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Zonal flows and pattern formation
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Abstract. The general aspects of zonal flow physics, their formation, damping
and interplay with quasi two dimensional turbulence are explained in the context
of magnetized plasmas and geostrophic fluids with an emphasis on formation and
selection of spatial patterns. General features of zonal flows as they appear in
planetary atmospheres, rotating convection experiments and fusion plasmas are
reviewed. Detailed mechanisms for excitation and damping of zonal flows, and
their effect on turbulence via shear decorrelation is discussed. Recent results on
nonlocality and staircase formation are outlined.
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1. Introduction: zonal flows in nature and laboratory

There is a range of problems in nature where an open dynamical system, usually a fluid,
displays irregular behavior that results from free energy sources driving instabilities
leading to a chaotic or turbulent state as the system evolves nonlinearly. These
nonlinear systems typically create and destroy, a large number of different kinds
of structures corresponding to different configurations of a field variable at different
hierarchical levels that are nonlinearly coupled. Spatial structures that are generated
by external drive in a turbulent fluid, and are destroyed by cascading to smaller or
larger scales of a spectral hierarchy is an example of this.

Such systems, when driven far from equilibrium, can in fact explore a wide range
of possible configurations of their phase space. A far from equilibrium system will
go through many different configurations, and will generate more exotic structures
as compared to a fluid near equilibrium. While the emergence of these structures
are usually related to the particulars of the free energy source, and how the system
taps this source microscopically, there are some general features of how these “large
scale” structures adapt to the microphysics of the problem. Advective nonlinearities
in a fluid system for instance, tend to decorrelate spatial points that may initially be
correlated, by mixing the fluid elements via swirling eddy motions. However, every
now and then, the out of equilibrium system, as it explores the phase space of all
possible configurations in a nonlinear way, finds an interesting configuration that may
be called a “coherent structure”, which is an emergent configuration of the turbulent
fields that is preferred by the dynamics and the external constraints because of its
distinct properties.
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A particular spatial configuration of a fluid may, for example, transport heat
most efficiently. Or it may be that the way the dissipation acts on a system makes
it such that a particular flow configuration is unaffected by dissipation.In other cases,
it may be that a spatial pattern arises because it is favored by the intrinsic nonlinear
dynamics of the system.

One may speculate that part of the story of formation of coherent structures
in a nonlinearly evolving system, can be understood via a process akin to “natural
selection”: Those structures that are fittest in the sense that they can withstand
the action of the nonlinearity, or transform the abundant free energy sources most
efficiently, last longer, while the others die and keep generating other structures
nonlinearly until they find a similar coherent configuration that is preferred by the
nonlinearity, the dissipation or the externally imposed constraints.

One implication of this view is that a strongly nonlinear open dynamical system,
is expected to eventually be populated by coherent structures especially in regions
of the hierarchy that are farther away from the drive. Homogenization of potential
vorticity in quasi-geostrophic fluids[1] or quasi-two dimensional description of plasmas,
formation of dipolar vortex solutions quasi-geostrophic fluids[2, 3] and in drift wave
turbulence[4], magnetic relaxation[5, 6] or the process of dynamic alignment in
MHD[7, 8, 9] can all be considered as examples of this kind of evolution towards
a a nonlinear structure that is least prone to the action of the nonlinearities.

The rest of the story involves how different structures that are most effective in
sometimes opposing roles such as transforming free energy sources and withstanding
nonlinear stresses, co-evolve and adapt collectively to the environmental pressures that
they themselves create or modify. As is the case in what are called “complex adaptive
systems” [10], the structures are not only affected by their environment which define
them, but form collectively an ecosystem that sustains their own subsistence and evolve
towards new equilibria that are better adapted to the environmental constraints and
pressures.

Similar to species evolution, complex multiscale dynamical behavior may appear
in nonlinear systems. For instance, a competition between two kinds of structures,
one that can absorb the free energy very effectively, and another that can withstand
the nonlinearity for long periods of time is not all that surprising. Such a competition
may turn into an evolutionary “arms race”, and may end up developing very effective
coherent structures leading to one species wining the arms race. Such a drastic change
appears, when a dynamical system goes through a phase transition.

Possibly, one of the most striking phase transition phenomenon observed in
plasma turbulence, is that of Low to High confinement (L-H) transition in fusion
plasma devices called tokamaks. In these systems, a certain class of coherent
structures, called zonal flows, usually form and coexist with the underlying turbulence
that is driven unstable by background gradients of heat and particles that are being
confined. A particular class of instabilities that appear in these systems, generically
called drift-instabilities (or drift-waves), drive these structures via Reynolds stresses,
while these structures regulate the underlying drift-waves that drive them. Today we
know that the L-H transition in tokamaks is preceded by limit cycle oscillations, that
may be modeled as predator prey dynamics.

Such large scale, long lived coherent structures, usually exist in systems that
allow inverse cascade. The ’great red spot’ of the Jovian atmosphere is a remarkable
example. Gulf-stream, or meandering jet streams in the atmosphere may be cited as
other, more down to earth examples. While it is important to understand how these
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Figure 1. Jupiter, with the banded flow pattern of its atmosphere and its giant
red spot on the left, and Saturn with its disk and finer banded structure of its
atmosphere on the right as observed by the Hubble Space Telescope.

structures form, it is clear that once they form, they are relatively stable, as they
can avoid complex distortions due to nonlinear stresses. Both atmospheres display
atmospheric zonal flows, mesoscale alternating meridional flow patterns in addition
to these convective structures. The subject of the current review is the formation
and damping of these flows, characterization and qualitative understanding of their
dynamics, and their influence on the environment, and the turbulence that drives
them.

Even though they are a member of the cosmic family of coherent structures, with
a possible underlying general principle such as the one discussed above, the zonal flows
are also very specific in their flow patterns. The fact that they appear in physically very
different natural systems imply that more concrete similarities may exist between these
different problems. In other words, in addition to the rather general common nature
of formation of coherent structures in open, nonlinear, far from equilibrium systems,
formation of zonal flow patterns in quasi-two dimensional systems require particular
attention to detail, in order to understand their particular “universal” character.

1.1. Dynamics of Drift Wave/Quasi-Geostrophic Turbulence with Zonal Flows

The complexity of turbulent dynamics, necessitates using a statistical description.
While a straightforward application of the statistical methods leads to a solution with
zero energy flux among spatial scales associated with the equipartition of energy, the
physical solution of the energy budget equations in a driven (or internally unstable)
system with a well defined inertial range (or a similar range of scales with regular
character) is the case of fixed spectral flux. This leads to various types of spectra akin
to the celebrated Kolmogorov spectrum[11].

The presence of large scale flow structures such as zonal flows, modify this
picture substantially by turning it into a problem of mesoscale dynamics. In this
view, neither the spectrum, nor the fluctuation level (i.e. mixing length), are a priori
statistically stationary. There is no necessary “steady state”, and therefore the meso-
scale dynamics of zonal jets and fluctuations has to be resolved at the same footing with
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the establishment of the wave-number spectra and radial profiles of average density,
angular momentum, temperature as well as the fluctuations themselves. Here we will
discuss how this difficult problem can be formulated for drift waves in magnetized
confinement devices and quasi-geostrophic fluids in planetary atmospheres, and how
it can be tackled in various different limiting cases with concrete applications from
fusion plasmas.

Notice that this does not preclude the existence of steady states with zonal flows.
This is the case, for instance, in the atmosphere of Jupiter, with a zonal flow pattern
that seems to vary little over the years[12]. Similar staircase patterns are known
to exist in the Ocean[13], and have been observed in basic plasma devices[14] and
gyrokinetic simulations of fusion plasmas[15].

Turbulence in a rotating frame can be approximately formulated as a Potential
Vorticity (PV) conservation, or in the more general case as a PV budget, generated
via barotropic pumping and dissipated via frictional drag or viscous stresses. This
formulation is applicable to a surprisingly wide variety of examples from planetary
atmospheres to the ocean and to sloping bottom and rotating convection experiments,
due to the fact that the relation is exact for the Navier Stokes equation in a
rotating frame of reference, and therefore is respected in various approximate forms
or expansions such as the quasi-geostrophic approximation.

There are various descriptions of plasma turbulence to varying degrees of realism
from the Klimontovich, to Vlasov-Boltzmann, to two fluid, to gyro or drift-kinetics.
Reduced drift equations can be obtained either by taking the moments of gyro or
drift-kinetic equations[16], or by using a drift expansion of the velocities in two-fluid
equations. Since each of the two-fluid equations are isomorphic to the Navier-Stokes
equation in rotating frame (with Lorentz force playing the role of Coriolis force), it
is easy to show that one can define a potential vorticity for each species (ions or
electrons) that is conserved as it is advected by the velocity of that species. In the
case of simplified dynamics for ions or electrons (such as adiabatic ions, or a simple
generalized Ohm’s law), one can write a single PV that is conserved by the plasma
velocity. Substituting the drift expansion into these conserved potential vorticities
and using other equations such as the equation of continuity etc. we can derive a wide
range of equations from ITG to Hasegawa-Wakatani or to Charney-Hasegawa-Mima,
with proper treatment of zonal flows, in the form of sheared flows which form out of
the stresses exerted on the fluid by the wave turbulence.

PV mixing can be thought of as a unifying framework that can be used to describe
the formation of staircases. We discuss how the plasma and the geophysical cases are
similar in certain aspects with certain key differences in others. We note that the
Rhines scale defines a scale at which the standard 2D dual cascade picture at smaller
scales, switch to wave turbulence interacting primarily with the zonal flows. One can
define an anisotropic generalization of this, as a curve in kx, ky space inside of which
the drift or Rossby wave turbulence display the character of wave turbulence. Note
that the Rhines scale, critical balance and mixing length estimates are related as they
all describe balance between linear and nonlinear processes defining a critical scale, or
a critical curve in k space.

PV is important for the turbulence/ZF evolution since it is a mixed quantity
(i.e. background+fluctuation+zonal) that is exactly conserved by the full nonlinear
dynamics. Therefore it is the square of the PV, the potential enstrophy (PE), that
is really exchanged between the zonal and the fluctuating components. The spectral
evolution can be described more accurately as a local dual cascade, competing with
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a nonlocal PE forward cascade mediated by the zonal flows through which the zonal
flows acquire their energy. A description leading to predator-prey oscillations by these
processes can be introduced using the wave-kinetic formulation.

Because the basic form of drift/Rossby group propagation is backwards with
respect to its radial phase propagation they carry wave momentum towards the
stirring region resulting in momentum convergence. Thus, if a seed velocity shear
is introduced, the sheared flow leading to a tilting of the eddies results in an increase
of the initial shear. This mechanism forms the basis of the modulational instability
analysis based on a wave-kinetic formulation.

The modulational instability framework also allows the derivation of amplitude
equations describing the self-focusing and the wave-collapse phenomena for the coupled
drift-wave/zonal flow dynamics. The amplitude equations can also be derived to
describe the two dimensional evolution of this system and therefore describing and
anisotropic wave-collapse. Using more and more anisotropic scalings to describe the
anisotropic collapse leading to the formation of the zonal flows.

During the cycle of the predator-prey evolution, one important stage, which
determines how the cycle advances, is the phase where the zonal flow slowly dissipates
its energy. This happens due to a damping, or a drag mechanism on the large scale
flow. Different linear and nonlinear mechanisms for the damping of zonal flows exist.
In particular the effect of passing-trapped particle friction, can be mentioned as a
linear neoclassical mechanism for the zonal flow damping.

Another key phase in the predator-prey cycle is the quenching of the turbulence
by the zonal flows by shearing apart, or by refracting (in kr) the underlying turbulence.
This is a well-known mechanism which is due to the shearing of the eddies by zonal
flow shear, which can be described also as an exchange of enstrophy between the large
scale flow and the small scale turbulence. One “not so obvious” mechanism of shear
decorrelation come actually from the effect of sheared flow on the three-wave resonance
process. The sheared flow acts as a differential Doppler shift on the frequency of each of
the three interacting waves. This reduces the resonance manifold, while decreasing the
nonlinear three-wave interaction coefficients, making the direct three-wave interactions
less efficient, and thus forcing the turbulence to interact exclusively via the zonal flows.

The stages of initial growth, the secondary growth of the sheared flow, the
suppression of the primary instability by the flow shear, and the damping of the
sheared flow consequently constitute a predator-prey cycle. The first being the growth
phase of a linear instability, which is usually well studied. The second stage being the
formation of sheared flows for instance via the modulational instability, which is caused
by Reynolds stresses (but could be Maxwell or kinetic stresses as well). The last stage,
being the damping of the zonal flow. Surprisingly, such a cycle can be modeled by
simplifying the linear pieces of the physics (putting a constant growth rate for the
turbulence and damping rates for both the turbulence and the zonal flows), using
cascade models such as shell models. It is clear in this picture that the cascade that
is mediated by the zonal flows and the predator-prey dynamics are inherently tied.

Zonal flows are probably key players also in the transition to the H-mode in
magnetically confined plasmas. Limit cycle oscillations, possibly linked to predator-
prey oscillations between zonal flows, mean flows, and turbulent fluctuations have
been observed in a number of tokamaks during the transition phase (also called the
I-phase). Simple L-H transition models based on self-consistent mean E × B shear
and its suppression of turbulent transport have been studied starting from the early
90s. Such models can be extended to include the predator-prey dynamics, leading to
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the formation of limit cycle oscillations or radially propagating zonal flow waves via
coupling to momentum transport physics.

PV staircases, are well-known features in geophysical fluid dynamics, which give
rise to the formation of zonal jets. Zonal jets can be described by inverting these
PV staircases for the zonal flow component. While in the equivalent plasma system
(either the Hasegawa-Wakatani, or the generalized Hasegawa-Mima problems) it is not
possible to simply invert the PV in order to obtain the flow, the fact remains that the
zonal flow equation is a simple Euler equation even in the plasma case, which makes
it possible that the zonal PV can be inverted to obtain zonal flows.

One final subject related to the zonal flow physics is the question of non-locality
in turbulent transport in magnetically confined plasmas. A turbulent patch localized
in space due to the localization of its drive or free energy naturally spreads in space. It
is the basic swirling motion of turbulent eddies themselves that spread the turbulence.
Zonal flows play a key role in turbulent spreading either by inhibiting it, or by
dynamically coupling to it and generating zonal flow-avalanche (of poloidal momentum
transport) waves.

1.2. Planetary atmospheres

There is no uniformity in terms of atmospheric dynamics of planets in the solar system.
Mercury has little atmosphere and the wind patterns around it are dominated by an
outward flow away from the sun, much like a comet’s. Venus has a dense atmosphere
that rotates much faster than the rotation of the planet itself (super-rotation), two
features shared also by Saturn’s moon Titan, the only moon in the solar system to have
a substantial atmosphere. Earth’s atmosphere has interesting turbulent dynamics and
complex wind patterns, with appearance of intermittent cyclones, hurricanes and other
phenomena, which incidentally gets more interesting as we keep pumping CO2 into it.
However the speeds of these winds barely ever reach 10-20% of the rotation speed of
the earth. As any fan of science fiction knows; one of the most striking features of the
Martian atmosphere, is the existence of sudden giant sandstorms.

In an interesting contrast to those, are the gas giants, like Jupiter and Saturn.
Jupiter’s atmosphere is very particular with persistent characteristic features. Yet it
is very dynamic and rotates differentially with a rather remarkable banded cloud
structure resulting from the zonal winds that dominate the flow pattern of the
atmosphere (see fig 1). Saturn has a similar banded cloud structure of its atmosphere,
which seems relatively finer than that of Jupiter. However, its differential flow pattern
is rather similar (see fig 2) with banded, sheared flows.

Observations of features of Jupiter’s atmosphere, go back to the 17th century, to
the time of Giovanni Cassini who was apparently aware of the giant red spot. The
realization of its differential rotation came about as a kind of acceptance of defeat in
the face of a series of failed attempts to determine its rotation speed based on the
rotation of characteristic features visible on its surface[17].

Determination of the atmospheric flow patterns of Jupiter date back to 50s from
ground based observations[20]. Images from Voyager missions[12], Hubble Space
Telescope[21] and Cassini spacecraft’s Imaging Sub-System (ISS)[18] have been used
to determine the atmospheric velocities, verifying and increasing the confidence in
earlier observations. The images from these missions give us a very detailed picture
of the turbulence at the top layers of Jupiter’s atmosphere as a very rich complex
dynamical problem[22].
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Figure 2. Atmospheric wind patterns of Jupiter on the left [18] and Saturn on
the right [19] from the Cassini ISS data.

One obvious feature of the atmospheres of these planets is the existence of zonal
flow structures, a feature incidentally shared by the atmosphere of our earth in the
form of mid-latitude westerlies. Banded zonal flows are also observed in the Earth’s
oceans[23, 24, 13], in the form of coherent flow structures elongated in the east-west
direction.

While the giant planets and earth have very different atmospheres, sufficient
parallels exist between these systems that a uniform mathematical formulation is
possible at the simplest level. In fact, with slight differences on the equations of
state and the approximations on compressibility, the same basic mathematical set of
equations can be used to describe the dynamics of the atmosphere and of the oceans
at the same time.

1.2.1. β-plane turbulence:

In a barotropic atmosphere it is possible to eliminate the pressure between the
two equations governing the horizontal components of motion. The resulting
equation expresses the fact that vertical atmospheric columns, moving across
the surface of the earth, must preserve their individual absolute vorticity
after allowence has been made for such vorticity changes as may result from
horizontal shrinking or stretching. – C.-G. Rossby [25]
Large scale chaotic motions in a planet’s atmosphere can be described using a

fluid formulation similar to Navier-Stokes equations to a very good approximation.
Electromagnetic fluctuations and kinetic effects can safely be neglected when dealing
with flow patterns at atmospheric scales. Instead, there are two ingredients, which are
essential in order to describe atmospheric turbulence: rotation and granulation. To
describe basic fluid motion in a rotating atmosphere, we can write the basic equations
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in the form: (
∂

∂t
+ v · ∇

)
v + 2Ω× v = −∇P

ρ
(1)

and derive the equation for the component of vorticity that is normal to the planet
surface: ζ ≡ n̂ · (∇× v)(

∂

∂t
+ v⊥ · ∇

)
ζ + (ζ + f)∇⊥ · v⊥ + vy

∂

∂y
f = 0 (2)

where v⊥ is the horizontal component of the velocity, f = 2Ω sin θ is the local
component of the planetary vorticity (Ω is the planetary rotation rate and θ is the
latitude) n̂ is the vector normal to the planet’s surface and P and ρ are the pressure
and mass density of the atmosphere. Note that the normal component of the curl
of the term on the right hand side (i.e. ρ−2n̂ × ∇ρ · ∇P ) vanishes by virtue of the
equation of state P = P (ρ), independent of its particular functional form. Fluids
that satisfy this condition (i.e. ∇ρ×∇P = 0) in general are called “barotropic fluids”.
Here x and y are local longitudinal and latitudinal directions respectively. Hence, f
is taken to be a function of y.

