds software
supply chain has been compromised, attackers can smuggle malware within a legitimate signed update.1 Given
the system administration nature of SolarWinds, bad actors find themselves with high-level privileges. Lateral
movements enable them to pollute victims’ authentication infrastructures, often beyond any repair other than
razing the systems and starting from scratch.2 Table S1, reconstructed from SolarWinds release notes,1,3 shows the
schedule of updates for OpenPlatform. We see from the table that only a few components out of 38 have been the
subject of conceptual updates. Sometimes the same components have been patched and repatched. For example,
in version 2020.2.1, the network traffic analyzer component was patched three times.

Table S1. The SolarWinds patching schedule.

Version Patch Date (yyyy/mm/dd)
Newly
patched

Carried
patches SUNBURST SUPERNOVA

2020.2.1 HF 2 2020/12/15 6/38 2/38

2019.4 HF 6 2020/12/14 9/38

2020.2.1 HF 1 2020/10/29, 2011/04/25 5/38 X

2020.2.1 X

2020.2 HF 1 2020/06/24–30, 2020/07/08 5/38 X X

2020.2 X X

2019.4 HF 5 2020/03/26 9/38 X X

2019.4 HF 4 2020/02/05–07 3/38 8/38 X

2019.4 HF 3 2020/01/09 8/38 X

2019.4 HF 2 2019/12/18–20 3/38 5/38 X

2019.4 HF 1 2019/11/25 5/38 X

2019.4 X

2019.2 HF 3 2019/09/23–30 3/38 9/38 X (P)

2019.2 HF 2 2019/07/31, 2019/08/02 4/38 5/38 X

2019.2 HF 1 2019/06/26, 2019/07/11 6/38 X

2019.2 X

This table lists the update schedule for SolarWinds patches. The “Newly patched” column shows which product (out the 38
making up this “aggregation” of components) were actually changed. The “Carried patches” column indicates the number
of components that were brought forward. An X in the last two columns means a version is vulnerable to SUNBURST or
SUPERNOVA. A parenthetical P specifies that a patch is available; for other components, the only solution is to upgrade to
the latest hotfix.

www.computer.org/security� 17

From the compliance perspective,
it is far simpler to say version X is
vulnerable and that “all previous ver-
sions” are, too. A vendor or a secu-
rity auditor can cover one’s back.

Design for Failures as the Solution.
Even if there is a vulnerable compo-
nent, I argue that it should still be
possible to run it without catastro-
phe. In the same way, on a sunny day,
we can drive a car that has a broken
windshield wiper without all four
tires exploding. Software should be
designed with failures in mind so
that if a component were exploited,
the breach would be confined. A
hacker can infiltrate SolarWinds
network maps? Nice. He or she
should be able only to redraw poor
maps and show funnier icons, not
gain control of authentication infra-
structure. A hacker created a docu-
ment that takes control of Microsoft
Word (CVE-2019-1201)? Cool, so
what? He or she should not be
able to do anything besides intro-
ducing errors to text formats. The
right solution to a security vulner-
ability in a word processor does not
include updating an entire produc-
tivity suite, including the email cli-
ent. Word can fail without dragging
the world down with it.

As a security community, we have
alternatives—for example, auto-
matic network segmentation,6 moni-
toring and restarting an application,7
running services that can limit es
calation,8 automatically generat-
ing diverse applications instances,9
and execution confinement10—so
that even if a single software applica-
tion is exploited, an attacker cannot
achieve much beyond exploiting one
part of the kit. Yet, software updates
are so much more convenient and
cheaper for vendors

The Right to Stay Unpatched. Regula-
tors should make software vendors
liable for security spillovers that go
beyond a vulnerable application

component. As soon as that hap-
pened, we would see solutions that
were discarded as impractical be
revived and receive an engineering
boost. Updates as the sole solution
serve only the software industry.
Unbundling functionality and secu-
rity should make the purpose of an
update clear and provide choices.
Giving users a legal “right to stay
unpatched” would prompt vendors
to find a better solution.

Counterpoint

Software Updates: We Can’t
Live Without Them, but How
Do We Live With Them?