If we consider thickness of the fluid layer, an equation of continuity can be written:(
∂

∂t
+ v⊥ · ∇

)
h+ h∇⊥ · v⊥ = 0 (3)

which together with (2) implies conservation of

d

dt

[
ζ + f

h

]
= 0 (4)

which means for an individual fluid element (ζ + f) ∝ h.
In other words, as Rossby describes in the above quotation, the absolute vorticity

ζ + f of a fluid element, changes only with horizontal shrinking or stretching. This is
in fact a particular version of what has come to be called the Ertel’s theorem:

d

dt

[
ωa · ∇λ

ρ

]
= 0 (5)

where ωa = Ω + ∇ × v is the absolute vorticity, and λ is a Lagrangian conserved
quantity which is a function of density, pressure or both (usually λ = s, where s is
entropy), with possible sources and sinks. In the above example for example the λ
corresponds to density itself with a constant stratification of height h in the direction
normal to the planet’s surface.

The above quantity is called “potential vorticity”, probably in analogy with the
concept of “potential temperature” that was already commonly used in atmospheric
physics at the time when it was first introduced. It indicates the vorticity the air
column would have had, had it been at the reference latitude f0 with a reference height
of h0.

1.2.2. Freezing in laws Freezing in laws in the form of
∂

∂t
ω = ∇× (v × ω) (6)
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where ω is a freezing in quantity, are important ingredients of mixed conservation laws
such as PV conservation. Considering together with an equation of continuity of the
form

∂n

∂t
+ v · ∇n+ n∇ · v = 0

we can write: (
∂

∂t
+ v · ∇

)
ω

n
=

ω

n
· ∇v (7)

Following Vallis , consider a Lagrangian conserved quantity χ. The difference in values
of χ between two infinitesimally separated points on a line element δℓ is also conserved:

d

dt
δχ =

d

dt
(∇χ · δℓ) = 0

and since the equation of an infinitesimal line element can be written as dδℓ/dt = δv
or: (

∂

∂t
+ v · ∇

)
δℓ = δℓ · ∇v (8)

since (7) and (8) are isomorphic, the vorticity and the line element evolve exactly the
same way, which means that we can write:

d

dt

(
∇χ · ω

n

)
= 0

1.2.3. Geostrophic balance The simplest formulation, which includes a basic form
of planetary rotation and granulation is the so-called β-plane model. This model
is commonly used in geophysical fluid dynamics as a crude model of geophysical
turbulence. Its simplicity comes from a number of assumptions and approximations.

It relies on a particular condition called the geostrophic balance:

v⊥ =
n̂×∇P
fρ

which is a statement of the local balance between the vertical components of the
Coriolis force −2Ω× u and the pressure gradient force −∇P/ρ.

It is mathematically equivalent to the so called “drift approximation” in
magnetized plasmas. For example, the E ×B drift:

vE =
b̂×∇Φ

B
c

which is a balance between the Lorentz force (i.e. qv×B/c) and the electric force (i.e.
−q∇Φ) is in fact a lowest order force balance when the magnetic field is large. The
analogy between the magnetized plasmas and planetary atmospheres is based partly
on the fact that Coriolis and Lorentz forces have the same mathematical forms.

Both of these expression for the lowest order balance, can be extended by adding
other similar terms. Both correspond to the zeroth order equation in a perturbation
expansion with a small parameter (introduced by strong rotation in one case, and
strong magnetic field in the other). The small parameter in the case of geophysical
fluid dynamics is the Rossby number

ε =
U

2ΩL
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where U and L are characteristic velocity and length scale respectively. See section X
for a discussion of the plasma case.

A similar balance exists in the horizontal direction between the horizontal pressure
gradient and the gravity force. This allows us to write the horizontal component
of the velocity as v⊥ = gf−1n̂ × ∇h, where the thickness of the fluid layer h =
h0 (x, y) + h1 (x, y, t) plays the role of the stream function[26].

The critical simplification of the beta plane approximation is the assumption that
the projection of the planetary vorticity in the direction perpendicular to the surface
of the planet varies roughly linearly in the latitudinal direction ( i.e. f = f0 + βy ).
The assumption is approximately valid for mid latitudes as long as the characteristic
latitudinal extent of fluctuations remains small compared to the scale at which the
local component of the planetary vorticity changes.

The strength of the potential vorticity conservation becomes apparent when we
note that within these approximations, the potential vorticity to be conserved takes
the form:

q ≈ ζ + f0 + βy

h0 + h1
≈ ζ + f0 + βy − f0h1/h0

h0
(9)

where the advection velocity is v⊥ = gf−1
0 n̂ × ∇h1 (i.e. assuming h0 is constant

for the sake of argument). Due to its approximate nature q is sometimes called the
quasi-geostrophic potential vorticity, whose conservation equation that can be written
explicitly as: (

∂

∂t
+ n̂×∇⊥ψ · ∇⊥

)(
∇2

⊥ψ − ψ
)
+ β′ ∂

∂x
ψ = 0 (10)

where the temporal and spatial variables are scaled by f−1
0 and R =

√
h0gf

−1
0 (i.e.

the so-called Rossby deformation radius) respectively, the normalized streamfunction
is the height deviation ratio ψ = h1/h0 and β′ = R

f0
β is the ratio of the Rossby

radius to the local planetary vorticity gradient length. Note that (10) is the Charney
equation, or the Charney-Hasegawa-Mima (CHM) equation as it is called in plasma
physics. We obtained it here using a constant bottom height and a linear variation of
the local horizontal planetary vorticity.

However as can be seen from the definition of potential vorticity, the same
equation can be obtained with a constant f0 but with a linear variation of the bottom
height h0 (y), in which case, one would write β′ = − R

h0

dh0

dy which is the ratio of the
Rossby deformation radius to the gradient length for the bottom height. It is not
surprising given that the potential vorticity can change either with an increase in
absolute vorticity (i.e. for instance due to a linearly varying locally vertical planetary
vorticity) or with a decrease in fluid height (i.e. for instance due to a linearly varying
profile of bottom height). The two give exactly the same equation. In fact any
combination of those would work also in which case one would define β′ using the
gradient length of the equilibrium potential vorticity.

One can introduce mesoscale flows explicitly into the above picture, simply by
adding the mesoscale vorticity (which is mostly zonal for geophysical problems, but
we leave it general) to the definition of total potential vorticity:

q ≈ q0 + q + q̃

where q0 = f0 + β
h0
y, q = ζ, q̃ = ζ̃ − f0

h2
0
h̃1, where q is the mesoscale (e.g. zonal)

vorticity, which in principle varies in a slower time scale compared to the fluctuations
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Figure 3. A characteristic rotating annulus setup for the rotating convection
experiments. The system rotates with a rotation frequency Ω, the inner and outer
plates of the cylinder are kept at T0 and T1 respectively, providing a temperature
gradient for the convection, and the slope at the top and bottom of the container
provides a β effect as discussed in section XXX.

q̃, but in a faster time scale compared to the mean q0. In this case the advection
velocity is also a sum of mesoscale and fluctuation velocities v⊥ = ṽ⊥+v⊥, where the
mesoscale velocity and vorticity are linked via ζ = ∇ × v⊥. We leave the discussion
of zonal flow physics to the section XXX.

The potential vorticity conservation is useful in particular due to the fact that one
can invert it, to obtain physical quantities such as velocity, pressure etc. This feature
is called the “principle of invertibility”[27]. This is possible in the problem that is
discussed above, so that the CHM problem can be analyzed completely in terms of
potential vorticity alone. Adding any Lagrangian conserved quantity with sources and
sinks (such as entropy) do not break this invertibility but changes the definition of
PV.

1.3. Rotating Convection

The idea that the same equation can be obtained using either the β effect, or using a
constant vorticity but a variation of the bottom height may seem like a mathematical
curiosity. However this fact can actually be used to model planetary dynamics under
laboratory conditions. This can be done in practice, using rotating platforms, where
the rotation speed can be controlled and different kinds of fluid containers with
varying bottom heights can be used. In the context of geophysical fluid dynamics,
what is particularly interesting is the so called “rotating convection” experiments.
These can be set-up in different ways, using cylindrical or spherical containers with
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Figure 4. The velocity field from the sloping bottom experiment in Grenoble[31].
Here the snapshot of the velocity field (right) and the spatially averaged zonal
velocity (left) are shown in a) and the time evolution of the mean zonal velocity
is shown in b). [need copyright]

free or constrained top surfaces and some kind of temperature difference or fluid
granulation to provide the convective drive. A large number of such experiments has
been performed over the years starting from the mid 50s [28, 29] instigated partly by
the theoretical works of S. Chandrasekhar[30]. Today, the study of rotating convection
continue to progress, especially with the advent of new measurement, analysis and
visualization techniques. The large, rotating turntable experiment of Laboratoire des
Ecoulements Géophysiques et Industriels in Grenoble is an example of a setup where
such experiments are being performed today under different configurations. Figure
4 shows the zonal flow structures in an experiment when a small scale convective
driving is supplied by spraying the upper free surface with salty (denser) water in this
setup[31]. A review of the earlier experimental work on this subject can be found in
Ref.

One particular setup that is commonly studied in this context is the cylindrical
annulus with sloping top and bottom surfaces (see figure 3) to provide the β effect
where the inner and outer surfaces are kept at different temperatures to provide a
temperature gradient and hence the free energy for forming convective cells[32].

Another interesting setup is the Grenoble experiment which has a sloping bottom
surface and a free top surface and the convective drive is obtained by spraying salty
(denser) water from the top. The observed zonal jets and their dynamics can be seen
in figure
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You can find a detailed (and rather standard) derivation of the equations
describing the evolution of rotating convection system of figure 3 in the appendix
8.1.2. While for a viscous fluid with free energy injection, PV is not really conserved,
one can still think in terms of a PV budget:

dq

dt
= Pq −Dq (11)

where Pq is the production and Dq is the dissipation of q. For a Newtonian fluid,
we can write the dissipation as Dq = −ν∇2

⊥q. The production of potential vorticity
comes from the so-called baroclinic term, the normal component of the curl of the
term on the right hand side of Eqn 1 divided by height (i.e. ρ−2h−1n̂×∇ρ ·∇P ). The
equation of state for the rotating convection problem is (e.g. [30]):

ρ = ρ0 [1− α (T − T0)]

which suggest that the density perturbation is linked to temperature perturbation,
which is governed by the heat equation rather than the pressure perturbation, which
is linked to velocity through the geostrophic balance and is therefore determined by
the vorticity equation. Since these two are functionally independent (albeit being
dynamically coupled), the baroclinic term does not vanish, giving rise to a source of
potential vorticity, which can be written to the lowest order as:

Pq = − 1

hρ20

dP0

dr

∂

∂y
δρ

which becomes

Pq = −αΩ
2r0
h

∂

∂y
δT

using the equation of state and the lowest order balance between pressure gradient
and the centrifugal force. Here δT is the temperature perturbation as discussed in the
appendix 8.1.2. In the setup that is considered above the potential vorticity varies
only due to variations in fluid height, which is usually not fluctuating (i.e. the fluid
volume is constrained both at the bottom and at the top). This means, we can write
the PV as:

q ≈ ζ + f0
h0 − 2η0x

≈ ζ

h0
+
f0
h0

(
1 +

2η0
h0

x

)
where η0 is the tangent of the angle that the conical top and bottom surfaces make
with the horizontal. We also assumed that both angles are the same so that they add
up to give h = h0 − 2η0x. With this, the PV budget equation given in (11) becomes:(

∂

∂t
+ n̂×∇⊥ψ · ∇⊥

)
∇2

⊥ψ − η∗
∂

∂y
ψ = −Ra∂yΘ+∇4

⊥ψ (12)

in dimensionless variables (see appendix 8.1.2), which is coupled to the temperature
perturbation equation of the Rayleigh-Bénard convection[33].

P
(
∂

∂t
+ n̂×∇⊥ψ · ∇⊥

)
Θ+

∂

∂y
ψ = ∇2

⊥Θ (13)

The system (12-13) describes the nonlinear evolution of thermal Rossby waves.



CONTENTS 16

Figure 5. A cartoon, showing the basic rotating convection pattern due to
diamagnetic drift, temperature inhomogeneity and curvature in a tokamak, and
the zonal flows that are driven by the Reynolds stresses that are generated (in
red).

1.4. Fusion devices, Tokamaks

Excellent comprehensive reviews of zonal flow physics, from the point of view fusion
plasma turbulence[34], and their experimental studies in basic plasmas, tokamaks
and stellarators[14] are already available. Therefore, here we will limit ourselves to
developments that are relevant for the common aspects of zonal flow physics.

Zonal flows, in the context of fusion plasmas, are radially localized, poloidally
elongated E × B flow structures (see figure 5). Since the radial motion associated
with these flow structures is negligible by definition, zonal flows do not contribute to
the radial transport. Because of this, they are usually linearly stable, or even damped
and therefore has to be driven by turbulence via Reynolds stresses that the complex
turbulent motions generate. We will discuss the details of the generation mechanism
in the next section. Here we content ourselves to citing some physical and numerical
observations of zonal flows in fusion devices, and in particular in tokamaks.

ZFs can be directly detected in the plasma by measuring the electrostatic
potential. This can be achieved by measuring the floating potential using Langmuir
probes near the plasma edge [36, 37, 38] or using remote diagnostic systems such as
the heavy ion beam probes at the core of the plasma where the physical access is
limited [39, 40]. However most measurements of zonal flows in tokamak plasmas, is
done on a particular class of oscillating zonal flows, called geodesic acoustic modes
(GAMs). Because GAMs have a frequency of the order of few kHz in most tokamaks,
they are much easier to detect. They have been observed on DIII-D [41, 42], JIPP
T-IIU [43], ASDEX Upgrade [44], JFT-2M [45], T-10 [46], HL-2A [47] and recently on
Tore Supra using a special detection technique[48]. Note that, since their oscillation
is rather generic to toroidal geometry, we will not discuss specifics of GAM physics
in this review. Some aspects of GAMs are, nonetheless, similar to the low frequency
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Figure 6. The poloidal flow velocity associated with the zonal flow (GAM) in the
D-IIID tokamak as inferred from the movements of density fluctuations measured
by the beam emission spectroscopy (BES) system[35].

zonal flows that are related to the zonal flows that are observed in the geophysical
setting.

Various diagnostic systems that measure fluctuation characteristics in tokamaks
measures density fluctuations directly. These fluctuations show structures that
propagate in the poloidal direction. This apparent movement is due to a combination
of wave propagation and the actual plasma velocity. While it is not possible to
separate wave propagation and plasma velocity looking only at density fluctuations,
it is generally accepted that the radial profile of this speed corresponds roughly to the
radial profile of the plasma velocity and the wave-number dependence of this observed
velocity corresponds roughly to the wavenumber dependence of the phase speed, i.e.:

vfl (r, kθ) ≈ vE (r) + vph (kθ) .

Figure 6 shows the two dimensional profile of the poloidal velocity as inferred from
the movement of density fluctuations observed using the beam emission spectroscopy
system in the DIII-D tokamak. Here the shear in the radial direction comes mostly
from the shear in the E ×B velocity.

1.5. Basic plasma devices

Zonal poloidal plasma flows have also been observed in various basic plasma devices,
from small stellerators such as CHS [39], TJ-II and TJK to linear machines such as
CSDX, CLM among others. Because of the relatively large values of collisionality, the
dynamics in these small devices (in particular the linear ones) is mostly dominated
by dissipative drift instabilities (such as described by the Hasegawa-Wakatani system
introduced in Section 2.3.2). Using some heating schemes, ITG or ETG modes has
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Figure 7. Poloidal ion fluid velocity from CSDX, measured using a mach probe.
The original figure in Ref [49] has also error bars roughly of the order of ±50 m/s
that we dropped for clarity.

been reported in some of these basic devices. While stellarators may appear relatively
complicated for modeling, linear plasma machines can be modeled rather simply using
a cylindrical geometry. A cylindrical plasma device with magnetic field along its axis, is
almost a one-to-one analogue to the rotating convection experimental setup discussed
in Section 1.3. Figure 7 shows the poloidal ion fluid velocity as a function of radius
where a “zonal jet” (associated partly with the diamagnetic velocity due to background
density gradient) and smaller zonal flow structures can be observed.

2. Turbulence in fusion plasmas

The primary goal of the magnetic fusion programme is to achieve sufficiently long time
confinement of plasma particles and heat so that the fusion reaction may start. This is
achieved in tokamaks by keeping the effective diffusion of particles and heat across the
magnetic field as small as possible. In modern fusion devices, collisions are fairly rare
that the heat and particle transport they drive is feeble. This allows, by heating the
core of the plasma, to enforce temperature profiles, where the plasma is very hot in
the center, which is necessary for the fusion reaction, and relatively much colder where
the plasma touches material surfaces, which is important for the preservation of those
surfaces. These radially inhomogeneous profiles of temperature and density provide
free energy sources for convective instabilities akin to the convective instabilities in
rotating convection problem described above (where physical rotation is replaced by
diamagnetic rotation). These general class of instabilities are called drift-instabilities.
They are classified based on the free energy source, rotation direction and the
mechanism for tapping the free energy source.

As a general rule, radially inhomogeneous background profiles drive instabilities
that have an inward-outward fluctuating velocity component. This can be explained as
the plasma trying to get rid of the excess free energy (i.e. increase entropy), and in the
absence of meaningful collisional transport, it can do so by arranging its fluctuating
radial E × B flow such that the E × B flow is inward when the local temperature
fluctuation is negative, and outward when the local temperature fluctuation is positive
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Figure 8. The connections between different types of formulations in plasma
turbulence. The most general formulation being that of Klimontovich, and
the simplest ones being Hasegawa-Mima and reduced MHD. Only the crucial
assumptions that are required are written at each step, even though there
are others. BBGKY stand for the Bogoliubov-Born-Greene-Kirkwood-Yvon
hierarchy. One interesting observation is that while rMHD seems to require a
collisional fluid closure, one may obtain it also based on a large Magnetic field
(which localize the particles, via Larmor rotation and play the role of short mean
free path).

(at least for the case when the free energy source is the temperature gradient). This
way the hotter plasma is carried outward and the cooler plasma inward, leading to
an increase of entropy. This tendency, selects a linearly most unstable mode with
finite poloidal wavenumber ky ̸= 0, and usually a vanishing radial wavenumber kx = 0
(where x is the radial direction as in the rotating convection problem). This mode
that is linearly unstable is characterized by spatial patterns that can be called “linear
streamers”.

Starting from seed levels, such fluctuating flow patterns grow exponentially in
time in the linear phase, and saturate via mode coupling in the nonlinear phase.
The couplings may be weak, nearly resonant triad interactions between well-defined
waves, or strong interactions as in the case of fully developed turbulence, leading
to a flux of energy, enstrophy etc. through k-space. Furthermore, kinetic physics
also contribute to this balance via resonant interactions between waves and particles
(Landau damping, Cerenkov emission etc.).

Since the goal is the amelioration of confinement, and in the magnetohydrody-
namics (MHD) sense a basic state of confinement is already achieved, the primary
subject of plasma turbulence in magnetized fusion is the study of the transport that
the turbulence drives.

2.1. Description of plasma turbulence

While its classical description is rather simple, its collective nonlinear nature make
the general problem of plasma turbulence, one of the most complex issues that the
nature confronts us with. It is, for instance, notably more complicated than the
turbulence in neutral fluids due to couplings to electromagnetic fields and kinetic
effects such as Landau damping. There are a pleithora of descriptions relevant for
plasma problems, from the full Klimontovich description to simple reduced fluid
models such as Hasegawa-Mima or Hasegawa-Wakatani systems (see fig 8).
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2.1.1. Klimontovich description: In a classical formulation, point particles follow
trajectories that are fully determined by the forces acting on them. Given a collection
of such point particles, the probability of finding a particle at a given time at a given
position with a given speed is either one or zero, depending on whether or not a
particle trajectory coincides with that point in phase space. This can be formulated
using the probability distribution function

Fs (r,v, t) =

Ns∑
j=1

δ (r− rj (t)) δ (v − vj (t)) (14)

where rj (t) and vj (t) constitute the trajectory of the jth particle. Taking the
derivative of this expression with respect to time gives:

∂Fs

∂t
=

Ns∑
j=1


vj︷︸︸︷
drj
dt

·∂Fs

∂rj
+
dvj

dt
· ∂Fs

∂vj


where the trajectories are determined by the equations of motion for the particles:

dvj

dt
=

qs
ms

[
E (rj , t) +

vj

c
×B (rj , t)

]
≡ Ks (rj ,vj , t) (15)

with qs being the electrical charge for the species s, not to be confused with the
potential vorticity (also denoted by q in this paper). Noting that

∑
j

∂
∂rj

F (r,v, t) =

− ∂
∂rF (r,v, t) and

∑
j

∂
∂vj

F (r,v, t) = − ∂
∂vF (r,v, t), because of the form of (14), and

using (15), we obtain the Klimontovich equations:

∂Fs

∂t
+ v · ∂Fs

∂r
+Ks (r,v, t) ·

∂Fs

∂v
= 0 . (16)

for each species s, which are coupled to the Maxwell’s equations[50] for the fields with
the sources given by:

J (r, t) =
∑
s

∑
j

qsvjδ (r− rj) =
∑
s

qs

ˆ
vFs (r,v, t) d

3v

ρ (r, t) =
∑
s

∑
j

qsδ (r− rj) =
∑
s

qs

ˆ
Fs (r,v, t) d

3v

This formulation is in fact nothing but a trivial re-writing of the equations of motion in
a compatible form with probabilistic descriptions. Thus, it provides no simplification
whatsoever in the insurmountable initial task of solving Ns equations of motion for
each species coupled with the Maxwell equations.

One interesting, maybe somewhat philosophical point, is that turbulence as a
phenomenon of multiscale disorder is nowhere to be found in this formulation of
perfectly deterministic motion of classical point particles. Nonetheless, the couplings
between particles in the above equation, which take place through Ks that is
determined by the phase space distribution of all the other charged particles via the
Maxwell’s equations open the door to the possibility of complicated motions that form
the basis of what we call plasma turbulence.
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2.1.2. Vlasov equation: One problem with the Klimontovich formulation, among
others, is that Fs (r,v, t) = Fs (r,v, t|rj ,vj , 0) depends on the initial positions and
velocities of all the particles of all species, since one needs the initial conditions for
solving the equations of motion in order to find the trajectories. Since neither the
determination of all the initial conditions, nor the computation of all the trajectories
is possible, a statistical description is the only option.

In order to achieve this, consider the average of Fs (r,v, t|rj ,vj , 0) over a
statistical ensemble of possible initial conditions:

fs (r,v, t) = ⟨Fs (r,v, t|rj ,vj , 0)⟩
The distribution function fs (r,v, t) defined this way is naturally independent of
the initial conditions, and is formally called a “single particle distribution function”.
We can write down the equation for the evolution of fs (r,v, t) by averaging the
Klimontovich equation (16) over a statistical ensemble:

∂fs
∂t

+ v · ∂fs
∂r

+

⟨
Ks (r,v, t) ·

∂Fs

∂v

⟩
= 0 (17)

The Klimontovich acceleration involves only the electromagnetic fields that are
solutions of the Maxwell’s equations. Since those are linear, they can be solved
using a response function in terms of the charges and currents, which are themselves
functions of the distribution function Fs. Therefore the last term in (17) describing
the correlations between particles can be reduced in two ways. If one drops
correlations altogether, and considers only the mean fields (that is the particles
interact with eachother only via their interactions with the collectively generated mean
electromagnetic fields), one obtains the Vlasov equation:

∂fs
∂t

+ v · ∂fs
∂r

+
qs
ms

[
E (r, t) +

v

c
×B (r, t)

]
· ∂fs
∂v

= 0

in contrast, if one considers only local interactions (i.e. direct collisions), one obtains
the Boltzman equation. In general, both of them together leads to the inclusion of a
collision operator in the Vlasov equation above.

2.1.3. Freezing in laws of two-fluid description: Consider the ion equation of motion:(
∂

∂t
+ vi · ∇

)
vi =

e

mi

(
E+

vi

c
×B

)
− ∇P
mini

(18)

and continuity (
∂

∂t
+ vi · ∇

)
ni + ni∇ · vi = 0

for ions.
Note that (18) is isomorphic to Eqn. 1, with Lorentz force replacing the Coriolis

force. Taking the curl of the identity: ∇ (v · v) = 2v · ∇v + 2v × (∇× v) we
obtain∇× [v · ∇v] = −∇× [v × (∇× v)], which can be used to rewrite (18) as:

∂

∂t
Ωg

i = ∇× (vi ×Ωg
i ) +

1

min2i
∇ni ×∇Pi (19)

where Ωg
i ≡ ωi +

eB
mic

is the “ion plasma absolute vorticity”, which is a sum of the ion
plasma vorticity ωi = ∇×vi and the cyclotron frequency eB/mic. Since (19) has the
form of a freezing in law, we can write it as

d

dt

(
∇χ · Ω

g
i

n

)
=

1

min2i
∇ni ×∇Pi · ∇χ (20)
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Considering an equation of heat of the form
∂

∂t
P + vi · ∇P + ΓP∇ · vi = 0

Which actually implies conservation of:(
∂

∂t
+ vi · ∇

)
s = 0

where s = P/nΓ is the specific entropy. Now by choosing χ = s (or a function of s)
causes the right hand side of (20) to vanish, resulting in the general definition of ion
plasma potential vorticity as:

qi ≡

(
ωi +

eB
mic

ni

)
· ∇s

advected by the ion velocity vi. We will see later that simply using this definition
with a drift approximation, actually gives the correct definition of potential vorticity
for various models such as Hasegawa-Mima, Hasegawa-Wakatani or slab ITG.

Note that one can write a similar conservation law separately for the electron
fluid, advected by the electron velocity

ve = vi −
J

ne
where J is the plasma current density. Assuming for instance that the electrons have
constant temperature (or have a temperature proportional to their density):

qe ≡

(
ωe − eB

mec

ne

)
· ∇χ

where χ is a constant of motion of the electron fluid.

2.1.4. Dual PV conservation in Hall MHD If we consider the usual limit me ≪ mi,
and the definition of the ve = vi − c∇×B

4πne , we can write dual freezing in laws as[51]
∂tΩj = ∇× (uj ×Ωj) , (j = R,L)

with the pair of generalized vorticities and velocities defined as:
ΩR = eB

mec
, uR = v − c

4πne∇×B

ΩL = eB
mic

+∇× v , uL = v

where v, the ion velocity plays the role of plasma velocity. Since ∇ · J = 0, the
equation of continuity with the ion and electron fluids become the same with the
quasi-neutrality condition ne = ni:

∂n

∂t
+∇ · (nvi) =

∂n

∂t
+∇ · (nve) = 0

which means that density is conserved both by ions and electrons, which allows us to
write a potential vorticity pair:

qR = 1
n

eB
mec

· ∇χ , uR = v − c
4πne∇×B

qL = 1
n

(
eB
mec

+∇× v
)
· ∇s , uL = v

such that (
∂

∂t
+ uj · ∇

)
hj = 0 , (j = R,L)

Left fluctuations are expected to dominate the ion scales, while the right fluctuations
dominate the electron scales. This has actually been verified in a direct numerical
simulation of incompressible Hall-MHD[52].
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2.1.5. Drift-fluid description and PV conservation: For spatial scales larger than the
gyro-radius and time scales slower than the cyclotron frequency, one may consider
the plasma as a reduced fluid that moves around with drift velocities. The reduction
that leads to this reduced fluid description is in fact a reduction in particle orbits
approximating them using drift velocities. Since the dynamics of its individual
elements define the nature of a “fluid” (as a continuum approximation to a discrete
system with very large degrees of freedom) the fact that the individual particles
move in drift orbits leads to a description of a drift-fluid. Plasma in these scales
act approximately as a drift-fluid as long as local kinetic equilibrium is established.
In the case where kinetic physics is important, we use a drift-kinetic description
whose moments would correspond to the drift-fluid description of desired complexity
depending on the closure of the fluid hierarchy.

One interesting aspect of reduced descriptions (especially for plasmas) is that
multiple reductions based on very different assumptions may lead to same or very
similar reduced models even though the justifications are based on completely different
hypotheses. One example is that, one can obtain reduced MHD equations either by
making a fluid closure (strictly justified only when the collisions dominate) and than
taking a strong magnetic field to force the system to become 2D or directly by assuming
a strong magnetic field and building a fluid-like closure via the effect of the Lorentz
force dominating the dynamics [53]. The reason for that is the second step making
the first simplifying assumption obsolete, but somehow still respecting the final result
(to a certain extent). So in this sense for instance the standard MHD may be seen as
an unnecessary but simplifying intermediate step.

In the same vein, the drift-fluid equations can actually be derived from two-fluid
equations (which are normally justified based on collisional closures a la Braginskii).
For this reason, some people call these drift-Braginskii closures. One may however
also derive them by directly taking the moments of the gyrokinetic equation leading
to what is known as the gyrofluid[16] description and then going to the drift limit by
dropping higher order finite Larmor radius effects.

Based on this justification, we will use two-fluid equations. An asymptotic
expansion of the small parameter ω/Ωi (using the fact that the background magnetic
field is very strong) leads to what is known as the drift expansion. Doing this separately
for ions and electrons and making the usual assumptions of quasi-neutrality and
me ≪ mi leads to simple tractable fluid models[54]. However, since the starting
point for this derivation is the two-fluid equations. The exact conservation of PV for
the two-fluid system leads to the conservation of an expanded approximate PV for the
drift-fluid, with an advection velocity given by the drift velocities.

For instance considering the dominant order ion velocity of the form vi = vE ,
where vE is the E×B velocity gives directly:(

∂

∂t
+ vE · ∇⊥

)([
ζi +Ωi

ni

])
= 0

now where ζi = ∇ × vE · b̂ = c
B∇2

⊥Φ is the parallel component of the ion plasma
vorticity, and Ωi is the ion cyclotron frequency. It is interesting to note that this gives
the Hasegawa-Mima equation that will be discussed in the next section when density
is expanded as a linearly varying (i.e. in x) background and a small fluctuation around
that. Note that in this approach, one need not to consider the non-divergence-free
higher order correction to the plasma velocity (which is the polarization drift in the
case of magnetized plasmas) explicitly.
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2.1.6. Gyrokinetic equation and the PV: An honest description of turbulent
phenomena in fusion plasmas unfortunately requires a way to treat kinetic effects. In
order to describe kinetic evolution of plasmas under the influence of strong magnetic
fields, we use the gyrokinetic equation. Gyrokinetic equation in its full glory tends
to be rather complicated. However in most cases it can be written in the form of a
conservation law for the guiding center distribution function Fi = Fi

(
X, p∥, µ, t

)
:

∂

∂t

[
B∗

∥Fi

]
+

∂

∂X
·
(
ẊFiB

∗
∥

)
+

∂

∂p∥

(
ṗ∥FiB

∗
∥

)
= 0

where µ , the adiabatic invariant is simply a label (since dµ/dt = 0). If we want to
define a quantity similar to potential vorticity, we can define:

Ni ≡
ˆ
B∗

∥Fidv∥dµ

which is actually a normalized ion guiding center density. It becomes proportional to
the usual PV in the limit of slab with adiabatic electrons and k⊥ρs ≪ 1.

2.2. Role of turbulence in fusion plasmas, turbulent transport etc.

The possibility of transport driven by plasma microturbulence (called anomalous
transport due to historical reasons), and the difficulty this poses to the magnetized
fusion was recognized rather early on in the development of the fusion programme.
Different kinds of instabilities, with different characteristics have been identified over
the years. One important class of instabilities that drive transport in tokamaks is the
drift waves[55].

2.3. Drift waves, and instabilities

The basic drift wave is a density fluctuation on top of an inhomogeneous background
density profile (see figure 9) that propagate because the radial fluctuating E × B
velocity that this density fluctuation generates, moves the high (low) density plasma
outward just above a density peak (hole), and low (high) density plasma inward just
below it, leading to a movement of the density peak (hole) upward in the y direction.

For dynamics at ion scales, this wave nature relies on the adiabatic electron
response:

ñ

n0
=
eΦ̃

Te
(21)

which comes from the parallel (to the magnetic field) component of the electron
equation of motion (Ohm’s law).

−∇∥Pe + en∇∥Φ = 0

with Pe = nTe, actually gives:

∇∥

(
n

n0
− eΦ

Te

)
= 0 (22)

Note that (22) has two classes of solutions. The first class, can have a functional
dependence on the parallel component but obeys (21). The second class where there
is no relation between n and Φ, but both of them are independent of the parallel
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Figure 9. The basic mechanism of the drift wave. Here filled contours of density
is shown, which is the sum of a background profile decreasing in the x direction
plus a fluctuating sinusoidal component, which is proportional to the fluctuating
electrostatic potential due to the adiabatic electron response. This gives an E×B
flow as shown, which is inward just below the density maximum and outward just
above it. Since the outward flow increase the density (by carrying high density
plasma from the core) and the inward plasma decrease it, the density maximum
ends up moving upward.

component z. Drift waves belong to the first class, whereas zonal flows belong to the
second.

Another interesting point of the drift wave dynamics is that if one introduces a
phase difference between the density and electrostatic fluctuations (for example due to
collisions, or trapped electrons), which amounts to moving the flow pattern in figure
9 downwards, since now there will be an outward motion of high density plasma at
the maximum of the density (before there was no radial motion at the peak location),
in addition to the upward wave propagation there will also be an increase of the
amplitude of the sinusoidal fluctuation. This is one of the mechanisms by which the
basic drift instability is excited.

The Ion temperature gradient driven (ITG) mode is an ion Larmor radius scale
drift-instability that has an overall phase speed in the ion diamagnetic direction and
is driven unstable due to the ion temperature gradient. ITG can be unstable even
with a perfectly adiabatic electron response. The collisionless, or dissipative trapped
electron modes (TEM) are ion Larmor radius scale, electron drift instabilities (i.e.
they move in the electron diamagnetic direction), where the free energy source is the
electron density and temperature and the instability arises due to the non-adiabatic
response of trapped electrons. Dissipative drift instability is an ion Larmor radius
scale electron drift instability, where the free energy source is the density gradients
and the mechanism for accessing it is the non-adiabatic electron response of passing
electrons due to collisions. Finally the electron temperature gradient driven (ETG)
mode is an electron Larmor radius scale drift-instability, where the free energy source
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is the electron temperature gradient. ETG can be unstable even with adiabatic ion
response. We will not go further into details of these different types of instabilities
and try to focus on their common aspects.

2.3.1. The generalized Hasegawa Mima system As in the geophysical setting, one
can define a simplified potential vorticity for the plasma turbulence:

q =
(ζ +Ωi)

n
=

1

n

[
∇2

⊥Φ

B
c+

eB

mc

]
using

q ≈ 1

n0

(
1− x

Ln
+ ñ

n0

) (∇2
⊥Φ

B
c+

eB

mc

)

≈ 1

n0

∇2
⊥

(
Φ̃ + Φ

)
B

c+
1

n0

eB

mc

(
1 +

x

Ln
− ñ

n0

)
whose conservation gives two equations when the fluctuating and mean components
are separated:(
∂

∂t
+ b̂×∇Φ · ∇

)(
Φ̃−∇2

⊥Φ̃
)
+
ρs
Ln

∂

∂y
Φ̃ = δ

(
b̂×∇Φ̃ · ∇∇2

⊥Φ̃
)

(23)(
∂

∂t
+ b̂×∇Φ · ∇

)
∇2

⊥Φ = −
⟨
b̂×∇Φ̃ · ∇∇2

⊥Φ̃
⟩

(24)

where δ
(
ãb̃
)
≡ ãb̃−

⟨
ãb̃
⟩
, and we have used the adiabatic electron response (21) and

scaled temporal and spatial variables by Ω−1
i and ρs respectively. We have also used

the dimensionless electrostatic potential eΦ
Te

. This system is called the generalized
Hasegawa-Mima (or sometimes generalized Charney Hasegawa Mima) equations. Its
nontrivial nonlinear structure follows from the fact that the electron response to the
fluctuations are adiabatic, the electrons can not respond to Φ who is independent of
the parallel coordinate. Note that a term similar to the last term on the left hand side
of (23) is dropped from the equation for Φ, who is taken to be a function only of the
radial coordinate x. However, for more general convective cells, such a term should
be added to (24).