Trent Jaeger

F abio’s premise is that generic
software updates are almost

never beneficial for individual cus-
tomers and hence are not neces-
sary in many (nearly all?) cases.
Thus, the exposure to the Solar-
Winds Orion Code compromise and
many other future attacks would be
avoided if customers did not apply
updates. However, in the current
software ecosystem, vendors expect
to produce updates, and custom-
ers expect to apply those updates
at some point in the not-too-dis-
tant future, albeit not necessarily
immediately. Why is this the case? I
find two valid reasons for software
updates that provide benefits both
to vendors and customers to main-
tain this equilibrium. However, the
process of software updating is still
fraught with peril. Ultimately, just
as product development is evolving
to apply techniques to reduce the
number of flaws in software (e.g., by
fuzz testing), software maintenance
will also need to evolve to enforce
discipline on updating to restrict its
attack surface.

Software updates provide an
opportunity to remove latent flaws.
Vendors and customers both ben-
efit from updates that remove such

flaws. To customers, such updates
are largely invisible, as they do not
aim to impact the expected func-
tionality, but all users could gain
from them by avoiding exploitation
of these hidden vulnerabilities. Ven-
dors profit from updates that reduce
the likelihood that their products
will be compromised—when their
updates actually achieve that goal—
but they also generally aim to keep
such repairs invisible beyond the
broad statement of keeping sys-
tems more secure. From discussions
with vendors, my understanding is
that companies proactively com-
bine flaw repair with functionality
enhancements to make it more dif-
ficult for adversaries to identify sus-
ceptibilities worthy of investigation.

Software updates also include
desirable new features. An advan-
tage that software has over hardware,
such as cars, is that new features can
be incrementally introduced. Cus-
tomers have come to expect new
features via updates, and vendors
certainly promote updates for the
features they provide. As one recent
example, the Mac OS X Big Sur
update11 highlights several “all-new
features” as the main reason to
apply it. Using updates to obtain
new functionality is certainly an
improvement for customers over
having to buy new releases. I would
have loved to get heated seats and
proximity sensors as an update to
my old car, rather than having to
buy a new one. Now that software
updates are the norm, it would be
impractical to expect users to stick
with old feature sets when new
functions are easily obtained.

The problem in the SolarWinds
case and for software updating in
general is that software product
development and its maintenance
present a significant attack surface
that vendors fail to track systemati-
cally, leaving opportunities for adver-
saries. While updates may introduce
new features that are buggy and/or

POINT–COUNTERPOINT

18	 IEEE Security & Privacy� March/April 2021

malicious, as Fabio indicates, it is
unclear that this problem is changed
by the mode of delivery, whether in
major releases versus incremental
changes. Rather, these problems are
inherent to our current approach in
managing software development,
where products may be released
(either in releases or updates) with
flaws. In SolarWinds, a particular
update introduced the malware, but
the malicious code could have been
introduced in a major release instead
(see “The SolarWinds Patching
Schedule and Its Demise”). Reviews
of the recent Cyberpunk 2077
release called the release buggy, but
it was not an update.

Fabio raises an interesting point
in that customers may not need
many of the features in an update.
However, this problem is also not
specific to updates. Back when the
SQL Slammer worm hit, a number
of my colleagues at IBM Research
were surprised to find that their
computers were compromised, but
they seemed more surprised that
their PCs were running an SQL
server they never used, which was
installed with the operating system
distribution of the time. Thus, we
have come to find that unneces-
sary functionality should be turned
off. However, rather than forgoing
all features to avoid some, perhaps
other solutions are warranted. Per-
haps features can remain inoper-
able until explicitly needed. Such an
approach to enabling features would
need to avoid usability problems,
such as frequent user notifications.

Unfortunately, current tech-
nologies to validate code prov-
enance, such as code signing and
the measured boot, were insuf-
ficient to detect the SolarWinds
hack because the software supply
chain was compromised. A ques-
tion is how technologies being
investigated now may be brought
to bear to aid vendors in protect-
ing their supply chains and cus-
tomers in restricting new features.

For example, to help customers
avoid compromises from updated
features, existing functionalities
may be protected from new and
modified ones by using isolation
techniques, such as privilege sepa-
ration.12 Automated support for
privilege-separating programs is
advancing. For example, we have
developed techniques that auto-
mate the marshaling of dynamically
sized data structures (e.g., arrays)13
and enable developers to balance
performance and security.14

However, if updated features
require access to sensitive data,
privilege separation cannot pro-
tect that information. In this case,
vendors must comprehensively vet
those updates. One approach is to
automate patching mechanisms to
meet security properties. For exam-
ple, we have recent work to validate
that patches comply with memory
safety,15 although a more extensive
set of properties will be required.