2.3.2. The Hasegawa Wakatani system: Consider the potential vorticity for the drift
wave problem:

q =
(ζ +Ωi)

n

where ζ =
∇2

⊥Φ
B c as before, coupled to the equation for electron density (note that by

quasi-neutrality n = ni = ne), which can be written as:(
∂

∂t
+ vE · ∇

)
n =

1

e
∇∥J∥

we can write the vorticity equation by eliminating the density from dq/dt = 0:(
∂

∂t
+ vE · ∇

)
(ζ +Ωi) =

(ζ +Ωi)

ne
∇∥J∥
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which basically says that the plasma absolute vorticity increases with a parallel current
that increase with the parallel coordinate since such a current profile leads to an
accumulation of electrons and thus an increase of plasma density. An increase in
plasma density in turn increases the vorticity, since the potential vorticity is conserved.

The Hasagawa Wakatani system of equations follow if we use the Ohm’s Law with
a finite parallel resistivity instead of the adiabatic electron response:

eη

Te
J∥ = ∇∥

(
e
Φ

Te
− n

n0

)
which gives: (

∂

∂t
+ b̂×∇Φ̃ · ∇

)
ñ+

ρs
Ln

∂yΦ̃−D∇2ñ = c∇2
∥

(
Φ̃− ñ

)
(25)(

∂

∂t
+ b̂×∇Φ̃ · ∇

)
∇2

⊥Φ̃− ν∇4Φ̃ = c∇2
∥

(
Φ̃− ñ

)
(26)

where we have scaled the parallel variable by Ln and defined c ≡ 1
Ωi

Te

n0L2
ne

2η in addition
to using the dimensionless variables of section 2.3.1 and added model diffusion terms
with diffusion coefficients D and ν that are supposed to represent damping processes.

2.4. Ion temperature gradient driven instability (ITG).

While a discussion of all the various different electrostatic micro-instabilities of the
drift type in tokamaks is certainly out of the scope of this review, the ITG mode should
probably be mentioned as the most prominent ion Larmor radius scale instability.

The kinetic physics of the ITG mode is sufficiently complex that even the basic
linear dispersion relation, with various usual simplifying assumptions such as adiabatic
electrons and fluctuations being strongly localized to the low field side etc. requires
numerical approach for finding the zeroes of a plasma dielectric function which has
to be evaluated numerically. Furthermore, even such a (relatively complicated)
numerical calculation is well known to overestimate the growth rate of the ITG mode
approximately by a factor of two. This means the full poloidal eigenmode problem
has to be solved numerically. This is a rather fusion specific exercise and has no place
in a general review such as the current one.

While its accuracy in reproducing the linear physics would be poor, a reduced
fluid ITG model can be used to study the nonlinear behavior of this mode. The use
of such a model may be justified retrospectively by the existence of zonal flows which
tend to weaken the balooning mode structure.

ITG requires either the parallel dynamics (cylindrical) or the curvature effects in
order to be unstable. We start with the PV budget (11) as in the rotating convection
problem:

dq

dt
= Pq −Dq

where, we write the dissipation as Dq = −ν∇2
⊥q.

The potential vorticity for the simple slab ITG system can be defined as

q =
(ζ +Ωi)P

1/Γ

n
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considering P = P0

(
1− x

LP
+ P̃

P0

)
, n = n0

(
1− x

Ln
+ ñ

n0

)
, and ζ ≈ c

B∇2Φ̃:

q ≈ P
1/Γ
0

n0

[
c

B
∇2Φ̃ + Ωi

(
1−

[
ñ

n0
− x

Ln

]
+

1

Γ

[
P̃

P0
− x

LP

])]
which basically is equivalent to q = ∇2Φ − n + P

Γ in dimensionless form when the
constant is dropped. The conservation of potential vorticity implies:(

∂

∂t
+ b̂×∇Φ · ∇

)[
∇2Φ̃− ñ+

P̃

Γ

]
+

(
ρs
Ln

− ρs
ΓLp

)
∂Φ̃

∂y
= 0

2.5. General Formulation based on Potential Vorticity advection

In all the systems above, the problem can be reduced to a potential vorticity equation
coupled to some other equations through the baroclinic (or other) drive term.

For instance the inviscid limit of the Hasegawa-Wakatani equations given above,
can be written as two equations, one for potential vorticity advection, and the other for
density. The PV equation is “independent” of the density equation (i.e. we can solve for
PV without knowing the value of the density), however the density equation involves
the electrostatic potential (i.e. the stream function). The electrostatic potential can
be written as a function of PV and the density [i.e. Φ̃ = ∇−2 (q + n), which is a non-
local integral and thus includes the boundary conditions as well]. This is known as the
problem of invertibility and is trivially solved in the adiabatic limit (since in this limit
Φ̃ = ñ). However in the general case, the invertibility becomes a more complicated
problem since now given q, we need to solve an integro-differential equation [i.e. Eqn
25 with ∂yΦ̃ replaced by ∂y∇−2 (q + n)] to obtain ñ and hence n, which we can use
to obtain Φ̃. While this complicates the full problem, in principle the fact that it is
doable allows us to focus on the PV dynamics, which is nicely decoupled from density
or any other quantity as long as there is no drive. In contrast, the case of rotating
convection where the coupling to the temperature equation is via the baroclinic term,
or the case of ITG where the coupling is via the temperature gradient drive are cases
where the PV equation is only partially decoupled and we have a quasi-conservation
instead of an exact conservation.

Note that mesoscale flows defined as v = b̂×∇Φ in section 2.3.1, and mesoscale
potential vorticity which can be denoted by q, can be added to all the simple
systems that are considered above, while we avoided adding them explicitly to avoid
cumbersome notation.

The general structure of the potential vorticity equation in this case becomes:(
∂

∂t
+ b̂×∇Φ · ∇

)
q̃+b̂×∇Φ̃·∇ (q0 + q)+δ

(
b̂×∇Φ̃ · ∇q̃

)
= 0(27)(

∂

∂t
+ b̂×∇Φ · ∇

)
q + b̂×∇Φ · ∇q0 +

⟨
b̂×∇Φ̃ · ∇q̃

⟩
= 0 (28)

note that we recover (23) and (24) by using q̃ = ∇2Φ̃− Φ̃ and q = ∇2Φ. One can add
injection and dissipation to these in order to apply them to cases where there is only
a quasi-conservation. Note also that the middle term in (28) usually drops when we
consider flows that are perfectly zonal.
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3. Formation of zonal flows

Zonal flows form in all the physical systems discussed in the previous sections through
similar mechanisms. The fluctuations that are driven unstable by some mechanism
provide the Reynolds stress, which drive large scale flows, which in turn modify the
underlying turbulence that is driving them. There are different ways to express this
both in common language and in mathematical formulation. in particular different
aspects of this phenomenon of turbulence self-regulation via zonal pattern formation
are described using different mathematical frameworks.

3.1. Zonal Flows and Potential Vorticity(PV) mixing.

Various problems in geophysical fluid dynamics, plasma physics, and laboratory
experiments of rotating convection can be formulated using a potential vorticity quasi-
conservation, where the injection is via the baroclinic, or temperature gradient driven
instabilities and the dissipation is due to small scale stresses. Therefore general rules
about the tendencies of potential vorticity dynamics are very useful for understanding
the common features of such systems.

One rather interesting, general observation of potential vorticity dynamics is that
as long as the initial configuration has closed contours of time averaged potential
vorticity [i.e. ⟨q⟩ ≡ q0 + q in the formulation of (27-28)], the final state will consist
of homogenized patches of potential vorticity connected by large gradients. Similar
conclusion can also be drawn for contours of mean flow (streamlines), since to the
lowest order these two are functionally related. This can be shown in different ways[1]
here we only mention the demonstration using the integral around a closed potential
vorticity contour.

First note that the basic background steady state solution of (28), suggests that

b̂×∇Φ · ∇ ⟨q⟩ ≈ 0

which means that to the lowest order, there is a functional relation between the mean
potential vorticity and the mean electrostatic potential:

⟨q⟩ = Q
(
Φ
)
+O (ϵ) (29)

Note also that for any function f , the integral over an area A enclosed by a mean
streamline ˆ

A

b̂×∇Φ · ∇fds =
˛
C

b̂×∇Φf · dℓ⃗ = 0 (30)

where C is the closed contour around the streamline [i.e. dℓ⃗ = ∇Φdℓ/
∣∣∇Φ

∣∣].
Using this and (28), we can write:ˆ

C

⟨
b̂×∇Φ̃q̃

⟩
· dℓ⃗ ≈ 0 (31)

in the steady state. Now using an eddy viscosity hypothesis:⟨
b̂×∇Φ̃q̃

⟩
i
∼ −κij

∂

∂xj
⟨q⟩

And the perturbation expansion (29), we can write

−∂Q
∂Φ

ˆ
C

κij
∂

∂xi
Φ

∂

∂xj
Φ

dℓ∣∣∇Φ
∣∣ ≈ 0
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which implies that as long as κij is positive ∂Q

∂Φ
≈ 0 for any closed streamline. This

means that the potential vorticity does not vary from one streamline to another on
a such a closed contour, which means that the steady state solution of the problem
defined by (27) and (28) is simply:

⟨q⟩ = q + q0 = const. +O (ϵ)

in a region where the initial condition contained a closed contour of mean potential
vorticity.

However since this is in opposition to the background variation of the potential
vorticity for example due to background density gradient in the drift wave problem.
The flat region of PV would have to be connected to the next flat region by a strong
gradient. When many of such regions are connected, the result is what can be called
a PV staircase.

Notice that the nonlinear term vanishes for a homogenized PV profile. There is
a close analogy between the homogenization of the PV and the phenomenon of flux
expulsion in MHD and eventually to the phenomenon of dynamic alignment which
leads to generation of large regions of aligned or counter-aligned velocity and magnetic
field profiles which are connected by sheets or filaments where the alignment changes
rapidly.

3.1.1. Rhines Scale and its applicability to fusion plasmas. The Rossby wave
turbulence in the atmosphere as described by the Charney equations is rather similar
to the 2D turbulence described by the Euler equations. This is true in particular for
small scales where the equation basically becomes an Euler equation apart from the
β effect.

If one compares the linear and the nonlinear terms in (10), noting that the
nonlinear term scales dimensionally as U2/L2 and the linear term as β′U it is clear
that for a given β′ and U , the two terms balance each other at a length scale given in
dimensional units by:

LR ≡
(
U

β

)1/2

or a wave-number kR ≡ (β/U)
1/2 , where U is interpreted as a characteristic (rms)

velocity of the fluid (sometimes a rather arbitrary factor such as 2 or π may be
introduced at the denominator). For scales larger than this scale (wavenumbers
smaller than kR), the linear term which represents the β effect will dominate, and
wave turbulence, which leads to formation of zonal flows will result. Whereas for
smaller scales (i.e. wave-numbers larger than kR), the nonlinear term dominates and
fully developed 2D turbulence will result. Notice that if the Rossby deformation radius
R =

√
h0gf

−1
0 is already much larger than this critical length scale, we can treat small

scale turbulence by using Euler equation directly.
The usual description of fully developed 2D turbulence involves a dual cascade

where the Enstrophy cascades forward and the Energy cascades inversely. Therefore,
another way to view the Rhines scale is as a scale where the 2D inverse cascade
terminates since the turbulence changes character beyond this scale. Therefore it is
common to talk about the “arrest” of inverse energy cascade at the Rhines scale, even
though it is open to debate whether the 2D turbulence really generates a local inverse
cascade or if this inverse cascade is really arrested at the Rhines scale.
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Figure 10. Anisotropic Rhines scale for Drift Wave turbulence. Inside the
curve, the turbulence has a wave-like character and interactions with the zonal
flows dominate, outside it has the character of a classical fully developed 2D
turbulence.

When the dispersion relation is anisotropic as in the case for Rossby or drift waves,
the Rhines scale generalizes to a curve in k space inside of which the interactions with
zonal flows dominate. This can be demonstrated for drift waves as follows (see [56]
for the Rossby wave version):

u2rmsk
2
R = ω2 =

(
ρs
Ln

)2 ρ2sk
2
Ry

(1 + ρ2sk
2
R)

2Ω
2
i

(ρskR)
2 (

1 + ρ2sk
2
R

)2
=

(
ρs
Ln

)2
(sinαR)

2

(eΦrms/Te)
2 (32)

note that we have defined sinαR ≡ kRy/kR. The curve is represented in figure 10.
Inside this curve, weak wave turbulence and therefore wave-like modes interacting
mainly via the zonal flows dominate, and outside the curve we have a classical fully
developed 2D turbulence. Since the energy is usually injected inside the curve for
drift instabilities (which usually has a most unstable mode with finite ky and kx ≈ 0),
and couples to zonal flows which fall outside the curve, the role of the Rhines scale
in drift-wave turbulence is quite different from the arrest of the 2D inverse cascade

picture. Note that as an order of magnitude (eΦrms/Te)
2 ∼

(
ρs

Ln

)2
in drift wave

turbulence (i.e. the mixing length estimate).
While the applicability or the importance of the Rhines scale to fusion plasma

turbulence may be questionable, the curve given in Figure 10 can be interpreted as the
boundary between anisotropic turbulence at “large” scales and the isotropic turbulence
at “small” scales. When the energy is injected within the above curve, it will excite a
drift wave which has the form of a streamer (i.e. kx ≪ ky mode), this mode couples
naturally to an isotropic mode (with kx ∼ ky, sometimes called a Kelvin-Helmholtz-
like mode, but we think that this terminology is very misleading) and a zonal mode.
The interaction in a fusion device is actually a 4-wave interaction where the two
satellites of the primary pump mode (i.e. the streamer) couple to give the zonal
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mode. We will discuss how this can be described in the framework of modulational
instability in the following sections.

However note that as the energy goes to the zonal flow, the zonal flow transfers
some of this energy to a smaller (or larger) scale kx ∼ ky mode and a smaller (or
larger) scale streamer-like mode. Sometimes called a tertiary instability. However
since the smaller scale streamer that is driven by the “tertiary instability” then drives
smaller scale zonal flows leading to a cascade of enstrophy through the k-space via
these particular triads, it is in fact simply a part of an hierarchy of interactions. We
think that within the context of turbulence calling it an “instability” is misleading
unless one sees each step in the cascade as an instability of the previous scale. In
contrast it is clear that for single wave-packet whose characteristics actually evolve in
time, the tertiary instability has a clear meaning.

3.1.2. Rhines Scale vs. Mixing Length vs. Critical Balance There are various
examples in the literature where people consider the balance between the linear and
the nonlinear terms as we have discussed above to define the Rhines scale. The
mixing length idea commonly used in fusion to estimate the fluctuation level is indeed
a balance between the linear and the nonlinear terms. For instance for the Hasegawa-
Mima case:

ρs
Ln

ρs
∂

∂y

(
eΦ̃

T

)
≈ ρ4sb̂×∇

(
eΦ̃

T

)
· ∇∇2

⊥

(
eΦ̃

T

)
which gives (for ρsk⊥ ∼ ρsky ∼ 1 which is roughly true for the most unstable mode):

eΦ̃

T
∼ ρs
Ln

this is the basic mixing-length estimate of the fluctuation level for drift-wave
turbulence. A more detailed version can be used to determine the maximum of the
turbulence k-spectrum by arguing that the maximum occurs when the linear growth
rate is balanced by the nonlinear decorrelation rate (i.e. eddy damping):

γk ≈ Dnl
k k

2
⊥

where Dnl
k ∝

∣∣∣ eΦ̃k

T

∣∣∣2 is the nonlinear diffusion coefficient that appears in turbulent
fluxes of density and particles[57]. The maximum of the spectrum can be obtained by
solving:

max

∣∣∣∣∣eΦ̃k

T

∣∣∣∣∣
2
 ≈ max

(
γk
k2⊥

)
for k. Since the functional form of γk can in principle be obtained maximizing γk/k2⊥
one obtains the mixing length maximum of the spectrum. It is interesting to note
that this seems to work rather well for turbulence in tokamak plasmas even with
complicating effects of curvature, magnetic shear etc. The reason is probably that
most of the complicating effects change the form of γk in this argument, but do not
change the fact that the γk is balanced by an effective turbulent diffusion near the
most unstable mode. Note that while one uses the same basic idea of balancing linear
and nonlinear terms, the mixing length considers the energy budget (so the energy
injected by the linear instability is equal to the energy extracted by the nonlinear
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transfer), whereas the Rhines scale argument is based on a comparison between the
eddy turnover rate and the wave propagation in the original equation.

Yet another famous balance between the linear and the nonlinear terms is the
so-called critical balance[58] in 3D MHD turbulence. The idea is very similar to how
one obtains the Rhines scale but considering parallel propagating Alfvén waves with a
fully developed 2D perpendicular spectrum. By balancing the Alfvén wave transit rate
in the parallel direction with the eddy turnover rate in the perpendicular direction,
one obtains:

vAk∥ ≈ u (k⊥) k⊥

Notice that in standard 3D MHD there is no process which would break the isotropy
on the perpendicular plane (i.e. kx vs. ky), however there is a rather important source
of anisotropy in the parallel vs. perpendicular directions. Since the spectral energy
density in the perpendicular direction for a 2D forward cascade is E (k⊥) ∝ ε2/3k

−5/3
⊥

or u (k⊥) ∼ E (k⊥)
1/2

k
1/2
⊥ ∝ ε1/3k

−1/3
⊥ , the critical balance gives the relation:

k∥ ∝ ε1/3

vA
k
2/3
⊥

This is usually interpreted as a strongly anisotropic spectrum with k∥ following the
k⊥ cascade scale by scale until it reaches the critical balance. It can be generalized
for an arbitrary dispersion relation by replacing vA with the parallel phase velocity
vph∥ (k). The idea can be applied to various systems with parallel propagating waves.

3.1.3. PV and its importance in DW/ZF dynamics. As discussed above, a number of
plasma and geophysical fluid dynamics models can be formulated using a description
based on potential vorticity evolution. Advection of potential vorticity, coupled to
other equations such as that of entropy density or pressure via the baroclinic term or
via curvature effects when there are additional sources of free energy. Notice however
that in general the quadratic quantity that is conserved by the nonlinear dynamics of
co-evolving drift waves and zonal flows, as described for instance by (23) and (24), is
the potential enstrophy.

W ≡
⟨
q2
⟩
=
⟨
|q̃|2
⟩
+ q2 =

⟨∣∣∣(1−∇2
)
Φ̃
∣∣∣2⟩+

⟨∣∣∇2Φ
∣∣2⟩

In other words the nonlinear system described by (23) and (24), the zonal flows and
the drift waves exchange potential enstrophy and not energy. So it is the potential
enstrophy that is conserved between the drift waves and the zonal flows, since it is the
potential vorticity that is advected. However local interactions among the drift waves
still conserve energy and enstrophy leading to a dual cascade.

3.1.4. Forward Enstrophy cascade and ZF formation. One interesting point is that
while it is common to talk about zonal flow formation informally as a process of
“inverse cascade”, in reality the anisotropic mechanism that leads to the formation
of zonal flows does not really have the character of a local cascade where the energy
moves to larger and larger scales. The mechanism can be described better as a nonlocal
interaction in k-space where the zonal flow acts on all scales diffracting the fluctuations
to smaller and smaller wave-numbers (see figure 11).

From a spatial, ’pattern formation’ point of view, the same process can be
explained by looking at the dispersion relations for drift or Rossby waves. Consider
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Figure 11. Forward potential enstrophy cascade mediated by large scale flow
structures.

the setup in figure 12, for Rossby waves as the first example. The basic Rossby wave
has a mainly westward phase motion, with a phase velocity given by:

vph = −β
′kx
k4

k

while its latitudinal group velocity, vgx , can be in either direction, its meridional group
velocity, vgy, is in the opposite direction to its meridional phase velocity, making it a
backwards wave in the meridional direction:

vgy =
∂

∂ky

(
−β

′kx
k2

)
=

2β′kxky
k4

Similarly for drift waves the main phase velocity propagation direction is counter-
clockwise in the geometry of figure 12 if the magnetic field is in the out of plane
direction. The radial group velocity

vgx =
d

dkx

[
ρ∗
Ln

ky
(1 + k2)

]
= − ρ∗

Ln

2kxky

(1 + k2)
2

which is also backwards with respect to its radial phase propagation (i.e. vphx =
ρ∗
Ln

kykx

(1+k2)k2 ). Note that while Rossby waves carry negative wave momentum away
from the stirring region, the drift waves carry positive wave momentum towards the
stirring region resulting in the same basic effect of momentum convergence towards
this region.

One very interesting point is that if an infinitesimal velocity shear which has
the profile given in figure 12 is introduced, the sheared flow leading to a tilting of the
eddies resulting in a radial (meridional in the case of Rossby waves) group propagation
which leads to momentum convergence towards the maximum of the flow.

3.2. The Wave-Kinetics formulation

Self-regulating drift/Rossby wave turbulence, can be described using the wave kinetic
equation in a weakly inhomogeneous medium[59, 60, 61]:

∂

∂t
Nk (X, t) +∇k ·

[(
ω −V · k

)
∇XNk (X, t)

]
−∇X ·

[(
ω −V · k

)
∇kNk (X, t)

]
= C ′ (Nk, Nk) (33)

where Nk is the wave quanta of the drift waves. The weak inhomogeneity described
partly by the dispersion relation and partly by the mean flow V above can be
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Figure 12. Simple mechanism for the zonal flow reinforcement.

coupled to the slower time scale evolution of the zonal flows using a scale separation
approach. Notice that it is also possible to obtain the wave kinetic formulation, and
derive explicit expressions for the diffusion coefficients using a Lagrangian correlations
approach[62, 63].

When considered by itself the wave-kinetic equation describes the evolution of
high frequency drift waves that move around in a medium whose optical index of
refraction is determined by the zonal shearing. Recall that the WKB equations can
be written as

dx

dt
=

∂

∂k

(
ωk −V · k

)
and

dk

dt
= − ∂

∂x

(
ωk −V · k

)
which is the basis for the interpretation of (33) as a “kinetic” equation. Notice that
since zonal flows are narrow banded flow structures, they play the role of wave-guides
for drift waves.

The wave kinetic formulation of drift-wave zonal flow interaction is a very powerful
tool. As discussed in detail in Ref. 34, a quasi-linear calculation, based on the wave-
kinetic formulation (i.e. using Nk = ⟨Nk⟩+ δNk where δNk is a perturbation) can be
used to estimate the zonal flow “growth rate” (i.e. the rate at which the zonal flows
are driven by drift waves):

γq [Wk] = −2q2c2s
∑
k

k2yρ
2
s

(1 + k2ρ2s)
2R (k, q) kx

∂

∂kx
Wk

where Wk =

⟨(
1 + ρ2sk

2
)2 ∣∣∣Φ̃k

∣∣∣2⟩ is the drift wave potential enstrophy density.

Remarkably, the general form of the coupled quasi-linear system of equations that
result:

∂

∂t
Wk − ∂

∂kr

[
Dk

∂

∂kr
Wk

]
= γkWk − ∆ωk

N0
W 2

k (34)
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∂

∂t
|Φq|2 = γq [Wk] |Φq|2 − γd |Φq|2 − γnl

[
|Φq|2

]
|Φq|2 (35)

A formal statistical calculation based on the direct interaction approximation between
disparate scales for the generalized Hasegawa-Mima system gives essentially the same
result also64. Notice that the equations (34) and (35) already suggest

(i) that the turbulence drives zonal flows via γq.
(ii) that the zonal flows contribute to the forward enstrophy cascade by refracting

the drift waves towards smaller kr.

adding the zonal flow damping, we have roughly all the ingredients for a spectral
predator-prey dynamics as described in figure 11.

3.3. Modulational instability framework

Assuming that the spatio-temporal dynamics of large scale flow structures is
sufficiently slower than that of drift/Rossby wave turbulence, one can use the
modulational instability framework. The complete framework can actually be
developed from a Hamiltonian description of nonlinear waves, for which there are
already very good books and reviews [65, 66]. Since, the purpose of this paper is
to review physical mechanisms, we limit ourselves to a discussion of the modulation
instability and discuss the formulation by A.C. Newell [67]. Consider the nonlinear
system

L (∇, ∂t, R)ϕ = NϕMϕ (36)

where L, N and M are operators representing linear terms and nonlinear couplings
respectively, and R represents a parameter that determines the stability condition (e.g.
the Rayleigh number for the problem of convention). We obtain the linear dispersion
relation for given R by linearizing (36):

L (ik,−iω,R) = 0 (37)

where ω = ωk ≡ ωrk + iγk is the complex frequency. One can obtain the stability
condition by substituting ω = ωk (R) and setting γk = 0, and solving for R = Rc (k)
instead.

In many problems in nature there is a critical scale (the most unstable mode)
at which the net energy production has a maximum because the energy production
decreases towards larger scales, and the dissipation increases towards smaller scales.
This implies that Rc (k) has a minimum at this point. Thus, when the control
parameter R is close to, but slightly above its critical value

R = Rc

(
1 + ϵ2χ

)
only a small subset of modes around the most unstable mode are excited [i.e.
kc ±O (ϵ)]. This allows us to consider a wave whose amplitude is slowly modulated:

ϕ = Φ
(
X,T , τ

)
eik·x̃−iωrk t̃ + c.c.

where Φ(X,T, τ) is the modulated complex amplitude, using the reductive
perturbation theory:

ϕ = ϵ
(
ϕ0 + ϵϕ1 + ϵ2ϕ2 + · · ·

)
with a basic scale separation assumption, which can be regarded as a Taylor series
expansion of the operator L = L0+ ϵL1+ ϵ

2L2+ · · ·, around the point (∇̃, ∂̃t, Rc) to a



CONTENTS 37

neighboring point
(
∇̃+ ϵ∇̄, ∂̃t + ϵ∂̄T + ϵ2∂τ , Rc

[
1 + ϵ2χ

])
in the operator space. For

example

L1 =

(
∂L0(ik,−iω,R)

∂(−iω)
∂̄T +

∂L0(ik,−iω,R)
∂(ik)

· ∇̄
)

=
∂L0(ik,−iω,R)

∂(−iω)
(∂̄T+vg·∇̄)(38)

where we have used the fact that
∂

∂k
L0(ik,−iω,R) = −∂ω

∂k

∂

∂ω
L0(ik,−iω,R)

which can be obtained by differentiating the dispersion relation (37). Note that (38)
corresponds to the group motion of the envelope modulation and can be eliminated
by transforming to a frame of reference moving with the group velocity.

Similarly

L2 = −1

2

∂2L0

∂ω2
∂̄TT+

∂2L0

∂ki∂ω
∂̄T∂i−

1

2

∂2L0

∂ki∂kj
∂i∂j+i

∂L0

∂ω
∂̄τ+

∂L0

∂R
Rχ(39)

substituting the following relation, which can be obtained by taking the second
derivative of the dispersion relation with respect to k:

−1

2

∂2L0

∂ki∂kj
=

1

2

∂2ω

∂ki∂kj

∂L0

∂ω
+

1

2

∂ω

∂ki

∂ω

∂kj

∂2L0

∂ω2
+
∂ω

∂ki

∂2L0

∂kj∂ω
+

1

2

∂2R

∂ki∂kj

∂L0

∂R
(40)

and using the transformation to the group velocity frame that was used to eliminate
L1 (i.e. ∂T = − ∂ω

∂ki
∂i), we note that the first and second terms of (39) are canceled

by the second and the third terms on the right hand side of (40) respectively. This
leaves:

L2 = i
∂L0

∂ω
∂̄τ +

1

2

∂2ω

∂ki∂kj

∂L0

∂ω
∂i∂j +

1

2

∂2R

∂ki∂kj

∂L0

∂R
∂i∂j +

∂L0

∂R
Rχ (41)

which is to be balanced by the nonlinear terms. The exact form of the resulting
equations depend on the details of the nonlinear saturation mechanism that balances
the envelope modulations that can be described in general using the above formalism.
The Envelope equation, including the lowest order nonlinear terms takes the form

L2Φ0 ≈ N0Φ0M0Φ0

The simplest possible example that results in various physical problems is the so
called nonlinear Schrödinger equation, which takes the form:

i∂̄τΦ+
1

2

d2ω

dk2
∂2

∂x2
Φ+ λ |Φ|2 Φ = 0

where λ is the lowest order coefficient for the perturbation expansion of the nonlinear
term. The nonlinear Schrödinger equation is common to a number of interesting
physical problems, and its implications are profound. Another thing that is very
remarkable about this equation is that, it has actually been solved using the inverse
scattering method, which were later on developed into a methodology for solving
similar equations. However here we only use it as an example to the large class of
possible amplitude equations that can be obtained from the modulational instability
framework and refer the reader to the well written books and review papers on the
subject.
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3.3.1. Amplitude equations and their application to basic zonal-flow/drift-wave system
Consider the nonlinear system (23-24) which describes the coupled evolution of simple
drift-waves and zonal flows. We can write (23) in the form:

LΦ̃ = −b̂×∇Φ · ∇
(
Φ̃−∇2

⊥Φ̃
)
+ δ

(
b̂×∇Φ̃ · ∇∇2

⊥Φ̃
)

where the linear dispersion relation follows from:

L0 (ik,−iωk) = −iωk

(
1 + k2

)
+
ρs
Ln

ky = 0

which gives:
∂

∂ωk
L0 (ik,−iωk) = −i

(
1 + k2

)
Note that for this problem, there is no R, since the basic linear dispersion relation is
always stable.

Using the reductive perturbation method described above, considering zonal
modulations, and flows (i.e. ∂Y → 0) and assuming further that the zonal electrostatic
field varies roughly at the same scale at which the envelope is modulated [i.e.
Φ̃0 = Φ0 (X,T, τ) e

i(k·x−ωt) and Φ = Φ(X,T )], we can write for L2 from (41):(
i∂τ +

1

2

∂2ω

∂kx∂kx
∂XX

)
Φ = kyΦ∂XΦ (42)

which is then coupled to

(ϵ∂τ − vgx∂X) ∂XXΦ = 2kxky∂XX |Φ|2 (43)

Note that a scaling Φ ∼ O (ϵ), Φ ∼ O (ϵ) is suggested if the term on the right hand
side of (42) is to be of the same order as the term on the left hand side, while the
group velocity term in (43) is to be of the same order as the term on the right hand
side. In this case we can solve (43) by neglecting the the higher order ϵ∂τ term and
substitute the result into (42), which gives:

i∂τΦ+
1

2

∂2ω

∂kx∂kx
∂XXΦ+

2kxk
2
y

vgx
|Φ|2 Φ = 0 (44)

which is again the nonlinear Schrödinger equation (NLS), which we write as

i∂τΦ+ β∂XXΦ+ α |Φ|2 Φ = 0 (45)

where

β ≡ 1

2

∂2ω

∂kx∂kx
and α ≡

2kxk
2
y

vgx
(46)

Consider the following perturbed homogeneous solution:

Φ = (Φ0 + δΦ) eiα|Φ|2τ

which, without the δΦ is a homogeneous plane wave with a nonlinear frequency shift.
Looking at the linear stability of δΦ ∼ δΦ0e

i(qxX−ωZτ), one obtains the dispersion
relation:

ω2
zf = β2q4x − 2αβq2x |Φ0|2 .

The instability condition for this dispersion relation is basically that

q2x < 2
α

β
|Φ0|2
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when the mode is unstable, we can write:

γzf (qx) =

√
2αβq2x |Φ0|2 − β2q4x

which allows us to compute the most unstable zonal mode, [i.e. by setting γ′zf (qx) =
0]:

q2x =
α

β
|Φ0|2 (47)

and with this the growth rate of the most unstable mode:

γzf (qx) = |α| |Φ0|2 =
cs |ky|

(
1 + ρ2sk

2
)2

ρs/Ln

∣∣∣∣eΦ0

Te

∣∣∣∣2
in dimensional form.

It is interesting to note that, the modulational instability framework, defines a
specific characteristic “most unstable” wave-number for the zonal flows [i. e.(47)].
While the final “steady state” (if there ever is a steady state) value of the zonal flow
wave-number depends also on the way it is dissipated, which we will discuss in Section
4, the most unstable wave-number would give an indication about the characteristic
radial size of the zonal flows. It is interesting to note that as to the knowledge of
current authors, this was never used as a basis for comparison, at least in fusion
experiments.

3.4. Pattern selection in electron scales by modulational instability

Using the general framework of modulational instability, we consider a two field model
of small scale drift turbulence driven by electron temperature gradient (ETG). Both
because it was done initially for this system and due to the its direct similarity to the
rotating convection problem discussed in Section 1.3. Here we also demonstrate the
application of the modulational instability framework to the question of 2D pattern
selection in plasma turbulence. We consider a reduced fluid ETG system as a working
model:

(∂t + ẑ×∇Φ · ∇)(1−∇2)Φ + ∂y(Φ + P ) + ν∇4Φ = 0 (48)

(∂t + ẑ×∇Φ · ∇)P − χ∇2P − r∂yΦ = 0 (49)

where the following dimensionless drift wave variables are used:

Φ → eϕ
Tiϵ∗i

, P → ϵBPe1

ϵ2∗iPi0
, t→ Ωeϵ∗it, x → x/

√
τρe

ϵ∗i =
√
τρe

Ln
= v∗i

cse
, ϵ∗e = −

√
τρe

Lpe
= v∗e

cse
, ϵB =

√
τρe

LB
= vB

cse
, r = ϵBϵ∗e

ϵ2∗i

and τ = Ti/Te. In order to apply the modulational instability framework, we separate
the fluctuations and mean flows/fields. The mean flow equations, dropping the
dissipative terms, can be written as

∂T (1−∇2)Φ̄ + ∂Y (Φ̄ + P̄ ) =
⟨
ẑ×∇Φ̃ · ∇∇2Φ̃

⟩
(50)

∂T P̄ − r∂Y Φ̄ =
⟨
ẑ×∇P̃ · ∇Φ̃

⟩
(51)

and the two equations for the fluctuations can be combined as:[
∂t

(
∂t(1−∇2) + ∂y

)
+ r∂yy

]︸ ︷︷ ︸
L(∂t,∂y ,∂x)

Φ̃−(ẑ× k · ∇)
((
ω(1 + 2k2

y)− rky
)
Φ̄− kyP̄

)︸ ︷︷ ︸
N(Φ̄,P̄ )

Φ̃ = 0 (52)
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by dropping the direct interactions between fluctuations and dissipation.
The Reynolds stress for a modulated monochromatic wave in general can be

written as:⟨
ẑ×∇Φ̃ · ∇∇2Φ̃

⟩
≈ 2(ẑ×k · ∇)(k · ∇) |Φ|2 + (ẑ×k · ∇)(∇ · J)− (k · ∇)(∇× J)z(53)

where,

J = i(Φ∇Φ∗ − Φ∗∇Φ)

is the Schrödinger intensity flux density, and Φ is the complex amplitude. Similarly
for the advection of pressure,⟨
ẑ×∇P̃ · ∇Φ̃

⟩
≈ ∇ · (ẑ× ik [Φ∗P − P ∗Φ] + ẑ× [Φ∗∇P − P ∗∇Φ]) . (54)

The phase difference between Φ and P can be calculated from (49), by including slow
modulations. When we consider a particular perturbation expansion (53) and (54)
will be further simplified.

It is easy to see, from (52) that the linear dispersion relation has two solutions,
and the unstable mode has a maximum at kx = 0. This means that the monochromatic
drift-wave around which we perform the modulational instability has kx = 0 but finite
ky.

3.4.1. Initially Isotropic modulations In order to see what kind of elongated patterns
form among zonal flows with ∆X ≪ ∆Y , streamers with ∆X ≫ ∆Y , or isotropic
convective cells with ∆X ∼ ∆Y , we start the analysis with isotropic modulations and
see in which direction the system evolves. The amplitude equation in this case can be
written as:

i∂τΦ+
1

2

∂2ω

∂k2y
∂Y Y Φ+

1

2

∂2ω

∂k2x
∂XXΦ+ αk2y∂XX(|Φ|2)Φ = 0 (55)

It is also possible to rewrite this with the scalings X → X/
√

|βx|, Y → Y/
√

|βy|,
Φ → (ky

√
|α/βx|)Φ, where βx = (1/2)∂2ω/∂k2x and βy = (1/2)∂2ω/∂k2y, and replacing

Φ → Φ∗ if βx < 0, which gives:

i∂τΦ+ ∂Y Y Φ+ ∂XXΦ+ σ∂XX(|Φ|2)Φ (56)

This scaling uses the fact that the signs of βx and βy are the same. Here σ = ±1 is
the overall sign of (α/βx), where σ = −1 corresponds to an attractive nonlinearity
and σ = +1 to a repulsive one. The total Hamiltonian for (56):

H =

ˆ
dV
[
|∂XΦ|2 + |∂Y Φ|2 +

σ

2

(
∂X
(
|Φ|2

))2] (57)

is conserved. Following Talanov, we write the evolution equation for the radial and
poloidal variance (defined as

⟨
X2
⟩
=
´
X2|Φ|2dXdY and

⟨
Y 2
⟩
=
´
Y 2|Φ|2dXdY

respectively):

d2
⟨
X2
⟩

dt2
= 4H + 4

ˆ [
σ(∂X |Φ|2)2 + (|∂XΦ|2 − |∂Y Φ|2)

]
dXdY (58)

d2
⟨
Y 2
⟩

dt2
= 4H + 4

ˆ [
|∂Y Φ|2 − |∂XΦ|2

]
dXdY (59)

As these are explicit differential equations for the second derivatives of these
quantities (akin to acceleration), one may qualitatively interpret them as Newton’s
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equations of motion. For H < 0, which is possible for σ = −1, the total variance
V is always ’pulled’ towards zero, leading to a collapse. However it is easy to see
that for H < 0 Vx − Vy is always ’pulled’ towards the negative axis. This means⟨
X2
⟩

is always ‘pulled’ more strongly than
⟨
Y 2
⟩
. Since an initially isotropic state

corresponds to
⟨
X2
⟩
∼
⟨
Y 2
⟩
, one arrives at the conclusion that the final state will

have
⟨
X2
⟩
≪
⟨
Y 2
⟩

or ∂X ≫ ∂Y . Notice that H < 0 is a condition on the initial data
that allows the finite time singularity formation.