In addition to failings in the sup-
ply chain, intrusion detection sys-
tems (IDSs) also failed to detect the
SolarWinds attack. According to a
summary by FireEye,16 the SUN-
BURST back door communicated
with third-party servers via HTTP.
Since HTTP requests to arbitrary
servers are common, the firewall
and the IDS did not flag this behav-
ior. Such conduct was likely unex-
pected in the context of any updated
SolarWinds feature. This shows
that there is still a significant gap
between application anomalies and
what can be recognized by IDSs.
We have proposed an approach
that makes IDSs sensitive to threats
in the program, host, and network
layers17 to improve the context
awareness of detection methods.
However, each of these directions
remains a single point in a multidi-
mensional space of in-depth defense
that will be required to prevent
future attacks. Software vendors are
slowly adopting these defenses, but
the rate of improvement continues

to lag behind the threats. How ven-
dors can adopt safeguards into
their development processes more
quickly and effectively remains a
major challenge.

Joint Conclusions

I gnoring updates is a gamble,
much as applying updates is a

gamble. In either case, this roll of
the dice is a symptom of our insuffi-
cient approaches to software devel-
opment and maintenance on one
side and intrusion detection and
confinement on the other. We all
have more work to do to gain the
benefits of software and its updates
without the risk. The SolarWinds
hack is a wakeup call that a silver
bullet does not exist and that inno-
vative mixes of technical, organi-
zational, and regulatory solutions
might be the way forward. We look
forward to hearing your opinions.

Acknowledgments
Fabio Massacci’s work was sup-
ported, in part, by the European
Commi ss ion, through grants
830929 (H2020-CyberSec4Europe,
https://cybersec4europe.eu) and
952647 (H2020-AssureMOSS,
https://assuremoss.eu). Trent Jae-
ger’s work was sponsored by the
U.S. Army Combat Capabilities
Development Command Army
Research Laborator y and was
accomplished under Cooperative
Agreement W911NF-13-2-0045
(ARL Cyber Security CRA) and
National Science Foundation grants
CNS-1801534 and CNS-1801601.
The views and conclusions con-
tained in this document are those
of the authors and should not be
interpreted as representing the offi-
cial policies, either expressed or
implied, of the Combat Capabili-
ties Development Command Army
Research Laboratory, the U.S. Gov-
ernment, or the European Com-
mission. The U.S. Government is
authorized to reproduce and dis-
tribute reprints for Government

www.computer.org/security� 19

purposes notwithstanding any copy-
right notation here on.

References
1.	 “Alert (AA20-352A): Advanced per-

sistent threat compromise of govern-
ment agencies critical infrastructure,
and private sector organizations.”
Cybersecurity and Infrastructure
Security Agency. https://us-cert
.cisa.gov/ncas/alerts/aa20-352a
(accessed Dec. 29, 2020).

2.	 “Emergency directive 21-01.” Cyber-
security and Infrastructure Security
Agency. https://cyber .dhs.gov/ed/
21-01/ (accessed Dec. 29, 2020).

3.	 “Orion platform release notes.” Solar
Winds. https://support.solarwinds
.com/SuccessCenter/s/article/
O r i o n -Ho t f i x-R e l ea s e -No te s
(accessed Dec. 29, 2020).

4.	 V. H. Nguyen, S. Dashevskyi, and
F. Massacci, “An automatic method
for assessing the versions affected by
a vulnerability,” Empir. Softw. Eng.,
vol. 21, no. 6, pp. 2268–2297, 2016.
doi: 10.1007/s10664-015-9408-2.

5.	 S. Dashevskyi, A. D. Brucker, and
F. Massacci, “A screening test for dis-
closed vulnerabilities in FOSS com-
ponents,” IEEE Trans. Softw. Eng.,
vol. 45, no. 10, pp. 945–966, 2018.
doi: 10.1109/TSE.2018.2816033.

6. 	 N. Wagner et al . , “December.
Towards automated cyber deci-
sion support: A case study on net-
work segmentation for security,” in
Proc. 2016 IEEE Symp. Series Com-
putat. Intell. (SSCI), pp. 1–10. doi:
10.1109/SSCI.2016.7849908.