The collapse of the initial data to a singular layer in the perturbation analysis
suggests that the wave amplitude becomes larger and ∂X becomes smaller than
it is assumed in the perturbation expansion corresponding to the initial isotropic
modulation. The complete evolution of an initially isotropic amplitude modulation
can be seen in figure 13. The perturbation expansion breaks down as the system
collapses in the radial direction, resulting in a poloidally elongated (i.e. ∂X ≫ ∂Y )
modulation (and flow) structure. However, we can continue the analysis by choosing
a new scaling.

3.4.2. Further anisotropic evolution An equation describing the further evolution of
the structure in the limit ∂X ≫ ∂Y may be derived similarly to the isotropic case. The
main problem is that if the scaling is such that ∂Y ∼ ∂2X , one can no longer neglect the
divergence of intensity flux density term ky(∂x∇·J) in the calculation of the Reynolds
stress. It is possible that this term nonlinearly damps the zonal flow, balancing the
self focusing tendency. Thus, the critical scaling ∂X ∼ O(ϵ1/4), corresponds on the
scale at which the collapse possibly stops (see figure 13). Using ϵ∗i as a crude estimate
for ϵ we get ∆X ∼ ρ

3/4
es L

1/4
n for the radial scale of the final meso-scale structure. If

this is the zonal flow (i.e. no breakup into smaller scale structures occurs), then this
would be the radial size of the zonal flow. However, as mentioned before, it is also
possible that breakup into smaller scale structures occurs, then, this estimate would
correspond to the radial size of these ‘small scale’ structures resulting from a tertiary
instability.

Before the critical scaling however there is an intermediate scaling. Since this
corresponds to a poloidally collapsed state of an initially isotropic field, the scaling
of ∂Y should be kept as before [i.e. ∂Y ∼ O(ϵ1/2), ∂X ∼ O(ϵ1/3),kx ∼ O(ϵ1/2) and
ky ∼ O(1)] avoiding the critical scaling ∂x ∼ O(ϵ1/4), in order to be able to neglect
the divergence of the intensity flux density term. This, in turn, results in a scaling of
the mean field as Φ̄ ∼ O(ϵ1/3), and time as ∂T ∼ O(ϵ1/2) and ∂τ ∼ O(ϵ2/3). Then, the
dynamics of fluctuations in a frame moving with velocity v = vgyŷ, can be described
with a simple amplitude equation as before.

i∂τΦ+ βx∂XXΦ+ αk2y∂XX(|Φ|2)Φ = 0

There are two possible end results (probably coexisting in actual turbulence): a)
the zonal flow can structure can break up into streamers, in which case we can continue
our analysis for streamer structures, b) The modulations continue to collapse and form
a shear layer. The size of such a shear layer will be determined by the competition
between the tendency of the nonlinearity to collapse, and the effect of dissipation or
higher order nonlinearities that play the role of dissipation.

3.4.3. Streamer formation: For the ETG mode, the possibility that the zonal flows
are damped or balanced during the isotropic phase due to other physical processes
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[68] should also be considered. In this case Vx will remain fixed (or oscillate) after
some initial collapse, while Vy would continue collapsing, after the fluctuations reach
a certain level. This leads us to the state in which the anisotropy of the drive and the
modulations are the same (i.e. kx∂Y ∼ ky∂X). Choosing the scaling as ∂X ∼ O(ϵ),
∂Y ∼ O(ϵ1/2), kx ∼ O(ϵ1/2) and ky ∼ O(1), and going through a similar analysis as
in the isotropic case, one can write down the amplitude equation:

i∂τΦ+
1

2

∂2ω

∂k2y
∂Y Y Φ− 1

2

∂2ω

∂k2x
k2xΦ+ αΦ(ẑ× k · ∇)

2 |Φ|2 = 0 (60)

Notice that apart from resonance (i.e. considerable enhancement of α, near marginal
stability), the terms in this equation can only be balanced by choosing an expansion
of the form: Φ̃ = ϵ−1/2Φ̃0 + ϵ1/2Φ̃1 + . . . , which is a rather strong scaling of the
field, producing eΦ/Ti ∼ O(ϵ∗i/ϵ

1/2). For this to be meaningful, it should be true
that 1 ≫ ϵ ≥ ϵ2∗i. Physically, since we still neglect the ITG effects, our “large scale”
structures are smaller then the ion Larmor radius. The above condition effectively
requires the large scale structures to be smaller then the density gradient length scales.
This should still be very well satisfied for the ETG system. Also, for ϵ ∼ ϵ∗i, as a
crude estimate for the expansion parameter, the fluctuation level is estimated to be
eΦ/Te ∼ O(ϵ

1/2
∗i ).

Defining α, βx and βy as before, we can write down a single soliton solution of
(60):

Φ(X,Y, τ) =

(
|G0|2

m
+

X2

2σβy

)1/2
1

kx

√
2a

|α/βy|
(61)

× sech
[√

a/βy(Y +
kx
ky
X)− (

U2

4
− a)τ

]
e
i

(
U

2
√

βy
(Y+ kx

ky
X)−(U2

4 −a+βxk
2
x)τ

)

This is a self-sheared soliton solution of (60), with a and U being measures of amplitude
and velocity of the soliton in the η = (Y + kx

ky
X)/

√
|βy| direction, respectively.

4. Damping of zonal flows

Zonal flow damping is the key parameter that determines the “fitness” of the zonal
flow as a complex structure. Therefore, it also is one of the key parameters that
determine the steady state of the complex nonlinear system consisting of interacting
drift/Rossby-waves and zonal flows. Since it is the zonal flow that regulates the drift
wave turbulence, the level of zonal flow defines the steady state (if it exists), or the
characteristics of dynamics (if the system does not have a well defined steady state).
Thus, the dissipation via zonal flow damping rate is at least as important as the
energy injection by the (linear) instability of the drift wave turbulence. However, the
understanding of the actual mechanisms of zonal flow damping in fusion plasmas is
rudimentary compared to that of the primary instability.

In the case of quasi-geostrophic fluids, the primary source of zonal flow damping
is the bottom drag[69], which is usually taken as Ekman friction. Bottom drag
controls the final characteristics of zonal flows such as their characteristic scale and
the spectrum of the quasi-geostrophic turbulence that results[70].

In the case of fusion plasmas, the picture is more complicated due to the possibility
of coupling to kinetic physics. While all the physical effects that have been discussed
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Figure 13. Evolution of an initial isotropic modulation (i.e. ∂X ∼ ∂Y ) of a mode
with kx ≪ ky . Note that while the modulational instability framework describes
the modulations of complex amplitude (i.e. amplitude and phase), we have only
depicted modulations of real amplitude and for simplicity in this figure.

previously could be described within a fluid or a gyrofluid model even if applied to
plasma turbulence, zonal flow damping may have an inherently kinetic nature. In
fusion turbulence research, the main justification for using the much more expensive
gyrokinetic simulations instead of the cheaper gyrofluid ones is the fact that the
gyrofluid codes, even when some closure that imitates linear landau damping is used,
could not get the zonal flow damping right[71]. This means even if a particular
description can describe the instability and the nonlinear physics reasonably correctly,
if it can not describe the damping of zonal flows, it is not very useful in predicting the
fluctuation levels and therefore the resulting transport.

4.1. Linear Damping

There are various mechanisms that can damp poloidal flows in tokamak devices. For
instance, in the core region, a certain class of oscillating zonal flows, called geodesic
acoustic modes (GAMs), are damped due to Landau damping. However, GAM physics
is particular to toroidal geometry, and standard zonal flows are not subject to Landau
damping. This means they are damped mainly by collisional processes. A complete
theory of how the collisional processes function in toroidal geometry, especially in the
presence of particles that are trapped in the low field side of the toroidal magnetic
confinement geometry, called the “neoclassical theory” were developed in the early
stages of fusion research.

The main linear damping mechanism on zonal flows in the regime of weak
collisionality is the damping due to what are called “banana particles”, which are
particles that are trapped in the low field side (the outer part) of the torus and follow
trajectories that somewhat resemble bananas. (see figure 14). The mechanism works
as a drag between trapped particles and zonal flows.

The short time response of the zonal flow due to effects of collisional drag, can
be computed exactly (with certain simplifying assumptions such as large aspect ratio,
circular concentric flux surfaces etc.) using a variational principle within a boundary
layer defined by the passing/trapping boundary. The result is the short time response
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Figure 14. A banana orbit in the toroidal geometry of a tokamak and its
projection onto the (r, θ) plane.

kernel [i.e. K(s)
k (t) ≡ Φk (t) /Φk (0), where t≪ τii]:

K(s)
k (t) =

(
1− 1

α

)
e−νGt cos (ωGt) +

1

α
e

β(t)2

α2 terfc
(
β (t)

α
t1/2

)
(62)

where ωG = vthi/R and νG = ωGe
−q2 are the GAM frequency and damping

rate respectively (due to Landau damping), α = 1 + 1.6q2/ε1/2 and β (t) =

3πq2ν1/2/
(
εΛ (t)

3/2
)
. Note that here Λ (t) ≈ ln

(
16 (ε/ [νt])

1/2
)
, ν = 0.61/τii, and

the standard fusion notation is used so that q is the safety factor, τii is the ion-ion
collision time, vthi is the ion thermal speed, R is the major radius and ε is the aspect
ratio. The figure 15 depicts this kernel for ε = 0.18, q = 1.4 and ν∗i = 0.04 .

A similar linear, collisional mechanism due to friction between passing and
trapped electrons for ETG turbulence has been suggested as a mechanism for damping
of small scale electron zonal flows whose formation is discussed in section 3.4. It should
be noted that electron heat transport due to ETG turbulence remains a controversial
problem, where the experimental measurements are scarce and gyrokinetic simulations
disagree with one another. Therefore, at least for now, it remains difficult to make
an objective assessment of the importance of zonal flows, or their damping in ETG
turbulence.

4.2. Nonlinear damping

As is usually the case with linear phenomena, the collisional drag for zonal flows in
tokamaks and geostrophic fluids of different kinds have no similarities. This is due to
the fact that the analogy between the different systems are limited to the forms of
reduced partial differential equations that are used to describe these different systems
and the similarity does not extend to the effects of boundary layers or geometry, or
the nature and the effects of collisions (classical vs. neo-classical for example).
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Figure 15. The short time collisional response kernel (62), as a function of time
(normalized to ion-ion collision time τii). The solid line shows the full kernel
whereas the dashed line shows the second term in (62), which corresponds to
the damping of zonal flows. Note that initial oscillations correspond to GAM
oscillations that are rapidly damped via Landau damping.

In contrast the basic effects of nonlinearities are almost exactly the same in these
very different physical systems, since the way the nonlinear interactions function is
rather universal. It is the nonlinearity, for instance, that allows the formation of
zonal flows through a modulational instability. There are also higher order nonlinear
terms that may contribute to their damping. The basic idea that higher order
nonlinear terms cause the collisionless damping of zonal flows exist in various forms.
Coupling to “damped eigenmodes”[72] or parallel and perpendicular stresses acting in
opposition[73], are suggested examples of such ideas for fusion plasmas.

Note that, since within the modulational instability picture, the zonal flow
formation is realized through a collapse of the modulation envelope, a nonlinear
diffusion effect that simply causes the envelope to smooth out, will also oppose the
collapse.

Another way the zonal flow can be nonlinearly damped is the phenomenon of
“tertiary instability”, which may take the form of a Kelvin-Helmholtz instability of the
sheared flow pattern that is formed by the zonal flow.

4.3. Non-acceleration: Charney-Drazin theorem.

Taking dimensionless form for the fluctuating part of (9):

q̃ ≈ ζ̃ − h̃

we can define the zonally averaged latitudinal PV flux as:

⟨q̃ṽy⟩ =
∂

∂y

⟨
∂yh̃∂xh̃

⟩
which is in fact equivalent to the Taylor identity. This allows us to write:

∂tvx − ⟨q̃ṽy⟩ = F x − ⟨D⟩v (63)
Considering the equation for the evolution of zonally averaged potential enstrophy:

∂

∂t

⟨
q̃2
⟩
+ ⟨2q̃ṽy⟩

∂

∂y
(q + q0) + ∂y

⟨
ṽy q̃

2
⟩
= 2

⟨
q̃P̃q

⟩
− 2

⟨
q̃D̃q

⟩
(64)
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and combining (63) and (64) in order to cancel the second terms on the left hand
sides: [

1

2

1
∂
∂y (q + q0)

∂

∂t

⟨
q̃2
⟩
+
∂

∂t
vx

]
=

1
∂
∂y (q + q0)

[⟨
q̃P̃q

⟩
−
⟨
q̃D̃q

⟩]
+F x−⟨D⟩v(65)

Dropping the highest order terms in q̃/q, and forcing and dissipation, once can write

vx +
1

2

⟨
q̃2
⟩

∂
∂y (q + q0)

= const

which is a statement of conservation of total meridional momentum including zonal
flows and waves. In other words, (65) implies that the meridional momentum due
to waves and zonal flows can increase or decrease (locally) only as a result of forcing
and dissipation at that spatial position. In particular, local meridional forcing, and
drag that modify the zonal flow momentum or local potential enstrophy injection and
dissipation that modify the wave momentum can eventually increase or decrease total
meridional momentum by transfer to the other “species” via the action of turbulent
potential vorticity flux. The same reasoning can be applied to drift waves[74].

5. Shearing effects on turbulence

5.1. Shear decorrelation

As discussed in the earlier sections, self-regulated large/meso scale sheared flow
structures emerge from the natural dynamical evolution of certain types of turbulence.
Those systems that can develop flow shear, such as magnetized plasmas and fluids
subjected to strong rotation, are naturally more effective in enduring large amounts of
external free energy than others. In such a turbulent system, the initial instability acts
merely as a catalyst that transfers the free energy from the external agent to the large
scale flows, since the generated large scale flow shear reacts back on the turbulence
and eventually suppresses its own driver.

While the end result may be a statistical quasi-steady state with flows and
turbulence, it may also lead to intermittent cycles à la predator-prey oscillations
between the growth of the primary instability and the growth of the secondary flow
structures and a consequent decay of the primary instabilities[75].

The stages of these oscillations are i) the initial growth of the primary instability,
ii) the secondary growth of the meso-scale sheared flow structures iii) the supression of
the primary instability by the flow shear via shear decorrelation, and iv) the damping of
the sheared flow. An important part of research on magnetized fusion has historically
been dedicated to the identification and classification of linear instabilities. Therefore
this is not really addressed in this paper beyond a basic mention of characteristics of
drift instabilities. Zonal flow formation, and its various aspects has already been
discussed in some detail in Section 3. Damping of zonal flows, both linear and
nonlinear, are discussed in Section 4. This leaves us with the question of shear
decorrelation.

While it is part of the bigger picture of coupled co-evolution of flows and
turbulence, in order to focus on physics of shear decorrelation itself, in this section we
drop the requirement of self-consistency and consider an externally imposed flow shear.
As such the approach is more directly applicable to a stationary sheared radial electric
field, or an imposed sheared flow in a rotating convection experiment. Nonetheless it
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gives us useful information about the nature of the shear decorrelation process which
plays a role also in the zonal-flow/turbulence interaction.

The basic idea of shear decorrelation is that a sheared flow can stretch an initially
isotropic eddy to a length that is much larger than its initial length sufficiently rapidly
that the eddy size hits the turbulence correlation length and thus the eddy gets
decorrelated faster. For given free energy source, the faster decorrelation implies lower
fluctuation intensity and hence a reduction of turbulent transport[76]. The subject is
reviewed previously [77] with detailed references. Our purpose here is not to repeat
the existing review but to present the formulation of the Ref. 76 (BDT henceforth)
in an understandable way.

In order to see the effect of sheared flow on turbulence, consider the following
equation: [

∂

∂t
+ vEy (x)

∂

∂y
+ ṽ · ∇

]
q̃ (x, y, t) = P̃ − D̃ (66)

which has the basic form of potential vorticity advection, with P̃ being the production
and D̃ the dissipation of q̃ (it is clear that q̃ (x, y, t) need not have to be the potential
vorticity and may be another fluctuating field as well). Note that we are using slab
geometry unlike the original BDT calculation, which uses a cylindrical geometry. An
equation for the two-point correlation C12 (t) ≡ ⟨q̃1q̃2⟩ can be written by multiplying
the equation for q̃1 ≡ q̃ (x1, y1, t) by q̃2 ≡ q̃ (x2, y2, t), and vice versa and adding and
statistically averaging the two equations:[

∂

∂t
+ vEy (x1)

∂

∂y1
+ vEy (x2)

∂

∂y2

]
C12 (t) +N = L

where N = ⟨q̃2ṽ1 · ∇q̃1⟩ + ⟨q̃1ṽ2 · ∇q̃2⟩ represents the nonlinear terms, and L =⟨
P̃1q̃2

⟩
+
⟨
P̃2q̃1

⟩
−
⟨
D̃1q̃2

⟩
−
⟨
D̃2q̃1

⟩
represents linear production and dissipation

terms. In order to describe stretching, we consider the sum and difference coordinates:
x+ = (x1 + x2) /2 , x− = (x1 − x2) /2. Taylor expanding the mean E × B flow as
vEy (x1) ≈ vEy (x+) + x−v

′

Ey (x+) and vEy (x2) ≈ vEy (x+) − x−v
′

Ey (x+) and using
∂y1 =

(
∂y+ + ∂y−

)
/2 and ∂y2 =

(
∂y+ − ∂y−

)
/2 and assuming that the two point

correlation is homogeneous (i.e. a function only of the difference variable), we obtain:[
∂

∂t
+ x−v

′

Ey (x+)
∂

∂y−

]
C12 (t) +N = L

Where N and L denote the nonlinear and the linear terms in the resulting equation
respectively. Dropping the linear terms and using an eddy diffusivity to represent the
nonlinear ones, we arrive at:[

∂

∂t
+ x−v

′

Ey (x+)
∂

∂y−

]
C12 (t)−

∂

∂x−
D

∂

∂x−
C12 (t) = 0 . (67)

In order to describe the evolution of average distance between two points,
we consider the equation for x2−, x−y− and y2− moments of (67) using
D = D0

(
x2−/∆x

2
t + y2−/∆y

2
t

)
/2 ∼ ∆ωt

(
x2− +∆x2tk

2
0yy

2
−
)
/2, and defining ωs ≡

v
′

Eyk0y∆xt , which gives:

d

dt

⟨
x2−
⟩
= ∆ωt

(
3
⟨
x2−
⟩
+∆x2tk

2
0y

⟨
y2−
⟩)

d

dt
⟨x−y−⟩ = ωs (k0y∆xt)

−1 ⟨
x2−
⟩
+∆ωt ⟨x−y−⟩
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Figure 16. Numerical (solid lines) and approximate analytical (dashed lines)
solutions of the dispersion relation (68).

d

dt

⟨
y2−
⟩
= 2ωs (k0y∆xt)

−1 ⟨x−y−⟩

The solution of this linear system is given by the solution of the dispersion relation:

γc (γc −∆ωt) (γc − 3∆ωt) = 2ω2
s∆ωt (68)

In the limit of non-zero ∆ωt but small ωs, the solution can be expanded around the
solutions for ωs → 0, to find the three roots:

γ(1)c ≈ ∆ωt

(
1− ω2

s

∆ω2
t

)
γ(2)c ≈ 2

3

ω2
s

∆ωt

γ(3)c ≈ 3∆ωt

[
1 +

1

9

ω2
s

∆ω2
t

]
The asymptotic solution on the other hand actually approaches:

γc ≈
4∆ωt

3
+ 21/3ω2/3

s ∆ω
1/3
t

which is actually a continuation of the γ
(3)
c root and has the scaling γc ∼

21/3ω
2/3
s ∆ω

1/3
t for ωs ≫ ∆ωt. See Figure 16 for how the asymptotic expressions

compare with the numerical solution of (68). Note also that two of the weak shear
roots (i.e. γ(1)c and γ(2)c ) vanish as one increases the shear. The exact point where the
first root disappears can be computed as:

ωs

∆ωt
=

√
73/2 − 10

33/2
≈ 0.562
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5.2. Effect on resonance manifold

The resonance manifold, that defines how the wave-like fluctuations can interact with
each-other efficiently is the key ingredient of the description of weak wave turbulence.
A given wave-number p interacts with two other wave-numbers q and k = −p − q
(since the interacting wavenumbers form a triangle). Thus, if p and −p−q are on the
manifold defined by the Manley-Rowe relations ∆ω ≡ ω (p) + ω (q) + ω (−p− q) = 0
(using the convention that frequency is taken as negative if the wavenumber is
negative).

Consider for instance the resonance manifold given by the dispersion relation for
the Charney-Hasegawa-Mima equation: ωk = ky/

(
1 + k2

)
:

∆ω (p,q) ≡ py
(1 + p2)

+
qy

(1 + q2)
− py + qy

(1 + p2 + q2 + 2q · p)
= 0

To consider the effect of constant shear, one can introduce the so-called shearing
coordinates[78]:

τ = (t− t0) , ξ = x , η = y − v
′

Eyx (t− t0) (69)

The other key element in computing the efficiency of three wave interactions is the
interaction coefficient. For the CHM system, it can be written as:

Mkpq =
ẑ× p · q

(
q2 − p2

)
1 + k2

The effect of a constant shear on the resonance manifold and the interaction coefficient
can be seen in Fig. 2.

It is well known that in plasmas and quasi-geostrophic fluids, weaknesses in
resonant interactions (i.e. that the manifold is small and the interaction coefficient
vanishes on a large portion of that manifold) is one of the primary reasons for the
generation of large scale flow structures. In other words, as the resonance manifold is
weakened the only remaining interaction that remains is via the large scale flow that
satisfies the Manley-Rowe relations in a trivial way.

It is therefore interesting to see that the action of flow shear, indeed weakens the
resonance manifold in time, hence a time averaged “effective” resonant manifold also
gets weaker. This leads to the turbulence being forced to couple even more to the large
scale flow. In other words, while at the beginning of the shearing transformation the
turbulence may have been coupling to other modes, as the time increases, the eddies
are tilted and they can only couple to the large scale flow.

Physically this corresponds to tilting and absorption of small scale vortices by the
sheared flow as discussed in Ref. [79]. This is a self-enhancing nonlinear mechanism
that amplifies the initial shear as opposed to the vortex break up. This observation
is interesting for control, because if we impose external flow shear, the same level
of turbulence will generate more zonal flows under the action of large scale shear
because the eddies can not couple to anything else other than the zonal flows due to
the destruction of the resonance manifold. This means that for quasi-2D turbulence,
by applying an external flow shear we can increase self generated flow shear structures
as well.

5.3. Self amplification

We have discussed various mechanisms by which a shear flow amplifies itself. First we
discussed the simple process of radial group velocity propagation of the waves that are
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Figure 17. The resonant manifold ∆ω ≡ ω (p) + ω (q) + ω (k) ≈ 0, with
q = −k−p, in shearing coordinates as a function of time τ for px = 0.6, py = 0.4.
The color codes indicate the strength of the nonlinear interaction coefficient Mkpq .
The figure shows that while initially this mode was coupled to two other modes
roughly kx ∼ −1, ky ∼ 0.3 and kx ∼ 0.6, ky ∼ −0.6, later on, both the size of
the resonant manifold and the nonlinear interaction coefficient on the resonant
manifold diminish. This suggests that the three wave interactions become very
ineffective.

tilted in a certain direction giving rise to sheared flows which increase the tilt and hence
the Reynolds stress. Then there is the basic mechanism of modulational instability; a
seed sheared flow which acts on fluctuations by modulating their amplitude results in
“negative viscosity” and hence finite time singularity. Finally we discussed the effect
of sheared flow on the three-wave interaction resonance manifold, noting that while
initially the manifold is reasonably populated, as the sheared flow acts, the three wave
interactions become less and less efficient, favoring the coupling with the zonal flows.

These are all different ways of describing a common phenomenon; that of the self
amplification of the zonal flow by its effect on turbulence. This usually corresponds
to the initial phase of the zonal flow growth and works until the fluctuations start to
be seriously modified by the zonal shear that they are unable to sustain their energy.

6. Predator prey dynamics

6.1. Basic predator-prey (PP) dynamics

The fact that the zonal flow feeds on the energy of turbulent fluctuations, while
suppressing those same fluctuations that drive it, via shear decorrelation, suggests
an analogy between the dynamics of the zonal flow/drift wave system and that of a
predator and a prey species. In this analogy, the zonal flow acts as a predator, whose
increased population becomes a threat to the drift wave that play the role of the
prey. The zonal flow damping is then a key control parameter that determines, once
the prey is gone, how long will the predators last. This is the key parameter, along
with the available free energy that sets the dynamics of the system. The basic Lotka-
Volterra equations for zonal-flow drift-wave system can be obtained by considering the
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zero-dimensional limit of the wave-kinetic formulation described in Section 3.2:
∂N

∂t
= γN − αEVN −∆ωN2 (70)

∂EV

∂t
= αNEV − νFEV − γnl (EV )EV (71)

where N indicates the wave-quanta density and EV indicates the energy associated
with zonal shear. Various coupling coefficients such as γ, the linear growth rate, α
shearing efficiency, ∆ω, nonlinear decorrelation rate, νF , the zonal flow damping and
γnl define the characteristics of the model.

It is clear that the evolution of the turbulent fluctuations coupled to zonal flow
energy as described by the simplified model given by (70) and (71) describes the
dynamics of a predator-prey system. The prey species N has an internal growth as
well as a nonlinear damping (due to “eddy” diffusion), while the predator species has
linear damping but nonlinear growth -that is proportional to the population of the
prey- as well as a higher order nonlinear damping (which is not really necessary for a
minimal model).

A predator-prey cycle thus has four phases dominated subsequently by these
four terms. It starts with the initial growth phase where the fluctuations grow
exponentially. This is followed by a predation phase, where the zonal flows grow
rapidly feeding off of the free energy of the fluctuations. This phase is characterized by
modulational instability or self-enhanced growth of initially weak zonal perturbations.
The next phase, characterized by shear suppression is the phase where intense zonal
flow shear scatters turbulence energy to high-k where it gets dissipated. In this phase
the fluctuation intensity decreases. The final phase in the predator prey cycle is the
zonal flow damping phase. Physically this is usually the slowest phase, and therefore
it determines the period of predator-prey oscillations.

6.1.1. Lotka-Volterra The basic Lotka-Volterra equations are given by

dx

dt
= ax− bxy

dy

dt
= −cy + dxy

where x correspond to drift waves (prey) and y to zonal flows (predator). The system
has two fixed points for each variable given by x = 0, y = 0, x = c/d, y = a/b. The
resulting oscillation is shown in Fig X.

6.1.2. The zonal flow variant: The equation

dx

dt
= ax− bxy − ex2

dy

dt
= −cy + dxy − fy2

has the fixed points defined by

x (a− by − ex) = 0

−y (c− dx+ fy) = 0
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Figure 18. Temporal evolution of the Lotka-Volterra system (on the left) and
its basic generalization that is used in plasma turbulence (on the right), where
the fixed points given in (72) are shown as dashed lines. Here the variable x
correspond to the primary turbulence (prey) and the variable y corresponds to
the zonal flow (the prey).

which gives the nontrivial solution

x =
cb+ fa

db+ ef
, y =

da− ec

db+ ef
(72)

as we can see in Fig. X, the system saturates by approaching this solution. While the
dynamics of this simple model is representative of the similar dynamics in tokamaks,
it is not clear if the fixed point remains meaningful even after considerable modeling
effort to estimate the coefficients. The model is actually a rather qualitative model
that is used to develop insight into the tendencies rather than as a quantitative model.

6.2. PP and forward enstrophy cascade.

When the zonal flows become important dynamically, low k drift wave spectrum is
dominated mainly by nonlocal interactions with the zonal flow. These interactions are
anisotropic in nature and are nonlocal in k-space in that the zonal shearing, can act on
small scales directly by transferring some of the potential enstrophy in the drift waves
(which is a conserved quantity of the zonal flow - drift wave interaction) to smaller
scales.

However since the zonal flow obtains energy by transforming the potential
enstrophy of the low-k drift wave to the high-k one it becomes stronger, and as it
becomes stronger it leads to more and more spectral flux being dumped to small
scales and dissipated. However as the zonal flow becomes too effective in moving the
potential enstrophy to dissipation range, it starts to deplete its source. With some
zonal flow damping, this leads to cycles of “bursts” in the spectral evolution equation
of the zonal flow.

Consider for example the basic spectral budget for potential enstrophy:
∂

∂t
W (k) +

∂

∂k
ΠW

nℓ (q, k) +
∂

∂k
ΠW

ℓ (k) = PW (k)− εW (k) (73)

where ΠW
ℓ (k) is the usual k-space flux of potential enstrophy, driven by local

interactions and Πnℓ (q, k) is the part of the flux that is driven by nonlocal interaction
with the zonal mode (of wave-number q). PW and εW are the production and the
dissipation of potential enstrophy.
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6.2.1. Spectrum with nonlocal interactions: Basic dimensional analysis suggests that

ΠW
nℓ (q, k) = τ−1

zf (q, k)W (k) k

τ−1
zf (q, k) ∝ kE (q)

1/2
q1/2

now considering a constant nonlocal flux, we obtain:

W (k) =
βk−2

urms (q)

where urms (q) = E (q)
1/2

q1/2 is the root mean square velocity of the zonal flow.
Note that here we took the zonal flow as a more general two-dimensional structure
and considered the isotropized energy spectrum in order to preform a dimensional
analysis. The basic scalings should work as long as there is an additional mechanism
which isotropize the fluctuations at smaller scales.

Remarkably, the spectrum

Φ2
k ∝ n2k ∝ k−3

(1 + k2)
2

one obtains from (??) for W (k) ∼ Φ2
kk
(
1 + k2

)2 (note that the extra k is an
integration factor) seem to agree reasonably well with experimental observations
of density fluctuations in Tore Supra, especially for high-k where the turbulence
is expected to be relatively isotropic, using the Doppler back-scattering diagnostic
system.

7. Role of zonal and mean flows in L-H transition

Recent observations of the Intermediate phase (I-phase) that appear between L and H-
mode states and display limit cycle oscillations between turbulence intensity and mean
flows point out the key role that the zonal flows play in the formation of transport
barriers.

The basic role of E × B shear in H-mode is rather well understood. In a quasi-
steady state, the energy injection rate + the energy generated by the fusion reactions
(which is usually weak compared to the injected energy in current tokamaks, but will
hopefully become important in the future ones) has to be balanced by the heat flux.
However the heat transport in tokamaks is mainly turbulent, and since E × B shear
reduces turbulence, and thus the turbulent diffusion coefficients, if a Fick’s law is used
to estimate the turbulent heat transport as the diffusion coefficient goes up, in order
to keep the heat flux constant, the temperature gradient has to go up. A similar
argument can be made for the density. In fact there are a number of simple transport
models, which can “describe” the L-H transition qualitatively using this basic idea[80].

7.1. Modeling the L-H transition.

The minimum model that can describe the L-H transition involves the E × B shear
suppression mechanism where the E × B shear is somehow linked to either the
temperature gradient via the neoclassical expression for toroidal velocity [81], or
density gradient times temperature gradient via the radial force balance[80]. The
minimal model, which has relevant physics for the H-mode is a setup, somewhat
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related to a 1-D double diffusive convection problem encountered in the study of
salinity transport in the ocean.

Consider a set of radial transport equations for density n (r, t) and pressure
P (r, t):

∂

∂t
n+

1

r

∂

∂r
[rΓn] = Sn (r)

3

2

∂

∂t
P +

1

r

∂

∂r
[rQp] = H (r)

where a slow “transport time scale” dynamics is assumed for the evolution of the
profiles which are averaged over the flux surfaces (in θ and ϕ directions around the
torus), so that fluctuations smooth out. It is further assumed that a basic closure for
the heat and particle fluxes can be implemented such that:

Γn = −D0
∂n

∂r
−D1E

∂n

∂r

Qp = −χ0
∂P

∂r
− χ1E

∂P

∂r

where D0 and χ0 corresponds respectively to the residual part of the particle and
heat diffusivities usually thought to be due to neoclassical diffusion, and D1E and
χ1E are the turbulent particle and heat diffusivities respectively, which are explicitly
proportional to the turbulence intensity E . A simple shear suppression rule in the
spirit of section 5.1, which correspond to the weak shear limit of Ref. 76, is usually
used:

E =
E0

1 + αv
′2
Ey

to imitate the suppression of the turbulence due to sheared flow.
Where usually an approximate form of the radial force balance for the ions:

Er = −vθ
c
Bϕ +

vϕ
c
Bθ +

∇P
en

such as

v
′

Ey =
c

eBn2
i

dn

dr

dP

dr

is used (recall that vEy = −cEr/B)[80]. The heat source H (r) is localized in the
center and the particle source S (r) is localized near the edge of the plasma. This
system of equations solved with the boundary conditions n (a) = na, P (a) = Pa and
∂t∂xn (0) = ∂t∂xP (0) = 0 (and possibly with other boundary conditions as well),
gives a rather clear L-H transition (see fig. 19).

Many similar models have been developed, explaining the details of the
bifurcation phenomenon[82], including angular momentum transport to explain
intrinsic rotation[83, 84], including turbulence spreading[85] and turbulence-zonal flow
predator-prey evolution to explain the L-I-H transition[86, 87, 85]. In our current
understanding of the phenomenon, the zonal flows play an important role during the
transition.
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Figure 19. Dynamics and the final steady state of the basic transport model,
showing the establishment of the L-mode profiles (denoted with L) slightly below
the critical threshold at qa = 2.9 and the H-mode profiles (denoted with L) slightly
above it at qa = 3.0 for pressure (on the left) and density (on the right). It is
remarkable that the L-mode profile is established very rapidly while the transition
to H-mode takes time in this formulation.

7.2. Models including PP dynamics.

Recent observations of, slow coupled oscillations between plasma fluctuations and large
scale flow structures, display certain characteristics of predator prey dynamics. Such
“limit cycle oscillations” have been observed in TJ-II stellerator [88], and HL-2A [89],
ASDEX-Upgrade [90], D-IIID [91], EAST [92] and Alcator C-Mod [93] tokamaks and
point to zonal flows as a universal trigger to the L-H transition[94].

While the experimental observations of the phenomenon are relatively new, the
idea has been around for a while. Most notably, Kim and Diamond had predicted the
limit cycle oscillations[95] from a simple L-H transition model that includes zonal-flow
turbulence interactions. The models have recently been extended in a series of papers
by Miki and Diamond et al. in the form of reduced meso-scale models of zonal flow
triggering of the L-H transition[87, 96, 97, 98]. Similarly coupling a shell model of
drift-wave turbulence (which incorporates naturally the predator-prey evolution) to a
transport model has given a qualitatively consistent picture of meso-scale evolution
leading to pedestal formation[85].

The basic picture which arise from these theoretical studies and experimental
observations is that the zonal flows and therefore the meso-scale dynamics associated
with them, such as avalanches, turbulence spreading, spatial and spectral evolution
of turbulence intensity into regions of phase-space that are not linearly excited is
an essential part of the dynamical self-regulation leading up to the L-H transition.
Dominant paradigms based on a fixed background gradient driving micro-turbulence,
whose only effect is to define a turbulent diffusion coefficient can not capture the
predator-prey behavior as a result of either the lack of or a strong damping of mesoscale
phenomenon. This suggests that a direct approach to modeling the turbulent transport
is more difficult than initially thought, since it requires a direct numerical simulation
of the evolution of the full gyro-kinetic distribution function where the free energy
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Figure 20. Limit cycle oscillations before an L-H transition as predicted by a
simple meso-scale model[95], the solid line corresponds to turbulence intensity,
the dotted line to zonal flows and the dashed line corresponds to the mean flow
(or equivalently the pressure gradient). [need copyright]

sources are not the gradients but rather explicit heating terms written in terms of
fluxes. Such a “flux-driven” simulation effort, has indeed been undertaken, but has
shown to be rather difficult with current resources, for realistic practical applications
for tokamak plasmas.

This justifies the use of simpler models as discussed in this review, sometimes as
the only source of prediction, as most direct numerical simulations are based on fixed
imposed profiles, which work only when the plasma is not dynamically evolving and
basically has no hope of simulating a multi-scale dynamical phenomenon such as an
L-I-H transition.