7.	 J. N. Herder, H. Bos, B. Gras,
P. Homburg, and A. S. Tanenbaum,
“Failure resilience for device driv-
ers,” in Proc. 37th Annu. IEEE/IFIP
Int. Conf. Dependable Syst. Netw.
(DSN’07), 2007, pp. 41–50.

8.	 R. N. Watson, J. Anderson, B. Lau-
rie, and K. Kennaway, “Capsicum:
Practical capabilities for UNIX,” in
Proc. USENIX Security Symp., vol.
46, 2010, p. 2.

9.	 A. Homescu, T. Jackson, S. Crane,
S. Brunthaler, P. Larsen, and M.

Franz, “Large-scale automated
software diversity—program evo-
lution redux,” IEEE Trans. Depend-
able Secure Comput., vol. 14, no. 2,
pp. 158–171, 2015. doi: 10.1109/
TDSC.2015.2433252.

10.	 X. Xu, M. Ghaffarinia, W. Wang,
K.W. Hamlen, and Z. Lin, “CON-
FIRM: Evaluating compatibil-
ity and relevance of control-flow
integrity protections for modern
software,” in Proc. 28th USENIX
Security Symp. (USENIX Security),
2019, pp. 1805–1821.

11.	 “macOS Big Sur.” Apple. 2020. https://
www.apple.com/macos/big-sur/

12.	 N. Provos, M. Friedl, and P. Hon-
eyman, “Preventing privilege esca-
lation,” in Proc. USENIX Security
Symp., 2003.

13.	 S. Liu, G. Tan, and T. Jaeger, “Ptr-
Split: Supporting general pointers
in automatic program partition-
ing,” in Proc. ACM CCS, 2017, pp.
2359–2371. doi: 10.1145/3133956.
3134066.

14.	 S. Liu et al., “Program-mandering:
Quantitative privilege separa-
tion,” in Proc. ACM CCS, 2019,
pp. 1023–1040. doi: 10.1145/
3319535.3354218.

15.	 Z. Huang, D. Lie, G. Tan, and T. Jae-
ger, “Using safety properties to
generate vulnerability patches,”
in Proc. IEEE Symp. Security Privacy,
2019, pp. 539–554. doi: 10.1109/
SP.2019.00071.

16.	 “Highly evasive attacker leverages
solarwinds supply chain to compro-
mise multiple global victims with
SUNBURST backdoor.” FireEye.
2020. https://www.fireeye.com/
blog/threat-research/2020/12/
e v a s i v e - a t t a c k e r - l e v e r a g e s
- s o l a r w i n d s - s u p p l y - c h a i n
- compromi ses -w ith- sunbur st
-backdoor.html

17.	F. Capobianco et al., “Employ-
ing attack graphs for intrusion
detection,” in Proc. New Secu-
rity Paradigms Workshop, 2019.
pp. 16–30. doi: 10.1145/3368860.
3368862.

Fabio Massacci is a professor at the
University of Trento, Trento,
38123, Italy, and Vrije Univer-
siteit Amsterdam, Amsterdam,
1081 HV, The Netherlands. His
research interests include experi-
mental methods for security and
privacy. He has published more
than 200 peer-reviewed articles
and is the editor of the “Build-
ing Security In” department in
IEEE Security & Privacy. In 2015,
he received the Ten-Year Most
Influential Paper Award at the
IEEE Requirements Engineer-
ing Conference, for his work
on security and trust in socio-
technical systems. He is a Mem-
ber of IEEE, the Association
for Computing Machinery, the
American Economic Associa-
tion, and the Society for Risk
Analysis. Contact him at fabio
.massacci@ieee.org.

Trent Jaeger is a professor in the
Department of Computer Sci-
ence and Engineering, Pennsylva-
nia State University, State College,
Pennsylvania, 16801, USA. His
research interests include systems
and software security. He has
published more than 150 research
papers and the book Operating
Systems Security. He is the consor-
tium lead for the Army Research
Laboratory’s Cybersecurity Col-
laborative Research Alliance and
a member of the Association for
Computing Machinery Special
Interest Group on Security, Audit,
and Control executive commit-
tee; the Network and Distrib-
uted System Security Symposium
steering committee; the Com-
munications of the ACM editorial
board; and the United Kingdom’s
Cyber Body of Knowledge proj-
ect academic advisory board.
He is an associate editor in
chief of IEEE Security & Pri-
vacy. Contact him at tjaeger@cse
.psu.edu.