7.3. Staircases and Sandpiles

PV staircases are a well known feature of the earth’s atmosphere related to zonal jets
in different planets shown in figures 1 and 2 in section 1. They are also a key feature
of the thermohaline, and provide a barrier for the thermal transport across different
layers of the ocean. They also probably exist in tokamaks and act as a seed for the
formation of the actual transport barrier.

While staircases reduce transport across them due to the flow shear associated
with them, they don’t completely suppress turbulence. As a result the flux that is
slightly reduced leads to an accumulation of the transported quantity leading to a
sharpening of its gradient and hence the possibility of a sudden burst of transport.
This dynamical coupling between a forming staircase pattern and a sudden burst of
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transport (an “avalance”) is a secondary mesoscale dynamics of plasma turbulence that
has important implications on the dynamics of the profiles (i.e. transport) especially
formation and destruction of barriers.

An interesting aspect of avalanche dynamics is its relation to self organized
criticality (SOC) and thus sandpiles. One may intuitively expect that the plasma
when driven far from equilibrium drives sheared flows and other complex mesoscale
structures to bring itself near a self-organized critical “equilibrium”. In this dynamical
state, the plasma would be in a state of locally marginal equilibrium hovering slightly
above and slightly below this self-organized marginal stability curve.

Leaving the question of what this marginal equilibrium is and how it is established
aside, we may describe the evolution of the profiles around this equilibrium. Noting
that the joint reflection symmetry x → −x, δP → −δP is respected[99] by the flux
near an SOC equilibrium state (such that P = PSOC + δP ), one can consider a
combination of the simplest possible forms of the flux as Γ (δp) ≈ (λ/2) δP 2−χ ∂

∂xδP .
This gives the following equation for the deviation from the SOC state for the plasma
pressure[100]:

∂

∂t
δP +

∂

∂x

(
λ

2
δP 2

)
− ∂

∂x

(
χ
∂

∂x
δP

)
= 0

which can be recognized as the Burgers equation. Since the Burger’s equation leads
to formation of shocks, and a slower process of PV homogenization counters this
tendency, it is not surprising that the system generates “staircase” patterns.

The effect of a mean sheared flow on this basic Burgers dynamics can be included
by adding another direction to consider a flow in the y direction that is sheared in the
x direction. This gives a “transport” equation of the form:

∂

∂t
δP + v′Ex

∂

∂y
δP +

∂

∂x

(
λ

2
δP 2

)
− ∂

∂x

(
χ
∂

∂x
δP

)
− ∂

∂y

(
χ
∂

∂y
δP

)
= 0

which is still consistent with the joint reflection symmetry.

8. Nonlocality, radial propagation.

Another mechanism by which the zonal flow/drift wave system can saturate is through
spatial propagation. We have already seen a glimpse of that in the modulational
instability framework as we made a transformation to the frame of reference, moving
radially at the radial group velocity. The zonal flow, which does not move is then
retarded in this reference frame and it is this effect that balances the Reynolds stress at
the lowest order. However in reality the coupling of spatial propagation and zonal flows
is not as simple. Since modulations that are generated in different spatial positions
with different characteristics and can propagate either inward or outward both due to
linear and nonlinear effects.

In nature, turbulence is never local. If a local perturbation injects energy to
a turbulent field locally in space, the resulting fluctuations spread throughout the
system. The phenomenon while obvious from a turbulence perspective, may appear
counter-intuitive from a magnetized plasma perspective where the particles are well
localized due to small Larmor radii.

However since turbulent transport allow the particles or heat to be transported
radially due to phase relations of fluctuating fields, the generated turbulence can
also propagate via these same turbulent mechanisms. The phenomenon that is called
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“turbulence spreading” is usually described using Fokker-Planck formulations resulting
in Fischer-Kolmogorov type nonlinear equations, such as:

∂

∂t
E +

∂

∂x

[
vgE −D0E

∂

∂x
E
]
= γE − γnℓE2 (74)

where E (x, t) is a measure of the turbulent fluctuation level (usually a nonlinearly
conserved quantity such as energy, or potential enstrophy).

The equation can also be obtained by a systematic reductive perturbation method
based on the two scale direct interaction approximation (TSDIA), which is applicable
to two and more field models of turbulence [101]. The equation (74) has a number of
exact solutions for certain forms of γ and γnℓ that are physically relevant solutions,
such as self-similar spreading or ballistic fronts[102].

A detailed derivation of a similar equation can be done, starting from the drift-
kinetic equation, where the flux can be written as an integral over the velocity space of
the flux of free-energy density, instead of the particular form (i.e. ΓE = vgE−D0E ∂

∂xE)
that was taken above:

ΓE ≡
ˆ 

⟨
ṽE f̃

2
⟩

2f
+

⟨
f̃2
⟩

2f
b̂v∥

 d3v (75)

where f and f̃ being the slowly evolving and the rapidly fluctuating parts of the drift
kinetic distribution function.

Basic effect of large scale flow shear can be included in this equation by including
the physics of advection by a radially sheared poloidal flow:

∂

∂t
E + v′Ex

∂

∂y
E +

∂

∂x

[
vgE −D0E

∂

∂x
E
]
= γE − γnℓE2

A formulation of this form is not self consistent unless one includes the effect of
fluctuations on driving the E × B shear. It may however be useful in the case, when
the E × B shear is sufficiently strong and steady that it can be considered as an
external one. The H-mode in tokamaks would satisfy this condition.

However for the transition, current understanding suggests that the spatio-
temporal predator-prey like dynamics of turbulent fluctuations and zonal flows with
mean E × B shear acting as a reservoir of kinetic energy play the dominant role.
While the fluctuations can recover from zonal shear suppression due to zonal flow
damping, mean shear eventually acquires enough energy and suppresses the turbulent
fluctuations sufficiently, reducing the transport coefficients considerably leading to a
state of high confinement.

It should be noted however that the simple predator-prey idea described above,
which will be discussed in more detail below, does not take into account the spatial
propagation. Nonetheless, both the fluctuations and the zonal flows actually propagate
as they are nonlinearly coupled forming complex interaction patterns. A description
of this phenomenon using simple models is possible and interesting in its own right.
However even the simplest model ends up with 4-5 partial differential equations
describing spatio-temporal evolution of different quantities.

8.1. Telegraph equation, traffic flow, and turbulent elasticity

8.1.1. Telegraph equation In the standard formulation of plasma transport, the
response of the flux to the gradient is usually taken to be local and instantaneous
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There is a direct relation between the heat flux and the temperature gradient (i.e.
with adiabatic electrons and zero rotation with symmetric k∥ spectrum):

Q = −χi
∂T

∂r
(76)

This relation is called the Fick’s law (or the Fourier law of heat conduction in the
case of solids), and it implies that the flux responds infinitely rapidly and perfectly
locally to the gradients. In contrast, “the second sound”[103], in solids at very fast
time scales[104], and in reactive fluids, a commonly used relation is the following (e.g.
[105]):

τ
∂Q

∂t
+ χi∇rT +Q = 0 (77)

where τ can be considered as a new coefficient of transport physics, which physically
corresponds to the response time of the flux to the gradient. This relation, which
is called the Maxwell-Cattaneo relation, incorporates the fact that if the gradient is
suddenly changed, the heat flux would respond in some finite response time (i.e. τ).
Notice that, the steady state limit of (77) is indeed (76). In order to understand
“transient” transport, we actually need both τ and χi even though τ may be as fast
as a few turbulent decorrelation times.

However since the plasma transport is driven mainly by turbulence, the response
of the flux is not a simple “transient”, because by the time the flux is saturated to its
mixing length level, the gradient is also changed via the transport equation for heat:

∂Ti
∂t

+∇r ·Qi = H (r, t) (78)

where H (r, t) is the net heating, and this allows a dynamical coupling between
the flux and the gradient. For example expanding around an equilibrium [i.e.
∇r ·Qi = H (r, t)], it is easy to see that the excess temperature obeys the equation:

∂2δTi
∂t2

+
1

τ

∂

∂t
δTi −∇r ·

[χi

τ
∇rδT

]
= 0 (79)

which is actually the telegraph equation. This equation is well known to describe
the time evolution of the transport in reactive fluids and in problems of population
growth, more accurately than a simple diffusion equation[106, 107]. It is the simplest
formulation that describes the phenomenon of diffusion in a medium, which describes
not only the positions, but also the momenta of the basic elements[108] that constitute
that medium. It is clear that as τ → 0, the first term in (79) becomes negligible and
we recover the usual diffusion equation. Note that this is a singular limit where the
highest order derivative with respect to time drops.

In contrast, for finite τ , the wave character of the equation suggests a radial
propagation speed vr =

√
χi/τ , which is consistent with the spreading phenomenology

vspr ∼
√
2γDE (where γ is the growth rate), except that the diffusion coefficient for

turbulence intensity DE is replaced in this coupled formulation by the heat diffusivity
χi [109, 110, 102, 111].

If the flux response is not perfectly local, but rather smoothed out (i.e. a
discontinuity in the gradients, does not generate a step function flux), we can write:

τ
∂Q

∂t
+ τ∇rΓQ + χi∇rT +Q = 0 (80)

where a local closure for the flux of heat flux:

ΓQ = −D∂Q
∂r

(81)
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can be proposed, which gives the so-called Guyer-Krumhansl constitutive relation[112],
which is sometimes referred to as a “weakly non-local” relation. Obviously, if the radial
group velocity of the waves that are responsible for transport is finite, it should be
added to ΓQ (i.e. as vgrQ).

Note that this formulation of the transport now has 3 coefficients, namely the
heat diffusivity χi, flux response time τ and the flux penetration length λ =

√
Dτ .

Note that (80) is simply the Cattaneo relation with the added diffusion of heat flux.
However since, the transport is anomalous in fusion plasmas, the coefficients χ, τ and
D are functions of turbulence intensity, rendering the constitutive relation nonlinear
as will be discussed.

The effect of mean shear can be introduced into the equation for the heat flux by
moving to two dimensions as:

τ

(
∂

∂t
+ v′Ex

∂

∂y

)
Q+ τ∇rΓQ + χi∇rT +Q = 0

8.1.2. Turbulent Elasticity and predator-prey waves The basic approach that has
been outlined in the previous section for weakly non-local evolution of the heat flux
can be applied to other quantities that are transported in a plasma, such as particles
and momentum. A full matrix formulation is discussed in Appendix B as a starting
point for this generalization. However since such a formulation is by definition “meso-
scale” both in time and in space, other meso-scale phenomena, and in particular zonal
flows has to be included in the same footing. While the zonal flows are special in the
sense that they suppress the underlying turbulence, they are driven by a perpendicular
momentum flux, just as any other flow can be driven by momentum flux. In fact the
zonal momentum flux evolution can be obtained simply by taking the corresponding
moment of the wave-kinetic equation. Following Ref. 113, we consider the wave kinetic
equation (33), which can be written as:

∂

∂t
Nk + vg,k

∂

∂x
Nk − kyv

′

E

∂

∂k
Nk = −γN,k (Nk −N0,k) (82)

coupled to the spatio-temporal evolution of the zonal+mean flow:
∂

∂t
vE +

∂

∂x
Πy = −νF (vE − vE,0)

The wave-quanta density Nk is driven towards N0,k, which is the steady state k-
spectrum due to eddy damping, and vE , which is the zonal E × B velocity is driven
towards vE,0 -the E ×B flow implied by the radial force balance- due to ZF damping
mechanisms discussed above. Here

Πy = ⟨ṽxṽy⟩
is the radial flux of zonal momentum and using the equivalence of wave-particle
momenta[74] is equivalent to wave-momentum, which can be computed by multiplying
(82) by vg,kky and integrating over k as:

∂Πy

∂t
+

∂

∂x
ΓΠy + α

∂

∂x
vE = −γN (Πy −Πy0) (83)

Here γN is the expectation value of γN,k over the “distribution” δNk = Nk − N0,k.
The local, steady-state limit of (83), gives a Fick’s law like expression for the zonal
flow:

Πy = Πy0 −
α

γN

∂

∂x
vE
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where Πy0 plays the role of a residual momentum flux[84, 114] in the absence of E×B
shear. One can get a simple telegraph equation for the zonal flow, even by dropping the
∂
∂xΓΠy term altogether (i.e. considering a delayed response, but no spatial coupling).

∂Π̃y

∂t
+ α

∂

∂x
ṽE = −γN Π̃y

∂

∂t
ṽE +

∂

∂x
Π̃y = −νF ṽE

where Π̃y = Πy−Πy0 and ṽE = vE−vE0 are the mesoscale time evolving components.
The two equations can be combined simply as:(

∂

∂t
+ νF

)(
∂

∂t
+ γN

)
ṽE − α

∂2

∂x2
ṽE = 0

which suggest damped wave-like solutions independent of the sign and the value of
α. This means that in order to excite spatial predator-prey waves, one has to include
some form of spatial nonlocality.

Since we are not interested in the temporal evolution of ΓΠy , we can use a
flux-limited diffusion[115, 116] expression as a “closure”:

ΓΠy = −
χΠy

∂
∂xΠy√

1 + λΠy

(
∂
∂x lnΠy

)2
for λΠy → 0 or ∂

∂x lnΠy ≪ λ
−1/2
Πy , the expression gives the usual Fick’s law, but in the

opposite limit it gives advection. In this latter limit, the combined equation takes the
form of a generalized telegraph equation:[(

∂

∂t
+ νF

)(
∂

∂t
+ γN − vc

∂

∂x

)
− α

∂2

∂x2

]
ṽE = 0 (84)

The modulational instability condition for (84) is
∣∣αq2/γN ∣∣ > νF , which also gives a

critical (i.e. most unstable) zonal wave-number as qc ≈ |νF γN/α|1/2. It is clear that
once these radially propagating predator prey waves establishes, all the fluxes become
equally nonlocal, since the local gradients of temperature, density and momentum,
will all be determined by the incoming fluxes via this dynamics rather than the other
way around.

With this we may be able to say a few words about a current debate in the
fusion community about fixed gradient vs. flux driven formulations. It is true that
the turbulence in fusion devices are excited locally by the free energy in the gradients.
However a formulation based on fixed gradients is not very meaningful since the profiles
themselves adjust in order to be able to accommodate the injected heat, particles
and momentum. This means that a flux-driven formulation (source-driven is usually
implied) is critical for describing the evolution of the plasma globally. However a
global description necessitates a proper implementation of boundary conditions and
different parts of the plasma, such as open and closed field lines. Instead a partially
local description can be imagined where the fluxes and the gradients co-evolve in
the domain, and the boundary conditions are chosen as the fluxes and the gradients
at the boundary of the domain. If the simulated domain does not contain sources,
such a partially local formulation may be sufficient for describing the weakly nonlocal
dynamics of the plasma turbulence.
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Appendices
Appendix A: Derivation of Thermal Rossby Equations

Considering a viscous fluid in the container depicted in figure 3, the equation of motion
can be written as:(

∂

∂t
+ v · ∇

)
v + 2Ωn̂× v +Ω2r = −∇P

ρ
+ ν∇2v (.1)

Using a perturbation expansion, P = P0 + δP , and ρ = ρ0 + δρ, the zeroth order
balance with no flow takes the form

∇P0 = −ρ0Ω2r0r̂ (.2)

When we substitute these expansions back into (.1), and use (.2) to eliminate ∇P0,
we obtain: (

∂

∂t
+ v · ∇

)
v + 2Ωn̂× v = −∇δP

ρ0
− Ω2r0

δρ

ρ0
r̂+ ν∇2v (.3)

Using the equation of state:

ρ = ρ0 [1− α (T − T0)]

we can write δρ = −αρ0δT where δT is the deviation from an equilibrium profile of
temperature, which is the steady state solution of the heat equation:(

∂

∂t
+ v · ∇

)
T = κ∇2T (.4)

which actually becomes the Laplace’s equation ∇2T0 = 0, one solution to which is a
constant gradient linking the two boundary values of temperature

T0 (x) = T1 +
∆T

D
x (.5)

Multiplying (.3) by D3/ν2, and using the dimensionless variables v′ = Dv/ν,
t′ = νt/D2, x′ = x/D, π = D2

ν2
δP
ρ0

and Θ = δT/ (P∆T ):(
∂

∂t
+ v · ∇

)
v + 2E−1n̂× v = −∇π +RaΘr̂+∇2v (.6)

where we dropped the primes for convenience and defined

Ra ≡ α
D3∆T

νκ
Ω2r0 ,

which is the Rayleigh number, and

E ≡ ν

D2Ω
,
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which is the Ekman number. The equation for temperature perturbation can be
obtained by substituting T = T0 (x) + δT with T0 (x) given by (.5) into the heat
equation (.4): (

∂

∂t
+ v · ∇

)
δT + vx

∆T

D
= κ∇2δT

multiplying by D2/ (ν∆T ) and using the normalization discussed above, we obtain:

P
(
∂

∂t
+ v · ∇

)
Θ+ vx = ∇2Θ (.7)

Using v = n̂×∇⊥ψ, and the geostrophic balance as described already in section 1.2.3
the system of equations (.6) and (.7) can be written as(

∂

∂t
+ v · ∇

)
ζ +

(
ζ + 2E−1

)
(∇⊥ · v) = −Ra ∂

∂y
Θ+∇2ζ

using (3) with h = h (x) = h0 − 2η0x, we can write(
∂

∂t
+ v · ∇

)
ζ − η∗∂yψ = −Ra ∂

∂y
Θ+∇2ζ

where η∗ = 4η0/ (Eh0).

Appendix B: Matrix formulation of weakly non-local transport

One can formulate general transport equations with evolving fluxes in simple geometry
as follows:

∂

∂t
ξ +∇r · Γ = S (.8)

τ
∂

∂t
Γ+ (Γ− Γres) +∇r · [R · G] = M ·F (.9)

where

ξ =

 n
nT
nvϕ

 , Γ =

 Γn

Q
Πϕ


F =

 ∇rn
∇rT
∇vϕ

 , M = −

 Dn UnT Unϕ

UTn χi UTϕ

Uϕn UϕT χϕ


G =

 ∇rΓn

∇rQ
∇rΠϕ

 , R = −

 DΓn UΓnQ UΓnΠϕ

UQΓn DQ UQΠϕ

UΠϕΓn UΠϕQ DΠϕ

 .

Furthermore these can be extended to include temperature anisotropy as well
as magnetic curvature and inhomogeneity separating turbulent and neoclassical
contributions to the flux[117]. Note that in the above formulation the neoclassical
fluxes should appear as offset, not as a modification of the fixed point. In other words,
we would say Γ = Γneo + Γturb and write (.9) only for the turbulent bit. Here we
present this matrix formulation as the basis of an alternative to standard transport
frameworks (e.g. [118]).
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